
JPL Publication 89-1 2

i

Strategies for Automatic Planning
A Collection of Ideas

Carol Collins
Julia George
Elaine Zamani

(NASA-CR-184797) STRATEGIES FOE AUTOHATIC ~ a 9 - 2 6 6 6 7
PLABINING: A COLLECTION OF I D E A S :Jet
P r o p u l s i o n Lab.) 28 p CSCL 123

Unclas
G3/66 0219944

May 1,1989
I

/ ,

NASA
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 89-12

Strategies for Automatic Planning
A Collection of Ideas

Carol Collins
Julia George
Elaine Zamani

May 1,1989

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Techndogy
Pasadena, California

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

ABSTRACT

The main goal of the Jet Propulsion Laboratory (JPL) is to obtain science return
from interplanetary probes. The uplink process is concerned with communicating
commands to a spacecraft in order to achieve science objectives. There are two main
parts to the development of the command file which is sent to a spacecraft. First, the
activity planning process integrates the science requests for utilization of spacecraft
time into a feasible sequence. Then the command generation process converts the
sequence into a set of commands. We are concerned with the first of these, activity
planning.

The development of a feasible sequence plan is an expensive and labor intensive
process requiring many months of effort. In order to save time and manpower in the
uplink process, automation of parts of this process is desired. There is an ongoing
effort to develop automatic planning systems. This has met with some success, but
has also been informative about the nature of this effort. It is now clear that innovative
techniques and state-of-the-art technology will be required in order to produce a
system which can provide automatic sequence planning.

As part of this effort to develop automatic planning systems, we have conducted a
survey of the literature, looking for known techniques which may be applicable to our
work. This report contains descriptions of and references for these methods, together
with ideas for applying the techniques to automatic planning.

iii

CONTENTS

1 .

I1 .

Ill .

IV.

INTRODUCTION ..

S EQ U E N CE PLAN N I NG ..

STRATEGY I DE AS ..

A .
B .
C .
D .
E .
F .
G .
H .
1 .
J .
K .
L .

Simulated Annealing ...
Para1 le I i s m ...
Neural Networks ...
Operations Research ...
NP-complete Problem Solution Techniques ..
Persistence ..
Unit Boundaries ..
Profiles ..
One Pass Resolve ..
Narrow Windows ...
Foveation ..
Subsumption Architecture ...

CONCLUSION ...

Acknowledgments ..

REFERENCES ..

PRECEDING PAGE BLANK NOT FILMED

1

2

2

3
5
6
a

10
11
13
14
15
16
17
19

20

20

21

V

Strategies for Automatic Planning
A Collection of Ideas*

i

1. INTRODUCTION

We want to provide an automated method for resolving conflicting resource
usages by activities in a schedule. The main goals for automating the uplink system
are speed, comprehensiveness, and reliability [MW]. The future capabilities that this
report addresses are directed toward two of these goals: a fast spacecraft activity
planning system which is comprehensive enough to include automated conflict
resolutions.

Our objective is to provide an automated method for resolving resource
contention in a schedule. There are two ways that such a capability may be used:

1. As a scheduler builds a timeline, many resource usage conflicts must be
resolved. The automated capability can be invoked to provide suggestions for
changes which would resolve the conflicts.

2. When the activity requests are first gathered, the automated conflict
resolution capability may be invoked to provide an initial timeline which has many
conflicts resolved.

I. These are closely related since the methods to resolve a single conflict can
possibly be extended to build an initial low-conflict timeline for a scheduler; one
method is to display every activity at its most desired starting time and resolve the
conflicts.

An automated conflict resolution system will require the development and
implementation of advanced programming strategies. In this report we present a
collection of ideas which will lead to the development of complete strategies for
automatic planning. First we discuss sequence planning. .
*This research was supported by the Director's Discretionary Fund at the Jet Propulsion Laboratory.

2

I I . SEQUENCE PLANNING

Strategies for Automatic Planning

Planning a sequence of activities for a spacecraft is becoming a more
complicated process as spacecraft become more complex [B,RN]. The planning
process must take into account the capabilities of the spacecraft and the trajectory and
Deep Space Network (DSN) information as well as the activity requests from the
scientists and from the spacecraft engineers.

Each activity request contains the following information about an activity: the
most desired starting time, intervals of acceptable starting times, the duration
requirements, and the spacecraft resources that it uses. The resource usage
descriptions specify the amount of power required, the data handling required, and the
instruments required. Also included is an explanation of the manner in which the
instrument is to be used; for example, the direction in which the camera should be
pointing.

i

I

i
1

The complications arise from several sources [ZGCZ) Resources such as power
and data handling should not be oversubscribed. Interactivity dependencies must be
met, and forbidden states of the spacecraft must not be entered. The resource
requirements which stem from the description of a spacecraft and are needed to
support an activity must be included; for example, if the scan platform needs to slew,
the power for doing so is figured into the usage display at an appropriate time.

