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1. Abstract.

Comments on the application to rigid link manipulators of Geometric Control Theory, Resolved Acceleration
Control, Operational Space Control, and Nonlinear Decoupling Theory are given, and the essential unity of these
techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact
that the mass matrix of a rigid link manipulator is positive definite - a consequence of rigid link
manipulators belonging to the class of natural physical systems - it is shown that a necessary and sufficient
condition for a locally externally linearizing and output decoupling feedback law to exist i{s that the end
effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.

2. Introduction.

Because of the difficulty in controlling rigid link manipulators, along with a primary concern {n
controlling end effector (EF) motions, it is natural to ask if a nonlinear feedback law exists which will make
an EF behave as if it has linear and decoupled dynamics. It has been known at least since the early 1970s
[1]-{9] that exact linearization of manipulators in joint space is readily accomplished by the so-called
Inverse or Computed Torque Technique. Efforts to accomplish decoupled linearization of EF motions directly in
task space began soon thereafter as is evident in the work of [6]-[14].

The work of [6], although concerned only with controlling the tip location of a three-link manipulator in
the plane, {s surprisingly prescient in its approach in that it proceeds by the three explicit steps of
1) decoupled linearization of tip behavior; 2) stabilization of the resulting tip dynamics; followed by
3) trajectory control of the now linearly behaving tip. Such clarity o~f approach will only be retrieved in the
latter work ot [19]-[22}. The work {6) also presages future work in its dealing with the probless of
manipulator redundancy and actuator saturation,

With hindsight, the work {6] can also be viewed as a direct precursor to the development of the Resolved
Acceleration Control (RAC) approach to the end effector tracking problem [7]{8]. RAC essentially extends the
work of [6] to the case of a full six dof manipulator yielding linearized EF positional error dynamics and
almost linearized EF attitude error dynamics (the extent to which attitude error dynamics are "almost”
linearized will be discussed below). The work of (7][8), however, did not make clear the three steps of {6]
and consequently appears to have not been appreciated as a technique for performing decoupled exact
linearization of EF motions, but rather as a technique for end effector tracking which has (almost) linear
tracking error dynamics. The fact that the attitude error dynamics are not cozpletely linearized also
apparently obscured the appreciation of RAC as an exactly linearizing control technique.

The work of [9]-(11] applies Nonlinear Decoupling Theory (NDT) to provide decoupled linearization of a
manipulator EF with simultaneous pole ptacement of the linearized EF dynamics. The abstruse formulation of
this approach has apparently discouraged serious comparison with other approaches, the notable exception being
'23) where correspondences to RAC and the Computed Torque technique have been noted. The simultaneous pole
placement and linearization of EF dynamics represents a blurring of the distinct steps | and 2 described above
tor the approach [6].

In [121-114), manipulator dynamics are expressed in the task space, or Operational Space of the EF. The
resulting nonlinear effective end effector dynamics are then linearized by the Computed Torque method. Thus,
the Operational Space Control (OCS) of [12]-(14] can also be viewed as a Generalized Computed Torque
rechnique. In [12] correspondences to RAC and the Computed Torque technique have been noted.

Recently, Ceometric Control Theory (GCT} based techniques tor exactly externally linearizing and
decoupling general affine-in-the-input nonlinear systems have heen developed (15]-{19]. These techniques
provide constructive sufficient conditions for local decoupled external linearization which, if satisfied,
produces the linearizing feedback law. GCT has been applied to exactly linearizing end e¢ffector motions in
{19]-{22]. The work of (19]-{22] also provides a clear and mature control perspective which keeps the
following steps distinct: 1) Exactly linearize and decouple =nd effector dynamics to a canonical decoupled
double integrator form, i.e. to Brunovsky Canonical Frrm (BCF); 2) Effect a stabilizing loop (pole placement
step); 1) Pe-form teedforward precompensation to obtain nouminal model following performarnce; 4) Institute an
LQR error correcting feedback loep. Unfortunately, to understand the theoretical underpinaings of GCT requires

325



an exposure to differential geometry and Lie algebra/Lie group theory which most practicing engineers are
unlikely to have.

