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ABSTRACT

A dual potential formulation for numerically solving the Navier-Stokes equations
is developed and presented. The velocity field is decomposed using a scalar and
vector potential. Vorticity and dilatation are used as the dependent variables in the
momentum equations. Test cases in two dimensions verify the capability to solve
flows using approximations from potential flow to full Navier-Stokes simulations. A
three-dimensional incompressible flow formulation is also described.

An interesting feature of this approach to solving the Navier-Stokes equations is
the decomposition of the velocity field into a rotational part (vector potential) and
an irrotational part (scalar potential). The Helmholtz decomposition theorem allows
this splitting of the velocity field. This approach has had only limited use since it
increases the number of dependent variables in the solution. However, it has often
been used for incompressible flows where the solution scheme is known to be fast
and accurate. This research extends the usage of this method to fully compressible
Navier-Stokes simulations by using the dilatation variable along with vorticity.

A time-accurate, iterative algorithm is used for the uncoupled solution of the
governing equations. Several levels of flow approximation are available within the
framework of this method. Potential flow, Euler and full Navier-Stokes solutions are

possible using the dual potential formulation. Solution efficiency can be enhanced
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xviii

in a straightforward way. For some flows, the vorticity and/or dilatation may be
negligible in certain regions (e.g., far from a viscous boundary in an external flow).
It is possible to drop the calculation of these variables then and optimize the solution
speed. Also, efficient Poisson solvers are available for the potentials.

The relative merits of non-primitive variables versus primitive variables for solu-

tion of the Navier-Stokes equations are also discussed.
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NOMENCLATURE

Roman Symbols

A vector potential
A cross-sectional area
B dilatation
c airfoil chord length
C f skin-friction coefficient (1—%2—)
FPooUoco

Cp pressure coefficient (1&1‘3—)

FPooUoo
cp specific heat at constant pressure
cv specific heat at constant volume
e internal energy
E, total energy per unit volume
F body force
h enthalpy
h non-dimensional height of a 2-D grid
I identity matrix
1,7,k index in the z,y, z direction respectively
1,7,k indices in tensor notation
1, j,ic unit vector in the z,y, z direction respectively
k thermal conductivity
L non-dimensional length of flowfield domain (e.g., channel length)
M Mach number
n outward unit normal
Nu Nusselt number
P exponent in the viscosity power law variation
P pressure
Pr Prandtl number (%)
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volume flow rate

finite-difference approximation to the exact solution
gas constant

Reynolds number

temperature

x component of velocity

average u velocity at an x cross-section

y component of velocity

z component of velocity

streamwise coordinate direction

spanwise coordinate direction

streamwise direction in the computational plane
spanwise direction in the computational plane
normal coordinate direction

conservative body force in the = direction
conservative body force in the y direction
conservative body force in the z direction

OO

=
o

kauwlalwagem:q

Greek Symbols

weighting parameter in hybrid differencing scheme
parameter in a 2-D stretching transformation
parameter in a 2-D stretching transformation

ratio of specific heats

rate of shear deformation in two dimensions, uy + vz
Kronecker delta function

.

hybrid difterence operator for convective terms

central difference operator, subscript gives direction to difference
e.g, dpu=1u;41 —u;_1

central difference operator, subscript gives direction to difference

e.g 85u = w1 — 2u; +u;_q

Mo P2 R R

(=)
[

momentum thickness

parameter in a 2-D stretching transformation
density

parameter in a 2-D stretching transformation
temperature parameter

scalar potential

(=2
(]

ElS®a ™ =

vector 3-D vorticity



xxii1

w 2-D vorticity

Subscripts

hyd based on the hydraulic diameter

m mean value

n normal direction

r reference

t time

t tangential direction

w wall

z derivative in x direction

Y derivative in y direction

z derivative in z direction

00 freestream value

Superscripts

* non-dimensional quantity
provisional value

) unit vector

k iteration level

n time level

Other Symbols

\Y gradient operator
v2 Laplacian operator
backward difference operator, subscript gives direction to difference
eg, Veu =u; —u;_1
forward difference operator, subscript gives direction to difference
eg., Apu = uj4] — Uy
A indicates an increment

[] used to enclose the units of measurement



1. INTRODUCTION

1.1 Background

The topic of this final report is a particular computational approach for solving
the Navier-Stokes equations. The Navier-Stokes equations are usually associated
with the field of fluid mechanics. Solutions to these equations with the appropriate
boundary conditions model fluid motion.

An analysis of fluid motion requires the solution for the physical laws of nature:
1. Conservation of mass
2. Newton’s second law of motion
3. Conservation of energy

These laws can be formulated mathematically, with the help of some assumptions,
to become the Navier-Stokes equations. Formally, the Navier-Stokes equations refer
to the mathematical representation of Newton’s second law. It will be more con-
venient for the purposes here to let the term “Navier-Stokes equations” include the
representation of all three physical laws above. Assumptions in the development are
that the coefficients of viscosity are related by a factor of —(2/3) according to Stokes’

hypothesis and that the fluid is Newtonian (Schlichting 1979). A Newtonian fluid




is one in which the fluid shear stress is linearly proportional to the rate of strain.
Additional relationships are included as necessary to describe certain processes or
fluids. Examples are the equation of state for a perfect gas, Sutherland’s formula for
viscosity and Fourier’s law of heat conduction.

As one can imagine, the successful solution to the Navier-Stokes equations can
help immensely in engineering design and optimization. The numerical solution of
the Navier-Stokes equations can be a complement to experimental and theoretical
fluid mechanics. Unfortunately, the Navier-Stokes equations are coupled and highly
non-linear. Only a few exact analytical solutions are available for simple conditions.
In most configurations of practical interest, numerical techniques must be used to
obtain a solution.

Much progress has been made in obtaining numerical solutions to the Navier-
Stokes equations. Several mathematical formulations for the Navier-Stokes equations

have been developed. They can be divided into two classifications:

1. Primitive variable methods

2. Non-primitive variable methods

As the name suggests, primitive variable methods solve the Navier-Stokes equa-
tions using the primary variables as the unknowns. The primary variables are velocity,
total energy (or a variable related to the energy) and pressure or density. One way
to think of the primitive variables is that they are physical quantities which one can
measure in the laboratory. Non-primitive variables, on the other hand, are mathe-
matically derived variables. They are derived from the primitive variables. The non-

primitive variables used in this report will replace the primary variable of velocity.




The replacements used will be vorticity and dilatation. One can devise techniques
to measure vorticity and dilatation experimexitally, but the direct measurement of
such quantities is uncommon. Both primitive and non-primitive variable methods
have been used to obtain solutions to the Navier-Stokes equations by numerical tech-
niques. Primitive variable methods are the most widely used for three-dimensional
simulations. Either primitive or non-primitive variables are used for two-dimensional
flow solutions although most applications of non-primitive variables have been for
incompressible flows. The following sections in this chapter will discuss some primi-
tive and non-primitive variable solution methods. The focus of this study will be on
a particular non-primitive variable method that is extended to compressible viscous

flow.

1.2 Primitive Variable Methods

Numerical methods of solving the Navier-Stokes equations using the physical
variables have attracted much attention. Several popular techniques will be men-
tioned here. The solution method depends on whether the flow is incompressible
or compressible, because the Navier-Stokes equations have a different mathematical
classification depending on the compressibility. For an unsteady incompressible flow,
the governing equations are elliptic/parabolic in time. For an unsteady compressible
flow, the equations are hyperbolic/parabolic in time.

The most common primitive variable solution method for incompressible flow
problems involves the use of a Poisson equation for pressure in place of the continuity

equation. An algorithm which employs this solution method is the SIMPLE (Semi-



Implicit Method for Pressure-Linked Equations) procedure (Patankar 1975, 1981).

Another primitive variable solution method is the artificial compressibility ap-
proach which modifies the continuity equation to include an unsteady term related to
pressure (Chorin 1967). The resulting equations are a mixed set of hyperbolic/parabolic
equations which can be solved using a time-dependent approach. This approach ap-
plies in two and three dimensions and can be modified to compute unsteady flows. An
available computer code that uses this method is INS3D (Kwak et al. 1986; Rogers
et al. 1987; Rogers and Kwak 1988).

A compressible flow solution is often obtained using a time-dependent or time-
dependent-like approach. Most schemes utilize implicit methods, for example, the
Beam and Warming (1978), Briley and McDonald (1977), or MacCormack (1981)
methods. An available code for these applications is F3D (Steger et al. 1986). Addi-
tional discussion and references on primitive variable solution methods can be found

in Holst (1987).

1.3 Non-primitive Variable Methods

Methods which in some way replace the velocity with derived variables will be
discussed here. At the highest level of approximation, potential flows are typically
solved using either the velocity potential or the stream function. Examples of their
use are found in most fluid mechanics textbooks (Currie 1974). By definition, a
potential flow is irrotational so that the velocity field can be defined by the gradi-
ent of a scalar function. This scalar function is called the velocity potential. It is

analogous to the electric field potential. For an incompressible potential flow, the



only additional constraint is mass conservation. The equation of mass conservation
is a Laplace equation for the velocity potential which is easily solved. The velocity
potential is applicable in two and three dimensions. If the stream function is used
it is defined to satisfy mass conservation and the Laplacian of the stream function
satisfies the irrotationality condition. The stream function as defined here only exists
in two dimensions. In both of the above schemes, the momentum equation (vorticity
transport equation) is satisfied automatically since the vorticity is zero everywhere
for the assumption of irrotational flow.

The vorticity/stream function approach is widely used for solution of the two-
dimensional incompressible Navier-Stokes equations. This method is also discussed
in most fluid mechanics textbooks and is treated extensively in the book by Roache
(1972).

Many would consider this the limit of practicality for non-primitive variable
methods. However, there are at least two other noteworthy approaches to solving
the Navier-Stokes equations in non-primitive variables. Both are valid for two- and

three-dimensional unsteady flows. These methods are known as the
1. Vorticity/velocity approach
2. Vorticity/vector potential approach

These two schemes will be briefly described and then the focus will be placed on
the vorticity/vector potential method. The topic of this thesis will cover the vor-
ticity/vector potential method. This method is also referred to by the the aliases

scalar/vector potential, vorticity/potential, or dual potential method. Since both




vorticity and dilatation are used in this work to replace the primitive variable mo-
mentum equations, it does not seem appropriate to identify the method as the vor-
ticity/vector potential approach. Instead, the term dual potential will be used here
following Chaderjian and Steger (1985). This terminology identifies the method as

one which uses two potential functions in a velocity decomposition.

1.3.1 Vorticity/velocity approach

In this method for incompressible flow, the momentum equation is replaced by the
vorticity transport equation. Derivatives of the vorticity definition then yield Poisson
equations for the velocity when the continuity equation is used to make appropriate
substitutions. A more general derivation of the Poisson equations is to take the curl
of the vorticity and substitute in the vorticity definition from velocity. The identity
for the vector triple product then yields Poisson equations for the velocity. The
earliest use of this method was by Fasel (1976). He studied the stability of two-
dimensional boundary layers using a coupled and iterative algorithm. Dennis et al.
(1979) used the vorticity/velocity method in the calculation of the cubical driven box
problem. Orlandi (1987) solved high Reynolds number flows over a backward facing
step. Other works using the vorticity/velocity formulation are Osswald et al. (1987),
Guj and Stella (1988), Gatski et al. (1982), Fasel and Booz (1984) and Farouk and
Fusegi (1985). There have been no reported compressible flow applications of this
method. However, the dilatation could be used as a dependent variable, as was done

in this research, to extend the vorticity/velocity method to compressible flow.



1.3.2 Dual potential approach

Derived variables which can be used to represent the three-dimensional continuity
and momentum equations for an incompressible flow are vorticity, a vector potential,
and a scalar potential. This is one possible three-dimensional extension of the more
familiar two-dimensional vorticity /stream function approach. This approach and oth-
ers that use the vorticity as a dependent variable are appealing because vorticity is
generally located near boundaries in high Reynolds number flows and subsequently
diffused and convected away. For a three-dimensional incompressible flow the usual
procedure in the dual potential method is to solve the vorticity transport equation, a
vector Poisson equation and a scalar Poisson equation. These equations are derived
from the continuity and momentum equations where the velocity is defined as the
curl of a vector potential plus the gradient of a scalar potential. The existence of
these potentials is easily shown for an incompressible flow since the velocity field is
divergence free (Aziz and Hellums 1967).

There has been only one reported formulation of the dual potential method for
three-dimensional compressible, viscous, unsteady flows (Morino 1985). He derived
a set of equations for density, vorticity, entropy and the potentials. There have been

no reported calculations using Morino’s formulation.

1.3.2.1 Applications of the dual potential method The dual potential

method has been applied to inviscid and viscous flow problems. Inviscid flow applica-
tions include the work of Rao et al. (1989) and Giannakoglou et al. (1988). Rao et al.

(1987) developed a three-dimensional inviscid rotational flow solver based on the dual




potential method. They incorporated a boundary layer interaction scheme for viscous
flow problems. Giannakoglou et al. (1988) compute two-dimensional steady rotational
transonic flows in arbitrarily shaped ducts and plane cascades. They decomposed the
mass flux vector into two potentials.

In the viscous regime, the dual potential method has been applied to problems
of three-dimensional natural convection in enclosures (Mallinson and De Vahl Davis
1973) and three-dimensional incompressible flows in ducts (Wong and Reizes 1984).
External viscous flows have been computed by Davis et al. (1989). No attempts
have been reported on the use of this method to solve three-dimensional unsteady
compressible viscous flows.

The dual potential method was first applied to natural convection problems by
Aziz and Hellums (1967). They used the dual potential method to transform the
Navier-Stokes equations. The transformed equations were solved using an alternating
direction implicit (ADI) scheme for the parabolic part of the problem (temperature
and vorticity transport equations) and a successive over-relaxation (SOR) method
for the elliptic portion (vector potential equations). They tested their technique by
applying it to the classical problem of convection in fluid layers bounded by solid
walls in both two and three dimensions.

Aziz and Hellums showed the dual potential method to be faster and more accu-
rate than solutions obtained using the primitive variable approach. In fact, though
the equations are fewer in number for the primitive variable approach, Aziz and
Hellums report that they are much harder to solve than the equations in the dual

potential method. The difficulty arises from the highly non-linear nature of the pres-



sure equation and the coupling due to pressure in the momentum equations (as in
incompressible flow problems).

The technique developed above was used by Ozoe and co-workers (Ozoe et al.
1976, 1977, 1979, 1985) in solving a variety of natural convection problems. In the
1985 paper, the problem of three-dimensional turbulent natural convection in a cubi-
cal enclosure was solved using a two-equation model for turbulence.

Applications of the dual potential method to incompressible duct flow (through-
flow) have not been wholly successful due to confusion over the appropriate vector
potential boundary conditions. The earliest work in this area was by Aregbesola and
Burley (1977). They presented a numerical finite-difference solution for the equations
of motion of a steady laminar incompressible flow in two and three dimensions using
the dual potential method. Wong and Reizes (1984) presented a dual potential for-
mulation for unsteady incompressible flows in ducts of constant but arbitrary cross
section. They showed that the method is capable of handling flows over a wide range
of Reynolds numbers and imply that it can deal with flow situations in which other
models become inadequate. The dual potential method guarantees a zero divergence
of velocity while the usual primitive variable method can at best approximate global
continuity. That formulation was limited to simply connected domains. In a later
paper Wong and Reizes (1986) showed how to use the dual potential method to solve
for the three-dimensional flow in multiply connected regions such as annular geome-
tries. Yang and Camarero (1986) used body fitted coordinates with the dual potential
method to simulate incompressible laminar flows in a square elbow and in a twisted

square elbow. The dual potential method in this paper is shown to be applicable to
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general duct flow situations in simply connected regions. Hafez et al. (1987) used a
finite element method to solve the steady two-dimensional Navier-Stokes equations
in a dual potential formulation for subsonic and transonic flows. They computed
laminar and turbulent flow cases.

Some viscous external flow solutions were obtained by Rao (1987) and Davis et al.
(1986) for flow over two- and three-dimensional troughs. Rao (1987) used interacting
boundary layer theory to supply the vorticity to a dual potential code for the inviscid
rotational part of the flow. Davis et al. (1986, 1989) use a viscous dual potential

method for the entire flow field. Matching between the outer inviscid flow and the

inner viscous region is automatic in their case.

One possible extension of the dual potential method to three-dimensional com-
pressible viscous flow has been formulated by Morino (1986). There are no reported
results in the compressible viscous regime.

Compressible viscous unsteady flows have been solved by a closely related method,
however. El-Refaee et al. (1981) used a non-primitive variable method that replaced
the momentum equation with vorticity and dilatation transport equations. The veloc-
ity field was obtained from the vorticity and dilatation field by an integral represen-
tation. They solved compressible unsteady flows and demonstrated that the solution
field for vorticity and dilatation can easily be limited in their integral representation.
In this report a similar equation set is used, but the velocity is decomposed into two
potentials and solved completely by finite differences. The proposed extension of the
dual potential method to compressible flow would be directly applicable to the vor-

ticity/velocity method. That is, the dilatation variable would be included to account
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for compressibility.

In view of the short list of references on the dual potential method it is evident
that this method has not been widely implemented in computations. The main
reasons for this have been the need for the solution of several additional variables as
compared to the primitive variable approach and the inability to analyze the numerical
solution process for convergence. There are no good model problems to guide the way.

Three-dimensional flow solvers are computationally demanding and the introduc-
tion of additional variables inevitably increases the computer memory requirement.
However, with the increasing memory of today’s computers, and since Aziz and Hel-
lums (1967) have shown that the dual potential approach can lead to faster and more
stable convergence than for primitive variable formulations (for certain problems),
the vector potential will perhaps play an increasing role in the solution of complex
three-dimensional fluid dynamics problems (Wong and Reizes 1986). Certainly this

kind of formulation deserves continued investigation.

1.3.2.2 Advantages and disadvantages Relative advantages of the prim-

itive variable method and dual potential method are cited in Morino (1985) and
Richardson and Cornish (1977). The major advantage of working in primitive vari-
ables is the relative simplicity of the equations and the fact that the primitive variables
have direct physical meaning.

The advantages of the dual potential method are:

1. The vorticity (and dilatation for compressible flow) need only be resolved in

distinct regions.
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2. Continuity is automatically satisfied for incompressible flow.
3. The equations are weakly coupled (at least for inviscid flow).
4. Good numerical solution routines exist for Poisson equations.

5. Matching between an inviscid region and viscous region occurs automatically

because of the velocity decomposition into rotational and irrotational parts.

Disadvantages of the dual potential method applied to a three-dimensional com-

pressible unsteady flow are:

1. The dual potential method involves ten dependent variables whereas the prim-
itive variable method involves only five to represent conservation of mass, mo-
mentum and energy. (In two dimensions the number of dependent variables are

six for the dual potential method and four for the primitive variable method.)

2. The equations for the dual potential method are more complex than the equa-

tions associated with the primitive variables (or, they are simply unfamiliar).
3. The potentials do not have direct physical significance.

In addition to the natural disadvantages of the dual potential approach listed
above, there is a lack of available software as compared to primitive variable solution
methods. The extension of this approach to unsteady compressible viscous problems

is uncharted territory.
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1.4 Scope of the Present Study

It has been the goal of this research to extend the capability of the dual po-
tential method to compute unsteady compressible viscous flows. An algorithm has
been developed to provide two-dimensional full Navier-Stokes simulations. A three-
dimensional algorithm has been developed for incompressible flow only. Test cases
were computed to verify the ability to compute flow fields ranging from full potential
flow to flow fields requiring the full Navier-Stokes equations. It has been demonstrated
in this work that the calculation region can be limited for vorticity and dilatation,
thus providing a speed advantage for certain flows.

Several two-dimensional test cases will be presented to test various aspects of the
dual potential method. Both incompressible and compressible flows will be computed.

Incompressible flows will be studied for steady, irrotational, inviscid conditions
and for steady, rotational, viscous conditions. The steady, irrotational, inviscid test
case is that of flow over a biconvex airfoil (or a bump on a wall). Steady, rotational,
viscous conditions are simulated for a channel inlet and laminar boundary-layer case.
Heat transfer calculations will be made for the channel cases with constant wall
temperature and constant wall heat flux boundary conditions.