A sequence is considered complete when it is ready for command generation, the
process of writing the actual spacecraft commands which achieve the activities in the
determined sequence. In order to be considered complete, a sequence must have
resolved resource conflicts; that is, the requests to the payload (instruments), power,
attitude control, and data subsystems must be feasible. Also, rules involving resources
from several systems must be obeyed.

111. STRATEGY IDEAS

In order to develop strategies, we have done research into areas which may
apply to automatic planning. This section contains a list of tools and ideas which we
have encountered. Some of the ideas are based on automatic planning systems in

Collins, George, and Zamani

Strategies for Automatic Planning 3

other domains, such as factory scheduling. Some of the ideas are the result of our
cogitations. Some ideas are well-formed and some are still fuzzy.

We plan to use these ideas and tools to develop complete strategies for
automatic planning. These strategies will probably be combinations and expansions
of the ideas listed here. The first six are tools and topics used in computer science, the
next three are based on scheduling systems, and the last three are more general
ideas.

A. Simulated Annealing

Human brain activity seems to use a process similar to simulated annealing.
Since humans have much more success with planning than do computers, it is
worthwhile to consider using brain-like actions in our scheduling strategy.

To anneal a metal means to heat it and then cool it in a controlled manner to
induce particular characteristics. At high temperatures, molecules move more rapidly
and traverse larger distances. As the temperature drops they settle down.

The brain works in a similar manner. Scans of brain activity show that a lot of
randomness is involved in the firing of neurons. As a human thinks about something,
the brain seems not only to collect ideas which are strongly related, but also to
randomly shift to "far out" ideas. In this way, the person is able to conceive the entire
idea without settling into a "local minimum" for the objective.

A computer science technique which mimics this behavior has found application
in several areas, including robotics. Simulated annealing is a method of solving
combinatorial optimization problems using techniques derived from statistical
mechanics. This method is used for finding approximate minima for objective
functions in problems with discrete but very large sets of possible solutions. To solve a
problem using simulated annealing, the estimated solution configuration is allowed to
change in ways that cause large random changes in the objective function initially and
smaller random changes later on. [PFTV], [KGV]

Combinatorial optimization refers to a set of problems that require finding
minimum or maximum values of a function of very many independent variables.

Collins, George, and Zamani

4 Strategies for Automatic Planning

Typically, solutions are problem-specific, and are either a divide-and-conquer method
or an iterative method. Standard iterative methods sometimes result in local optima
which are not global.

Because simulated annealing is not a greedy method, local optima are more
easily avoided. Another advantage to simulated annealing is that decisions proceed
in a logical order. For example, in the traveling salesman example the authors in
[KGV] inserted a fictitious river in their map and added to the objective function a
penalty for crossing the river. Early in the solution, while the temperature was still fairly
high, the decisions about when to cross the river were made. Later the particular
paths on each side of the river were finalized.

To use simulated annealing, the problem needs the following:

1.
2.
3.
4.

A description of all possible solution configurations;
A generator of random changes in a given configuration;
An objective function to minimize; and
An analog of temperature -- a value which decreases over time, restricting
the allowed changes as it decreases.

We shall now describe one strategy for automatic planning which uses simulated
annealing. The description addresses the four requirements listed above:

1. The problem is to find a schedule which minimizes resource conflicts.
Another part of the goal may be to maximize the scheduling of high priority activities.
The possible solution configurations are the possible schedules. A schedule can be
described as a list of numbers, where each number is the starting time of an activity,
and the order of the list corresponds to some ordering of the activities. Each number
must lie within an acceptable time interval for that schedule. The numbers may be
further constrained to lie within acceptable time intervals for their respective activities.
A dummy value for a time may be used for indicating an unscheduled activity.

2. A configuration may be changed by moving one or more activities; that is,
increasing or decreasing one or more of the start-time numbers. Random selection
may be made of the number of start times to change, the distance each is changed,
and the direction that each is changed.

Collins, George, and Zamani

Strategies for Automatic Planning 5

3. The objective function should encompass both the amount of resource
conflict and the goodness of the schedule for each of the high priority items. If
activities are allowed to be unscheduled, we want to minimize the sum of the priorities
of the unscheduled activities.

4. The control parameter, called the temperature, can be used in three ways:
1) The number of start times to change should lie between 1 and (constant1 x
temperature). 2) The distance each activity can change is restricted to lie between 1
and (constant2 x temperature). 3) An altered schedule replaces the current answer
schedule if its objective value is smaller. On occasion, replacement occurs if the
objective value is larger, but not by more than the temperature. The probability
function used to determine when to take the larger value is

P = exp (- (amount of change) / (temperature))

That is, the larger value is taken with probability P.

There is a natural extension of simulated annealing to parallel processing. Each
node performs the annealing independently. Periodically, the results are pooled: each
node broadcasts its best solution so far to node 0. Node 0 finds the best of these
solutions. If it is good enough the program terminates. Otherwise, node 0 broadcasts
this solution to all nodes and the simulated annealing is continued.

