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INTRODUCTION

This report is prepared by Harris Government Communications
Systems Division for NASA Lewis Research Center under contract
NAS3-24681. This report is written in response to SOW paragraph 3.7.3,
Final Report. The purpose of this document is to provide a summary of the
entire contractual efforts, pertinent results, and a compilation of the task

reports.

1.0 Task | Report

The Task | Report describes the refinement of the proposed
downlink modulation system design concept. It develops in detail the
specific modulation scheme used, the conceptual design for the Earth
station demodulator hardware implementation, and an assessment of the
impact of future technology on system performance.

2.0 Task Il Breadboard Evaluation Report

This report describes the test results for the A/D converter
breadboard developed during Task lll and was written in response to SOW
paragraph 2.3.5. Task lll was the breadboard development phase of the

program.

3.0 Task V Design Review Packaae

This section contains the material presented at the Task V

final design review. This material is in vu-graph format and describes the

POC Model Demodulator and the Special Test Equipment (STE) detailed
design. Included are descriptions of the design and layout, functional
performance, size, weight, power, and results of functional performance

analyses.

4.0 Coded 16-ary CPFSK Coherent Demodulator Paper

This section contains a paper which was published in the
Proceedings of the Mobile Satellite Conference, sponsored by the Jet
Propulsion Laboratory. It is a summary of the conceptual design and
design implementation for the modulation system developed in response to

the requirements of this contract.



50 Task VII Report

The Task VIl Report provides the results of POC Model Testing
and Analyses. The purpose of this document is to present the results of
the tests conducted in accordance with the POC Model Test Plan and
Procedure developed in response to SOW subtask 2.5.3. The POC Model Test
Plan and Procedure is included in the Task VII Report. This report also
provides recommendations for the development of an engineering model
demodulator using further advanced implementation technology, based on
analyses of test results.
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1. DETAILED DEVELOPMENT OF THE MODULATION SCHEME

This section of the task one report details the development of the

modulation scheme chosen to fulfill the requirements given in the Statement

of Work (SOW).

1.1 Modulation Scheme Comparisons

The selection of the modulation/coding scheme proposed by Harris, and
the corresponding implementation thereof has been based primarily on:

1. Demodulator simplicity

2. Achieving a transmitted spectral shape whose power outside of the

.5 bit rate point is 20 dB down from the desired signal power

3. Achieving a 5 x 10—7 bit error rate performance with the required
Eb/No as close as feasibly possible to that of QPSK
4. Operating through a non-linear TWT |

5. Utilizing a coding scheme that creates minimal spectral spreading

and yet is powerful enough to meet the 5 x 10-7 bit error rate

Careful attention has been paid to perform proper tradeoffs based on
these criteria that would substantiate the proposed modulation/coding scheme
and its implementation. The intent of this section is to summarize the most
important of these tradeoffs.

A wide assortment of bandwidth efficient modulation techniques exist
within the industry [1]. Some of these, like Minimum Shift Keying (MSK),
have been developed [2] within the industry in general whereas others like
Continuous Phase Frequency Shift Keying (CPFSK) have been specifically
developed at Harris [3].

The first categorization of these techniques occurs when considering

the envelope variations of the transmitted waveform. Techniques that impart
| 3



data onto a carrier through its phase or frequency, are constant envelope
signals whereas a signaling scheme that imparts data onto the carrier
amplitude clearly exhibits envelope variations. A candidate in the latter
category 1is M-ary Quadrature Amplitude Modulation (MQAM) which has been
shown [3] to have greater power efficiency than schemes such as CPFSK or
M-ary Phase Shift Keying (MPSK) which are in the constant envelope category.
However, time-varying envelope signals require a linear RF channel which
proves to be power inefficient in a satellite TWT that must be backed-off to
provide such linearity. In this present TOMA downlink the minimization of
signal distortion may require a 10 dB backoff which in our opinion is too
great a price to pay in lost link margin for the increased bandwidth
efficiency. Therefore this first tradeoff concluded that only constant
envelope signals would be acceptable because of the power inefficiencies
caused by the TWT backoff.

Another technique that was considered is to generate a constant
envelope signal that is amplified by the transmit TWT and then filtered to
shape the spectrum. The modulation scheme shown in Figure 1.1-1 was
considered relative to the Statement of Work (SOW) requirements. A; shown, a
200 Mb/s QPSK constant envelope modulation is employed through the power

amplifier (PA) so that the nonlinear AM/AM and AM/PM characteristics given

in the SOW can be tolerated.



20 GHz
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Figure 1.1-1 An Alternative Modulator Approach

After the amplifier, the spectrum is of course still that of QPSK,
i.e.,

sin(2 £/ £.)
S (w) = B
A W) 2mE/E

(1)

where, f = frequency removed from the carrier

fB = Bit rate = 200 Mb/s

The first nulls of this spectrum are at + .5 Bit rate, i.e., in the

center of the adjacent channel and consequently the main lobe will cause too

much adjacent channel interference. Thus, additional filtering is required
after the PA.
An approach that is attractive at first glance is to duobinary shape

the spectrum after the amplifier. There are several ways of performing this

spectral shaping. Irregardless of how it is done, the overall combination of

transmit and receiver filtering must result in a net filter of:

- £ -
HdB(w) = CoSs 27rfB, £ 1< .25fB (2)

= 0 ’ elsewhere



One way to perform the filtering is to do the full duobinary shaping at

the transmitter, i.e., squeeze the spectrum of eq. (1) to give HdB(w) in eq.

(2). This requires a transmit waveguide filter after the PA with the

transfer function:

27r(f/fB)
HT(w) = sin(27Tf/fB) cos(27rf/fB) , £ 1 K< .25fB (3)
= 0 ) , elsewhere

The transmit filter in eq. (3) causes 3 dB of power loss just due to
spectral truncation of the (sinx)/x spectrum out of the PA. In addition,
there is power loss due to midband insertion loss of the filter. The sum of
the 3 dB spectral loss and the insertion loss is a loss in link margin and
reduces the efficiency of prime power consumption that can be critical in
the satellite environment.

In addition, if the full duobinary shaping is done at the transmitter,

the receive filter theoretically must have an ideal sharp cutoff at + .25 f}3

with a flat response across the band. Consequently, the effects, on
performance and on adjacent channel interference rejection, of a more
realistic receiver filter needs to be carefully considered.

Another approach to obtaining the duobinary shaping after the PA is to
equally divide the filtering between the transmitter and the receiver. This

leads to a transmit filter of,

27r(f/fB) 1/2
HT(w) = sin(27rf/fB) [cos(27rf/fB)] r £ 1 K .25fB (4)
and a receive filter of:
_ 1/2
HR(w) = [cos(27rf/fB)] r 1 E 1K .25fB (5)
.
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With the transmit filter of eq. (4), 2 dB of spectral truncation loss
occurs, plus the filter midband insertion loss.

If well-known duobinary precoding techniques are used and simple
"slicer" receivers are used to receive the duobinary signal created at the
receiver, 3 dB of theoretical performance loss occurs relative to QPSK
occurs with full duobinary shaping at the transmitter (given one can build a
reasonable approximation to the ideal sharp cutoff filter required at the
receiver without much additional'loss)..The performance loss for the equal
filter division case with the simple slicer receiver is 2.2 dBltheoretical.

Makihg use of Viterbi algorithm demodulation concepts, it is possible
to recoup most of the performance losses relative to QPSK (3 dB and 2.2 dB
in the full and equal filter division cases, respectively). Such an approach
would involve building two 100 MHz (= symbol rate) 2-state Viterbi
processors (one for each of the quadrature detector outputs).

Table 1.1 shows the summarizing data concerning the performance of
employing duobinary signaling to meet the SOW objectives. From the columns
showing degradation in received signal-to-noise ratio (SNR) requirement
relative to QPSK, the simpler slicer receivers do not provide the needed
performance. This leaves the Viterbi receivers, which obtain the required
performance, but require 100 Mb/s 2-state Viterbi demodulators on each of
the quadrature detector outputs. The 100 Mb/s high rate may be a bit of an
implementation problem, but the 2-state Viterbi demodulator is not

conceptually complex.



Table 1.1 Duobinary Summary Data

S L S +L
T | ™H Theory:
Duobinary Spectral Filter Net Link QPSK
Filter Truncatlion Insertion Margin RCVR Degrad.
Division Loss, dB Loss, dB Loss, dB Jype Loss, dB
Full Xmit 3 1-2 4-5 Viterbi -0
Full Xmit 3 1-2 4-5 Slicer -3
Equal 2 1-2 3-4 Viterbl -0
Xmit/RCVR
Equal 2 1-2 3-4 Slicer -2.2
Xmit/RCVR

The desirability of this constant envelope QPSK through the PA followed
by tight filtering reduces to consideration of the importance of these
factors:

1. At best, 3 to 5 dB of link margin will be lost due to the transmit

filters.

2. The modulator required is a 200 Mb/s QPSK modulator.

3. The demodulator is a 100 MHz symbol rate quadrature demodulator

followed by 100 Mb/s 2-state decoders on each rail.

4. Additional filters are required at the downlink modulators.

Other such filtering techniques can be done, but based on link margin
losses, these techniques do not meet the objectives of power efficiency and
thus our efforts are directed to constant envelope modulation waveform

signals.



Rased on this constant énvelope decision, attention was then focused on
those signaling schemes that modulate data unto the phase or frequency of a
carrier. One of the more widely used forms of modulation is Phase Shift
Keying (PSK). It's utility arises in power limited channels where binary PSK
provides good Eb/No performance for a given bit error probability. However
it's capability in bandlimited channels is remarkably poor because the first
sidelbbe, which peaks at 1.5 x bit rate, is only 13 dB down from the main
lobe. In order to achieve the spectrum requirement of 20 dB down power
outside of the .5 x bit rate point, an M-ary PSK scheme with M > 32 would be
required. Assuming no intersymbol interference, 'signal power efficiency
would drop some 18 dB from QPSK if M = 64. This power efficiency loss is
deemed too severe, and thus eliminates PSK from further consideration.
Attention was then turned toward Frequency Shift Keying (FSK) signaling
schemes.

Conventional FSK signaling (conventional in that the tonal separation
is equal to an integer multiple of the symbol rate) is by itself not a
spectrally efficient médulation scheme. However, two modifications to the
conventional FSK scheme can be made to minimize this inefficiency. The first
is to reduce the tonal separation, or frequency deviation, thus compressing
the spectrum and necessitating a coherent receiver. Secondly, instead of
permitting phase jumps at the symbol transitions, phase may be forced to be
continuous across the transition boundary. The latter modification produces
what is well known to be continuous phase FSK, or CPFSK. A subset of this
class of signaling schemes is MSK which is merely binary CPFSK with a
frequency deviation ratio of .5. As seen .in Figure 1.1-2 the only M-ary
CPFSK schemes that have a chance of meeting the out—-of-band requirements is

one where M > 16. Both 8-ary CPFSK and 4-ary CPFSK (otherwise known as
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MSK/2) have out-of-band powers greater than the required 20 dB down from the
desired signal power. Excluding intersymbol interference, the power
efficiency loss relative to QPSK performance for l6-ary CPFSK is 13 dB. In
comparison to PSK, CPFSK achieves the spectral requirement without filters
but does so with a smaller power efficiency. Therefore, lé—ary CPFSK was
chosen as the most likely signaling scheme capable of successfully meeting
the QPSK performance when coding is added.

It is unfortunate that when forward error correcting coding is required
in many systems, it is applied only as an afterthought by appending it to an
‘already defined modulation format. For instance, the application of a rate
1/2 convolutional code, which is quite common, to an 8-ary FSK modulation
format, seems congenial on the surface. However, each FSK symbol contains 3
coded bits thus making soft decision generation somewhat unhandy. On the
other hand if é rate 1/3 code where used, the soft decision generation is
now quite straight-forward, and if desired, more powerful symbol decoding
could be performed in the decoder. This latter case is an example of a
conscious marrying of a coding techn'ique to a modulation format. Applying
such a conscious effort to the bandlimited/power limited channel is an
extremely high priority design focus. In fact we believe it is one of the
most novel approaches toward consciously marrying modulation and coding in
that we do not waste precious bandwidth to squeeze out tenths of dB's in
performance. On the contrary, we use a moderate amount of coding (33% band
spreadmg) but place it in that part of the modulation waveform where it is
going to yield the greatest coding gain. This novel and Harrls-patented
(License rights owned by the Government) approach codes only the LSB's of a
CPFSK symbol since errors are usually made to nearby signals in the signal

space. Any coding to correct extremely low probability noise events (those
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that cause errors in distant signals in the signal space) is a waste of
bandwidth. An additional benefit of this coding technique is the hardware
savings it provides by not requiring a decoder sync since symbol timing
coincides with the decoder timing.

The coding technique which we developed on the 1979 RADC-sponsored
Study [5] is almost identical to that investigated by researchers at the
University of Virginia [6,7] in conjunction with M-PSK modulation on a study
sponsored by NASA/LeRC. Unlike the MPSK schemes, however, our approach using
coded 16—CPFSK modulation requires no additional spectrum shaping filters to
achieve 2 bits/sec/Hz adjacent channel operation. In addition, the shaped
spectrum signal of our coded 16—CPFSK modulation is of constant envelope,
and thus avoids all nonlinear amplifier problems.

For the same number of coder states, the coded 16-PSK approach is
theoretically 2 dB more power efficient than our coded 16-CPFSK approach
solely on the basis of received SNR. However (and this is very important)
the 16-PSK scheme will have to use post amplifier filtering to trim the
(sinx)/x spectrum to meet the adjacent channel operability requirements of
the SOW. If pre-amplifier filtering is proposed with the coded 16-PSK
signal, the backoff required to prevent sidelobe restoration after the
nonlinear PA will be excessive from a link power efficiency standpoint. Even
with post amplifier filtering, the 2 dB theoretical advantage of the coded
16-PSK approach will be offset by the insertion loss of the required filter.
We believe our constant envelope coded 16—CPFSK approach, in requiring no
filtering, is the better approach from the overall link power efficiency and
equipment simplicity standpoints and thus will be adopted as our baseline.

The final trade—-off area to be discussed is the demodulator

implementation. When using CPFSK it is possible to perform data detection

12



(}

over multiple symbols because of the memory introduced into the waveform by
forcing phase continuity during symbol transitions. While this
multiple-symbol detection provides greater power efficiency [8], it carries
along with it the necessity to perform a large number of matched filter
correlations in a Viterbi-like, maximum-likelihood, sequence estimator

algorithm [9]. For l6-ary CPFSK with a detection over just 2 symbols, 256

(162) individual correlations would need to be performed. This is contrary
to the objective of demodulator simplicity and furthermore it only gains
about 2 dB at an uncoded error rate of 10%. Therefore we have chosen to
perform a simpler multi-symbol observation phase detection. Now, once we
made this decision we further discovered that we could use a simple, Harris
proven [10] technique of phase sampling and thus eliminate the need for 16
separate matched filters. A negligible performance difference at low error
rates further enhances this phase sampling technique over the matched filter
approach.

Listed below is a summarization of what these major tradeoffs have

produced: ’

1. 16-ary CPFSK is the least complex, bandwidth efficient modulation
format capable of meeting the out-of-band power requirement.

2. Multiple symbol detectiori with a Viterbi-like, maximum likelihood
sequence estimator is not warranted from a complexity viewpoint
although it does slightly increase power efficiency.

3. Multi-symbol observation detection is performed with a simple,
and Harris proven, phase detector technique.

4. A Harris patented, bandwidth efficient coding techni?;ue has been
creatively matched with l6-ary CPFSK to provide coding gain where

it is needed most.

13



1.2 Rationale for the Scheme Selected

The selection of our approach was driven by key factors from both the
SOW and the evaluation of system requirements for optimizing overall
modulation technique performance. The key considerations in the selection of
the signaling scheme are given below.

1. Constant envelope signaling provides maximum transmit TWT efficiency

2. Any filter at the satellite will dissipate power by spectral

truncation and insertion losses, and will thus reduce link margin
since the TWT is peak limited

3. Coding gain is necessary, but must be applied efficiently

4. Hardware simplicity is critical for cost effective implementations

in the 1990's

Any combination amplitude and phase modulation scheme will require
backoff of the TWT from its saturation point and will decrease the overall
link efficiency. Therefore, the only parameters left for the modulation are
the phase and/or frequency of the signal.

M-ary PSK has been considered by Harris and other researchers [6] for
applications such as this. With proper coding, near—QPSK level performance
can be attained. The difficulty with PSK is that the rapid changes in phase
result in bandspreading of the energy which must then be filtered for
adjacent channel performance. The energy loss of the required filtering
process is directly applied to link margin and must be considered when
evaluating the modulation scheme. To illustrate this consider Figure 1.2-1.
In A the signal is filtered prior to the input to the TWT. However, the
signal now has amplitude variation due to the filter and the TWT must
operate in the linear region (i.e., backoff from saturation) which decreases

the average power and efficiency of the satellite output. In B the input to

14



the TWT is a constant envelope signal; the filtering is accomplished at the
output. The filter truncates the spectrum and dissipates the power from
insertion losses. In either case A or B, the power transmitted from the
satellite is reduced by several dB and the overall system link margin is

decreased.

Amplitude Variation
Due to Filter

M-Ary PSK
Modulator BPF TWT |——» Output

A. Filtering Prior to TWT

M-ary PSK
Modulator [——»] TWT BPF

Truncation & Insertion
Loss of Filter

B. Filtering After TWT
Figure 1.2-1 Transmit Filtering
The bandwidth problem of PSK is solved by utilizing a CPFSK approach.
As shown in Figure 1.1-2, the modulated spectrum is adequate for

transmission with no filter and the only remaining selection is the size of

the transmit alphabet for bandwidth compression. Additionally, a unique
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constraint of the phase progression of the signal resulted in a powerful
coding gain for system performance.

Knowledge of the good spectral properties of our proposed CPFSK
signaling is, of course, not unique to Harris. Many efforts have been
directed here and elsewhere at trying to improve the performance obtainable
with CPFSK modulation. These efforts have involved attempts to shape the
phase trajectories and an exploitation of the coding-like gains available
with multisymbol observation optimum receivers. Multisymbol observation is
available with CPFSK because of the continuity of RF phase in the
transmitted waveform that makes the present time symbol depend on previously
transmitted symbols. Impressive, tantalizing performances are obtained for
some of the CPFSK schemes. Their only drawback is the complexity of the
optimum Viterbi algorithm demodulators required to get at the performance.

The uniqueness of the Harris demodulation approach resides primarily in
the way we have managed to sidestep the complexity of the optimum
demodulator, yet still retain most of its performance. We have done this by
developing a multisymbol observation phase detection receiver that is
simple, yet obtains performance within 2 dB of the optimum multisymbol
observation Viterbi type of demodulator. Our simple phase detector approach
(see the Harris proprietary addendum) allows relatively narrowband filtering
(1/2 bit rate BW) ahead of the phase detector, and needé no intersymbol
interference corrector to obtain its impressive performance relative to the
complicatéd optimum receiver. Thus our coherent phase detector technique
exploits the coding-like gains inherently available in the CPFSK signaling
format.

The way in which we apply coding with low (33%) bandspreading, yet

still obtain impressive coding gain is another unique feature of our
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approach. We developed this coding strategy on a 1979 study for RADC [5].
Essentially the same coding approach in connection with M—-ary PSK modulation
is proposed in 1982 [6] and 1984 [11] papers by researchers at the
University of Virginia. Their work was at least in part sponsored by
NASA/LeRC. We prefer our coded 16-CPFSK approach over a coded 16-PSK
approach for reasons detailed in paragraph 1.1.

Conceptually, we believe our approach of overlaying coding on the
spectrally compact CPFSK signal to improve its performance is a practically
important and enlightened one. Unlike some other ongoing research efforts
that attempt to circumvent the limitations of simple CPFSK through the
choice of more complicated phase trajectories (multimod index, cosine
shaping instead of linear shaping of the trajectories, partial response
shaping on the trajectories, etc.), our approach simply lives with the
distance structure inherent in standard CPFSK and then improves it with

coding. From the implementation standpoint, we believe our approach is

superior.

1.3 Detailed Description of the Modulation Scheme Developed
The technique for accomplishing the performaﬁce requirements of the sow

is a'modulation scheme pioneered by Harris and known as Continuous Phase
Frequency Shift Keying (CPFSK). The scheme is a refinement of the well-known
Frequency Shift Keying (FSK). CPFSK is a modification of FSK which provides
spectral efficiency by reducing the frequency deviation and constraining the
phase to be continuous across symbol transition boundaries. At the beginning
of a symbol, the transmitted frequency is chosen at the modulator to be 1 of
16 possible transmit frequencies (for 16—CPFSK). This resulting frequency is

transmitted for the duration of the symbol and the process is repeated for
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each symbol transmitted. Because of the memory induced into the waveform by
forcing the phase continuity, a mapping function that relates the modulator
four bit (1 of 16) input to the transmitted phase value at the end of a
symbol time can be generated. By computing a running count on phase, the
modulator can project what frequency must be transmitted to force the output
phase to exactly hit the desired phase node (value) at the end of a symbol
time. This frequency is then sent across the link and a demodulated phase
constellation such as shown in Figure 1.3-1 is generated. This variation on
the transmit frequency selection is transparent to the overall performance
of l6é-ary CPFSK but is the key to the application of coding for performance

improvement.

0100
0101 ® GP ® o010

0111 ® ® o011
0110 &® & o001
1000 @— & o000
1001 & ®1110
1011 ® Q1111
1010 1100@1101

Figure 1.3-1 Demodulated Phase Constellation

The input data stream is demultiplexed, in the modulator, into three
data streams (see Figure 1.3-2) in which the Least Significant Bit (LSB) is

convolutionally encoded R=1/2, K=7. The corresponding four bit output

18



determines the frequency that will be sent by computing the necessary
frequency deviation to arrive at the desired phase node. From this, it can
be seen that the two Most Significant Bits (MSB's) determine the quadrant of
the transmitted phase (at the end of a symbol) and the LSB's determine the
position within a quadrant. For the bit assignments shown in Figure 1.3-1,
any group of 4 adjacent phases contain all possible combinations for the two
bits from the coder (i.e., LSB's). Further, within the set of any four

adjacent phases, antipodal code branches (e.g., 00 and 11, or 10 and 01)
produce phases differing by 45° and orthogonal branches (e.g., 00 and 01, or

10 and 11) produce phases differing by at least 22.5°. These properties are

used in the Harris approach to provide coding gain that results in near QPSK

performance.
67 MB/S 1
7~ >
16-CPFSK
MB——/E DEMUX 67 MBIS 1,/ » Modulator
Data In 67MHz XM’TD RF >
1
r A »{ Symbol Rate 99 5% BW
67 mB/s | R=172 =100MHz
» Conv. P-P
Coder Deviation
I 1 =62.8MHz2
,I

Figure 1.3-2 CPFSK Modulator

The spectral output power density versus bandwidth is shown in Figure
1.1-2 for 4-ary (also known as MSK/2), 8-ary, and l6é-ary CPFSK. From the
SOW, it can be derived that adjacent and co-channel interference
requirements equate to a spectrum shaping requirement that the energy

outside of the 0.5 bit rate bandwidth, be —-20 dB relative to the total
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signal power. As can be seen in Figure 1.1-2, l6-ary will provide the
spectral shaping performance without transmit filtering. In addition, the
16-ary exceeds this requirement by a sufficient amount to allow 20-30%
bandspreading to accommodate coding for overall system performance gain.

The combination of information coding in both the transmitted frequency
and the phase state at the end of a symbol time, results in a signal that
makes maximum use of the occupied system bandwidth. This unique spectral
efficiency also supports maximum system power efficiency in two aspects.
First, the resulting signal is constant envelope and thus the transmit TWT
can be saturated for peak performance. Secondly, the transmit spectral
shaping is inherent in the scheme and requires no filter which conserves
power that would be lost in filtered spectrum truncation and insertion
Josses. This holds true whether the transmit filters are incorporated before
or after the TWT since peak power available determines the link margin.

If baseband pulse shaping is incorporated into the modulator, further
increases in spectral efficiency may be achieved at the modulator output
without spectral filtering of the IF. In figure 1.3-3 we show the spectra
produced at the modulator output for different choices of the modulator
baseband pulse shaping filter. The curve for square pulses corresponds to
standard 16-CPFSK signalling with 16 equispaced frequencies at a spacing of
1/16 of the symbol rate. The other curves are for various alphas on a square
root of Nyquist filter with a raised cosine frequency characteristic. The
far sidelobes are significantly reduced with the non-square pulse shaping
baseband filters. The adjacent channel is located at 1.5 symbol rates from
center (or .5 bit rate for our 3 information-bit/symbol scheme). We are

contemplating the use of an e= .25 baseband filter to control adjacent

channel interference.
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16~ARY CONTINUOUS PHASE MODULATIOMN SPECTRA
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Figure 1.3-3 16-ary CPFSK Modulation Spectra for Various Baseband Filters

1.4 A Description of the Method and Estimated Speed of Independent Burst
Acquisitions
Here we will provide answers to the TDMA burst acquisition problems.

The problems to be addressed are as follows:

1. How is the coherent phase detector circuitry jammed to the correct

value at the beginning of a burst?

2. What are the effects of frequency offsets on the acquisition

strategy?
3. How is the symbol timing derived for each burst?

