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NUMERICAL STUDY OF THREE-DIMENSIONAL SEPARATION
AND FLOW CONTROL AT A WING/BODY JUNCTION

ABSTRACT

The problem of three-dimensional separation and flow control at a
wing/body junction has been investigated numericaily using a three-
dimensional Navier-Stokes code. The numerical code employs an algebra-
ic grid generation technique for generating the grid for unmodified
junction and an elliptic grid-generation technique for filleted fin
junction. The results for laminar flow past a blunt fin/flat plate
junction demonstrate that after grid refinement, the computations agree
with experiment and reveal a strong dependency of the number of vorti-
ces at the junction on Mach number and Reynolds number. The numerical
results for pfessure distribution, particle paths and 1imiting stream-
lines for turbulent flow past a swept fin show a decrease in the peak
pressure and in the extent of the separated flow region compared to the
laminar case. The results for a filleted juncture indicate that the
streaml ine patterns lose much of their vortical character with proper
filleting. Fillets with a radius of three and one-half times the fin
leading edge diameter or two times the incoming.boundary layer thick-
ness, significantly weaken the usual "necklace" interaction vortex for

the Mach number and Reynolds number considered in the present study.
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Chapter 1
INTRODUCTION

Three-dimensional separation at intersecting surfaces such as

- wing-fuselage and wing-pylon junctions, and air breathing engine

inlets is a complex physical phenomenon. The intersecting surface
flow exhibits complex flow patterns which may significantly affect the
performance of the aircraft. Major effects include increased pressure
and heat transfer in the vicinity of the intersections and loss of
control effectiveness due to flow separation. A variety of simplified
geometrical configurations have been studied to gain insight into the
physical aspects of three-dimensional separated flows including (1)
sharp fin mounted on a flat plate, (2) blunt fin mounted on a flat
plate, (3) swept compression corner, and (4) semicone affixed to a
flat plate.

In the present work we concentrate our attention to the flow past
a blunt fin/flat plate junction whch is a typical example of junction
flow. When a high-speed flow passes over a blunt obstruction mounted
on a flat plate the detached bow shock formed ahead induces a strong
adverse pressure gradient to the plate boundary layer. This
disturbance propagates through the subsonic portion of the boundary
layer and can result in a 3-D separated flow region composed of
horseshoe vortices near the plate surface and a lambda-type shock
pattern ahead of the fin. These vortices entrain a part of the free-

stream flow and spiral downstream. The separation shock emanating
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from the separated flow region impinges on the fin shock producing a
shock-shock interaction. Depending on the severity of the incoming

shock, the shock-shock interaction leads to the formation of

~supersonic jet. This interaction leads to intense heating and high

pressure locally around the fin leading edge.

Extensive experimental and computational studies pertinent to the

~ physics of the problem have been carried out in the past for flow past

a wing/body junction and these are reviewed briefly in Chap. 2. The
description of the governing equations and all possible boundary
conditions employed in the study is given in Chap. 3. The development
of the finite volume concept, method of solution and operation of the
numerical code are given in detail in Chap. 4. The specific physical
conditions of investigation are described in Chap. 5 and discussion of

all results are provided in Chap. 6.



Chapter 2
PHYSICS OF WING/BODY JUNCTURE FLOWS

In this chapter, the physics of wing/body juncture flows at low
speed and high speed are discussed. Key findings from the previous
studies have been included in the physics of the problem to indicate
the characteristics of the junction flow. The discussion begins with
detailed description of low speed unmodified juncture flows for lami-
nar, turbulent and transitional conditions. Next, the description of
controlled juncture flows are presented. The high speed unmodified
and modified juncture flows is considered next to clearly highlight
the difference in the flow structure with reference to low speed.
Finally the status of turbulence modeling as applied to the compu-

tation of junction flow is briefly reviewed.

2.1 Low Speed Flows

2.1.1 Low Speed Unmodified Juncture Flows
If a protuberénce is placed on a flat plate over which there is a
fluid flow, the protuberance produces an adverse pressure gradient in
its vicinity. This adverse pressure gradient created upstream of the
protuberance causes the plate boundary layer to deviate from the
surface resulting in a three-dimensional separation. The separated
boundary layer rolls up downstream of the separation line to form a

system of vortices. These vortices are swept around the base of the



protuberance and assumes a characteristic shape which has led to its
name the horseshoe vortex.

Norman [1]* investigated experimentally the basic features of
secondary flows and the conditions under which these flows led to
transition and turbulence. The experimental study defined and des-

cribed qualitatively the vortex system, the horseshoe vortex system,

. the spiraling-trailing vortex system, the vortex system resulting from

the instability of the top shear layer, and the interactions of these
sytems on transition. Schwind [2] studied the Tow speed junction flow
using smoke visualization technique and observed five types of vortex
regimes. Schwind observed that as the velocity is increased the
number of vortices observed also increases and at higher velocities
the two clockwise rotating vortices began to oscillate with amplitude
increasing with velocity. Schwind further points out that although
the flow passed from regime 1 to regime 5 types as the velocity is
increased, the velocity at which the flow changed from one regime to
another was by no means well defined and different flow regimes could
exist at one velocity. Baker [3] demonstrated experimentally the
existence of both steady and unsteady vortex systems. The oscillatory
behavior of the horseshoe vortex was found to be complex. As the
Reynolds number is increased the steady horseshoe vortex system pegan
to oscillate intermittently and randomly at two different frequencies.
As the Reynolds number is increased further, the period of oscillation
of the vortices became longer, the high frequency oscillation becoming
more common. At yet higher Reynolds number the oscillations became

irregular and the horseshoe vortex system became turbulent. It was

*Numbers in brackets indicate References.



concluded that the frequency of these oscillations is solely deter-
mined by the value of Reynolds number and the ratio of diameter of the
protuberance to the incoming boundary layer thickness.

Kaul et al. [4] studied numerically the incompressible junction
flow using the Navier-Stokes equations. The equations were cast in

generalized coordinates, and solved in time as a hyperbolic system by

~adding a pressure term in the continuity equation. The equations were

marched until steady state was reached. The calculations indicated a
strong non-uniform pressure loading along the length of the cylinder.
A new mechanism for the existence of recirculation bubbles behind the
cylinder end walls with relatively low ratio of cylinder height to the
incoming boundary layer thickness was observed.

The turbulent flow around a wing/body junction is much more
complex than the laminar counterpart. It consists of a turbulent
boundary layer interacting with a viscous wake that is pressure driven
in some regions, Reynold's stress driven in other regions and viscous
dominated in most other regions. The essential features of the flow
and the horseshoe root vortex are shown in Fig. 2.1. The wing is
partially submerged in the oncoming flat plate boundary layer. The
body is sufficiently long that a turbulent boundary layer exists up-
stream of the wing. The flow around the wing outside the boundary
layer is assumed to be inviscid. The vorticity present in the incom-
ing boundary layer wraps around the wing leading edge to form a horse-
shoe vortex. The oncoming fluid is decelerated by the adverse pres-
sure gradient created due to the presence of the wing leading to
three-dimensional separation. It is in this part that the primary

root vortex, and possibly secondary vortices are established.
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Meanwhile, fluid off to the side of the wing, passes without
experiencing much disturbance. Consequently, the fluid elements in
one part of a vortical line are decelerated relative fo fluid in other
parts. The subsequent wrapping of the vortical line elements around
the wing leading edge results in the appearance of horseshoe vortex.
The effect of this skewing of the transverse vorticity line results in
the generation of streamwise vorticity and a three-dimenstional flow
velocity. Whereas, the flow upstream of the wing has one component
velocity, which is directed in the streamwise direction, the flow in
the root vortex has components in the plane normal to the streamwise
direction due to the presence of streamwise vorticity. The horseshoe
vortex experiences viscous diffusion and the effects of counter
rotation takes place because of the anisotrophy of the Reynold's
stresses. The flow slowly varies in the streamwise direction and is
in some sense in equilibrium. The flow does not return to its
original state downstream from the wing. Further, there are complex
interactions -between the vortices, the separated flow near the trail-
ing edge and the viscous wake of the wing. The vortices remain
immersed in the boundary ]ayer from which they originated, and they do
not 1ift up away from the body.

Shabaka and Bradshaw [5, 6] and Oguz [7] made mean flow and
turbulence measurements in wing-fuselage junctions. The special
emphasis of the experiment was to investigate the relative importance
of turbulence terms and examine the spatial extent of the interaction
flow field. McMahon et al. [8] studied the details of turbulent flow
in a wing-fuselage type junction using surface oil-flow visualization

technique combined with hot wire anemonemtry. The experimental data
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collected includes measurement of three mean velocity components and
six Reynolds stresses at selected streamwise locations. To complete
the entire picture of the flow field some measurements were taken
inside the reversed flow region using hot-wire techniques. [t was
shown that unambiguous measurements of the mean flow direction can be
made in three-dimensional separated flows. The collected data have
been used to deduce the flow behavior in and around the juncture,
Also, the similarities between the mean-flow strain rates and the
turbulent stresses, and the relative trends among the turbulence
quantities have been discussed. Hsing and Teng [9] carried out
experiments on the behavior of three-dimensional turbulent boundary
layer in the simplified wing-body junction at low subsonic speed. The
results of the boundary layer behavior in the attached flow region
have revealed the effects of pressure gradient and curvature of the
streamline. Briley and McDonald [10] studied numerically the wing/
body junction flow with swept Teading edges using the Navier-Stokes
equations. A general nonorthogonal coordinate system that resolved
the viscous sublayer was employed. The numerical predictions did not
agree with measuréments well downstream of the leading edge. The
algebraic turbulence model employed in the study was fairly crude, but
false diffusion errors, notoriously large in the recirculating region

may have also contributed.

2.1.2 Low Speed Controlled Juncture Flows

The physics of low speed controlled juncture flows differ slight-
ly from unmodified juncture flows in that the separation at the wing

leading edge is eliminated by suitable geometrical modifications to
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the wing. Such modifications include fillets, sweep and suction holes
in the wing. These simple techniques help in improving the air flow
around the wing/fuselage junctions and can be easily incorporated in
existing fleets of aircraft. Preliminary results [11] indicate that
there is some reduction in juncture drag at moderate angles of attack

with the use of leading edge fillets. The use of sweep and suction at

- the wing leading edge considerably reduces the extent of separation

and helps to maintain laminar flow around the juncture.

Mehta [12] experimentally investigated the effect of wing nose
shapes on the nature of the generated secondary flow. The
experimental study investigated in detail the correlation of the
strength, size and position of the horseshoe vortex with the nose
shape of the wing. The study clearly demonstrated that the nature of
the horseshoe vortex system in a wing/body junction is strongly
dependent on the wing nose shape with size and strength of the vortex
system increasing with the nose bluntness. In most practical cases,
this vortex flow persists right up to the wing trailing edge, with
very littie attenuation, so the only practical way to control it is by
suitably adjusting the wing leading edge shape. Kubendran and Harvey
(11] have made measurements in the wake region of a simulated wing-
fuselage juncture, with and without leading-edge fillets, to
understand the effect of leading edge modifications on the flow field
around the juncture. Preliminary results have indicated some
reduction in juncture drag using leading edge fillets at moderate
angles of attack. Some improvements in the flow characteristics on
the surface downstream of the juncture were also noticed when leading

edge fillets were used. As the fillet size was increased, flow
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characteristics start deteriorating at some point, and an optimum

fillet size was needed to achieve an overall improvement in the flow
field.

The numerical study of controlled juncture flows using fairings
at the junction have been studied by Sung and Lin [13] and Kubendran

et al. [14] using the incompressible Navier-Stokes equations. It has

~ been found that the leading edge fairing is quite effective in reduc-

ing the leading edge flow separation and non-uniformity of the wave

velocity profile and the addition of the trailing edge fairing can

contribute to further improvement.

2.2 High Speed Flows

2.2.1 High Speed Unmodified Juncture Flows

High speed flow past a blunt fin mounted on a flat plate, results
in a complex, three-dimensional, viscous-inviscid interaction flow
field. The detached bow shock formed ahead of the protuberance causes
the boundary layer to separate from the surface upstream of the fin
location. This results in a separated flow region composed of horse-
shoe vortices near the surface and a lambda-type shock pattern in the
plane of symmetry ahead of the fin. The major effects of the shock-
wave/turbulent boundary-layer interaction are increased pressure loads
and heat transfer levels on and in the vicinity of the protuberance.
The existing experimental data suggest that the separated flow is
very unsteady due to the oscililation of the separation location with
amplitude larger than the undisturbed boundary layer thickness. This
relatively large movement of the separation location is attributed to
the pulsating and scavenging action of the flow comprising the

multiple horseshoe vortices, results in comparatively large
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oscillation of the impinging shock wave. In addition to the pressure
peaks and heating rates at shock impingement on the fin leading edge,
there are very large pressures and heating rates on the plate surface
in the immediate vicinity of the fin root. It is believed that such
shock wave turbulent boundary layer interactions have caused
structural damage on hypersonic wing/body junctions [15].