For compressible flow, steady and unsteady, irrotational, inviscid flows will be
computed and also steady, rotational, viscous flows. The irrotational, inviscid flows
are biconvex airfoil cases. The steady, rotational, viscous flows are channel inlet
and boundary-layer cases. The channel inlet flows are computed with constant wall
temperature and constant wall heat flux boundary conditions at a Mach number of

0.1. Calculations of the flow over a flat plate are made for a subsonic and supersonic
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freestream.
In three dimensions only steady, viscous, incompressible channel inlet solutions

were obtained. A summary of the test cases to be presented is given below.

I. Two-Dimensional Cases

A. Incompressible flow
1. Steady irrotational inviscid flow
a) bump cases
2. Steady viscous flow
a) channel inlet with and without heat transfer
b) boundary layer
B. Compressible flow

1. Steady irrotational inviscid flow
a) bump cases

2. Unsteady irrotational inviscid flow
a) bump cases

3. Steady viscous flow
a) variable property channel flows
b) boundary layer

II. Three-Dimensional Cases

A. Incompressible flow

1. Steady viscous flow
a) channel inlet

B. Compressible flow

Progress in this research area has not been easy. There is very little guidance
in the literature on how to proceed with a full Navier-Stokes implementation of a
non-primitive variable method. The governing equations in non-primitive variable

form are unfamiliar. Non-linear terms were simply lumped into the source term and
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the system was solved uncoupled in an iterative manner. As a result, it was necessary
to employ rather simple test cases to check various aspects of the formulation.

The work completed here is primarily in the development and evaluation of the
dual potential method as a flexible approach to solving the Navier-Stokes equations.
Several features of the method have been highlighted. For example, the solution do-
main for vorticity and/or dilatation may be limited to certain regions. Also demon-
strated is the flexibility of the method to accommodate several approximations of
the full Navier-Stokes equations. This effort has advanced the understanding of the
dual potential method in the viscous compressible regime. It represents the first
application of this method to compute throughflow problems with heat transfer. Sev-
eral basic problems are solved to check out aspects of the algorithm and computer
code. Only Cartesian grids are used for the test problems. Further evaluation and

optimization of the method reported herein are left for future work.

1.5 Organization

The main body of this report consists of six chapters and two appendices. The
presentation follows the logical development of the method from equation derivation
to boundary condition determination, grid generation, numerical algorithm selection
and, finally, flow simulations. In Chapter 2, the dual potential equations are derived
from the velocity decomposition and non-primitive variable dependent variables are
selected to represent the usual primitive variable (or pressure-velocity) form of the
Navier-Stokes equations. In Chapter 3, the numerical representations of the boundary

conditions are derived and the numerical algorithms are presented. The Cartesian
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grid stretching is presented also. A comparison is made of the Poisson equation solvers
since the Poisson equation solution for the potentials can dominate the computation
time. In Chapter 4, the solution strategy is outlined and then numerical results are
reported for two- and three-dimensional test cases. The two-dimensional results repre-
sent cases from potential flow to situations requiring the full Navier-Stokes equations.
The three-dimensional results are for incompressible cases only, but are representative
of the speed of this approach for incompressible problems. Chapter 5 includes the
overall assessment of this method. Chapter 6 gives some incentives for future work
on the dual potential method.

The appendices contain equations for the full three-dimensional Navier-Stokes
implementation of this method. Also, alternative non-primitive variables are intro-

duced which could be useful for some problems.
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2. DUAL POTENTIAL FORMULATION

2.1 Introduction

In this chapter the mathematical equations which model fluid flow are presented.
These equations are the Navier-Stokes equations. They state the conservation of mass,
momentum and energy for a Newtonian, Stokesian fluid. The usual form of these
equations has the primitive variables (p, 1_/), Ey4) as the primary unknowns. Using the
Helmholtz decomposition theorem, the velocity field can be split into a rotational
part and an irrotational part. Each part is represented by a potential function.
This decomposition yields a non-primitive variable formulation for the Navier-Stokes

equations.

2.2 Governing Fluid Dynamics Equations
The following equations apply to a continuum fluid.
The conservation of mass is stated

Dp

—
-V = .
Dt+pV 0 (2.1)

The conservation of momentum (Newton’s second law), with the assumptions
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that Stokes’ hypothesis holds and that the fluid is Newtonian, is written

-
pv -2 2 g Ou; 6"]' 2_ Ouy
—=F-Vp+ am] [IL (aw] + axz) - '3'51]5;; (2.2)

—) Y
Where F = Xi+Yj+ Zk is the body force and §; j is the Kronecker delta function:

1 ifi=j
0 ifi#j
In the energy equation only internal and kinetic energy will be considered im-

portant. The conservation of energy is then written
- — — '
p—+pV . V=—o-V.qg+9 (2.3)

where %?— represents heat energy production by external agencies, 71‘) is the heat

conduction and ® is dissipation. Fourier’s law of heat conduction will be assumed so
q4=-kVT

The dissipation function for a Newtonian fluid in a Cartesian coordinate system be-

comes

¢ = p[2 (ug +v§ + w%) + ('U:c + uy)2 + (wy + ‘Uz)2 + (uz + wa:)2

-2 (wa+ vy +w2)’] (24)

The ideal gas equation of state and a viscosity law are used to close the system for
laminar flow. Constant specific heats are assumed throughout. Reference conditions
are selected to non-dimensionalize the equations. Reference quantities will be denoted

by the subscript 7. Fluid properties for air will be used in the calculations.
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For an ideal (or perfect) gas the following relationships exist:

p = pRT (2.5)
e=cyT h=cpT 7:2—1) R=cp—cy (2.6)
v

Sutherland’s law of viscosity is used in the form

T3/2
T + Cy

p=0C (2.7)

where C) and C9 are constants for a particular gas. For air at moderate temperatures
(approximately 200K-1000K), Cy = 1.458 x 106 [ke/(m sVK)| and Cy = 110.4K.

Power law variations for y were also available in the computer code:

£ _ (—T—)p 0.5 < p < 1.0 2.8
ll,r T’r * —_— p —_ ¢ ( * )
A constant Prandtl number is assumed and thermal conductivity is obtained

from the definition, Pr = EEE Typical values of the fixed quantities chosen for air

are:

— 14 (2.9)
R = 287|2 (2.10)
B kg K '
Pr = H%Pr_yy (2.11)

kr

A reference length will be designated by Ly [m] and a reference velocity by Uy [%] .
The reference length is taken to be a characteristic length of the problem such as the
hydraulic diameter for internal flow or chord length for external flow. The reference
velocity is taken to be the magnitude of either the inlet velocity for internal flows or

the freestream velocity for external flows.
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The following reference conditions were set for incompressible flow calculations

with the Reynolds number and reference length specified:

Ir

Hr

kr

Pr

Ur

My

Pr

288.15K (59°F)

c Tr3/2 kg
lTr + Cq

W2 [l

m-s

Pr m-°C

kg
1.22 |—
12 | 5]

Reference conditions for compressible flow calculations with the Reynolds num-

ber, Mach number and reference length specified are as follows:

Ir

Hr
kr

Ur

Pr

Dr

288.15K (59°F)

3/2
c T,./ kg
1T7-+C'2 m-s

H2 (e
Pr m - °C

i, 2

Repr [ kg
UrLr [m3
N
pr RTy [—2—]
m
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The following non-dimensional variables are then obtained:

* z * Y * z % t
r — -— = — Z = - t = ——————
Ir v =1, Ly (Lr/Ur)

* u * v * w * [t

u = - v _ - w = - = —

Ur Ur Ur # Kr

P* _ P p* — 4 T* _ 1 o — €

pr prU? Ty U?

* R * v x °p * k

=g~ = g = o~ k=

(Ug [Tr) (U#Tr) (U /Tr) r

where the variables distinguished by an asterisk are non-dimensional. The non-
dimensional variables will be used throughout, so the asterisk will be dropped in

the following. The non-dimensional gas constant above is equivalent to

1
R = 5
M7
so that
p = pRT

in dimensional or non-dimensional variables.

2.3 Derivations

2.3.1 Velocity decomposition

The basis of the dual potential method is a splitting of the velocity field into

rotational and irrotational parts. In this section, the impetus for splitting the velocity
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field in this way is presented. The Helmholtz decomposition theorem formally permits
the splitting.

A useful classification of vector fields is possible using the divergence and curl
operators (Ames 1977). For _vﬁ) . _E_) = 0 at every point of a region R, the vector field
B is said to be solenoidal or divergence free. Physically this means that there are

- -
no sources or sinks in R. If V x E = 0 at every point in R, the field is said to be

irrotational. The following classification of vector fields can then be made:

Class I Solenoidal and irrotational:
VxE=0 V-E=0
Class II Irrotational but not solenoidal:
Class II1 Solenoidal but not irrotational:
VxE#0 V-E=0
Class IV Neither solenoidal nor irrotational:
VxE#0 V-E#0

An important theorem in vector field theory is called the Helmholtz decomposi-
tion theorem. It states that any vector field can be split into a curl free and divergence
free part. Using the above classifications, it can be observed that the velocity field
of an incompressible fluid is in Class III and the velocity field of a rotational com-
pressible flow is in Class IV. Applying the Helmholtz decomposition theorem to the

velocity vector one obtains:
— — — =
V=V¢+V x A (2.12)

—
It is obvious that the curl free part of the velocity is V ¢. The divergence free

part (recall from the above that another word for divergence free is solenoidal) is the
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vector field X The vector 1_4) has been assumed to be solenoidal by design. This is
an arbitrary but appropriate choice to fit the Helmholtz decomposition theorem and
to remove the redundancy of describing a three component vector ( V) using another
three component vector ( 71)) plus the gradient of a scalar (¢).

For the classification of the velocity field then, one can compute the divergence

and curl of Equation 2.12 to obtain:

_)
v.

i
4

% =B | (2.13)

—
w

<l <!

— - — 9=
vV x = V(V.-A4)-V224 (2.14)

where ¢ is the scalar potential, B is the dilatation or rate of volumetric strain, Py
is the vorticity and ?f is the vector potential. The vector potential, z, is chosen to
be divergence free. The Laplacian operator in Equation 2.14 is the vector Laplacian.
Throughout this report only rectangular coordinates are used so each component of
the vector Laplacian is similar to a scalar Laplacian.

The vector potential and vorticity will be represented in three dimensions as

follows:

= Aji+ Agj+ Agk (2.15)

€l »J

= wii+wyj+ w3k (2.16)
The components of the vorticity are obtained from:

— -
3:: Vx V

W] = Wy — Vyz, w9 = —wg + uz, w3 = vp — Uy
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The velocity components are then:

u bz + Az, — Ay,
—
w ¢z + A2:c — Aly

In two dimensions only one component of X and w exist. For the standard
two-dimensional geometry shown in Figure 3.3 the single components are Ag and
wg. To simplify things in two dimensions, the subscripts will be dropped on the
vector potential and vorticity so that A and w refer to the two-dimensional case. The

velocity components in two dimensions are then:

u + A
V= _| =t (2.18)

v d’y-A:c

2.3.2 New dependent variables

In the well known incompressible application of the above decomposition, the
momentum equations become the vorticity transport equation. Continuity is satisfied
by the solution of a Laplace equation for ¢, since —6 . —‘7 = 0 in Equation 2.13. Finally,
the potentials are used to compute the velocity field. Any other governing equations
remain unchanged (energy equation, equation of state, etc.).

For a compressible flow, however, 5’ . V # 0. In this case, 3 . 1_/) = V2¢ =
B # 0 in Equation 2.13. An additional equation is required to give the dilatation,
B, for the solution of the scalar potential. By counting the number of equations and
unknowns, one can see that the three-dimensional momentum equations represent

three equations with three unknowns (or two equations and two unknowns in two
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dimensions). The vorticity transport equations formed by taking the curl of the three-
dimensional momentum equations yield just two independent vorticity component
equations (see Appendix A). In two dimensions, the vorticity is a single scalar quantity
so again there is one remaining usage of the momentum equations permitted. This
means that an equation (hopefully for the dilatation, B) can be derived by some
operation on the momentum equations in either two or three dimensions. Looking at
possible operations on the momentum equations, one choice is to take the divergence
of the momentum equation.

The divergence of the momentum equation yields for possible dependent variables
either the pressure (as in the pressure Poisson equation) or the divergence of the
velocity, ; . Y; The divergence of velocity will be represented by the scalar variable,
B, known as the dilatation or rate of volumetric strain.

Another possible combination of the momentum equations gives a scalar variable
which is the rate of shear deformation (or shear strain rate). Let the shear strain
rate be represented by the symbol, I'. In two dimensions, ' = uy + vg. This
dependent variable is formed by taking 5% of the y momentum equation + -5% of
the z momentum equation. The wall shear stress is simply uI'. The variable set
of T and @ can form the basis for an interesting computational procedure in two
dimensions. Unfortunately, one usually hopes to compute the skin friction, not give
it as a boundary condition. However, this could be a useful inverse type calculation

procedure (see Appendix B).
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2.4 Derivation of Non-Primitive Variable Equations

The dual potential equations will be derived starting from the governing equa-
tions written in primitive variable form. For purposes of comparison, the number of
unknowns required in a flow simulation using either primitive variables or the dual
potentials will be given. The number of unknowns is computed by considering the

continuity, momentum and energy equations only.

2.4.1 Two dimensions

The derivation of the dual potential method in two dimensions will contain the
fewest simplifying assumptions except, of course, that it only considers two space
dimensions. The solution capability will be for flows that require the full Navier-
Stokes equations (i.e., unsteady compressible viscous flow).

In the primitive variables, the continuity, momentum and energy equations rep-
resent four equations for four unknowns. These four unknowns may be p,u,v and T.

These variables are solved using:

e continuity:

pt + (pu)z + (pv)y =0 (2.19)

¢ X momentum:
Du gp 1 0 ouw 272 7 1 0 Ou Ov
Bt—-—X—E';-Fﬁ;'a—m' [[.L,(2-8—m'—-§V-V)]+-R—e'b—y [ﬂo (5—3;4-5—:;)] (2.20)

¢ y momentum:

Dv p 1 0 o 22 1 0 Ou Ov
p—ﬁ?_y——<'3_y+§;5§ “(253;—§V'V)]+ﬂa_z [[l« (5374-5;)] (2.21)
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e energy:

DT - = y = o= "

The pressure may be obtained from the ideal gas law, p = pRT. Any additional
variables (i, k,v,Pr, etc.) must be accompanied by their own equation of state or
constitutive equation.

For the non-primitive variables of the dual potential method, the same two-
dimensional flow requires the solution for ¢, A,w, B, T and p. The potentials give the
velocity field. The potentials themselves are determined by the solution of Poisson
equations derived from the divergence and curl of the velocity (cf. Equations 2.13 and
2.14).

To see what is needed for the dual potential formulation, consider the primitive
variable equations above. They are the governing equations for fluid flow, but now
it is desired to solve not for velocities directly but rather for the potentials. The
velocities are subsequently determined from the potentials by solving Equation 2.18.
The momentum equations must be recast to generate a solution to be used by the
potentials. Equations 2.13 and 2.14 for the velocity field splitting suggest that the
divergence and curl of velocity be sought as dependent variables. These are obtainable
from the z and y momentum equations above by taking the divergence and curl of
the primitive variable momentum equation.

The curl of the velocity (vorticity) is obtained as a dependent variable by taking
the curl of the momentum equation. The group, vz — uy = w, is retained as the
dependent variable. The divergence of the velocity is obtained as a dependent variable

by takin 9 of the z momentum equation and -2 of the y momentum equation and
€ 5z q By q
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summing. The grouping, ug + vy = B, can be retained as the dependent variable.
The remaining governing equations can be left unchanged from the primitive variable
equation set.

The continuity equation can be used to compute the density. The energy equation
can be used to solve for T or enthalpy, or any other variable that is related to energy.
The ideal gas equation of state can then be used to compute the pressure if it is
needed.

To summarize: The six variables of the dual potential method corresponding to

the solution of the continuity, momentum and energy equations are determined as

described below:
1. The continuity equation is used to compute the density, p.

2. The curl of the momentum equations gives the vorticity transport equation
for w. Conservative body forces are eliminated by this operation. Also, for
incompressible flow, the pressure is eliminated. For compressible flow, however,
the pressure derivatives remain but can be expressed in terms of other variables

by using the equation of state.

3. The divergence of the momentum equations gives the dilatation transport equa-

tion to be solved for B.
4. The energy equation is solved for T, or enthalpy, or a related variable.
5. A Poisson equation is solved for ¢ with B as the source term.

6. A Poisson equation is solved for A with —w as the source term.
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The equations for a two-dimensional dual potential formulation will be presented
below and subsequently solved in non-conservative form. Body forces will be ne-
glected.

In two dimensions the dual potential representation of the compressible Navier-

Stokes equations for constant specific heats are:

pt +upz +vpy +pB = 0 (2.23)
[ 2, _
wg + uwg + vwy — (-———-) Véw = Sy(p,B,w,T) (2.24)
pRe
B; +uBg + vBy — L v2B = So(p, B,w,T) (2.25)
) 3pRC y W,y
T+ uly +vTy — gl vir - S3(py B,w,T) (2.26)
Y7 \pRePr R
v2% = B (2.27)
24 _
v = —u (2.28)

The source terms for the w, B and T transport equations are given below. For
the vorticity transport equation, S contains the compressibility and ¢ contains the

variable viscosity terms.

- " 4 4

R c1
—(pzTy — pyT - 2.
+p(Pm y — pyTe) + Re (2.29)
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1 2
cq = ;(uy +vz)(pzz — pyy) + ;(”y — uz)pzy
2 1 2
+ux ;(wz + By) - p—z'(P:z:uy + pzvz — 2pyuz + gpyB)
2 1 2
+py ——;(—-wy + Bz) — p(zpzvy = Pyuy — pyvz — ':,:Pa:B) (2.30)

For the dilatation transport equation, So contains the “compressibility” and c

contains the variable viscosity terms.

_ 2 2 [t
Sg = —(ug + vy + 2uyvz) - 2R

€

4 4
[Pz(—wy +3Bz) + py(wz + §By)]

RT R RT
_RV2T Tv2p ~ - (Topz + Typy) + p—2(pi +p3) + 5R2; (2.31)

B

2 2
cg = ; [ﬂzy(Uy + 1)3:) + Hrrux =+ }I.yy‘vy] — Ezvzp
1 8 2pz Pz Py
= 1-2 =By +-22B 288y, -2
+p wy + 3 m+3p 5 p(uy+v:c)]
Ky 8 2py Py Pz
—Z 12 —By + =~*B — 2—%yy — — 2.3
NP R T P p(Uy+vz)] (2.32)

The energy equation source term, Sg, contains the compressibility and variable

thermal conductivity.

o L [4g2, 2 _ ]
S3 = —(v-1)BT + “Recy [3B + w® + 4vzuy — vyuz)
2

omapy ke Te + kyTy) (2.33)

The solution strategy for this system of equations is outlined in Section 4.2.
Briefly, the equations are grouped into an “incompressible” and compressible part.

An incompressible solution is obtained by computing among the equations in the
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“incompressible” set of equations given below. A compressible solution requires a
pass through both the “incompressible” and compressible sets of equations. In that
case the “incompressible” equations actually contain terms representing compressible
effects. This grouping is used to allow an incompressible solution to be the starting

solution for a compressible problem.

vorticity transport equation

Incompressible V2¢ =0

V24 = —w

dilatation transport equation
energy equation

) continuity equation
Compressible

v = B

ideal gas law,p = pRT

property updates : pu, k

The transport equations above are solved using an ADI scheme. Source terms
of the dependent variable (undifferentiated) are treated implicitly. Derivatives of the
dependent variable in the source term are treated explicitly so as not to weight the
off-diagonals. This did provide a slightly faster solution than treating all dependent
variable source terms implicitly.

