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ABSTRACT
This paper extends the integrating matrix technique of computational
mechanics to include the effects of concentrated masses. The stability of a
flexible rotating beam with discrete masses is analyzed to determine the
critical rotational speeds for buckling in the inplane and out-of-plane
directions. In this problem, the beam is subjected to compressive centrifugal
forces arising from steady rotation about an axis which does not pass through
the clamped end of the beam. To determine the eigenvalues from which
stability 1is assessed, the differential equations of motion are solved
numerically by combining the extended integrating matrix method with an
elgenanalysis. Stability boundaries for a discrete mass representation of a
uniform beam are shown to asymptotically approach the stability boundaries for
the corresponding continuous mass beam as the number of concentrated masses is
increased. An error in the literature is also noted for the discrete mass
problem concerning the behavior of the critical rotational speed for inplane

buckling as the radius of rotation of the clamped end of the beam is reduced.
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' NOTATION

discontinuous function defined by Eq. 15

diagonal matrix obtained from Dg(x)

Young”s modulus of elasticity

second moments of area about y and z axes, respectively
integrating matrix

length of beam

mass distribution of beam (continuous plus concentrated)
concentrated mass

number of intervals into which the beam is divided

distributed inertial loads in x, y, and z directions, respectively
radius of rotation of clamped end of beam

diagonal matrix defined by Eq. 24

tensile force in beam

time

diagonal matrix defined by Eq. 25

deformation of elastic axis in y and 2z directions, respectively
coordinate system which rotates with beam such that X-axis lies
along the initial or undeformed position of elastic axis and passes
through the axis of rotation, which is parallel to the Z axis
running coordinate along X—-axis measured from clamped end of beam
centroidal principal axes of beam cross section

interpolation matrix

Dirac delta function

variable of integration



eigenvalue

continuous mass distribution of beam

position of discrete mass measured from clamped end of beam
rotational speed of beam

time derivative, %?
spatial derivative, %;
square matrix

diagonal matrix

column matrix



INTRODUCTION

The dynamic behavior of flexible rotating beams continues to receive con-
siderable attention in the literature as it constitutes a fundamental problem
in applied mechanics. Further, beams comprise parts of many rotating
structures of engineering significance. One area which is receiving attention
is the problem of the buckling of beams due to rotation—-induced compressive
centrifugal forces. Such forces arise, for example, in a rotating beam whose
axis of rotation does not pass through the clamped end of the beam. As the
beam rotates, its clamped end describes a circle of nonzero radius about the
axis of rotation. This geometrical arrangement can be specified by a dimen-—
sionless parameter involving the radius of this circle and the length of the
beam. If such a rotating beam has one of its cross—sectional principal axes
parallel to the axis of rotation, transverse buckling can occur either in the
plane of rotation or out of the plane of rotation, depending, among other
factors, on the value of the geometrical parameter and the rotational speed.
The problem of determining the vibrations and stability of rotating beams sub-
jected to compressive centrifugal forces has been treated by several investi-
gators [1-9]. References 8 and 9 solved the differential equations of motion
numerically using an integrating matrix (Refs. 10-12) in combination with an
eigenanalysis to determine the eigenvalues from which stability is assessed.
The method of solution was shown to be numerically exact and not to exhibit
the convergence problems associated with the approximate methods of solution
which have been applied by others to the study of rotation—-induced buckling.
The integrating matrix procedure has been extended to include both
nonuniformly spaced grid points (Ref. 13) and concentrated masses (Ref. 1l4).

The purpose of this paper is to employ the integrating matrix procedure



extended to include concentrated masses in a more complete and rigorous
examination of the buckling behavior of the discrete mass representation of

the flexible rotating beam which has been treated in Ref. [6].