B. Parallelism

The main advantage of parallel computation over sequential computation is
speed. Known approaches to automatic planning are exponential; the amount of time
required increases exponentially as the number of activities to schedule is increased.
Parallel computation can provide, at best, a linear speedup. Even so, a linear
speedup can mean the difference between an acceptable system and an
u n acce pt ab1 e on e.

We shall discuss one method of using parallel computers in the section on neural
networks. In this section we turn our attention to computers, such as the hypercube,
which have more sophisticated processors connected together.

Collins, George, and Zamani

6 Strategies for Automatic Planning

1. TODiCal Parallelisrq. One consideration other than speed is to use parallel
computers to provide a cognitive breakdown of the processing. A planner which
reasons on a model of the spacecraft may work well with each of the subsystems on a
separate node. Then, when an activity is moved, the subsystems can check for
resource conflicts in parallel. Categories of items which can live on separate nodes
are: power, attitude control, data, payload, sequence, and flight rules.

For example, on four nodes, the host (node 0) will be responsible for the timeline
display and the message passing. Then node 1 can hold the sequence, node 2 the
data-handling model, and node 3 the rest of the spacecraft models.

2. Alaorithmic Parallelism. In order to achieve a speedup in processing time, a
parallel processor needs to have "balanced loads" so that each processor has about
the same amount of work as all other processors. If n processors are equally busy on
a task, then the job may be completed in about l / n of the time that it would take a
single processor.

Better load balancing may result from parallelizing the individual planning
algorithms instead of assigning subsystems to nodes.

3. A Combination. In order to achieve the speedup of algorithmic parallelism
and the cognitive breakdown provided by topical parallelism, it may be desirable to
design a system which includes both. For example, if 16 nodes are used, then each
subsystem can reside on a 4-node subcube. The algorithmic parallelism would occur
within each of these subcubes.

The code for each subsystem can be developed on a smaller cube. Then these
programs can be integrated for running a planner on a larger hypercube.

C. Neural Networks

The concept of a neural network is based on models of how neurons in the brain
work. The reason that neural networks have received a lot of attention in the computer
science community lately is the hope that by modeling the chemical interactions of
neurons in the brain we can achieve some of the qualities of human thought in our

Collins, George, and Zamani

Strategies for Automatic Planning 7

computing systems. The three main qualities expected are speed, fault tolerance, and
learning. [L]

We are interested in possible applications of neural networks to sequencing for
two of these reasons: speed and learning. One application area of neural networks is
in solving NP-complete problems such as the traveling salesman problem. Automatic
planning is an NP-hard problem, so it is possible that neural networks can provide a
form of parallelism which will achieve good performance in sequencing as well. Two
other application areas which involve computer learning are pattern recognition and
cluster analysis.

Here are some details about how a neural net is configured. A neural network is
a computing system which consists of a number of interconnected simple processing
elements. Each element receives input from nodes to which it is connected. Based
upon that input, the element decides what output to sent to its neighbors. Often the
output is either a 0 or a 1. The connections, also called edges, are assigned numbers
called weights. When one node produces an output, it is multiplied by the weight of
the edge to produce the input to the neighboring node.

To design a net, three decisions must be made. First an algorithm must be
chosen for the nodes. This algorithm will apply a function to the inputs to determine
the output. Second, the connections must be determined: what nodes are connected
and what edge weights are assigned. Third, the training or learning rules must be
selected.

The traditional method of teaching a neural network is called back propagation.
The net is given sets of stimuli together with expected results, and the edge weights
are adjusted to accommodate the training set. A breakthrough would be the design of
a neural network which can be trained on the sequences that have been generated by
humans in the past, resulting in a capability of automatically generating initial timelines
which are close to the desired final product.

Another idea for applying neural networks to automatic planning is to combine
networks with the object-oriented approach in PLANNER, the JPL Space Flight
Operations Center (SFOC) planning software system. Each object is represented by a

Collins, George, and Zamani

8 Strategies for Automatic Planning

neuron. Activities fire when involved in a resource conflict, stimulating a chain of
computations which result in the resolution of that conflict.

D. Operations Research

There are three areas of operations research [HL] which may have applications to
automatic scheduling. They are linear and nonlinear programming, project planning,
and decision analysis.

1. Linear and Nonlinear Proaramming. Linear and nonlinear programming are
subject areas concerned with allocating limited resources among competing activities
in an optimal way. An objective function is expressed in terms of decision variables.
The objective function is optimized subject to resource constraints. If the expressions
involved are linear, it is a linear programming problem; otherwise, it is considered a
nonlinear programming problem. Common methods for solving nonlinear
programming problems are applicable only when the functions involved are
differentiable.

For automatic scheduling, the decision variables are the starting times for the
activities. The objective function is the function of these starting times which gives us
an idea of how good a schedule is. If only some of the activities can be scheduled, the
function may include a portion which takes into account the priorities of the
unscheduled activities. If all activities are scheduled and conflicts are allowed to
occur, then the objective function should be a measure of the total amount of conflict in
the schedule. It may also be desirable to figure in the priorities of the activities
involved in a conflict.

