ICASE

ICASE REPORT No. 89-37

BUNCH-KAUFMAN FACTORIZATION FOR REAL SYMMETRIC INDEFINITE BANDED MATRICES

Mark T. Jones
Merrell L. Patrick

Contract No. NAS1-18605
May 1989

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

NASA
National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23665-5225
Recently, ICASE has begun differentiating between reports with a mathematical or applied science theme and reports whose main emphasis is some aspect of computer science by producing the computer science reports with a yellow cover. The blue cover reports will now emphasize mathematical research. In all other aspects the reports will remain the same; in particular, they will continue to be submitted to the appropriate journals or conferences for formal publication.
Bunch-Kaufman Factorization for Real Symmetric Indefinite Banded Matrices

Mark T. Jones* and Merrell L. Patrick*†

Abstract

The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices has been rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

*Department of Computer Science, Duke University, Durham, NC 27706
†This research was supported by the National Aeronautics and Space Administration under NASA contract Nos. NAS1-18107 and NAS1-18605 and the Air Force Office of Scientific Research under AFOSR grant No. 88-0117 while the authors were in residence at ICASE. Additional support was provided by NASA grant No. NAG-1-466.
1 Introduction

The Bunch-Kaufman algorithm is considered one of the best methods for factoring full, symmetric, indefinite matrices [BK77], [BG76]. It has also been modified and successfully used to factor sparse matrices [DRMN79]. However, to date it has been rejected for banded, symmetric indefinite matrices because it destroys the banded structure of the matrix [BK77]. Herein it is shown that for a subclass of real symmetric indefinite matrices, which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Furthermore, for our class of problems, the Bunch-Kaufman factorization algorithm is a significant improvement over LU factorization, the standard of comparison for such methods [BK77]. In addition to taking advantage of symmetry, the Bunch-Kaufman algorithm yields the inertia of the matrix essentially for free [BK77], which is important in eigenvalue calculations. LU factorization does not yield the inertia as a by-product and destroys the symmetry of the matrix, thus increasing storage requirements for its implementation.

In section 2 we give one of the several variations of the Bunch-Kaufman algorithm and in section 3 describe a subclass of matrices to which we apply it. An efficient implementation of the method is described in section 4 and the space/time complexity of the implementation is discussed in section 5. Conclusions are drawn in section 6.

2 The Bunch-Kaufman Algorithm

The Bunch-Kaufman algorithm factors A, an $n \times n$ real symmetric indefinite matrix, into LDL^T while doing symmetric permutations on A to maintain stability, resulting in the following equation:

$$PAP^T = LDL^T.$$ \hfill (1)

Although several variations of the algorithm exist, algorithm D of the Bunch-Kaufman paper is the least destructive of the banded structure [BK77]. The algorithm is shown in figure 1.
1) for $i = 1, n$
 begin
2) if the previous step was not a 2×2 pivot then
 begin
3) $\lambda = \max_{j=i+1,n} |a_{j,i}|$
4) set r to the row number of this value
5) if $\lambda < |a_{i,i}|$ then
 begin
6) perform a 1×1 pivot
 end
 else
 begin
7) $\sigma = \max_{j=i+1,n} |a_{r,j}|$
8) if $\alpha \lambda^2 < \sigma |a_{i,i}|$ then
 begin
9) perform a 1×1 pivot
 end
 else
 begin
10) exchange rows and columns r and $i+1$
11) perform a 2×2 pivot
 end
 end
 end
7) end
12) end
13) if inertia is desired, then scan the D matrix

Figure 1: The Bunch-Kaufman Factorization Algorithm
The parameter, \(\alpha \), is chosen such that stability is maximized and has been shown by Bunch and Kaufman to be approximately 0.525 [BK77]. The exchange of rows and columns in step 10 maintains the symmetry of the matrix, unlike LU factorization which destroys the symmetry of the matrix by permuting only rows.