Certain aspects of the separated flow ahead of a blunt fin are
somewhat similar to two-dimensional separated flows ahead of ramps or
steps. The pressure increase across the fin bow shock wave presents a
strong adverse pressure gradient to the boundary layer flow on the
flat plate surface, causing the boundary layer to separate adjacent to
the plate surface. The effects of pressure increase are propagated
upstream through the subsonic pocket of the boundary layer and leads
to the separation of the boundary layer on the flat plate. As
sketched in Fig. 2.2, the reversed flow forms a horseshoe vortex in
which the flow quickly spirals downstream, away from the plane of
symmetry. Immediately downstream of this vortex, there appears to be
one or more additional vortices. The reversed flow in the vortices is
constantly replenished by the separated stream fiow, and spirals down-
stream very rapidly. Thus, the vortices bring the high energy air
stream into proximity with the surface. Extremely high heating rates
and large pressure fluctuations have been observed in local regions on
the surface adjacent to the protuberance. The existing oil flow
visualization techniques suggest that the direction of flow in the
vortices is predominantly outboard and bears little similarity to two-
dimensional separated flows in the plane of symmetry. The predomin-

ance of the transverse flow masks the nature of the flow along the
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boundary between two vortices, but there appears a third, small and
counter rotating horseshoe vortex between the two large vortices. The
flow at the root of the fin is highly three-dimensional and complex.
There are large pressure, as well as high velocity gradients in this
region, The compressed separated flow ahead of the fin accelerates to
supersonic speeds in escaping around the fin to Tower pressure
regions. A strong vortex starts at the root of the fin and spreads
out as it follows the fin root downstream. The fin bow shock causes
the boundary layer to separate from the surface ahead of the fin,
resulting in a separated flow region composed of horseshoe vortices
near the surface, and a lambda-type shock pattern ahead of the fin.
The shock wave emanating from the separated flow region impinges on
the fin bow shock, and causes intense heating and high pressure local-
ly around the fin leading edge.

Young et al. [16], Price and Stallings [17] and Westkaemper [18]
observed that the extent of turbulent separation is insensitive to
Mach number, Reynolds number and boundary layer thickness for a wide
range of flow conditions, for fin diameters that are larger or compar-
able to the undisturbed boundary layer thickness. Specifically, for
Mach numbers from i.2 to 21, turbulent boundary layers separate
approximately two diameters ahead of the fin leading edge. Laminar or
transitional boundary layer separation ahead of a fin is much more
extensive than turbulent separation and depends on both Mach number
and Reynolds number. Limited data available in the literature indi-
cate that the extent of separation ahead of a fin increases with
increasing Reynolds number based on the separation distance. Laminar

separation lengths exceeding six diameters have been observed by Young
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et al. [16] for both Mach 3 and Mach 5 flows. However, separation is
a strong disturbance to a laminar boundary layer and causes earlier
transition than for attached, undisturbed boundary layers. In virtu-
ally all of the tests carried out in the earlier study [16], trans-
ition occurred either ahead of the separation location or in the free
shear layer bounding the reverse flow region ahead of the fin (trans-
itional separation). The extent of transitional separation diminished
toward the turbulent value (lsep + 2D) as the separation location
approaches the undisturbed boundary layer transitional location of the
plate boundary layer. Mach number, Reynolds number, and boundary
layer thickness effects on the extent of laminar or transitional
separation have not been clearly differentiated.

Sidney [19] investigated experimentally the supersonic junction
flow problem using flow visualization technique. The major objective
of the experiment was to resolve the fine details of the flow struc-
ture. The variation of primary separation distance was discussed as a
function of Mach number, Reynolds number and obstacle dimensions. The
structure of the separated flow upstream of the obstacle was found to
change with relatively small changes in Reynolds number. Experiments
have been conducted by previous investigators to study the effect of
transition properties on the diameter of the fin [17, 18, 20-27],
sweep angle [17, 28, 29], height of the protuberance [17, 18, 20},
Mach number [17, 20, 23, 25], and Reynolds number [17, 20, 25, 28,
29]. Attempts have been made to correlate the experimental data, but
confusion over the conditions necessary for the model to be considered

semi-infinite have caused some difficulty, particularly with respect

to the vertical scale of the flow field. However most of the
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experiments revealed clearly that the dominant parameters controlling
the centerline flow field are the diameter and sweep angle of the fin.
Dolling and Bogdonoff [30] studied experimentally blunt fin induced
shock wave/turbulent boundary layer interaction. The first objective

of the experiment was to investigate the spanwise development of the

- disturbed flow field and to determine its dependance on the model

geometry and incoming flow conditions. The second objective of the
experiment was to determine the vertical extent of the interaction on
the fin. The results show that, on the test surface near the fin and
on the fin itself, the leading edge diameter plays a dominant role in
determining the interactions scale and characteristics.

Hung and Buning [31] studied the blunt fin induced shock wave/-
turbulent boundary layer interaction problem using the 3D compressible
Navier-Stokes equations. It was noted that varying the incoming
boundary layer thickness by an order of magnitude showed that the size
of the horseshoe vortex and the spatial extent of the interaction are
dominated by inviscid flow and only weakly dependant on the Reynolds
number. Hung [32] also noted that by changing the blunt fin to a flat
faced fin the extent of separation increased drastically, and the main
horseshoe vortex bifurcated into two vortices rotating in the same

direction.

2.2.2 High Speed Controlled Juncture Flows

Very little work is done in high speed controlled juncture flows.
Price and Stallings [17] and Stollery [33] studied the effect of fin
sweep in turbulent boundary layers and noted that the separation of

the flow ahead of the fin can be reduced drastically by leading edge
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sweep. Gaitonde and Knignt [34] studied numerically the effect of

suction to control the sharp fin/flat plate junction flow. The compu-
tation indicated that the particular bleed schedule of five percent
employed in the study was incapable of controlling or significantly
modifying the undesirable separation and the large vortical structure.

It may be possible to significantly influence the flow field by minor

- modifications to the configuration such as raising the fin a slight

distance from the flat plate could provide interesting results.

2.3 Turbulence Modeling for Wing/Body Juncture Flows

Complex flows of the type found in wing/body junction are marked-
ly influenced by three-dimensionality, pressure gradients, and viscous
and turbulence effects. An important effect of calculating the flow
described above is turbulence modeling. The simplest model used for
the calculation of turbulent shear flows are algebraic eddy viscosity
models [35]. These models have been employed primarily for calculat-
ing two-dimensional flows. However, the formulation of eddy viscosity
models contain a large amount of empiricism that is generally not
valid in complex three-dimensional flows. Three other types of turbu-
lence models have been developed in the literature that are applicable
to junction flow, such as two-equation models [36], algebraic Reynolds
stress models [37], and the full Reynolds stress transport equations
[38]. Of the models available, only the algebraic eddy viscosity
model and the two equation models have been employed in the compu-
tation of wing/body junction flow [39]. The application of the full
Reynolds stress transport equations to three-dimensional flows involve

the solution of six additional partial differential equations for the
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stresses and greatly increase the computational effort required. The

algebraic Reynolds stress models have been developed as an attractive
alternative to the full Reynolds stress equations. Hdwever, this
model has not been refined sufficiently to make them applicable to
three-dimensional flow fields. In particular, more work needs to be
done before these models can adequately compute the near wall
turbulence.

The literature review indicates that most of the experiments
carried out in the junction flow lack detailed measurements in the
separated flow region and do not sufficiently portray the structure of
the vortical flow. The same level of criticism can be levelled
against the previous computational studies in that they fail to
examine the effect of grid refinement and turbulence model in the flow
field simulation. Although techniques for controlling the junction
flow have been studied experimentally and computationally in the past,
quantitative information about their effect on the vortex strength is
lacking in most of the earlier studies.

The primary objective of the present study is to obtain further
understanding of the structure of resulting three-dimensional sepa-
ration and to compute the junction flow with sufficient resolution.
The specific objective of the study is to investigate numerically the
effect of fillets and sweep in controlling the juncture horseshoe
vortex and to provide quantitative information on the amount of weak-

ening of the vortex.



Chapter 3
PHYSICAL MODEL AND THEORETICAL FORMULATION
In this chapter, a brief description of the governing partial
differential equations representing the flow, along with the boundary
and initial conditions employed in the present study are presented.
The theoretical formulation of the problem starts with the nondimen-

sional form of the compressible three-dimensional Navier-Stokes equa-

tions cast in the generalized body-oriented coordinate system. Brief
discussions on the turbulence model, mesh system, and thin-layer

approximation are also provided.

3.1 Governing Equations in Non-Dimensional Form
In the absence of body forces and source terms, the governing
equations for the conservation of mass, momentum, and energy in a
stationary control volume v, surrounded by a control surface S, can

be expressed in integral form as [40]

3 _g_dv+f(ﬂ_“_+.tl)°ﬂds=o (3.1)
at Jv S

where

.
= [p, pu, pV, oW, pE]

Fa!

E = e, + 1 (u +v +w)
o2
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-1
b =pl+M Re ¢

y

-1 -1
b, =-y M (Re Pr) u grad e; + pu+ M Re zeu

The nondimensionalization of the governing equations is carried out by
normalizing the cartesian velocity components (u,v,w) by sound speed
a_, the density p by p_, the specific internal energy e and the
total energy E by ai, and p by paqi. The viscosity coeffi-
cients A and up are normalized with respect to the molecular
viscosity T The constant y, 1is the ratio of specific heats, Re
js the Reynolds number based on freestream velocity, and Pr 1is the
Prandtl number. The density p, static pressure p and the internal

energy e, are related through the following equations of state:

(1/x) oT (3.2)

o
1]

T/v(y-1) (3.3)

(1]
n
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@ =T (3.4)

where T 1is normalized by the freestream static temperature.
Equation (3.1) is a simple expression for the basic conservation laws

of fluid flow and is valid for a global control volume and also for

each locally discretized control volume (i, j, k) shown in Fig. 3.1.

- For the sake of notational convenience, the superscript without a

prime is used for the transformed coordinate (x!,x2,x3) interchange-
able with the local coordinates (£, n, ¢) and the superscript with a
prime is used for the global coordinates (x,y,z). A similar notation
convention is used for all other tensor quantities. For example,
u1'= (ulluﬁ 'Jﬁl) = (u,Vv,w).

The partial differential equation corresponding to Eq. (3.1)

written in tensor convention is expressed as follows:

2 [q(g) 1+ [qu+tb)eg g'l=0 (3.5)
at i
ax
or
i
g.’t + E"I =0
i /72 4
where gq= g (9)1/2, 15_5 [(S.E.*'P_)'(g )g1]

In eq. (3.5) (g!/2) 1is the Jacobian and gf is the contravariant
base vector in the x' direction. Here, the Einstein summation con-

vention is used for repeated indices. Since Eq. (3.5) is a
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homogeneous equation in g, it can be written as

~ i

Q9t +(

x>

~ - - iy o N
9°; 0, 9 =4,y A=3F/3g

Equation (3.6) provides the basis for the implicit procedure.

Eq. (3.5) explicitly, one has

continuity

()% 01y + [oun(a) gl = 0

i! . .
momentum for x direction

M re A X () oy,
ax"
- n 1/2 3 it 172 4
- Re o [E ()T gl T (9 g(nn)lls, = 0
n' n
ax X
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(3.6)

Writing

(3.7a)

(3.7b)
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energy
172 1/2
[(9) o], +{(oE + plu.(9) g
YM,,., J9e., 1/2 M“A 1/2
- L T(g) ¢* - divuu-(g) g*
Re Pr ax (') Re
M u g™ 172 Vg 1/2
- M (9 gyt i (@) gl =0 (3.70)
Re axk ax™
where g?i.) is the component of the contravariant base vector g}
;!
along the x!  direction and i is the contravariant unit base
vector.
The above system of equations is assumed to be valid for turbu-
lent flows if the molecular transport coefficients are replaced by
Mot (3.8a)
U u u
et T (3.8b)
Pr- Pr Pr
L t

where My represents the turbulent eddy viscosity and Prt the turbu-

lent Prandtl number. The molecular dynamic viscosity is evaluated

using the Sutherland's law of viscosity.
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3.2 Turbulence Model
A turbulence model for the three-dimensional configuration of
Fig. 2.2 is complicated and is still under development. As 2z + =
the fin surface influences the turbulence; on the otherhand as z + O
the turbulence is dominated by the flat plate surface. In the junc-

tion between the fin and flat plate, the effect of turbulence is truly

. three-dimensional. The two-layer turbulent eddy viscosity model of

Baldwin and Lomax [35] is extended to generalized coordinates to
determine the turbulent transport coefficients. This model is
particularly advantageous for certain shock-induced separated flows
that contain a multiple region in which the length scales are not
clearly defined. However, the present work does not account for the
amplification of turbulent intensity after a sudden compression of the
flow through the bow shock wave. The implementation of more realistic
turbulence models for the present work awaits further study.

In each (J-K) plane, the computational domain is like a corner
formed by two perpendicular walls as sketched in Fig. 3.2. For the
sake of convenience coordinates (y,z) are used to define each (J-K)
plane. The two-layer algebraic turbulence eddy viscosity model is
applied in each region in the following manner.