4. How is the lmsec. TDMA frame timing derived?
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Figure 1.4-1 illustrates our concept of a single TDMA burst (a TDMA
frame, which lasts 1 msec. in time, may consist of one or more bursts). As
can be seen by Figure 1.4-1 a single TDMA burst consists of three
components; a preamble (32 symbols = 96 bits), a unique word (6 symbols = 18
bits), and data (> 32 symbols). The answers to the above questions all hinge

on the special preamble we are considering to support all the timing

functions.
PREAMBLE UNIQUE WORD DATA
32 Symbols 6 Symbols 2 32 Symbols
96 Bits 18 Bits 2> 96 Bits

Figure 1.4-1 A Single TDMA Burst

The preamble must provide for initial phase acquisition, and initial
symbol timing. In the following paragraphs we will address the methods by
which phase and timing are acquired.

Figuré 1.4-2 shows the phase modulation applied during the preamble we
have selected. As shown, the preamble corresponds to an alternating
frequency modulation between * peak deviation = + 15/32 symbol rate. The
dotted line shows the rise that will occur for the center frequency input
with no frequency offset. We will simply sum the 32 samples of this phase
error over the preamble and divide by 32 to get the average phase error

relative to the lowest frequency reference.
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Figure 1.4-2 Phase Modulation During Preamble

There remain questions about how well does this "phase jam" strategy
work in the face of noise and initial frequency offset. First, how
accurately can the initial phase be acquired in the face of channel noise?
Since we are averaging 32 samples to arrive at an estimate of initial phase
error, the variance of the phase jitter on the estimate is 1/32 of the
variance on each of the individual phase measurements over the preamble.

~ Thus the phase jam procedure will have only a small impact on overall

performance, causing about 10 Loglo(l + 1/32) = .13 dB degradation in noise

performance. Secondly, what is the impact of initial IF frequency offset on

the phase jam strategy? For a 30 GHz uplink, 10 GHz satellite translation, a

20 GHz downlink, and negligible doppler, assuming 5 x 10—7 L.0. stabilities

everywhere, the initial frequency offset is:

7

F= (30 +10 +20) x 102 x 5 x 10”7 = 30 kHz.
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The effect of this 30 kHz offset is to cause the preamble phase given by
Figure 1.4-2 to ramp linearly up (or down, depending on the sign of the
offset) over the 480 nsec. preamble, from zero to:

9 0

A0 = 30 x 10° x 480 x 10~ = .0144 cycle = 5.2

Since the phase error increases linearly from 0 to 5.2°, the average of
phase over the preamble is changed by 2.6°. This means that when peak

frequency offset occurs, our phase jam is 2.6° in error. Whether or not this
is of concern depends on which SNR at which we are operating. At 12 dB
Eb/No, the SNR in the half-bit rate IF is 15 dB. The noise caused phase

jitter on our signal at that point is:

2 _ 1 _ ] ~ 2
8 = (a2 - 2(31.6) ~ ~-0158 rad.
or @ = 7.2° RuMS.

Thus, 2.6° of error in the phase jam due to frequency offset is not
negligible, but should be tolerable with no more than about .5 dB
degradation before the baseband loop removes it, which for a 1 MHz loop
bandwidth or more, takes less than lusec., or < 64 symbols.

We have already described above a technique for acquiring initial phase
for our loop during the special preamble. However, that technique does not
acquire initial frequency offset, which is approximately 30 kHz. Therefore,
the second order phase lock loop is left with the task of acquiring this
30 kHz frequency offset after the phase is jammed by the procedure described

above. We will make use of Figure 1.4-3 to specify a loop bandwidth, F,,

that will acquire the 30 kHz of frequency offset with little phase pull

during such acquisition.
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Figure 1.4-3 Transient Phase Error for a Frequency Step In Versus FN*T

for a Second Order PLL with Zeta = .707

As shown in Figure 1.4-3, the peak phase error induced by the offset,

FSTEP’ in a § = .707, natural frequency = FN loop is described by:
_FbL o
8 = 26 (6)
FSTEP e,pk

From eq. (6), it can be seen that the key to holding peak phase error,

ge,pk’ to a small value is to choose FN large relative to FSTBP' If we
choose, during the acquisition of a 30 kHz frequency offset, to hold peak

phase error to 1° (which will have a negligible impact on the performance of

our modem), then F,. must be:

N
F )
p o= SIER L o0 _ 30 X206 .py - 780 kHz e
NT e, 1
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As a baseline, we will assume an FN = 1 MHz. Of course, the wider the

loop bandwidth, the larger the channel noise induced phase jitter. The noise

bandwidth of a second order loop is given by:

W W
| 21, _ N S S =
B, =3 (+75) = 0707 +30505, ) = 3.3 Fy

where, F. = natural frequency of the loop (Hz)

N
¢ = loop damping factor

The loop signal-to-noise ratio SNR , is:

BW

= _if
SNRL = SNRif B (8)
L
where, SNR; o = IF signal-to—-noise ratio
BW,r = IF bandwidth
BL = loop equivalent noise bandwidth

In our system, for

BWif = 0.5 x bit rate = 100 MHz & FN = 1 MHz,

Then eq. (3) yeilds

= 100
SNRy, = S\R;¢ (3,33
SNR, = 30.0(SMR; () (9)

The variance of phase jitter due to channel noise in the loop is,
82 = 0.5/(S\R)  (rad®) (10)
L . SNRL ’

and on the signal in the IF is,

2 _ 2
eif = 0.5/SNRif .(rad ). (11)
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From egs. (9), (10), and (11) one obtains

2 .
0
Leoy2_ 1
if

Equation (12) shows that for a 1 MHz loop, the reference loop jitter is
negligible relative to the IF signal jitter. Performance loss with the loop

jitter given by eq. (12) would be:

2
e
Loss = 10 Logloll + ( —g‘- )2]
0’
if
= 10 Loglo(l.033)
Loss = .14 dB

From this analysis, we have concluded that a loop bandwidth of
approximately one (1) MHz should be considered. Since we contemplate a
digital loop filter implementation, loop filter bandwidth changes will be
easy to experiment with.

Now we will describe the. method whereby symbol timing is derived for
the independent burst transmissions. The symbol timing function must be
performed by observing the preamble and must provide around 1% of symbol
time setting accuracy at the end of the preamble time. .

The frequency modulation applied during the preamble, as shown in
Figure 1.4-4 (a), alternates between + peak deviation and - peak deviation.
The peak deviation is (15/32) SR, where SR is the symbol rate. We propose
here a scheme that observes the frequency detector output during the
preamble time with a correlator (probably a surface acoustic wave device)
with an impulse response equivalent to that shown in Figure 1.4-4 (b). The
frequency response of this correlator is passband centered around half

symbol rate = 33.33 MHz with noise bandwidth of (symbol rate)/32 = 2.08 MHz.
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(a) Frequency Modulation During the Preamble

\/ \ [

1234 31 32

(b) Correlator Impulse Response

Figure 1.4-4 Symbol Timing Waveforms

The noise out of the frequency measuring circuit has a parabolic
spectral density given by:

2

(£)
N(f) = (13)
2(SNR; £)BW, ¢

The spectral density at the center frequency (half symbol rate) of the

correlator is, therefore:

2
{SR) (14)

8(SNRif)HATif

N(SR/2) =

The noise over the 2.08 MHz noise bandwidth of the correlator is, for all
practical purposes, constant at the density given by eq. (14). Therefore,

the noise power out of the correlator is:
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(SR12(2.08 MHZ)
_ (15)

N =

Since for our system, Bwif = 100 MHz, we have from (15):

2 2
(SR)"(2.08) 20026 (SR)
= = (16)

N =
f)(100) SNR, ¢

C 8(SNRi
The SR/2 clock signal has peak deviation = (15/32) SR or signal power out of

the correlator when the preamble fills it, of:

- (A3 2
Sc = (32 SR)“/2 a7

From egs. (16) and (17) we obtain a correlator signal-to-noise ratio (SNRC),
of:

.e) = 42.3(SNRif) (18)

The jitter on the SR/2 clock has variance

2.1 . 1 (19)

8~ = =
j T 2(5m) 84.5(SNR, /)

and for Eb/No = 12 dB, SNRif = 15 dB in our half bit rate IF. Since 15 dB =

power ratio of 31.6, eg. (19) yeilds:

2 1 _
8] = 34.5(31.6) -00037

or

8. .019 radians (20)

J
Since pi radians of the SR/2 clock represents one symbol time, T, from eq.

]

(20) we may obtain the RMS timing jitter from the correlator as

8.
= _ 019 =
tj =7 T = *7°T = .62%(T)
Thus we meet out objective of better than 1% of T capability of jamming

symbol timing phase at the end of the preamble.
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This symbol timing strategy is not affected by DC offsets out of the
frequency measuring circuit (since the correlator has no DC response). This
procedure is also unaffected by AGC error. Thus the symbol timing is
unaffected by either of the other two burst acquisition problems. Once the
initial symbol timing phase is acquired, we will track it with a narrow band
loop, observing the output of the frequency measuring device during the
duration of the burst.

The following discussion will detail the sequence of events in
acquiring access to the TDMA satellite network.

Our assumption is that the TDMA network is active when a new station
desires entry onto the network. The TDMA channel has a master control
station (MCT) burst interleaved with some number of other bursts from ground
stations which have already gained entry on the network. Since the new
station cannot even request service of the network until it acquires the MCT
burst, a crucial task is to acquire the MCT burst.

As given above, the preamble correlator detects each preamble of a
burst as it arrives. Upon burst detection, the 66.7 MHz symbol timing loop
is jammed to the phase indicated by the next zero crossing after burst
detect from the preamble correlator. After jamming the symbol phase, the
loop develops a tracking signal as detailed in a previous discussion. The
modem timing and control function now distributes symbol clock and timing
signals required to sample the preamble-length delayed signal as well as
direct the digital loop to perform burst acquisition and tracking functions
as described previously. The coherent phase measurements made, within a
burst interval but after the preamble, are delivered to the K=7 Viterbi
decoder which performs the decoding of data as described in our proposal. By

scanning the decoder output bit stream, we can detect the MCT unique word,
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thereby providing our modem with the synchronized TDMA downlink 1 msec.
frame timing. At this point, after no more than one (1) frame of TDMA
reception, we will know all necessary information to gain access to the TDMA
network.

For a fully operational TDMA satellite system, we have described the
conceptual capability for our modem to perform all necessary acquisition and
network synchronization functions. We have shown adequate capability to
perform the following functions for independent bursts in the TDMA downlink:

1. Burst Detection

2. Symbol Timing Acquisition

3. Symbol Timing Tracking

4. Coherent Phase Acquisition

5. Coherent Phase Tracking

6. MCT Synchronization to allow synchronization of our uplink bursts

into the uplink TDMA format

On the proof-of-concept (POC) modem, all functions except number 6.
will be provided. Indeed, we cannot do 6. since that implies knowledge of

network access protocols which are still under development.

However, we will provide a modem that can interface with equipment
implementing any network access assignment and control protocols. Figure
1.4-5 shows the overall block diagram for our POC modem along with its

inputs and outputs which will interface with the evaluation test beds at

NASA/LeRC.
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Figure 1.4-5 Overall Satellite TDMA Modem Block Diagram

The dotted line for the MCT detect pulse, which is necessary in an
operational modem for timing and control circuitry in the modulator to
synchronize uplink bursts into the satellite, will not be provided. Rather,
as we understand it, the test bed will perform that function. The test bed
is assumed to provide the signal "Uplink Burst Command” to trigger
transmission of an uplink burst. Other inputs to the uplink modulator from
the test bed include uplink bit stream and uplink bit clock. The uplink IF
signal is output from the modulator to the test bed.

On the demodulator side, downlink IF is provided from the test bed to
the demodulator. Coherent phase measurements along with burst detect and
symbol clock signals are provided to our K=7 Viterbi error correction
decoder per our proposal. Outputs from our demodulator to the test bed are

thus; downlink bit stream, downlink bit rate clock, and MCT detect.
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Therefore, the test bed at NASA/LeRC can use this modem for evaluation

purposes, implementing any desired TDMA network access, assignment, and

control protocols.

2. CONCEPTUAL DESIGN OF THE DOWNLINK MODULATION HARDWARE

In this section of the task one report the conceptual design of the
demodulator hardware is presented along ‘with simulation results. Some of the
detailed hardware configurations are considered to be Harris proprietary and
therefore, the reader will be referred to the proprietary addendum when
appropriate. In addition to the topics given above, this section of the
r‘eport will also discuss is_;ues pertaining to producibility, reliability,

maintainability, recurring costs, and special test equipment.

2.1 Downlink Modulation System Conceptual Design

Harris originally proposed a coded 16-CPFSK signalling scheme to meet
the requirements for the NASA/TDMA satellite downlink. The coded 16-CPFSK
signal was to be demodulated by a coherent phase measurement receiver using
a phase-locked loop (PLL) IF implementation. During our task one
investigations, we have still been considering the conceptually equivalent
modulation and demodulation technique, i.e. a l6-ary continuous phase
frequency shift keying modulator coupled with coherent phase measurement
demodulation. However, our present baseline implementation approach is quite
different. Also, there are some detail differences between our present
approach and the proposed approach; primarily in the area of baseband
waveshaping filters at the modulator and demodulator (see Figure 1.3-3).
These detail differences have some advantage over our proposed approach and

are available only because of our present implementation approach.
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The most significant difference between our proposed implementation
approach and our current baseline approach, lies in our implementation of
coherent phase detection at the demodulator. Our current baseline uses a
Harris-proprietary technique for coherent phase detection. Reasons for
considering this approach include; (1) hardware simplification, (2) single
rail processing as opposed to in-phase and quadrature (I & Q) dual-rail
processing required in the proposed approach, (3) one high speed (67
Msample/sec.) A/D is required, (4) the coherent phase measurement is
available directly from the single rail with no necessity for conversion
from I and Q rail samples to phase as in our proposed quadrature
demodulator, (5) baseband filter techniques at the demodulator, not
available with the proposed approach, are applicable to the current
approach, and (6) requirement for a 3 GHz IF PLL is eliminated by using our
current baseline approach.

We believe that our current baseline approach offers the potential for
significantly reduced hardware complexity relative to our proposed approach.
We also believe that this technology is unique to Harris (We have never seen
in the technical literature that our current baseline approach to obtaining
ccherent phase measurements is known elsewhere, and thus the need for the
Harris proprietary addendum). By achieving our goals on this contract, this
modem will represent a significant advance in modem technology.

Since our current baseline modem involves a departure from prior
coherent phase measurement receivers, it is necessary to give a clear
conceptual picture of our technique. Figure 2.1-1 illustrates our current
baseline conceptual hardware design. The input to the modulator is a data
ctream, a bit rate clock, and a burst command. The output from the

demodulator is a demodulated data stream, a bit rate clock, and lmsec.
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timing marks. Thus, our modem may be used to implement any desired TDMA
network access, assignment, or control protocols. The mathematical
derivations of how we obtain coherent phase measurements from our current
baseline approach, equivalent to an I and Q demodulator, is given in the
proprietary addendum. Detailed block diagrams of the modem signal
processing functions are also given in the proprietary addendum.

Uplink Burst Command Channel Noise

Uplink
Dst;n Encodin Baseband Frequency _l F
Stream 9 —f’ Filter Modulator | Filter
T 16-ary Impuises
Uplink BR Clock
Frequency Digital
Messurnd Ba:ﬁ:?'nd —> Baseband D\merdbl —— Decoded Bit Stream
o Device v Processin ecoder

—p BR Clock
—» 1 msec. Ticks

Figure 2.1-1 Current Baseline Conceptual Modem Hardware Block Diagram

2.2 Theoretical Performance Characteristics and Operating Conditions of the

Downlink Modulation System Design Concept

In this section we present results obtained by computer simulations for
the TDMA modem we have described conceptually in prior sections. These
simulations were undertaken to evaluate the impact of several practical
imperfections on our baseline modem. Some of these practical imperfections
are not easily evaluated analytically, so the simulation results are
necessary and valuable in assessing whether our unique coherent

phase-measurement implementation technique leads to viable hardware.
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some of the effects we have investigated include; (1) the intersymbol
interference caused by the bandlimiting IF filter, (2) effect of the A/D
quantizing error in our baseband signal processing, (3) VCO modulation

nonlinearity, (4) filter group delay distortion, and (5) the effect on

performance of symbol timing offset.

2.2.1 Bandwidth Efficiency

In Figure 2.2.1-1 we show the spectra produced by our modem for
different choices of the modulator baseband filter. The curve for square
pulse signalling corresponds to standard 16-CPFSK signalling using 16
equispaced frequencies with spacing = 1/16 symbol rate. The other curves are
for various alphas on a square root Nyquist filter with raised cosine
frequency transfer characteristics. The far sidelobes are significantly
reduced with non-square baseband filters. The adjacent channel is located at
1.5 symbol rates from center (or .5 bit rate for our 3 information
bit/symbol scheme). We are contemplating the use of an alpha = .25 baseband

filter to control adjacent channel interference.
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Figure 2.2.1-1 1l6-ary Continuous Phase FSK Modulation Spectra
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Figure 2.2.1-2 shows the IF filter characteristic we are using. This
filter has a -6 dB BW = 1.5 symbol rate = .5 bit rate = 100 MHz. We are
currently investigating an implementation approach that will allow the use
of a SAW device for the IF filter. Such SAW filters have desirable low group

delay distortion, coupled with steep skirt selectivity.

FULL RAISED COSINE FILTER RESPONSE
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Figure 2.2.1-2 IF Filter Characteristics

2.2.2 power Efficiency

Any filter at the satellite will dissipate power by spectral truncation
and insertion losses, and will thus reduce link margin since the TWT is peak
limited. Since our modulation scheme is constant envelope, the TWT may be
operated at peak efficiency (saturation). In addition, our modulation
scheme, as previously described, requires no transmit filtering and thus
there are no spectral truncation or insertion losses at the satellite. For

the same number of coder states, the coded 16-PSK approach is theoretically
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2 dB more power efficient than our coded 16-CPFSK approach solely on the
basis of received signal-to-noise ratio. However, the 16-PSK scheme will
have to use post amplifier filtering to trim the (sinx)/x spectrum to meet
adjacent channel operability requirements of the SOW. IF pre-amplifier
filtering is used with the 16-PSK signal, the backoff required to prevent
sidelobe restoration after the nonlinear PA will be excessive. If post
amplifier filteriné is used, the 2 dB theoretical advantage of the coded
16-PSK approach is offset by the insertion loss of the required filter.
Therefore, we believe our constant envelope coded 16-CPFSK approach, in

requiring no filtering makes highly efficient use of overall link power.

2.2.3 Bit Error Rate Performance

In this section of the report, bit error rate versus Eb/No will be
given to illustrate the practical effects of various hardware elements, for
both coded and uncoded operation.

Figure 2.2.3-1 shows a comparison of the uncoded error rate curves of
our proposal and our new approach using the square root of Nyquist baseband
filter and the IF filter given by Figure 2.2.1-2. The proposed scheme used
square pulse 16-CPFSK and experienced large intersymbol interference (ISI)

due to the bandlimiting IF filter. This necessitated, in our proposed

scheme, the use of ISI correction circuitry to handle up to * 22.5° of phase
error introduced by the IF filter. Because of the baseband pulse shaping
filter, ISI is considerably reduced (without requiring ISI correction
circuitry), and the performance curve labeled "New Scheme" in Figure 2.2.3-1
is obtained. From this work, we concluded that the ISI correction circuitry

of our proposal could be eliminated, resulting in simpler hardware.
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Figure 2.2.3-1 Performance Curve for the New Scheme Versus the Proposal

Figure 2.2.3-2 shows the result of a Monte—Carlo simulation of the
uncoded error rate performance for a hardware implementation of our modem.
The dotted curve is performance of an optimum Viterbi algorithm demodulator
for 16—CPFSK. The solid curve is the analytical perfor'mance prediction for

our modem. The dots are Monte-Carlo simulation points. Through computer
modeling, the entire modulator/demodulator was simulated. Many sequences of
data were sent for each value of Eb/No. Symbol errors were counted and the
error rate computed by dividing the total errors by the total symbols sent.
Important hardware parameters for the simulation were; (1) 8-bit A/D
quantization assumed, (2) the linearity of the frequency measuring device
was approximately .4%, (3) the phase jam strategy, described in section 1.4,

was modeled, (4) the loops had a damping factor, zeta = .707.
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Figure 2.2.3-2 Uncoded Performance Derived from a Monte—Carlo Simulation

The results given in Figure 2.2.3-2 were encouraging and indicated that
our new coherent phase measurement implementation could be achieved with
realistic hardware. The close comparison between analytical results and
Monte—Carlo simulation results also validated the analytical prediction.

We next produced the analytical performance prediction for the coded
system using a K=7 rate 1/2 convolutional code in the fashion described in
our proposal. The result is shown in Figure 2.2.3-3, where our proposal
prediction assuming no ISI, our current baseline system with ISI, and QPSK

performances are all plotted for comparison. We note that the prediction for

7

the current baseline is within 2.7 dB of QPSK at 5 x 10 ' bit error rate.

But it is approximately 1.4 dB worse than our proposal's prediction assuming
no ISI. The loss is apparently due to the residual ISI. Perhaps some of the

1.4 dB loss relative to the proposal prediction can be recovered by careful
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equalization of the baseband receiver filter. This remains under

investigation.

Coded Continuous Phase 16-Ary Performance
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2.3 "Ility" Data
In this section of the task one report several subjects will be
discussed that have the "ility" suffix such as; producibility (including an

estimate of recurring costs), reliability, and maintainability.

2.3.1 Producibility - Special Features for Lowering Costs When Produced in
in Quantity
There are several hardware design features of our modem that can reduce
the cost of producing it when large quantities are purchased. The moét
notable features are; the extensive use of digital circuits in the baseband

processing, the use of surface acoustic wave (saW) technology for filtering
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applications, and the use of monolithic microwave integrated circuits (MMIC)
for the IF signal processing.

Digital technology has and still is evolving at an incredible pace.
Because of shrinking geometries, integration at the chip level is increasing
while the gate capacitance is decreasing, leading to lower propagation
delays. Also, the cost of producing complex parts keeps falling due to
greater percentage yeilds over time and a ever increasingly competitive
market. It is for these reasons that we have strived to construct a major
portion of our modem using digital technology. In the POC model we will use
standard ECL parts to implement a majority of the baseband signal processing
functions. However, we envision either gate array and/or custom VLSI
circuits to be used in the production models, both of which have great
potential for low cost when quantity purchases are made. Even VHSIC
technology, which could be used to implement the Kf? Viterbi decoder, will
drop significantly in quantity prices over the next several years as that
technology matures (see section 2.3.2 for detailed cost gstimations).
Finally, the use of digital technology in implementing our modem will
eliminate many adjustmehts that would have to be performed during-the
production and test cycles which are labor intensive and costly.

We are considering the use of SAW technology to implement the IF
filter, the preamble correlator, and a delay line. Because SAW devices are
fabricated from a mask (in much the same way as digital devices), the
filters, correlators, and delay lines built using SAW technology are very
repeatable from device to device. That is, the characteristics, of a filter
for example, remain very consistent between various runs of the device. In

addition to repeatability, once the mask for a SAW device has been designed,
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the fabrication process is very automated (non labor intensive) which leads
to low cost per unit if the NRE is spread over a large quantity of units.
Monolithic microwave integrated circuits (MMIC) is a young technology
that is maturing quickly. Currently, companies such as Pacific Monolithics
are offering circuits such as a downconvertor on a chip that has an RF input
range of 3 to 6 GHz and an IF output in the range of 50 to 2000 MHz. Each
chip (part# - PM-CO0601-A) contains numerous components, such as RF and IF
amplifiers, a local oscillator, an LO buffer amplifier, and a
double-balanced mixer. This specific device is used as an example because we
are considering it's use in the POC model and because it represents what
type of circuits are available now in quantities for aucost a low as $20 per
unit. Other functions are also available, including AGC amplifiers, limiting
amplifiers, phase shifters, phase modulators, etc., all of which operate in
the GHz regions. Since such powerful devices are currently available, it is
not difficult to predict further integration levels, thus enabling even more
complex MMICs to be fabricated. We anticipate that by the 1990's, the entire
front—-end IF chain of our modem will consist of one MMIC chip and one SAW

filter on the corner of a PC board.
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2.3.2 An Estimate of Recurring Costs

The recurring cost estimate is based on the conceptual design, built in
quantity, in a manufacturing environment. No nonrecurring engineering costs
are included.

Table 2.3.2 shows three costs: first the design using present discrete
components, second the design using gate arrays presently available, and
third the design using 1990's technologies.

Cost data was gathered from vendor quotes, current program costs with
similar complexity designs, and Harris's VHSIC operations. Gate array
performance was established using current issues of VLSI magazine (esp.

December, 1985), and gate array development ongoing at Harris.

Table 2.3.2

Estimation of the recurring cost of the TDMA Demod in the 19390's:

, GATE ARRAY
FUNCTION PRESENT $ PRESENT $ 1990'S by
Chussis 1 $ 600 Chassis $ 600 1 Card $ 300
Input RF 1 Card $ 2,000 1Card $ 2,000 1 MMIC, $750
2 Saw
Bit Sync 1 Card $ 2,500 1 Saw, $ 500 1 Saw, $650
1 VLSI(ECL, ASIC) 1 VHSIC
Phase 1 Card $ 2,000 1VLSI(ECL, ASIC) $ 250 Part of
Detector Above
Decoder 1 Card, $30,000 1 Card, 7 VHSIC IC's $30,000 1 VHSIC 400
7VHSICICS  ¢37 100 $33,350 $2.100
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2.3.3 Reliability

The reliability of our modem will be insured by several factors. The
first factor to be considered is the parts that make up the whole, i.e., the
components. To ensure component reliability, our preference for parts
selection will be for those parts that have a proven reliable performance
history, or for those parts similar to parts with a proven reliable history.
In addition our preference will be toward those components that are multiple
sourced. Finally, we will choose components that are capable of satisfactory
performance over time and temperature, and are not stressed by the
application, either thermally, electrically, or otherwise.