One will immediately notice the many derivatives introduced in the governing
equations by this method. Even though most of the test cases to be presented are for
subsonic flows, it was necessary to handle some terms conservatively. In particular,

the pressure related terms in the dilatation transport equation and the conduction
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terms in the energy equation are best handled conservatively for the heat transfer
test cases computed. By treating these terms conservatively it is easier to obtain an
accurate representation than by expanding out in the chain rule form and differenc-

ing.

2.4.2 Three dimensions

Only the incompressible equations will be derived here. The three-dimensional

compressible set is given in Appendix A.

2.4.2.1 Incompressible flow The governing equations for viscous incom-

pressible flow in non-dimensional vector form are:

e continuity:
—_
vV.Vv=0 (2.34)
e momentum: .
av

—_ - — — 1 2—+ —
__t_+(v.v) V:_VP+§V V +F (2.35)

There are four unknowns to be determined for the primitive variable solution of a
three-dimensional incompressible flow. Usually these unknowns are u,v,w and p. It
will be seen that the dual potential method requires the solution for seven variables
to satisfy the continuity and momentum equations.

By taking the curl of the momentum equation the pressure is eliminated yielding

the vorticity transport equation:

U
—_ — —_ — — —
a_a‘t"_+(v.v);’_(;’.v)v = RI—CVZTJ+V><F (2.36)
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—
If F is a conservative body force (such as gravity) then it too is eliminated by the
curl.

Decomposing the velocity vector according to the Helmholtz decomposition the-

orem as in Equation 2.12 one obtains:
- — -  —
V=V¢+Vx A (2.37)

— - —
Since V . (Vx A) = 0, the substitution of Equation 2.37 into Equation 2.34
leads to:

V2 =0

—9
The relation between the vector potential, A, and vorticity is obtained by taking

the curl of Equation 2.37. This becomes:

—

9 - = —
VZA-V(V-A)=-w

The vector potential is chosen to be solenoidal so that the above reduces to:

Therefore, for viscous incompressible flow, the momentum and mass conservation

equations and the vorticity definition can be solved using:

o —_ — - — 1 —
?—i+(v-V) W (0 V) V= —V2J 4tV F (2.38)
ot Re

2 _

V% = 0 (2.39)

2"-*)
VAA = —w (2.40)
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Then, the velocity is decoded from the potentials according to the Helmholtz
decomposition:
— - —_  —
V=V¢+VxA
If the pressure field is needed it can be obtained by solving for pressure from
one of the primitive variable momentum equations or by solving the pressure Poisson
equation. It is also possible to solve for the pressure by computing a force balance on

an appropriate fluid element since the velocity field and hence the shear stress field

is already determined by the solution strategy above.
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3. PRELIMINARY ANALYSIS

3.1 Introduction

In this chapter the essential parts for assembling a dual potential code are gath-
ered together. First the boundary conditions for the dependent variables are pre-

sented. Next, the Cartesian stretched grids are described and, finally, the necessary

solvers are explained.

3.2 Boundary Conditions

A general presentation of the boundary conditions will be given here. The bound-
ary conditions are applicable for two- or three-dimensional problems. Boundaries have

been classified as one of the following:

1. Solid — impermeable boundary (slip or no slip)
2. Throughflow boundary — boundary crossed by the streamwise velocity

3. Far-field boundary — a freestream boundary which may be modeled as an
impermeable boundary, a porous boundary or some other freestream condition

according to the problem.
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The boundary conditions are, of course, also identified with a partial differential
equation. For ease of presentation, only the boundary types as listed above are
discussed here. To determine what conditions are imposed in a particular problem
it is necessary to know the classification of the governing partial differential equation
(hyperbolic, parabolic or elliptic) and the number and type of derivatives of the
dependent variable. Specific boundary conditions for each model problem will be
given in figures in the discussion of the results. The solid boundary and throughflow
boundary conditions for the potentials are thoroughly derived in Wong and Reizes
(1984) and Hirasaki and Hellums (1970). For the transport variables ( ;',B,p,T),
a fully-developed exit condition is specified by dropping second order streamwise
derivatives (except for density) and upwinding other streamwise derivatives at the
exit. Example boundary conditions for a two-dimensional channel throughflow case

are illustrated in Figure 3.3 for reference.

3.2.1 Scalar potential boundary conditions

The scalar potential is obtained from the solution of the Poisson equation, qub =
B. This is an elliptic equation so a condition on ¢ or its derivative must be given on
all boundaries.

Since the velocity is decomposed into two potentials, it is useful to ascribe certain
of the velocity boundary conditions to each potential. It has already been demon-
strated by Hirasaki and Hellums (1970) that if the scalar potential were used to deal

with possible throughflow velocities, then simple boundary conditions on the vector
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potential are possible. Following Hirasaki and Hellums,

on the boundaries. Thus, the scalar potential has Neumann conditions all around.
The normal derivative of the scalar potential is the normal outflow velocity at the
boundary. For a pure Neumann problem such as this, existence and uniqueness of the
solution are concerns. Existence is ensured if the compatibility condition given by
Green’s theorem is satisfied. Uniqueness is ensured by prescribing the scalar potential
at some point. For the test cases to be discussed later, it was possible to make one
boundary a Dirichlet boundary and still satisfy the Neumann boundary condition by
virtue of Green’s theorem. The positive n direction in the following is the outward

normal.

3.2.1.1 Solid boundaries For no flow through the boundary, the condition

on the scalar potential is

Q)lQJ
S |©
il
(=)

3.2.1.2 Throughflow boundaries An inlet or exit is the best example of a

throughflow boundary. The condition on ¢ is then

= streamwise velocity, say u;

0
dn
where,

1 —
ui:r// V.hds
(]

and A; is the cross-sectional area of the throughflow boundary.
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3.2.1.3 Far-field boundaries A derivative condition on the scalar potential

is also used at a far-field boundary as follows:

gﬂ = normal component of velocity through the far-field boundary, usually 0.
n

3.2.2 Vector potential boundary conditions

The vector potential is obtained from the solution of the Poisson equation,
v?2 71): — @. This is an elliptic equation so a condition on the components of
Z or its derivatives must be given on all boundaries.

With the above choice of scalar potential boundary conditions, the boundary

-
conditions on A for a simply connected region may be shown to be

Ap=— "t =0 (3.1)

—_)
where the subscripts ¢ and n denote the tangential and normal components of A
respectively. An example of the potential boundary conditions for a solid surface in

the z—z plane are shown in Figure 3.1.

3.2.3 Vorticity boundary conditions

Vorticity is only needed for rotational flow computations. It is generated, for
example, at no-slip boundaries and diffused and convected away. Vorticity may also
be specified as part of the inlet or initial conditions. Vorticity can also be generated
by shocks, but such flows will not be considered here. The transport equation for
vorticity states the conservation of vorticity. Therefore, the boundary conditions are

extremely important in defining the flow field.
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Figure 3.1: 3-D Cartesian coordinate system with example boundary conditions for
the potentials on a solid impermeable surface in the z—z plane
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Figure 3.2: An initial uniform velocity profile along a viscous boundary for an im-
pulsive start

3.2.3.1 Solid boundaries The vorticity at a solid boundary is obtained
from the no-slip conditions. Several different formulations are possible. The wall
vorticity can be computed from the velocity derivatives or from a Taylor series ex-
pansion of the vector potential. Consider a wall in the (z, z) plane. Using the vorticity

definition from velocities, the wall vorticity (at y = 0) is

wo = 0 (3.3)
w3 = —uy (34)

This method was used by Aziz and Hellums (1967). It was only used in this work
to compute an initial wall vorticity based on an impulsive start. For example, the
initial wall vorticity for a two-dimensional impulsive start is given by w = —uy (see

Figure 3.2.  The finite-difference initial wall vorticity is then:
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u(1,2)

@) =~ @)

For subsequent global loops, a better approach (Roache 1972) was used to obtain
the wall vorticity. This better approach uses the vector potential. Consider a vorticity
producing surface at y = 0 (j = 1) in a two-dimensional flow. The grid may be
stretched, so let the transverse spacing to the first node point be Ay; as in Figure 3.2.
For the i index in the z direction and j index in the y direction, write the Taylor

series expansion for the vector potential at (7,2) about the wall values as follows:

0A 1624 g 1834 3
AG,2) = AGD+—| Dyi+-—5| (A ——2| (&
(4,2) )+ 5 i V1t 3507 z.,1( y1)“ +g % i,l( ¥1)
+ O( Ay1)4 (3.5)

From the velocity decomposition in two dimensions (Equation 2.18), u = ¢g + Ay.

At the wall this is
04
i1 0y

, )
u(t,1) = 8—3

1,1
but, u(7, 1) is zero for a no-slip boundary. Therefore, %ﬁ . in the Taylor series above
s

can be replaced by the scalar potential derivative along the boundary.

A
3__ = _8_(}5 (3.6)
Oyl;1 9=l
Again using the velocity decomposition in two dimensions, u = ¢z + Ay, the y

derivative of this equation gives: uy = ¢zy + Ayy. At the solid impermeable wall

this is:
Qli
Ay

824

62
a2 B 4
i1 Oy

il ~ 8zdy

i1
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From the scalar potential boundary condition at a solid boundary, %5. 1= 0. Hence,
L
the second order y derivative of A at the wall is simply:

8y2

_Ou
i1 9y

i1
The wall vorticity in two dimensions is the component w3 = w = vy — uy. Along the

wall v = 0, so that w(i,1) = —% 1y Therefore, the wall vorticity is introduced into

L2

the Taylor series for the Ayy term as:

824 du
= — = —w(1,1) (3.7)
By2 i1 9l

Equation 3.7 is also obtainable from the Poisson equation for the vector potential,
V24 = —w. At the wall, A = 0, so Azz = 0 and Ayy = —w. Substituting for Ay

and Ayy in the Taylor series of Equation 3.5 one obtains:

. ... 0 1834
A(2,2) = A(‘L,l)—-— ) g?a—y—s'

1 : 2
o z,lAy1+§(—w(z,1))( Ayq)

. (Ly)3+0( Ayt
(3.8)

8
Solving for w(i, 1) yields the following first order approximation for the wall vorticity

2

w(t,1) =
1 (Ayp)?

[A(i,n ~AG,2) - b

. A1/1] +0(Ayy) (3.9)

1,
The vector potential in two dimensions is zero at a solid impermeable wall, so A(3,1) =
0 in the above. Using a second order central difference for ¢ with possible stretching
in the z direction (Section 3.3), the finite-difference formula for the wall vorticity

becomes:

2
(Ayp)?

A1) - 46,2) - Za LU= LD Ay | (10

w(i,1) = 5
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In a similar fashion the Taylor series and above substitutions could be carried out
in the computational plane (%,%). The unequal grid spacing is accounted for by the

metrics to yield the following formula:

o (872, . .
w(i,1) = 2((—9-3;) (z,l)[A(z,1)~A(z,2)

+g%%U(¢U+1J)—ﬂi—LD) ;ﬁéilﬁfl_l]win

%‘5(:',1) 2 2 (gg)z(i,l)

The above first order form was used most frequently in the results to be reported

here. A second order formulation also based on the Taylor series is obtainable from
Equation 3.5 by retaining the ( Ay1)3 term. The second order boundary conditions
will be derived here for a three-dimensional case. Consider the z-z plane again. The
boundary condition on the w; component will be derived first by starting with the
Taylor series expansion of the vector potential component Aj. The Taylor series

expansion for A; at a mesh point adjacent to the boundary, (y = Ayq at 3 =2),is

given by
) _ . 0Aq 1 62A1 2
Ay(2,2,k) = A1(i,1,k) By Lk + 2552 i,l,k( Ayy)
1834
st (Ap)d+o(oy)! (3.12)
6 8y° i 1,k

)

where the indices 1, j, k denote the z,y, z positions, respectively.
_}
The first term of the expansion is zero since the tangential components of A

vanish on an impermeable boundary. Hence

A1(5,1,k) =0 (3.13)
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To evaluate the second term, use the velocity component which contains Aly in

its decomposition. From Equation 2.17 note that
w=¢z+ A —Aly

Since w = 0 on the boundary, the derivative in the second term of the expansion can

be written

9¢

L2
ik 07

dy

84
ik 9% i1k

From Equations 2.14 and 3.1, the second order derivative in the third term may easily

(3.14)

be identified as

824
= = —w(,1,k) (3.15)
Oy“ 1i,1,k

Here is where the second order method departs from the first order approach given

earlier. To obtain an expression for the third order derivative of Ay, a linear distribu-
tion of vorticity and Alyy over the first mesh interval is assumed (Wong and Reizes

1984), so that

w = wl(i,l,k)+ALm[wl(i,z,k)_wl(i,Lk)] (3.16)
2 2 2 2

A _ a‘L;I(i,l,k)+——3/——[%l(i,&k)—%%l(i,l,k)] (3.17)
Y )

dy? dy Ayy
Combining the above linear distributions in order to write w; as a function of Alyy

yields

824, oy .
—_ ayz + Ay]_ w1(1,2,k)+

8244
dy?

(Ul:

(i,2,k)] (3.18)
Differentiating Equation 3.18 with respect to y yields

6w1 _63A1 4 1

8y ~  0y3 Ay

(92A1 )
3y2 (2,2, k)] (3.19)

[“"1 (i’ 2, k) +
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Solving Equation 3.19 for Alyyy at y = 0 gives

3
021 i1, k) =
8y3

. : 2
wl(z,l,k)—wl(z,2,k) 1 ) 0“Aq .
+ wi(ty2,k) + —5=(1,2,k 3.20
o Ay 120+ ZHG2 K| G20)

Finally, substituting Equations 3.13, 3.14, 3.15 and 3.20 into Equation 3.12 gives
a second order relationship between the boundary vorticity and the potentials, that

is,

31,2, k) 3
(Ayp)2 Ay

1 :
+ 5414y (5,2,k) + O Ayp)? (3.21)

wl(i717k) = ) [¢Z(ia1ak)+A2x(i71)k)]

Similarly, the z component of vorticity at this boundary is found to be:

34a(i,2, k 3
3(3 )+

SGLR =0T T

. 1 .
A9 (5,1, k) + 5 A3y, (1,2, k) + O ( Ayp)? (3.22)

The third and final vorticity component at this boundary is computed from the

no-slip condition and the definition of vorticity to be
wo(i,1,k) =0 (3.23)

as already stated at the beginning of this discussion. In actual use, the second order
vorticity boundary condition increased the CPU time with no noticeable improve-
ment in accuracy. Roache (1972) also reports that second order vorticity boundary

conditions can be less stable and less capable than the first order boundary conditions.

3.2.3.2 Throughflow boundaries The only throughflow boundaries used

here are the inlet plane and exit plane for two- and three-dimensional problems. The

inlet flow field may be specified as either rotational or irrotational. This is controlled
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by the inlet plane transverse velocity. For two-dimensional flow, the inlet v velocity

is controlled to provide rotational or irrotational flow as follows:

) rotational ;setv =0
inlet condition (3.24)
irrotational ; compute v from the decomposition

- —
The inlet plane vorticity is then computed from the definition, w=VxV.

For a two-dimensional rotational inlet condition, the inlet transverse velocity is
set to zero and used throughout the code. The irrotational inlet condition is achieved
by computing the inlet plane transverse velocity from the decomposition and using
that non-zero inlet transverse velocity throughout the code. The streamwise velocity
component is unchanged since it fixes the inlet mass flux.

At the exit the second order streamwise derivative is dropped and other stream-

wise derivatives are upwinded.

3.2.3.3 Far-field boundaries The far-field vorticity must be specified or
determined from the specified upstream flow conditions. It is not safe to extrapolate
the vorticity to a far-field boundary, or any boundary since that does not account for
the physics of vorticity production, convection and diffusion. Far enough away from
a surface generating vorticity, the vorticity should be zero. If the velocity is known

at the far-field, vorticity may be obtained from the definition.

3.2.4 Dilatation boundary conditions

The dilatation, B, is only needed for a compressible flow. Boundary conditions

are developed from the expected velocity boundary conditions and the definition of



the dilatation,

- —
B=V .V =ug+vy+w;
or by applying the continuity equation,
pt + upg + vpy + wpz + pB =0

The treatment of this variable is the most uncertain. There is little guidance
in the literature. El-Refaee (1981) used the dilatation in his non-primitive variable
formulation. He extrapolated to obtain the dilatation at the boundary. The boundary
values of dilatation were relaxed and set to zero as the solution approached steady

state. El-Refaee solved external flow problems only.

3.2.4.1 Solid boundaries For a viscous flow along an impermeable wall, all

velocities are zero. This reduces the continuity equation to
pt +pB =0
For steady boundary conditions on density, or at steady state it is clear that
B=20

Otherwise, the density time derivative or the velocity derivatives must be evaluated

to compute

B = -2t , from continuity (3.25)
P lwall
or,
B = ug+vy+w; ,from the definition of B. (3.26)

In any case, B = 0 at the boundary at steady state.
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3.2.4.2 Throughflow boundaries The only throughflow boundaries used

here are the inlet plane and exit plane for two-dimensional compressible flow problems.
The inlet flow may be specified as either rotational or irrotational as stated in the
section on vorticity boundary conditions. From the definition of dilatation, B =
ug + vy, an inlet Dirichlet condition can be computed. For the rotational flow inlet
condition (which corresponds to a uniform parallel inlet flow), v = 0 at the inlet.
This gives B = ug for the inlet boundary condition. For the irrotational flow inlet
condition, v # 0 and in general vy # 0. This gives B = ug +vy for the inlet boundary
condition. It has been found that an inlet boundary condition of B = 0 may be used
for either inlet condition. By setting B = 0 at the inlet one avoids the ambiguity of
specifying the dilatation inlet condition using velocities which in turn depend on B.
At the exit, the second order streamwise derivative is dropped and other streamwise

derivatives are upwinded.

3.2.4.3 Far-field boundaries Generally, the velocity field is unchanging at
the far field, so B is given by the unchanging velocity derivatives. A typical far-field

condition is uniform parallel flow so that B = 0.

3.2.5 Density boundary conditions

The density boundary conditions are set using one of the following approaches,

depending on the problem:



49

1. By applying the boundary-layer assumption for viscous compressible flow at a

solid boundary and the ideal gas law,

py =0

50,

p(3,2) T(,2)

P(ivl) = T(i,l)

2. By using the Bernoulli equation for inviscid irrotational compressible flows,
] 1
p= [1+7—§——Mgo (1—u2—v2—w2)]7_
3. By application of the continuity equation written along the boundary,
pt +upz +vpy+pB =0

3.2.6 Temperature boundary conditions

The temperature boundary conditions are either set as Dirichlet conditions or
derivative conditions based on a prescribed wall heat flux. First through fourth order
polynomial derivative conditions are included in the computer code as options. The
inlet temperature field is user specified. At the exit plane, second order streamwise

derivatives are dropped and other streamwise derivatives are upwinded.

3.2.7 Velocity boundary conditions

The velocity is not a primary variable in this method. Velocity boundary condi-

tions are dictated by the flow physics and are used to develop boundary conditions on
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the derived variables, such as the dilatation boundary conditions above. The condi-
tions to use are straightforward—e.g., no-slip at solid boundaries for a viscous fluid.
It is important to point out that the velocity boundary conditions are used, but not
necessarily enforced by the dual potential formulation. For example, a no-slip condi-
tion is used to develop boundary conditions for the vorticity at a solid viscous wall.
However, there is a small slip velocity computed by the velocity decomposition. The
slip velocity goes to zero as the grid is refined. To see how the slip velocity arises, con-
sider the velocity decomposition for a two-dimensional flow over a flat plate oriented
as in Figure 3.2. The velocity decomposition for this case is given by Equation 2.18,

repeated here for convenience.

— u + A
V= _| P=t A (3.27)

v ¢y — Az
At the flat plate surface, the boundary conditions on the potentials are:
¢y = 0
A =0
It is obvious that the v component of velocity will be zero both analytically and
numerically (provided the same difference formula is used to compute v as was used

to enforce the boundary condition on ¢). However, the u component will only be zero

if ¢z = —Ay. This is not exactly satisfied numerically.