It can be shown that all of the above seemingly quite different approaches lead to the same linearisisg
control law for exact external linearisation snd decoupling of EF motions [24]. (This equivalence is specific
to the nonlinear systems considerod here, viz. systems dynamically similar to rigid link sanipulators. MNOT and
GCT appiy to a much larger class tban this, and so the equivalence to RAC and 0SC holds for systems restricted
to this class but not in general). Recognising this equivalence enables us to give a simple necessary and
sufficient condition for local decoupled external linearization and to give a simple form for the linearizing
control which is spplicable to a broad class of so-called natural physical dynamical systems [25) [26] of which
a serial link menipulator is but a special case. Tor brevity we do not discuss actuated redundant arws - for
discussion of these cases, see [24].

3. Dynamics of Finite Dimensional Natural Systems.
Many physical systems have finite dimensional nonlinesr dynamics of the form (25](26):

M(q)g + V(q.8) = 1; q ¢ ¥'; 4,q ¢ &% (

nxa T
M(g) e R Mq)=M(q)>0, Vg

where q evolves on a manifold of dimension n. For example q ¢ R™ for a Cartesian manipulator, while q ¢ T® for
a revolute manipulator.

Typically (1) arises as a solution to the Lagrange equations:

43, At
awagl 3@

where L « T-U, T = 1/2 iTM(q)q is positive definite and autonomous, U {s a conservative potential functioa,

Q = ¢t + F are generalized forces, and F are dissipative or constraint forces. This is exactly how manipulator
dynamics are obtained and hence manipulator dynamics are precisely of the form (l). Systems wvhich arise in
this way are known as natural systems (25](26]. It is known that fof natural systems not only is M(q) positive
definite, but V(q.q) of (1) has terms which depend on M(q) in a very special way [27]-{29]. In fact, natural
systems are nongeneric in the class of al! affine-in-the-input nonlinear systems (38](39}. Although we shall
only exploit the fact that M(q) is positive definite for any q, it is worth noting that the nongeneric
structure of (1) has recently enabled important statements to he made on the existence of time optimal control
laws [38)-[40], on the existence of globally stable control laws {27]-([33], on the existence of robust
exponentially stable control laws [34], and on the existence of stable adaptive control laws {35]-(37] for

the natural system (1).

Recognizing the special properties of the system (1), it is not surprising that results yielding externall:
linearizing behavior can be obtained much more easily than by application of NDT or GCT - theories which apply
to the whole general class of smooth affine-in-the-i{nput nonlinear systems.

4, End Effector Kinematics and Control After Linearization.

The system (l) ig assumed to have a read-out 4ap of either the form

y =h(q) c R", ¥ s § = J(q)q ¢ R™, 1(q) = 3‘:'. cR™R

or of the more general form

y = h(q) ¢ e Jo(q)c'{ ¢ R®, Jo(q) ¢ ™ [&]

vhere Jodt - 4'dt is a general, perhaps nonintegrable, Pfaffian form [25]{26], h(*) is C2 {44](47] and defined
on N" PP is some m dimensional output manifold, J or J, is cl, and in general m and n have different values.
Otten h( ) is smooth (i.e. C®) or gven a diffeomorphism when the domain is suitably restricted. In subsequent
discussion4 = J § will mean that J can be either J or Jg. Let the state of system (1) be (q,q). Then for
y = h(q), 4 = J(q)q will be called the “velocity associated with the output y." Note that (2) is a special
case of (3) where 4, the velocity associated with y, is just 4 = y and M®=R®™ giving J = J = 3h/3q. Also tote
that for the case (3), since h is C2, it is still meaningful to talk about y = J§ and J = 3h/3q, J(q):

TqN“ x RP o Th(q)PF. but now the case wherc4 4 y is admitted as a possibility.
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For rigid 1ink manipulators moving in Euclidesn 3-space, typically4 = (.i.) ¢ RS, whare x ¢ a3 gives the EF
location, £ the EF linear velocity, and w ¢ 23 the 2F angular rate of change. It {s well known t @ is not
the time derivative of any minimal (i.e. 3 dimensional) represseantation of attitude, so that 4 -.m = J5(q)4 as
fa (3). In this case, we call _J.(q) the “Standard Jacobian.” It is also common to represent LF ittitude by a
proper orthogonal matrix A ¢ 13‘3.