The second factor to be considered from a reliability standpoint is at
the chassis level. First, the reliability of the overall box will be insured
by a design that does not allow circuit damage due to improper control
settings. Secondly, a thermal cutoff capability will be designed into the
chassis. Finally, forced air circulation will be used to keep components

well away from degrading or damaging temperature conditions.

2.3.4 Maintainability

The maintainability of our modem will be insured through thoughtful
system level design considerations. Features that have already been
"flagged" as important design considerations for the easy maintenance of our
modem are items such as; status indicators, internal fault indicators, and
easy access test points. In addition, thoughtful chassis layout in
conjunction with connectorized cards will allow easy access to both cards

and modules. Finally, chassis inputs and outputs will be designed for easy

chassis interchange.
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2.4 Overview of Special Test Equipment

The special test equipment that will be required for testing our modem
is of the type that can be designed and fabricated "in-house". Figure 2.4-1
illustrates the system level concept of a test bed. The test bed consists of
three modulators, a signal-to-noise ratio combiner, and a demodulator. The
three modulators may bée configured as co-channel or adjacent channel
modulators which in either case share a common design. They may be operated
in a CW or burst mode, with a fixed burst rate and a variable burst length.
Each modulator will have internal data generators, and the ability to

operate with external clock, data, and uplink burst enable signals.

Modulator
S ———

Modulator »S + N Combiner}———p{ Demodulator
—

Modulator

Figure 2.4-1 System Level Block Diagram
Figure 2.4-2 shows a block diagram of the signal to noise combiner. The

signal-to-noise ratio combiner features; an internal noise source, variable

signal attenuators, signal and noise combiner, burst rate and frame clocks.
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3. TECHNOLOGY ASSESSMENT AND DESIGN IMPACT
In this section of the task one report we will discuss the impact of

technology on the design of our modem.

3.1 Current Versus Future Technology
Virtually all of the circuitry required to implement our modem is
available now, except for the high rate K=7 Viterbi decoder. The question

is, what form, or what type of technology will be utilized in the

47



construction of these circuits? For example, we propose using an analog VQO
to switch frequencies with no abrupt change in phase at the symbol
boundaries. However, in the future it will be possible (and advantageous as
discussed later in this report) to perform the frequency modulation using a
direct digital synthesis technique (i.e., NCO). In addition, baseband
processing circuits that are now accomplished with SSI and/or MSI ECL
devices may, in the future, be implementéd in either VHSIC(.5u CMOS),
VLSI (ECL gate arrays), or digital GaAs circuits with a high degree of
integration at the chip level, enabling many functions to be performed by
one device. The improvements that are realized by the future technology may
be in performance (as in the case of the NCO implementation of the VCO), in
reliability (as in the case of the SSI to VLSI transition), and/or in cost.
To summarize the key technologies used in the modem and their current or

future implementation strategies, respectively, see Table 3.1.

Table 3.1 Current Versus Future Implementation of Key Technology Items

TECHNOLOGY ITEM

CURRENT IMPLEMENTATION

FUTURE IMPLEMENTATION

Frequency Modulator Analog VCO Digital NCO
Frequency Detector Bulk Analog MMIC/SAW
IF Filter SAW SAW
SSI & MSI ECL VHSIC, VLSI

Baseband Processing

Viterbi Decoder

Low Rate - SSI/MSI

High Rate - VHSIC
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3.2 Hardware Techniques which Represent an Advancement in the

State-of-the-Art in Modulation Technology

There are various hardware techniques incorporated into our modem which
represent an advancement of the state-of-the-art in modem technology, some
of which are listed in the proprietary adendum. Others include a high speed
Op Amp, high speed A/D converter, high speed D/A converter, IF input filter,
and 1/2 Nyquist lowpass filter. The Op Amp represents advanced technology in
that a true differential amplifier is required that has a very large
bandwidth and a very short settling time. The state-of-the-art in wideband
Op Amps is defined by an amplifier with a -3 dB bandwidth of DC to 200 MHz,
a settling time (to .02%) of roughly 10 nsec., and a slew rate of
7000V/usec. The A/D and D/A convertors represent the state of the art in
conversion technology, again because of the high speed and large bandwidth
requirements of our system. The present state-of-the-art in A/D conversion
is a 100 Msample 6-bit A/D. The present state—of-the-art in D/A conversion
is a 100 MHz 8-bit D/A. The IF filter represents an advance in technology in
that conflicting specifications, such as very steep skirt selectivity_
coupled with almost absolute linear phase, must be met in one filter. The
1/2 Nyquist baseband filter advances modulation technology in that it
reduces the sidelobe levels of the non—filtered CPFSK spectrum at the.output
of the TWT. For a more thorough description of hardware techniques that
represent an advancement of modulation technology, the reader is referred to

the Harris proprietary adendum.
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3.3 The Impact of Technology on System Performance

There are a few technology areas that impact the performance of our
modem. That is, as the technology progresses, we will be able to take
advantage of the new technology, not only to decrease the cost of our modem,
but to increase (slightly) it's performance relative to the current (POC)
implementation. Listed in the following paragraph are the technologies that
may affect system performance. Included in this discussion is the specific
area of performance affected as well as the contributor.

The linearity of the frequency detector will impact the BER versus
Eb/No performance of our modem. Our goal for the frequency linearity is 1
percent. As technology progresses, linearities of less than 1% may easily be
realizable. The VCO linearity may also affect the BER performance of our
modem. However, as technology allows an NCO to be implemented at the
frequencies of interest, linearity will be of no concern in that an NCO is
inherently linear. The WCO output power variation with frequency may impact
BER performance. Our goal is to keep the power variation to within .25 4B,
but again, an NCO would alleviate this problem. The ability to correlate
with the preamble and quickly jam the symbol timing along with the RF phase
will impact acquisition. As the ultimate speed of digital technology
increases, the criticality of this timing issue is diminished. The large
number of interconnections required in the baseband processing section with
the use of SSI and MSI technology may impact reliability. However, as the
implementation transitions from SSI/MSI to VHSIC and VLSI, the number of
interconnections between parts as well as the total parts count will

decrease, which will increase the reliability of the modem.
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3.4 Advantages and Disadvantages of Implementation Technologies

In this section the advantages as well as the disadvantages of the
previously mentioned technology is outlined. These technology items are; the
frequency measurement circuit, the VCO, the NCO, and the baseband signal
processing functions.

The advantage of using a frequency measuring circuit in the
implementation of the demodulator is that it reduces the overall hardware
design complexity of the demodulator. Thus, by reducing circuit complexity,
a cost savings is realized both in the design effort (POC) and in future
production runs (EDMs and beyond). The only disadvantage to the frequency
measuring approach is the possible degradation (slight) in BER performance
due to nonlinearities. Although, there are methods in which to linearize a
frequency measuring device, of which we are currently pursuing to ameliorate
the linearity problem.

The advantage of using a VCO as the continuous phase frequency
modulator is that a VCO is presently available has suitable dynamic
characteristics. The disadvantage of the VCO technology is the nonlinearity
of voltage to frequency conversion (goal is < 1% nonlinearity) and the long
term frequency drift of the WCO. An NCO, as previously touted, is inherently
linear and it's frequency stability is as good as it's reference. However,
an NCO is not currently available with an output center frequency capability
of 3.373 GHz, and probably will not be available for some 2 to 5 years.
Hence, the only disadvantage of the NCO technology is the availability of
that technology.

The baseband signal processing functions are implemented using digital
technology and therefore realize all the advantages that are inherent to

threshold logic. These advantages include; stability over time and
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temperature, a high degree of integration at the chip level, immunity to
smali cross-talk and noise signals, and finally, digital circuits lend
themselves to all kinds of automated processes which reduce production,
test, and maintenance costs. The only disadvantage of using digital circuits
to implement the baseband processing functions of our demodulator are the
high processing speeds at which we must operate (the sample rate = symbol
rate = 67 MHz). This leads to technology such as ECL or GaAs to accomplish

the required processing under worst case conditions with margin.
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2'3.1

2.3.1(a)

2.3.1(b)

2.3.1(c)

Breadboard Development Definition

The high speed quantizer (A/D) was a recommended breadboard item as

presented at NASA LeRC during the Task II review.
Rationale supporting the need for breadboarding.

The high speed 8-bit flash A/D techmology is very young. Only’three
8-bit, 100 MHz converters are known to exist, with one of the three
not yet a reality. Utilizing such new technology in such a critical
function in our system, it was deemed necessary to evaluate and verify
the performance of the technology relative to vendor specificationms.
In so doing, valuable information as to the proper utilization of the

technology could be inferred for use in the detail design phase of the
POC model.

A description of the objectives and approaches for breadboarding.

The objectives of the A/D breadboard phase are quite straightforward.

They are:

(1) To verify accurate 8-bit resolution (1/2 LSB linearity)
digitization of frequencies between DC to 50 MHz, at a sampling

rate of 72.73 MHz.
(2) To verify the input bandwidth of the device.

(3) To experiment with the clocking scheme of the Siemens SDA-8010 A/D
and verify accurate sampling with STR1 = CIK and STR2 = CIK.

The approach taken to verify the above objectives is also quite
straightforward. All necessary hardware will be built and tests

conducted, as given in Section 2.3.2, to verify the major objectives

outlined above.

Tests will also be performed as necessary to verify minor objectives

pursuant to the major objectives.

A block diagram of the test bed including the SDA-8010 A/D breadboard
is given in Figure 2.3.1.
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2.3.1(4)

2.3.1(e)

Functional Requirements of the SDA-8010 A/D Breadboard.

The functional requirements of the SDA-8010 A/D breadboard as
pertaining to the performance of the A/D itself may be found in Section
2.3.1(c). Other, more general functional requirements, pertain to
interface and testability requirements. These requirements include
separate inputs for the analog voltage input, the two clock inputs of
the A/D (Strobe 1 and Strobe 2), and the system clock input that clocks
the data latch and the D/A converter. Each of these inputs are
connected via SMA connectors, and have the appropriate device pins
terminated in the characteristic impedance of the stripline (50 ohms) .
A 50 ohm terminated analog output voltage is supplied via an SMA
connector, while a digital representation of the input waveform is

available directly at the output pins (Q or Q) of the data latch.

Material Requirements.

SDA-8010 A/D Breadboard Parts List

Part Number Qty Description Vendor
SDA-8010 1 8-Bit 100 MHz A/D Siemens
AD9700BD 1 8-Bit 125 MHz D/A Analog Devices
F100151 2 Hex D Flip Flop Fairchild

— 5 SMA Connector

0P07A 2 Op Amp PMI

LM313 2 Bandgap Voltage Ref. National Semi
VK~200 11 Low Freq. RF Choke

M39018/01-0653M 8 4,7 F Elec. Cap

CDRO4BX104AKSM 25 0.1 F Chip Cap

CDRO4BXB92AKSM 10 3900 pF Chip Cap

CMR03C100DOCM 2 10 pF Capacitor

IN4149 3 Diode

RNC55H2400FM 3 240 Ohm Res.

RNC55H1002FM 2 10K Ohm Res.
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2.3.2

2.3.2.1(a)

2.3.2.1(b)

2.3.2.1(e)

SDA-8010 A/D Breadboard Parts List (Continued)

Part Number Qty Description Vendor
RNC55H4020FM 1 402 Ohm Res.

RNC55H1000FM 8 100 Ohm Res.

RNC55H49RIFM 13 49.9 Ohm Res.

M39015/1-004WM 2 1K Ohm Pot.

M39015/1~003WM 2 500 Ohm Pot.

RNC55H1800FM 2 180 Ohm Res.

Breadboard Test Plan and Test Procedures

Test Type.
Clock timing adjustment.
Objective of the-Test.

The objective of the clock timing adjustment test is to find which
pulse timing relationship for Strobe 1 and Strobe 2, hereafter referred
to as STR1 and STR2, yields the best dynamic performance of the A/D.
The goal will be to establish a simple relationship between STR1 and
STR2 of CILK and CIK. To provide a background on the strobe timing
relationships of the Siemens SDA-8010 A/D, an excerpt from the SDA-8010
Technical Description will be given below.

Range of Test Parameters.

The range of test parameters associated with the clock timing
adjustment are units of time measured in nanoseconds. There is
probably an infinite number of ways that the clock signals STR1, STR2,
and CLKL could be adjusted both in duty cycle and in relative delay
between rising edges; however, only a few should be and will be
considered. These are the pulse diagram of Figure 9, and that of
setting STR1 = CIK and STR2 = CIKL = CIK.
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2.3 Clock circuitry

SDA 8010 is driven by two ECL clock signals Str 1 The duty cycle of Str 1 is limited by two effects it
and Str 2 (figure 9). The internal CLK1 and CLK 1 the strobe time ts,, , (see figure 9) is too smali, the
signals driving the first comparator stage are first comparator stage cannot settie to the new
derived from Str 1. The pulse width of Str 1 affects analog voltage in time and conversion errors

the conversion characteristics. A duty cycle of 1:1 increase. The upper limit of tg, , is dictated by the
is recommended under normal 100-MHz operating smallest hold time required to pass information to
conditions; for particulars refer to chapter 4. the second comparator latch. The setting of tg,, , is

, o not particularly critical, the limits being shown in
The second signal Str 2 delivering CLK2 and CLK2? tablz 1 y : °

is responsible for regeneration of the digital signals
in the second comparator latches and influences ,
the pulse shape of the output signals. The internal Table 1 Range of clock settings for operation over

signals are latched during hold time t,,, and t the whole temperature range. Characterization
respectively. Thus the positive trgnsﬂnon of Str 1 measurements were performed with typical
causes sampling of the analog signal after an settings.

aperture delay of approx. 3 ns. The output-signal

transitions are determined by the rising edge ot Str - — .

2. The signal transition time t, o marks the time min typ” | max |

interval between the positive transition of Str 2 and tor 1 35 5 65 | ns

the beginning of the data valid range ty o of the ) | i

output signal. The data valid range in turn is tsu 2 40 35 : 4.5 J ns

related to the pulse width t,,,. tsetup. Str 2 0 -15 ' -25 | ns
thotg, st 2 1 3 | ns

'} Recommended for normal operation at room temperature
2) At room temperature the minimum strobe width is 3 ns

In the digital section, accurate clock timing
ensures easy handling of the 100-MHz output data
st-eam. Figure 13 gives recommended settings of
the converter clocks together with the resuiting
output signals at junction temperatures of 30, 90
and 125°C. Additionally the latch clock CLK for

tt e external output register is shown. Valid data

a:e assumed if the conversion of a 30-MHz/2-V,
signal yields an SNR of greater than 40 dB at a

¢ nversion rate of 100 MHz. To achieve proper
i c peration over the whole temperature range,

. latching of data into the output register must
i occur between 10.5 ns and 13 ns after the rising
! edge of Str 2. This can be achieved using
' ECL 100 K latches (e.g. 100150). If a larger range of
: valid data is required, temperature dependence
[ has to be given to the latch clock CLK_
i corresponding to the temperature dependence of
! the signal transition time ty o Shown in figure 10.

Fig. 9: Pulse diagram

! Scanning point

CRIGINAL PLAGE 1S
OF POOR QUALITY
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Figure 2.3.2.1. Clock Generator Block Diagram

2.3.2.1(d) Test Procedure

To find the optimum clocking scheme for the SDA-8010, a flexible clock
generator circuit must be provided. A detailed block diagram of the
circuit used to generate and adjust the clocks is given in Figure

2.3.2.1‘

As given by Figure 2.3.2.1, the 100K ECL clock signals are derived from
a single sinewave source by three separate comparator circuits. Each
comparator has its own threshold reference so that the duty cycle of
each clock may be independently adjusted. Also, a delay (trombone)
line 1s added in the signal path leading to the CLKL comparator so that
its rising edge may be adjusted relative to STR1l and STR2. Delays 2
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and 3 depicted in Figure 2.3.2.1 are implemented by adjusting the
length of coaxial cables, and function to adjust the rising edge of
STR2 relative to Strobe 1.

The testing procedure will be to adjust the clocking signals STR1, STR2
and CLKL for various timing relationships, and simply observe the
dynamic behavior of the A/D via a high speed logic analyzer. Timing
relationships will be searched until good dynamic A/D outputs result

such as; no missing or erroneous codes, and low waveform distortion

(relates to good dynamic linearity).
2.3.2.2(a) Test Type.

Static Nonlinearity
2.3.2.2(b) Objectives of the Test.

The objective of the static nomlinearity test is to verify the vendor
specification of +1/2 LSB linearity error.

2.3.2.2(c) Range of Test Parameters.

With the positive and negative voltage references set at a magnitude of
0.75 VDC, the LSB weighting of,

+Vref + |[-Vref]
256

= 5.86 mV/LSB

results.

Thus, the expected range of data points (in volts) between bit

transitions is;
LSB welghting + 1/2 LSB

= 5,86 mV 12.93 nV or
2.93 mV < expected data < 8.79 mV
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2.3.2.2(d) Test Procedure.

2.3.2.3(a)

2.3.2.3(b)

2.3.2.3(c)

2.3.2.3(d)

The static linearity of the SDA-8010 will be measured by first
accurately setting the positive and negative voltage references of the
A/D to 4+0.75 and -0.75 DC respectively, to establish an LSB weighting
in mV/LSB. Then a DC voltage will be applied to the analog voltage
input of the A/D, taking note of the voltage value for which a stable
numerical output results. This process will be laboriously repeated

for the numerical outputs of zero to 255. The data taken can then be
analyzed to verify the 1/2 LSB nonlinearity (or linearity error)

specification given by the vendor.
Test Type.
Amplitude response of SDA-8010.

Objectives of the Test.

The objective of the amplitude response test of the SDA-8010 is verify
the input bandwidth of the device.

Range of Test Parameters.

The output (numbers) of the A/D should fall off no more than
approximately 0.2 dB over the imput frequenéy range of DC to 45 MHz,
for proper operation in our system. The baseband square root of
Nyquist filter is down roughly 6 dB at 36.4 MHz, and falls off very
rapidly beyond that frequency. The A/D frequency response remaining
flat to 45 MHz ensures that the cascaded response of the baseband
filter with the A/D (filter) is essentially that of the baseband filter.

Test Procedure.

The amplitude response of the SDA-8010 will be measured by three

separate techniques.
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2.3.2.3.1 The first technique will be that of keeping the voltage constant at the
input to the device over the measured range in frequency. The response
will be measured by measuring the numerical positive and negative peaks
with a logic analyzer. These peaks will be recorded for several
frequencies so that the frequency response of the SDA-8010 can be
determined. A block diagram of the test setup is given below.

50 VaIN = CONST.
/\/ > ) ), -=9
50Q COAX ]

- I L
@vo VARIES : —

D OUT
V TO LOGH
SDA.8010 ANALYZE

CLOCK =72.73 MH,

AN

Figure 2.3.2.3.1. Amplitude Response (50 ohm System)
Test Setup Block Diagram

In this first test, VAIN is held constant, and therefore any

filtering action at the input to the A/D is not accounted for in the

digital measurements.

2.3.2.3.2 The second technique, will be that of holding the source power constant
over the-entire frequency spectrum of Iinterest. In this test VAIN
will vary somewhat due to filtering at the input of the A/D. This
filtering action is mainly due to an internal capacitance and an
external resistance setting up an RC time constant. Therefore, a

minimum loss network will be added at the input of the A/D so that the
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A/D "sees” a lower source lmpedance of 25 ohms while the signal source
A block diagram of the

“sees” a characteristic im>edance of 50 ohms.

test setup is given by Figure 2.3.2.3.2.

50

‘rd’vo CONST

%

Figure 2.3.2.3.2.

VAIN
) H—\ ==
" !
50 Q COAX 10 Q 50 o |
|
300 0 SDA-8010

1

CLOCK =72.73 MH;

Amplitude Response Test Setup Block Diagram

D OUT
TO LOGIC
ANALYZE

The frequency response will be measured at the A/D output by measuring

the numerical positive and negative peaks (of the sinewave) with &

logic analyzer.

These peak values will be recorded for several

different input frequencies so that the amplitude response at the

output can be determined.

2.3.2.3.3 The third amplitude response measurement technique involves the use of

a low output impedance amplifier at the input of the A/D. A block

diagram of the test setup is given by Figure 2.3.2.3.3.
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Figure 2.3.2.3.3. Amplitude Response Test Setup Using a Buffer Amplifier

The measurement of amplitude response will be measured directly at the

A/D output as previously detailed in Sections 2.3.2.3.1 and 2.3.2.3.2,

2.,3.3 Breadboard Design

See Schematic Diagram of the SDA-8010 Breadboard.

2.3.4 Breadboard Fabrication

See color photographs of the SDA-8010 Breadboard
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2.3.5

2.3.5.1

Breadboard Testing

Clock Timing Adjustment

Dynamic Response of the A/D was insensitive to the duty cycle of STRI.
Very good dynamic behavior resulted when the simple CLK, CLK scheme was
applied to the A/D, and therefore no further testing was performed in

this area. Remember, the goal was to achieve good dynamic behavior

using STR1 = CLK, STR2 = CIK, as stated in Section 2.3.2.1(b).

A pulse diagram of the clocking scheme used to clock the SDA-8010 and
the 100151 flip-flops following the A/D is given in Figure 2.3.5.1.

The output of the SDA-8010 A/D for 1.4 volt peak-peak sinewave inputs
of 1 MHz, 36 MHz, and 70 MHz were recorded by photographing the K105
logic analyzer display. The clocking scheme used to produce all
photographs was that given by Figure 2.3.5.1, with a clock frequency of
72.73 MHz.
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SCANNING
POINT

l

6.87 nSEC 13.75 nSEC

/ =CLK
STR 1 '

STR 2

47
13.25 SEC

CLK L :
4 : =CLK
. ! (DELAYED)
——)E 54—— .5 nSEC E
DO-7 DATA VALID / _
A/D/O107X

Figure 2.3.5.1(a). Timing of Clocking Scheme Used With SDA-8010 A/D.
Clock Frequency is 72.73 MHz
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Figure 2.3.5.1(b). SDA~8010 Output for an Almost Full Scale 1 MHz
Sinewave Input; STR1 = CLK, STRZ = CLK, Clock Freq. = 72.73 MHz

CLr =€~ 1EB™—

DISPLAY M. 9. ORAPM
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Figure 2.3.5.1(c). Horizontal Expansion of Figure 2.3.5.1(b)
to Show More Detail
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Figure 2.3.5.1(d). SDA-8010 Output for an Almost Full Scale 36 MHz
Sinewave Input. STR1 = CLK, STRZ2 = CLK, Clock Frequency = 72.73 MHz

Note the 365 kHz beatnote frequency produced by sampling a 36 MHz
sinewave with a 72.73 MHz clock. Sampling a 36 MHz tone with a 72.73
MHz clock, maximally stresses the A/D because each adjacent sample has
opposite polarity, and therefore each successive sample has an MSB
transition. Note that there are no missing codes and the dynamic

linearity seems to be "good.”
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Figure 2.3.5.1(e). SDA-8010 Output for an Almost Full Scale 70 MHz
Sinewave Input. STR1 = CLK, STR2 = CLK, Clock Frequency = 72.73 MHz

The sinewave of Figure 2.3.5.1(e) is slightly distorted. The
distortion, however, is a result of the source, not the conversion
process. The frequency of the displayed sinewave is the difference
between the sample frequency (72.73 MHz) and the inmput frequency 70
MHz) which 1s 2.73 MHz.

2.3.5.2 Static Nonlinearity

The static linearity error was measured as described by Section

2.3.2.2(d). The measured data is given on the following pages.