Let us consider the objective function based solely on the amount of conflict in the
schedule. As activity start times change slightly, the total area of conflict depicted on a
PLANNER screen also changes only slightly. Indeed, this area is a continuous
function of the start times. This function can be approximated by a differentiable
function if we allow small amounts of conflict between competing activities which are
scheduled near each other but do not in fact overlap. Such conflict additions can be
justified by multiplying the effects of minor clock synchronization errors by the
probabilities that such errors are present. Standard techniques of differential
geometry and real analysis may be used in writing such functions.

Collins, George, and Zamani

Strategies for Automatic Planning 9

Besides differentiability of functions, another hurdle in fitting scheduling to an
efficient nonlinear programming paradigm is that the number of variables is the
number of activities to be scheduled. It may be possible to reduce the number of
variables by reducing the amount of timeline considered at any one time. Then, after
applying the techniques of nonlinear programming to each part, it will be necessary to
patch the pieces together to form a complete timeline. The patching will have to
include resolution of conflicts at the borders and conflicts introduced in the patching
process.

2. Pro-iect Planning. In planning for large projects, first a network of activities is
built which shows precedence. Each activity is represented by a node. For each node
the time required to perform that activity is noted. The earliest start time and the latest
start time are calculated. Earliest start time means the earliest time when an event can
start if all preceding activities are started as early as possible; latest start time means
the last time at which an event can occur without delaying completion of the project.
The critical path is the path through the network using the nodes with 0 slack, where
slack is the difference between earliest and latest start times.

The techniques for project planning may be useful in dealing with time-
interdependent steps. However, it does not allow for absolute time dependence of
activities. Applied to sequence planning, the concepts of earliest and latest start times
may be changed to encompass freedom from resource conflicts.

3. Decision Analvsis. Decision analysis provides a methodology for decision
making in the face of uncertainty. Decision making with experimentation invokes
statistical methods based upon gathered data to make decisions which are optimal in
some sense.

It may be possible to gather information about previous mission schedules and
use that information when creating an initial schedule. Information can be gathered
from previous schedules which correlates the actual scheduling of an activity request
with characteristics of the request, such as priority, duration, and resource utilization.
The statistics can then be applied to creating a new schedule from a new set of activity
requests by looking at the characteristics of each request.

Collins, George, and Zamani

1 0 Strategies for Automatic Planning

This strategy for scheduling would probably work best in combination with other
strategies. The goal is to automatically create a fairly good initial schedule which
would then be available to a human scheduler for fine tuning.

E. NP-complete Problem Solution Techniques

The problem of finding an initial conflict-free schedule given a set of activities is
NP-hard, so it is worth considering the techniques of solving similar NP-complete
problems. Our problem is closest to two NP-complete problems in the literature [GJ]:
scheduling with release times and resou rce-const rai ned scheduling . Sequence
planning is also related to the NP-complete problem of bin packing.

1. Schedulina with Release Times. In this type of problem, we are given a set
of tasks, and for each of the tasks we are given a duration, a release time, and a
deadline. The goal is to determine if there is a schedule for the tasks that satisfies the
release time constraints and meets all the deadlines. This problem is NP-complete
even if the release times and the deadlines can each take on only 2 values. It can be
solved in polynomial time if all task durations are 1, or preemptions are allowed, or all
release times are 0. This polynomial time remains possible even when precedence
constraints are included.

2. Resou rce-Constrained Sc heduling. In this type of problem, we are given a
set of tasks each of duration 1, a number of processors, a number of resources,
resource bounds for each resource, resource requirements for each task and
resource, and an overall deadline. The goal is to determine if there is a schedule for
the tasks on the processors that meets the deadline and obeys the resource
constraints at all times. This problem is NP-complete even with one resource and only
3 processors. For 2 processors and any number of resources, it can be solved in
polynomial time by matching. If the tasks are partially ordered and the partial order is
a forest, the problem is NP-complete for one resource and 2 processors.

3. Bin Packing. The traditional bin-packing problem is stated as follows: Given
a finite set of packages and a size for each package, partition the set into disjoint
subsets such that the sum of the sizes of the package in each subset is no more than a
fixed amount, and the number of subsets is minimized. In multidimensional bin
packing, the package sizes have several dimensions.

Collins, George, and Zamani

Strategies for Automatic Planning 1 1

To apply bin packing to sequencing, we let each activity represent a package and
each resource represent a dimension. The measurement of a package in a given
dimension is the amount of the resource that activity requires. Time is a special
dimension which must be treated slightly differently. However, standard bin-packing
algorithms may apply to give us automatic planning.

Two methods for implementing bin packing on a parallel processor are:

1. First-fit decreasing (FFD) on a queue. Sort the packages by size, then put
the entire list on node 0. Pass packages along the queue route, passing a dummy if
no package is there. Each node starts with one bin. Node 0 takes the first package
and tries to fit it in. If it fits, node 0 passes a dummy and takes the next package. When
a package does not fit in any bin, then each node gets a new bin.