Inner Region

For the inner region, the eddy viscosity model is expressed as

2
€inner p(k 2 D) [of _ (3.9)
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where k = 0.4 1is Von Karman's constant, 2 is Buleev's length scale

[41-43], D 1is the Van Driest damping factor and w is the absolute

value of the vorticity (w = |$ x v |), i.e.,

2 2 2
] =[(2u 2w a_z_> {2\ (50
3y  ax 3z a3y ax oz

The general definition of the Buleev length scale is

-1

21
2(x,y,2) = 1 ~I. d¢ (3.11)

2 o S

where s défines the distance from the field point (x,y,z) to a point
on the boundary, and ¢ is the pheripheral angle as shown in Fig.
3.3. For a two-dimensional external corner flow, the Buleev length
scale ¢ is the distance normal to the surface. For an open corner

formed by two orthogonal planes, the Buleev length scale is given by

g = 2yz (3.12)
172

y+z+ (y2 + 22)

This formula is designed to account for the size of turbulence eddies
or the turbulence mixing length near the corner under the influence of

both walls.



Fig. 3.3 Definition of Buleev length scale
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Quter Region
In the outer region the outer eddy viscosity is given by
€ outer = PK Ccp Fwake Fk]eb (3.13)
where K is the Clauser constant, CCp is an additional constant.
The outer wake function, F , 1is defined by
wake
lmax Fmax-
Fwake = the smaller of 2 (3.143)
o u_/F

wﬂmxe max.

The quantity Fmax is the maximum value of F(y) that occurs in a
profile and 2max is the maximum value of & where the maximum value
is

of F occurs. The relation for F

outer outer

F =g w0 (3.14b)

The wake function is a product of a length scale lmax and the
velocity scale Fmax representative of the energy-containing eddies
in the outer portion of the boundary layer. In effect, the distri-
bution of vorticity is used to determine length scales so that the
need to find the boundary layer edge is eliminated. The Klebanoff

intermittency factor is given by:

6)-1
C L

2max

Fk]eb(z) = {1 +5.,5
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where Ckleb is a constant. The quantity Ue is the difference
between maximum and minimum total velocity in the profile.

= 2 2 2 - 2 2 2
Ug (Vu2 +v2 + w2 ) max (Vu2 +v2 +w2 ) min (3.16)

The second term in Ue is taken to be zero (except in wakes). The
numerical value of the constants appearing in the foregoing relation

are given as follows:

K = 0.0168, Ccp = 1.6, Ck]eb = 0.3 .

The inner and outer eddy viscosity laws are combined to form the

composite turbulence eddy viscosity model in the following manner.

First, profiles of ¢ and are determined on each co-

inner €outer
ordinate line orthogonal to the boundary. The first point nearest to

the boundary where e, exceeds € is denoted the "cross-over

inner outer

point." The turbulent viscosity e is equal to €inner for all the
points in the region between the boundary and the crossover point, and

is equal to € outer for all the points above and including the

crossover point,

In the vicinity of the corner, the (J-K) plane is divided into
four regions I, II, III and IV as shown in Fig. 3.2. In regions I and
II, D 1is evaluated at z = 0. The search for Fmax and the cor-
responding zmax proceeds from the wall, either from y = 0 for
region IV, or from 2=0 for reygion I. The values of Fmax in region

II and III are treated as constants equal to the value of Fmax at M

and N, respectively.
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3.3 Thin Layer Approximation

Prandt1's classical boundary layer equations are obtained from
the full Navier-Stokes equations by performing an order of magnitude
analysis of the terms and neglecting terms of the order of the inverse
power of the Reynolds number. This procedure leads to (1) neglecting
the streamwise diffusion compared to normal diffusion; (2) the
replacement of a normal momentum equation with the assumption of zero
pressure gradient across the boundary layer thickness. The concept of
thin-layer approximation to the full Navier-Stokes equation is similar
to the boundary layer approximation with the only exception of retain-
ing all three momentum equations. This procedure makes no assumption
about the pressure variation across the boundary layer thickness. The
thin-1ayer approximation is particularly advantageous for computing
certain high Reynolds number flows and separated turbulent flows
because it removes the troublesome singularities encountered at the
separation points and permits straight forward computation of sepa-
rated flows. As a result of the thin-layer approximation, the govern-
ing equations become simple and less complicated than those based on
approximations that attempt to use streamwise gradients parallel to
the body surface. The considerable simplification in numerical algo-
rithm and physical concept motivate the straight forward implementa-
tion of the approximation into computer codes for high Reynolds number
flows.

In the present research work this concept is extended in all
three coordinate directions for a general coordinate system. All the

viscous terms containing the cross derivatives 32/ax'ax) when i # j

J

are neglected while retaining the normal derivatives 32/3x'ax3  when
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i = j in each direction. For example, along each coordinate
direction the A div u in Eq. (3.7b) will be expressed as
n' 172 1/2
3 au 3
2 o . . A . (g 92(1|)+“' =-—2— A (g) 92(1')
3 X axn a X
neglected retained neglected
T T T T T T ' N
Jul axt aul ax2 Jul ax3
X . + . — + —_—
axl axt ax2 axt ax3 axl
. ) ] 1
. au? axl , v ax2 + au? ax3
— I o - * - —_— & —r
axl 3 x2 ax2 3 x2 ax3 ax2
[] 1 1
3 1 3 2 3 3
+ qud 9x 4 ouw o o9x + Ju® - 3x oo -
ax! ax3 ax2 ax3 ax3 ax3

. [] I
ax2 ax2  ax3

] 1 1
172 1 2 2 3 2
N Y (q) 9?1')x du ax .+ 3 u2 Cax® o aud ax +_ﬂ1
ax2 axl  ax2

. . 2
The above expression can be expressed in tensor form for each X"-
direction as follows:

Nyt 172 |
= 2 e 22 (9) gy b (3.17)
2

ax axt ax"

It should be noted, that not all the retained terms are larger
than the neglected terms. Retention of all the second order normal
derivative terms make the approximation convenient and consistent such
that all dominant terms are retained for a general coordinate system

except at the juncture between two walls. Near the juncture between
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two walls the neglected cross derivatives can be of the same order of
magnitude as the normal derivatives. But the flow at the juncture
carries with it a low momentum fluid and hence neglecting the cross
derivatives will not alter significantly the basic physics of the flow
field. When not needed (because of the absence of a thin shear
layer), the viscous terms can be completely neglected in any particu-
lar direction, and the present algorithm will reduce back to a thin-

layer approximation for the presence of viscous shear layers in two or

only one direction.

3.4 Mesh System
For simple configurations like swept and sharp fins on a flat
plate, an algebraic grid generation technique is used to generate the
mesh. This technique offers an easy control of the grid spacing and
distribution. A modified elliptic grid generation technique [44] with
direct control over the grid spacing is used to generate the mesh at a
filleted fin/flat plate junction. The equation of the super ellipse

05)" + (-i)" = 1, is used to generate the grid for circular and

a b
continuous fillets in the plane of symmetry. The three-dimensional

grid for a sharp fin {(Fig. 3.4) is obtained by simply stacking
horizontal grid in the direction normal to the flat plate surface.

The three-dimensional grid structure for a swept and filleted fin
(Fig. 3.5 and 3.6) is obtained by simply rotating the grid in the
plane of symmetry about the center of the fin leading edge. The grid
is clustered near the fin and plate surfaces using an exponential grid

stretching formula to provide adequate resolution of the viscous
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effects. Since the flow is assumed to be steady and symmetrical only

one-half of the flow is computed.

3.5 Boundary Conditions
The physical boundary conditions to be imposed are problem

dependent. At present, the 3D Navier-Stokes code has been applied to

- blunt fin/flat plate geometries. In this case, a supersonic laminar

boundary layer develops on the flat plate. The deflection of the fin
leading edge generates a bow shock wave which interacts with the

boundary layer on the flat plate.

The boundary conditions applied may be categorized as follows:

3.5.1 Inflow Boundary

The incoming flow is supersonic (except in the subsonic portion
of the boundary layer) and the inflow boundary is essentially perpen-
dicular to the oncoming flow. Consequently all flow characteristics
point from outside towards the computational domain and the appropri-
ate boundary condition is to specify u, v, w, p and e;. For the 3-D
blunt fin, the upstream boundary layer profile is obtained from a two-

dimensional compressible boundary layer code [45].

3.5.2 Outflow Boundary

The outgoing flow is assumed to be supersonic (except in the
subsonic portion of the boundary layer), and the outflow boundary is
essentially perpendicular to the outgoing flow. In this case all the
flow characteristics point from inside to outside of the computational

domain, and thus the outflow variables must be determined from the
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interior flow solutions by zeroth order extrapolation. The fin is
assumed to be infinite in length and height so that zero-gradient
boundary conditions are appropriate at the outer boundaries in the
corresponding directions., The outer boundary of J = Jmax is
situated far enough to avoid any influence on the interaction region.
Theoretically one can prescribe a boundary layer profile on the
isolated flat plate at each x-location along the outer boundary as

shown in Fig. 3.7. These profiles are obtained from solving the

compressible boundary layer equations for flow over a flat plate.

3.5.3 Solid Boundary

At a solid wall boundary the following boundary conditions are

enforced

Ven = 0
d.g (3.18)
an
T=T ork EI.= W
an

where v = (u, v, w) is the cartesian velocity vector, p 1is the
static pressure, Tw is the specified wall temperature, qw is the
specified wall heat flux and k is the coefficient of thermal con-
ductivity. The boundary condition for the static pressure is an
approximation to the exact boundary condition derivable from the
normal component of the momentum equations, and has been applied for a

variety of flows involving shock wave boundary layer interaction.
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3.5.4 Symmetry Boundary
The fin is at zero angle of attack, and the following boundary
conditions apply on the plane of symmetry.
V.n =0
3le¥xn) - g (3.19)
an
¥ -9
an
LA
an

3.6 Initial Conditions and Blunt Body Starting Conditions

The simplest way to start a computational solution is by assuming
that all initial conditions are the same as the incoming flow
solutions. This may result in over compression near the stagnation
region followed by an over expansion around the shoulder. This may
cause the numerical scheme to become unstable, thereby resulting in
negative density. To avoid this, Pulliam and Stegar (46] used a small
time step during start-up by gradually enforcing the no slip wall
boundary condition. Rizk, Chaussee, and McRae [47] treated the bow
shock as a discontinuity and started with an assumed pressure distri-
bution, in addition to the soft start technique. In the present
research work, a simple formula is employed to avoid over expansion
around the shoulder [40]. As depicted in Fig. 3.8 near the nose

region, the normal velocity component is set to zero on the surface of
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Fin shoulder

Fin

Fig. 3.8 Region near the nose for setting blunt body starting
conditions
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the body at C, and then increased linearly to the incoming flow
velocity at a predetermined location, say D. The formula for velocity

at a point between C and D is

|l

p = - (1 -2/gy) | (w.g)/g (3.20)

where LCD is the fixed length between two points C and D and ¢ s
the variable length from the surface. The density and énergy are set
equal to the incoming flow conditions. This simple device may be
interpreted as a defect in normal momentum and hence kinetic energy in
the small region near the blunt nose. This device alleviates the
nonphysical flow field development and allows large time steps during
the start up phase. Though different possible boundary conditions
were discussed the exact boundary conditions used in the present study
are the same as given in the previous numerical study of supersonic

junction flow [40].



Chapter 4
METHOD OF SOLUTION
In this section, the finite volume formulation is developed for
solving the compressible Navier-Stokes equations at high Reynolds
number. The governing equations are integrated numerically using the
MacCormack's [48] explicit-implicit scheme in time split fashion to
reduce the three-dimensional equations to three sets of locally one-

dimensional equations.

4.1 Finite Volume Formulation
A finite volume cell, indexed by (i,j,k), is defined by eight
corner points connected with straight lines, as shown in Fig. 3.1.
Each edge of the finite volume cell is identified by a coordinate

location (x} ,x§ ,xi) interchangeable with (5i’”j'5k)’ where

x% =g " (i-1) ag, i =1, IL
x§ =n; = (j-1) an, j =1, dL (4.1)

xg *g c (k-1) az, k = 1, KL.
and the grid spacing along the local coordinate direction is given by

axt = ag = 1/(IL-1)

42
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1/(JL-1) (4.2)

AX2 = An

AX3 = AL 1/(KL-1)

The enclosed surface of each finite volume cell consists of a family
of three coordinate surfaces that delineates the hexahedronal mesh
cell. The above formula yields a unit cube for the transformed compu-
tational domain. The choice of a cube of unit dimension in the compu-
tational domain is arbitrary, and the other investigators have chosen

the lengths of each side to yield ax! = ax2 = ax3 =1 so that the
1/2
volume of each computational cell is given by dv =g Ax! Ax2 ax3,

1/2
It should be understood in Eq. (3.5) that g is the volume of the

1/2
cell dv (i,j,k), the term g gl represents the contravariant

surface normal for the surface x*= constant and u . gl is the corre-

sponding contravariant velocity evaluated at the bounding surfaces.

1/2
Therefore, in Egs. (3.7) (g) gz(i.) is the surface area for X% =

Al
constant projected on the cartesian coordinate of x1 = constant.