3.3 Cartesian Grid Clustering

Simple independent variable transformations are used to allow for stretching of

the two-dimensional Cartesian grids (Anderson et al. 1984). The stretching trans-
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Figure 3.3: 2-D channel boundary conditions
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formations may be readily applied to a third coordinate direction for use in a three-
dimensional Cartesian grid. The transformations used here are from the family of
general stretching transformations proposed by Roberts (1971).

The coordinate transformation maps the physical plane (z,y) into the computa-
tional plane (Z,7):

(2,9) — (7,7)

where, T = f(z) only and ¥ = f(y) only. Also, the transformations are scaled so that
AT = AF = 1. The computational grid coordinate values then correspond to the
grid indices like (Z,%) = (¢ — 1,7 — 1). This simplifies the coding and avoids divisions
in the numerical algorithm for a slight speedup advantage. In the following, NI is the
largest = index and NJ is the largest y index in the domain. NI and NJ correspond
to the maximum dimensions of the physical grid L, h (see Figure 3.4).

Applying these transformations to the governing fluid dynamic equations requires
the following partial derivatives: (These have been simplified since ¥ and ¥ are only

functions of the respective coordinate directions.)

o _omd
0r 0z 0%
9 _ 9o
8y  0Oyoy
2 (=Y (%) 8
dz? oz) oz  \ 09«2 ) 0%
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82 8z 9y 62

dzdy Oz Oy 070y

The above metric terms are computed numerically using second order accurate
differences for the unequal mesh spacing. Analytical calculation of the metrics are
possible for the stretchings to be presented. It was found, however, that the numerical

calculation provided better flow results.

3.3.1 Clustering near boundaries

Take the z direction to be streamwise. The transverse direction is then y with
“walls” at y = 0 and y = h. The following transformation allows packing near the

inlet and near one or both walls.

In{lo+1—(z/L)]/[o — 1+ (=/L)]}

T = NI(1- e+ 1) /(e = 1] ) l1<o<oo (3.28)
y = a+t
(1 a8+ Iy (B 1) /1 20} / (B~ y 2 1) 1]+ 3a)) o

n[(B+1)/(8~1)]
This is designed so that 0 <Z < (NI-1)and 0 <§ < (NJ-1)for0<z< L,
0 <y < h with AT = AF = 1. Equation 3.29 for § packs near y = h for a = 0
and near both walls equally for o = 0.5. The inverse of equations 3.28 and 3.29 are

needed to construct the physical grid (z,y). The inverse for the above transformation

is readily found as:

L L(a+1)_(a_1)[g§}](1‘NIai_1)
2 1](1—N15_—1)+1

(3.30)
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—Q

11" I=a
L h(_nﬂgn(n)(ﬂna) [g“_if] _—ﬁ+2a)

—Q

(2a+1)(1+['§§ﬂ_ﬁ_"——)

(3.31)

where,

1 fork>0
sgn(k) =
-1 fork <0
The inverse for y has been modified using « to direct the y clustering to either

wall as described below. The stretching parameters in the above transformation have

the following affects:

z direction clustering

1 < 0 < oo — The stretching parameter o clusters more points near x = 0 as o
approaches 1. The grid becomes more uniform as ¢ — co. An
essentially uniform z grid is generated for o = 10.

y direction clustering

1 < B < oo — The stretching parameter 3 controls the y direction clustering
(spacing ratio). Maximum clustering is achieved as 3 approaches 1.
An essentially uniform y grid is generated for g = 10.

The stretching parameter « is either 0 or 0.5.

k > 0 clusters near y = h only.
a=0
k < 0 clusters near y = 0 only.

a=0.5 Cluster points near y = 0 and y = h equally. k makes no difference
when a = 0.5.

An example of the above clustering is shown in Figure 3.4.
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Figure 3.4: Typical 2-D channel grid. (a) Physical plane using ¢ = 1.05,a =
0.5,8 = 1.2; (b) Computational plane

3.3.2 Clustering near an interior point

This clustering technique was used for the bump problem (isolated airfoil). It
can also be used to cluster points about an obstacle located within the grid. The
equations given will work in either the z or y directions and are designed to cluster
near a single point or to symmetrically cluster about an object by reflecting the
generated grid about the line of symmetry.

The z coordinate scheme for the bump problem will be given here. This requires
an odd number of i points and assumes that the bump or airfoil is always placed in
the center of the z grid. (The bump in the test cases is simulated by the blowing
condition rather than occupying z,y space.)

As stated previously, T is simply given by the grid point index, i — 1, so that
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Figure 3.5: Typical 2-D grid for an isolated airfoil at y = h. (a) Physical plane using
r=5.0,a =0,k =0,8 = 1.5; (b) Computational plane

AT = 1. The inverse transformation is:

sinh [1’ (83 - W)]

r = zcil+ snh (7 W) (3.32)
where
14 (™ —1) ( 2 )
1
W = —ln ffi 0<T<o00 (3.33)

27 14 (77 - 1) (%)

The stretching parameter, 7 varies from zero (no stretching) to large values which
produce the most refinement near © = zc. An example of this stretching is shown in
Figure 3.5 where the grid has been refined near the line zc and reflected about the

line of symmetry at « = L/2.
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3.3.3 Arbitrary user defined clustering

The dual potential computer program will accept any user defined clustering
so long as T = f(z) only and § = f(y) only. These may be input as arbitrary
z,y points or as equations relating ,y to 7,7 as in the above examples. The code

automatically scales the metrics to form a two-dimensional computational space with

3.4 Poisson Equation Solvers

Three different methods have been used to solve the Poisson equations for the
potentials. One method is the vectorized point Gauss-Seidel scheme with successive
over-relaxation (SOR). The other two are alternating direction implicit (ADI) type
schemes (Mitchell and Griffiths 1980). The two ADI type schemes will be distin-

guished as follows:

1. A scheme formed by factoring and then splitting into a two step formula similar
to the D’Yakonov (1963) approach. This will be referred to as the approximately

factored (AF) scheme in this discussion.

2. A Peaceman-Rachford type scheme with a half-time step level (Peaceman and

Rachford 1955). This scheme will be referred to hereafter as the ADI scheme.
In summary, the three schemes to be used to solve the Poisson equations are:
1. Vectorized point Gauss-Seidel with SOR

2. AF scheme
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3. ADI scheme

The model equation V2% = § will be used to demonstrate the above algorithms.
For the AF and ADI schemes, the Poisson equation is written with a fictitious time
derivative: ®; + V2% = S. The iterations represent “time” levels with time step h.
The time step may also be thought of as a relaxation parameter. At convergence the
time derivative term is negligible.

For a Cartesian grid with possible stretching according to the coordinate trans-

formations in Section 3.3, the equation to discretize is:

—\2 2 2 2—
0T 0% Jy 0y
q’t+(6$) ‘I’zz‘*’(am )Qf'{'(—a—g) @.‘l—/‘g-’r(a 2) @"‘—S

The computational plane grid spacing is unity so AT and Ay do not appear in

the algorithms below.

3.4.1 Vectorized point Gauss-Seidel with SOR

The finite-difference form of the equation to solve is:

0T\ 2 8z [ oy 2 2 o’y 3?/_ most recent
(2029 @ () e

Since Gauss-Seidel is a point iterative method, the exact application of the above
algorithm will depend on the mesh point ordering. The Gauss-Seidel method is based

the (I,most recent used in

on immediate use of the most recent values. Therefore,
the above equation is either k1l or &k Solving the above equation iteratively
by points will not vectorize due to data dependency. This can be illustrated by a

simple example. Consider the five-point formula finite-difference scheme for the two-

dimensional Laplace equation, vip = 0, on a uniform Cartesian grid with Dirichlet
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boundary conditions:

Vit = 2Vij + Vi1 UVig1 =20 +Uijq

0
(L) (Ay)?

As a further simplification take Az = Ay = 1 so that solving this by points one
would code the following:

DO 40 J=2,NJ-1

DO 40 I=2,NI-1

U(I,J) = 0.25 * (U(I-1,J) + U(I+1,J) + U(I,J-1) + U(I,J+1))
40 CONTINUE

The dependency of U(I,J) on U(I-1,J) inhibits vectorization. Notice, however,

that for a fixed J, the even I indexed values of U on the left hand side depend only
on the odd I indexed ones on the right hand side. A vectorization strategy is now
apparent. The data dependency is removed from the computation by “coloring” the
grid as a checkerboard and updating the U in two sweeps. At a starting J, the odd
I index points may be thought of as black squares on a checkerboard and the even
I index points may be thought of as red squares. At the next J , the odd I points
are then red squares and the even I points are black squares. This red-black coloring
continues in J until the grid is patterned like a checkerboard. In one sweep the black
points are updated using only red points and in another sweep the red points are
updated using only black points. This is easily implemented by incrementing the I
loop by 2. Some initial work is required to determine the starting and ending I indices
for each J. Therefore, in two sweeps the solution is iteratively updated and the code
will vectorize. The compiler, however, will not recognize that the data dependency
has been removed. The programmer must direct the compiler to vectorize the loops.

This strategy is coded below. Note that the starting and stopping I indices are a
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function of J. It is a simple alternating function, such as 2,3,2,3,... for IBSTRT(J) and

then 3,2,3,2,...for IRSTRT(J).

C...BLACK POINTS
DO 40 J=2,NJ-1
C...COMPILER DIRECTIVE: IGNORE VECTOR DEPENDENCIES IN THE I LOOP
DO 40 I=IBSTRT(J),IBEND(J),2
U(I,J) = 0.25 * (U(I-1,3) + U(I+1,J) + U(I,J-1) + U(I,J+1))
40 CONTINUE

C...RED POINTS

DO 41 J=2,NJ-1
C...COMPILER DIRECTIVE: IGNORE VECTOR DEPENDENCIES IN THE I LOOP

DO 41 I=IRSTRT(J),IREND(J),2

U(I,J) = 0.25 * (U(I-1,3) + U(I+1,]) + U(I,J-1) + U(I,J+1))
41 CONTINUE

This may be combined with SOR for a further speed advantage. The exten-

sion of this vectorization concept to three dimensions is straightforward. The three-
dimensional problem may be solved as a stack of two-dimensional checkerboards, as
a four-color point method, or by extending the idea of colored points to colored lines

and solving by lines rather than points. The red-black strategy and other vectorizable

structures are discussed in Gentzsch and Neves (1987).

3.4.2 APF scheme

Using first order temporal differencing and second order spatial differencing on

the model Poisson equation one obtains:

k+1 _ gk 2 2=\ T_ 2 2=\ 3=
-t (Y, (9F)\i (T 524 (977 %F| g+l _ g
h Oz 9z2 ] 2 oy) Y oy2 ] 2

(3.34)
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It is convenient to use the “delta” form of the dependent variable so define
Akg — g+l _ gk

To form a “delta” in the difference equation above subtract the spatial derivatives of
&¥ from each side. Multiplying through by the time step (or relaxation parameter),

h, gives
0z\2 o (0%=\ 5z  (09\%.o (0% %]\ .k
(I+h[(a—z) 6% + (5;'2') +(3y) 6 + Eyﬁ o A% P =
2 2— 2 2=\ 8+
0% \” 9 0°T\ bz 0g\“ 2 %\ 05| .k
hS—h[(a)é +(az) +(6y) 5-:‘-/--*-(5':'/—2 o> ¢

The “delta” form allows easy implicit handling of the boundary conditions.
Steady Dirichlet conditions are automatically satisfied by the fact that Ak® =
on the boundary. Steady Neumann conditions are easily handled by reflecting the
Ak at the boundary. The derivative function cancels so there is nothing to be added
to the right hand side. The actual Dirichlet values or derivatives are input by the
source term spatial derivatives of ok,

An approximately factored form of the equation above is:
OF\“ 9 %z a7 2 9 32'37 .._y_ k
h 5% =12
(1o (22f o (22) ) (1n(2) ' 0 (23) %) o
2 2 2 2=\ &
0T \” 9 0°%T\ bz 07\“ 2 g\ Sy | -k
—h 82 ]
woon|(2)'e (22) 5+ (29 (22) 8]

where the factors can be denoted as Ly and Ly so that the AF representation is

LyLy AR & = RHES.
As it is written, the algorithm is implemented by sweeping implicitly in the =

direction then in the y direction. The solution (Aké) is attained in the two steps:
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Step 1: Ly TEMP = RHS
Step 2: Lo AF & = TEMP

3.4.3 ADI scheme

The starting form of the difference equation is the same as for the AF scheme
(Equation 3.34). The ADI scheme splits the calculation for ® into two steps. In the
first step, the x derivatives are treated implicitly at the iteration level k + %, while
the y derivative terms are lagged. The provisional solution is denoted as <I>k+%.
The second step obtains the solution, gkt1 by discretizing the y derivative terms
implicitly at the iteration level k + 1 and using the = derivative terms at the k + %

level.

_ \F- \% 1
om0\ e, b1\ gkar bk [, h(0FYa  h(0%E\E | kty
2080y) Y 2\y2) 2] 270 280z ) T 2\8z2) 2| W

3.5 Poisson Solver Comparisons

An assessment of the two-dimensional Poisson solvers was made on test prob-
lems for the scalar and vector potentials. The test problems are from incompressible
channel throughflow cases. The three solvers were tested on stretched and uniform

grids with various aspect ratios. The L9 norm of the error is used to compare the
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convergence history for each method:

k+1 _ gk)2
Lz:\|m ok)

number of points

However, the requirement used for a converged solution is

|¢k+1 _ (I,kl
@k+1

max

<e (3.35)

where ® represents either potential and k is the iteration level. The tolerance used for
the comparisons below is ¢ = 10~ 6. This rather strict tolerance can yield a decrease
in the L9 error by as much as 6 orders of magnitude. It was found that the scalar
potential had to be obtained to this accuracy for reliable flow solutions.

All of the Poisson solvers were coded with the boundary conditions incorporated
in the solution algorithm. The relaxation parameter used for the vectorized SOR
method will be designated by w. The range for w is 0 < w < 2. The relaxation
parameter used for the AF and ADI schemes will be designated by h, the fictitious
time step. The time derivative term which was added to the Poisson equation sim-
ulates a parabolic problem, ®; + V2% — S. The way this is written, marching is
only permitted in the negative “time” direction. Therefore, a negative h was used
to march the AF and ADI solvers. The need for a negative k is also evident in the
numerical representation of these schemes since a negative h will add to the diago-
nal term of the coefficient matrix. The AF and ADI schemes were solved using a

vectorized tridiagonal solver.
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Figure 3.6: Scalar potential test problem

3.5.1 Scalar potential test problem

The scalar potential is given by the Poisson equation, V2¢ = B. For an in-
compressible flow the dilatation, B, is zero. The test problem for incompressible
flow through a channel is then, V2q$ = 0, with boundary conditions as shown in
Figure 3.6. The exact solution for this case is ¢ = z (notice that the problem is
actually one-dimensional). This is a difficult problem to solve numerically due to the
many Neumann boundary conditions. For incompressible problems, whether steady
or unsteady, the equation for the scalar potential can be solved once and for all. An
efficient solver may not seem important for the incompressible case. For a compress-
ible flow, however, the dilatation field will be computed by a time marching method
so the scalar potential will have to be solved as often as every global iteration. The
cases to be studied in this report are mostly subsonic and the dilatation may be ex-
pected to be small. Therefore, the incompressible solution may be used as a starting

solution for a compressible problem. Also, in some cases the dilatation may be so
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small as to be treated as a perturbation of the solution to the incompressible prob-
lem. For these reasons and the fact that the exact solution is easily obtained for the
incompressible case, the incompressible problem will be used to assess the solvers for
the scalar potential.

The first comparison on the scalar potential test problem is with uniform grids.
The aspect ratio, defined as a = %, is varied for each case. The results for a 21 x 21
grid are shown in Table 3.1 and for a 41 x 41 grid in Table 3.2. The SOR method
has trouble with this problem and requires an unusually high optimum relaxation
parameter, w. It can be seen from these results that the SOR method cannot compete
with ADI or AF when the grid aspect ratio is far from 1. Stretched grids will be
necessary in the solution of viscous problems so this immediately excludes the SOR
method for use in solving for the scalar potential, especially when B is non-zero.
Notice that the AF and ADI schemes solve the problem in the same number of
iterations regardless of the cell aspect ratio. Also, the optimum relaxation parameter
for AF and ADI can be reasonably predicted from the results shown in Tables 3.1
and 3.2 for 0 < a < 1. This is the most likely range of a for channel type viscous

flow geometries. The optimum h for the AF scheme behaves like
1
ha = haq(1 + 64log —
o al( + 64 log a)
The optimum h for the ADI scheme behaves like

1\2
b= by (3)

where ho‘l denotes the optimum h for a uniform grid with a = 1. This can be used to
get a reasonable estimate for the optimum relaxation parameter to use for a stretched

grid.
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Table 3.1: Poisson solver comparison on a 21 x 21 uniform grid

Uniform 21 x 21 grid bl
iterations to convergence CPU time (s)

method || a =1.0 | 0.1 0.01 1.0 0.1 0.01 | MFLOP

SOR 109 | 611 7253 0.0634 0.349 4.11 39.7

AF 3 3 3 |/ 0.001645 | 0.001626 | 0.001667 54.1

ADI 138 | 138 138 0.1234 0.1265 0.1236 64.6

Optimum relaxation parameters (w or h)

method || a =1.0 0.1 0.01

SOR 1.898 | 1.9854 1.9991

AF -160 | -10240 -1310720

ADI -0.0089 | -0.89 -89

Testing these solvers for the scalar potential on a realistic grid with stretch-
ing gives the convergence behavior shown in Figure 3.7. The grid is stretched as
shown in Figure 3.4. The cell aspect ratios for this stretched grid range from a =
0.4044-0.01265. Notice that the AF scheme converges over a very wide range of the
relaxation parameter, h. In contrast, the SOR method has a very limited range of
relaxation parameter which gives convergence in the thousands of iterations at the
very fastest. The extremely good performance of the AF scheme on this test problem
is incidental. It is explained by the fact that the exact solution for this test case
is ¢ = z, and the factorization error introduced in the AF scheme contains cross
derivative terms. The cross derivatives and hence the factorization error therefore go
to zero quickly. The optimum conditions for the solvers on this problem are shown
in Table 3.3. The convergence history at the optimum conditions for the solvers is

shown in Figure 3.8.
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Convergence History
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Figure 3.8:

Convergence history for the scalar potential test problem
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Poisson solver comparison on a 41 x 41 uniform grid

| Uniform 41 x 41 grid

iterations to convergence CPU time (s)
method | @ =1.0 | 0.1 0.01 1.0 0.1 0.01 || MFLOP
SOR 195 | 1260 8105 0.306 2.01 12.7 55.3
AF 3 3 3 |1 0.00468 | 0.00475 | 0.00483 72.8
ADI 258 | 258 258 0.719 0.713 0.701 82.1

Optimum relaxation parameters (w or h)

method || a =1.0 0.1 0.01
SOR 1.9482 | 1.9925 1.99932
AF -160 | -10240 -1310720
ADI -0.0045 -0.45 -45

With stretching, AF and ADI outperform the vectorized Gauss-Seidel easily on
this problem. With non-zero dilatation and more complicated geometry the AF
scheme is not expected to display such a tremendous advantage over ADI as in the

example here. Also note the high relaxation parameter required for the fastest con-

vergence by the SOR method.

Table 3.3: Poisson solver comparison on the scalar potential test problem

| 41 x 41 stretched channel grid |
optimum iterations to
method: [| relaxation param. | convergence | CPU time (s) | MFLOP
SOR 1.99644 1954 3.33 53.7
AF -80000 3 0.00509 70.9
ADI -3.0 142 0.4059 80.8
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Table 3.4: Poisson solver comparison on the vector potential test problem

41 x 41 stretched channel grid

optimum iterations to
method: || relaxation param. | convergence | CPU time (s) { MFLOP
SOR 1.721 39 0.0629 54.1
AF -0.003 35 0.0531 70.1
ADI -0.00071 105 0.2143 82.2

3.5.2 Vector potential test problem

The vector potential test problem has been taken from an incompressible channel
throughflow case. The equation and boundary conditions are shown in Figure 3.9.
For these conditions, the SOR method did not exhibit extreme sensitivity to the grid
aspect ratio and compared favorably with the AF and ADI methods. The Poisson
equation for the vector potential, with three of the four boundaries having Dirichlet
conditions, is easily handled by SOR using optimum relaxation parameters in the
approximate range 1.2 < w < 1.8. This equation must be solved as often as every
global iteration for a rotational flow.