A ¢ S0(3) -IAIATA = AT = 1, detA = 41},

wvhere the columns of A determine EF fixed body axes in the usual way. It is well known that A = YA where
v: = w x v for all v ¢ R, Thus EF location and kinematics are often given by

y » (x,A) = h{q) ¢ R3 x 80(3), YV = (g) =J (q)qc RO A =3, Ac50(3), 3T = -G, 3 Q) ¢ péxn »)

which should be compared to (3). Alternatively, we can take (cf. (2))

y = (3) = na) e %, Naja (2) - J(q)4 ¢ 2%, 8 ¢ acR>. (s)

8¢ 0C R3 1s a minimal representation of EF attitude (i.e. of the rotation group SO(3)). In general 8 = f(A)
for some function f(:) which is many-to-onu or undefined if the domain of f(:) on SO(3) is not properly
restricted. That is, because SO(3) cannot be covered by a single coordinate chart, 8 is not valid for all
possible EF orientations and thare will be singularity of attitude representation unless we restrict EF
attitude to the region of SO(3) for which B is valid {25] [41]{42), This restriction then forces B to be
defined in the image of admissible attitudes, namely in some Q crl, (In may be true, however, that 1 = 23 4
in the case of Euler-Rodriquez parameters where singularfty of attitude representation corresponds to

18] « » {42}). Typical 8's are roll-pitch-yaw angles, axis/angle variables, Euler angles, Euler parameters,
and EBuler-Rodriques parameters {25], [41]-(43). The kinematical relationship between 8 and w {s given by

B = N(B)w (6)

where M ¢ R3XJ will lose, rank, i.e. become singular, precisely when B becomes a singular representation
of EF attitude. Note from (3)-(6) that
10
J = (0 ﬂ> Jo'

Generally, the standard Jacobian matrix J, will become singular only at a manipulator kinematic singularity,
in which case J will also be singular. Furthermore, J will be singular when B = B(q) gives a singularity of
EF attitude representation. This compounds the trajectory planning problem for EF motions, eince now we must
plan trajectories which avoid manipulator kinematic singularities and also ensure that B(q) ¢ Q.

Henceforth the system (1), (2) or (1), (3) will be said to be exactly externally linearized and decoupled
it

4 = uc RO, 7)

This is somewhat of an abuse of notation as a consideration of the system (1), (4) shows. For u = (:l).'é =y
yields =

c R, A JA, (8)

Although EF positjonal dynamics are decouplied and linearized to % = u, attitude dynamics are nonlinear and
given by & = uz, A = JA. Eq. (8) is precisely the sense in which RAC can be said to almost "exactly externally
linearize and decouple” attitude error dynamics as vas discussed in the introduction. In the case of the
system (1}, (5), 9 = (:;) gives

¢ R7, 8 = u, € l3. 8¢ QCRJ. 9)
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which can indeed be said to be exactly externally linearized and decoupled. Drawbacks to using (9) are thet 8
must alvays be controlled to remain in Q, trajectories involving B may be difficult to visuslize, and the
generalised force, uz, wvhich drives 8 may be nonintuitive. On the other hand, it is obvious how to obtain
stable attitude tracking from (9). The advantage to using (8) is that w and A are easily visualized
entities, while uy is the or'inary torque that we are all familiar with. Fortunately, deapite the nonlinear
attitude dynamics, it is possible to use (8) to perform EF attitude tracking with asymptotically vanishing
attitude error [7] [8]).

. Note that once (8) is obtained, it i{s easy to get (9) by use of the relationship (6). If we have & = g,
8 = M(8)w, and B ¢ Q so that N~1(8) exists, then use of

o=u, us=0Y8) (T- 18) (10)

gives
B = MB)o + N(B)w = T. (11)

Therefore, having (8), we can perform attitude control directly on @ = uy, A = GA or we can transform to § = u2
and then control.
5. Comparison of GCT, NDT, and OSC.

For brevity, we consider the non-redundant manipulator case, taking n = 6 in (1), and we omit derivations.
A more detailed discussion is given in (24].