OR'G'NAL th B r'
OF POOR QuUALITY
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Static Linearity (+Vref = .750V, -Vref = -.750V)

" Code Voltage Code Voltage
00000000 -.750 00100010 ~.548
00000001 ~.744 00100011 -.542
00000010 -.737 00100100 ~.537
00000011 -.731 00100101 ~.532
00000100 -.725 00100110 -.525
00000101 -.720 00100111 -.520
00000110 -.713 00101000 ~.513
00000111 -.708 00101001 -.507
00001000 -.702 00101010 -.501
00001001 -.696 00101011 -.495
00001010 -.690 00101100 ~.489
00001011 -.685 00101101 -.483
00001100 -.679 00101110 ~.478
00001101 -.673 00101111 -.472
00001110 -.667 00110000 -.467
00001111 -.661 00110001 -.460
00010000 -.655 00110010 - ~.455
00010001 -.650 00110011 ~.449
00010010 -.645 00110100 ~.443
00010011 -.638 00110101 ~.436
00010100 -.631 00110110 -.430
00010101 -.625 00110111 -.425
00010110 -.619 00111000 -.419
00010111 -.614 00111001 -.613
00011000 -.608 00111010 -.407
00011001 -.603 00111011 -.401
00011010 -.596 00111100 ~.395
00011011 -.591 00111101 -.389
00011100 -.584 00111110 -.383
100011101 -.579 00111111 -.377
00011110 -.572 01000000 -.370
00011111 -.567 01000001 ~.365
00100000 ~.560 01000010 ~.360
00100001 -.554 01000011 -.355
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Static Linearity (+Vref = .750V, -Vref = -.750V) (Continued)

Code Voltage Code Voltage
01000100 -.350 01100110 -.152
01000101 -.344 01100111 -.145
01000110 -.338 01101000 -.139
01000111 -.333 01101001 -.134
01001000 -.326 01101010 -.129
01001001 -.321 01101011 -.124
01001010 -.314 01101100 -.117
01001011 -.309 01101101 -.112
01001100 -.302 01101110 -.107
01001101 -.297 01101111 -.101
01001110 -.292 01110000 -.095
01001111 -.285 01110001 -.088
01010000 -.279 01110010 -.083
01010001 -.274 01110011 -.077
01010010 -.268 01110100 -.072
01010011 -.263 01110101 -.065
01010100 -.256 01110110 -.060
01010101 -.251 01110111 -.054
01010110 -.245 01111000 -.048
01010111 -.239 01111001 -.043
01011000 -.234 01111010 -.037
01011001 -.228 01111011 -.030
01011010 -.222 01111100 -.025
01011011 -.217 01111101 -.020
01011100 -.209 01111110 -.014
01011101 -.204 01111111 -.007
01011110 -.198 10000000 -.001
01011111 -.192 10000001 +.005
01100000 -.187 10000010 +.009
01100001 -.182 10000011 +.015
01100010 -.175 10000100 +.021
01100011 -.169 10000101 +.027
01100100 -.164 10000110 +.033
01100101 -.158 10000111 +.039
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Static Linearity (+Vref = .750V, -Vref = -.750V) (Continued)

Code Voltage Code Voltage
10001000 +.044 10101011 +.249
10001001 +.050 10101100 +.255
10001010 +.056 10101101 +.261
10001011 +.063 10101110 +.267
10001100 +.068 10101111 +.273
10001101 +.075 10110000 +.279
10001110 +,080 10110001 +.285
10001111 +.085 10110010 +.291
10010000 +.091 10110011 +.295
10010001 +.097 10110100 +.302
10010010 +.103 10110101 +.308
10010100 +.114 10110110 +.314
10010101 +.120 10110111 +.321
10010110 +.126 10111000 +.327
10010111 +.131 10111001 +.332
10011000 +.136 10111010 +.337
10011001 +.143 10111011 +.343
10011010 +.150 10111100 +.350
10011011 +.155 10111101 +.355
10011100 +.161 10111110 +.361
10011101 +.166 10111111 +.367
10011110 +.172 11000000 +.374
10011111 +.179 11000001 +.382
10100000 +.184 11000010 +.390
10100001 +.190 11000011 +.39%
10100010 +.196 11000100 +.399
10100011 +.201 11000101 +.405
10100100 +.207 11000110 +.412
10100101 +.213 11000111 +.417
10100110 +.219 11001000 +.424
10100111 +.225 11001001 +.429
10101000 +.231 11001010 +.434
10101001 +.237 11001011 +.441
10101010 +.243 11001100 +.448
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Static Linearity (+Vref = .750V, -Vref = -.750V) (Continued)

Code
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110

2665V/A/D Converter

Voltage

+.453
+.459
+.464
+.470
+.477
+.483
+.488
+.493
+.500
+.505
+.512
+.519
+.524
+.530
+.535
+.542
+.547
+.554
+.559
+.565
+.570
+.576
+.583
+.588
+.594
+.601
+.607
+.612
+.61§
+.625
+.632
+.637
+.642
+.647
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Code
1101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011

11111100
11111101

11111110
11111111

Voltage

+.653
+.659
+.666
+.672
+.677
+.683
+.690
+.696
+.701
+.708
+.713
+.720
+.725
+.731
+.737
+.742
+.750
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Figure 2.3.5.2(a).

Voltage to Code Transfer Function of the SDA-8010

A graph of the differential linearity error is given in Figure

2.3.5.2(b).

Differential linearity error of less than i;/Z LSB,

ensures no missing codes.
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Figure 2.3.5.2(b).
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In addition to the static linearity error tests performed, a crude
dynamic linearity test was also performed. A (72.73 l‘ﬂiz)-1 x 256
second long ramp was applied to the analog input of the SDA-8010. This

. ramp was not exactly linear and is shown in the photograph of Figure
2.3.5.2(¢). The output response of the SDA-8010 to the ramp was then
converted back to an analog voltage (Figure 2.3.5.2(d)). The output of
the D/A was then subtracted from the input of the SDA-8010 to yield the
photograph of Figure 2.3.5.2(e). The photograph of Figure 2.3.5.2(e)
shows a straight line which indicates good dynamic linearity.

22005

)

. CRIGIRA™ "“'i
OF POOR QUf\LhY

'

Figure 2.3.5.2(c). Ramp input to the SDA-8010 of Length 3.52 usec
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Figure 2.3.5.2(d). Ramp Output of the AD9700 D/A Converter

Figure 2.3.5.2(e). Difference Between the Ramp Input to the SDA~-8010, and
the Ramp Output of the AD9700 D/A, Which Represents the Cumulative
Linearity Error of Both Devices
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2.3.5.3 Amplitude Response of the SDA-8010

2.3.5.3.1 The amplitude response of the SDA-8010 was measured as given by the
test procedure in Section 2.3.2.3.1 of this report.
= Const.

SDA-8010 Amplitude Response, VAIN

Binary Numbers Out

Input Frequency Positive Peak Negative Peak dB, 1 MHz*
500 kHz 11110011 00001000 -0.18
1 MHz 11110101 00000101 0.0

5 MHz 11110100 00001000 -0.15
10 MHz 11110111 00001001 -0.07
20 MHz 11110110 00000100 +0.07
30 MHz 11110110 00000100 +0.07
40 MHz 11110111 00000011 +0.14
50 MHz 11110110 00000101 +0.04
60 MHz 11110101 00000110 -0.04
70 MHz 11110100 00001000 -0.15

.20 log(POSitive - Negative Peak @ X MHZ)
Positive - Negative Peak ¢ 1 MHz

* 4B, 1 MHz =

2.3.5.3.2 The amplitude response of the SDA-8010 was measured as outlined by the
test procedure in Section 2.3.2.3.2.

SDA-8010 Amplitude Response, V = Const., R, = 25 ohms

Binary Numbers Out

Input Frequency Positive Peak Negative Peak dB, 1 MHz*
1 MHz 11010000 00101011 0.0
5 Mz 11010001 00101100 0.0

10 MHz 11010010 00101110 ~-0.05
20 MHz 11010001 00101110 -0.11
30 MHz 11010000 00101110 -0.16
40 MHz 11010000 00101110 -0.16
45 MHz 11001111 00101111 -0.27
50 MHz 11001110 00110000 -0.38
60 MHz 11001010 00110100 -0.83
70 MHz 11000011 00111011 -1.68

20 log(Positive - Negative Peak @ X MHz>

* =
dB, 1 MHz Positive — Negative Peak © 1 MHz
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2.3.5.3.3

Input Frequency Positive Peak Negative Peak dB, 1 MHz*
500 kHz 11101001 00010111 +0.04
1 MHz 11101000 00010111 0.0
5 MHz 11101001 00011000 0.0
10 MHz 11101001 00011010 -0.08
20 MHz 11101000 00011011 -0.16
30 MHz 011100111 00011010 -0.16
40 MHz 11101000 00010111 0.0
45 MHz 11101001 00010111 +0.4
50 MHz 11101010 00010101 +0.16
60 MHz 11101011 00010100 +0.25
70 MHz 11101010 00010110 +0.12

2.3.6

2.3.6(a)

The amplitude response of the SDA-8010 was measured as outlined by the

test procedure in Section 2.3.2.3.3.

SDA-8010 Amplitude Response, VO = Const.
Buffer Amp Used, R6 = 25 ohms

Binary Numbers Out

Test Evaluation

Results of the Evaluatiomn.

Three test have been performed; the clock timing adjustment test, the
linearity test, and the amplitude response test. The evaluation of the

test data for these three tests follows.

The test data given in Section 2.3.5.1 indicates clearly, that a
straightforward CLK, CLK clocking scheme may be used at the 72.73 MHz
clock rate, even though vendor technical information indicates this
clocking scheme is not optimal. This scheme will simplify the
generatlion of timing by eliminating the need for voltage references
(with their associated drifts) necessary in the comperator circuitry to

generate other than CLK, CLK 50% duty cycle clocks,
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2.3.6(b)

The test data given in Section 2.3.5.2 indicates that linearity errors
are less than i;/Z LSB, and therefore, the device may be operated at

the desired clock frequency with no missing codes at the output.

The test data given in Section 2.3.5.3 indicates that the amplitude
response of the SDA-8010 is relatively flat, especially if the voltage
right at the analog input can be held constant. An external source
resistance with an internal (nonlinear) capacitance forms an RC time
constant which will cause rolloff at the analog input. If, however,
the source resistance is minimized the effect of the RC time constant

can be "pushed” out to frequencies beyond the bandwidth of interest.

In other words, the -3 dB bandwidth of the RC filter can be made high
enough in frequency that the amplitude rolloff over the bandwidth of

interest (DC to 45 MHz 1in our design) is on the order of a few tenths
of a dB.

Revisions Necessary or Recommended, from Breadboard Evaluatiom.

The revisions to the SDA-8010 evaluation breadboard based on test

results are as follows.

Since the CLK, CLK clocking scheme will be used for the STR1, STR2
clock signals of the SDA-8010, it is recommended that a differential
line receiver be used on the quantizing card to receive the clock

signal. This provides common mode rejection between cards.

In addition, it is recommended that the circuit given by Figure
2.3.2.3.3 be used to "drive” the SDA-8010, in that it gives the best
amplitude response. A lower gain buffer device designed specifically
for driving Flash A/D converters (the Comlinear CLC231) is under
consideration for replacing the CLC220, so that amplitude peaking (see
Section 2.3.5.3.3) may be reduced to less than tenths of a dB.
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ADVANCED MODULATION TECHNOLOGY DEVELOPMENT
TASKV REVIEW
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HARRIS CORPORATION, GCSD
P.O. BOX 91000
MELBOURNE, FL. 32902

PRESENTED BY:
RICHARD D. CROWLEY
ROBERT C. DAVIS
JAMES A. GANN

PREPARED FOR:
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ADVANCED MODULATION TECHNOLOGY DEVELOPMENT

TASK V REVIEW
AGENDA
9:00-9:10 Introduction Rich Crowley
9:10-9-45 System Overview Bob Davis
9:45-10:30 Modulator Design
Baseband Rich Crowley
RF Jim Gann

10:30-10:45 Break
10:45-12:00 Demodulator Design

RF Jim Gann
Coherent Demodulator Jim Gann
(Phase Detector)

Bit Synchronizer Jim Gann
Baseband Rich Crowley

12:00-1:00 Lunch
1:00-1:45 Signal Combiner

Digital Rich Crowley
RF Rich Crowley
1:45-2:00 Mechanical Rich Crowley
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Vicwgraph 6

This vicwgraph shows the 16 symbol ending phascs from the 16-ary CPFSK modulator along
with the mapping of coded 4-bit groups onto them. These assignments were chosen for good
code propertics. You will note that any group of 4 succesive phascs contain all rate 1/2 codc
branches (the 2 LSB’s--scc previous viewgraph). This forms the basis for our decoding strategy.
The strategy, bricfly, is to retain for consideration by the decoder only the four phase nodes
ncarest to the reccived phasc. The Viterbi decoder then decides which of the four retained
phascs is most likcly to have been transmitted. The 2 MSB’s associated with the decoders deci-
sion arc output as 2 of the decoded bits. The third bit decision is that information bit decision
madc by the decodcr. Thesc three bits make the total informa:n ©:T szicam output.
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Vicwgraph 7

This vicwgraph shows thec performance predicted for the coded 16- CPFSK signal. Also shown
for comparison is the performance for QPSK.
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Vicwgraph i2

This vicwgraph shos the probability of missing the 6-symbol Unique Word versus Eb/NO when
onc symbol is allowed to be in crror out of the 6 symbols of the Unique Word.
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DEVELOPMENT OF A CODED 16-ARY CPFSK COHERENT DEMODULATOR

KEN CLARKE, Government Communications Systems Division, Harris Corporation, United Statcs;
ROBERT DAVIS, Advanced Technology Department, Harris Corporation, United Siates;
JIM ROESCH, Government Communications Systems Division, Harris Corporation, United States.

1HARRIS CORPORATION
P.0O. Box 37

Mail Stop 3A-1912
Mclbourne, Florida 32901
United States

ABSTRACT

Theory and hardware are described for a proof-of-concept 16-ary Continu-
ous Phasc Frequency Shift Keying (16-CPFSK) digital modem. The 16 frequen-
cics arc spaced every 1/16th baud rate for 2 bits/sec/Hz operation. Overall rate %
convolutional coding is incorporated. The demodulator differs significantly from
typical quadrature phase detector approaches in that phase is coherently measured
hy processing the baseband output of a frequency discriminator. Baud rate phase
samplcs from the baseband processor arc decoded to yicld the original data
stream. The method of encoding onto the 16-ary phase nodes, together with con-
volutional coding gain, results in near QPSK performance. The modulated signal
is of constant envelope; thus the power amplificr can be saturated for peak perfor-
mance. The spectrum is inherently bandlimited and requires no RF filter.

MODEM OVERVIEW

We discuss a bandwidth cfficient constant envelope modem: 16-ary Continuous Phasc. Frequency
Shift Keying (16-CPFSK). Error-correction coding is applicd to reduce the performance disadvantage
rclative to AM schemes. The modem is designed for 200 mb/s TDMA application with 100 mHz

adjacent channel spacing.

Theoretical Considerations

Two novel theoretical techniques are uscd in this 16-CPFSK modem: I) cohcrent phase meas-
urements obtained by processing an FM discriminator bascband output; II) Modulation via a closed-
loop lincarized VCO. Refer to Figure 1 in the following discussion.

Obtaining cohcrent phasc from a discriminator. A discriminator outputs ¢°(t), where ¢(1) is the
signal’s phasc modulation. Integration of ¢°(t) recovers the desired signal, ¢(1). Implementation of the
intcgration has scveral practical probicms: 1) Integrator output can grow without bound; 2) Initial
phasc, ¢(0), must be detcrmined; 3) AGC is nccded on the bascband signal. Regarding problem 1),
fortunatcly, we nced only know phase Mod-2r. Thus the growth problem is avoided by intcgrating
Mod-2r. How can such an intcgrator be implemented? It is essential only that we obtain ¢(nT),
phasc at baud umc intcrvals. An intcgrator yiclding ¢(nT) can bc implemented as a T-interval
Intcgratc-and-Dump (I&D) sampled by an A/D which fceds a digital accumulator that rolls over
Mod-2r. The 1&D is actually a lowpass Half-Nyquist filter in this modem, but the conceptual picturc
remains usclul. 3

Problem 2)--acquiring initial unknown phasc, &(0), is handled by first obscrving for each baud
sme, the phasc crror to the closest onc of the 16-CPFSK phasc nodes (Mod-2n) equaily spaced in the
accumulator. This phasc crror is filicred by a lowpass loop filter whose output is subtracted from the
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accumulator input. The initial phase crror, ¢(0), appears as a DC component of the crror and is clim-
inated by the bascband loop. Frequency offset ( DC offset from the discriminator ) also is eliminated
by this bascband loop, the equations for which are identical to those for a PLL.

SER. PHASE 16-CPFSK
TO TO a IF
DATA
PAR. HALF F(S vCO
200 | CONV FREQ. M= O™ nvo P@'EL’
Mbos MAP
CODER
C -
‘ | DISC
a) MODULATOR

IF
— F H HALF

k AD
e LOISC NG

DIGITAL
LPF

b) DEMODULATOR
Fig. 1. Basic modem block diagram

Problem 3), AGC, is handled as shown in Figure 1. The accumulator phase error is corrclated
with input samples, and baseband gain is adjusted to zero the correlation.

Linearized VCO modulator. Figure 1 shows the closed-loop-linearized VCO modulator. The
hascband filter output is applied through a feedback summer to the VCO. F(s) is a wideband loop
iilicr. The output of the VCO is immediately converted back to bascband by the discriminator (DISC)
and subtracted from the bascband input modulating signal to gencrate a correction signal in the closed
1nop. The VCO is thus modulated with small error between the bascband modulating signal and the
output of the DISC. If the modulator DISC is identical to the demod DISC, this modulator lincarizes
Jic bascband signal path through the modem’s VCO/DISC combination.

Bricf Description of Modem_Operation.

As shown in Figure 1, incoming data is split into 3 parallel bit streams. The 2 MSBs arc passcd
unaltered to modulator MSB positions. The LSB bit stream is coded by a rate Y2, K=7 convolutional
encoder. The 2 resulting coded branch bits go to the 2 LSB positions of the modulator. The 4 bits
produced by this cncoding process specify onc of 16 symbol-ending phases (Mod-2rm) from the 16-
CPFSK modulator. Half-Nyquist filtering is cmployed at the VCO bascband on 16-ary impulscs to
produce the IF signal at the modulator. At the demod the IF signal is filtered and passed to the DISC.
The DISC bascband signal is Half-Nyquist filicred and sampled at symbol rate by an 8-bit A/D. The
ialf-Nyquist filler completes shaping begun at the VCO, producing an overall Nyquist response 1o
16-ary impulscs. The A/D samples feed the accumulator, whose output is ®(nT). These phasc samples
fecd a Viterbi decoder for demodulation of the original 3 data strcams.

Figurc 2 shows the 16-CPFSK phase nodcs, along with the mapping of coded 4-bit groups onto
them. Any sct of 4 adjacent phascs contains all 4 ratc %4 code branches and has good distance struc-
wre. This fact forms the basis for our decoding strategy, to wit: retain only the 4 phase nodes ncarest
the reccived coherent phasc mcasurement; then let the Viterbi decoder determine which of these 4
phascs is most likcly to have been transmitted. The 2 modulator MSBs associated with the decoder’s
decision arc output as 2 of the decoded bits. The third bit decision is the data bit decision madc by
the decoder. These 3 bits form the total output data bit stream.
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Figurc 3 shows performance predicted for the coded 16-CPFSK modem.
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Fig. 2. 16-CPFSK phasc nodcs. Fig. 3. Modem performance.

DIGITAL BASEBAND PROCESSING

We now discuss the Coherent Baseband Phase Detector (CBPD) hardware. Figurc 4 depicts the
fow major functional portions of the CBPD circuitry: 1) Bascband Preprocessor, 2) Phase
Accumulator/DC Restore Loop, 3) AGC Loop, and 4) Timing and Control.

Tc Gase TaC
Baseband Pre-Processor L 3
To Decoder
now 4-sunge z z A el
—s{ AD
Regmier \‘x 9 G-
| Phase Accumuisor / OC Restare &

—

t  BR

| Syme X1

' usB
AGC Looo N X2 fL\
%%

Fig. 4. Cohcrent Bascband Phase Detector.

Bascband Preprocessor

The filtered (Raised Cosine, 25% excess bandwidth) output of the frequency discriminator is
<ampled at symbol ratc by an 8-bit A/D converter. The samples arc scquentially stored in 4 registers
(o allow detection of an "all f4’s" portion of the TDMA prcamble. If detected, the remaining regis-
ters in the phasc detector circuitry operate normally; otherwise, these registers arc asynchronously held
low The output of the fourth register, along with a 16-bit attcnuation factor, K, arc input to a 16 x 16
ECL. multiplicr, which provides AGC on any gain variation at the output of the limiter/discriminator
(+ 6.25% max.). At the output of thc multiplicr, a binary number is added to the 12-bit two’s com-
plement product such that when an fo is reccived, zero is output to the phase accumulator circuit.

Phasc Accumulator/DC Restore Loop
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An crror term, proportional to DC offsct in the discriminator output (which results from fre-
quency offset in the IF), is subtracted from the 12-bit number output from the bascband preprocessor.
The "DC restored” valuc is then accumulated by a 12-bit accumulator, completing the implementation
of an intcgrator. The output of the 12-bit accumulator represents 360° of coherent phase (Mod-2m).

The DC restore loop is constructed in the following fashion. During the data portion of a burst
(following the prcamble and unique word), the transmitted phase constellation is restricted to that of
d-ary signalling (90° spacing) on every fourth transmitted symbol (called a "tracking” symbol). Dur-
ing the tracking symbols, the 10 LSBs, of the accumulator output, directly represent the error in hit-
ling a phase node (crror-to-node). Thus, a modulo 90° (+45°) phase detector characteristic is displayed
by the 10 LSBs of accumulator output during the tracking symbol. To control DC offscts out of the
discriminator, the error-to-node is multiplicd by a gain factor, KL, and subtracted from the input to
the coherent phase accumulator. This processing is equivalent to a 1st-order PLL correction. For a 1st
order control loop with open loop gain, K, the loop noise equivalent bandwidth is given by: B, = K4
(Gardner, 1979). During the data portion of a burst, with KL = 1/4, and corrections being applicd to
the 1oop on every fourth symbol, B, = Rg/64 MHz, where Rg = the symbol rate.

Phasc acquisition for indcpendent bursts is accomplished during the all-f’s portion of thc
prcamble. Initially, the phase accumulator is zeroed. After the all-f¢’s portion of the preamble has
been detected by the Baseband Preprocessor, the DC restore loop is allowed to update during every
symbol interval (providing maximum loop gain, and thus wide loop bandwidth). This processing
acquires ¢(0) and initial DC offset at the discriminator output. Since the loop corrects on every sym-
bol, the loop gain is four times that of the "tracking” loop gain, and thus, B; = Rs/16 MHz. Tran-
sport delay in the digital control loop is minimized to maintain stable closcd loop response for widc

loop bandwidths.

AGC Loop

~ An error term, proportional to gain missetting, is derived by correlating a delayed version of the
discriminator sign output with the error-to-node signal. The gain error is filtered by a digital accumu-
lator, and a detector bias (1.0) is added at the accumulator output. The resulting AGC correction fac-
tor, KA, is 1 + 0.0625. The input to the CBPD circuit is scaled by KA using a 16x16 ECL multiplier.
Thus, fine decision-directed AGC is provided, which prevents "walkoff" of the coherent phasc accu-
mulator.

The loop bandwidth of the AGC loop is given by; By = K/4, where K = Open Loop Gain.
During the all-f o’s portion of the preamble, the AGC loop updates on every symbol and the open
‘oop gain is Rg/16. Like the DC Restore loop, the AGC loop updatcs on cvery fourth symbol during
tracking, so that the open loop gain is % that of acquisition. Thus, B, = R /64 during acquisition and
B, = Rg/256 during tracking.

Tinung and Control

The major portion of the baseband timing control circuit is the Unique Word (UW) dclector.
ihe UW consists of six unique symbols immediately following the prcamble. The UW is detected
when the 6 symbols fill the UW detector corrclator cells, allowing one symbol error. The UW, when
detected, establishes a second level time tick for burst processing (first level is symbol synchroniza-
tion). The UW detector establishes the gating clock used to update the control loops on every fourth
symbol during the data portion of a burst.

BASEBAND ENCODER/MODULATOR

In the bascband encoder, the data strcam (at 200 Mbps) is partitioncd into 3-bit symbols. The
two MSBs arc used dircctly, and the LSB is rate ¥4, K=7 convolutionally encoded to producc a 4-bit
symbol. This overall ratc % code, combined with the CPFSK characteristic, promotcs good bandwidth

cfficicney.
With 3-bit symbols, the symbol rate is rcduced to 1/3 the 200 Mbps data bit rate, allowing usc

of off-the-shelf ECL and climinating nced for custom ICs or GaAs technology.
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Figurc 5 shows a block diagram of the encoder/modulator. The input data buffer translatcs the
200 Mbps scrial data strcam into a parallel 11-bit word, allowing the input data RAM to operatc at
1/11th of the input bit rate. The ECL RAM input buffer is configured as a FIFO. After buffering, the
data 1s read out of the FIFO and partitioned into three, 3-bit groups, and onc 2-bit group. Each 3-bit
group is operated on as previously described (2 MSBs unaltered; LSB R='% encoded) to producc 4-bit
coded symbols. The remaining 2 bits are treated as MSBs and two zcro bits arc appended to form the
fourth 4-bit symbol. This is done as previously described to aid the demodulator in maintaining carricr

loxck
‘ INPUT DATA
3
| SERIAL 11 | INPUT 11| DATA e
PARALLE BOFFER [ Ei%
A L cTO INSERTION
CONVERT SELE LOGIC

(o
, o[ recsren]

IFEERENT
R Lot I

4
:
. MUX MaPPING |
UNIQUE WORD - REGISTER _ 5&‘?%5
MODULATOR

Fig. 5. Encoder block diagram.

Precamble/Unique Word

Prior to sending data, a TDMA preamble is sent. The preamble is a 32-symbol paticrn alternat-
ing between the two peak frequencies of the 16-CPFSK signal, followed by 32 symbols of lowest fre-
quency, which allows symbol synchronization and coherent phase acquisition.

A 6-symbol unique word to flag start-of-data follows the preamble. Encoded data symbols
immcdiately follow the unique word. The precamble, unique word, and encoded data arc all sclected

via thc mux function shown in Figure 5.

Symbol Mapping

With CPFSK, transmiticd frequency symbols convey "differential” phase information rather than
absolute phasc. For example, if the previous encoded 4-bit symbol produced a phasc value of ®s and
thc naxt 4-bit symbol represented phase @y, then the modulated frequency sent out for the current
symbol time is that nceded to swing phase from ®s to ®y. The mapping function shown in Figure §
provides this operation. Two registers address the mapping PROM. Onc contains the previous 4-bit
encoded symbol and the other contains the current 4-bit symbol. This provides the mapping PROM
with sufficicnt information to dcterminc the required frequency to transmit such that the reccived
phasc point will be that specified by the current 4-bit symbol.

Encoder Termination Sequence

At the end of the input buffered data, six zcrocs are appended to the data stream sent to the
convolutional encoder. This forces the encoder to start and end in statc 000000 cach TDMA burst.
At the recciver, the Viterbi decoder function cxploits this a priori knowledge by forcing the decoder
to begin in statc 000000 on every burst.