. s . 1/2 1/2 )
In the finite difference approach, (g ) and g g  are

defined at each grid point location, and are typically ev;}uated by a
two-point central difference in all three directions. This leads to
an inconsistancy in the volume and surface normal calculations such
that the geometry conservation law is not satisfied and hence the
difference scheme cannot recapture the free stream. This inconsis-
tency does not occur in the present approach.

Note that any open-surface element for a given boundary enclosing

the surface has a unique, effective surface vector § that is inde-

pendent of the shape of the surface. This is because, applying the
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divergence theorem to a constant vector, the integral of the outward-

oriented surface normal over a closed surface vanishes as given below

[ends= [ vedv=0 for ¢ = constant (4.3)
For example, the surface vector § g5, 1in Fig. 3.1 is independent of
the choice of which the partitioning surface diagonal is used to
define cell volumes. Indeed whether all the four vertices lie in a

plane or not, the effective surface vector is equal to one-half the

cross-product of its diagonal segments, i.e.,
Ssg76 = 0.5 x (ry5 x rge) (4.4)

Given eight corner points of each finite volume cell, a simple
way to calculate the volume is to divide each face into two planar
triangles. The volume is then dependent on which diagonal is used on
each face since the diagonals of four nonplanar points do not inter-
sect. In order for neighboring cells to be contiguous, without over-
1aps, neighboring cells must have the same surface partitioning. In
the present study a simple formula developed by Kordulla and Vinokur

[49] is employed to calculate the volume of each cell as

rel(rgy x rgy) + (ryy x rgy) + (ryy x r3;)

6 VOL
+ (rgy x ryy) * (rsy x rey) + (rgy x rsy)]

= ryy. [(r3) x ray) + (rgy x rgp) + (rgy X Tys)

+ +

.§.1'+65)

2 r71- (S1432 * Siz8s
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With the volume and surface evaluated in integral form, Eq. (3.5)

can be discretized as

85k
dvi,j,k " tél(qu+b). §]i,j,k =0 (4.6)
where q; ik is a vector of the dependent variable located at the

center of the cell and (q u + b). S 1is the corresponding flux evalu-
ated at the surface of each finite volume cell. In the present study,
the discretized finite volume formulation, Eq. (4.6) is used for
computation. In later discussions, for the purpose of explanation,
Eq. (3.5) will be used. However, details of terms which have to be
evaluated are based on Eqs. (3.7a) -(3.7c) with corresponding inter-
pretations of (g)l/2 as the volume at the centroid and (g)“zﬂ2 as
the surface normal evaluated at the boundary of each finite volume
cell.

It is interesting to see that the finite volume formulation does
not require a global coordinate transformation. In fact, the only
data needed concerning the mesh are the three cartesian coordinates of
each of the eight vertices of every cell in the mesh system.

Moreover, the surface and volume of each cell are well defined and

consistently evaluated, in contrast to a finite difference approach

where the transformation coefficient and the Jacobian are evaluated

from surrounding points.
1/2
In finite volume formulation, only the cell volume (g) and

1/2
the surface normal (g )g} are needed for inviscid flow compu-

tations. To evaluate the viscous terms, the distance between two
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adjacent mesh cells is needed. In the present approach, instead of
calculating this distance from the centroid, the vector between two
adjacent cells (i,j,k) and (i+l,j,k) (see Fig. 4.1) is set in the same

direction as the surface normal to the surface Sb’ and is evaluated

by
1/2 1/2

i3,k 131 = 05 (9501 54495 500 (47

S

d S ©

di 5.k . |d

When shape variations are large, a more appropriate formula should be

used for evaluating the metrics as given by the following formula.

d

-i,3,k '(§a e §b ¥ §c) = g I§a 2 §b * §c| (4.8)

=1 9j’k|
This implies that in a viscous dominated region, for instance near the
wall, the grid lines would be required to be nearly orthogonal for an

accurate evaluation of viscous terms.

4.2 Explicit MacCormack Algorithm

The MacCormack's explicit algorithm is implemented using a sym-
metric sequence of time split operators. The concept of splitting,
generally known as the method of alternating directions, has been most
popularly used to split the complex operators into a sequence of
simpler ones. This concept is applied here to reduce the set of
three-dimensional equations, Eq. (3.5), into three sets of one-dimen-
sional equations.

Equation (3.5) can be split into three locally one-dimensional

(LOD) operators as follows:



Fig 4.1 Distance d

. .

1,3,k

between two adjacent cells
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Lx: g,, *+ E:. = 0 (no summation in i) i =1, 2, or 3  (4.9)

Here, each of the split operators contains the spatial derivatives of
flux in only one direction. Since, this concept is limited to the LOD
scheme, the summation convention will not be used in this section.

Let At be the time step, n the time level, and if: the flux
across the cell surface xi = constant. The LOD predictor-cor-

rector scheme in a generalized coordinate system can be expressed as

follows:
Predictor:
A, in
explicit 2Q" -t 2B (4.10a)
AX
update A§n+I = g +ag"
Corrector: _ i
N NN L (4.10b)
explicit k) ,. .
AX
update q ntl _1_ @n + A§n+1
2

Here, the overbars in the corrector sweeps indicate that the quan-

tities are determined with updated predictor values. The A _ and 4
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indicate forward and backward two-point differences. Although the
operators are all one-sided by themselves, the resulting algorithm is
second order accurate in space and time.

Each of the in operators discussed above consists of a
predictor-corrector set, and requires no block or scalar tridiagonal
inversion. Because of the noncommutativity of in operators, the
combined numerical scheme is accurate only to first order. To retain
the second-order accuracy, a symmetric sequence of LOD operators,

developed by Strang [50] is used. Specifically, the solution vector

;@ is updated in time according to the following relation:

"% (bt) Lo (at) Le (2at,) Lo (at.) Lo (at) 3" (a1

g

By this procedure the solution is advanced two time steps from t to

t + 2at.

1. Temporal Accuracy

In order to retain a second order accurate scheme in time for the
operator sequence of Eq. (4.11), the total time applied to each

operator must be the same, i.e.,

A% =A% =A% = At (4.12)

2. Numerical Stability

Because of the complexity of the full Navier-Stokes equation, it
is not possible to obtain a closed-form stability expression for the
MacCormack scheme applied to these equations. However, the linearized

set of equations, can be subjected to von Neumann type stability
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analysis. In order to maintain numerical stability, the time for each
operator must satisfy the following stability condition:

at < at

¢ SerL
Atn < At”CFL (4.13)
At < At
5 teR
where the maximum allowable time steps At , At and At R
SeFL MeRL SCFL

are given in Appendix A.

The explicit MacCormack's algorithm of has several advantages.
First, the method is second-order accurate in time and space. Second,
it is relatively easy to code the explicit algorithm. Third, the
explicit algorithm is easily vectorizable. Fourth, the algorithm is
robust, in the sense that its overall stability is relatively insen-
sitive to the initial conditions employed. In practical terms, this

implies that the initial condition need not be close to the final

solution. In all the computations to date on three-dimensional
problems, the flow initial conditions are obtained by simply propa-
gating the prescribed boundary layer at the outer boundary of J =

Jmax throughout the mesh,.

Computations involving the compressible Navier-Stokes equations
sometimes "blow up" because of large gradients, for example when the
flow field contains strong shock waves. In many instances, it is not
practical to refine the mesh in these regions, particularly if they
are far removed from the region of interest. For such situations a

fourth order damping term is added to the scheme to suppress the
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nunerical oscillations. This smoothing term has a very small
magnitude except in regions of pressure oscillations where the trunca-
tion error is already degrading the computed solution, and should be

nearly zero as steady state is approached.

4,3 Implicit MacCormack Algorithm

For computations involving full Navier-Stokes equations, grid
Jines have to be clustered in the direction normal to the wall. In
such situations, the explicit CFL stability limit becomes very
restrictive and a large number of iterations are required to reach a
steady state solution. The stability analysis of the implicit schemes
shows that there are no restrictions on the time of integration and
that it is unconditionally stable.

Bi-diagonal Scheme and Locally One-Dimensional Time Splitting

The bi-diagonal implicit scheme in generalized coordinates at

time level n is introduced into explicit predictor and corrector

steps as follows:

Predictor:
8 'F
explicit A ff‘ = - At :
ax'
i
a.| A |n. -
implicit It~ REERY q" (4.14a)
AX
N{ A ntl
update ’_&_Ml =9ty



52

Corrector:
» F
~n + 1 i
. A = - At ;
explicit 4 A
A j »\|n+1-
implicit (I +at T sg" 1oy gml (4.14b)
ax -
Update: @f *1 E. @? + @? * 1+ 6@? +1

2
The matrices | L@ | are matrices with positive eigenvalues.

where

b
no
n
ol
>
w

The ﬁ} are the similarity transformation matrices which diagonalize
the Eulerian Jacobian 13‘ in Eq. (3.6) by setting u =1 = 0. The
diagonal terms of the matrix |19| contains three distinct repre-

sentative eigenvalues defined by
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.. i
2 uyM_ ii  AX

o= max {|u. g |+ S -0

u i
RePr  paX at
ii i
. 1 TIRVZ IR L A ax
i =max ||u.g *£af(g) + - , 0
uta RePr  pAX at
where g11 = 91-91. The eigenvalues of the diagonal matrix |1Q |

for i =1, 2, 3 can be expressed as follows:

! 1 1 1
for i=l A;p = A3 = A = A

Each transformation matrix of 'ﬁi for i = (1, 2, 3) is split into

three matrices which can be expressed as follows:



where

for i

1

1c -

1T -

54
-
1 0 0 0 0
-up-l  p-l 0 0 0
-vp -l 0 p-1 0 0
-wp -1 0 0 p-l 0
aB -gu -8BV -Bw B

a = 0.5(u2+v2+w2) and 8 = (y-1)

1 o o 0 -a? |
0 pa 0 0 1

o o 1 0 0

o o 0o 1 o0

0 wa 0 0 1 |
1 0 o o o
O fan fen fen °
0 -t o) el(l.) 0 0
0 '3y 0 a0
0 0 o o 1
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for i =3
1 0 0 0 -a2
0 1 0 0 0
M3C = 0 0 1 0 0
0 0 0 pa 1
0 0 0 -pa 1
L. -
- .
1 0 0 0 0
3 -e3
0 e (3) 0 e (1) 0
- 3 -a3
M3T 0 0 e (3') e (2') 0
3 3 3
0 €un ey FEn?
0 0 0 0 1
| i
1/2
Here, e % = gt / ( 22) is the component of the normal
) (11) g(.ll) g p e

contravariant vector in the i' direction. The M matrices transform

GG‘ from conservative to nonconservative variables; the matrices
it
and matrices MiC then transform from nonconservative to character-

M account for the orientation of the cell faces, x' = constant,

istic forms. It is interesting to see that the matrices M and Mic

are the same in the Cartesian coordinate system and non-orthogonal

curvilinear coordinate system; the matrices MiT account for the
generalized coordinate transformation. The characteristic variables

for i = 1, 2, 3 are expressed as follows:



¢

oa i B

for i =1
§p - (1/a8)8p i
1/2
sp +pasu . g/(g'!)
9. = 1 _ el
Gelc e (1.)6V e (2|)6U
1 - el
e (1,)6w e (3.)6u
1/2
60 - padu . gl/gll) |
for i =2
50 - (1/a2) & ]
e2 , bu-e2 , &
(2) (1)
A 1/2
86 0 = §p * pasu . g2/(g??)
2 )
e (2.) Sw-e (3.) &v
1/2
sp - padu . g2/(g?2)
for i =3 sp - (1/a2) 6p

Now it is clear that ‘ﬁi transforms the inviscid portion of Jf}J

into characteristic form Sajc only when i = j.

in contrast to the unsplit formulation, LOD time splitting makes

e3(3.) 6u-e3(1,) ow

e3(3.) sv- e3(2 N 5w

1/2
sp + pasu . g3/(g3?)
172

sp - pasu . g3/(g%3)

This implies that,
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variables consistent with the characteristic variables by means of the
similarity transformation employed in the implicit steps [Eqs. (4.14a)
and (4.14b)].

Two points should be noted here. First, it is an insurmountable
task to develop the similarity transformation for each entire viscous
Jacobian i@l To keep the right hand side of Eqs. (4.14a) and
(4.14b) as simple and straightforward as possible, we follow here the
suggestion given by MacCormack to consider only the Eulerian Jacobian
of 1.E‘with the addition of a small number of dominant viscous terms to
the Eulerian eigenvalues. Second, the implicit procedure is skipped
Whenever the explicit stability conditions are satisfied locally, and
the algorithm requires virtually no more computation time than an
explicit method.