FORMULATION

A geometrical arrangement giving rise to rotation-induced radial centri-
fugal forces which can be compressive rather than tensile, and thus leading to
the possibility of a buckling-type instability, is depicted in Fig. l. A beanm
of length L 1is clamped to the inside of a ring of radius R which is rotat-
ing with constant angular velocity - Q@ about an axis perpendicular to the
plane of the ring and passing through its center. If the principal bending
planes of the beam are oriented perpendicular and parallel to the plane of the
ring, transverse buckling can occur either in the plane of rotation or perpen-
dicular to the plane of rotation, depending on the value of such parameters as
the geometric ratio R/L and the rotational speed. The use of an integrating
matrix procedure in the numerical solution of the buckling behavior of the
uniform rotating beam depicted in Fig. 1 for 0 < R/L 2.0, and in the
identification of the limiting values of R/L below which buckling cannot
occur, has been treated in Ref. [9]. The integrating matrix formulation for
the case of a beam with continuous properties described in Ref. [9] has been
extended to include the case in which concentrated masses are also present
[14]. The modifications required to account for discrete masses result in new
matrices which simply have to be added to the matrices previously established
in Ref. [9] for a beam with continuous mass. Because the formulation for the

beam with continuous mass remains unchanged, for brevity here reference will




be made to Ref. [9] for pertinent details and explicit expressions. The

notation of Ref. [9] is maintained as much as possible.

Governing Equations
The equations of motion which describe the uncoupled out-of-plane and in-

plane bending of the beam in Fig. 1 are, from Ref. [9],
m; - (Tw”)” + (EI w~)"" =0 1
) ( 5y ) ()
n(v - 2%v) = (Tv)" + (BI__v"")"" = 0 (2)

where the tensile force T(x) 1is given by

L
T=-/ m"(R - n)dn. (3)

X

A positive value of T 1indicates tension. The boundary conditions corre-

sponding to a clamped end at x = 0 and a free end at x = L are
w(0,t) = w(0,t) = v(0O,t) = v7(O,t) = O (4)
w(L,t) = w7 (L,t) = v"7(L,t) = v"°7(L,t) = 0. (5)
A procedure using an integrating matrix as an operator to eliminate the spa-

tial dependence from the partial differential equations of motion, and the

reduction of the resulting equations to matrix eigenvalue form for




determination of the eigenvalues from which the stability of the beam can be
assessed, is fully described in Ref. [9] for a beam with a continuous mass
distribution.

The extension of the integrating matrix technique to include concentrated
masses proceeds initially along the same lines employed previously in Ref.
[9]. The governing equations are first formally integrated to isolate the de-

rivatives w and v”™°. To this end, equations (1) and (2) are written in

the form

(ELw")7" = p, + (Tw)" (6)

(EIzzv ) o= Py + (Tv7) ¢))
where
L
T = | p (n)dn
X
P, = -mﬂz(R - x)
(8)
Py = -m(v - sz)
pz = "MwWe.

Formally integrating equations (6) and (7) twice from x to L and applying

the boundary conditions of zero shear at the free end of the beam leads to

L
EIyyw"(x,t) = i {-p (n,0) [w(n,t) - w(x,t)] + p,(n,t)(n = x)}dn 9

L
EL, v (x,t) = [ {-p (n,t)[v(n,t) - v(x,t)] + py(n,t)(n - x)}dn. (10)
X



As these equations are linear, it is sufficient to consider extension of the
analysis for the case of a single concentrated mass, M, at an arbitrary posi-
tion x =& (0 <& <L). The aggregate effect of multiple concentrated
masses may then be obtained by superposition.

Let the continuous mass distribution of the beam be denoted by u(x).
Then, the mass distribution m(x) of the beam (distributed plus concentrated)
can be written as

m(x) = u(x) + M 8(x - &) (11)

where §(x) is the usual Dirac delta function. Substituting (11) into (9)

and (10) and assuming time solutions of the form

v(x,t) = v(x)e'"

(12)
wix,t) = ;(x)ext
equations (9) and (10) take the form
- L 2 - —
EI_w(x) + [ w2 {(n - R)[w(n) - w(x)]}dn
Yy %