The vector potential equation was solved here on a 41 x 41 grid stretched as
shown in Figure 3.4. A converged incompressible channel flow at Re = 300 provided
the vorticity source term. The behavior of the solvers over a range of relaxation
parameters is given in Figure 3.10. The optimum conditions are given in Table 3.4
and the Lo error for the optimum convergence of each solver is shown in Figure 3.11.
In this case the AF and SOR schemes compare favorably in CPU time. In an actual
flow solution, however, the ADI scheme has achieved convergence faster than AF or

SOR when the vector potential solver is called at each global iteration.
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4 A=0
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Figure 3.9: Vector potential test problem

3.5.3 Summary of Poisson solver experience

This was not meant to be an exhaustive study of methods for solving Poisson’s
equation numerically. Two very specific Poisson equation problems were studied
to assess the numerical solvers. The results for the scalar potential test problem
are particularly perplexing. The point SOR method performs poorly while the AF
scheme is unbelievably fast. This is at least partly due to the one-dimensional nature
of the scalar potential test problem. Point SOR cannot take advantage of the one-
dimensional nature of the solution because it solves the domain pointwise. In the first
iteration, point SOR creates a two-dimensional distribution. This happens because
the solver cannot sense the information from opposite boundaries simultaneously.
This is unlike the AF and ADI schemes which can immediately detect the influence
of opposing boundaries in the implicit direction. The AF and ADI performance on the
scalar potential test problem could be dependent on the sweep order, especially since

the solution is one-dimensional. This was not tested, however. The biggest advantage
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Figure 3.11: Convergence history for the vector potential test problem
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for the AF scheme is that the factorization error is fortuitously zero because of the
one-dimensional solution to the scalar potential test problem.

The vector potential problem doesn’t offer the anomalies that the scalar potential
problem does. Point SOR and the AF scheme are very competitive. The poorer
performance of the ADI scheme is perhaps due to the fact that it is not written in
delta form.

The apparent overall best solver for the Poisson equations in the dual potential
method is the AF scheme. At the optimum convergence condition it converges in
the fewest iterations and in the least CPU time. The AF scheme converges rapidly
over a large range of relaxation parameter. This is important in getting started with
a solution for a new problem. Almost any reasonable relaxation parameter, b, will
work whereas some effort is required to get a fast solution by the SOR method. The
ADI scheme is a consistent performer for the very different problems tested, but its
optimum is not as fast as AF at its optimum for the conditions tested above. However,
in actual flow calculations where the solver may be called at each global iteration the
ADI scheme is always competitive. SOR is competitive when the boundary conditions
are Dirichlet. It has a narrow band of relaxation parameter giving fast convergence
as compared to either AF or ADI. This narrow band and steep slope (see Figures 3.7
and 3.10) is undesirable for predicting a good relaxation parameter to use on a new
problem. One rule of thumb, however, is that the optimum relaxation parameter for
SOR increases as the number of grid points increase on the same problem.

The above results and discussion suggest that the scalar potential Poisson equa-

tion is best handled by AF or ADI. The vector potential problem is best handled
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by AF or SOR, though the ADI scheme was found to be competitive on actual flow
problems. In actual use, the AF scheme was the easiest to code, followed by the ADI
scheme and then the vectorized point SOR. All three schemes were fastest when the
boundary condition information was incorporated into the algorithm. Not indicated
in the simple test cases above is the fact that SOR loses any advantage on large grids.
The computational effort for SOR is greater than for the AF or ADI schemes. Beyond
some grid size then, the SOR scheme should be dropped in favor of the more efficient
AF or ADI schemes. Pointwise iterative schemes tend to bias the solution depending
on the sweep direction. The effect of sweep direction was not studied for the SOR
scheme above.

For the three-dimensional (incompressible) problems the vector potential equa-
tion was solved using point SOR. The exact solution of the scalar potential was used

so that the Poisson equation was not solved numerically.

3.6 Time Marching ADI Solver for the Transport Equations

The ADI scheme presented here is based on the one proposed by Douglas (1962).

The transport equations for Z;, B,p and T in three dimensions may be written as
ot ReEw_f - 8z Re 3y2 Oy Re §22 0z ¢

where S represents any of the dependent variables :r), B,p or T and ﬁs represents
the coefficient of the diffusion terms. The term 6 includes all remaining terms. The
source term ¢S may be lumped into 6, but here it will be treated implicitly.

The above is written in a uniform Cartesian grid. A stretching transformation can

easily be introduced, but would only clutter the development here. The stretching
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transformations were used in Section 3.4 on the Poisson equations to provide an
example of their use. Here, the complete three-dimensional algorithm on a uniform
grid will be sufficiently complicated without metric terms included.

In the development of the ADI scheme for the transport equations, the following

definitions will be used

2; = ibz, yi=jby, =kDz (3.36)
" = nAt (3.37)
be = au2i§m+(1—a) [“;‘“' Z‘; “;'“' i“;] (3.38)
by = avngnyr(l—a) {”;M Zz/+v—2|v| i’;] (3.39)
R A e R =

where 5:,;,53/ and &, are hybrid finite-difference expressions for the convective terms
u%,v% and wz%, respectively. The weighting parameter, a, is in the range 0 <
a < 1. A central difference formula is obtained for @ = 1 and an upwind formula
for @« = 0. A different weighting parameter may be used for each direction. Note
that this formula is written for the physical grid with uniform spacing. If there is
stretching, the metrics are required.

The notation in Equations 3.38-3.40 could be confusing. It is important to note
that the V and A in the numerator are operators and the A in the denominator
represents increments.

Let Q denote the finite-difference approximation to S and define:

Qn = Qn(i,jvk):Q(wiayjazkatn) (341)
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Q" = | = 9 Q" (3.43)
Y7 \Re(ny? '

$ 52 £ n
6Q" = (ﬁm - 5z) Q (3.44)

An alternating direction method for the solution of S may now be developed.
From a known solution at time level n, a first estimate of the solution for time level
n + 1 may be obtained by evaluating half of the differences with respect to « at a
provisional time level denoted by n + 1* (Aziz and Hellums, 1967). The source term

¢S will also be evaluated at the implicit time level, so that
1 * *
'2-5m (Qn+1 + Qn) + ch+1 + 5Q™ +6.Q™
_ [(Qn+1* _ Q") /At] 46 (3.45)
where 6 can be evaluated at n,n + % or n + 1. In the algorithm described here, 6
was evaluated at the n time level only. In the following, one asterisk denotes the first

approximation with more asterisks for successive estimates. Each successive estimate

is made by evaluating half of the differences in one direction implicitly.

1 * 1 *k * %

- [(Q”“** - Q") /At] +6 (3.46)
L (4 107) + (@17 1) B g
= [(@"t1-Q") /At +0 (3.47)

The equations 3.46 and 3.47 may be simplified by subtracting Equation 3.45

from 3.46 and Equation 3.46 from 3.47, respectively. The resulting algorithm, which
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is second order accurate in time and up to second order accurate in space, is:

(62 +2c—2/ D) Q™Y = — (8o + 28y + 262 +2/At) Q" +20 (3.48)
(6y +2c—2/08) QU = §,Q™ + (2 —2/60) QT (3.49)
(67 +2c— 2/ A Q™M = 6,Q" + (2c —2/8) QP (3.50)

This is the algorithm used for the three-dimensional solution. A tridiagonal
system of linear algebraic equations for @ is solved three times to obtain Qn+1. The
first pass treats the  direction implicitly, the second treats y implicitly and the final
pass treats z implicitly. The alternating direction implicit method used here reduces
to the one proposed by Douglas if 8z,8y and §; are replaced by 6%,65 and 6%. Also,
the non-linearities in the method of Douglas are included as part of § only.

In two dimensions the provisional time level is n + % The time increment is —AZE
and the entire differences in one direction are taken at the implicit time level. In the

T lane, the algorithm to solve the transport equations can be written
yY) P ) g q

1
nty _ on 1 1
QA—WQ-— 62Q" T2 4 6,Q" + Q"I — 8 (3.51)
1
n+l _ ottty 1
Q At/g 5:Q" T 4 6an+1 +eQntl_ g (3.52)

In a form ready to code, the two-dimensional algorithm becomes:

(2/ At — 8z — ) Q"Jr% = (8y+2/0t)Q™ -0 (3.53)

1
(2/At =8y —c)Q™FL = (52 +2/00)Q T ¢ (3.54)

C -0
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4. NUMERICAL RESULTS

4.1 Introduction

In this chapter the test cases will be discussed. It will be seen that the dual
potential method can be used to solve the full potential equation, the Euler equations
and the Navier-Stokes equations. The results generated from the dual potential code

will be designated as DP in the comparisons.

4.2 Solution Strategy

The solution strategy has been broken down into three parts: an incompressible
segment, a compressible segment and an iterative update. Certain steps are common
to both the incompressible and compressible procedure. The incompressible segment
and iterative update are always needed. The transport equations are solved uncoupled
and iterated only once at each time level. The ADI scheme for the transport variables
(3,B,T, p) provides up to second order accuracy in time and space. The Poisson
equations may be iterated to convergence at each time level for a time accurate result.
It is possible to limit the iterations on the Poisson equations to speed up the solution
for a steady state case. The iterations may also be limited for a time accurate solution,

but numerical experimentation is required.
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. Solve the continuity equation for pn+

80

The step by step calculation procedure is:

“Incompressible” segment:

_)
. Using known values (or assumed initial values at startup) for p, 3, B,T,V at all

points at a given time level, n, solve the vorticity transport equation by an ADI
+1

n
method to give w

. Solve the vector potential equation using the n+1 level vorticity. If the calculation

is for a constant property, incompressible flow without heat transfer, go to step

7. Otherwise, continue with step number 3.

Compressible segment:

. Solve the dilatation transport equation for pntl using n level source terms.

Solve the energy equation for Tn+tl using n level source terms.

1

using n level source terms.

. Update the properties y, k and p using n + 1 level quantities.

Iterative update:

. Compute the scalar potential, ¢.

Update the velocity to time level n + 1.

. Solve for the vorticity boundary conditions at time level n + 1.

Check for steady state convergence and stop if the solution has converged. Oth-

erwise, transfer the just computed n + 1 level results to the n level and repeat
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the sequence from step 1 until steady state convergence or to some point of

interest.

Though the segments above may be somewhat misnamed (since the equations
listed under the “incompressible” segment must be solved for a compressible solution),
the idea is to suggest possible solution strategies. One strategy which may be used
to obtain a compressible flow solution is to start with a converged incompressible
solution. The governing equations of the dual potential method are neatly segregated
by incompressible/compressible or constant property/variable property criteria.

The convergence requirement is (usually) applied to all dependent variables. For
example, a compressible case requires that 3, B,T,p, Z and ¢ all satisfy the conver-

gence requirement. The requirement is
|(I,n+1 _ @ﬂ'
@TI'{'].

max

<e (4.1)

applied at each point, where ® represents any dependent variable and n is the itera-
tion level or time level according to the nature of the variable. The tolerance is usually
¢ = 1072, This type of convergence requirement is more stringent than an L9 norm
and more helpful for a self-interrogating scheme to determine where to concentrate
computational effort and where to avoid computation. In particular, for the variables
used in this method, the vorticity and dilatation can be negligibly small. For exam-
ple, in external boundary-layer flows the vorticity and dilatation can be expected to
approach zero at some distance away from a disturbance. This point by point error
checking, normalized on a representative maximum field value, can indicate that the
largest errors are near the disturbance and initiate a check to see if function values,

such as B or _cj, are small at some distance away. If this is the case, the code can
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automatically reduce the computational field for that variable. The more common L9
measure of error that other investigators use has been found to be somewhat deceiv-
ing. Convergence in the Ly sense may not satisfy convergence in the absolute sense
above. Since the Lo measurement averages out the error contribution of each point,
it doesn’t identify particular locations of large error. That is, the L9 measurement
may satisfy its convergence criterion and yet there may be isolated areas of large and
unacceptable error. Hence Lo convergence may have little to do with the accuracy
attained by the solution.

Regarding the actual tolerance used in calculations, it has been observed that
the vector potential error tolerance may be loosened to speed the solution with no
negative effects. The scalar potential, on the other hand, requires a tight tolerance
in all cases. The potentials, given by solutions of the Poisson equations, can be very

time consuming to calculate.

4.3 Two-dimensional Cases

The dual potential formulation is rather thoroughly tested in two dimensions.
Example problems will be computed for incompressible and compressible flows. A
potential flow solution will be computed for the flow about a thin biconvex airfoil (or
bump on an inviscid wall). An unsteady calculation for the compressible flow about a
thickening airfoil will also be discussed. Steady viscous flows will be computed for the

channel inlet case and flat plate boundary layer. The results with discussion follow.
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Figure 4.1: Boundary conditions for laminar incompressible irrotational flow over a
bump

4.3.1 Incompressible flow

4.3.1.1 Steady irrotational inviscid flow

Bump cases This test case and the corresponding compressible test
cases for the flow over thin biconvex airfoils were included to demonstrate the calcu-
lation of simple irrotational inviscid flows. By considering only very thin airfoils, the
small disturbance theory boundary conditions may be used. The geometry is therefore
simple so that the dual potential formulation can be tested with fewer complications.

Also, velocity potential and stream function solutions are readily obtainable for com-
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parison. The biconvex airfoil may also be considered to be a thin bump on an inviscid
wall. Airfoil and bump will be used interchangeably in referring to the bump test
cases.

Problems of this type were solved extensively in the 1970s as models for the
flow over helicopter blades (Ballhaus and Steger 1975; Beam and Ballhaus 1975).
The bump is generated by blowing according to the small disturbance theory ( Ashley
and Landahl 1965). The airfoil in this case is very thin so that the freestream is only
slightly perturbed by the presence of the body. Tangency is then imposed by requiring
the resultant flow velocity at the body to be tangent to the thin body. Since the body
is assumed to be very thin, the tangency condition can be applied at the airfoil chord
line. This permits solutions to this problem to be made on a simple Cartesian grid.
The assumptions for this case are steady, irrotational, inviscid, isentropic flow.

A sketch of the problem is shown in Figure 4.1. This problem may be solved in
many ways using potential methods. Only one of the potentials in the dual potential
method is required to solve this flow. Either one of the potentials can be used with
little modification to the code. Small perturbation approximations will be used in

this problem. The velocity components will be represented by

v = Uoo+i (4.2)

v = 0 (4.3)

where @ and ¥ are perturbation quantities. These are all non-dimensional quanti-
ties normalized on the freestream velocity so that Uso = 1.0 and the perturbation
quantities are assumed to be much less than 1.

The scalar potential, ¢, may be used without modification for a potential flow
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solution to this problem. The definition of the scalar potential is designed to satisfy

the irrotationality condition automatically:
¢ = uz + vy (4.4)
Conservation of mass is then satisfied by the solution of
V2% =0 (4.5)

The boundary conditions for a solution of this case using the scalar potential are
shown in Figure 4.1.

If the vector potential, A, is used it is actually treated as the stream function for
irrotational incompressible flow. This is a redefinition of the vector potential that is
used elsewhere in this development. The similarity of the stream function with the
vector potential is evident in the Poisson type of equation and Dirichlet boundary
conditions. This permits the single two-dimensional dual potential code to solve
this problem using either potential. Let A be the stream function in the following

development. The stream function is designed to satisfy continuity automatically:
A = u (4.6)
Ay = —v (4.7)
The irrotationality condition is then written
V24 =0 (4.8)

The boundary conditions on the stream function are all Dirichlet with A = y. For a
compressible flow solution the vector potential requires a boundary condition modi-

fication to emulate the stream function.
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The scalar potential is perhaps the most natural potential function to use for
this case since there is no need to change its definition. It simply assumes the role of
the traditional velocity potential.

Two different bump geometries were computed by the dual potential code. So-
lutions have been computed for the parabolic arc and the sine wave arc bumps. The
parabolic arc has stagnation points at the leading and trailing edges. The sine wave
bump was included to avoid stagnation points in the early development of the com-
pressible code. The bumps are described using the small disturbance theory boundary

conditions. That is, the bumps are generated by blowing through the boundary. The

parabolic and sine wave arcs are described by;

parabolic arc:
y = 2re(1-2x) (4.9)

sine wave arc:

y = %[l—cos(%’m)} (4.10)

for 0 < z < 1. 7/2 is the height of the parabolic arc and PP (for peak-to-peak) is the
height of the sine wave arc. The sine wave amplitude is EQ—R, but the sine wave arc
is used so that the bump meets the boundary with zero slope. The bump geometries
are indicated in Figure 4.2. The computational domain was chosen to be three chord
lengths in the streamwise direction and two chord lengths away from the airfoil to the
far field. The airfoil is centered in the streamwise direction. A uniform Cartesian grid
was used for the results presented here with 61 streamwise and 41 transverse points.

The airfoil surface will be defined by the flow tangency condition imposed along

the mean surface of the body. Flow tangency at the airfoil surface can be represented
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dy ] D D ( {11 )
. = - = — R 1— — (4.11)
surface Uoot@  p <1 + Ull___) Uso Uco

00

dz

In the above equation, U%o_ is small compared to 1 so it may be dropped leaving the

following approximation for the tangency boundary condition:

v

dy o U

dz - ¢y

surface

for Uso = 1. (4.12)

surface surface

Finally, the tangency condition is applied at the mean surface of the airfoil so that

v

z
Uco

dy
dz

surface surface grid boundary

This small perturbation type of boundary condition does not require the use of a
body-oriented grid and is therefore very easy to implement. The above development
has been for the scalar potential. As used in the test problem, the boundary condition

on the scalar potential is

0<z<1

by = % lsurface (4.14)

0 otherwise

where the solution domain is -1 <z < 2.
A similar development for the stream function gives the following small pertur-

bation boundary condition

y + local airfoil height 0 <z <1
A= (4.15)

Y otherwise

The airfoil height referred to here is the half thickness of the airfoil at a particular =

position.
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The pressure coeflicient is defined as

P—pP
Cp=1——3 (4.16)
gPooVoo

where Vo20 = u%o + "’(2)0- The pressure coefficient for the bump cases is computed by

an approximation to the definition

(4.17)

This approximation is obtained by dropping squares of the perturbation velocity com-
ponents. In terms of the scalar potential or stream function, the pressure coefficient
is approximated by

Cp~2(1—¢z)=2(1- Ay) (4.18)
where Uxo = 1.

The pressure coefficient for an inviscid and incompressible calculation of M = 0.6
flow over a 6% thick (r = 0.06) parabolic arc airfoil is shown in Figure 4.3. This
result was computed solely to check the DP code in an incompressible calculation.
The linear theory result plotted in Figure 4.3 is obtained for the parabolic arc airfoil
by a method given in Ashley and Landahl (1965). That method gives the pressure
coefficient for thin airfoils in incompressible flow. It can be shown that the pressure
coeficient for a subsonic compressible flow is related to the pressure coefficient for
incompressible flow by the factor 8 = /1 — Mgo:

oy

B (CP ) incompressible (4.19)

Hence, the DP incompressible flow result in Figure 4.3 is scaled to a compressible

result using Equation 4.19 just as the linear theory result is scaled from Ashley and
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Landahl’s incompressible calculation. A compressible stream function solution on the
same 61 x 41 grid lies right on the scaled incompressible solution for the parabolic
arc airfoil case. A similar result is shown for a 4% thick (PP = 0.02) sine wave arc
airfoil in Figure 4.4. The incompressible solution using the dual potential code scales
to the compressible result of a stream function solution. The computed incompress-
ible solutions here have been scaled to the compressible result for comparison with

calculations obtained from available compressible stream function codes.