Each split operator described above consists of an explicit-
implicit predictor-corrector set, is second-order accurate in time and
space, is unconditionally stable, and requires no block or scalar
tridiagonal inversion. Because of the noncommutativity of split
operators, the simple combined numerical scheme, Lx! Lx2 Lx3 is only
first order accurate. To maintain, the second order accuracy of the
method, a symmetric sequence of the LOD operators, developed by Strang
[50] are employed. Here, the solution is advanced from time t to t

+ 2Aat as follows

’g_"*z = n(at) Lz(at) Le(2at) Le(at) Ln(at) §° (4.15)
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Each locally one-dimensional split operator is applied line by line in
each sweep direction and, hence, only needs one level plus three
single arrays of dependent variables. Without this splitting, the
MacCormack scheme requires, in general, two time levels of variable

plus a level of right-hand-side residuals for a total of three levels

of variables stored.

4.4 Operation of Numerical Code

4.4,1 General Procedure

The computation of three-dimensional shock wave boundary layer
interactions using the numerical code is accomplished in three phases
as follows:

1. Mesh Generation and Initial Flow Condition

Depending on the investigation of the flow past a
specific configuration, the user generates the grid using a
separate grid generation code. Once the coordinates of the
mesh points are known, the volume and surface normal for each
finite volume cell can be easily computed. The information
concerning the storage architecture for the physical coordi-
nates is provided with the numerical code. The initial
condition, including the upstream (inflow) profiles, and the
profiles at J= Jmax on the flat plate are provided by the
user. Depending upon the particular geometry under consider-
ation the upstream profile may be a uniform flow, or a
boundary layer flow generated by solving the two-d imensional

compressible boundary layer equations. The information con-
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cerning the storage for the flow field and surface normals is
provided in the numerical code.

2. Computation of the Three-Dimensional Flow Field Using the
Numerical Code
The numerical code is used to integrate the governing
equation in time until a steady state solution is obtained.
The user of the code must ensure that reasonable criteria for
the achievement of steady flow have been met.
3. Graphic Display of Flow Field
The user must develop his own graphics code to post
process the output generated by the three-dimensional Navier-
Stokes code. In this regard, the user may interface his
graphics code with the graphics library on the host
computer.

4.4,2 Requirements on Grid

The body-oriented generalized coordinate system must provide
adequate resolution to unravel the basic physical aspects of the flow
field. A complete set of mesh criteria for judging the acceptability
of the grid system does not exist at present, except for the process
of mesh refinement which is generally not feasible for three-dimen-
sional Navier-Stokes simulations. The determination of the accept-
ability of a given grid system, therefore, must be based on experience
and previous numerical computations.

There are, however, a number of necessary criteria which may be
identified as follows:

1. Resolution of Boundary Layers in the Direction Normal to the

Boundary.
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The flow field in the direction normal to the boundary
is generally characterized by the steep flow gradients. This
is based on previous experience that a minimum of fifteen
(15) grid points be placed in the boundary layer depending on
the amount of resolution needed to resolve steep flow gradi-
ents. For a turbulent flow, the y+ of the first mesh point
should be located less than three wall units from the
boundary for accurate resolution of the viscous sublayer.

The distance of the first mesh point from the wall in the
D

laminar case should be less than or equal to.g R
3 ’ReD

Resolution of Boundary Layers in the Cross flow Direction.

In the numerical simulation of the three-dimensional
flow field, a typical maximum grid spacing in the cross flow
direction is provided. This is kept between 0.25 to 0.8s,
where & is the boundary layer thickness to accurately
resolve the spatial features of the flow field. This
criteria, however, has not been extensively tested and more
stringent requirements hay need to be imposed depending upon
the flow configuration.

Resolution of the Boundary Layers in the Streamwise Direction

The streamwise grid spacing depends strongly on the
character of the flow field. In the vicinity of interaction
region, the streamwise grid spacing is determined by the size
of the interaction region. For nominally, two-dimensional
shock-boundary layer interaction the size is a function of

pressure rise, Reynolds number, and may be a fraction of the



boundary layer thickness. For a three-dimensional shock-
boundary layer interaction, the size of the interaction
region is larger than a corresponding two-diménsiona] inter-
action with the same pressure rise.
Resolution of the Inviscid Flow

The criteria for grid spacing in the inviscid region
depends upon the particular flow configuration, and must be
determined on a case-by-case basis. For example, the exis-
tence of a bow shock upstream of the blunt leading edge at
high Mach numbers may impose a stringent local constraint on

the inviscid grid spacing.
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Chapter 5
PHYSICAL CONDITIONS OF INVESTIGATION

For understanding the flow past a wing/body junction, three
specific simplified geometries were selected. These include: (1)
blunt swept fin/flat plate junction, (2) sharp fin/flat plate
junction, and (3) filleted fin/flat plate junction. The special cases
of blunt and sharp fins are used to obtain specific results for which
extensive measurements on velocity and pressure distribution, skin
friction, and surface yaw angles are readily available in the litera-
ture. In a typical three-dimensional flow past a fin/flat plate
junction the various parameters cdntro]]ing the interaction are D
(diameter of the fin), A (fin sweep angle), ¢ (incoming boundary layer
thickness), M_ (Mach number), and Rel (unit Reynolds number). The
parameters controlling the filleted fin-induced interactions are R
(fillet radius) and & (incoming boundary layer thickness). Since
three dimensional computations are expensive, only limited parametric
studies were carrfed out for selected values of sweep angle, fillet
radius, Mach number, Reynolds number, and Mesh resolution. The range
of values in each set of parameters is carefully selected to portray
its dramatic influence in controlling the intersection flow fields.
The flow field simulation of the selected cases can be easily
attempted on existing super computers without requiring excessive

computational resources.
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5.1 Laminar Flow Past a Swept Fin/Flat Plate Junction--
Validation with Experiment and Parametric Study

5.1.1 Validation with Experiment

For the specific problem of flow past a blunt fin/flat plate
junction, comparative results were obtained corresponding to the

following experimental conditions [16]:

=
1}

= 2.95, py = 22261 N/m°, Ty = 298 K,

0.225 cmy, D = 1.875 cm, H=7.5cm, A =0°

(=]
]

Figure 5.1 shows a simplified blunt fin/flat plate junction and
various locations along which the computed results are compared with
the experimental measurements. The experimental investigation
includes data on pressure distribution along the fin stagnation line
and selected spanwise locations. To supplement the measurements, oil
flow visualization technique is also used to reveal the global

structure of the flow on the fin and flat plate surface.

5.1.2 Parametric Study

The parametric studies were conducted to investigate the effect
of fin sweep and incoming boundary layer thickness. The conditions

for which specific results were obtained are as follows:

Effect of Fin Sweep
M, = 2.95, py = 22261 N/m®, Ty = 298 K




Fig 5.1 Geometry of blunt fin/flat plate junction showing typical
surface locations of comparison with-experiment
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§ =0.225¢cm, D = 1.875 cm, H=17.5cm A =0° to 45°

Effect of Incoming Boundary Layer Thickness

M, = 2.95, py = 2226 N/n’, T, = 298 K

0.675 cm, D = 1.875 cm, H = 7.5 cm, A = 0° and 45° only

o
1]

5.2 Laminar Flow Past a Blunt Fin - Conditions for Additional
Results and Parametric Studies

5.2.1 Conditions for Additional Results

The following specific conditions were selected to obtain addi-

tional results and for parametric studies:

=
]

2.36, py = 24000 N/n’, T, = 294 K

0.18 cm, D = 0.635 cm, H = 5 cm

(¢ )]
1]

This specific case was selected to validate the code with the experi-
mental measurements of velocity distribution in the separated region.
The experimental measurements were obtained by oil flow visualization,

Schlieren observations, and laser anemometry and the results are

available in [52].

5.2.2 Parametric Studies

The parametric studies were conducted by using the conditions of

Sec. 5.2.1 and changing the various parameters.
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Effect of Grid Refinement

To investigate the effect of grid refinement, the conditions of

Sec. 5.2.1 were used and results were obtained for tﬁe following three

grids:
30 x 50 x 30, 40 x 100 x 30, 40 x 100 x 50

Effect of Mach Number

The freestream stagnation temperature was changed corresponding
to each Mach number while keeping the other conditions constant as

given in Sec. 5.2.1. The results were obtained for the following

cases:

M= 1.2, Ty =286K
M, = 2.36, T, = 294K

M = 3.5, Tn = 307K
o

Effect of Reynolds Number

The unit Reynolds number of the freestream is altered by changing
the tunnel stagnation pressure while keeping the other freestream
conditions constant as given under Sec. 5.2.1. The results were

obtained for the following cases:

Pp - = 12,000 N/mP, Re, 1.25 x 10%/m
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2.5 x 10%m

24,000 N/m?, Re,

5.0 x 106/m

48,000 N/m,  Re

)

5.3 Turbulent Flow Past a Sharp Fin/Plate Plate Junction

5.3.1 Flow Past a 16° Sharp Fin

For the case of a 16° sharp fin induced shock wave/boundary 1layer
interaction, comparative results were obtained corresponding to the

following experimental conditions [53]:
M, = 4.0, P, = 1180822 N/m’, T, = 336 K

0.46 c¢cm, H = 3.7 cm, 6 = 16°

o]
(]

The experimental study gathered data on wall pressure, surface yaw
angle, and skin friction distribution at a specified spanwise location
throughout the interaction region. The experimental study employed
0oil flow visualization to understand the flow structure, Preston tube

for measuring skin friction, and cobra probes for flow field yaw

angles.

5.3.2 Flow Past a 20° Sharp Fin

The strong interaction generated by a 20° sharp fin on a flat

plate is investigated corresponding to the following conditions [54]:
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M, = 2.93, P, = 688320 N/m2, TO o= 260 K

)

§ = 1.27 cmy H =10 cm, 8 = 20°

Figure 5.2 shows the axial location of experimental surveys where the

computed pressure distribution is compared with experiment as a
function of the Z- coordinate normal to the flat plate. The experi-
ments were carried out using high Reynolds number supersonic tunnel to

measure the pressure and yaw angle as a function of the coordinate

normal to the flat plate.

5.4 Turbulent Flow Past a Swept Fin/Flat Plate Junction
For the case of swept fin induced shock wave/turbulent boundary

layer interaction, comparative results were obtained corresponding to

the following experimental conditions [17]:

L = 371, pg = 20305 N/n°, Ty = 339 K

=
i

5¢c¢my D =5cmy, H=235cm, A =0° to 60°

=]
i

5.5 Turbulent Flow Past a Filleted Fin

5.5.1 Flow Past an Unmodified Junction

For the case of low Reynolds number flow past a blunt fin/flat
plate junction, results were obtained corresponding to the following

experimental conditions [33]:

M, = 2.5, py .= 27000 N/m?, T = 312K
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Fig 5.2 Location of experimental surveys for 20° sharp fin

70



. 4‘:3;.1
----------

71

§ =5cm, D=2.5cm, H=20cm

5.5.2 Flow Past a Modified Junction

For the modified junction, the effects of fillet radius and in-

coming boundary layer thickness were investigated.

Effect of Fillet Radius

Two circular fillets with a radius (R =5 cm, 9 cm) and a con-
tinuous fillet were used to modify the junction. The incoming flow

conditions were kept as in the blunt fin/flat plate junction case.

Effect of Incoming Boundary Layer Thickness

Keeping the fillet radius (R = 9 cm) constant, the incoming
boundary layer thickness was decreased by an order of magnitude from 5

cm to 0.5 cm to investigate its effect in controlling the juncture

vortex.



Chapter 6
RESULTS AND DISCUSSION

The entire results obtained for the physical conditions described
in Chap. 5 are presented and discussed in this chapter. For the
physical conditions where experimental results were available, the
nunerical results were obtained to validate the numerical scheme and
the computer code developed in this study. Extensive results were
obtained for other physical conditions to study the behavior of three-
dimensional separation for various high speed juncture flows. The
effect of different parameters in controlling the intersection flow
field were also investigated.

6.1 Laminar Flow Past a Swept Fin

6.1.1 Computation of 0° Swept Fin Flow Field

The incbming flow conditions for this case are given in Sec.
5.1.1. The computations were carried out using a 40 x 40 x 40 mesh,
Figure 6.1 shows the comparison of pressure distribution along the fin
leading edge. The leading edge pressure is normalized by the pitot
tube pressure behind the bow shock wave. The results show that the
computed pressure distribution agrees well with the experimental
values. The existence of a peak pressure on the fin leading edge is
noticed around Z/D = 1.5. The minimum pressure is seen to occur
around Z/D = 0.25. In the downward direction from this point, the
pressure is seen to increase slowly towards the plate surface. The
computed results, therefore, appear to demonstrate the physically

realistic trend.
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4.0 "o Experiment (Young,

| et al, 1968)

—Present
3.0F 2
p_= 22261 N/m*, T_= 108K

M_2 295,03 0.225cm Converged solution

z/D 20
1.0
Solution at 1,000
time steps
0.0 | ] | |
0.4 0.8 1.2 1.6
P/Ptz

Fig 6.1 Pressure distribution on the blunt fin leading edge and
comparison with experiment
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As pointed out by Hung and Buning [31], the existence of peak
pressure on the fin is due to multicompression of the separation
shock. The decrease of pressure from the peak to the minimum is due
to extreme expansion created by the horseshoe vortex leading to a
reversed supersonic zone on the fin. The pressure increase in the
direction towards the plate surface is due to recompression from
supersonic to subsonic flow. This creates an adverse pressure
gradient in the direction toward the plate, resulting in a supersonic
zone on the fin,

The computed pressure distribution on the flat plate along the
line of symmetry is compared with the experimental measurement for an
unswept fin in Fig. 6.2. The results show good overall agreement
except near the juncture point. The main features of the flow such as
upstream influence, pressure plateau, and the pressure rises across
the fin bow shock and plate separation shock are all well simulated by
the numerical code. The existence of low pressure following the sepa-
ration pressure rise is due to the reversed high speed flow leading to

a reversed supersonic zone above the plate surface.