Note that the system (1), (5) can be written as

4 1q 4 0
brs (4) - (-n"v) ¢<"_l>r. y = h(q) (12)

or, taking Z = (g).

d

= A(Z) + B(2)T, y = H(2) {13)

where the definitions of A, B, and H are obvious. GCT asks: does there exist (i) a nonlinear feedback
t = Q(Z) + B(2)u and (ii) a nonlinear change of basis x = X(Z) such that (12) is placed into BCF?:

() - B8 - (Bl o

The constructive sufficient conditions of [19)~[22] can be applied and give the following linearizing and
decoupling feedback law:

= -t 3J§ + V ’W-lu
where
n
3] = aJik .
aqj Ul -
k=l

Although 3J # J, it is true that 3Jq = jé giving

1. - \
=M lig e M3 s L ()

Note that J must be nonsingular for (15) to exist. This is consistent with the theory of [19}-[12] which
provides sufficient conditions for local linearization. Note also that to implement (15), explicit expressions
for M, J-!, J, and V are required.
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The NDT approach of [11]), constructs the linearizing feedback in the following way. For the system (13)
define

G(Z) = % ([g‘—z C(Z)]'A (2)). D*(2) = G(Z):B(2), C*(Z) = G(A)-A(2). (16)

The use of

© = =D*-1(2) Cc*(2) + D*-1(2)u arn
will transform (12), (13) to ; = u, i.e. to (14).

It {s straightforward to show that, for A, B, and C as in (12) and (13), eq. (17) is precisely eq. (15}. Note
that in (13) we take Z = zq3 and not 2 = (q, Ql,....qn.én)T. The latter choice for Z is taken in [11] and
serves to obscure the fin i result - namely that (17) and (15) are equivalent,

Now consider the 0SC approach of [12]-[14). In (1) let V = B-G where B is the corifolis forces and G the
gravity forces. Reatrict the domain of the system (1), (5) to ensure that h(-), is a bijection (and
consequently det J(q) & O on this restriction). This restriction means that, as for DGC and NDT, the

following gives a local result for external linearization. In [12]-[14], the effective EF dynamics are
determined to be

Ayly + Cly,7) = F, t = JTF, A=3Tni, € = u-ep,
(18)
Patlc,uaaTa-nia, q=nly), q=3Y
‘Recall that for the system (1), M: + V a t, the Computed Torque technique is to take t = Mu + V, yielding
M(G-u) = 0 => § = u, since M(q) > 0,VYq. Similarly, in (18) A(y) > O for every y = h(y) where q is on the
restricted domain. Therefore a choice of
FeA(y)u + Cly,y), = JTF (19)

in (18) yleids A(y) (;-u) = 0 = ; = u, In this sense the work in [12]-{14] can be viewed as a Generalized
Computed Torque technique. From (18) and (19) it is straight forward to determine that t of (19) is exactly
T of eq. (15).

6. Derivation of a Feedback Law for Local Exact Decoupled External Linearization and Its Relationship %o RAC
and GCT,

Recall that the system (1), (7) or (1), (3) is of the form
L 4

MOD) G V) = 5 g € W 4, o e R®
y = h(q) ¢ M®; h(-) is CZ;‘V =Jq) q¢c R™; T(q) is cl; (20)

M(q) € R™™; M(q) = M(q)T >0, qc N
where in general, it may be that m # n, M® # R, 4 # i' and J 6 J = dh/3dq.

It is assumed that a necessary and sufficient condition for h(q) to be onto some neighborhood of y = h(q)
in 4™ {g that the mapping J(q) be onto R®, {.e. we assume that J(q) is onto R® if and only if J(q) = dh(q)/3q
is onto Th(q)M® = R®. This i{s a reasonable assumption; for example, when M® = R™, ¥ = y = J(q)q°c R™, and
Ty ahsgq thig is trivially true. For the case y = h(q) = (x,A) ¢ M6 = R x SO(3) and T = Jo where
4= g: = Jo(q)4, the fact that x ¢ T,RI = R3 and A = QA £ T5SO(3) means that tor J,(q) onto, we can fill out
a ne 5 borhood of (x,A) and otherwise we cannot. (A general element of T,SO(3) is precisely of the form WA,

@ ¢ RIX3 gkew-symmetric, so that if w = w(q) can be mapped onto R3, DA can be mapped onto T,S0(3) [44]}[47].)