2. Sort the packages and give node i packages 4n + i. Perform a FFD packing
on each node. Then take the least full bin from each node and reconsider those
packages. Send these packages to other nodes to see what fits into other packed
bins, or else send the leftovers to node 0 and pack them with an FFD algorithm there.

F. Persistence

Ordinarily, a linked data structure changes over time as elements are inserted
and deleted. Such a structure is said to be ephemeral since making a change
destroys the old information and replaces it with the new. A persistent or partial&
persistent data structure [ST],[C] is one which allows access to all previous versions of
the structure as well as to the current version. Updates (insertions and deletions) are
allowed only in the current version, but all past versions can be queried. A data
structure is said to be fullypersistent i f every version can be both accessed and
modified. [DSST]

Persistence is useful in maintaining a data structure which changes over time
with two characteristics:

1.
2.

Changes do not need to be presented in time order; and
All versions of the structure are accessible.

Collins, George, and Zamani

12 Strategies for Automatic Planning

The act of scheduling an activity causes changes in a plan. As a schedule is being
prepared, the changes to the plan are not presented in time order. Also, information
about the schedule at particular times must be accessible. For these reasons, a
persistent data structure may be useful in a planning system.

1. -~ersistenc;e. The brute force way to make a search tree persistent is
to recopy the entire structure for each update. This gives us a relatively good search
time, but requires a vast amount of storage space.

At the other extreme, we may achieve persistence by maintaining only one node
for each key. Each time we want to change a pointer, we add another field to our "fat"
nodes. The new field contains the new pointer and a time stamp indicating when the
change occurred.

The best method of persistence in a search tree is called limited node copying. It
gives fast access and update times and requires a small amount of space. In the
limited node-copying method, we allow each node to contain a small fixed number k of
additional pointers, say 1 or 2. We copy a node only if its pointer fields are filled and a
new pointer needs to be added.

2.
persistent: node splitting and displaced storage of changes. These methods are
presented in [DSST] in sections 3 and 5, respectively.

Full Persistence. There are two methods for making a linked structure fully

Node splitting is a variant of limited node copying. Each node contains up to a
fixed number of records, each with a version stamp. When a node has a new version
of pointers to store and no records left to store in, it splits into two nodes, placing half of
the records in one node and half in the other. Inverse pointers must be maintained so
that parent nodes will point to the correct result of the split. Node splitting is efficient to
use when the in-degree of each node is bounded.

In the node splitting method, it may be the case that one node will have a large
number of change records while other nodes have very few. In order to use the record
space wisely, the displaced storage method allows change records to be maintained
by ancestors to the changed node. By using this method with appropriate algorithms

Collins, George, and Zarnani

Strategies for Automatic Planning 13

for copying nodes and for maintaining the change record displacement paths, it is
possible to guarantee an O(1) worst-case space bound per update step and an O(1)
worst-case time bound per access step.

G. Unit Boundaries

Two of the sequence planners developed in the JPL Sequence Automation
Research Group (SARG) are Plan-It and Plan-It II [DHW], [EG]. Both provide a user
interface for manual sequence generation using a computer, as well as some
automated conflict resolution capabilities. This section contains descriptions of the
automatic planning strategies developed for Plan-It and Plan-It II. These strategies
have already been implemented in sequence-planning systems and may be further
developed in combination with other strategy ideas in this report.

Plan-It provides capabilities for automated conflict resolution aids to the human
scheduler. Given an activity sequence, each resource creates a list of change times
(unit boundaries) which includes the starting times and ending times of the activities as
well as the times at which the resource amounts available change. An activity list is
associated with each unit, or period between adjacent change times. For each unit the
resource calculates the amount available, the amount used by activities during that
interval, and the amount of conflict. Each resource then calculates statistics by
summing values for each unit, including the sum of the amounts used, the sum of the
amounts of conflict, the sum of the squares of the amounts used, and the sum of the
square of the amounts of conflict. The square sums (deviations) are calculated to
indicate how evenly distributed the usage and conflicts are. The goodness of a
sequence is determined by a function of the statistics for the resources.

If the scheduler decides to move a particular event (activity) in order to resolve a
conflict, Plan-It can offer suggestions for better placements for that event. The method
used involves studying the resource line to find a better place. The "best so far"
starting time for the event and corresponding goodness are initialized to the present
values. The objective time windows to look in are determined by taking into account
any user-imposed "move it here" intervals, the windows specified in the event request,
and dependency separation requirements from other activities. Within the objective
time windows, a list is made of the times of unit boundaries for the resources that the

Collins, George, and Zamani

1 4 Strategies for Automatic Planning

activity uses. Plan-It then considers each time on the list as a possible starting time for
the activity and chooses the time which optimizes the goodness of the timeline.

Plan-It II uses the same concept of units and unit boundaries. However, one
problem with using the goodness function is that it can produce timelines in which
there are areas where one resource has a great deal of conflict and other resources
have minimal conflict. To avoid this, Plan-It II uses a different scheme for determining

I suggestions for new times.