6.1.2 Parametric Effect of Fin Sweep and Boundary Layer Thickness

The pressure distribution on the fin leading edge is illustrated
in Fig. 6.3 for various fin sweep angles corresponding to the con-
ditions given in Sec. 5.1.2. The results are compared with the blunt
fin case using an identical mesh. It is seen that as the fin sweep
increases, the location and magnitude of the peak and minimum pres-
sures decrease drastically. As pointed out by Edney [55], the

magnitude of the heating rate and peak pressure on the fin leading
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e Experiment (Young, et al, 1968)
F— Present
p_= 22261 N/m2, T_= 108K
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Py ~ Converged solution
L0 Solution at 1,000
time steps
-
o0 ¢
0.0 1 - | A 1 1 . 1 ]
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X/D

Fig. 6.2 Pressure distribution on the flat plate and comparison
with experiment
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Fig 6.3 Pressure distribution on the fin leading edge for various
fin sweeps
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edge depend essentially on the geometrical parameters such as the fin
sweep. As the fin sweep angle increases the supersonic jet becomes
thinner and may strike the fin leading edge far downstream of the
impingement point where, because of diffusion its effect on the heat
transfer and peak pressure may be considerably Tower than for the
unswept case. Edney further observed that as the fin sweep increases
above a certain critical value, the resulting shear layer may miss the
fin leading edge entirely, and hence, high pressure and heat transfer
do not occur.

Comparison of the pressure distribution on the flat plate is
shown in Fig. 6.4 for various fin sweep angles. It is noted that as
the fin sweep angle increases, the separation point on the plate
surface moves downstream. Also, the peak pressure at the corner
decreases drastically with increasing sweep angle. Although no
comparison of pressure distribution has been made with experimental
measurements for the swept fin case, the computed results agree quali-
tatively in trend with the Price and Stallings [17] data for a turbu-

lent boundary layer.

To further demonstrate the effect of fin sweep on the interaction
flow field, the code was run for a thick incoming laminar boundary
1ayer for conditions given in Sec. 5.1.2. The boundary layer thick-
ness, in the previous case, was very small. Hence, packing a fine
grid in this region created some instability in the numerical simu-
lation. To remedy this situation and also to observe the detailed
effect of the fin sweep on the interaction flow field, the code was

run for 0° and 45° fin sweeps. The computations were carried out

using a 40 x 40 x 40 mesh.
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Fig. 6.4 Pressure distribution on the flat plate for various
fin sweeps
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Figure 6.5 shows the computed pressure distribution on the fin
leading edge for 0° and 45° swept fins. The results clearly demon-
strate the dramatic influence of the fin sweep on the pressure distri-
bution. It is seen that as the fin sweep increases, the peak pressure
and its location along the fin leading edge decreases dramatically.
The location and magnitude of minimum pressure on the fin leading edge
also shows a drastic variation in the 45° sweep case as compared to
the 0° sweep case.

Figure 6.6 shows the comparison of pressure distribution on the
flat plate ahead of the fin leading edge for 0° and 45° swept fins.
It is seen that as the fin sweep angle increases the point of separa-
tion of the incoming flow moves closer to the fin leading edge. Also,
as the sweep increases, no definite first peak in pressure is
observed. The final pressure jump across the fin leading edge shock
also shows a drastic reduction in the pressure for the 45° swept fin
as compared to the 0° swept fin. This is because the flow goes
through a severe adverse environment, since the fin bow shock is
aligned normal to the incoming flow for the 0° sweep fin. In the case
of the 45° swept fin, the incoming flow goes through the oblique bow
shock formed ahead of the fin and suffers less severe change as
compared to the 0° swept fin. This is the reason for reduction in the
level of the peak pressure of the flow ahead of the 45° swept fin.

Figure 6.7a and 6.7b show the Mach number contours in the plane
of symmetry for 0° and 45° swept fins. The separation shock, fin bow
shock, and the two reversed supersonic zones (in the case of'0° sweep)
have been clearly identified. As the sweep angle increases, the Mach

nunber contours show clearly the decrease in the extent of the
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Fig. 6.5 Pressure distribution on the fin leading edge for various
fin sweeps in a thick laminar boundary layer
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Fig. 6.6 Pressure distribution on the flat plate for various fin
sweeps in a thick laminar boundary layer
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separated region. It is noted that the two reversed supersonic zones
(one on the fin and one on the plate) are eliminated in the 45° swept
fin case. A large variation in the Mach number is noted behind the
fin bow shock for the 0° sweep fin as compared to the 45° swept fin.
The normalized static pressure contours in the plane of symmetry
are shown in Figs. 6.8a and 6.8b for 0° and 45° swept fins. The
regions of high pressure at the fin leading edge and low pressure at
the corner are clearly seen in the contour plots. As compared to the
unswept fin case, the pressure behind the shock for the 45° swept fin
does not show large differences in the peak pressure. These two argu-
ments demonstrate clearly the ameliorating effect of the fin sweep
because the leading edge becomes more and more like a slender ellipse
in the freestream direction with the increase in the sweep angle.
This means with a swept blunt fin on a fiat plate, there is a reduc-
tion in the upstream influence of the bow shock, and the effect of
bluntness associated with the fin is compressed into a small inter-

action region. In fact, the sweep clearly reduces the magnitudes of

the interaction and hence the pressure levels throughout the whole
flow field. The corresponding density contours in the plane of sym-

metry are shown in Figs. 6.9a and 6.9b.

6.2 Laminar Flow Past a Blunt Fin
In this section, numerical results are compared with available
experimental data. Also, the results of grid refinement and other

parametric studies are presented and discussed.
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6.2.1 Comparison of Computations with Experimental Data

The base computations for this case have been carried out using a
30 x 50 x 30 mesh. The tunnel flow conditions are given in Sec.
5.2.1. The computed pressure distribution along the axis of symmetry
and comparison with the experiment are shown in Fig. 6.10. It is
apparent that in the experiment the pressure begins to rise at about
ten diameters upstream of the fin leading edge. The separation
occurs, in the experiment, further downstream (X/D = - 6.8) between
the regions of initial pressure rise and pressure plateau. The pres-
sure reaches a valley downstream of the plateau region and then
increases across the detached bow shock. The secondary separation in
the reversed flow occurs between the pressure valley and the pressure
plateau. The computed results using the base grid (30 x 50 x 30) are
in reasonable agreement with the experiment in the region upstream of
the pressure plateau. As observed in the experiment, the location of
separation and initial pressure rise are closely predicted by the
computations. However, the agreement between the computed and experi-
mental results is not very good downstream of the plateau. Further,
the computed results fail to predict the length of the plateau region
accurately.

The computed pressure distribution along the fin stagnation line
(6 = 0°), and along various ¢ = constant and X/D = constant lines on
the fin surface, are shown in Figs. 6.11a and 6.11b. For ¢ = 0° and
45°, the fin leading edge pressure is referenced to the total pres-
sure, Pys, behind the normal shock. Otherwise, it is referenéed to
the freestream static pressure p_. It is clear from the computed

results that the peak pressure on the fin surface decreases
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substantially as the flow expands around the blunt fin. The peak
pressure on the fin surface at ¢ = 0° is about 1.1 and at ¢ = 45° it
is approximately 0.6. The magnitude of the minimum pressure also
drops at ¢ = 45° but not as much as the peak pressure. The pressure
drops below the value of the total pressure Pi2 behind the normal
shock. The computed results along the fin side face (Fig. 6.11b) show
that the pressure drops below the value of freestream static pressure.
As the flow continues to move downstream the extremely low pressure on
the fin surface vanishes downstream of the shoulder.

The computed and the experimentally measured streamwise velocity
profiles along the line of symmetry are shown in Fig. 6.12. The
streamwise velocity component is nondimensionalized with reference to
the freestream velocity Ue; Ue is nominally 560 m/sec. The dashed
lines along the vertical axis show the displaced origin to avoid over-
crowding of the figures. The streamwise velocity profiles along X/D =
-8.0 and -7.2 (Fig. 6.12a) indicate preseparation behavior. The
velocity profile at X/D = -6.4 indicates that the separation occurs in
close vicinity of X/D = -6.4. In the experiment, the separation
occurs around X/D = -6.8. However, it was difficult to make repeat-
able measurements at that location due to the inherent unsteadiness of
the flow. Also, due to the small scale of the reversed flow region at
X/D = -6.4, it was found difficult to detect the reversed flow region
in the vicinity of the primary separation line. The velocity profile
at X/D = -5.6 clearly shows the reversed flow region. The velocity
profiles at X/D = -4.8, -4.0, and -3.2 are shown in Fig. 6.12b. These
results show that the magnitude and height of the reversed flow region

increases with increasing X/D. The streamwise velocity profiles
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at X/D = -2.4 and -1.6 are given in Fig. 6.12c. The experimental
measurements show that the maximum magnitude of the reverse velocities
at these two locations are approximately equal. At these locations,
computed results deviate significantly from measurement. The height
of the reversed flow region decreases with increasing X/D. The
measured streamwise velocity profiles at X/D = -3.2, -2.4, and -1.6
display significant kinks between the outer edge of the reversed flow
region and the edge of the boundary layer. This phenomena is
attributed to the inherent unsteadiness present in the flow. The
computed velocity profiles do not display such behavior because the
flow is assumed to be steady.

The vertical velocity profiles at X/D = -4.8, -4.0, -3.2, -2.4,
and -1.6 are shown in Figs. 6.13a and 6.13b. The maximum velocity
occurs around the outer edge of the boundary layer. The magnitude of
the velocity then starts decreasing in the z-direction towards the
freestream. The maximum velocity toward the plate and the height of
the reversed flow region Fig. 6.12a,b,c increases with increasing
X/D.

The postulated mean streamline pattern shown in Fig. 2.2 requires
positive streamwise velocities close to the flat plate slightly up-
stream of secondary and tertiary separation lines. The flow structure
observed in the junction demonstrates that across the boundary layer,
in the vicinity of secondary and tertiary separation lines, the verti-
cal velocities remain positive. Moreover, the vortical pattern also
requires that the vertical velocity profile change its sign more than
once during a streamwise traverse along various z = constant lines.

However, the present vertical velocity profiles do not show such
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behavior. It can be hypothesized that the locations of vortex centers
are time dependent, but the time averaged surface locations where the
vortices are shed remain approximately constant. Thus, the streamline
pattern given in the plane of symmetry can be considered as one of the
possible streamlines which succeed each other in time. Tobak and
Peake [56] have shown such a postulated sequence of the cyclic vorti-
cal structures in low speed Taminar flow past a circular cylinder.

The unsteady nature of high speed laminar flow can be similar to low
speed laninar flow. However, further study is required to understand
the unsteady nature of this type of flow field. The limiting stream-
line patterns on the plate surface shown in Fig. 6.14 depicts the
separation and reattachment lines on the flat plate. The primary
separation, corresponding to the most upstream separation location of
the plate boundary layer, occurs roughly at about X/D = -6.2. The

reattachment line of the flow is located very close to the fin.

6.2.2 Effect of Grid and Flow Parameters

In this subsection, the results of the parametric study of grid
resolution and variation in Mach and unit Reynolds numbers are pre-
sented. For various cases, the flow field is investigated for the
freestream conditions given in Sec. 5.2.2.

The effects of grid refinement on the wall pressure distribution
along the line of symmetry are shown in Fig. 6.10. These results
demonstrate that computations using three different grids yield iden-
tical results except for the variation in the magnitude of the pres-
sure valley. The computed pressure distribution along ¢ = 0° and 45°

are shown in Fig. 6.1la. Further plots of pressure distribution along
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¢ = 90° and downstream of the fin shoulder (X/D = 2.4 and 4.5) are
shown in Fig. 6.11b. The pressure distribution along ¢ = 0° is most
sensitive to the grid refinement. |

The sensitivity of the grid on streamwise velocity profiles at
various locations upstream of the fin leading edge are shown in Fig.
6.12. The most upstream separation location of the flat plate
boundary layer is insensitive to the grid refinement. The computed
results generally appear to move towards the experimental data with
refined mesh. However, at X/D = -2.4 and -1.6 (Fig. 6.12c), the
numerical prediction using fine mesh (40 x 100 x 50) still display
large discrepancies with the experiment. The vertical velocity pro-
files and comparison with the experimental data for various streamwise
locations are shown in Fig. 6.13. The coarse grid (30 x 50 x 30)
solution at X/D = -4.0 and -3.2 show some discrepancy with the experi-
ment for z-locations less than 2.5 mm. Computations using the fine
grid are able to improve the prediction with the experiment at these
locations.