4.3.1.2 Steady viscous flow

Channel inlet The two-dimensional channel inlet flow has been com-

puted by many researchers (Wang and Longwell 1964; McDonald et al. 1972; Tenpas
and Pletcher 1987). This case provides the first test of the vorticity transport equation
and the vector potential solver. Also, stretched grids must be used in this problem
for the first time to adequately resolve the inlet features. This problem will be a
stepping stone to the heat transfer cases presented subsequently. It will be seen that
the dual potential formulation can solve this flow problem for either a rotational or
irrotational inlet condition.

The developing flow in a two-dimensional inlet has been computed for Re = 10
to 7500. The Reynolds number is based on the hydraulic diameter,

4 x cross-sectional area

Dhyd =

wetted perimeter
For a two-dimensional passage the hydraulic diameter is twice the wall spacing, h.
The physical distances, z and y, for the two-dimensional channel cases are non-

dimensionalized by the hydraulic diameter. The non-dimensional wall separation
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1

distance is then ymax = . Note that y for a two-dimensional channel problem will
then be in the range 0 < y < % for the results plotted here from wall to wall. The
geometry and boundary conditions are given in Figure 3.3. A uniform inlet velocity
profile was prescribed. The inlet conditions can be made to correspond to a rotational
or irrotational inlet flow. The irrotational inlet may be more realistic for experimental
models with a rounded entrance (Van Dyke 1970).

The centerline velocity development is shown in Figure 4.5 for Re = 300. Good
agreement is obtained for both the irrotational and rotational inlet conditions. Note
that the z used in the axis label, z/(RexDhyd)*16, in Figure 4.5 is dimensional. This
was done to form the dimensionless group used by other researchers. The multiplier
of 16 is used to give the same z axis range as others who have used the channel half
height instead of the hydraulic diameter in the Reynolds number and dimensionless
axial length.

For the results shown in Figure 4.5, all convective terms have been central dif-
ferenced. Refining the grid for the irrotational inlet case shows that the numerical
algorithm is clearly better than first order accurate but is not second order accurate
on a stretched grid. The truncation error is estimated to be approximately O ( Az)l'ﬁ
where Az represents the z and y grid spacing here. (The solution for the 41 x 41
grid is approximately one-third of the way vertically between the 21 x 21 grid solution
and the 81 x 81 grid solution). The need to upwind difference the convective terms
becomes necessary as the Reynolds number increases in order to maintain stability.

The skin-friction development is shown in Figure 4.6 for the rotational and ir-

rotational inlet conditions. Both computational results asymptote to the expected
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fully-developed C fRe = 24.0 for the two-dimensional channel.

The complete Navier-Stokes equations for incompressible flow were used for these
calculations. It is permissible to drop the streamwise second derivatives for high
Reynolds number flows. Dropping the wgz terms causes the flow to develop slightly

faster (i.e., in a shorter z distance).

Constant property heat transfer Heat transfer cases have been

computed for constant properties. The results are in good agreement with published
computational results (Schade and McEligot 1971; Hwang and Fan 1964). Both
references above obtained solutions for this problem utilizing boundary-layer approx-
imations.

The heat transfer cases can be classified as in Figure 4.7. As shown in the figure,
there are three basic types of problems for specified wall temperature and/or wall heat
flux for the parallel plates geometry. Test cases will be computed for wall conditions
that are constant with z. The most detailed presentation will be for the constant
wall temperature case.

Any combination of the wall boundary conditions in Figure 4.7 can be solved by
the dual potential code. The boundary conditions may be functions of z.

The notation used in this heat transfer section is the same as used by Shah
and London (1978) and Kays and Crawford (1980). The = distance in the following
heat transfer results is referred to the Peclet number as in Shah and London (1978).
Therefore,

P =z Pe = RePr

Pe’

A quadratic fit to the computed temperature profile was used to compute the local
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Figure 4.7: Basic wall heat transfer boundary conditions
Nusselt number, where
hD
Nu = :y d (4.20)

The Nusselt number was computed from the temperature solution. The notation of
Kays and Crawford (1980) will be used in the following derivation. Specifically, an
overdot indicates a time derivative, the subscript o will mean at the wall and a double

prime (/) will indicate per unit area. The wall heat flux can then be written as

‘::h’), = h(Tya1 — Tmean) (4.21)
oT

14

do = —hk4 (4.22)

? dy wall

The wall heat flux is given by either the convection heat transfer equation or the wall

conduction equation as written above. These two must be equal, so

orT
h(Twall — Tmea_n) = —k—

5 (4.23)

wall
The definition of Nusselt number from Equation 4.20 can then easily be written in

terms of the computed temperatures by rearranging Equation 4.23. The result is

oT
hDhy d _  0ylwall Dhy d
Nu = = (4.24)
k (Twa.ll — Tmean)
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where Tmean is the local mixed mean fluid temperature. It is also sometimes referred
to as the bulk fluid temperature or the mixing cup temperature. Tmean is computed
as the single (mean) temperature for the axial convection that equals the integrated

axial convected thermal energy rate. That is,

meTmea_n = (pAcV)Cmeea,n (425)

= / pucpT dAc (4.26)
Ac

where 7 is the mass flow rate, Ac is the cross-sectional area at the z position for
which Tinean is being computed and V is the mean velocity. Therefore,

‘[AC uT dAc

Tmean = D

T (4.27)
C

The constant property cases to be presented have fully-developed temperature

solutions which are self-similar. The self-similar temperature function is

0= Twall - T(i7j)

Tw all - Tnlean

(4.28)

The variable, ©, will be referred to as the temperature parameter in the following
results. It is defined and used in the dual potential code to indicate when the temper-
ature solution has become fully developed. This is in addition to an error tolerance
on the temperature at each point.

It is important to pack many points close to the channel inlet, so the grid was
stretched until grid independent solutions were obtained for a 41 x 41 grid. Those
stretching parameters were then used for further grid refinement by adding points.
The length of channel was also chosen so as not to interfere with the natural flow

development. The fully-developed skin friction for these two-dimensional cases is
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C fRe = 24.0 as computed analytically and by the dual potential code. It is inter-
esting to note that all of the results for the heat transfer cases were computed for
the rotational inlet condition. This is the inlet condition used by others reporting
computational results. Van Dyke (1970) reports that the irrotational inlet condition
may be more realistic for comparison with experimental models having a rounded
entrance. The dual potential code can easily handle either a rotational or irrotational

inlet condition.

Constant wall temperature  Some comparisons of con-

stant property heat transfer results for constant and equal wall temperatures are
shown in Figures 4.8 and 4.9. The published results of Schade and McEligot (1971)
are represented in each figure as a solid line. The present results using the dual
potential code are indicated by symbols. The grid size for the dual potential results is
indicated in the figure legend. The Reynolds number based on the hydraulic diameter
is 150 for the present results in Figure 4.8 and 300 for the present results in Figure 4.9.
Schade and McEligot use the boundary-layer assumptions and drop their numerical
results for approximately the first 20 points in z. The dual potential results for the
161 x 81 grid have only the first 4 points dropped. There is nothing wrong with those
4 points, they are just well ahead of the data presented in the literature. The dual
potential incompressible code makes no assumptions other than constant properties.
This accounts for the Nusselt number discrepancy between the two solutions near the
inlet. The dual potential code predicts a higher heat transfer rate near the inlet than
the results of Schade and McEligot. Figures 4.8 and 4.9 show that there is a Peclet

number dependence for the Nusselt number. For the range of results presented, a
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Peclet number of about 210 is required to give good agreement with the boundary-
layer assumptions. Lower Peclet numbers give a higher heat transfer rate near the
inlet. Profiles of the temperature parameter, 6, are plotted in Figure 4.11 for several
streamwise positions. The fully-developed profile is parabolic.

To match the boundary-layer assumptions used by Schade and McEligot, the
streamwise second derivatives must be dropped. The affect is similar to assuming a
high Reynolds number flow. Schade and McEligot report that Pe > 100 is sufficient
for the boundary-layer assumptions to be valid. Also, Schade and McEligot neglect
viscous dissipation. For incompressible flow, the only streamwise second derivatives
in the dual potential method are wzz, Azz and Tzz. When these derivatives and the
viscous dissipation are dropped, the results approach those of Schade and McEligot,
as can be seen in Figure 4.10. It is clear that the boundary-layer assumptions cannot
be used to get accurate results near the inlet at lower Reynolds numbers or Peclet
numbers. The boundary-layer assumptions neglect the important elliptic effects at
the inlet and underpredict the heat transfer.

The computation rate for the dual potential code is 80-100 MFLOPS overall

using a single processor on a Cray X-MP. The computation rate can be stated in a

5.5 us
tion X grid point

more useful manner as ~ global Ttera on a single processor of the
Cray X-MP. The number of global iterations is on the order of the number of grid

points. A conservative estimate of Cray X-MP cpu time is:

cpu time (s) = 5.5 X 1076 (number of grid points)2

The two-dimensional dual potential code is a compressible code. The compressible

terms are computed for this calculation even though they are zero. If the code was
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designed purely for incompressible solutions the code would be much faster—at least
twice as fast based on a rough operation count. The error tolerance used for these
calculations was ¢ < 10—6.

The solution to the constant property case is independent of wall temperature.
This was checked using T, = 2.0,1.1,1.01,1.001,1.0001 with the same constant
property results obtained for each case. Shah and London (1978) also present data
for the constant wall temperature case. For the present results, the grid was stretched

using ¢ = 1.05,a = 0.5 and 8 = 1.2.

Constant heat flux  The constant temperature case has
revealed that Pe = 210 gives good agreement with the boundary-layer approximations
used by Schade and McEligot. Just one case will be presented here in Figure 4.12. The
results compare well to solutions obtained using the boundary-layer approximations,
but are more accurate near the inlet. A second order polynomial curve fit to the
temperature distribution was used to obtain the wall temperature. The temperature

parameter profiles for this case are presented in Figure 4.13.

Mixed wall boundary conditions  Solutions were com-

puted for two cases with one wall insulated and the other wall at either constant
heat flux or constant temperature. Shah and London (1978) refer to these boundary
conditions as the fundamental boundary conditions of the second kind and third kind
respectively. The asymptotic Nusselt number for the case of one wall insulated and
the other at constant heat flux is computed analytically to be Nu = 5.385. This case

will be designated by H2 in the results. The asymptotic Nusselt number for the case
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of one wall insulated and the other at constant temperature is computed analytically
to be Nu = 4.861. This case will be designated by H3 in the results. The computed
Nusselt number development for these two cases and the analytical asymptotic Nus-
selt number are shown in Figure 4.14. Temperature parameter profiles for these two

cases are plotted in Figures 4.16 and 4.15.

Boundary layer This caseis considered to provide yet another check

on the accuracy of the dual potential scheme since the laminar boundary-layer solu-
tion is well known. Despite the simplicity of this flow, it is not always easy té obtain
good comparisons with numerical solutions to the full Navier-Stokes equations.

The boundary conditions for the laminar incompressible flow over a flat plate are
shown in Figure 4.17. Since this is an incompressible constant property flow, B,T
and p need not be computed.

Concerning the vorticity boundary conditions, an irrotational or rotational inlet
flow may be specified. The best comparison with Blasius results was obtained for
a zero inlet plane vorticity (irrotational condition). This gives a non-zero v velocity
at the inlet. Both u and v are fixed to be zero at the stagnation point. The wall
vorticity is computed as in all viscous wall cases. The freestream is assumed to be
irrotational. The exit condition is based on the usual fully-developed assumption that
second order streamwise derivatives are zero.

The vector potential inlet and viscous wall conditions are the usual A = 0. In this
case the vector potential is used to account for the throughflow velocity (i.e., leakage
velocity) at the top boundary. It was stated in the boundary condition section that

only the scalar potential would be used to give throughflow velocities. This is the only
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w=20
Am = qby — v
. ¢y =0
y,J index freestream: uy: 1
‘Uy =0
CTTTTTTTTTTTITTTTTTTT T b
inlet: E E
w = 0 or, : : exit:
w = ‘Uy — Ug : : Wre = 0
A=0 '  Azz =0
¢=10 : \ $z =T
u=1 : : Ugpxr — 0
v#0 X | Yz = 0
: :
R SO, 77 inde
w=f(4,9)
flat plate: gy::()o
u=0
v=_0

Figure 4.17: Boundary conditions for laminar incompressible flow over a flat plate
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exception. The v velocity is given at the top boundary by assigning the same velocity
at the boundary as at the point just inside. This implies that -g% = 0. Hence, Az
along the top boundary is computed from the assumed v leakage velocity using the
velocity decomposition for v, v = ¢y — Ag. More elaborate calculations can be used
to compute the v leakage velocity from the displacement thickness. For example, the

leakage can be accurately written as

ds* v

dz  Uoo

Thus the leakage can be controlled based on a known or computed displacement thick-
ness, §*. These ideas worked no better than simply assigning v(i,nj) = v(i,nj — 1)
at the freestream boundary. At the exit uz = 0 was acceptable, but ugy = 0 gave
a slightly better boundary-layer profile as compared to the Blasius (1908) solution.
Note that the exit condition on the vector potential, Azz = 0, is equivalent to an
extrapolation technique. The vector potential at a point just outside the exit plane
boundary is computed by Azz = 0 for use in the Poisson equation for A. The Poisson
equation is solved at the exit plane. This assumes that the flow is fully developed and
removes the need to specify the velocity at the exit. The scalar potential boundary
conditions are the same as for the incompressible channel case. Therefore, the solu-
tion of the scalar potential Poisson equation is known a priori and ¢ = z is simply
assigned and not re-computed. The same boundary conditions as the channel case
were used to avoid a solution for the scalar potential in this case. The only diffi-
culty was a need to change the top boundary condition on the vector potential to
account for a leakage flow. This leakage flow is small and could be neglected with the

boundary far enough away. If it is neglected and the top boundary is too close, the
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boundary-layer profile tends to overshoot the freestream value by several percentage
points. Allowing leakage at the top wall permits the solution to be obtained on a
smaller grid.

The laminar boundary-layer computation agrees well with the Blasius solution.
A boundary-layer profile comparison is shown in Figure 4.18. An 81x81 grid was
used with stretching in the y direction. This puts about 22 points in the boundary
layer at Regz = 312,500. The solution is attained in 54.5 seconds at 85 MFLOPS
overall on a single processor of the Cray X-MP. The data marked with triangles
were computed by limiting the solution domain of the vorticity transport equation to
31 transverse points. This example was specifically used to demonstrate the ability
to reduce the computational effort by dropping the calculation of vorticity where
it is negligible and still obtaining a full field solution for the problem. Even faster
solutions are possible using this method. Normally the Poisson equations dominate
the solution time. That does occur in this problem also, but iterations on the vector
potential calculation were limited with no deleterious effect on the final solution. With
the vector potential limited, the vorticity transport equation becomes the dominant
time consuming computation for this problem. It is this condition that was used to
demonstrate the ability to reduce computation time for the vorticity. This speed-up
affect is shown in Table 4.1.

For problems that one knows have vorticity approaching zero at a boundary,
the point-wise convergence check used in the code can be helpful in deciding where
and how much to limit the solution domain for vorticity. For example, if vorticity

goes to zero at the freestream boundary as in this problem, one will note that for the
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Table 4.1: Speed-up affect of limiting the vorticity solution domain
81x81 grid. Rey = 312,500

Transverse pts for vorticity solution | CPU time (s) [ MFLOP
81 54.5 85
41 40.2 7
31 36.9 73

convergence checking used here (which is point by point and normalized on the largest
value in a plane), the biggest error will be in the region where vorticity is important.
If the point of maximum error is far away from the known w = 0 boundary, then
limiting of the solution domain is indicated.

The MFLOP rate in Table 4.1 drops as the solution domain for vorticity is limited
because the vorticity transport subroutine had a high MFLOP rate. The solution was
speeded up by limiting the vorticity solution domain and thereby reducing the CPU
time spent in computing the vorticity in regions where it is nearly zero anyway. The
vorticity transport subroutine is a 107+ MFLOP code. Reducing the computation
time on vorticity reduced its high MFLOP rate in the weighted average to compute
the overall MFLOP rate for the code.

Solutions were obtained for Reg up to 2,000,000 using both rotational and irrota-
tional inlet conditions. The rotational inlet condition gave a higher skin friction and
a slight velocity overshoot. The computed skin friction along the flat plate for the
two inlet conditions is shown in Figure 4.19. The rotational inlet condition produces
a higher C f than the irrotational inlet by the conservation of vorticity. Since the
inlet vorticity is non-zero in the rotational case, there is an additional amount of vor-

ticity in the rotational as opposed to the irrotational inlet case. The boundary-layer
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calculation for the rotational inlet (w # 0) has vorticity in excess of that assumed in
the Blasius solution. The extra vorticity is the inlet amount. The Blasius solution
is obviously for an irrotational inlet. The results presented here were obtained using
first order upwinding of the streamwise convective term. Weighting toward central
differencing works but requires more CPU time to converge. The equations used here
do not use the boundary-layer assumptions and so can accurately model the near

leading edge flow. The skin friction is computed as:

Ou
Hwall ‘
Cy/Rez = ] wall | ”°‘;V°°x (4.29)
o0

%Poo 122

The velocity derivative is computed using a second order polynomial fit to the u ve-
locity component. The computed asymptotic value for the skin friction is C f\/ﬁ;; =
0.664 for the irrotational inlet case and C f\/R—ez = 0.704 for the rotational inlet.
The « and y distances in Figures 4.19-4.21 are non-dimensionalized by the length
of plate required to give Rey = 312,500. Velocity vectors for this boundary-layer flow
are plotted in Figures 4.20 and 4.21. The most easily observed difference in these two
figures is the flow at the inlet plane. The irrotational inlet flow condition produces a

v velocity component at the inlet plane.
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4.3.2 Compressible flow

4.3.2.1 Steady irrotational inviscid flow

Bump cases The flow assumptions for this problem are the same as

in the previous bump test case:
1. inviscid
2. irrotational
3. isentropic
4. no body forces

The flow can be incompressible or compressible and steady or unsteady. The bound-
ary conditions for this case are shown in Figure 4.22. The same boundary conditions
apply for the unsteady problem which is discussed in the next section. The assump-
tions for this test case are the same as in the bump cases previously discussed on
pages 83-92 except that the compressible solution is computed directly rather than
scaled from an incompressible result.

There are many possible well-tested solution methods for this irrotational prob-
lem. The dual potential method is easily adapted to solve the flow using any of the
following combinations of governing equations. Either potential may be used. The
scalar potential may be used as the traditional velocity potential for a full potential
solution. The vector potential may assume the role of the stream function for a com-

pressible stream function solution. In addition, an Euler mode of solution is available
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B = vy initially, then by continuity

d
¢y =7+
p from Bernoulli
T from constant total enthalpy

¥, J index freestream: o — g,
_d
vV =
T
rmm—m———=- ~e e - - - - - - - - .
H bump H
] ]
. ' 1 it:
inlet: | R S
B=0 " v B=90
p=1 : Y 1
T—1 " T =1
u ; 1 : : u=1
v=0 Vv =gy
] 1
1 ]
] 1
G oo e o o am N OR D wh ER NP R N OGS D TR MR R WD R R S M WD NP SR SR W L —————
B from continuity z,1 index
¢y =0

freestream:  , from Bernoulli
T from constant total enthalpy
u= ¢m
v=_0

Figure 4.22: Boundary conditions for laminar compressible irrotational flow over a
bump
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using the dual potential method with viscous terms and thermal conductivity set to
zero.