BASEBAND DEMODULATOR

T
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Major bascband demodulator functions are highlighted in Figure 6 The 7-bit phase mcasurc-
ments, as received from the CBPD, are rate buffered and sent to the mapping function, which dcter-
mines the 4 signal phasc points closest to each demodulated value. This homes in on a quadrant of
adjacent phase points retained as likely decision candidates.
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Fig. 6. Decoder block diagram.

The phase distances of these 4 candidate nodes from a given demodulated phase point serve as
brae:v metrics to the Viterbi decoder for the four (00, 01, 10, 11) LSB R=% code-branch bit pairs.
I'he decoder uses these metrics directly to determine which of the four candidates was most likely

ransmitted.
As noted already, ANY four consecutive nodes in the signal constellation always contain the

values 00, 01, 10, an 11 for the encoded LSB portion; and the two unencoded MSBs simply “tag
along” with the respective encoded LSB values. These MSB tag-along bits are sent to a FIFO buffer
whose length cquals the throughput delay of the Viterbi decoder.

Viterbi Decoder

The four candidatc branch metrics described above are fed directly into a R='4, K=7 Viterbi
decoder 10 recover the coded third of the total data bit strcam. The decoder output data is then re-
encoded to produce an crror-corrected 2-bit symbol pair (code branch). This pair sclects the
corresponding tag-along MSB bit pair from the tag-along FIFO. These tag-along MSB bits are
regrouped with the corresponding output data bit from the Viterbi decoder to form the recovered 3-bit

data group.

Final Processing

The recovered 3-bit data groups are collected. On every fourth group, only two tag-along bits
arc recovered (because the LSBs were forced to 00 back at the encoder to support phasc tracking). In
addition, the 000000 coder termination scquence is removed from the recovered data bit scquence.

The rccovered data bits are then rate buffered in another FIFO whose output is then parallel-to-
serial converted. This reconstructs the original data strcam at the original high speed data bit rate (200
Mbps).
Parallclism in the design of the encoder/modulator and decoder/demodulator allows the usc of
lower speed, lower cost technology for most internal processing operations. High data rate parts are
limited to the encoder/modulator input and to the decoder/demodulator output.
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1.0 INTRODUCTION

This report is prepared by Harris Government Communications
Systems Division for NASA Lewis Research Center under contract
NAS3-24681. This report is written in response to SOW paragraph 2.7,
Task VIl Proof-of-Concept (POC) Testing and Analyses. The purpose of
this document is to present the results of the tests conducted in
accordance with the POC Model Test Plan and Procedure developed in
response to SOW subtask 2.5.3 and which covers in detail all of the
categories of the top level test plan generated under subtask 2.4.4.

1.1 Reason for Test

The purpose of the POC Model Test is to verify the ability of the
POC model to meet the performance requirements of SOW sections 3.1 and
3.2, and to provide a quantitative measure of the required electrical and
performance parameters. Additionally, the purpose of the POC Model Test
is to produce recommendations for the development of an engineering
model demodulator using further advanced implementation technology,
based on analyses of test results.

1.2 Description of Unit Under Test (JUT)

The UUT is the POC model demodulator which is comprised of
the Demodulator chassis and the Demodulator Power Supply chassis. The
Demodulator chassis contains the RF and digital circuits that transform
the 3.373 GHz 16-ary CPFSK RF waveform to digital burst data. The
Demodulator Power Supply chassis houses the DC power supplies that
provide power to the Demodulator chassis. The chassis are standard Zero

enclosures.

1.3 Applicable Documents

. Contract NAS3-24681 Statement of Work (SOW)
« POC Model Performance Specification, Rev. A, November 1986
. POC Model Test Plan and Procedure

The POC Model Test Plan and Procedure document is attached as
Appendix A to this report. Section 2.0 contains the POC Model Test Plan,
Section 3.0 contains the POC Model Test Procedure, and Section 4.0
contains the POC Model Test Data Sheets.
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2.0 PROOF-OF-CONCEPT MODEL TEST RESULTS

Regrettably, contract funds were exhausted before the POC
Model Test could be performed. Certain technical problems with the POC
model hardware prevented the desired BER performance from being
achieved. As a result, no meaningful data could be derived by performing
the formal POC model test procedure. We believe that conceptually the
modulation approach we selected is sound and that the problems with the
POC model hardware implementation can be resolved. The following
paragraphs serve to document the known problems and explain their effect
on system performance.

2.1 System_ Noise

A noise floor exists within the POC Model Demodulator and
Special Test Equipment (STE) that establishes an error floor which
prevents the system from operating error free. One of the functions of the
Signal Combiner Chassis is to allow noise to be summed with the desired
signal for the purpose of measuring BER performance versus Ep/Ng. Even

when no noise from the internal noise source is summed with the desired
signal, a significant amount of unexpected noise can be measured at the
demodulator. The exact origin of the unwanted noise is unknown but
switching power supply pick up, amplifier noise figures, and coupling from
the internal noise source are all suspected to be potential contributors.
The purpose of this discussion is to document the amount of noise present
and project its effect on system BER performance.

Figure 2.1.1 shows a spectrum analyzer plot at the
discriminator output of the demodulator. The single carrier shown at
36.36 MHz was produced by alternately transmitting fo f15 tones. These
tones represent the maximum FSK tone spacing available in our modulation
scheme and are spaced 15/16*symbol rate, or 68.18 MHz apart. Since
these tones alternate at a period equal to 2 symbols, their fundamental
frequency is 1/(2*symbol period), or 36.36 MHz. They are shown as a
reference point since the number of LSBs for the maximum fo f15 peak to

peak frequency deviation is known to be 120 LSBs. Since this fo f15

signalling is sinusoidal, the RMS value of the signal in LSBs can be
computed by the following:

12 Bs p-p = 42.43 LSBs
2V2
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The noise floor in figure 2.1.1 is at -60 dBm and was measured within a
resolution bandwidth of 100 kHz. If we assume the noise power is flat out
to 40 MHz (36.36 MHz is the ideal Nyquist baseband filter corner
frequency), the noise power in a 40 MHz bandwidth is:

60 dBm + 10log(40MHz/100kHz)
-60 dBm + 26 dB = -34 dBm

The signal to noise ratio at the discriminator output is then:
S/N = -2 dBm - (-34 dBm) = 32 dB

Given that we know the RMS value of the signal at -2 dBm corresponds to
42.43 LSBs (RMS), we can compute the RMS value of the noise in the

system from the following:

S/N = 10log(42.43/n)2 = 32 dB

Solving for n:

(42.43/n)2 = 1585
n2 = 42.432/1585
n = 1.06 LSBs (RMS)

From figure 2.1.2 we know the noise variance at the output of
the tracking loop due to the A/D converter quantizing noise. At the 1 MHz
loop natural frequency the RMS jitter is 0.6 LSBs. At the input to the loop,
i.e. the A/D converter output, the quantizing noise is uniformally
distributed over + 0.5 LSB. The RMS value of the quantizing noise in a
quantizing interval of width q is q/\/12, or 0.29 LSBs. Thus the ratio of
the RMS noise at the output of the loop to the RMS noise at the input to the
loop is (0.6)/(0.29). Since we computed the amount of RMS noise at the
discriminator output to be equal to 1.06 LSBs, the amount of noise at the
output of the loop is 1.06*(0.6)/(0.29) = 2.2 LSBs (RMS).

Figure 2.1.2 shows the amount of RMS noise at the output of the
loop due only to additive white gaussian noise at an IF signal to noise ratio
of 17 dB. This noise is represented by the horizontal line labeled
sigmagisc and is equal to 1.75 LSBs of RMS jitter. An IF signal to noise

ratio of 17 dB corresponds to an Ep/Ng of 14 dB and is computed from the

following equation:
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Ep/Ng = (S/N)(BW/BR)
Ep/Ng = 17 dB + 10log(100 MH2/200 MHz)
Ey/Ng = 17 dB - 3 dB = 14 dB

From this we know that 1.75 LSBs of RMS jitter at the output of the loop
corresponds to an E,/Ny of 14 dB. Earlier we calculated the amount of

noise at the output of the loop from the spectrum analyzer plot of the
discriminator output to be 2.2 LSBs of RMS jitter. This means that the
Ep/Ng at IF that would correspond to the amount of noise we observe in

our system with a .signal only input is poorer than 14 dB and can be
calculated from the following:

2
Ep/Nol@ 22 Lsgs = 14 db - 2dB = 12.dB

From figure 2.1.3, an Ey/Ng = 12 dB corresponds to a predicted error rate

of approxifnately 2*10". This means that unless the amount of unwanted
noise is reduced, an error rate of no better than 2*107° is possible.

2.2 Nonlinear Distortion

The nonlinearities from VCO baseband input to discriminator
baseband output needs to be 1 % or less. For a cubic nonlinearity, this
translates to a requirement that third order intermod distortion, as
measure by a two tone test, be at least 45 dB down relative to the desired
tones. This requirement has been difficult to achieve and maintain. We
currently believe that the hardware meets this requirement, however past
problems with error rate performance have often been traced to this
difficult requirement. The D/A converter in the modulator was changed
from a Brooktree to a Honeywell unit specifically to improve the system
end to end linearity. A substantial improvement in error rate performance
was obtained by making this transition.

2.3 mbol Interferen

Inter Symbol Interference (ISI) has presented problems since
the VNyquist filters are specified in the frequency domain yet the
performance requirements exist in the time domain. The conversion from
time domain to frequency domain was made to allow the filter vendors to
work within a medium they are familiar with. We have had to make manual
adjustments to the tunable slug coils within the filters, once they were

191



MODEM ERROR RATE PERFORMANCE

The figure shows the Bit Error Rate Performance predicted for the Harris TDMA Modem
compared to QPSK performance.
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installed in the system, in order to optimize BER performance.

3.0 PROOF-OF-CONCEPT MODEL TEST ANALYSES, ASSESSMENT, AND
RECOMMENDATIONS

We believe that conceptually the modulation approach we
selected is sound and that the problems with the POC model hardware
implementation can be resolved. There are many inherently desirable
aspects of our design that lend themselves to the long term goal of a low
cost, highly reliable, TDMA earth station modem for commercial
applications. The following sections address the benefits of the existing
POC model hardware technology and potential improvements for future
engineering model and production units.

3.1 ment of Technol R in Pr with
nagineering M | Developmen

There are various hardware techniques incorporated into our
modem which represent an advancement of the state-of-the-art in modem
technology. Examples are: a high speed Op Amp, high speed A/D converter,
high speed D/A converter, SAW IF filter, and 1/2 Nyquist baseband lowpass
filters. The Op Amp represents advanced technology in that a true
differential amplifier is required that has a very large bandwidth and a
very short settling time. The A/D and D/A converters represent the state
of the art in conversion technology, again because of the high speed, large
bandwidth, and low distortion requirements of our system. The IF filter
represents an advance in technology in that conflicting specifications,
such as steep skirt selectivity coupled with almost linear phase, must be
met in one filter. The 1/2 Nyquist baseband filter advances modulation
technology in that it reduces the sidelobe levels of the non-filtered CPFSK
spectrum at the output of the TWT, while minimizing Inter Symbol
Interference (ISI) at the demodulator.

Much of the existing technology utilized in the POC Model
hardware lends itself to lower recurring cost in production quantities.
Examples are: the extensive use of digital circuits in the baseband
processing, the use of surface acoustic wave (SAW) technology for the IF
filter, and the use of monolithic microwave integrated circuits (MMIC) for

the IF signal processing.

Digital technology has and still is evolving at an incredible
pace. Because of shrinking. geometries, integration at the chip level is
increasing while the gate capacitance is decreasing, leading to lower
propagation delays. Also, the cost of producing complex parts keeps
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falling due to greater percentage yields over time and an ever increasingly
competitive market. For these reasons, we have strived to construct a
major portion of our modem using digital technology. IN the POC model we
used ‘standard ECL parts to implement a majority of the baseband signal
processing functions. We envision the use of ECL gate array circuits in the
engineering and production models, which have great potential for low
cost when quantity purchases are made. Finally, the use of digital
technology in our modem eliminates many adjustments that would have to
be performed during the production and test cycles which are labor

intensive and costly.

The IF filter is implemented using SAW technology. Because
SAW devices are fabricated from a mask (in much the same way as digital
devices), filters built using SAW technology are very repeatable from
device to device. That is, the characteristics of a filter remain very
consistent between various production runs. In addition to repeatability,
once the mask for a SAW device has been designed, the fabrication
process is automated (non labor intensive) which leads to low cost per
unit if the NRE is spread over a large quantity of units. This NRE
investment for the IF filter has already been made during the POC model

development.

Monolithic microwave integrated circuits (MMIC) is a young
technology that is maturing quickly. Many types of circuits are available
now in quantities for costs as low as $20 per unit. Available functions
include: AGC amplifiers, limiting amplifiers, phase shifters, phase
‘modulators, etc., all of which operate in the GHz region. Since such
powerful devices are currently “available, it is not difficult to predict
further integration levels, thus enabling even more complex MMICs to be
fabricated. We anticipate that by the 1990's, the entire front-end chain of
our modem might consist of one MMIC chip and one SAW filter on the
corner of a printed circuit card.

3.2 Desian Modification Recommendations for Engineering
Model Development

We are currently using an analog VCO to switch frequencies
with no abrupt change in phase at the symbol boundaries. In the future it
will be possible and advantageous to perform the frequency modulation
using a direct digital synthesis technique via a Numerically Controlled
Oscillator (NCO). In addition, baseband processing circuits that are now
accomlished with SSI and/or MSI ECL devices can be implemented in ECL
gate arrays with a high degree of integration at the chip level, enabling
many functions to be performed by one device. The improvements that are
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realized by the future technologies may be in performance (as is the case
of the NCO implementation of the VCO), in reliability (as is the case of the
SSI to VLSI transition), and/or cost. The key technologies used in the
modem and their current or future implementation strategies are
summarized in Table 3.2.

Table 3.2 Current VS Future Implementation of Key Technology Items

TECHNOLOGY ITEM CURRENT IMPLEMENTATION FUTURE IMPLEMENTATION

Frequency Modulator Analog VCO Digital NCO
Frequency Detector Bulk Analog MMIC/SAW

IF Filter SAW SAW

Baseband Processing SSI & MSI ECL ECL Gate Array
Viterbi Decoder Low Rate - SSI/MSI High Rate - VHSIC
3.2.1 in ircui

The advantage of using a frequency measuring circuit in the
implementation of the demodulator is that it reduces the overall hardware
design complexity of the demodulator. Thus, by reducing circuit
complexity, a cost savings is realized both in the POC model design effort
and in future production quantities. The only disadvantage to the
frequency measuring approach is the tight linearity requirements,
necessary to achieve near QPSK BER performance.

The linearity of the frequency detector and VCO impacts the
BER versus Ep/Nj performance of our modem. Our design goal for the

frequency linearity was 1 % which was difficult to achieve using existing

technology. As technology progresses, linearities of less than 1 % will be
more easily realizable. As technology allows an NCO to be implemented at

the frequencies of interest, linearity will be of no concern in that an NCO
is inherently linear. The VCO output power variation with frequency also
impacts BER performance. Our design goal for this parameter was 0.25 dB,
but again, an NCO would alleviate this problem.

The reason a VCO was used as the continuous phase frequency
modulator is that VCOs were available that had suitable dynamic
characteristics. The disadvantage of the VCO technology is the
nonlinearity of the voltage to frequency conversion and the long term
frequency drift of the VCO. An NCO, as previously touted, is inherently
linear and its frequency stability is as good as its reference.
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3.2.2 Baseband Circuits

The baseband signal processing functions are implemented
using digital technology and therefore realize all the advantages that are
inherent to threshold logic. These advantages include: stability over time
and temperature, a high degree of integration at the chip level, immunity
to small cross-talk and noise signals, and finally, digital circuits lend
themselves to all kind of automated processes which reduce production,
test, and maintenance costs. The only disadvantage of using digital
circuits to implement the baseband processing functions of our
demodulator are the large number of interconnections required in the
baseband processing section with the use of SSI and MSI technology. This
design is inherently less reliable than an implementation with fewer LSI
components. As the implementation transitions from SSI/MSI to gate
arrays, the number of interconnections between parts as well as the total
parts count will decrease, which will increase the reliability of the
modem. The high processing speeds at which we must operate (the sample
rate = the symbol rate = 72.73 MHz) led to ECL technology to accomplish
the required processing under worst case conditions with margin. ECL
gate arrays have lagged behind CMOS and bipolar technologies but are now
emerging in the marketplace with impressive equivalent gate counts and
speeds. A recently completed vendor survey is included in Appendix B
which highlights the capabilities of several vendors to manutfacture
devices that lend themselves to this modulation technology.

We estimate that the bulk of the baseband processing circuitry
in the POC model demodulator could be replaced by five ECL gate array
devices. Each large wire wrap card could be relaced with one gate array
device. Figure 3.2.2 shows the 4 printed circuit card Viterbi decoder
implementation currently used in the POC model demodulator (on the right)
next to its functional LS| equivalent (on the left). Aithough the LSI
version was developed for another application, this photograph is a
dramatic example of the reduction possibilities inherent in this design

implementation.
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APPENDIX A
POC MODEL TEST PLAN
POC MODEL TEST PROCEDURE
POC MODEL TEST DATA SHEETS

POC MODEL TEST PLAN AND PROCEDURE
FOR THE
NASA AMTD POC MODEL DEMODULATOR
PART OF TASK V SOW REQUIREMENT

prepared_for

NASA Lewis Research Center
Contract number NAS3-24681
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1.0 INTRODUCTION:
1.1 7 Scope

This document establishes the test requirements and describes
the Proof-of-Concept (POC) Model Test Procedure used to test the POC
Model demodulator developed for NASA Lewis Research Center on the
Harris Study entitted Advanced Modulation Technology Development for
Earth Station Demodulator Applications.

1.2 Description_of Unit Under Test (UUT)

The UUT is the POC model demodulator which is comprised of
the Demodulator chassis and the Demodulator Power Supply chassis. The
Demodulator chassis contains the RF and digital circuits that transform
the 3.373 GHz 16-ary CPFSK RF waveform to digital burst data. The
Demodulator Power Supply chassis houses the DC power supplies that
provide power to the Demodulator chassis. The chassis are standard Zero
enclosures.

1.3 icable D n
« POC Model Top Level Test Plan

+ Contract NAS3-24681 Statement of Work (SOW)
« POC Model Performance Specification, Rev. A, November 1986

1.4 Test Equipment Required

1.4.1 Special Test Equipment (STE)

The following Special Test Equipment has been developed on
this contract for the purpose of providing the necessary and sufficient
test and simulation capability for verification of POC model demodulator
performance. This equipment was designed for operation in a laboratory
environment. This POC model test procedure contains the Acceptance Test
Procedures (ATPs) for the STE which are required to validate their
performance prior to initiating the POC model test on the demodulator.

} Equivalent equipment may be used.
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Name

Continuous Phase Frequency Shift Keying Modulator No. 1
Continuous Phase Frequency Shift Keying Modulator No. 2
Signal Combiner Chassis

1.4.2 Commercially Available Standard Test Equipment

Name Manufacturer Model
Data Generator : Hewlett Packard 3760A
Error Detector Hewlett Packard 3761A
Data Error Analyzer Hewlett Packard 1645A
Synthesized Signal Generator Hewlett Packard 8660C
Synthesized Signal Generator Hewlett Packard 8662A
Synthesized Signal Generator Hewlett Packard 8672A
Spectrum Analyzer Hewlett Packard 8566
Oscilloscope Tektronix 485
1.4.3 Cables

Test cables include those required to connect the UUT to the
STE plus additional support cables for interconnections between the
commercially available standard test equipment and the STE. An
interconnect diagram which shows the cables required for testing is

shown in figure 1.4.3.

1.5 il ver

In all cases, it is important for the test operator to record the
observed anomaly and all events and conditions pertinent to the failure.

It is extremely important that the test operator carefully
document the existing conditions, the state of the STE, and UUT BEFORE

taking steps to determine the cause of the test failure.

If the cause of the failure of a given test or subtest is not
immediately obvious, the test operator will repeat the test or subtest to
determine if a recurring fault is present. If such a recurring fault is
present, the test operator will initiate procedures to isolate the cause of
the fault, especially to distinguish between faults attributed to the UUT
versus other causes. If the UUT passes the retest, the test operator may
(with concurrance from QC) elect to continue the test.
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When recurring test failures are observed, the test will be
halted, the UUT repaired (or adjusted), and the test will be restarted. At
the time the test is restarted, the test operator, with the concurrence of
the cognizant QC representative, will determine which of the tests or
subtests previously completed must be scrapped and reaccomplished with
the repaired UUT. This determination will be made based on the nature of
the fault and the circuitry repaired or adjusted in the UUT.

In all cases where the UUT is repaired or readjusted, the
activities will be documented per applicable QC standard procedures.

2.0 POC MODEL TEST PLAN

The purpose of the POC Model Test is to characterize the
performance of the POC model demodulator with respect to design
requirements outlined in the contractual SOW and various design goals
established during the early phases of the program and defined in the POC
Model Performance Specification, Rev. A, November 1986. Table 2.0 is a
test requirements matrix which lists the various requirements and
provides a cross reference from the SOW to other documents. The purpose
of the POC Model Test is to validate those requirements listed in table 2.0
which are verifiable by testing. Analysis is provided for those
requirements which are not practical to test.

The test plan is organized in the same order that testing will
occur. First an acceptance test is performed on the Signal Combiner
Chassis and the CPFSK Modulators. The STE must pass acceptance test
criteria in order to provide the proper test environment for formal POC

model demodulator testing.
2.1 ignal iner Chassi Plan

The Signal Combiner Chassis receives continuous low rate data
from an external data generator, buffers it, and outputs a burst of data at
the required 200 Mbps data rate for as many as three CPFSK demodulators.
Along with the 200 Mbps bursted data, it provides a 200 MHz clock and a
burst command which goes high while data is valid. It provides a test
profile switch which is used to select test options for combinations of the
modulator outputs. It also contains an internal noise source which is
summed with the modulator outputs to produce the composite I|F test
signal for the demodulator. It receives demodulated 200 Mbps bursted
data from the demodulator, buffers it, and outputs continuous low rate
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data to an external bit error rate counter.

2.1.1 200 Mpbs Data Wrap Around Test

Much of the Signal Combiner circuitry can be verified by this
straightforward test. Normally the 200 Mbps data produced by the Signal
Combiner is routed to the Modulator, modulated onto the 3.373 GHz IF
carrier, routed to the POC Model Demodulator, CPFSK demodulated, and
routed back to the Signal Combiner. This normal configuration is shown in
figure 2.1.1. This is the standard test configuration for BER testing.

Each of the three modulator data outputs can be individually
connected directly to the receive data inputs. The data compared at the
bit error rate counter to the PN sequence generated by the data generator
will be verified to contain no errors. This one test verifies much of the
buffering and data handling operations performed internally by the Signal
Combiner. Figure 2.1.1 also shows this test configuration which wraps the
modulator data, clock, and, burst command outputs back into the receive
data, receive clock, and unique word detect inputs.

Data Bit Error i Data Bit Error
Generator Rate Counter Generator Rate Counter
l Low Rate Data T l _ l Low Rate Data T
Signal Signal
Combiner Combiner
l 200 Mbps Data T 200 Mbps Data T
CPFSK POC Model
Modulator Demodulator

3.373 GHz IF T

NORMAL CONFIGURATION DATA WRAP AROUND TEST

Figure 2.1.1 200 Mbps Data Wrap Around Test Configuraton

During the 200 Mbps Data Wrap Around Test, the ACQ FAILURE
lamp will be observed to remain extinguished. The acquisition failure
circuits that drive this lamp look for a unique word detect (UWDET) pulse
back from the demodulator fqr every burst command (BURST) generated by
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the Signal Combiner. If it misses one, the ACQ FAILURE lamp is
illuminated. In the test configuration shown if Figure 2.1.1, these signals
are directly connected to prevent the acquisition failure circuits from
illuminating the lamp. This function will be tested by disconnecting the
wrap around cable while still in the wrap around test configuration.
lumination of the lamp will be verified. The cable will then be
reconnected and the action of pressing the START button will be observed

to extinguish the lamp.

2.1.2 Signal Combiner Data Length Test

The Signal Combiner provides a selection of three different
length data messages per burst: 170 bits, 3,734 bits, and 11,258 bits.
Each of the modulator data outputs will be verified to produce the three
message lengths by measuring the time interval of the burst command
signal and observing the data and clock signals for each modulator output.
The burst duty cyle will also be measured to verify compliance with SOW
requirement 3.2.2(i) for a 1 burst per msec minimum burst duty cycle.

2.1.3 Test Profile Switch Function Test

The Test Profile Switch has two positions and controls how
many bursts per frame are used and whether the incoming PN data is
separated into unique data streams or all PN bits sent to all modulators.
When the Test Profile Switch is in the 1 position, the desired signal at the
demodulator has one burst per frame. Interfering baseband data messages
are produced in this mode with overlapping burst commands for co-channel
and adjacent channel testing. When the Test Profile Switch is in the MULT
position, the demodulator sees the desired signal as two staggered bursts
per frame.

