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ABSTRACT 

In General Relativity the Principle of General Covariance allows one to describe 

phenomena by means of any convenient choice of coordinate system. In this paper 

it is shown that the geodetic precession of a gyroscope orbiting a spherically sym- 

metric, nonrotating mass can be recast as a Lense-Thirring frame-dragging effect, 

in an appropriately chosen coordinate frame whose origin falls freely along with the 

gyroscope and whose spatial coordinate axes point in fixed directions. 
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GEODETIC PRECESSION OR DRAGGING OF INERTIAL FRAMES? 

The theory of general relativity’**l3y4 has had remarkable success in the last few 

decades in describing gravitational interactions in cosmological and intergalactic as 

well as solar system domains. Among the many relativistic phenomena which have 

been observed, there are still two effects which await confirmation which we address 

in this paper. 

According to general relativity, observers fixed with respect to distant stars will 

note that a spinning gyroscope, falling freely in the gravitational field of a rotating 

source, will undergo two kinds of effects known respectively as geodetic precession, 

and the often-called motional or “Lense-Thirring” precession’. Geodetic precession 

is usually associated with motion of the gyroscope through the static gravitational 

field of the source. Conventionally one derives this precession by parallel transport 

of the spin vector in the curved spacetime near the mass6; this effect is present even 

if the mass is not rotating. The motional precession, or “hyperfine prece~sion”~ is 

due to the interaction of the spin angular momentum J of the source, and the 

spin s’ of the gyroscope. This effect resembles the interaction of the spin of the 

electron with the magnetic field of the nucleus of an atom. Thorne8 has taken this 

analogy further to describe the two effects respectively in terms of interaction of the 

-+ 

gyroscope with the “gravitoelectric” and the “gravitomagnetic” fields derived from 

the various components of the metric including spatial curvature contributions. 

Schwingerg also derived the motional precession in terms of source theory where 

space-time components of the metric yield a gravitomagnetic field tensor which 

interacts with the spin of the gyroscope. Schiff” suggested that motional precession 

could be seen as a “dragging” of inertial frames, analagous to the effect predicted by 

Thirring” who showed that inertial frames inside a rotating hollow shell undergo 

precession with respect to observers whose orientation is fixed with respect to distant 

stars. Outside a rotating spherical source, the precession of a nearby gyroscope 

could be conveniently pictured by considering a spinning sphere submerged in a 

viscous fluid. Small toothpicks placed in the fluid near the poles, rotate in the 

3 
PRECEDING PAGE BLANK NOT FILMED 



same direction as the sphere rotates, while those placed at the equator rotate in the 

opposite direct ion. 

It is hoped that in the next decade Gravity Probe B1*, a drag-free satellite 

carrying a gyroscope around the earth, will be launched. For an orbit of altitude 

480 km, the gyroscope’s geodetic precession should be 6.9 arc-sec/year, and the 

Lense-Thirring precession should be .044 arcsec/year. These precessions are to be 

measured when gyroscope orientation is checked against distant fixed stars. The 

Lense-Thirring drag due to the earth may be observed using the orbit of a satellite 

such as the recently proposed LAGEOS III13. 

While efforts are already being put into detecting these two effects, we suggest 

that the two effects can be considered to be based on the same fundamental physical 

phenomenon-gravitomagnetism. Our purpose here is to recast the entire geodetic 

precession as a “Lense-Thirring” drag. This would further extend the framework 

introduced by Thorne to show that geodetic precession in its entirety is related to 

a gravitomagnetic effect. This is via a boost to a reference frame with origin falling 

freely with the gyroscope, having axes pointing in fixed directions, with spatial and 

time units rescaled slightly due to Lorentz contraction and other small relativistic 

effects which we shall discuss. In this reference frame the massive source is revolving 

around the gyroscope, giving rise to a gravitomagnetic drag which is precisely of 

the magnitude necessary to explain that precession of the gyroscope which was 

interpreted in the original frame as geodetic precession. By the principle of general 

* covariance, a phenomenon may be described in any convenient coordinate system 

provided that the experimental observations are interpreted properly, in terms of 

invariant quantities. 

This suggests that experimental observation of either the geodetic precession 

or the Lense-Thirring frame dragging effect would confirm them both, otherwise 

general relativity would not be self-consistent. Both effects can be considered as 

manifestations of gravi tomagnet ism. 

In this paper we shall use the simplest Parameterized Post-Newtonian (PPN) 

formulation’* and shall neglect preferred frame and energy-momentum nonconser- 
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vation effects. Therefore the only relevant PPN parameters would be 7 and p; 
however we shall not find it necessary to include nonlinear effects due to /3 as these 

are of higher order. 