Definition LEL: The system (20) can be locally exactly linearized and decoupled (LEL) over an open
neighborhood BE(y')C M™® of y' ¢ .h(N®) C M® with the arm in the configuration q' ¢ h=l(y') i{f there is an open
neighborhood of q', BP(q’) < N%, such that B™(y‘') = h(B"(q')) and if for any u ¢ R™ and q ¢ B"(q') there exists
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a nonlinear feedhack t = F(q,§,u) such that 4, the velocity associated with y = h(q) ¢ l'(y'),ob-yl‘f = u,

Note that for an EF to be LEL at y' it must be true that y' be in the range of h(:), 1.¢. y' must be &
physically attainable EF position. Also for a given EF location, y'c h(N?), a manipulator can physically be in
only one of the possible configurations h=i(y'). Thus we can interpret q”¢ h~1(y') to be the actual physical
configuration of a manipulator. If the system (20) is not LEL at y' in the configuration q’c h-l(y’) it may be
LEL at & different configuration q%c h-l(y').

Theorem LEL: A necessary and sufficient condition for (20) to be LEL ltj" ¢ h (N?) in the configuration
q' ¢ a-I(y') is that T (q') ¢ R®™X" be onto, which is true i{ff m ¢ n and rank J(q°) = m. Furthermore,’ the locally
exactly linearizing and d pling feedback is given by

= M(q) § + V(q,d) (21)
where £ is any solution to
J(QIE = ~T(@)g + u. (22)
When m = n this gives
t = M T4 + MT(@) Nu + via.8). (23)

a

Proof. Necessity: Suppose that V = J(q')q' + J(q')4’ = u can be made to hold regardless of the value of
u ¢ R™. This means that there must exist e R® such that

3T = -Tq)4" + u. (20)

1f F(q') is not onto, then Im S(q')ﬁkm and Im J(q') # R™. Let u be such that - j(q')a' +ufIn Ezq'). Then
(1] -

there is no q' for which (24) holds, yielding a contradiction., Sufficiency: By assusption J(q') is full rank

and onto ¢=> J(q') = 3h(q')/3q is full rank and onto. Since J and J are C!, there exists neighborhoods B®(y')

and B%(q'), y' = h(q'), such that B®(y’) = h(B"(q')) and such that J is full rank and onto when restricted to

BP(q'). Now consider any q ¢ B%(q') and its associated y = h(%) ¢t B®(y'). Then, ¥ = J(q)4 =

4 = QT + T@a. (25)
Let £ be any solution to (22). £ is guaranteed to exist since Im S}q) = R®, Take t to be (21), then
Mg+ VactaME+VarM(qm£) m0mgumE,
which with (22) and (25) gives'& =y, QO

Comments:

1) Note that this result applies to all systems of the form (20), of which rigid link manipuiators are a
special case.

2) Note that with y ¢ M and t ¢ R®, the fact that we neced m ¢ n can be interpreted to mean that
there must be least as many inputs as outputs.

-1, -1
3) when J = J = 3h/3q,4 = y, and m = n we have that Tt = -MJ] J§ + M] u + V = ¥y = u when det J # O.
This is the same result provided by GCT, NDT, and OCS as seen in the last section.

4) Note that in the proof we force q = § grecisely like q = u is forced to happen in the Computed Torque
method. In fact, for y = q we have J = | and J = 0 giving £ = u. Thus the exact linearizing control of
(21), (22) is seen to be a generalization of the Computed Torque method in a somewhat different, and perhaps
more illuminating, way than 0OCS.
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Let us consider the case of EF control given by the system (1), (4). Here J » J, where ¥ = (ﬁ) = Jo4.
In this case, when m « n, (23) is

-1 -1
T = -MJ° Joﬁ + MJ° u+ V. (26)

When det J, # O, use of t yields (¥) = (:12. This is precisely KRAC (7], [8]. Theorem LEL can be interpreted
as an extenslon of RAC to the redufidant atfm case which allows for the use of a minimal representation of
EF attitude {24]. The more general case m ¢ n {s given by

T mMu eV, Jof = =Igq + u. (27)

By using the indirect form (27), t can be obtained, after £ has been found, by use of the Newton-Euler
recursion (45]. Furthermore § can be obtained recursively - either directly {46), or by first recursively
obtaining J, and Jo and then solving for E by Gaussian Elimination. The major point to be drawn here, is that
(27) sinws us how to perform zx}ct zxt;rnal linearization without the need for an explicit manipulator model.