Each resource reports the times at which it has amounts available, and the
activity which has been selected to move finds times at which the resources can best
fill its requirements. The reports made by the resources consist of a list of the unit
boundary times and the free amount of the resource within each unit, where the free
amount is calculated by subtracting the current usage and the usage of the selected
activity from the amount of the resource available during that unit. These lists are
simplified by such means as removing all but the first unit boundary time of a set of
contiguous times in which the free amounts are equal.

The selected activity then examines the reports from the resources to find better
places in the timeline. First the reports are combined by forming a master list of all the
unit boundary times on the individual lists and finding the average of the values in
each of the new intervals. The resulting list is simplified, and the unit boundary times
of the entries with the highest numbers are the times sent to the event for final
selection. This selection depends upon several factors, including the dependency
constraints on the activity and its delay-separation requirements.

H. Profiles

The Resource ALlocation and Planning Helper (RALPH) system was developed
to assist in planning the use of the resources of JPL's Deep Space Network [JW]. It
contains an allocation subsystem which creates a distribution of resources to users,
supplying feasible support to each user. The input to the allocation subsystem
includes event requests and information about resources.

I

The allocator is a two-pass process; that is, it passes through the list of event
requests twice. On the first pass it builds a profile of assignment likelihoods for each

Collins, George, and Zamani

Strategies for Automatic Planning 15

resource. For example, if an activity of duration 8 can use a particular resource in any
one of 4 non-overlapping time periods, each of length 9, then the probability it is
scheduled at any one of the included times is 8/36. In the first pass, inflexible, event-
independent constraints are taken into account, but flexible constraints and event
priorities are not considered.

In the second pass, the requests are processed in order of priority. Resource
assignments are made using the resource likelihood profiles developed in the first
pass. As resources are allocated, the likelihood profiles are adjusted to reflect the
times that events have been scheduled. During this pass, inflexible constraints are
honored and flexible constraints are used to provide biases against constraint
vi0 I at ions.

When an activity is chosen to be scheduled, the following process is used. The
profile of each unscheduled activity is weighted by the relative priority of the activity
with the chosen activity. The usage profile of each scheduled activity is weighted
heavily. The timeline is searched for a place to schedule the chosen activity which
minimizes the total weight of the profiles of the other activities over the scheduled time
period.

The result of the automatic scheduling in the RALPH system is a plan which has a
relatively low amount of resource conflict. This plan then provides a starting point for a
conflict resolution meeting.

Our goals for automatic planning are also to provide a schedule with a low
amount of resource contention. The final decisions for conflict resolution will still lie
with the human scheduler and with the scientists in conflict resolution meetings. The
processes used in RALPH'S allocation subsystem allow for the creation of final
products in which conflicts exist, but are minimized.

1. One Pass Resolve

The One Pass Resolve is a method for providing automatic planning to supply a
human scheduler with an initial timeline in which many conflicts are resolved. This
strategy is based on the OPlS [OS1 approach for factory planning.

Collins, George, and Zamani

16 Strategies for Automatic Planning

Recall that each activity description includes a most desired starting time and
intervals of acceptable starting times. The One Pass Resolve begins by scheduling
each activity at its earliest acceptable starting time. Then we pass through the list of
activities, considering each in time order, to resolve as many conflicts as possible.
Resolutions are created only by moving activities to later times. Since conflicts are
resolved in time order, parts of a timeline before a conflict are never changed in
resolving that conflict. After the resolution pass, one or two clean-up passes may be
performed in which it is determined whether or not each activity can be moved to its
desired time without increasing the conflicts.

The OPE approach for factory planning [OST] uses a conflict monitor and a
resolution formulator. The sequence is fed into a conflict monitor, which produces a
time-ordered list of time intervals with conflicts. These are fed one at a time in order
into a resolution formulator, which selects a resolution action from a fixed set. The
selected action (with appropriate parameter values) is applied to the sequence, the
conflict monitor updates the conflict list, and then the next conflict is fed to the
resolution formulator.

Further development of this strategy requires devising specific algorithms to be
used by the conflict monitor and the resolution formulator. Because of the differences
between factory scheduling and spacecraft scheduling, only some of the resolution
actions available in OPlS may be applicable to our planner; others more natural to our
problem domain will need to be developed.

This strategy would be straightforward to implement and would probably give a
human scheduler a good head-start on creating a sequence. Since the conflict
resolutions take place in time order, early parts of a sequence will be available for
human schedulers fairly quickly, with later time periods becoming available
subsequently.

J. Narrow Windows

In this strategy, we use narrow activity windows and a coarse granularity of time
units. All times are rounded up to the nearest unit.

Collins, George, and Zarnani

Strategies for Automatic Planning 17

Each activity has a duration given as an integer number of units of time. Recall
that each activity has a preferred starting time and intervals of acceptable starting
times. Assign each activity a narrow starting-time interval which lies within an
acceptable starting-time interval and is centered around the preferred starting time.
Then the narrow activity window for that activity is the interval beginning at the earliest
time in the narrow starting-time interval and ending at the time at which the activity
would end if it started at the last time in the narrow starting-time interval.