2.1.3.1 Overlapping Burst Command Test

The purpose of the Co-channel Interferer Test is to measure the
BER performance degradation with an interferer which occupies the same
time slot and frequency band but is 20 dB below the desired signal.
Therefore the burst commands produced by the Signal Combiner should
overlap as shown in figure 2.1.3. The burst command signals from each of
the modulator data outputs will be simultaneously compared to verify the

overlap.
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—P: 44— 4 symbol times —» 44— 10 nsec min
CH1
CH2
CH3
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, Y Y
all PN sequences the same different PN sequences
TEST PROFILE SWITCH, POSITION 1 TEST PROFILE SWITCH, POSITION MULT

Figure 2.1.3 Burst Commands VS Test Profile Switch Position

The purpose of the Adjacent Channel Interferer Test is to
measure the BER performance degradation with an interferer which
occupies the same time slot and an adjacent band one half bit rate away in
frequency. This is done with the interferer power equal to the desired
signal power. In the Adjacent Channel Interferer Test, the burst
commands produced by the Signal Combiner should have the same
relationship as in the Co-channel Interferer Test. In both cases the PN
sequences are the same for each of the modulator data outputs, but offset
in time by four symbol periods, or 13.75 nsec. This data relationship will

also be visually verified.

2.1.3.2 Staggered ngrstommgnd Test

In the Independent User Test, consecutive messages per TDM
frame are transmitted from independent sources, separated by a minimum
guard time of 10 nsec. The Independent User Test demonstrates the ability
of the demodulator to fully acquire consecutive independent users in one
TDM frame. It is also indicates the sensitivity of the demodulator bit
synchronizer to asynchronous symbol clock relationships. In the Staggered
Burst Command Test, the burst commands produced by the Signal Combiner
should be separated by a minimum guard time of 10 nsec as shown in
figure 2.1.3. Different PN sequences for each message should also be
produced. The Signal Combiner generates the different PN sequences by
doubling the data generator data rate and demultiplexing the incoming PN
sequence into unique sequences for each modulator. The burst command
signals from each of the modulator data outputs will be simultaneously
compared to verify the staggered relationship. The guard time between
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successive bursts will be measured to verify compliance with the 10 nsec
minimum guard time requirement of SOW 3.2.2(h). The data outputs will
also _be compared to verify that the messages are not the same.

2.1.4 RF _Qutput Test

The Signal Combiner contains an internal noise source which is
summed with the modulator outputs to produce the composite IF test
signal for the demodulator. The maximum noise spectral density at IF will
be measured and the noise output flatness will be determined. The gain
through each of the modulator channels will also be measured for a 3.373

GHz CW input at -30 dBm.

2.1.4.1 Noise Spectral Density Determination

The objective of this test is to assess the noise spectral
density, No, about the 3.373 GHz IF, at the output of the Signal Combiner.
This test is performed with the noise source on at its highest power level
and all modulators off. The first measurement is in the form of an
observation. The signal combiner output will be observed on an
oscilloscope. The oscilloscope should reveal a bandlimited waveform with
no DC component and no noticeable clipping of the waveform. Noise
flatness will be determined by observing the Signal Combiner output on a
spectrum analyzer at a low video bandwidth. The noise power should be
flat within + 1 dB over a 400 MHz bandwidth centered at 3.373 GHz. N, or

the noise spectral density measured about the IF will be determined by
utilizing a feature of the spectrum analyzer which allows the rms noise
level to be read out normalized to a 1 Hz noise power bandwidth. The
spectrum analyzer accurately correctes the noise level measurement
readout for its log amplifier and detector response and normalizes the
value to a 1 Hz bandwidth. The measurement is made by centering the
spectrum analyzer marker at the average noise power level within the 400
MHz bandwidth and invoking the noise level measurement feature.

2.1.4.2 RF_Qutput Power

With the noise source disconnected, a CW 3.373 GHz signal from
an external frequency synthesizer will be connected to each of the
modulator IF inputs and the power level at the summed output measured.
With a -30 dBm power level at each of the modulator inputs, the output
power level at the SUMOUT connector should be 0 dBm.
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2.2 lator Pl

A fully functional Signal Combiner Chassis, which has passed
its ATP, is required to perform the ATP on the Modulator. Several SOW
design requirements are verified indirectly by observing that the
waveforms produced by the STE are within specified limits.

2.2.1 Baseband Data Test

The Modulator receives 200 Mbps bursted serial NRZ data from
the Signal Combiner Chassis and demultiplexes it into three paralle! bit
streams. Every third bit in is rate one half convolutionally encoded,
resulting in a 4 parallel bit symbol. Normally every three serial data bits
in are used to produce a 4 parallel bit symbol. Every fourth symbol,
however, is used for tracking and is derived by taking two data bits in and
assigning them as the MSB and NSB of the symbol as usual. The difference
is that the third data . bit in is not clocked into the encoder, which is
frozen. Instead, two zeros are appended as LSBs to the MSB and NSB to
form the tracking symbol. Therefore, for three consecutive trios of
incoming bits a symbol is formed. Every fourth symbol is formed from two
incoming bits. The ratio of incoming bits to symbols is therefore 11/4.
This relationship holds true for all of the data bits except for the last 16
bits in the message.

Eight consecutive zeros are clocked into the encoder for the
last eight symbols in the message in order to flush the encoder or force it
to terminate in an all zeros state. Two incoming serial data bits are
assigned as the MSB and NSB of the symbol as usual. Instead of clocking
the third data bit in the sequence into the encoder, a zero is substituted
for it and clocked in instead. This process continues for the last 16 bits
in, or the last eight symbols out. The ratio of incoming bits to symbols for
the last 8 symbols is therefore 16/8 or 2/1.

The Modulator also generates and affixes the preamble and
unique word symbols in front of the data message.

2.2.1.1 Minimum Length Message Test

The Modulator provides a data length message selector which
has to match the data length selected at the Signal Combiner for one of
three different length data messages per burst. The minimum length
message is 170 bits long or (170-16)*4/11 + 16*1/2 (Termination
Sequence) = 64 symbols. The requirement that the data portion of the
minimum length message in a burst be equal in length to the preamble
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portion of the burst will be verified by observing the output of an
amplifier past the D/A converter and Nyquist filter, but before the VCO.
The preamble, which consists of a 32 symbol long alternating fg, f,¢

pattern followed by 32 consecutive f, symbols, can be clearly observed,

followed by the 6 symbol long unique word. The termination sequence is
derived from the last 16 message bits in and is therefore part of the data
message. The relationships of the preamble, unique word, and data
message are depicted in Figure 2.2.1. The number of preamble symbols
will be counted and compared to the data message symbols. This test, in
conjunction with the POC demodulator test verifies SOW requirement

3.2.2()).

4—— 1.8425 usec ——->

P e oo»

Short
Message -

e 57.2825 usec >
Long
Message

i I‘Dr‘e;mble Déta Message

nique Word
Figure 2.2.1 Burst Structure at Modulator D/A Qutput

2.2.1.2 lator n T

There are three possible message lengths which are selectable
by the burst data length switch on the front panel: 170 bits, 3,734 bits,
and 11,258 bits. Although this test was previously performed on the
Signal Combiner, it is necessary to reverify the data lengths and burst
duty cycle. The Modulator reclocks the incoming bit stream with an
asynchronous symbol clock and creates a symbal stream complete with
preamble and unique word. The burst duty cycle will also be measured to
verify compliance with SOW requirement 3.2.2(i) for a 1 burst per msec
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minimum burst duty cycle.

2.2.1.3 Unigue Word Length Test

Using the same test configuration, the requirement that the
unique word length be less than 20 bit times will also be verified. With
random data furnished from the data generator, the unique word is easily
distinguished from the preamble and the data message by observing
multiple bursts of data. The number of unique word symbols will be
counted, which is by design, six. Since 6s*11b/4s = 16.5 bits, it is
obvious that SOW requirement 3.2.2(e) is met. '

2.2.1.4 ni Word P m T

The format of the unique word generated by the Modulator must
match cne of four possible addresses which the POC Model Cemodulator is
designed to recognize. Both modulators must also have the same unique
word in order to perform the successive bursts per frame test. The fixed
unique word pattern generated by the modulator will be verified to be fg fg

fo fg fo fa-
2.2.3 Modulated Spectra Test

In this test, the spectra of the modulator output will be
observed, recorded, and compared to the predicted spectra. The objective
of this test is to verify that the modulator output spectral characteristics
are such that SOW requirement 3.2.2(a) for a minimum bandwidth
efficiency of 2 b/s/Hz is met.

The output of the Modulator will be observed on a spectrum
analyzer and plotted on a sheet of paper. A mask printed on a transparent
overlay will be placed over the plotter output and compared against the
Modulator output spectra. The modulated spectra will be verified to fall
within the mask limits, as shown in Figure 2.2.3. |If the entire burst were
comprised of random data, the resulting spectra would fall totally within
the mask. Since each burst contains a non-random preamble containing an
alternating f, f ¢ pattern, associated spectral components occur every

36.36 MHz (the fundamental frequency of the f,f,s pattern), or 1/2 symbol
rate away from the center frequency. Due to the dominance of the f, tone

in the preamble, its associated spectral component is also visible in the
modulator output spectra. It is located 34.09 MHz or 1/2*15/16 symbol
rate to the right of the 3.373 GHz center frequency. Due to the non-random
nature of the preamble it is permissible for the preamble spectral
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components to break the mask limits, as illustrated in Figure 2.2.3.

fO at 34.09 MHz from center

preamble harmonics at n*36.36 MHz

| Outer_ Mask

. | ll
' ml“
Illllllllllllllul|l|m|mm| lfllll“
Modulator,

RFOUT
Inner Mask

Figure 2.2.3 16-ary CPFSK Modulator Output Spectra

2.3 M m lator T Plan

This section describes the plan for testing the POC Model
Demodulator. The results of this testing will be published and analyzed in
the Task VIl POC Model Test Report. The POC Model Test configuration is

shown in Figure 2.3.

2.3.1 Eb/No Calibration

This section describes the calibration of Eb/No and as such is

not, by strict definition, a test. The maximum noise spectral density of
the Signal Combiner was determined and recorded as part of its ATP. The
Modulator has been designed such that when no baseband data is supplied
to the input, a single tone (carrier) output will result, if it is active. The
carrier power will be measured using a spectrum analyzer at the output of
the Signal Combiner, with the noise source off and only one modulator
active. Using an external attenuator, the carrier power will be adjusted to
the nominal value of 0 dBm. Once the nominal carrier power has been set
to 0 dBm, the noise power will be attenuated to achieve a given E /N,.

From equation (2), the N  required for a given E /N, may be determined.

Equation (3) gives the amount of noise attenuation necessary to achieve
the E,/N_, given the maximum noise spectral density previously recorded.
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N, dBm/Hz = C, dBm - E/N,, dB - 10log(R,) (2)
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COMMAND our OuUrT VALID
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T T 3.37373 GHz
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* The Data Generator and Error Detector are replaced by the Data Emror Analyzer
when the Short Burst length, i.e., 170 KHz PN clock is selected.

Figure 2.3 POC Model Test Configuration
Noise attenuation = No, maximum - No, desired (3)

In our system the data rate, Ry is 200 Mbps. For example, to achieve an
E,/N, of 12 dB, with a carrier power of 0 dBm, a noise spectral density of
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N, =0-12 - 10Iog(200*106) = -95 dBm/Hz is necessary. Thus, if the

maximum noise spectral density is -78 dBm/Hz, the noise source should be
attenuated by:

Noise attenuation = -78 - (-95) = 17 dB

2.3.2 Connectivity _Test

In this test the demodulator is tested in the absence of
external noise. This characterizes the performance of the demodulator and
verilies the integrity of the test setup. This test is performed with the IF
power set and held at a nominal level and with only one modulator active.
The long message (12,408 bits) will be selected. The error rate achieved
in this configuration will be recorded.

2.3.3 Valid D Te

SOW subparagraph 3.2.1(e) requires the POC Model Demodulator
to produce a real time indication of start of valid data. In this test the
DATA VALID output is connected to one channel of a dual channel
oscilloscope and the timing compared against DATA OUT and CLK OUT. The
data bits and clocks are then verified to fall within the DATA VALID pulse.
The test configuration is the same as used in the Connectivity Test and the
long message (12,408 bits) will be selected. The duration of DATA VALID,
DATA OUT, and CLK OUT will be recorded.

2.3.4 isiti

During POC Model Demodulator testing the ACQ FAILURE lamp on
the Signal Combiner will be monitored. Any acquisition failures that occur
during POC model testing will be recorded along with the relevant test
equipment settings such as carrier power level and noise attenuation.
Since it is statistically unlikely that meaningful acquistion performance
data can be obtained during testing, the following acquistion failure rate

analysis is provided.

2.3.5 Acaquisition Analysis

SOW subparagraph 3.2.2(d) requires a probability of acquistion
failure of less than 10°8.

2.3.6 BER Baseline Test

In this test the demodulator is tested in the presence of
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external noise. The relationship of carrier power to noise attenuation will
be varied to produce a set of data points for E /N versus error rate. The

resulting information will be plotted on a BER curve which shows the
relationship of the measured data to the theoretical QPSK performance
curve. Figure 2.3.5 shows an error rate curve for theoretical QPSK versus
the predicted performance curve for our system which was published in
the Task | Report. The performance requirements from SOW subparagraph
3.2.2(b) and POC Model Performance Specification, Rev. A, paragraph
2.1.1(f) are such that the P, should be less than 5*1077 at an E,/N, of 13.5

dB. This test will be performed with only one modulator active and the
long message (12,408 bits) selected. The error rate achieved in this
configuration will be recorded.

2.3.7 V. riation T

This test is similar to the BER Baseline Test except that
demodulator BER performance is measured at both higher and lower than
nominal IF power levels. This test statically exercises the IF limiting
stage, which is required by SOW subparaph 3.2.2(c) to operate over a 10 dB
dynamic range, or £+ 5 dB from nominal. The actual operational effects of

dynamic range on BER performance will be determined by varying the total
IF power and plotting demodulator BER performance at an error rate of
5*1077. This test will be performed with only one modulator active and
the long message (12,408 bits) selected. '

2.3.8 Model Demodulator D Length T

In this test, the length of the data message is varied to assess
the demodulator's sensitivity to message length. Demodulator BER
performance at an error rate of 5*107 is measured as a function of data
message length while holding E /N, constant. This test will determine the

extent to which the demodulator has fully acquired initial phase and AGC
setting by the end of the preamble. SOW subparagraph 3.2.2(d) requires a
maximum time to acquire synchronization of less than 100 information bit
times, or 36.36 symbol times. Harris requested and received permission
to increase the maximum time to acquire synchronization from 36.36
symbol times to 64 symbol times (880 nsec). This change is reflected in
the POC Model Performance Specification, Rev. A, paragraph 2.1.1(h). In
our design the first 32 alternating f,, f;; symbols of the preamble are

used to achieve symbol synchronization and burst detect. This information

is used to train the bit sync over the last 32 symbals. The last 32 all f,

symbols are used for carrier acquisition during which time the DC restore

and AGC loops track out any offsets so that the phase accumulator ends up
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MODEM ERROR RATE PERFORMANCE

The figure shows the Bit Error Rate Performance predicted for the Harris TDMA Mcdem
compared to QPSK performance.
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with the correct value for f,, prior to the start of unique word. If the

maximum time to acquire synchronization requirement is not met, the
demodulator will make errors early in the message and the error rate will
go up as message length is decreased. If the error rate performance stays
constant for all three possible message lengths, then the maximum time to
acquire synchronization requirement has been met.

2.3.9 n nden r Te

In this test, two consecutive bursts separated by a minimum
guard time of 10 nsec are transmitted per TDM frame. This test verifies
compliance with the requirement to demodulate successive bursts per
frame from independent users (SOW subparagraph 3.2.1(d)). It will also
indicate any demodulator sensitivity to bit sync acquisition, since the
modulators each have independent, asynchronous symbol clocks. IF power
is allowed to vary up to +5 dB from nominal between independent sources.
The medium length message (4,070 bits) is selected and the IF output
frequency is set to 3.373 GHz for both modulators.

2.3.10 Co-channel Interference Test

The purpose of the Co-channel Interference Test is to measure
the BER performance degradation with an interferer which occupies the
same time slot and frequency band but is 20 dB below the desired signal.
In the Co-channel Interference Test, the burst commands overlap as shown
in Figure 2.1.3. In both cases the PN sequences are the same for each of
the modulator data outputs, but offset in time by four symbol periods, or
13.75 nsec. This test verifies compliance with SOW requirement 3.2.2(qg).
The long message length (12,408 bits) is selected and the IF output
frequency is set to 3.373 GHz for both modulators. The desired signal
power level will be set to nominal and the interfering signal power level
will be adjusted to achieve an error rate of 5*10°7. The power level of
each modulator output will be recorded.

2.3.11 Adiacent Channel Interference Test

The purpose of the Adjacent Channel Interferer Test is to
measure the BER performance degradation with an interferer which
occupies the same time slot and an adjacent band one half bit rate away in
frequency. This is done with the interferer power equal to the desired
signal power. In the Adjacent Channel Interference Test, the burst
commands overlap as shown in Figure 2.1.3. In both cases the PN
sequences are the same for each of the modulator data outputs, but offset
in time by four symbol periods, or 13.75 nsec. The IF output frequency of
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the modulator which produces the desired signal is set to 3.373 GHz and
the interfering modulator is set 100 MHz away. This test verifies
compliance with SOW requirement 3.2.2(f). IF power is set to the nominal
level for each modulator and the long message length (12,408 bits) is used.
The desired signal Ep /N, required to achieve an error rate of 51077 will

be recorded.
3.0 POC MODEL TEST PROCEDURE

The POC Model Test Procedure provides an Acceptance Test
Procedure (ATP) for each of the STE chassis and provides a POC Model
Demodulator Test Procedure for executing the POC Model Test at the
conclusion of Task VII. The purpose of these test procedures is to verify
those requirements described in the POC Model Test Plan, Section 2.0,
which are verifiable by testing. Analysis is provided in section 2.0 for
those requirements which are not practical- to test.
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3.1

Siagnal Combiner Chassis Acceptance Test Procedure

Setup the test configuration for the Signal Combiner ATP as

shown if Figu

re 3.1.

5MHz
Rubidium Std
11.258 MHz
3.734 MHz
170 KHz
PN Clk 10 MHz Ret 200 MHz . 5 MHz Distribution
Sig Gen Sig Gen < -~ Amp
200 MHz 5 MHz
Data  —={PNCLKIN REFIN REF IN NOSEOUT
Generator” > PN IN
Error g——— PN OQUT SIGNAL COMBINER NOISE IN
Detector* < PN CLK OUT
IF IN SUM OUT]
200 MHz RX RX
CLK DATA BURST DATA CLK UWDET
A y

4

* The Data Generator and Error Detector are replaced by the Data Error Analyzer
when the Short Burst length, i.e., 170 KHz PN clock is selected.

Figure 3.1 Signal Combiner ATP Test Configuration

(a) Power the Equipment on with the cables disconnected.
Allow 30 minutes for the signal generators to stabilize.

(b) Set the HP 8662A frequency to 200 MHz and the output
level to 0.0 dBM.

(c) Set up the HP 3760A Data Generator and HP 3761A Error
Detector as defined in Table 3.1.
(d) Set the HP 8660A frequency to 11.258 MHz and the output
level to 0.9 V (+12.1 dBm, 50Q).
(e) Connect the cables between equipment as shown.
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Table 3.1 Error Detector and Data Generator Initial Settings

Error Detector

CLOCK INPUT FIELD:
LEVEL =0
TRIGGER MODE = +AUTO
" RATE = 1.5 - 50 MBITS
DATA INPUT FIELD:
PHASE =0
POLARITY = DATA
PRBS LENGTH2N - 1BITS = 8
DISPLAY FIELD:
DISPLAY HOLD = MIN
MODE = BER
SYNC = AUTO
INTERVAL 10" CLOCK PERIODS =n -5
GATE = REP

ner. r

CLOCK FIELD:
TRIGGER MODE = AUTO
RATE MBITS = EXT
DATA DELAY ns = 0
CLOCK OUPUT FIELD:
AMPLITUDE = 3.2V
VERNIER = MAX
CLOCK/CLOCKN = CLOCKN
DC OFFSET =+
0 TO 3V VERNIER = STRAIGHT UP
DATA FIELD:
ADD ERROR
PRBS LENGTH 2N -1 BITS
WORD = 1010010100
DATA OUTPUT FIELD:
DC OFFSET =+
0 TO 3V VERNIER = 1:30
RZ/NRZ = NRZ
AMPLITUDE =3.2V
VERNIER = MAX
DATA/DATAN = DATA
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3.1.1

() Connect the CHANNEL 1 200 MHZ CLK, DATA, and BURST
outputs to the RX CLK, RX DATA, and UWDET inputs as shown.
(g) Place the DATA LENGTH switch on the Signal Combiner
front panel in the L position.

(h) Place the TEST PROFILE switch on the Slgnal Combiner
front panel in the 1 position.

(i) Record the following information in the Signal Combiner
Chassis Acceptance Test Procedure Data Sheets, section 4.1:

« All test equipment serial numbers and cal due dates
- Test operator and QC initials certifying correct setup

M Wrap Around T

(a) Press the RESET button on the front of the Signal Combiner.
(b) Verify that the ACQ FAILURE lamp is extinguished. The

lamp should remain extinguished at all times while the wrap
around cables are connected.

(c) Record the error rate displayed on the Error Detector. The
error rate display should read 1.9 * 1076,

(d) Disconnect the cable between the CHANNEL 1 BURST output
and the UWDET input.

(e) Verify that the ACQ FAILURE lamp is illuminated.

(f) Reconnect the cable between the CHANNEL 1 BURST output
and the UWDET input.

(g) Press the RESET button on the front of the Signal Combiner.
(h) Verify that the ACQ FAILURE lamp is extinguished.

(i) Disconnect the three cables from the CHANNEL 1 outputs
and reconnect them to the CHANNEL 2 outputs.

(j) Press the RESET button on the front of the Signal Combiner.
(k) Verify that the ACQ FAILURE lamp is extinguished. The
lamp should remain extinguished at all times while the wrap
around cables are connected.

() Record the error rate displayed on the Data Error Analyzer.
The error rate display should read 1.9 * 10 6,

(m) Disconnect the cable between the CHANNEL 2 BURST output
and the UWDET input.

(n) Verify that the ACQ FAILURE lamp is illuminated.

(0) Reconnect the cable between the CHANNEL 2 BURST output
and the UWDET input.

(p). Press the RESET button on the front of the Signal Combiner.
(q) Verify that the ACQ FAILURE lamp is extinguished.

(r) Disconnect the three cables from the CHANNEL 2 outputs

and reconnect them to the CHANNEL 3 outputs.
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3.1.2

(s) Pressthe RESET button on the front of the Signal Combiner.
(t) Verify that the ACQ FAILURE lamp is extinguished. The

lamp should remain extinguished at all times while the wrap
around cables are connected.

(u) Record the error rate displayed on the Data Error Analyzer.
The error rate display should read 1.9 * 1076.

(v) Disconnect the cable between the CHANNEL 3 BURST output
and the UWDET input.

(w) Verify that the ACQ FAILURE lamp is illuminated.

(x) Reconnect the cable between the CHANNEL 3 BURST output
and the UWDET input.

(y) Pressthe RESET button on the front of the Signal Combiner.
(z) Verify that the ACQ FAILURE lamp is extinguished.

ignal mbiner D Length T

(aa) Connect the CHANNEL 1 BURST output to CH 1 of the
oscilloscope and trigger on the rising edge of the CH 1 input.
Adjust the TIME/DIV to 10 usec/div. Adjust CH 1 VOLTS/DIV
to 0.5 volts/div.

(ab) The time interval between the rising and falling edges of
the BURST pulse should be approximately 5.6 divisions, or 56.29
+ 5 usec in duration. Record the time interval on the data
sheet.

(ac) Connect the CHANNEL 1 200 MHZ CLK to CH 2 of the
oscilloscope and adjust CH 2 VOLTS/DIV to 0.5 volts/div.

(ad) The time duration of the 200 MHZ CLK should be
approximately 5.6 divisions, or 56.29 + 5 usec in duration.
Record the time interval on the data sheet.

(ae) Connect the CHANNEL 1 200 MHZ DATA to CH 2 of the

oscilloscope.
(af) The time duration of the 200 MHZ DATA should be

approximately 5.6 divisions, or 56.29 + 5 usec in duration.
Record the time interval on the data sheet.

(ag) Connect the CHANNEL 2 BURST output to CH 1 of the
oscilloscope.

(ah) The time interval between the rising and falling edges of

the BURST pulse should be approximately 5.6 divisions, or 56.29
+ 5 usec in duration. Record the time interval on the data

sheet. |

(ai) Connect the CHANNEL 2 200 MHZ CLK to CH 2 of the
oscilloscope.
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by

Connect as described in test procedure

Oscilloscope

(Test Configuration for Data Length Test and Burst Command Tests)

* The Data Generator and Error Detector are replaced by the Data Error Analyzer
when the Short Burst length, i.e., 170 KHz PN clock is selected.

Figure 3.1.2 Test Configuration for Data Length and Burst

Command Tests

(aj) The time duration of the 200 MHZ CLK should be
approximately 5.6 divisions, or 56.29 + 5 usec in duration.

Record the time interval on the data sheet.

(ak) Connect the CHANNEL 2 200 MHZ DATA to CH 2 of the
‘oscilloscope.
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(al) The time duration of the 200 MHZ DATA should be
approximately 5.6 divisions, or 56.29 + 5 usec in duration.
Record the time interval on the data sheet.

(am) Connect the CHANNEL 3 BURST output to CH 1 of the
oscilloscope.

(an) The time interval between the rising and falling edges of
the BURST pulse should be approximately 5.6 divisions, or 56.29
+ 5 usec in duration. Record the time interval on the data

sheet.
(ao) Connect the CHANNEL 3 200 MHZ CLK to CH 2 of the

oscilloscope.