3 Applicable Set of Matrices

Bunch and Kaufman show that, in general, if \(m \) is the semi-bandwidth of a matrix being factored, then a 2x2 pivot can increase the semi-bandwidth from \(m \) to \((2m) - 2\) and that this can happen at every step thus resulting in the complete destruction of the band structure due to fill-in outside the band [BK77]. However, it will be shown in section four that for a subclass of matrices this fill-in can be controlled. The number of 2x2 pivots is bounded above by the number of negative eigenvalues of \(A \), because each 2x2 pivot represents a positive-negative eigenvalue pair [BK77]. Also, the increase of the semi-bandwidth from \(m \) to \((2m) - 2\) is a worst case that in practice is not likely to occur. Therefore, for matrices with a small number of negative eigenvalues (in relation to the size of the matrix), it is possible to use Bunch-Kaufman factorization with very little fill-in. Such matrices arise in eigenvalue calculations where the smallest eigenvalues are sought. Methods such as inverse iteration and Lanczos's method are often used to find the smallest eigenvalues of a matrix, \(A \). To do so, they often require the factorization of a matrix, \((A - \sigma I)\), where \(\sigma \) is normally very near the left end of \(A \)'s spectrum, but may not be to the left of the smallest eigenvalue, thus the matrix is indefinite [NOPT83] but has only a small number of negative eigenvalues. These matrices can be banded, as they are in structural mechanics [BH87]. The difficulty is that the location and amount of the fill-in outside the band is not possible to predict a priori. In the following section, a detailed algorithm which dynamically allows for fill-in during factorization will be presented.

4 Efficient Implementation of the Algorithm
As the following algorithm is executed the original matrix is copied, piece-wise, from one place in memory to another. This allows for dynamic allocation of fill-in as well as only requiring part of the matrix to be in main memory at any particular time. Fill-in only takes place in a small triangle when a 2x2 pivot occurs. If a pivot occurs at step k, this triangle is of the form shown in figure 2, where *'s represent eliminated elements in L, x's are uneliminated non-zeros, O's are zeros outside the band for which no storage is needed, and f's are areas where fill occurs. The triangle of fill is from row $r+1$ to row $r+m$, where m is the semi-bandwidth (this area may already contain non-zeros depending on the value of r, so no extra memory may be needed). The algorithm is as follows:

0) set $upto$ to 0

1) for $i = 1, n$

 begin

2) if the previous step was not a 2x2 pivot then

 begin

3) read rows $upto$ to $\min(n, i + m)$ of the matrix A into L,
no extra space for fill needs to be added for these rows

4) set upto to \(\min(n, i + m) \)

5) \[\lambda = \max_{j=i+1}^{upto} | a_{j,i} | \]

6) set \(r \) to the row number of this value

7) if \(\lambda \alpha \leq | a_{i,i} | \) then

begin

8) go to 11

end

9) \[\sigma = \max_{j=i+1}^{upto} | a_{r,j} | \]

(it may be necessary to access some elements that are not
read in at this point, but the number of elements is small,
so they may be read into \(L \) or simply discarded,
this is only a concern if i/o is taking place)

10) if \(\alpha \lambda^2 \leq \sigma | a_{i,i} | \) then

begin

C perform a 1x1 pivot

11) set \(p_i = i \)

12) set \(d_{i,i} = a_{i,i} \)

13) set \(d_{i,i+1} = 0.0 \)

14) set \(a_{i,i} = 1.0 \)

15) for \(j = i + 1, upto \)

begin

16) \(v_j = a_{j,i} \)

17) \(vl_j = a_{j,i}/a_{i,i} \)

18) \(a_{j,i} = vl_j \)

end

19) for \(j = i + 1, upto \)

begin

20) for \(k = i + 1, j \)

begin

\[a_{j,k} = a_{j,k} - v_l j v_k \]

end

end

else

begin

C

permute the matrix and then perform a 2x2 pivot

read rows \textit{upto} to \(\min(n,r + m) \) of the matrix \(A \) into \(L \),

and allocate space for the fill triangle

set \textit{upto} to \(\min(n,r + m) \)

exchange rows and columns \(r \) and \(i + 1 \)

set \(p_i = i \)

set \(p_{i+1} = r \)

set \(d_{i,i} = a_{i,i} \)

set \(d_{i+1,i+1} = a_{i+1,i+1} \)

set \(d_{i,i+1} = a_{i+1,i} \)

set \(d_{i+1,i+2} = 0.0 \)

set determinant = \((((d_{i,i}d_{i+1,i+1})/d_{i,i+1}) - d_{i,i+1})d_{i,i+1} \)