The numerically simulated particle paths in the plane of symmetry
for various grids studied are shown in Fig. 6.15. The solutions show
the presence of two clockwise rotating primary vortices and a third
counter clockwise rotating vortex at the corner. These results demon-
strate that the structure of the flow is relatively insensitive to the
grid employed.

The grid refinement study discussed in the previous paragraphs
established that a 40 x 100 x 30 mesh is sufficient to predict the
experimental measurements. The effect of Mach number on the pressure

distribution in the plane of symmetry is shown in Fig. 6.16 using a 40
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Fig. 6.15 Particle paths in the plane of symmetry for various
grid refinements: (a) 30x50x30 grid
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Fig. 6.16 Pressure distribution along the line of symmetry for
various Mach numbers
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x 100 x 30 mesh. The effect of increasing the Mach number is to
decrease the length of the most upstream separation distance. Also
the magnitude of the pressure plateau following separétion increases
with an increase in the Mach number. The pressure distribution along
the fin stagnation line shown in Fig. 6.17 indicate that as the Mach
number increases the z-location corresponding to the peak pressure
decreases. However, the level of peak pressure remains constant for
qw = 2.36 and 3.5. The minimum pressure on the fin also shows a
drastic reduction with increase in the Mach number. Also, the vari-
ation in pressure from a peak to a minimum increases with increasing
Mach number.

The streamwise velocity profiles for various Mach numbers are
shown in Figs. 6.18a and 6.18b at selected X/D locations. The effect
of increasing the Mach number is to increase the maximum reverse
velocity towards the flat plate. The simulated particle paths (in the
plane of symmetry) at various Mach numbers are shown in Fig. 6.19,
The results of Figs. 6.19b and 6.19c demonstrate that the flow at
higher Mach numbers (M°° = 2.36 and 3.5) display no abrupt change in
the vortical structure. However, at M_= 1.2 (Fig. 6.19a), only a
single vortex rotating in the clockwise direction can be seen as
opposed to multi-vortex patterns observed at higher Mach numbers.
Similar trends in flow patterns were observed by Baker [3] in low
speed laminar flow where the number of vortices in the junction
increases with freestream velocity.

The effect of unit Reynolds number on the pressure distribution
along the Tine of symmetry is shown in Fig. 6.20. The effect of

increasing the Reynolds number is to move the location of the first
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Fig. 6.18 Streamwise velocity profiles for various Mach numbers:
(a) along X/D = -4.0 and -3.2
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peak in pressure slightly inboard toward the fin leading edge. The
magnitude of the pressure plateau remains approximately constant. The
pressure distribution along the fin stagnation line (Fig. 6.21) show
that as the Reynolds number is increased, the z-location corresponding
to peak pressure moves slightly upward. The minimum pressure around
Z/D = 0.5 also shows a substantial variation to the increase in the
unit Reynolds number.

The streanwise velocity profile at various X/D locations shown in
Fig. 6.22 demonstrates that the maximum reverse velocity toward the
plate increases with an increase in the Reynolds number. Also, the
height of the reversed flow region above the flat plate decreases with
an increase in the Reynolds number. The computed particle paths, in
the plane of symmetry (Fig. 6.23), show the effect of Reynolds number
on the flow structure. The flow structures at two higher Reynolds
numbers (Fig. 6.23b and 6.23c) show the presence of three vortices, in
contrast to the situation at the lowest Reynolds number (Fig. 6.23a)

which depicts only two vortices.

6.3 Computation of Three-Dimensional Sharp Fin Flow Field

6.3.1 Flow Past a 16° Sharp Fin

The flow past a 16° sharp fin is simulated using the conditions
given in Sec. 5.3.1. The computations were performed using a 40 x 45
x 45 mesh. The y+ location of the first mesh point ahead of the
interaction region is set at a distance of less than 5 wall units from
the fin and flat plate surface. The present computations are compared
with the previous numerical work of Horstman [56] and the experimental

measurements of Peake [53] for identical flow conditions.
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Fig. 6.22 Streamwise velocity profiles for various unit Reynolds
number: (a) along X/D = -4.0 and -3.2
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The comparison of present results with previous numerical and
experimental investigations are given in Figs. 6.24-6.26. Figure 6.24
shows the wall pressure distribution on the flat p]até. The wall
pressure is nondimensionalized with respect to the freestream static
pressure. The abscissa (x'xshock) is normalized with respect to the
incoming boundary layer thickness 60 upstream of the interaction and

X shock is the axial location of the inviscid shock wave at a specified

spanwise station.

The pressure distribution curve predicts a gradual pressure rise
due to separation of the incoming boundary layer. The pressure then
reaches a plateau followed by a final compression as the flow goes
past the fin leading edge oblique shock wave. All of the features
observed in the experiment are closely predicted by the present numer-
ical simulation. It is interesting to see that the present calcu-
lation agrees very closely with the experiment as compared to the
previous numerical simulation. A typical inviscid solution is also
shown in Fig. 6.24. It is clear that the present calculations do not
give a crisp representation of the shock structure due to the nature
of the scheme employed in the present study.

A comparison of the computed surface yaw angles, tan'1 (v/u),
with the experimental data is shown in Fig. 6.25. The maximum
computed surface angle (from the present computation) is about 67.5°
whereas previous computations have predicted an angle of about 88°.
The maximum measured angle from the experiment is about 48°. Peake
[53] observed some nonuniformities in the experiment due to upstream
nozzle effects. A vortex generator was used upstream of the test

section to improve the tunnel flow. Because of these conditions, the
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Fig. 6.24 Pressure distribution on the flat plate along Y/§, = 5.56
for 16° sharp fin
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Fig. 6.25 Yaw angle distribution on the flat plate along Y/§, = 5.56
for 16° sharp fin
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quality of the Mn = 4 experimental data may not be satisfactory. The
symbols with arrows represent the uncertainty in the experimental
data. The maximum difference between the computed results and the
mean experimental data is about 40%. The computed skin friction
results from the present and previous numerical simulations are com-

pared with the experimental data (Fig. 6.26). The experimental

results are seen to fall between the two sets of computed results.

6.3.2 Flow Past a 20° Sharp Fin

For the case of 20° sharp fin induced shock wave/boundary layer
interaction, comparative results were obtained corresponding to the
conditions given in Sec. 5.3.2. The computations employed a 30 x 50 x
50 mesh. The y location of the first mesh point is set at a distance
of less than 5 wall units from the fin and plate surface. The present
computational results are compared with the previous computational
study of Knight et al. [57] and the experimental work of Shapey [54]
for identical flow conditions.

The computed pitot pressure profile at station 1 and 2 (Fig. 5.2)
located upstream of the interaction region are given in Figs. 6.27a
and 6.27b. The computed and experimental pitot profiles at stations 3
through 8 (Fig. 5.2) are displayed in Figs. 6.27c-6.27h. The
abscissa in all figures is the pitot pressure pp normalized by the
upstream freestream pitot pressure pp”. The brdinate represents the
distance measured from the flat plate surface normalized by the up-
stream boundary layer thickness 8o It should be noted that in
general 60 is not the appropriate vertical scaling factor for this

complex interaction flow field. As suggested by the experimental data
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Fig. 6.26 Skin friction distribution on the flat plate along Y/§, =
5.56 for 16° sharp fin
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of McClure and Dolling [58] the appropriate vertical scaling factor is

given by 7 Rel/3
%o

layer thickness immediately upstream of the shock (without the fin

/60 where Gois the experimentally measured boundary

effects) at the specified spanwise location. The selection of 60 as
the appropriate scaling factor was motivated by the desire to clearly
demonstrate the vertical extent of the interaction relative to the
height of the incoming boundary layer at the location upstream of the

fin interaction. Similarly, the profiles are shown at selected

and x is the

streamwise locations xs/do, where xS = x-xshock shock

location of the theoretical inviscid shock at a specified spanwise
Jocation. It should be noted that the experiments by Settles and
Bogdonoff [59], Dolling and Bodgonoff [60], and Lu and Settles [61]

indicate that the appropriate scaling is given by XS = XS Re§/3
0

Figure 6.27¢c shows the comparison of computed pitot pressure

/60.

distribution with the experiment at station 3 which is coincident with
the line of coalescence. The results from the previous numerical
study are also included. In general the agreement between the present
results and the previous experimental and numerical results are quite
good. Figure 6.27d shows the comparison of the results at station 4,
located approximately one-third of the distance between the line of
coalescence and the fin oblique shock wave at the specified spanwise
location. The computed and experimental profiles display a modest
"overshoot" outside the boundary layer, associated with the compres-
sion system ahead of the shock wave. The comparison of computed pres-
sure profiles with experiment along station 5, located at approxi-

mately two-thirds of the distance between the line of coalescence and
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the inviscid shock wave at the specified spanwise position is given in
Fig. 6.27e. The experimental profiles display a slightly S-shaped
behavior near the wall, which is less apparent in the computed
profiles at this location. The overshoot in the pitot pressure is
more pronounced at this location. In both locations, the computed
profiles of pitot pressure pp are in reasonable agreement with the
experimental data, and accurately predict the observed overshoot in
p.. However, the pressure profiles are smeared near the location of
/6 = 1.5 due to the shock capturing nature of the algorithm.

The calculated and experimental pitot pressure profiles at
station 6 are shown in Fig. 6.27f. Due to the close proximity of this
station to the fin leading edge shock wave, uncertainties in pitot
pressure measurements were noticed in the experimental data outside
the boundary layer edge. Further improvements in the experimental
procedure are needed to resolve this issue. But within the boundary
layer, reasonable agreement is obtained between the experimental and
the numerical results. The S-shaped nature of the profile is again
apparent, with reasonable agreement between the experimental and
nunerical results. The computed pitot pressure profiles at stations 7
and 8 are compared with experimental data in Figs. 6.27g and 6.27h.
The computed results are in reasonable agreement with the experimental
data with the discrepancy appearing in the inviscid portion due to the
shock capturing nature of the algorithm and the proximity of station 7
to the shock (XS = 0.6 60).

On the basis of the success of validation of the present
numerical results with the available data, further results were

obtained to study the details of the instantaneous and 1imiting
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streamline patterns. The instantaneous and limiting streamlines
clearly depict the complex nature of the interaction flow. Figure
6.28 shows the computed limiting streamline patterns obtained using
the Baldwin-Lomax turbulence model. The line of coalescence and line
of divergence are clearly observed. These specific numerically simu-
lated flow structures are in general agreement with the experimental
results using a kerosene lampblack visualization technique.

In particular, the experimental line of coalescence at Y/6°= 10 (the
approximate spanwise extent of the experimental kerosene lampblack

visualization) is x_ = -5.7 60, whereas the computed lines of coales-

S
cence using the Baldwin-Lomax model occur at XS = -6.45 §g- The
computations performed by Knight et al. [57] using the Baldwin-Lomax
and Jones-Launder models predict the lines of coalescence at XS = -4.5
60 and -3.5 60, respectively.

A series of calculated mean streamlines are displayed in Fig.
6.29. The vertical scale of the figure has been enlarged for clarity.
In Fig. 6.29a, the particle traces of 18 streamlines are shown. Six
streamlines originate from the surface, upstream of the interaction,
at equal spanwise increments and serve to define the line of coales-
cence. Six additional streamlines are released immediately above the
previous six at a height of 0.0048 §o- These latter streamlines
clearly cross the line of separation and continue to roll downstream
in the clockwise direction (as viewed from the fin leading edge).
Another set of streamlines is released at a height of 0.52 S from the
plate surface. These particles clearly display a counter clockwise
rotational motion of the fluid particles. The streamlines cleariy

display a vortical structure. It is interesting to see that the



) A o =S S ¢ a 2y 8 S & .

25

20

15

o
o

10

Fig. 6.28

i REATTACHMENT

SEPARATION

FLAT PLATE

Limiting streamline patterns on the plate surface for
20° sharp fin

138



. AN 0N W 0% ¢ an N o

139

FLAT PLATE \\

Fig. 6.29 Mean streamlines for 20° sharp fin:
Z/ao = 0, 0.0048 and 0.52

(a) originating at



140

particles originating from the higher z-locations are swept beneath
the particles originating near the surface. Another set of additional
streamlines originating upstream at a height of Z/§ = 1.1 are shown in
Fig. 6.29b. Unlike the particles originating at lower values of z,
these particles move approximately parallel to the surface. Also, the
streamlines in this case exhibit considerable rotation within the
boundary layer as compared to the case of the 16° sharp fin, due to
the strong nature of the interaction. Figure 6.30 shows the computed
1imiting streamlines on the fin surface. This again depicts the exis-
tence of separation on the fin surface. Figure 6.31 shows the
computed velocity magnitude contours on the flat plate. The simulated
flow features such as separation shock, fin shock, and reattachment

shock are clearly evident.