After exactly linearizing to (¥ up) one can perform EF tracking at this stage [7]{8], or one can continue

to the form (i1) by the use o “{10).

a mechanically singular configuration. Recall (section 4) that in the case when a minimal representation of EF
attitude is used, the resulting Jacobian matrix J will be rank deficient not just for a manipulator
singularity, but at a configuration which leads to a singularity of attitude presentation. Thus rank
deficiency of J, is kinematically cleaner to understand. The necessity that rank J, = m in order to use

(26) or (27) allows two obvious, but important statements to be made: i) For a manipulator with a workspace
boundary (ignoring joint stops), as in the case of a PUMA-~type manipulator, exact linearization at the boundary
is imposiible; ii) For a nonredundant (6 dof) manipulator with workspace interior singularities, there cannot
be exact linearization throughout the workspace interior. For a redundant manjpulator with workspace interior
singularities, it may be possible to avoid workspace interior configurations which cannot be exactly linearized
by the use of self motions as described in [48]{49]). This is related to the multiplicity of solutions
available for § in (27).

When using (26) or (27), the only way that rank J, ¢ m can occur for m ¢ n is when the manipulator is at

It is interesting to ask just how the control (23) fulfills the aim of GCT as stated in (12)-(14). We
have the nonlinear feedback (taking# = y und J = J) © = Q(Z) + B(Z)u = (V-MJ‘qu) + (MJ=1)u which when
applied to (12), (13) gives

& Q)6 @) .Gy (28)

Congider the local nonlinear change of basis given by

G- 6 @-(n0) -

The fact that y = J§ and ; = J§ + 1§ gives

Writing (28) as

G L (0-C6) - 60
50) - 690) () osen

Of course we are benefiting from the hindsight provided us by GCT {15]-(19].
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7. Concluding Remarks

Recognizing the fundamental unity of RAC, GCT, 0SC, and NDT [7]-{22) for exact linearization of
manipulators, we can focus on their true differences - namely differences in implementation detail and design
philogophy. With the awareness that they all produce essentially the same linearizing feedback, we can ask why
this particular feedback form is appropriate for manipulator-like systems.

OCS and RAC exploit the specific structure of such systems. Not surprisingly, the solutions arrived at,
reflecting the philosophies and implementation perspectives of the researchers involved, are quite distinct in
their flavor and presentation. Yet, since the properties specific to manipulator dynamics ultimately forced
the solution, they are fundamentally the same. (Actually, apparently only OCS worked with a perspective
directed specifically towards decoupled EF motions, RAC is content to stop at a point just shy of the goal. It
is also interesting that [12] apparently shows an awareness of the relationship between OCS and RAC, and the
degree to which RAC can be said to decouple and linearize EF motions). The important point here is that
researchers consciously exploited the specific properties of a system of interest, but without pin-pointing
precisely what these properties were which made the system amenable to linearizing control.

CGCT and NDT provide techniques for exactly linearizing general smooth affine-in-the-input dynamical
systems. These techniques ignore any specific nongeneric structural properties that a system might have and as
a consequence the solutions obtained are much less transparent than those of 0CS or RAC. The strength of these
approaches, particularly GCT, is that they can provide necessary and sufficient conditions for a system to be
exactly linearizable and constructive sufficient conditions which produce the linearizing feedhack when
satisfied. These techniques can be applied to systems which defy our abilities to intuit or comprehend - such
as manipulators coupled to complex electromechanical actuation devices. Interestingly, when applied to the
problem of manipulator exact linearization the solutions ohtained can be shown to be equivalent to those of RAC
and OCS. Again the structural properties of the system forced the solution. OJnce a solution is known to
exist, it is reasonable to attempt to produce it from more physical arguments knowing now that the search is
not fruitless. This leads to a reexamination of OCS and RAC.

The work of [17]-(22) stresses a perspective which serves to enable a clearer comparison between :ompeting
techniques for external linearization: Place the system in a standard linear canonicdal form before additional
control efforts are made - this ensures that the process of linearizing the system is not mixed up with, and
confused with, the process of stabilizing and controlling it. This perspective greatly aided the comparison of
GCT, OCS, RAC, and NDT which resulted in {24]. In turn, this comparison focuses attention on the structural
properties of manipulators.

Much current research makes it apparent that systems dynamically similar to rigid link manipulators have
important structural properties which can be exploited to achieve results which are quite strong when compared
to those available for general smooth affine-in-the-inputs nonlinear systems [25]}-{40]. Here we have seen that

expkuiting the nongeneric second order form of system (1) with an everywhere positive definite mass matrix and
4 C= locally onto readout map e¢enables a simple form for the linearizing teedback.
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