(ap) The time duration of the 200 MHZ CLK should be
approximately 5.6 divisions, or 56.29 + 5 usec in duration.
Record the time interval on the data sheet.

(ag) Connect the CHANNEL 3 200 MHZ DATA to CH 2 of the
oscilloscope.

(ar) The time duration of the 200 MHZ DATA should be
approximately 5.6 divisions, or 56.29 + 5 usec in duration.
Record the time interval on the data sheet.

(as) Set the HP 8660A frequency to 3.734 MHz and place the
DATA LENGTH switch on the Signal Combiner front panel in the
M position.

(at) Connect the CHANNEL 1 BURST output to CH 1 of the
oscilloscope and adjust the TIME/DIV to 2 usec/div.

(au) The time interval between the rising and falling edges of
the BURST pulse should be approximately 9.3 divisions, or 18.67
+ 1 usec in duration. Record the time interval on the data

sheet.
(av) Connect the CHANNEL 1 200 MHZ CLK to CH 2 of the

oscilloscope.
(aw) The time duration of the 200 MHZ CLK should be

approximately 9.3 divisions, or 18.67 + 1 usec in duration.
Record the time interval on the data sheet.

(ax) Connect the CHANNEL 1 200 MHZ DATA to CH 2 of the
oscilloscope.

(ay) The time duration of the 200 MHZ DATA should be
approximately 9.3 divisions, or 18.67 + 1 usec in duration.
Record the time interval on the data sheet. R

(az) Connect the CHANNEL 2 BURST output to CH 1 of the
oscilloscope.

(ba) The time interval between the rising and falling edges of
the BURST pulse should be approximately 9.3 divisions, or 18.67
+ 1 usec in duration. Record the time interval on the data

sheet.
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(bb) Connect the CHANNEL 2 200 MHZ CLK to CH 2 of the
oscilloscope.

(bc) The time duration of the 200 MHZ CLK should be |
approximately 9.3 divisions, or 18.67 + 1 usec in duration.
Record the time interval on the data sheet.

(bd) Connect the CHANNEL 2 200 MHZ DATA to CH 2 of the
oscilloscope.

(be) The time duration of the 200 MHZ DATA should be
approximately 9.3 divisions, or 18.67 + 1 usec in duration.
Record the time interval on the data sheet.

(bf)y Connect the CHANNEL 3 BURST output to CH 1 of the
oscilloscope. |

(bg) The time interval between the rising and falling edges of _
the BURST pulse should be approximately 9.3 divisions, or 18.67
+ 1 usec in duration. Record the time interval on the data

sheet.
(bh) Connect the CHANNEL 3 200 MHZ CLK to CH 2 of the

oscilloscope. |
(bi) The time duration of the 200 MHZ CLK should be

‘approximately 9.3 divisions, or 18.67 + 1 usec in duration.

Record the time interval on the data sheet.

(bj) Connectthe CHANNEL 3 200 MHZ DATA to CH 2 of the
oscilloscope.

(bk) The time duration of the 200 MHZ DATA should be
approximately 9.3 divisions, or 18.67 + 1 usec in duration.
Record the time interval on the data sheet. ‘

(bl) Replace the HP 3760A and HP 3761A Data Generator and
Error Detector with the HP 1645A Data Error Analyzer and set
it for external clock. ' '

(bm) Set the HP 8660A frequency to 170 KHz and place the
DATA LENGTH switch on the Signal Combiner front panel in the
S position.

(bn) Connect the CHANNEL 1 BURST output to CH 1 of the
oscilloscope and adjust the TIME/DIV to 0.1 usec/div.

(bo) The time interval between the rising and falling edges of
the BURST pulse should be approximately 8.5 divisions, or 0.85
+ 0.05 usec in duration. Record the time interval on the data

sheet.
(bp) Connect the CHANNEL 1 200 MHZ CLK to CH 2 of the

oscilloscope.

(bg) The time duration of the 200 MHZ CLK should be
approximately 8.5 divisions, or 0.85 + 0.05 usec in duration.
Record the time interval on the data sheet.

(br) Connect the CHANNEL 1 200 MHZ DATA to CH 2 of the
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oscilloscope.
(bs) The time duration of the 200 MHZ DATA should be

approximately 8.5 divisions, or 0.85 + 0.05 usec in duration.
Record the time interval on the data sheet.

(bt) Connect the CHANNEL 2 BURST output to CH 1 of the
oscilloscope. .

(bu) The time interval between the rising and falling edges of
the BURST pulse should be approximately 8.5 divisions, or 0.85
+ 0.05 usec in duration. Record the time interval on the data

sheet.
(bv) Connect the CHANNEL 2 200 MHZ CLK to CH 2 of the

oscilloscope.

(bw) The time duration of the 200 MHZ CLK should be
approximately 8.5 divisions, or 0.85 + 0.05 usec in duration.
Record the time interval on the data sheet.

(bx) Connect the CHANNEL 2 200 MHZ DATA to CH 2 of the
oscilloscope.

(by) The time duration of the 200 MHZ DATA should be
approximately 8.5 divisions, or 0.85 + 0.05 usec in duration.
Record the time interval on the data sheet.

{bz) Connect the CHANNEL 3 BURST output to CH 1 of the
Jscilloscope.

(ca) The time interval between the rising and falling edges of
the BURST pulse should be approximately 8.5 divisions, or 0.85
+ 0.05 usec in duration. Record the time interval on the data
sheet.

{cb) Connect the CHANNEL 3 200 MHZ CLK to CH 2 of the
oscilloscope.

{cc) The time duration of the 200 MHZ CLK should be
approximately 8.5 divisions, or 0.85 + 0.05 usec in duration.
Record the time interval on the data sheet.

(cd) Connect the CHANNEL 3 200 MHZ DATA to CH 2 of the
oscilloscope.

(ce) The time duration of the 200 MHZ DATA should be
approximately 8.5 divisions, or 0.85 + 0.05 usec in duration.
Record the time interval on the data sheet. -

(cf) Connectthe CHANNEL 1 BURST output to CH 1 of the
oscilloscope and adjust the TIME/DIV to 0.2 msec/div.

(cg) The time interval between the rising edges of consecutive
BURST pulses should be approximately 5 divisions, or 1 + 0.04
msec in duration. Record the time interval on the data sheet.
(ch) Connect the CHANNEL 2 BURST output to CH 1 of the

oscilloscope.
(ci) The time interval between the rising edges of consecutive
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3.1.31

BURST pulses should be approximately 5 divisions, or 1 + 0.04
msec in duration. Record the time interval on the data sheet.
(cj) Connect the CHANNEL 3 BURST output to CH 1 of the
oscilloscope.

(ck) The time interval between the rising edges of consecutive
BURST pulses should be approximately 5 divisions, or 1 + 0.04
msec in duration. Record the time interval on the data sheet.

Overlapping Burst Command Test

(a) Connect the CHANNEL 1 BURST output to CH 1 of the
oscilloscope and adjust the TIME/DIV to 0.1 usec/div.

(b) Connect the CHANNEL 2 BURST output to CH 2 of the
oscilloscope. '

(c) The two burst pulses should predominately overlap, with

the rising edge of the CHANNEL 1 BURST leading the rising edge
of the CHANNEL 2 BURST. Verify this overlapping relationship.
(d) The time interval between the rising edges of each of the
BURST pulses should be approximately 0.55 divisions, or 0.055
+ 0.05 usec in duration. Record the time interval on the data
sheet.

(e) The time interval between the falling edges of each of the
BURST pulses should be approximately 0.55 divisions, or 0.055
+ 0.05 usec in duration. Record the time interval on the data
sheet.

() Connect the CHANNEL 2 BURST output to CH 1 of the
oscilloscope and adjust the TIME/DIV to 0.1 usec/div.

(g) Connect the CHANNEL 3 BURST output to CH 2 of the
oscilloscope.

(h) The two burst pulses should predominately overlap, with
the rising edge of the CHANNEL 2 BURST leading the rising edge
of the CHANNEL 3 BURST. Verify this overlapping relationship.
(i) The time interval between the rising edges of each of the
BURST pulses should be approximately 0.55 divisions, or 0.055
+ 0.05 usec in duration. Record the time interval on the data
sheet.

() The time interval between the falling edges of each of the
BURST pulses should be approximately 0.55 divisions, or 0.055
+ 0.05 usec in duration. Record the time interval on the data
sheet.

(k) Connect the CHANNEL 2 BURST output to the external
trigger input of the oscilloscope and set it to trigger on the

rising edge.

() Connect the CHANNEL 2 200 MHZ DATA output to CH 1 of the
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3.132

3141

oscilloscope.
(m) Connect the CHANNEL 3 200 MHZ DATA output to CH 2 of

the oscilloscope.
(n) The PN sequences for each channel should be the same,
except time delayed. Verify that the sequences are the same.

red Bur mmand T

(a) Setthe HP 8662A frequency to 340 KHz and place the TEST
PROFILE switch on the Signal Combiner front panel in the MULT
position. Press Reset.

(b) Connect the CHANNEL 1 BURST output to CH 1 of the
oscilloscope and adjust the TIME/DIV to 0.2 usec/div.

(c) Connect the CHANNEL 2 BURST output to CH 2 of the
oscilloscope.

(d) The two burst pulses should be staggered and separated by
a minimum guard time of 10 nsec. Verify this staggered
relationship.

(e) Change the oscilloscope. to trigger on the falling edge of

CH 1 and adjust the TIME/DIV to 5 nsec/div.

() The time interval between the falling edge of CH 1 and the
rsing edge of CH 2 should be greater than 2 divisions, or 10
nsec in duration. Record the time interval on the data sheet.

(g) Connect the CHANNEL 1 BURST output to the external
trigger input of the oscilloscope and set it to trigger on the

rising edge. Adjust the TIME/DIV to 0.2 usec/div.

‘h) Connect the CHANNEL 1 200 MHZ DATA output to CH 1 of the

oscilloscope.
1j) Connect the CHANNEL 2 200 MHZ DATA output to CH 2 of the

uscilloscope.
() The PN sequences for each channel should be different.

Verify that the sequences are not the same.

Noise Spectral Density Determination

‘a) Connect the Signal Combiner NOISE OUT to NOISE IN.

(b) Connect the Signal Combiner SUM OUT to CH 1 of the
oscilloscope. DC couple the input.

(c) The bandlimited noise output should have no DC component.
Increase the CH 1 VOLTS/DIV for maximum gain. Verify that

‘the output has no DC component.

(d) Observe the peak noise amplitude. Verify that there is no
noticeable clipping of the waveform.
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* The Data Generator and Error Detector are replaced by the Data Error Analyzer
when the Short Burst length, i.e., 170 KHz PN clock is selected.

Figure 3.1.4.1 Noise Spectral Density Determination Setup

(e) Connect the Signal Combiner SUM OUT to the HP 8566

Spectrum Analyzer.
(f) Set the spectrum analyzer video bandwndth to 300 Hz and
the center frequency to 3.373 GHz.
(g) The noise power should be flat within + 1 dB over a 400
MHz bandwidth centered at 3.373 GHz. Record the noise power
flatness in dBs.
(h) Place the spectrum analyzer marker at a point within the
400 MHz bandwidth which is centered in amplitude with
respect to the peak excursions measured in step (g).
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(i) Press SHIFT, M, NORMAL to invoke the noise level
measurement normalized to a 1 Hz bandwidth.

(j) Record the value for N0 displayed in dBm/Hz.

2142 RE Power
5 MHz
Rubidium Std
11.258 MHz
3.734 MHz
170 KHz
PN Clk 10 MHz Ref 200 MHz . 5 MHz Distribution
Sig Gen Sig Gen < -~ Amp
200 MHz 5 MHz
Data  |——®{PNCLKIN REF IN REFIN NOISE OUT
Generator® » PN IN
Error 4—— PN OUT SIGNAL COMBINER NOISE IN
Detector” < PN CLK OUT
— IF IN SUMOUT]
200 MHz RX RX
CLK DATA BURST DATA CLK UWDET
3.373 GHz Spectrum
Sig Gen Analyzer

* The Data Generator and Error Detector are replaced by the Data Error Analyzer
when the Short Burst length, i.e., 170 KHz PN clock is selected.

Figure 3.1.4.2 RF Output Power Test Configuration

(@) Disconnect the Signal Combiner NOISE OUT from NOISE IN.
(b) Connect a -30 dBm, 3.373 GHz signal from the HP 8672A

Signal Generator to the Signal Combiner CHANNEL 1 IF IN input.
(c) Connect the spectrum analyzer to the Signal Combiner
SUM OUT output.
(d) The output power level at the SUM OUT connector should be
approximately 0 dBm. Record the output power level.
(e) Connect the -30 dBm, 3.373 GHz signal from the HP 8672A
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Signal Generator to the Signal Combiner CHANNEL 2 IF IN input.
() The output power level at the SUM OUT connector should be
approximately 0 dBm. Record the output power level.

(g) Connect the -30 dBm, 3.373 GHz signal from the HP 8672A
Signal Generator to the Signal Combiner CHANNEL 3 IF IN input.
(h) The output power level at the SUM OUT connector should be
approximately 0 dBm. Record the output power level.
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3.2 Modulator Acceptance Test Procedure

Setup the test configuration for the Modulator ATP as shown in

Figure 3.2.
5 MHz
Rubidium Std
11.258 MHz
3.734 MHz
170 KHz
PN Clk 10 MHz Ref 200 MHz . 5 MHz Distribution
Sig Gen < Sig Gen < - [ Amp
200 MHz 5 MHz
Data  |——#{PNCLKIN REF IN REFIN
Generator” » PN IN NOISE OUT
Error <4—— PN OUT SIGNAL COMBINER NOISE IN
Detector” Lq—{pN CLK OUT :
IF IN SUMOUT
200 MHz RX RX
cLK  DATA BURST DATA  CLK UWDET
CLOCK DATA BURST
COMMAND
MODULATOR
TP 1 RF OUT
, Spectrum
Oscilloscope [ €—— Y—p Analyzer E— Plotter

* The Data Generator and Error Detector are replaced by the Data Error Analyzer
when the Short Burst length, i.e., 170 KHz PN clock is selected.

Figure 3.2 Modulator ATP Test Configuration

(a) Power the Equipment on with the cables disconnected.
Allow 30 minutes for the signal generators to stabilize.
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(b) Setthe HP 8662A frequency to 200 MHz and the output
level to 0.0 dBM.

(c) Setthe HP 1645A Data Analyzer for external clock.

(d) Set the HP 8660A frequency to 170 KHz and the output
level to 0.9 V (+12.1 dBm, 50Q).

(e) Connect the cables between equipment as shown.

(f) Connect the CHANNEL 1 200 MHZ CLK, DATA, and BURST
outputs to the Modulator CLOCK, DATA, and BURST COMMAND
inputs as shown.

(g) Place the DATA LENGTH switch on the Signal Combiner
front panel in the S position.

(h) Place the TEST PROFILE switch on the Signal Combiner
front panel in the 1 position.

(i) Place the BURST LENGTH switch on the Modulator front
panel in the SHORT position.

(j) Remove the top cover of the Modulator and

disconnect the coaxial cable between the wideband amplifier
output and the input to the VCO. Connect a test cable from the
wideband amplifier output to the oscilloscope CH 1 input.

(i) Record the following information in the Modulator
Acceptance Test Procedure Data Sheets, section 4.2:

. All test equipment serial numbers and cal due dates
- Test operator and QC initials certifying correct setup

3.2.1 Baseband Data Test

(a) Adjust CH 1 VOLTS/DIV to 0.5 volts/div and the TIME/DIV
to 0.2 msec/div.

(b) The burst of baseband data should repeat every 1 msec or
once every 5 divisions, or 1000 + 40 usec in duration. Record
the time interval of the burst duty cycle on the data sheet.

(c) Adjust the TIME/DIV to 0.2 usec/div.

(d) Measure the time interval of the preamble which consists
of 32 alternating f,, f,5 symbols followed by 32 f, symbols.

This time interval should be approximately 4.4 divisions, or

880 nsec in duration. Verify this approximate time interval.

(e) The next six symbols following the preamble are the unique
word. From the end of the unique word, measure the remaining
time interval of the burst. This message portion of the burst is
obvious due to its "noisey" appearance caused by the
nonrepetitive PN sequence. This time interval should be
approximately 4.4 divisions, or 880 nsec in duration. Verify

this approximate time interval.
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(f) Change the position of switch number S2 on the Signal
Combiner dip switch to change from the random external PN
pattern to an internal fixed data pattern.

(g) Pull the DLY'D SWEEP knob and adjust the TIME DELAY of the
oscilloscope to 10 nsec.

(h) Expand the time base and use the delay time position

vernier to scan through the burst from beginning to end and
count the number of preamble symbols. The number of preamble
symbols should be 64. A symbol is 13.75 nsec in duration.
Record the number of preamble symbols.

(i) The next 6 symbols are the unique word. The unique word
pattern is fg fg f, fg fy fg. An fg is approximately halfway in
amplitude between the maximum voltage excursion and the
minimum voltage excursion. An f, corresponds to the minimum

voltage excursion. The unique word pattern is shown in Figure
3.2.1. Count the number of unique word symbols and record the

pattern on the data sheet.

/7N

Figure 3.2.1 Unique Word Pattern at input to VCO

(j) Count the remaining number of symbols in the burst,
follwing the six unique word symbols. Record the remaining
number of symbols in the burst which should be 64.

(k) Take the oscilloscope out of the DELAYED SWEEP mode and
adjust the TIME/DIV to 2 usec/div.

() The burst length should be approximately 1 division, or 2
usec (1.8425 usec to be exact) in duration. Verify this
approximate time interval.

(m) Replace the HP 1645A Data Error Analyzer with the HP
3760A and HP 3761A Data Generator and Error Detector as
shown in Figure 3.1.

(n) Set the HP 8660A frequency to 3.734 MHz and place the
BURST LENGTH switch on the Modulator front panel in the
MEDIUM position.
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(0) Place the DATA LENGTH switch on the Signal Combiner
front panel in the M position and press the front panel RESET
switch.

(p) The burst length should be approximately 10 divisions, or
20 usec (19.6625 usec to be exact) in duration. Verify this
approximate time interval.

(q) Setthe HP 8660A frequency to 11.258 MHz and place the
BURST LENGTH switch on the Modulator front panel in the LONG
position.

() Place the DATA LENGTH switch on the Signal Combiner
front panel in the L position and press the front panel RESET
switch.

(s) Adjust the oscilloscope TIME/DIV to 10 usec/div.

() The burst length should be approximately 6 divisions, or
usec (57.2825 usec to be exact) in duration. Verify this
approximate time interval.

3.2.3 Modul ra T

(a) Connect the Spectrum Analyzer to the Modulator RF OUT
connector, as shown in Figure 3.2.

(b) Adjust the Spectrum Analyzer for a frequency SPAN of 364
MHz and a CENTER frequency of 3.373 GHz.

(c) Setthe RES BW to 300 kHz and the VBW to 1MHz.

fo at 34.09 MHz from center

l Quter Mask

"""wm"ml,,,,,,...nn i lI"‘"""""l"llllImmmmnm

Modulator,
RFOUT

Inner Mask

Figure 3.2.3 Modulated Spectra Waveform within Mask Limits
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3.3

as shown in

(d) Select LOG 10 dB/div and adjust the REFERENCE LINE and
LEVEL until the center of the modulated spectra is on the first
horizontal line down from the top of the display.

(e) The resulting waveform should fit within the mask

provided, as illustrated in figure 3.2.3.

(f) Plot the output of the Spectrum Analyzer display and

overlay the mask provided. Verify that the Modulator output

falls within the mask limits.

M | Dem lator T Pr r

Set up the test configuration for the POC Model Test Procedure
Figure 3.3.

(a) Power the Equipment on with the cables disconnected.
Allow 30 minutes for the signal generators to stabilize.

(b) Set the HP 8662A frequency to 200 MHz and the output
level to 0.0 dBM.

(c) Setthe HP 1645A Data Analyzer for external clock.

(d) Setthe HP 8660A frequency to 11.258 MHz and the output
level to 0.9 V RMS (+12.1 dBm, 50Q).

(e) Connect the cables between equipment as shown.

(f) Connect the Demodulator DATA OUT, CLK OUT, and DATA

VALID outputs to the Signal Combiner RX DATA, RX CLK, and

UWDET as shown.

(g) Place the DATA LENGTH switch on the Signal Combiner
front panel in the L position.

(h) Place the TEST PROFILE switch on the Signal Combiner
front panel in the 1 position.

(i) Place the BURST LENGTH switch on the Modulator front
panel in the LONG position.

(j) Place the BURST LENGTH switch on the Demodulator front
panel in the LONG position.

(k) Place the UNIQUE WORD switch on the Demodulator in the
110101 position.

() Set the Signal Combiner internal dip switches S1 and S2 to
the open position to select an external random PN pattern as a
data source. Set S4 to the closed position for coded testing.
Set S8 to the closed position to select rising edge clock

alignment.
(m) Record the following information in the POC Model

Demodulator Test Procedure Data Sheets, section 4.3:

« All test equipment serial numbers and cal due dates
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« Test operator and QC initials certifying correct setup

5 MHz
Rubidium Std
11 258 MHz
3.734 MHz
170 KHz
PN Clk 10 MHz Reft 200 MHz . 5 MHz Distribution
Sig Gen Sig Gen ¢ - Amp
200 MHz 5 MHz
Data  ——{ PN CLKIN REF IN REF IN
| cenerator® NOISE OUT ——#{ ATTEN
; > L I PNIN
T TEmor | le——PNOUT SIGNAL COMBINER NOISE INl¢——
Detector' ‘ PN CLK OLn—
— ———» IFIN SUM OUT
200 MHz RX  RX
Cul DPIA BUEST DATA _ CLK UfVDET
CLOCK DATA BURST DATA CLK DATA L
COMMAND OUT OUT VALID
ATTEN POC MODEL ATTEN
MODULATOR DEMODULATOR
RF OUT EXTLO DWN LINK IN

T T 3.37373 GHz

2.87373 GHz

Sig Gen

* The Data Generator and Error Detector are replaced by the Data Emor Analyzer
when the Short Burst length, i.e., 170 KHz PN clock is selected.

Figure 3.3 POC Model Test Configuration

3.31

Eb/No Calibration

(a) Disconnect the CLOCK, DATA, and BURST COMMAND inputs

to the Modulator.
(b) Disconnect the NOISE OUT from the NOISE IN on the Signal

Combiner.



3.3.2

3.33

(c) Connectthe SUM OUT to the spectrum analyzer and record
the measured carrier power in dBs.

(d) Add attenuation between the Modulator RF OUT connector
and the Signal Combiner IF IN connector until the displayed
carrier power level reads 0 dBm. Record the attenuation in dBs.
(e) Add 5 dB of attenuation at the output of the SUM OUT
connector to drop the signal level to the -5 dBm nominal
operating value for the Demodulator. Record the attenuation in
dBs. This attenuation will be used in subsequent tests.

(f) Add an additional 5 dB of attenuation at the output of the
SUM OUT connector to drop the signal level to the -10 dBm
lower level operating value for the Demodulator. Record the
attenuation in dBs. This attenuation will be used in subsequent

tests.
nnectivity T

(a) Reconnect the CLOCK, DATA, and BURST COMMAND inputs
to the Modulator. 5

(b) Add the 5 dB of attenuation measured in 3.3.1(e) to the

output of the SUM OUT connector. This drops the signal level to
the -5 dBm nominal operating value for the Demodulator.

(c) Connect the output of the external attenuator at the SUM

OUT output to the Demodulator DWN LINK IN as shown in Figure
3.3 and press the front panel RESET button.

(d) Record the error rate achieved in this test configuration.

Valid Data Test

(a) Connect the Demodulator DATA VALID output to CH 1 of the
oscilloscope and trigger on the rising edge of the CH 1 input.
Adjust the TIME/DIV to 10 usec/div. Adjust CH 1 VOLTS/DIV

to 0.5 volts/div.

(b) The time interval between the rising and falling edges of

the DATA VALID pulse should be approximately 5.6 divisions, or
56.29 + 5 usec in duration. Record the time interval on the data
sheet.

(c) Connect the Demodulator CLK OUT to CH 2 of the
oscilloscope and adjust CH 2 VOLTS/DIV to 0.5 volts/div.

(d) The time duration of CLK OUT should be approximately 5.6
divisions, or 56.29 + 5 usec in duration. Record the time

interval on the data sheet.

(e) Connect the Demodulator DATA OUT to CH 2 of the

oscilloscope.
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(f) The time duration of DATA OUT should be approximately 5.6
divisions, or 56.29 + 5 usec in duration. Record the time
interval on the data sheet.

3.3.6 BER Baseline Test

(a) Reconnect the Demodulator DATA OUT, CLK OUT, and DATA
VALID outputs to the Signal Combiner as shown in Figure 3.3.
(b) Record the value of N, in dBm/Hz which was determined

during the ATP performed on the Signal Combiner in test

3.1.4.1, step (K). .
(c) Add 83 dB to the value recorded in step (b) and record this
new value. For example, if the value recorded in step (b) was

-78 dBm/Hz, then 83 + (-78) = 5.

(d) In order to determine the amount of attenuation needed
between the NOISE OUT and NOISE IN connectors, add the value
recorded in (c) to the desired E, /N,. Using the same example,

if an Eb /No of 12 dB is desired, 12 + 5 = 17 dB of attenuation.

(e) By changing the amount of attenuation between the NOISE
OUT and NOISE IN connectors, record the number of errors on

the Error Detector display for each E, /N, setting. The
recommended range of data points would be for values of E, /N,

between +8 and +14 dB.
(f) Plot the number of errors versus E, /N, on the BER curve

graph paper provided in the data sheets.