We consider a model of a non-rotating, spherically symmetric mass M placed 

at the origin of the PPN frame. Given the metric to post-Newtonian order, we con- 

struct an orthonormal tetrad of basis vectors falling along a geodesic curve around 

the source, but with orientation fixed with respect to points at infinity. The origin, 

at position Ro, is thus in motion through the PPN grid. The coordinate reference 

frame is erected using this tetrad as a basis. Observers in this frame do not feel 

radial accelerations towards the source as they are falling along geodesics; however 

they “see” a mass revolving around their origin. We call this a quasi-inertial frame. 

The goal is to calculate the metric tensor in this frame by coordinate transforma- 

tion. Upon expanding the metric tensor to linear order in local coordinates near 

the origin, the equations of motion of a spinning gyroscope at the origin may be 

obtained, and it will be seen that in this coordinate system the geodetic precession 

is entirely of gravitomagnetic origin. 

-+ 

We use the formalism derived previously by us’’ to calculate the local metric 

9 P  in the quasi-inertial frame. We will show that there exist terms in the corn- 

ponents go; linear in coordinates leading to the expected geodetic precession of the 

gyroscope. The magnitude of the precession, and its dependence on 7 is as ex- 

pected, and the direction of the precessional angular velocity is the same as the 

direction of the orbital angular momentum of the source as seen by observers in the 

quasi-inertial frame. Thus the local inertial frame is truly dragged by the source as 

it traverses its orbit. 

CALCULATION OF THE METRIC IN THE QUASI-INERTIAL FRAME 

The metric in the PPN frame with the static source at the origin up to the 

desired order is given by: 

Goo = -1 + 2U 
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where -c2U = -GM/R is the gravitational potential due to the central mass. One 

can construct an orthonormal tetrad falling along the geodesic in the gravitational 

field given by Eqs. (l), but with spatial axes directionally fixed with respect to 

the PPN frame. The construction is straightforward16 and for a circular orbit the 

components of the spatial members of the tetrad are: 

( 2 b )  
1 

Atj )  = S:(l - Y U O )  + 5 V k V j ,  

where V k  are the components of velocity of the gyroscope. Following the procedure 

developed in Ref. (15), one can now construct a set of coordinate transformations, 

relating the PPN coordinates X p  to the local coordinates xp: 

where we have included terms to quadratic order in the local coordinates. This is re- 

quired in order to obtain terms linear in coordinates in the local metric. Evaluating 

the coordinate transformations gives: 

where 
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K = 1 + Uo + -V2 ,  ( 4 4  

and T’ is the local coordinate position vector. U,j is the gradient of the potential of 

the mass evaluated at the position of the gyroscope. Having found the coordinate 

transformations one may simply regard them as exact transformations from PPN 

coordinates to another reference frame. The transformations (4) include resynchro- 

nization of clocks, Lorentz contraction, and rescaling of lengths due to the mass, 

as well as several quadratic terms needed to make the metric at the position of the 

gyroscope reduce to the Minkowski values. The metric tensor in the new frame is 

obtained by tensor transformation: 

’ 

For a circular orbit, after expanding to quadratic order in local coordinates one 

finds the following expressions for the metric tensor components goo and g i j :  

goo = -1 + O(Z’2) , 

Before expansion of the potential U ( R )  for small values of the local coordinates, the 

expression for the “gravitomagnetic” metric tensor components goi is 

The first term in the above equation is what would be expected for a mass moving 

with velocity -Vil as is observed in the quasi-inertial frame. After expansion of the 

above expression for goi to linear order in quasi-inertial coordinates, one finds after 

cancellation that 

7 



The equations of motion of a gyroscope with spin 3, placed at the origin of the 

local frame can now be found. The only Christoffel symbols which contribute are: 

For a circular orbit, one arrives at: 

-- a +  - Is' x (a' x T) ,  
dt 2 

where 7 = ( g o l , g 0 2  , 9 0 3 )  is the gravitomagnetic field vector. Evaluating Eq. (8) in 

terms of the potential U gives: 

This represents the precession of a gyroscope due to gravitomagnetic components 

only of the metric, in quasi-inertial coordinates. In a more illuminating form, Eq. 

(9) can be written as: 

+ 
where L is the angular momentum per unit mass of the gyroscope. The spin 

axis of the gyroscope is dragging behind the revolving source with angular velocity 

of magnitude proportional to the angular momentum of the source measured by 

quasi-inertid observers. 
+ 

If the source also possesses spin angular momentum per unit mass J , there 

will be additional contributions to g o i ,  as in the standard literature, and the spin 

precession rate will then be given by: 

d 3  
dt 
-=SXT,  
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CONCLUSIONS 

We have shown that the seemingly different geodetic precession and Lense- 

Thirring drag can be recast, in the spirit of Mach’s principle, in terms of a single 

gravitomagnetic effect consisting of two contributions. One arises from orbital an- 

gular momentum of the source mass as it revolves around the origin of quasi-inertial 

coordinates; the other arises from spin angular momentum of the source. In this 

coordinate frame, the net effect arises from goi components of the metric alone, and 

may be considered entirely gravitomagnetic in origin. There are no contributions 

leading to either precession from spatial curvature. 
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