for \(j = i + 2, \text{ upto} \)

begin

\[v_j = a_{j,i} \]

\[v_{2j} = a_{j,i+1} \]

\[v_{lj} = a_{j,i}d_{i+1,i+1} - a_{j,i+1}d_{i,i+1} \]

\[v_{2lj} = -a_{j,i}d_{i,i+1} + a_{j,i+1}d_{i,i} \]

\[a_{j,i} = v_{lj} \]

\[a_{j,i+1} = v_{2lj} \]

end

for \(j = i + 2, \text{ upto} \)

begin

for \(k = i + 2, j \)
begin
41) \[a_{j,k} = a_{j,k} - (vl_j v_k + vl_2 j v_{2k}) \]
end
end
end
end

\(P \) is a vector representing the permutation matrices. The only time fill outside the band occurs is in step 24 of the algorithm when a 2x2 pivot occurs and then storage for the fill is allocated dynamically.

5 Speed and Storage Analysis

In this section we compare the space/time requirements of our implementation of the Bunch-Kaufman algorithm with LU factorization. The storage requirements for both algorithms will be analyzed for two different situations: 1) when simply factoring a matrix that falls in the subclass described in section 2, and 2) when factoring a matrix pencil such as \((K - \sigma M)\) where \(K\) and \(M\) are symmetric, \(K\) is positive definite and \(\sigma\) is near the left end of \(K\)'s spectrum.

In the first situation, the storage required by the algorithm presented in section 4 is significantly less than that required by LU factorization for the set of matrices that was described in section 2. The storage required by LU factorization is approximately \(3mn\) [BK77]. The storage needed by this implementation of Bunch-Kaufman is \(mn\) for the original storage from which the matrix is copied, plus \(mn\) for the locations to which the matrix is copied, plus an additional amount \(C\) which is the amount of storage necessary for the fill-in triangles. \(C\) is much less than \(mn\), because of the small number of negative eigenvalues. In addition, two vectors of length \(n\) are needed for storing the \(D\) matrix giving a total of \(2n(m+1)+C\). So when \(C\) is small, approximately \((m-2)n\) storage locations are saved factoring matrices using the Bunch-Kaufman algorithm instead of LU factorization.

In the second situation (which arises in an efficient implementation of Lanczos's method for solving \(Kx = \lambda Mx\)), the shift \(\sigma\) may change during
<table>
<thead>
<tr>
<th>Method</th>
<th>adds.</th>
<th>mults.</th>
<th>divisions</th>
<th>sq. roots</th>
<th>comps.</th>
<th>fill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chol.</td>
<td>44433080</td>
<td>48140336</td>
<td>1824</td>
<td>1824</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-K</td>
<td>48277445</td>
<td>48686784</td>
<td>1831</td>
<td>0</td>
<td>446326</td>
<td>2083</td>
</tr>
<tr>
<td>LU</td>
<td>137241687</td>
<td>137648943</td>
<td>1823</td>
<td>0</td>
<td>409079</td>
<td>2mn</td>
</tr>
</tbody>
</table>

Figure 3: Operation Counts for Factorization: \(n=1824, m=240, 5 \) negative eigenvalues

<table>
<thead>
<tr>
<th>Method</th>
<th>adds.</th>
<th>mults.</th>
<th>divisions</th>
<th>sq. roots</th>
<th>comps.</th>
<th>fill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chol.</td>
<td>44433080</td>
<td>48140336</td>
<td>1824</td>
<td>1824</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-K</td>
<td>52023663</td>
<td>52445756</td>
<td>1837</td>
<td>0</td>
<td>485452</td>
<td>14837</td>
</tr>
<tr>
<td>LU</td>
<td>137412094</td>
<td>137819350</td>
<td>1823</td>
<td>0</td>
<td>409079</td>
<td>2mn</td>
</tr>
</tbody>
</table>

Figure 4: Operation Counts for Factorization: \(n=1824, m=240, 19 \) negative eigenvalues

execution of the algorithm, so \(K \) and \(M \) must be saved throughout the computation. In this situation, the storage requirements for LU factorization is increased to \((4mn) \), but the storage needed by Bunch-Kaufman remains the same, namely \(2n(m+1) + C \) making it even more attractive in this case.