6.4 Turbulent Flow Past a Swept Blunt Fin

For the case of the swept fin induced shock wave/boundary layer
interaction, comparative results were obtained for the specific con-
ditions of Sec. 5.4. The computations were carried out using a 40 x
45 x 45 mesh. Thg pressure distribution along the fin stagnation 1ine
are compared in Fig. 6.32 for various fin sweep angles. The pressure
is nondimensionalized by the total pitot pressure behind the bow
shock, Peoe The agreement between the numerical results and the
experimental data is seen to be good except for the zero sweep blunt
fin where the level of pressure is underpredicted in the boundary

layer and overpredicted in the inviscid region. The experimental

measurements [17] indicated that
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Fig. 6.32 Comparison of pressure distribution along the fin
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"an irregular pressure distribution does in
fact occur and the location of peak pressure
within the boundary layer is a function of sweep
as well as Mach number. Lack of data in the
region near the wall prevents identifying a peak
for any of the other models with this diameter. A
more complete experimental investigation would
have to be performed to define, for a certainty,
the flow model responsible for this irregular
pressure distribution."
A close examination of the figure reveals that as the fin sweep from
the angle increases, the magnitude of the peak pressure decreases
considerably from 1.2 to 0.2. The variation in pressure from the
position of peak to minimum is substantially reduced by increasing fin
sweeps. The increase in pressure in the direction toward the plate
surface from the position of minimum is not seen for fin sweep angles
greater than 30°. The computed temperature distribution along the fin
stagnation line (Fig. 6.33) also shows some improvements due to the
sweep. ‘
The comparison of pressure distribution on the flat plate along
the line of symmetry (Y/D = 0) and off the line of symmetry (Y/D = 1.5
to 4.5) are illustrated in Fig. 6.34. Again the agreement is seen to
be very good. The code is able to simulate all the pertinent flow
features such as upstream influence, pressure rise due to flow separa-
tion from the flat plate, pressure plateau and double peaks in pres-
sure off the line of symmetry. Further examination of the results

reveal a low pressure region between the pressure plateau and the
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final compression along the line of symmetry (Fig. 6.34a). The low
pressure observed is due to the existence of the reversed high speed
flow region. However, for sweep angles greatér than 30° the low pres-
sure region is not seen. The disappearance of the low pressure trough
region for high fin sweep angles demonstrates the weakening of the
main horseshoe vortex with the sweep. Further examination of the
results illustrates that the sweep considerably decreases the upstreanm
influence. The appearance of double peaks in pressure (Figs. 6.34b-
6.34e) on the flat plate is due to the primary horseshoe vortex moving
downstream in a helical fashion. The low pressure region between the
two pressure peaks is caused by a high velocity under the core of the
vortex [31]. It is seen that the sweep decreases the spanwise extent
of the interaction considerably. This is due to diminishing of the
double pressure peaks for higher sweeps. Some of the trends exhibited
in Fig. 6.34 will become apparent after discussions of the flow struc-
ture. The computed surface temperature distribution along the line of
synmetry is shown in Fig. 6.35. The improvement in the surface temp-
erature is clearly apparent.

The computed particle paths in the plane of symmetry are shown in
Fig. 6.36 for blunt and 60° swept fins. The results clearly show the
flow separation on the flat plate ahead of the fin, leading to the
formation of the primary horseshoe vortex (Fig. 6.36a). A small
secondary vortex is also seen near the juncture formed by the fin and
flat plate (Figs. 6.36a and 6.36b). The secondary vortex rotates in a
counterclockwise direction as compared with the primary horseshoe
vortex. The primary vortex elongates to a length of two diameters

ahead of the blunt fin with its core located about 0.2 diameters above
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the flat plate. As the fin sweep is increased to 60°, the extent of
the separation on the flat plate is reduced considerably (Fig. 6.36¢
and Fig. 6.37). This leads to the weakening of the horseshoe vortex
(Fig. 6.36¢).

The computed skin friction distribution along the line of sym-
metry is illustrated in Fig. 6.37 for various fin sweeps. It is seen
that with an increase in the fin sweep, the upstream separation point
(where Cf value changes sign) moves closer to the fin leading edge.
Also, for fin sweep angles greater than 0°, no definite reattachment
point (where the Cf value starts increasing from a negative value) is
observed.

The horseshoe vortex transports fresh high momentum fluid contin-
uously into the separated flow region (Fig. 6.36a). As this high
momentum fluid accelerates and moves away from the plane of symmetry,
it leads to the formation of two reversed supersonic zones [31, 62,
63], one on the fin and the other on the flat plate. The decrease in
pressure from the peak to a minimum observed in Fig. 6.32 is not only
due to a lower stagnation pressure in the incoming boundary layer
profile, but also due to the extreme expansion caused by the horseshoe
vortex. This expansion leads to the formation of a reversed super-
sonic zone on the fin. From the computed particle paths in the plane
of symmetry for the blunt fin (Fig. 6.36a), it is seen that the
streamlines of low momentum fluid never impinge directly on the fin
surface. They spiral into the horseshoe vortex and continue to roll
up downstream in the form of a necklace vortex. The increase in pres-
sure in the direction toward the plate surface observed in Fig. 6.32

is due to recompression of the flow from supersonic to subsonic speed.
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Fig. 6.36(continued)

(c) sweep = 60°
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Fig. 6.37 Skin friction distribution along the line of symmetry

for various sweeps

158



159
It is this adverse pressure gradient that leads to the formation of
the secondary vortex at the corner (Fig. 6.36b). As the fin sweep
angle increases, the variation in pressure is reduced'substantially.
This weakens the horseshoe vortex which leads to the disappearance of
the supersonic zones [62, 63].

The computed limiting streamline patterns are shown in Fig. 6.38
for blunt, 30° and 60° swept fins. The separation and reattachment
lines are also marked in the figure. The foot trace left by the
horseshoe vortex as the flow goes around the fin is clearly observed
in the area bounded by the separation and reattachment line. It is
apparent that the spanwise influence exerted by the horseshoe vortex
on the juncture flow is reduced considerably for high sweep angles.

In particular at a sweep angle of A = 60°, the flow beyond the span-
wise Tocation, Y/0 = 3.0 (Fig. 6.38¢c) is unaffected by the juncture
effect. However, in the case of the blunt fin (A = 0°), the extent of

the disturbed flow persists up to Y/D = 6.0 (Fig. 6.38a).

6.5 Turbulent Flow Past a Filleted Fin

For the case of the filleted fin induced shock wave/boundary
layer interaction, comparative results were obtained for the specific
conditions given in Sec. 5.5. The computations were carried out using
a 40 x 45 x 45 mesh. The pressure distribution along the fin stag-
nation line is compared in Fig. 6.39 for unmodified (blunt fin) and
modified (filleted) junctions. The fin surface pressure is again
nondimensionalized by the total pitot pressure behind the bow shock
(qﬂ = 0,12 ptz). The location of the peak pressure corresponds to the

point of impingement of the stagnation streamline on the fin leading
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Fig. 6.38 Limiting streamline patterns on the flat plate for various
fin sweeps: (a) sweep = 0°
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Fig. 6.38(continued) (b) sweep = 30°
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Fig. 6.38(continued) (c) sweep = 60°
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Fig. 6.39 Pressure distribution on the fin leading edge for various
Jjunctions
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edge. It is seen that the location of the peak pressure on the fin
leading edge moves upward for the filleted junction. This is because
the flow approaching the junction is deflected upward instead of being
rolled into the horsehose vortex. For the case of the small boundary-
layer thickness (§/D = 0.2), the results illustrate a considerable
increase in fin leading edge pressure distribution as compared to the
unmodified junction. Similar trend in results were observed in blunt
fin/flat plate studies [31] in which decreasing the incoming boundary
layer thickness by a factor of five showed a considerable increase in
the pressure distribution on the fin leading edge.

The pressure distribution along the line of symmetry are compared
in Fig. 6.40 for various types of junctions. It is seen that the
pressure drop, following the pressure plateau, decreases as the fillet
size increases. This indicates a reduction in speed of the reversed
flow region and overall acceleration of the juncture flow.

The computed particle paths in the plane of symmetry are shown in
Fig. 6.41 fér unmodified and modified junctions. The influence of
filleting on the flow structure is dramatic as compared to unmodified
junction. The particle paths demonstrate that the horseshoe vortex
deforms and the flow streamlines within the boundary layer lose much
of their vortical character with proper filleting. In another study
[32], in which the leading edge shape was changed from a blunt to a
square fin, the results showed a considerable increase in the separa-
tion length. This resulted in a bifurcation of the main horseshoe
vortex into two vortices rotating in the same direction. For the
present case, the main horseshoe vortex does not bifurcate even though

the bluntness of the leading edge is changed by filleting. The
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Fig. 6.40 Pressure distribution on the flat plate for various
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Fig. 6.41(continued)

(b) circular fillet (/D = 2, R/D
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Fig. 6.41(continued)



Fig. 6.41(continued)

(d) circular fillet (/D = 0.2, R/D = 3.5)
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surface limiting streamlines are shown in Fig. 6.42 for unmodified and
modified junctions. It is apparent that the separation on the fin
surface is prevented completely in the case of the modified junction
as compared to the unmodified junction. The computed instantaneous
streanlines are shown in Fig. 6.43 for unmodified and modified
junctions employing circular and continuous fillets. These results
show the influence of fillets on the helical vortex structure. The
computed velocity magnitude contours (Fig. 6.44) clearly show that
with filleting the supersonic zones observed in the case of the blunt
fin/flat plate junction weaken as the fillet size is increased at the
juncture. The vorticity contours (Fig. 6.45) demonstrate that the
magnitude of vorticity in the vortex is reduced by a factor of three

in the case of the modified junction as compared to the unmodified

junction.



SEPARATION

FLAT PLATE

Fig. 6.42 Surface limiting streamlines for various junctions:
(a) unmodified junction (§/D = 2)

171



172

FILLET

FLAT PLATE
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Fig. 6.43

JUNCTURE HORSESHOE VORTEX

FLAT PLATE

Instantaneous streamlines for various junctions:
(a) unmodified junction (6/D = 2)
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Fig. 6.43(continued)

(b) circular fillet (&/D = 2, R/D
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Fig. 6.43(continued)

(c) circular fillet (s/D = 2, R/D = 3.5)
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Fig. 6.43(continued) (d) circular fillet (§/D = 0.2, R/D = 3.5)
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Fig. 6.44(continued)
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Fig. 6.45(continued)
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Chapter 7
CONCLUSIONS AND RECOMMENDATIONS
The supersonic flow past a wing/body junction is simulated
numerically using a three-dimensional Navier-Stokes code. Results
have been obtained for simplified geometries such as blunt fin/flat
plate junction, sharp fin/flat plate junction, and filleted junction.
Extensive parametric studies of grid resolution, Mach and Reynolds
number variation have been conducted to understand their effects in
modifying the interaction flow field. The influence of fillets and
sweep on the computed flow field have been investigated extensively
for a wide range of geometrical and flow conditions. In general, the
computational results show that better agreement with experimental
results can be obtained by refining the mesh. It has been noted that
the fin sweep reduces considerably the spanwise extent of the inter-
action flow field. Some improvements in surface temperature are also
observed due to sweep. The computed particle paths and limiting
streamlines for swept junctions demonstrate clearly the dramatic
influence of fin sweep in weakening the juncture horseshoe vortex.
The results for sharp fin/flat plate junction show that the structure
of three-dimensional separation is markedly different from that exhib-
ited by the blunt fin/flat plate junction. The numerical study of
filleted junctures clearly show that the flow streamlines lose much of
their vortical character with proper filleting. It has been demon-

strated that fillets with a radius of three and one-half times the fin
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leading edge diameter are required to weaken the usual necklace vortex

interaction for the Mach number and Reynolds number considered in the

present study.

Based upon the present study, the following areas of research may

be identified for further studies:

1.

The sensitivity of grid refinement on the computed flow
structure should be investigated using a much finer grid than
used in the present study to define the minimum number of
grid points required for an accurate resolution of flow
features,

The simulated structure of the shock is smeared due to the
nature of the algorithm applied in the present study. A
numerical technique, such as a high resolution TVD scheme,
can be incorporated in the code for providing a crisp repre-
sentation of the shock.

The flow structure should be examined for physical conditions
when there are four or more vortices present in the flow
field.

The effect of changes in the turbulence model, such as a
nonlinear k- model, can be examined to investigate its
effect on the flow field simulation.

Since the flow is unsteady, one should investigate the oscil-
latory behavior of the horseshoe vortex.

It would be desirable to examine the chemistry and real gas

effects using appropriate mathematical models.
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APPENDIX A

MAXIMUM ALLOWABLE TIME STEP FOR EXPLICIT ALGORITHM

An approximate linearized stability analysis [51] yields the

following:

(A.1)

t = CFL .mi t
YeceL Mok 4%
At = CFL .min, at

nCFL 1:J:k n
At = CFL .min t
ZCFL 1,0,k Aty

where iT}Tk denotes the minimum value evaluated over all grid

volumes which are updated by the explicit scheme, and
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2 2 2
(ug, +ve +we))/ \jsx tefrg,

u +y + 2 yn2 42
(un, n, wnz)/\ﬁ\x ng*n,

+ + 2 2
(W, +ve, wcz)/\/cx to v,

)
t

I (]

max  |2(u+E) - A, v ( Lo+
Pr

B

r

js typically chosen to be 0.9.
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