For each time slot on the timeline, make a list of the activities which include that
time slot in their narrow activity windows. For each possible subset of these activities,
determine the resource usage and conflict totals. Using this information, it should then
be possible to construct an initial schedule in a reasonable amount of time. Further
development of this strategy requires a determination of how the initial schedule is
constructed once the narrow activity windows data is calculated.

If there are n time slots and about 5 activities in each, then there are about 32n
subsets for which the resource usage and conflicts must be calculated. These
calculations can easily be done in parallel.

Another extension of this strategy is a combination with the ideas in the profiles
strategy. That is for each activity on the list, include a numerical rating of how much
the activity needs the slot, as in the profiles strategy. Use this additional information in
determining the initial schedule.

K. Foveation

Suppose that two activities are in conflict for resources at their currently
scheduled times, and that one of these activities has been chosen by the scheduler to
be moved.

If the human scheduler looks for another place to schedule that activity, a display
may be used which shows profiles of resource usage for the current schedule. The
information which comes to the cognition from the eyes is not evenly distributed across
the entire time span of the sequence. Instead, there is a limited field of vision which
encompasses a portion of the timeline. Central to this field of vision is the focal point.

Collins, George, and Zamani

18 Strategies for Automatic Planning

The eye provides a great deal of information about the areas close to the focal point
and sparser information about areas closer to the periphery. [VA]

Based on this information, the human may select a candidate position for the
activity. Then the eyes move so that the candidate position becomes the focal point.
This process may iterate several times as the scheduler narrows in on a position which
is finally selected for the move.

The foveation strategy for automatic planning may be used to provide automatic
relocation of an activity which is in conflict for resource usage. In deciding on a new
location, using complete knowledge about all of the resource usages for the entire
timeline at once would be too slow. Instead, we use information samples which are
gathered in a time interval, called a field of vision, about the activity. The samples are
most dense in the immediate area of the conflict and sparser toward the endpoints of
the interval, called the periphery. Using information samples instead of complete
information may provide a large speedup in time, since accurate resource usage
profiles will not have to be built.

Based on the information samples, a relatively low-use area is selected to be the
new focal point. Another set of information samples is collected about this focal point.
If the new information indicates a high probability that the activity can be moved here,
then the detailed calculations can be made. Otherwise a new focal point is selected
and the process is repeated.

There are two direct extensions to this strategy. One is to combine it with
simulated annealing to more directly mimic the way the mind works. A human
scheduler will attempt to avoid reaching dead ends by turning to other random focal
points at times. This suggests a usefulness in combining foveation and simulated
annealing.

The other extension is to use a multiprocessor as a team of schedulers in the
sense that each processor is an eye. The multiple eyes can be used to provide an n-
fold increase in possible new locations studied if each processor uses a slightly
different scheme for determining a new focal point. Alternatively, if several activities
are in conflict, each processor can search for a new place for a different one of the

Collins, George, and Zamani

Strategies for Automatic Planning 19

activities. The results can be selected or combined to find the best resolution given the
quantitative schedule evaluation criterion.

L. Subsumption Architecture

Rodney Brooks at the Massachusetts Institute of Technology (MIT) has developed
a layered control system for a mobile robot which allows independent isolated agents
to cooperate to achieve a specific goal. Here is a description in his own words [B,RA]:

"Layers of control system are built to let the robot operate at increasing
levels of competence. Layers are made up of asynchronous modules that
communicate over low-bandwidth channels. Each module is an instance
of a fairly simple computational machine. Higher-level layers can
subsume the roles of lower levels by suppressing their outputs. However,
lower levels continue to function as higher levels are added. The result is
a robust and flexible robot control system."

The way the layers are built for controlling the robot indicates a method for
breaking down a problem which may have applications outside of robotics. For the
mobile robot, the lowest level of capability is to avoid objects. The next level is to
wander about. There is a switch between the capability of wandering about and the
ability to avoid objects, so that as the robot wanders it will still avoid objects. However,
when there are no objects nearby, the robot will wander. The capabilities increase
through additional levels of capability to a top level which causes the robot to reason
about the behavior of objects in the environment and interact with the environment to
influence it in a productive manner. [BC]

This type of system allows the robot to handle multiple goals, even when some
are conflicting, without forgetting to do simple things such as maintaining its balance.
It also allows a straightforward method of integrating input from multiple sources. The
system is robust enough to cope with a loss of part of its functions with a graceful
degradation of functionality. Another advantage to this type of system is the
extensibility of the design -- new capabilities can be added on top of existing ones
without destroying the old ones. As the need arises for further capabilities, the existing
design does not have to be revised, only extended.

Collins, George, and Zamani

20 Strategies for Automatic Planning

To follow a similar strategy for developing an automatic planning system, we
need to specify levels of capability that we would expect our system to encompass.
The second step is to design an architecture that would allow each level to achieve its
purpose in cooperation with the other levels. For automatic planning, the modules
may be in a tree structure rather than a linear level structure. The specification of
capabilities and the design of the module structure are matters open for further
investigation.