The traditional potential methods simply require the velocity potential or stream
function with a version of the Bernoulli equation. These two methods will be pre-
sented in a form only applicable to steady flows. The full potential equation written

in conservation law form is

% (pbz) + ;—y (pdy) =0 (4.30)

This may be solved by the scalar potential solver in the dual potential code with a
redefinition of the scalar potential derivatives to be the parenthesized quantities in
the equation above. This requires a modification of the boundary conditions also.
Since the flows to be computed here are subsonic, it is permissible to write the full

potential equation in non-conservative form:

_P:c¢a: + pydy
p

V% = (4.31)

This is easily solved by the scalar potential solver with no modification to the bound-

ary conditions. The steady compressible Bernoulli equation is then solved for density,

1
p:{1+Z;—1-Mgo (1—¢§—¢§)}7_“I (4.32)

Using the stream function, only the velocity decomposition and Bernoulli equa-

tion are required. For the stream function approach, solve the following:

<l
I
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u2+v2

T = Tt_ 2Cp

The stream function, 1, above is defined to satisfy continuity automatically by:

= Y
P
b
v o= -
p

The above would require some code modification to define the vector potential,

A, as the stream function, ¥. An alternate approach is to define

Ay = Yz
p

Yy

Ay = —
Y P

then the vector potential solver remains unchanged for a stream function solution and
only the boundary conditions must be modified by p. This also permits easy use of

the non-linear form of Bernoulli’s equation which becomes
1
-1, 2 42\17-1

The energy equation is not specifically needed if the Bernoulli equation is solved since
it is a statement of conservation of momentum and energy.

The dual potential formulation may be easily converted to an Euler solver by
dropping the viscous terms and thermal conductivity. All that is required is to set
p = k = 0. For the bump problems, the flow is irrotational so that the vorticity
transport equation is also dropped. The DP code in the Euler mode solves the

governing equations in the following order:

1. V% =B
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- —
2. V=V ¢

3. the energy equation for T
4. an equation for B

5. an equation for p

6. the equation of state, p = pRT

The assumptions for this problem allow the energy equation to simplify to a
statement of constant total enthalpy. There are several equations to choose from to
compute density and dilatation. Using the DP code in Euler mode, three possible
equation sets are given below. These are listed in order of increasing complexity, or,

in other words, from fastest to slowest.

p by Bernoulli
B from continuity

p by Bernoulli
2,.2 B by its transport equation
T =T, — &zjc—pv_

p from continuity
B by its transport equation

All these equation sets give the same results. Obtaining p from the Bernoulli

equation and B from continuity is as fast as the compressible stream function ap-
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proach. Using the continuity equation to obtain p and the dilatation transport equa-
tion for B takes about 10 times more CPU time than the fastest methods. Only the
last equation set will be applicable to an unsteady flow, provided the energy equation
is also time accurate.

For the compressible flow over a bump, the dual potential code uses the following

initial conditions:
1. u =1, v = 0 except at the bump where v = g% (the slope of the boundary)
2. B = 0 everywhere except at the bump, where B = vy (Euler version only)
3. p =1 everywhere
4. ¢ = 0 everywhere (Euler and full potential versions only)
5. A = 0 everywhere (Stream function version only)
6. T = 1 everywhere
7. p = k = 0 everywhere for all time.

There were initial difficulties solving the bump test cases due to abrupt function
changes at the boundaries. It was necessary to smooth the variables (T, p, B) into
the boundaries either by extrapolation or by solving for the variable at the boundary
using available information and a governing equation—usually a simplified equation
such as the Bernoulli equation. The far- and near-field boundaries then have values
that are near the expected steady condition but differ slightly to provide smooth
derivatives into the boundary. For example, the density is not exactly 1.0 at the

far-field boundary when it is computed by the Bernoulli equation at that boundary,



127

but the derivatives of density which occur in the dilatation transport equation and
elsewhere are much smoother using this approach. The y=constant boundaries were
the most critical.
The pressure coefficient can be computed from the definition
Cp = T
QPOOVoo

or, if the scalar potential is used,

Cp = —2¢; — 26z — ¢

where V020 = ugo + vgo.

The flow over a 4% thick sine wave arc airfoil and a 6% thick parabolic arc airfoil
was computed for a freestream Mach number of Moo = 0.6. The dual potential code
was used in a compressible stream function mode and in an Euler mode. Results
for the sine wave arc are shown in Figures 4.23-4.28 and results for the parabolic
arc in Figures 4.29-4.34. The DP code is solved on a uniform 61 x 41 grid. The
computational domain is 3 chords in the streamwise direction and extends 2 chords
away from the airfoil. The airfoil is centered in z. The sine wave arc was the first
successful compressible calculation. There are no stagnation points to contend with
on the sine wave arc. Note the fair agreement between the stream function and Euler
solution for this case shown in Figure 4.23. A grid refinement study shows that the
61 x 41 grid gives an Euler solution independent of further refinement. The solutions
have not been obtained on a larger domain to examine whether the solution is grid
independent in that respect. The discrepancy between the stream function result and

the Euler solution is caused in part by the inconsistency of the small perturbation
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boundary condition with the stream function and Euler solvers. The intent here is to
show the capability of the solver, not ultimate solutions. The Euler solution requires
about 3-10 times more CPU time than the potential solution using the same DP
code—depending on which equations are used to solve for the density and dilatation.
In the Euler code the convective terms are weighted toward central differencing by

0.9. The Euler solution is not exactly symmetric as can be seen in the contour plots
of dilatation (Figures 4.24 and 4.30). This has been observed by others for inviscid

solutions.

4.3.2.2 Unsteady irrotational inviscid flow

Bump cases The flow assumptions for this problem are the same
as in the previous bump test case, except that the flow will be unsteady. The dual
potential code will be used in an Euler mode. Constant total enthalpy has been
assumed for the energy equation. Formally this requires a steady flow, but it will be
applied here at each time step for the unsteady problem. The particular unsteady
problems to be computed here have primarily low frequency disturbances (Ballhaus
and Steger 1975; Beam and Ballhaus 1975). The validity of using the energy equation
in a quasi-steady fashion was evaluated by computing the unsteady flow with the
complete energy equation. The pressure coefficient results were within 4%. This
problem was studied mainly to test the dilatation transport equations and the density
determination from the continuity equation. The constant total enthalpy (or constant

total temperature since cp is constant) is written
u2 + v2

Ty =T
t t 2Cp

(4.34)
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r(t) = { rmax |10 - 15 () +6(z%)2] (&) o<t<to

Tmax t>to

Figure 4.35: Thickening airfoil

The unsteady case computed here is that of an airfoil thickening from zero thick-
ness to 10% of chord. The airfoil grows in 20 chord lengths of time measured with
respect to the freestream velocity. The airfoil growth is given in Figure 4.35. For this
problem Tmax = 0.1 and o = 20. This test case may be used as a model for the flow
about the advancing rotor of a helicopter. The dual potential results are compared
to an Euler solution and transonic small disturbance equation solution of Beam and
Ballhaus (1975) in Figure 4.36. The pressure coefficient as a function of time is plot-
ted at the position z/c = 0.525 measured from the leading edge of the airfoil. The
dual potential code in Euler mode computes the unsteady solution for the thickening
parabolic arc airfoil in best agreement with the small disturbance computation. All
results in the figure are for a domain that is three chord lengths long and extending

two chord lengths out from the bump. The grids are nearly alike. The DP code had
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61 streamwise by 41 transverse points all uniformly spaced. With a 121 x 81 grid on
this domain the DP solution is only slightly lower (no more than 1.3%) with a more
pronounced overshoot. Beam and Ballhaus used 25 points on the airfoil. No claim
is made that this solution is grid independent. In fact, further calculations using the
DP method on refined grids and on a domain that is five chords in the streamwise
and four chords to the far field have given pressure coefficient results that asymptote
about 8.5% below the results in Figure 4.36. Though the DP Euler solution is short
of the overshoot of Beam and Ballhaus, it is close to the transonic small disturbance
(TSD) equation result for this case.

The solution for this unsteady problem converges slowly at first as the scalar po-
tential is computed from an initial field of ¢ = 0. Later, during periods of slow change,
the solution is obtained rapidly. When the bump grows the fastest the solution speed
is slowest.

Another result is shown in Figure 4.37. For this test the parabolic arc airfoil
grows to 10% thickness in ¢ = 15 chord lengths. The dual potential solution is
compared to a solution of the linearized transonic small disturbance equation. The
pressure coefficient is plotted for z/c = 0.525 as measured from the leading edge
of the airfoil. Early unsteady calculations made it to steady state by reducing the
tolerance on the dilatation, B. The boundary conditions for the unsteady problem
are actually fixed for all time except at the bump. Thus, unsteady terms are not
required in most boundary conditions at the far- and near-field. A tight tolerance on

the scalar potential is important here.
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4.3.2.3 Steady viscous flow

Variable property channel flows Only a few results will be shown

to demonstrate the capability of the dual potential code. Clearly, an infinite num-
ber of different wall boundary conditions exist. The full Navier-Stokes solution for
variable property flow in a two-dimensional channel could be computed for any wall
conditions of interest. The computation of variable property channel flows has not
been wholly successful. High wall temperatures and high wall heat fluxes lead to a
computed flow separation near the inlet and subsequent reattachment and flow devel-
opment. The addition of energy to the flow gives a lower “fully-developed” Nusselt
number than the constant property cases. Also, the Nusselt number does not asymp-
tote as it does in the constant property case. Rather, the Nusselt number continues
to drop for wall heating.

Results for Re = 40 and Re = 150 will be presented for the constant wall
temperature case with %ﬂaﬂ = 1.1. The higher Reynolds number is more difficult

inlet
to compute. Contours of temperature, u velocity and dilatation are shown in Fig-

ures 4.39, 4.40 and 4.41 for the Re = 40 case. Similar plots for Re = 150 are shown
in Figures 4.42, 4.43 and 4.44. The Nusselt number development for these cases is
plotted in Figure 4.45 along with results from Schade and McEligot (1971) and a
solution from the code of Nelson and Pletcher (1974). Both of these references used
the boundary-layer equations.

For a wall temperature of %ﬁ& = 2.0 the flow separates near the inlet and re-

develops. The separation is evident in the contour plot of u velocity in Figure 4.46.

This case does not converge. A high wall heat flux will also not yield a converged



146

solution. A non-dimensional heat flux, @, is defined as

90 Dnyd
koTo

(4.35)

A near inlet separation develops as shown in Figure 4.47 for Q = 25.0. Lower wall
heat fluxes do yield converged solutions. A non-dimensional wall heat flux of @ = 0.5
was computed for Re = 150 and M = 0.1. Contours of the temperature, u velocity and
dilatation are shown in Figures 4.48, 4.49 and 4.50 respectively. The Nusselt number
was again below constant property predictions and does not asymptote but continues
to fall. This behavior is expected for solutions which include viscous dissipation (Shah
and London 1978).

The difficulties in solving this problem have been isolated to the density and
dilatation determination. Let us consider the density first. Density is computed from
the continuity equation. Since that equation has first order time, « and y derivatives,
only one condition on time, z and y are needed. In Figure 3.3 for the boundary
conditions of this problem, however, note that density is constrained by an inlet and
two wall conditions. An initial condition is also assumed. This is one condition too
many. The specification of the wall density at both walls seems to be the problem.
Though many methods of determining the wall density are possible, none seemed to

be completely satisfactory. The wall density has been determined alternatively from

1. the £ momentum equation solved along the wall,

2. continuity solved at the line of points just above the wall followed by a statement

that py = 0, or

3. density equals a constant, p = 717
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Of these, number two gives a constant pressure on a transverse plane, but a realistic
looking negative streamwise pressure gradient has not been obtained. Mass is con-
served for all of these approaches. All approaches give the same Nusselt number for
the conditions computed. So, at least for these low Mach number, and “low” Reynolds
number flows, the density doesn’t seem to interfere much with the temperature field
determination.

Next, consider the dilatation variable, B. The dilatation transport equation

evidenced early on that it would be difficult to solve. Many approaches were tried:

1. Divergence theorem constraint on the B field
2. Under-relaxation

3. Weighting the B field using the transport equation solution and the definition,

B = ug + vy from the velocities.

4. Smaller time steps.

A useful check is to make sure that the solution for the dilatation satisfies the
divergence theorem (also called Green’s theorem or Green’s identity). Only two-
dimensional compressible problems in Cartesian grids were studied so the following
derivation will be useful for all the compressible test cases.

From the Poisson equation for the scalar potential, Equation 2.13:
v% =B (4.36)
Thus;

//D vipda = [ [ Bda (4.37)
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Applying the divergence theorem yields:

[IREZZE - Vé-nds= %d.«, (4.38)

//DBdA://D (uz—}-vy) dA:f(.?D (un:c-i—vny) ds (4.39)

where D is the domain, 8D is the boundary of the domain and n is the outward
unit normal. The implication of the above is that the scalar potential should be used
to handle the throughflow velocities at domain boundaries. This is exactly how the
scalar potential boundaries are imposed (except for the boundary-layer calculations
where the vector potential is used for the throughflow velocity). A representative
two-dimensional geometry is shown in Figure 4.38. The outward normal derivative is
indicated on the figure. Proceeding counterclockwise around the domain and applying

the divergence theorem, the area integral of B must satisfy:

M y1
//DBdA - /0 vdw—}—/o udy
0 0

+ ~vdr + udz (4.40)
1 y1

Writing the above integrals in the positive coordinate directions gives:

//DBdA = —/Omlvd:c+/0y1udy

+/0z1vd:c ——/Oylud:c (4.41)

The area integral of dilatation and the boundary integrals of the throughflow velocities
are easily computed to provide a check on the dilatation field.
This constraint was observed to be satisfied automatically to acceptable tolerance

for all the compressible problems except the viscous variable property channel flows.
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ny =1
y ds = —dz
yl 1 -~ 1
l |
1 '
1 '
ng=-1 _ ! _ ng=1
T =— D z =
ds:—dy"_il Ii_’-ds:dy
I |
| |
0! — D : .
0 ‘ r x
ny = -1
ds = dz
Figure 4.38: 2-D solution domain for divergence theorem application
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In that case, converged solutions can best be obtained by enforcing the divergence
theorem constraint on the computed B field.

In spite of these problems, solutions were obtained without applying any sim-
plifying assumptions (i.e., no terms were dropped in the governing equations). The
results here were obtained by method 2 for the density boundary condition and the
divergence theorem constraint applied to the solution for B.

Some trends that were observed will be reported next. For variable property
flow, the Nusselt number does not asymptote but continues to fall for wall heating.
This is in agreement with the findings of others. Shah and London (1978) indicate
that the limiting Nusselt number is zero for variable property flow with wall heating.
This is reason for confidence in the trends computed by the dual potential method.
Dilatation has no choice but to conform to the numerical satisfaction of Green’s
theorem. This constraint must be used throughout the calculation. The correction
becomes smaller and smaller as the steady state is approached, but without the
correction the convergence is slowed and seemingly halted. At this point the only
remaining problem appears to be getting a believable negative streamwise pressure
gradient. The finest grid solution presented here is for 41 x 41 points. For this coarse
grid the skin friction asymptotes to C fRe = 23.6. The fully-developed skin friction
for an incompressible channel case would be (' fRe = 24.0.

The code runs at 83 MFLOP for full Navier-Stokes calculations. The low wall

32 s
global iteration x grid point’

heating cases converge at ~
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Constant wall temperature Converged solutions were ob-

tained for g:m = 1.1. Results for Re = 40 and Re = 150 will be presented. The
inlet
flow Mach number is M = 0.1. Contours of temperature, u velocity and dilatation are
shown in Figures 4.39, 4.40 and 4.41 for the Re = 40 case. Similar plots for Re = 150
are shown in Figures 4.42, 4.43 and 4.44. Recall that the physical distances, ¢ and
y, for the two-dimensional channel cases are non-dimensionalized by the hydraulic
diameter. The non-dimensional wall separation distance is then ymax = % so that
y is in the range 0 < y < % for the results plotted here from wall to wall. The u
velocity contours in Figures 4.40 and 4.43 are similar to results for an incompress-
ible channel case. Notice that the core velocity attains u = 1.5 which is the exact
value for the incompressible case. The temperature contours in Figures 4.39 and
4.42 are realistic considering that the wall temperature is a constant ;ﬂa-]l = 1.1.
inlet
The dilatation contours indicate that most of the compressible effects for this flow
are concentrated near the inlet. The Nusselt number development for these cases is
plotted in Figure 4.45 along with results from Schade and McEligot (1971) and a
solution from the code of Nelson and Pletcher (1974). Schade and McEligot used the
boundary-layer assumptions and neglect viscous dissipation in the energy equation.
They compute an increase in Nusselt number for heating when properties are variable.
The computations of Pletcher are also based on the boundary-layer equations but in-
clude the dissipation terms in the energy equation. His results confirm the behavior
predicted by the dual potential solution of the Navier-Stokes equations. Shah and

London (1978) also confirm that the Nusselt number does not asymptote for variable

property conditions with heating.
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. op T .
Figure 4.46 is from the results of the case with Tm = 2.0. This case does not
inlet
converge. These results are shown mainly to show the separation that is computed

by the DP code. For convenience, the constant wall temperature is given as T\ ) in

s : T
the figures. It is to be understood that it is actually the ratio of - et
inle

Constant wall heat flux Figure 4.47 is for the case with

Q = 25.0. This case also does not converge. These results are shown mainly to show

the separation that is computed by the DP code. The high heat flux and high wall
temperature cases exhibit this same feature.

A converged solution is obtained for lower heat fluxes. Results are plotted in

Figures 4.48-4.50 for Q@ = 0.5, Re = 150 and M = 0.1. The non-dimensional wall

separation distance is ymax = % since y is non-dimensionalized on the hydraulic

diameter which is simply twice the wall spacing.

Compressible boundary layer

Subsonic freestream The compressible subsonic flow over

a flat plate was computed to test the code on an external, viscous, compressible flow

case. The conditions at the plate are adiabatic. The normal pressure gradient at the

plate, py, is assumed to be zero. This is consistent with a boundary-layer assumption.
The boundary conditions for this case are shown in Figure 4.51.

The full dual potential method and a variation were used to compute the solution.

The variation on the dual potential method was used as a self check on this problem.

It uses dilatation computed from the continuity equation and density computed from
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w=20
= —Lp —
T =
p=1
freestream: Az =¢y—v

v, J index ¢y =0
u =
'vy = 0

Fem—mmmmm— e e e e e e mmemmeeme— - A

| : exit:
1nlit;) E i wgg =0
B=0 | I adeps
T=1 : y Tzz =0
p=1 | ! pz upwinded
A=0 ! Agz =0
u=1 | ] Upy = 0
v # 0 : : Vg = 0
\\\\\\\\\\\\\\\\\\\}x\(i\\\)\\\\\\\\\\\\\\\ .1 index
w = y ’
B =
T _ o
3y =
flat plate: p = fixed by py = 0 and T distribution
A=0
dy =0
u=20
v=20

Figure 4.51: Boundary conditions for laminar compressible flow over a flat plate
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the ideal gas law as follows. From continuity, and assuming steady state conditions,

~ (upa + vey)
p

B =

It is possible to assume that the pressure is constant and uniform for this case, so

that density can be computed from the ideal gas law by

_ P
P=RT

p
here — =1
where &

e

This variant is possible because of the simplifying assumptions of this problem. This
gives a much faster solution than the transport equations. When the transport equa-
tions are solved for dilatation and density, the boundary conditions shown in Fig-
ure 4.51 are used. The wall density can actually be obtained by other methods as
mentioned in the variable property channel flow discussion on page 146. A compar-
ison of the two solution methods and results from a boundary-layer finite-difference
scheme (Christoph and Pletcher 1983) are shown in Figure 4.52 for a M = 0.5 flow.
Pletcher’s data were computed using the above mentioned finite-difference boundary-
layer scheme with approximately 50 points in the boundary layer. For reference, the
Blasius profile and a solution at M = 1.0 from Schlichting (1979) are included in Fig-
ure 4.52. It can be seen that the compressible boundary layer thickens as the Mach
number increases.

The temperature profile for this case is shown in Figure 4.53. The results from
the boundary-layer finite-difference scheme are not plotted but coincide with the
Pr = 0.7 theoretical curve. More grid points in the dual potential solution could
be required for better agreement. However, the results are within 1% of theory. In

the present calculations, the wall temperature is computed by using the zero wall
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derivative condition for temperature as a boundary condition on the energy equation.
Pletcher reported setting the adiabatic wall temperature in his calculations. The
wall temperature is 1.042 by theory and 1.039 as computed using the dual potential
method.