The operation counts for factorization are the same in both cases. The operation count for Bunch-Kaufman is significantly less than that of LU factorization because symmetry is exploited and the fill-in is limited. For simplicity, the operations added by the fill-in during Bunch-Kaufman are ignored, since the amount that is added is trivial. The high order term in the operation counts for Bunch-Kaufman is approximately \(nm^2 \) arithmetic operations plus approximately \(nm \) comparisons while the high order term for the operation counts for LU is approximately \(4nm^2 \) arithmetic operations plus approximately \(nm \) comparisons.

The Bunch-Kaufman method also vectorizes well if the semi-bandwidth is large enough. The gains from vectorization are much the same as those
<table>
<thead>
<tr>
<th>Method</th>
<th>adds.</th>
<th>mults.</th>
<th>divisions</th>
<th>sq. roots</th>
<th>comps.</th>
<th>fill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chol.</td>
<td>3321051</td>
<td>3434180</td>
<td>1980</td>
<td>1980</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-K</td>
<td>3322513</td>
<td>3435664</td>
<td>1985</td>
<td>0</td>
<td>142978</td>
<td>22</td>
</tr>
<tr>
<td>LU</td>
<td>10342067</td>
<td>10455196</td>
<td>1979</td>
<td>0</td>
<td>115108</td>
<td>57</td>
</tr>
</tbody>
</table>

Figure 5: Operation Counts for Factorization: n=1980, m=59, 5 negative eigenvalues

<table>
<thead>
<tr>
<th>Method</th>
<th>adds.</th>
<th>mults.</th>
<th>divisions</th>
<th>sq. roots</th>
<th>comps.</th>
<th>fill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chol.</td>
<td>3321051</td>
<td>3434180</td>
<td>1980</td>
<td>1980</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-K</td>
<td>3324670</td>
<td>3437856</td>
<td>1985</td>
<td>0</td>
<td>152370</td>
<td>57</td>
</tr>
<tr>
<td>LU</td>
<td>10618321</td>
<td>10731450</td>
<td>1979</td>
<td>0</td>
<td>115108</td>
<td>57</td>
</tr>
</tbody>
</table>

Figure 6: Operation Counts for Factorization: n=1980, m=59, 15 negative eigenvalues

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
<th>No. of neg. Eigenvalues</th>
<th>No. of 2x2 pivots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1824</td>
<td>240</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1824</td>
<td>240</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>1980</td>
<td>59</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>1980</td>
<td>59</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 7: The number of 2x2 pivots for each problem
for Choleski factorization.

The operations counts for both types of factorization, as well as Choleski factorization, when using Lanczos's method for solving the generalized eigenvalue problem are given in figures 3, 4, 5, and 6. The fill-in during factorization is also shown in these figures. The amount of fill-in when using Bunch-Kaufman can be seen to increase when the number of negative eigenvalues increases. The implementation of LU factorization that is used for the comparison is sgbfa from the Linpack package [DBMS78]. The measurements for Choleski factorization are given only as a reference point, the matrices that were solved were shifted to make them positive definite for the Choleski factorization runs, otherwise Choleski factorization would have failed due to the indefiniteness of the system. These matrices arise from a problem in a structural engineering application [BH87]. In figure 7 the number of 2x2 pivots that occurred in each problem can be examined.

The solution phase that occurs after factorization takes slightly longer for Bunch-Kaufman than for LU factorization due to the fact that three matrices, L, D, and L', arise from Bunch-Kaufman (see equation 1) rather than just two matrices, L and U, that arise from LU factorization. This solution phase however takes much less time than factorization, so this is not significant.

6 Conclusions

The Bunch-Kaufman method has been shown to be a more efficient factorization method than LU factorization in terms of time and storage for banded real symmetric indefinite matrices with a small number of eigenvalues. An algorithm has been presented that greatly limits the fill needed for factorization as well as taking advantage of the symmetry of the matrix. This method has been shown to be nearly as stable as LU factorization by Bunch [BK77].

References

Bunch-Kaufman Factorization for Real Symmetric Indefinite Banded Matrices

Mark T. Jones
Merrell L. Patrick

Institute for Computer Applications in Science and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices has been rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

18. Distribution Statement
64 - Numerical Analysis

Unclassified - Unlimited