IV. CONCLUSION

In this report, we have presented a collection of ideas for developing strategies
for automatic planning. The next step is to combine and evolve these ideas into
several complete automatic planning strategies.

In addition to the research for this publication, we have written a few computer
programs to further our understanding of the strategy tools and to help determine what
ideas will be straightforward to implement as parts of complete strategies. These
programs include a simulated annealing program which solves a simplified planning
problem and a first fit bin-packing algorithm on the hypercube.

Next we plan to develop complete strategies for automatic planning and
determine their feasibility. To make this determination, we shall write computer
programs implementing the strategies. We plan to report on the completed strategies
and on the results of the implementation feasibility studies.

Acknowledgments

The authors thank the following people for discussions and talks about their work:
Curt Eggemeyer and Jennifer Crut, Plan-It and Plan-It II; Peng Si Ow, OPE; David
Werntz, RALPH; Charles Anderson, foveation; Rodney Brooks, subsumption
architecture; and Barbara Zimmerman, the hypercube. The authors also acknowledge
the contributions of D. Friesen of the Computer Science Department at Texas A&M
University and T. Stahird of the Mission Profile and Sequencing Section of JPL.

Collins, George, and Zamani

Strategies for Automatic Planning 21

Other members of the Sequence Automation Research Group include W. Dias, M.
Hollander, W. Lombard, D. Mittman, S. Peters, M. Rokey, J. Sisino, and our leader
Sven Grenander.

REFERENCES

[B,RA] Rodney A. Brooks, "A Robust Layered Control System for a Mobile Robot," /€E€
Journal of Robotics and Automation, Vol. RA-2, No. 1, March 1986.

[BC] Rodney A. Brooks and Jonathan H. Connell, "Asynchronous Distributed Control
System for a Mobile Robot," SPlE Proceedings, Vol. 727, Mobile Robots, 1986.

[B,RN] Robert N. Brooks, Jr., "The Evolution of the Voyager Mission Sequence
Software and Trends for Future Mission Sequence Software Systems," AlAA 26th
Aerospace Sciences Meeting, Reno, Nevada, January 1 1-1 4, 1988.

[C] C. Collins, Persistent Search Trees and Maxima Finding, Masters Thesis,
Department of Computer Science, Texas A&M University, College Station, Texas,
August 1987.

[DHW] W. Dias, J. Hendricks, J. Wong, "Plan-It: Scheduling Assistant for Solar System
Exploration," Telematics and Informatics, Vol. 4, No. 4, pp. 275-287, 1987.

[DSST] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan, "Making Data Structures
Persistent," Proc. 18th annual ACM Symposium on Theory of Computing, pp. 109-1 21,
1986.

[EG] W. C. Eggemeyer and S. U. Grenander, "Plan-It Applications and Knowledge
Gained," Workshop on Operations Planning and Scheduling Systems for the Space
Station Era, University of Colorado-Boulder, Boulder, Colorado, August 1 987.

[GJ] Michael R. Garey and David S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and Company, New
York, New York, 1979.

[HL] Hillier and Lieberman, Introduction to Operations Research, Fourth
Edition, Holden-Day, Inc., Oakland, California, 1986.

[JW] Craig D. Johnson and David G. Werntz, "A New Methodology for Resource
Allocation and Planning" presented at the Space Conference in Houston, Texas,
November 17, 1987.

[KGV] S. Kirkpatrick, C. Gelatt, and M. Vecchi, "Optimization by Simulated Annealing,"
Science, Vol. 220, No. 4598, May 13, 1983.

Collins, George, and Zamani

22 Strategies for Automatic Planning

[L] Richard P. Lippmann, "An Introduction to Computing with Neural Nets," I€€€ ASSP
Magazine, vol. 4, No. 2, April 1987.

[MW] William I. McLaughlin and Donna M. Wolff, "Automating the Uplink Process for
Planetary Missions," AlAA '89, Reno, Nevada, January 9-1 2, 1989.

[OST] Peng Si Ow, Stephen F. Smith, and Alfred Thiriey, "Reactive Plan Revision,"
The Proceedings of the National Conference on Artificial Intelligence, Minneapolis,
Minnesota, August 1988.

[PFTV] William Press, Brian Flannery, Saul Teukolsky, and William Vetterling,
Numerical Recipes: The Art of Scientific Computing, section 10.9,
Cambridge University Press, Cambridge, New York, 1986.

[ST] N. Sarnak and R. Tarjan, "Planar point location using Persistent Search Trees,"
Comm. ACM 29, pp. 669-679, 1986.

[VA] David C. Van Essen and Charles H. Anderson, "Information Processing
Strategies and Pathways in the Primate Retina and Visual Cortex," in Introduction
to Neural and Electronic Networks, edited by S. F. Zornetzer, J. L. Davis, and C.
Lau, Academic Press, Orlando, Florida, to appear.

[ZGCZ] E. B. Zamani, J. R. George, C. E. Collins, and B. A. Zimmerman, Spacecraft
Activity Planning in a Multiprocessor Environment, to appear.

Collins, George, and Zamani