3.3.7 |F Power Level Variation Test

(a) Remove the external attenuator at the output of the Signal
Combiner SUM OUT connector and connect the SUM OUT
connector directly to the Demodulator DWN LINK IN connector.
(b) By changing the amount of attenuation between the NOISE
OUT and NOISE IN connectors, record the number of errors on
the Error Detector display for each E, /N, setting. The

recommended range of data points would be for values of E, /N,
between +8 and +14 dB. The attenuation'value for each E /N,

setting is determined in the same manner as described in
3.3.6(d).

(c) Plot the number of errors versus E, /N, on the BER curve
graph paper provided in the data sheets for the case of 0 dBm

input signal power.
(d) Add the 10 dB of attenuation measured in 3.3.1(f) to the
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3.3.8

output of the SUM OUT connector. This drops the signal level to
the -10 dBm lower operating value for the Demodulator.

Connect the output of the attenuator to the Demodulator DWN
LINK IN connector.

(e) By changing the amount of attenuation between the NOISE
OUT and NOISE IN connectors, record the number of errors on
the Error Detector display for each E /N, setting. The

recommended range of data points would be for values of E, /N,
between +8 and +14 dB. The attenuation value for each E, /Ny

setting is determined in the same manner as described in
3.3.6(d).

(f) Plot the number of errors versus E,, /N, on the BER curve
graph paper provided in the data sheets for the case of -10 dBm
input signal power.

POC Model Demodulator Data Length Test

(a) Add the 5 dB of attenuation measured in 3.3.1(e) to the
output of the SUM OUT connector. This returns the signal level
to the -5 dBm nominal operating value for the Demodulator.
{b) Connect the output of the attenuator to the Demodulator
DWN LINK IN connector as shown in Figure 3.3 and press the
front panel RESET button.
(c) Refer to the test results of 3.3.6. Restablish the amount of
attenuation between the NOISE OUT and NOISE IN connectors
which resulted in a bit error rate closest to 5*10°7. Record
the number of errors on the Error Detector display and the vaiue
for E, /N,,.
(d) Set the HP 8660A frequency to 3.734 MHz.
(e) Place the DATA LENGTH switch on the Signal Combiner
front panel in the M position.
(f) Place the BURST LENGTH switch on the Modulator front
panel in the MEDIUM position.
(g) Place the BURST LENGTH switch on the Demodulator front
panel in the MEDIUM position.
(h) Press the Signal Combiner front panel RESET button.
(i) Record the number of errors on the Error Detector display.
(j) Replace the HP 3760A and HP 3761A Data Generator and
Error Detector with the HP 1645A Data Error Analyzer and set
it for external clock.
(k) Setthe HP 8660A frequency to 170 KHz.
() Place the DATA LENGTH switch on the Signal Combiner
front panel in the S position.
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3.3.9

(m) Place the BURST LENGTH switch on the Modulator front
panel in the SHORT position. ,
(n) Place the BURST LENGTH switch on the Demodulator front

panel in the SHORT position.
(0) Press the Signal Combiner front panel RESET button.
(p) Record the number of errors on the Error Detector display.

Independent User Test

(a) Connect the second Modulator RF OUT to the Signal
Combiner CHANNEL 2 IF IN and disconnect the first Modulator RF
OUT from the Signal Combiner CHANNEL 1 IF IN.

(b) Disconnect the NOISE OUT test cable.

(c) Connect the SUM OUT to the spectrum analyzer and record
the measured carrier power in dBm.

(d) Add attenuation between the second Modulator RF OUT
connector and the Signal Combiner IF IN connector until the
displayed power level reads 0 dBm. Record the attenuation in
dBs.

(e) Reconnect the SUM OUT through the 5 dB attenuator to the
Demodulator DWN LINK IN.

() Reconnect the NOISE OUT test cable.

(g) Reconnect the first Modulator RF OUT to the Signal
Combiner CHANNEL 1 IF IN.

(h) Connect the Signal Combiner CHANNEL 2 baseband outputs
to the CLOCK, DATA, and BURST COMMAND inputs of the second
Modulator.

(i) Replace the HP 1645A Data Error Analyzer with the HP
3760A Data Generator and HP 3761A Error Detector.

(j) Setthe HP 8660A frequency to 7.468 MHz.

(k) Place the DATA LENGTH switch on the Signal Combiner
front panel in the M position.

() Place the BURST LENGTH switch on the Modulator front
panel in the MEDIUM position.

(m) Place the BURST LENGTH switch on the Demodulator front
panel in the MEDIUM position.

(n) Place the TEST PROFILE switch on the Signal Combiner
front panel in the MULT position and press the RESET button.
(0) Using the same attenuation between the NOISE OUT and
NOISE IN connectors as used in 3.3.8, record the number of
errors on the Error Detector display.
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3.3.10

3.3.11

-ch nterference T

(a) Disconnect the first Modulator RF OUT from the Signal
Combiner CHANNEL 1 IF IN and disconnect the Signal Combiner
CHANNEL 2 baseband outputs from the CLOCK, DATA, and BURST
COMMAND inputs of the second Modulator.

(b) Disconnect the NOISE OUT test cable.

(c) Connect the SUM OUT to the spectrum analyzer and record
the measured carrier power in dBm.

(d) Add attenuation between the second Modulator RF QUT
connector and the Signal Combiner IF IN connector until the
displayed power level reads -20 dBm. Record the attenuation in
dBs. '

(e) Reconnect the SUM OUT through the 5 dB attenuator to the
Demodulator DWN LINK IN.

(f) Reconnect the Signal Combiner CHANNEL 2 baseband outputs
to the CLOCK, DATA, and BURST COMMAND inputs of the second
Modulator.

(g) Reconnect the first Modulator RF OUT to the Signal
Combiner CHANNEL 1 IF IN. '

(h) Reconnect the NOISE OUT test cable.

(i) Setthe HP 8660A frequency to 11.258 MHz.

(j) Place the DATA LENGTH switch on the Signal Combiner
front panel in the L position.

(k) Place the BURST LENGTH switch on the Modulator front
panel in the LONG position.

() Place the BURST LENGTH switch on the Demodulator front
panel in the LONG position.

(m) Place the TEST PROFILE switch on the Signal Combiner
front panel in the 1 position and press the RESET button.

(n) Using the same attenuation between the NOISE OUT and
NOISE IN connectors as used in 3.3.8, record the number of
errors on the Error Detector display.

Adjacent Channel Interference Test

(a) Disconnect the first Modulator RF OUT from the Signal
Combiner CHANNEL 1 IF IN and disconnect the Signal Combiner
CHANNEL 2 baseband outputs from the CLOCK, DATA, and BURST
COMMAND inputs of the second Modulator.

(b) Connect the SUM OUT to the Spectrum Analyzer and adjust

the center frequency of the Modulator output until the carrier
frequency is 100 MHz away from the nominal 3.373 GHz.

(c) Disconnect the NOISE OUT test cable.
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(d) Connect the SUM OUT to the spectrum analyzer and record
the measured carrier power in dBm.

(e) Add attenuation between the second Modulator RF OUT
connector and the Signal Combiner IF IN connector until the
displayed power level reads 0 dBm. Record the attenuation in
dBs.

(f) Reconnect the SUM OUT through the 5 dB attenuator to the

Demodulator DWN LINK IN. :
(g) Reconnect the Signal Combiner CHANNEL 2 baseband outputs

to the CLOCK, DATA, and BURST COMMAND inputs of the second
Modulator. ,

(h) Reconnect the first Modulator RF OUT to the Signal

Combiner CHANNEL 1 IF IN.

(i) Reconnect the NOISE OUT test cable.

(j) Press the RESET button on the Signal Combiner front panel. -
(k) Using the same attenuation between the NOISE OUT and
NOISE IN connectors as used in 3.3.8, record the number of

errors on the Error Detector display.
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40 POC MODEL TEST DATA SHEETS

Section 4.0 contains the test data sheets for the STE ATPs and
the POC Model Test of the Demodulator.
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41 Signal Combiner Chassis Acceptance Test Data Sheets

The test operator and QC representative shall record the test
data, including any pertinent comments, on the following Signal Combiner
Chassis ATP data sheets.

INITIAL STARTUP DATA:

Date-

Test Operator (print):

Q. Fiepresentative (print):

CUSTOMER WITNESS:

Organization:

Ut Senal Number:
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TEST EQUIPMENT SERIAL NUMBERS:

IPM MODEL HARRIS 1D NO CAL DUE DATE
Data Generator HP 3760A
Error Detector HP 3761A
Data Error Analyzer HP 1645A
Signal Generator HP 8660A
Signal Generator HP 8662A
Spectrum Analyzer HP 85668

High Speed Oscilloscope  Tek 485

The remaining pages provide data sheets to be used for
recording the data from the tests. Make additional copies of these data
sheets as necessary for repeated tests.
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411 200 Mbps Data Wrap Around Test Data Sheet

(b) ACQ FAILURE lamp off

(c) error rate display reads 1.9*'10'6

(e) ACQ FAILURE lamp on

(h) ACQ FAILURE lamp off

(k) ACQ FAILURE lamp off

(I) error rate display reads 1.9"1 06

(n) ACQ FAILURE lamp on

(q) ACQ FAILURE lamp off

(1) ACQ FAILURE lamp oft

(u) error rate display reads 1.9*10

(w) ACQ FAILURE lamp on

(z) ACQ FAILURE lamp off

Test Operator

DATA ASS/FA!
Date
Date

QC Representative

Reason for Test
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4.1.2 Signal ngginer Data Length Test Data Sheets

(ab) CHANNEL 1 long BURST duration
(ad) CHANNEL 1 200 MHz CLK duration
(afy CHANNEL 1 DATA duration

(ah) CHANNEL 2 long BURST duration

(aj) CHANNEL 2 200 MHz CLK duration
(al) CHANNEL 2 DATA duration

(an) C;-IANNEL 3 I‘ong BURST duration
(ap) CHANNEL 3 200 MHz CLK duration
(ar) CHANNEL 3 DATA duration

(au) CHANNEL 1 medium BURST duration
(aw) CHANNEL 1 200 MHz CLK duration
(ay) CHANNEL 1 DATA duration

(ba) CHANNEL 2 medium BURST duration
(bc) CHANNEL 2 200 MHz CLK duration
(be) CHANNEL 2 DATA duration

(bg) CHANNEL 3 medium BURST duration
(bi) CHANNEL 3 200 MHz CLK duration
(bk) CHANNEL 3 DATA duration

(bo) CHANNEL 1 short BURST duration

(bq) CHANNEL 1 200 MHz CLK duration
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(bs) CHANNEL 1 DATA duration

(bu) CHANNEL 2 short BURST duration
(bw) CHANNEL 2 200 MHz CLK duration
(by) CHANNEL 2 DATA duration

(ca) CHANNEL 3 short BURST duration
(cc) CHANNEL 3 200 MHz CLK duration
(ce) CHANNEL 3 DATA duration

(cg) CHANNEL 1 BURST duty cycle

(ci) CHANNEL 2 BURST duty cycle

(ck) CHANNEL 3 BURST duty cycle

Test Operator

QC Representative

Reason for Test
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4131 verl ing Bur: mmand T D hee

(c) CHANNEL 1 and 2 burst pulses overlap

(d) interval between rising edges

A

FAI

(e) interval between falling edges

(h) CHANNEL 2 and 3 burst pulses overlap

(1) interval between rising edges

(j) interval between falling edges

(n) PN sequences are the same

Test Operator

QC Representative

Reason for Test
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413.2 red Bur mmand Test D hee

DATA PASS/FAI
(d) CHANNEL 1 and 2 burst pulses staggered
(f) interval between burst pulses
(j) PN sequences are not the same
Test Operator Date
QC Representative Date

Reason for Test
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4141 Noi ral Density Determination Data Shee

(c) no DC component in noise at SUM OUT
(d) no noticeable noise waveform clipping
(g) noise power flatness < + 1 dB

(j) max Signal Combiner No indBm/Hz

Test Operator

QC Representative

Reason for Test
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A

FAI

Date

Date



4142 RF Power T Data Shee

(d) output power at SUM OUT for CHANNEL 1
(f) output power at SUM OUT for CHANNEL 2

(h) output power at SUM OUT for CHANNEL 3

Test Operator

QC Representative

Reason for Test
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| Date
Date



4.2 Modulator A nce Test D h

The test operator and QC representative shall record the test
data, including any pertinent comments, on the following Modulator ATP
data sheets.

INITIAL STARTUP DATA:

Date:

Test Operator (print):

QC Representative (print):

CUSTOMER WITNESS:

Name:

Organization:

L™ Serial Number:

253



TEST EQUIPMENT SERIAL NUMBERS:

EQUIPMENT MODEL HARRIS 1D NO CAL DUE DATE
Data Generator HP 3760A
Error Detector HP 3761A
Data Error Analyzer HP 1645A
Signal Generator HP 8660A
Signal Generator HP 8662A
Spectrum Analyzer HP 85668

High Speed Oscilloscope  Tek 485

The remaining pages provide data sheets to be used for
recording the data from the tests. Make additional copies of these data
sheets as necessary for repeated tests. -
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421 Baseband Data Test Data Shee

(b) burst duty cycle

PA

[FAI

(d) preamble duration verified
(e) message duration verified

(h) number of symbols in preamble = 64

(i) number of symbols in unique word = 6

unique word pattern

() number of symbols in message = 64
() short burst length duration verified
(p) medium burst length duration verified

(t) long burst length duration verified

Test Operator

QC Representative

Reason for Test
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Date

Date



423 Modul

(f) modulated spectra within mask

ctra Test Data She

Test Operator

QC Representative

Reason for Test
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DATA

Date

Date
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43 POC Model Demodulator Test D heets

The test operator and QC representative shall record the test
data, including any pertinent comments, on the following POC Model
Demodulator Test data sheets.

INITIAL STARTUP DATA:

Date:

Test Operator (print):

QC Representative (print):

CUSTOMER WITNESS:

Name:

Organization:

UUT Serial Number:
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TEST EQUIPMENT SERIAL NUMBERS:

IPM MODEL HARRIS 1D NO CAL DUE DATE
Data Generator HP 3760A
Error Detector HP 3761A
Data Error Analyzer HP 1645A
Signal Generator HP 8660A
Signal Generator HP 8662A
Signal Generator HP 8672A
Spectrum Analyzer HP 85668

High Speed Oscilloscope- Tek 485

The remaining pages provide data sheets to be used for
recording the data from the tests. Make additional copies of these data
sheets as necessary for repeated tests. ‘
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431 Eb/N libration D h

(c) SUM OUT power with no attenuation
(d) atten required for SUM OUT = 0dBm
(e) atten required at SUM OUT for -5dBm

(f) atten required at SUM OUT for -10dBm

Test Operator

QC Representative

Reason for Test
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A

Date

Date

EAI



432 Connectivity Test Data Sheet

(d) error rate for signal only

Test Operator

QC Representative

Reason for Test
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DATA

Date

FAl

Date



43.3 Valid Data Test D h

DATA ASS/FAI
(b) DATA VALID duration
(d) CLK OUT duration
(F) DATA OUT duration
Test Operator Date
QC Representative - Date

Reason for Test
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43.6 R line Test D he

DATA PASS/FAI
(b) maximum N, from 4.1.4.1, step (k)
(c) (b) + 83
(e) E,/Ny versus BER
Test Operator - Date
QC Representative Date

Reason for Test
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43.7 IE_Power Level Variation Test Data Sheet
DATA

(b) E, /N, versus BER
for +5 dBm

(e) Eb /N, versus BER
for -5 dBm
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Test Opefator

QC Representative

Reason for Test
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Date

Date



438 POC Model Demodulator Data Length Test Data Sheet

(c) E /N, versus BER
long burst

(i) medium burst BER

(p) short burst BER

Test Operator

QC Representative

Reason for Test

265

DATA

PA

Date

Date

[FAIL



439 Independent User Test Data Sheet
DATA

(c) 2nd Modulator power out at SUM OUT, dBm
(d) second Modulator attenuation

(0) staggered burst BER

Test Operator

'QC Representative

Reason for Test
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PA

Date

Date

[FA]



4310 Co-channel Interference Test Data Sheet

(c) 2nd Modulator power out at SUM OUT, dBm
(d) 2nd Modulator attenuation for -20 dBm

(n) BER with co-channel interferer

Test Operator

QC Representative

Reason for Test
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DATA

Date

Date

EAl



4311 Adiacent Channel Interference Test Data Sheet

DATA ASS/FAI
(d) 2nd Modulator power out at SUM OUT, dBm
(e) 2nd Modulator attenuation for 0 dBm
; (k) BER with adjacent channel interferer
|
Test Operator " Date
QC Representative Date

Reason for Test
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APPENDIX B
GATE ARRAY INDUSTRY SURVEY

In order to properly evaluate the present gate array capability available in the
industry, the circuits shown in Figures B-1 and B-2 were supplied to vendors {0
evaluate. Vendors were requested to calculate propagation delay, maximum
thoughput rate, power dissipation, NRE costs and gate count. A variety of vendors in
the CMOS, ECL and Bipolar technologies were contacted. Direct comparisons were
difficult for gate count because each technology defines cell or gate in a different
manner. Perhaps a better metric would be the size of the die (information that was not
supplied to all vendors). Vendors were requested to quote maximum thoughput rate,
or propagation delay for functional block in the diagram. This was to enable
identification of the time critical circuits from each vendor and enable a functional
comparison between the technologies and associated vendors. The list of vendors
and their technologies are shown in Table B-1. Figure B-3 illustrates the various
processing speed quotes from responsive vendors. Each speed value is identified
with technology and power required to implement that speed.

.
axe 32x8 DATA

INPUT 3 |

DATA ADDER RAM w
P £ i

*D".‘ + et ‘ 7 ' s I >

| RAM

1ECL

INPUT) AODER
el

b . —b punet Pt
T BUFFER
OFFSET 1 l —1
INTT ADDRESS AAM INITIALIZE
cLoCX WRITE RAM DATA
ADORESS {TO BE

LOADED) INPUT
- DATA2
. {ECL)

SYSTEM CLOCX
(ECL)

14984-39 (X}

Figure B-1. Correlatation Circuit
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Figure B-2. Demux Circuit _ —

GATE ARRAY VENDOR

TECHNOLOGY

VTC Incorporaled

Bipolar ASIC, CMOS ASIC

Computer Circuits Laboralories, Inc.

CCL Technology on Bipalar Process

Integrated CMOS Systems, Inc.

CMOS 1 and 1.5 Micron Process

VLSI Technology. Inc.

CMOS 1 and 1.5 Micron Process

LSl Logic Corporation

CMOS 1 and 1.5 Micron Process

Seattle Silicon -

CMOS Process

GE-RCA/Intersil (Harris)

CMOQOS 1.2 Micron Process

Sory Corporalion of America

ECL Gale Arrays

Apglied Micro Circuits Corporalion

ECL Gate Arrays

Fujitsu Limited

ECL Gate Arrays

Plessey Semiconductor

ECL Gale Arrays

Table B-1. Gate Array Vendors Contacted for Information and Test Evaluation

Vendor reaction varied from completely compliant responses to nonresponsive. Some
vendors would give generic reaction about their standard gate arrays but would not
evaluate the correlator or Mux/Demux circuit for our proposal. In general, the
advertised speeds of their processes greatly exceeded the speed at which data could
be run into and out of the device or through a macro function such as those defined in
the correlator circuit. With such a variety of responses, we felt that the best
presentation for each vendor would be to summarize the responses, we felt that the
best presentation for each vendor would be to summarize the responses from them
and include that data in this appendix.
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Figure B-3. Power Versus Implementation Versus Vendor

VTC INCORPORATED

Vendor was not responsive to the industry survey. Data included is from phone

convcersation.

Bipolar an CMOS Gate Arrays
Bipolar Process

Part Number VL2000

Low Power 1000 gate gate array
Normal Power 4000 gate gate array
High density 2 micron process

Clock speeds: 500 MHz

Cell library available: digital

Part Number VL3000

30,000 gates

High density 2 micron process

Clock speeds: 1 GHz

Cell library available: linear, digital and memory

Contact: Jay Waldero CMOS
Gary Heye BIPOLAR
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INTERGRATED CMOS SYSTEMS, INC.
Quote received on the correlator circuit.
CMOS Gate Arrays

8 x8 multiplier
Overall speed limiter was the 8 x 8 multiplier: 40 MHz 1.5 micron
50 MHz 1.0 micron

1.5 micron process

a. Max clock speed 40 MHz
b. Max correlation circuits in array 4

c. /O pins 153

d. Package requiremeht 256 PGA
e. Power consumption ' 25W
1.0 micron process

a. Max clock speed 50 MHz
b. Max correlation circuits array 8

c. /O pins 285

d. Package requirement 340 pin surface mount
e. Power consumption 45W

NRE: 27,000 gates Moderate NRE 5 weeks de!ivery (1.5 micron)

25,000 gates High NRE 7 weeks delivery (1.0 micron)
** The circuit evaluation did not include an accumulator.

Contact: Richard Gluck

Bruce Kligensmith
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VLSI TECHNOLOGY, INC.

Quote received on the correlator cicuit.

CMOS Gate Arrays

Register/adder/register: 14.6 ns 68.5 MHz
Register/adder/mux/register: 20.5 ns 48.7 MHz
Register/RAM/register: 12 ns 83.3 MHz
Register/multiplier/register: 25.8 ns 38.7 MHz
I/O pins: 52

Package: 64 pin PGA
1.5 micron process
Die size: 140 mils
Equivalent gates: 278

No power quoted
No NRE quoted
No delivery quoted

Contact: Sunil Wadwani
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SONY SEMICONDUCTOR

Quote received on the mux/demux circuit.

ECL Gate Arrays

2000 gate gate array

I/O pins: 100

Power: 6 watts
Propagation delay: 220 ps
Package: 32 pin PGA

200 gate gate array

I/0 pins: 25

Power: 1.7 watts

Propagation delay: 150 ps
Package: 32 pin metal flat pack
NRE: Very low NRE

One 1:8 8 bit demux/IC

One 1.64 8 bit demux/four IC's

Contact: Masa Mizuno
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APPLIED MICRO CIRCUITS CORPORATION

Fully compliant quote, i.e., quote for both correlator and mux/demux cicuit with all
questions ansewered.

ECL/TTL Logic Arrays

Correlation Circuit:
Q35090T 130 MHz: 89% util; 149 pin PGA; 296 cells
QM1600T 123 MHz: 89% util; 149 pin PGA; 207 celis

2 micron oxide isolated bipolar process

NRE; Low
Speed limit: accumulator path 123 MHz
Power: Q3500T: 8.2 Watts

QM1600T: 7.8 Watts
Demultiplexer Circuit:

Q5000T 350 MHz 60% util; 226 pin PGA; 353 cells

8 bit 1:16 demux
2 micron oxide isolated bipolar process

NRE: Low
Power: 11 Watts.

Mulitplexer Circuit:

Q5000T 350MHz; 33% util; 226 pin PGA; 379 cells

8 bit 16:1 mux
2 micon oxide isolated bipolar process

NRE: Low
Power- 5.8 Watts

Recommendation: Use new products currently being proven.

Q20000 series
8000 gates NRE Low January 82
16000 -~ NRE Low June89

Contact: Keith Nootbar
Richard Negin
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LS! LOGIC CORPORATION

Quote received for correlator circuit.
CMOS Gate Array

Q.7 micron process

LCA 100135 60K gates
LCA 100182 80K gates
LCA 100235 100K gates

NRE: Very high

Includes: 15 prototypes
application engineer time
user's class
design capture center time

simulation
20 MHz test
verification package

Speed limit: 24 MHz due to multiplier cicuit
Power dissipation: no information supplied

Number of gates in design: verbal quote that design would fit in packages
outlined above.

Contact: Bill King
Dan Deitz
Bill Casanova

Special note: LS! has a design center on the Harris facility with full time
application engineers at the facility to help facilitate the design capture phase of

the process.
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FUJITSU LIMITED

Nonresponsive to vendor request.
Information supplied below is from vendor supplied data sheet.
ECL Gate Arrays

ET3000. 3072 gates
ET4500 4480 gates

Propagation Delay: 0.7 ns for I/O buffer
Power dissipation: 7 Watts

Package: 149 pin PGA

NRE: no information supplied

Logic Library: includes mux/demux, but no hihg level macros. '

PLESSY SEMICONDUCTOR

Quote received on the correlation circuit.
eECL Gate Array

F:arts available:

16000 gates

80C0 gates

2000 gates

Contact: Mike Fisher
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COMPUTER CIRCUITS LABORATORIES, INC.

Vebal quote received on the correlation circuit.

CCL technology on Bipolar process

Prop
Function Delay Power
8 bit latch 0.9 ns 77 mW
5 bit mux 0.9 ns 32 mW
8 bit adder 3.2ns 182 mW
8 x 8 multiplier =~ 5.0ns 1500 mW
32 x 8 SRAM 50ns 800mwW

Speed limited to 150 MHz by multiplier

1.5 micron bipolar process
Core power: -2.0V

I/O power: -4.5V

Memory power: -4.5V

68 pins

4.7 watts maximum

0-70 temperature range

4 fin heat sink

Contact: Dennis Presthoit

SEATTLE SILICON

Vendor was not responsive to industry survey, but supplied the following
information about the company:

.CMOS ASIC design

Company sells technology tools to develop ASIC's
Wafers are bought from foundries: GE (Harris); VTC; AMI

Tools include: auto route and place software
design verification

Processes include 2.5, 1.5, 1.25, and 1.00 micron

Contact: John Schroeter
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