This was the first compressible viscous case to be computed successfully. There
was initially a problem computing this flow using the full dual potential equation
set. The dilatation transport equation could only be converged by dropping the
terms which originated from the pressure terms in the primitive variable momentum
equations. (Dropping those terms is equivalent to assuming that the pressure is
everywhere constant.) This led to the determination that those terms (second order
derivatives in the B equation source term) must be differenced conservatively. This
is necessary because the pressure gradient is zero, yet numerically it is non-zero for
p = pRT substituted into the pressure derivative terms.

These cases were computed by the full dual potential method without using
boundary-layer assumptions other than py = 0 at the plate. The full energy equation
was used. Streamwise convective terms were upwinded. The time step limitation is
controlled by the dilatation variable. The skin-friction development is nearly indis-
tinguishable from the incompressible boundary layer solution for an irrotational inlet.
The skin friction asymptotes to a value slightly lower than for incompressible flow
with the difference in the fourth place behind the decimal point (¢f. Van Driest 1952).
The asymptotic value computed here was C’f\/ﬁ = 0.6646 at Regy = 100,500. At
the same Reynolds number the incompressible solution computed C f\/ﬁ = 0.6647.

With 81 transverse points it is observed that the vorticity magnitude is less than
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10~° from j = 35-81 and the dilatation magnitude is less than 10~° from Jj = 54-81.
The solvers for vorticity and dilatation can be shut off beyond these points with no

adverse affect on the solution and a speed up of approximately 14%.

Supersonic freestream A supersonic flow over a flat plate

was also computed. The conditions at the plate are adiabatic. The result in Fig-
ure 4.54 was obtained by computing the dilatation from the continuity equation. A
zero streamwise pressure gradient was assumed. Then, by the boundary-layer assump-
tion, a zero normal pressure gradient is also assumed so that pressure is constant for
this problem. The dilatation may then be computed from the continuity equation

(upe + 011
P

B =

(4.42)

and density can be computed from the ideal gas law and the constant pressure as-
sumption
P 1 .
= —— = — for a unit pressure field. 4.43
P=RT =T P (4.43)
It was not possible to compute this flow using the transport equation for B.

The abscissa in Figure 4.54 is % where &9 is the momentum thickness defined
by

o pu u
8o = (1 _ ——) d
2 /y=0 pooUoco Uoco v

Experimental results for this case were obtained by O’Donnell (1954). The theoretical
calculation is by Chapman and Rubesin (1949). The achievement of good results here

may be due in part to the use of the fixed pressure assumption.
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Figure 4.55: 3-D duct geometry

4.4 Three-dimensional Cases

Only a first step to three-dimensional calculations using the dual potential method
has been taken here. For incompressible flow, solutions were computed for the devel-
oping flow in rectangular ducts of constant cross section. This may be considered as
a stepping stone to more complex geometries. Compressible flow solutions in three-
dimensions have not been obtained. Time did not permit further development of the
dual potential method, but the capability of this method has been demonstrated for

three-dimensional incompressible flow calculations in a simple geometry.

4.4.1 Incompressible flow

4.4.1.1 Incompressible channel inlet A three-dimensional, laminar, in-

compressible flow code has been programmed using the dual potential method. The
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formulation (Wong and Reizes 1984) is applicable to ducts of arbitrary but constant
cross section. The code has been used to calculate the developing flow in rectangular
ducts of various aspect ratios for Reynolds numbers of 10 and 50. The duct geometry
is shown in Figure 4.55. Uniform Cartesian grids were used to compute the solutions
to be presented. |

For the three-dimensional duct geometry shown in Figure 4.55, the aspect ratio is
b/a. White (1974) and Shah and London (1978) give a formula to compute the fully-
developed velocity profile for constant property incompressible flow in a rectangular
duct of constant cross-section.

For the streamwise direction = and a rectangular section with —a < y < a and

—b<z<b:

2 00
16a dp 1 (n~1)/2 cosh (n7z/2a) (n‘lry
= — [-Z£ Y (-1 1 - bl 4
e = U ( dw) n:1,3,5,...n3( ) cosh (nwb/2a) | “*° \2a

ba3 , e
Q = EL (—j—p) 1-—- % (%) Z %tanh (n—Wb)
3 p z 7’ n=135,.." 2a

N—

Where @ is the volume flow rate, Q = u;pnA and 4 = 2a x 2b.

Note that the viscosity p does not matter for the fully-developed velocity profile
of 'uTuﬁ The pressure gradient may be eliminated in the equation for u so that 1—:‘5
may be determined readily from the above equations.

The computed flow development and fully-developed profiles agree well with
the known results. Better agreement could be obtained using stretched grids. The
centerline velocity development for a square duct is shown in Figure 4.56. Computed
results using the dual potential method are indicated by symbols. The centerline

velocity development as computed on stretched grids by Wong and Reizes (1984)
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Table 4.2: Fully-developed centerline velocity and skin friction

tmax/um CfRe
Aspect ratio | Re | dual pot. grid || ref. | dual pot. ref. | dual pot.
1.00 10 | 15 x 15 x45 | 2.096 | 2.065 14.22708 14.07
1.00 50 | 29 x 29 x 60 | 2.096 | 2.084 14.22708 14.23
0.75 50 | 21 x 15 x 30 || 2.077 | 2.051 14.47570 14.38
0.50 50 | 31 x15x30 [ 1.992 1.968 15.54806 15.40
0.25 50 | 61 x15x30 |f1.774 1.752 18.23278 17.90

is shown as the Re = 10, 50 and 200 results. Experimental results of Goldstein
and Kreid (1967) would be very near the Re = 200 results. The fully-developed
velocity profile for Re = 50 is compared to the analytical solution in Figure 4.57. The
transverse velocity vectors near the exit of a square duct are shown in Figure 4.58 and
near the exit of an aspect ratio = 0.50 rectangular duct in Figure 4.59. The velocity
vectors are magnified 100 times to show the persistent vortical flow in the corners
even at the fully-developed condition. A similar symmetric pattern is exhibited in all
the rectangular ducts. The transverse flow is toward the corner along the walls and
away from the corners along the corner bisector. Note that this flow pattern happens
to be the opposite of the Reynolds stress driven secondary flow for a fully-developed
turbulent flow in a rectangular duct (Demuren and Rodi 1987; Speziale 1987a). The
flow patterns here probably result from initial disturbances that have not yet decayed.
Stretched grids are needed for more efficient calculation of this flow.

A summary of the fully-developed centerline velocity and wall skin friction co-
efficient for various aspect ratio ducts is given in Table 4.2. The tolerance used in
computing the dual potential results was 0.0001. These results were computed on a

uniform Cartesian grid. For the square cross-section duct, the skin friction coefficient
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Transverse velocity vectors at a plane near the exit of a square duct

with Re = 50

Figure 4.58:
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Figure 4.59: Transverse velocity vectors at a plane near the exit of a 0.50 aspect
ratio duct with Re = 50
asymptotic value is computed to be CfRe = 14.23 on a 29 x 29 x 60 grid. This is the
exact answer to two places behind the decimal point.
The shear force was computed by integrating the product of the first order ve-
locity derivative and the local wall area over the entire wall surface. A second order
polynomial fit of the u velocity component is used to compute the velocity derivative

in the shear stress equation. The local wall shear stress is computed from:
Ou Ov
Tey = M 5; + 32
Ow Ou
Tzz = P\ G + B
Ov  Ow
Tyz = M 52 + a—y

The shear stresses T¢y and 7z are used in this computation. The integrated wall

shear force is then used to compute C fRe.

The three-dimensional code has not been vectorized and uses point Gauss-Seidel

with SOR for the vector potential Poisson equation. That particular scheme becomes
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more and more inefficient as the number of grid points increases. The computation
time can be reduced somewhat for steady state calculations by tightening the tol-
erance gradually as iterations increase. For a uniform Cartesian grid, 15 x 15 x 30
points is a good compromise of accuracy and solution speed. It has been observed
that a solution tolerance of 0.001-0.0001 is adequate. For more accurate results on a
uniform Cartesian grid at the Reynolds numbers reported here, the spacing as in the
square duct case with 29 x 29 x 60 points should be used. This gives fully-developed
flow solutions within 1% of the exact. Note that for incompressible flow the scalar
potential can be solved once and for all for a given fixed geometry. This feature is
used in the solution presented here. For the rectangular duct geometry, ¢ = z is the
analytical solution to the Laplace equation V2¢ = 0 with the boundary conditions

discussed in Section 3.2.1.

T4 us

The computation rate for this unvectorized code is ~ global Tteration X grid pornt

on a single processor of the Cray X-MP. The complete flow field is solved by the cur-
rent code. The symmetry of this problem was not used to speed the solution. This

would immediately reduce the computation time by about a factor of four. The
MFLOP rate is 12 MFLOP overall, without any enhancements.

The three-dimensional incompressible code should be extended by adding the
energy equation, generalized coordinates (so a curved duct case can be computed)
and a rotating coordinate capability for centrifugal compressor modeling. A more
efficient Poisson solver is needed and other enhancements to improve the computation

speed.
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4.4.2 Compressible flow

The transport equations for w and B in the three-dimensional compressible

formulation are given in Appendix A. No solutions were attempted.
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5. DISCUSSION AND CONCLUSIONS

A dual potential procedure has been developed and evaluated for flow calculations
ranging from potential flow to full Navier-Stokes solutions in two dimensions. A three-
dimensional incompressible formulation has also been presented.

Compressibility has been handled by the dilatation variable. A dilatation trans-
port equation is obtained from the momentum equations. Workable dilatation bound-
ary conditions have been presented.

From this study the following conclusions can be made:

1. The dual potential formulation of the Navier-Stokes equations is very flexible

in that it is easy to compute subset equations (potential, Euler).

2. The dual potential method can simulate irrotational and rotational inflow easily.
In fact, it is interesting to note that the test cases for which experimental results
are available agreed best with the computed results for an irrotational inflow
condition—boundary layer and three-dimensional duct inlet flow. Yet many
of the computations had to be compared with the rotational inlet condition as
this is what other computational investigators have used, namely in the channel
heat transfer cases. Van Dyke (1970) reports that the irrotational inlet condition

may be more realistic for experimental models with a rounded entrance. The
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above statement and the small sampling of experimental results suggests that
the irrotational inlet condition is an important feature to be able to simulate.

The dual potential method handles either condition easily.

. Computational effort can be reduced in irrotational regions (_Jz 0) and in

incompressible regions (B = 0).
. The method appears to be very accurate for incompressible calculations.

. It appears possible to extend the dual potential method to compressible flow,
but the dilatation transport equation may need more work. It seems that some

problem still persists here—perhaps self consistency of the inflow B boundary
condition—that is most noticeable for viscous compressible problems. Also,
the dilatation can undergo much variation in certain regions of the flow field
making it difficult to resolve. For example, in stagnation regions B changes sign
as shown in Figure 4.32 for the flow over a parabolic arc bump. This behavior

of the dilatation variable may be undesirable in practical use of this method.

. The scalar potential requires a tight convergence tolerance as used in the test
cases here. This may be explained by the fact that the scalar potential is the
largest component in the velocity decomposition for the streamwise velocity.
The convergence tolerance on the vector potential can be 1-2 orders of mag-
nitude less restrictive than for the scalar potential. This observation may be
problem specific since the streamwise velocity component was the dominant

component for the test cases studied in this work.

. For incompressible flows, the dual potential approach can be very competitive
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with primitive variable methods. As an example, the original INS3D code

100 ps
global 1teration x grid point

(Kwak et al. 1986) performs at ~ on the Cray

X-MP. The non-optimized version of the three-dimensional incompressible dual

74 us
global 1teration x grid point on the X-MP. The only

 potential code runs at ~
significant point to make about this comparison is that the dual potential code is
written for uniform Cartesian grids while the INS3D code can handle generalized

three-dimensional coordinates.

8. It is possible to solve the dual potential equation set in an iterative, uncoupled

way.

A number of capabilities of this formulation have been demonstrated, some for
the first time. The success seems to be limited for compressible viscous flows with a
pressure gradient. Determination of the wall density is awkward for these cases and
perhaps causes some problems for the dilatation transport equation. The dilatation
transport equation seems to work fine for a known density and temperature field as
was the case for the boundary-layer solutions. More remains to be done before a

trouble free compressible formulation is available.
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6. RECOMMENDATIONS FOR FUTURE WORK

The key advantages and disadvantages of the dual potential method have been
stated in Section 1.3.2.2. Speziale (1987b) describes further advantages of non-
primitive variable methods using vorticity. He shows that these methods have simpler
boundary conditions than primitive variable formulations for problems in a rotating
reference frame. A review of the literature (Ozoe et al. 1985) suggests that a dual
potential formulation is the method of choice for confined flows. The solution speed
of the dual potential type methods for incompressible flows is well documented ( Aziz
and Hellums 1967). However, the disadvantages have precluded solutions in complex
geometries.

It seems best then to concentrate research efforts on the known advantages of this
method and solve problems of practical interest. A few problems will be suggested
that exploit the advantages of the dual potential method. Global weather forecasting
is one such interesting practical problem. The geometry is simple, the flow is confined
and density variations can be obtained from simple correlations. Incompressible flows
inside curved, twisted ducts have been solved using the dual potential method (Yang
and Camarero 1986). It should be possible to build on these solutions by allowing
the duct to rotate. Many practical fluid flow problems could then be modeled such

as the flow through an automotive water pump, a centrifugal compressor, a flow
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meter, etc. Further interesting practical solutions could be obtained for problems that
resemble the bump cases studied here. The “walls” in that two-dimensional problem
can be allowed to move and the bump can have a time-dependent growth. Also,
the flow can be treated as viscous. Since solutions have been obtained for subsonic
compressible flows, the dual potential method may be well suited for computing flows
with embedded compressible regions. Examples of practical flows with these features
are the flow under an automobile and flow through a carburetor. Heat transfer effects
can be included in all of these simulations.

In other research areas the dual potential method may also be of importance.
Direct simulations of channel flow and a flat plate boundary layer have been obtained
by Rai and Moin (private communication, NASA/Ames Research Center). They
used a non-conservative primitive variable method on a staggered grid to simulate
incompressible turbulent flow. The dual potential method could be used to compute
direct simulations of these flows with little modification. If the speed advantage
of the dual potential method for incompressible flow calculations extends to direct
simulations, then interest in the formulation will surely increase.

It is always wise to seek out similarities in the other disciplines. The Helmholtz
decomposition theorem was developed and used extensively by scientists working in
electrodynamics. There may be some analogous physical problem in physics, mathe-
matics or other field that could help in the understanding and use of the dual potential
method. A search of the literature quickly turned up the paper by Miiller (1987) on
the topic of vector splitting applied to a physics problem.

Since the dependent variables in the dual potential formulation are vorticity and
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dilatation, one should use these variables to his advantage not only in computing a
flow, but in the understanding of the physics. For example, vorticity is generated
by such natural phenomenon as walls and shocks. A code which solves for vorticity
directly, such as the dual potential method, may be useful in problems in which one
wishes to track the vorticity. The dilatation variable can also be useful in understand-
ing some flow situations. The dilatation changes sign in the vicinity of stagnation
points and shocks. This physical behavior can help give insight into the problem
being studied (and cause problems numerically!).

Finally, it is important to have a code that is a good Navier-Stokes solver, but
also is easily and efliciently used in other modes. It has been demonstrated that the
dual potential method can be used in a potential, Euler and Navier-Stokes mode.
Further work can improve the performance even more and address the issues of shock
capturing, turbulence modeling, direct simulations, etc. If this method is ever to
prove useful in applications, it must be able to run in all these modes efficiently and
reliably. In addition it must be faster than existing methods. Unfortunately, the
ideas behind the dual potential method are not as familiar as the primitive variable
approaches. This unfamiliarity is a handicap since the details of application codes
should be easily understood. To increase the familiarity of this method it must be
tested on some problems of practical interest.

The two- and three-dimensional dual potential codes written as a part of this
research are still under development. A copy of a version of the codes may be obtained

from the first author or through the Department of Mechanical Engineering, Iowa

State University, Ames, lowa 50010 (Attn: Professor R. H. Pletcher).
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8. APPENDIX A: THREE-DIMENSIONAL VORTICITY AND
DILATATION TRANSPORT EQUATIONS

The momentum equations for a three-dimensional flow of a Newtonian Stokesian
fluid will be presented here. They will be written in terms of vorticity (actually %) and
dilatation as the dependent variables. First a point will be made about the number
of transport equations which must be solved for the vorticity in three dimensions.

In three dimensions it is only necessary to solve two of the three component

vorticity transport equations because the third vorticity can always be obtained by a

linear combination of derivatives of the other two. To see this, consider the vorticity

definition,
—_ =
3: Vx V
where,
wp = ‘lUy — Vz
Wy = Uz —Wg
LU3 = VYp — ’U/y
therefore,
W3z = ~Wlg — Y2y
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Hence, the third vorticity component can always be obtained from the other two
components. In the above, the numbers 1,2,3 represent directions and the letters
z,y,z are derivatives.

The vorticity transport and the dilatation transport equations follow. They
represent the momentum equations for a three-dimensional flow. To compute a flow
field using the dual potential method, additional equations are required to satisfy

mass and energy conservation. Also, the Poisson equations for the potentials must

be solved (Equations 2.13 and 2.14):

v - B

sz = —w

Equations 8.1-8.3 display the vorticity transport equations in the dependent
variable, (%) The three-dimensional dilatation transport equation is presented in
Equation 8.4. The ideal gas law (p = pRT') has been used to replace the pressure

gradient term in the momentum equations. Body forces are neglected. The following

equations have not been coded. Their numerical behavior is unknown.
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Vorticity transport: z-component

(48, ), +o(2), o), =

[U:c + pig'Rl; {#Vzp + pxpz + pypy + #zpz}] (%)
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Vorticity transport: y—component

(ﬂ)t+“(

2),+4(2), +2(2), + (), -

P P p
[vy i ;lfﬁl_e {920 + hzpe + pypy + wap }] (%2)
+%—I—:€ (e () + ”z(%)z]

R ()
+vg (%1-) + vz (‘i’p&)

R
t— (Tzpz — Tzpz]
p

11 19— —
+;—R';[ (%)z (V2u+'§-a—v V)
102 =
—(%):c (V2w+§5;V V)
pN202 7 28— —
+()355 7 :—(f)gav v
- —
+(”—:’-)z(2uw-§v.v)
+(22), (uy + ve)
"'(%f‘)z (wz + uz)
_(#—p{)z (we +uz)
-(%)w (vz + wy)
‘(ﬂf)z <2wz - %6 : T”) ] (8.2)



201

Vorticity transport: z—component
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Dilatation transport:
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9. APPENDIX B: ALTERNATE NON-PRIMITIVE VARIABLE
EQUATIONS

An approach different from that presented in the main body of this report is to
form a different combination with the z,y momentum equations.

In two dimensions the governing equations are:
1. continuity
2. £ momentum
3. y momentum
4. energy

The cross product applied to the momentum equations yields the vorticity transport
P y
equation. This leaves one with still another usage of the momentum equations. In
the main body of this report the dilatation variable, B = ug + vy, was selected as the
1Y Y
final usage. Another possible operation on the momentum equations is to compute
% (z momentum) + ?5% (y momentum). Then, choosing the dependent variable to

be (uy+vz), an equation for the rate of shear deformation is derived. Let I' = Uy +vg.
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The two-dimensional equation for I is

, _ H o2 2 ' 9
p[T+ule +oTy +TB] = —2pay+ £ V2T + = V- Vit 2=V
1 52 Du Dv
— B — py—— — pp— )
+ Re 6:c6yp' PYD: ~ P Dt (9.1)

Then, the momentum equations provide the solution for w and I'. Recalling the

definitions,

w = vgp—uy (9.2)

' = vg +uy (9.3)

one obtains the following compact formulas for some velocity derivatives:

r

Ve = w+ (94)
2
I'—w

This adaptation to the dual potential method could be used as an inverse solution
procedure since the wall shear stress is simply pI'.

NOTICE: At a no-slip impermeable boundary, vz = 0. There is no trouble
getting the vorticity at the wall. Therefore, I' should be simple to obtain once the
vorticity is computed! At the wall T = —w. Also, the potentials are not needed for

this use of the momentum equations.