+ Dg(x)MSZZ{(E - RY[W(E) - W(x)1}

L
=22 u)lx - nlaCnan + D GOMIx - E1W(E)) (13)
X



L
EI_V77(x) + [ wma’{tn - RO - ¥l = ¥n)In - x]3dn
X

+ Dgcx)mzus - RVE) - v(x)] + vE) [x=<£1}

L
=23 w@m)lx - nlvln)dn + D GMIx - E19(E))] (14)

x
where, by the properties of the Dirac delta function, DE(X) is the discon-
tinuous function given by
1 x <&KL
Dg(x) = . (15)
0 0<Eg <x
Equations (13) and (14) are valid for all values of x along the beam.
In particular, they are valid at n + 1 discrete grid points (stations) with
ordering

<x =1L. (16)

The points need not have uniform spacing, and the location £ of the con-
centrated mass need not coincide with a grid point. Writing equations (13)
and (l4) at n + 1 discrete points along the beam the resulting sets of
equations may be cast into matrix form. The integrals appearing in these
equations are associated with the continuous mass distribution and are
evaluated by introducing an integrating matrix operator as described in Ref.
{9]. The integrating matrix operator is also used to express the displace-

- g

ments v and w in terms of the curvatures Vv~ and W so that
the curvatures appear as the dependent variables in the final matrix

equations. Because the underlying differential equations are uncoupled, the
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resulting matrix equations are also uncoupled. However, following Ref. [9],
for computational convenience the resulting equations are written in the

combined form.

= A (17)

or, in condensed notation,

[ 148} = A%[ 1{¢} (18)
where _
(w7}
(¢} =
{v-°}
[gq] = 16,1 + [6,]
[ ,5] = [6yy] + [6,,] (19)
[ gp) = (1 + [H ]
[ 5p] = [Hy,1 + [Hy, 1.

The submatrices (6111, [G22), [Hy;], and [Hys] are functions of the
continuous properties of the beam, rotational speed, and integrating matrix
operators. Explicit expressions for these submatrices are given in Ref.
[9]. The submatrices [Glll’ [G22], [HII] and [HZZ] are associated with

the concentrated mass and are functions of the magnitude and location of the
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mass, rotational speed, and integrating matrix operator. Explicit expressions
for these submatrices are derived below.

It should be noted that the inclusion of a concentrated mass leads to an
eigenvalue problem of the same form as for a beam with only continuous mass.
Further, the effects of a concentrated mass enter only through terms which are
additive to terms obtained previously in Ref. [9] for a beam with no concen-
trated masses. Thus, the size of the eigenvalue problem given by equation
(18) is not 1increased when concentrated mass effects are included. The
eigenvalue problem given by equation (18) can be solved using standard
eigensolution techniques to yield the eigenvalues and eigenvectors which
characterize the dynamic behavior and stability of both the inplane and out-
of-plane motions of the beam. Since this is a kinetic approach [15] for
assessing stability, the solution of equation (18) will identify all the
instabilities of the system, both dynamic and static. However, because of the
absence of both Coriolis forces and damping forces in the present equations,

only static (buckling) instabilities can occur.

Explicit Form of Additive Matrices for Concentrated Mass
Explicit expressions for the submatrices [&11], [622], [ﬁlll, and [ﬁzz]
which arise from the concentrated mass terms in equations (13) and (14) are
rather straightforward to derive following the procedures outlined in Ref.
(14]. However, special considerations are required for the case where the
mass is not at one of the grid points established along the beam and in the

treatment of the discontinuous function Dg(x).

Equations (13) and (14) involve v and W evaluated at the concen-
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trated mass position £ If the mass M is not at a grid point, an inter-
polation polynomial (e.g., Lagrange interpolation) must be employed to ex-
press  v(E) and  w(g) in terms of the values of v and w at the
grid points. Because the integrating matrix has elements which depend only on
the grid point locations X X and not on the values of the function
at the grid points, the interpolation polynomial employed for the concentrated
mass must have coefficients which depend only on 13 and the grid point lo-
cations. Consistent with this requirement, consider an interpolation of the

form

u(€) = ayElulxy) + a (B)ulx)) + + an(i)ﬁ(xn) . (20)

If equation (20) is an mth order interpolant (m S_n) and £ is not a
grid point, then in general ak(g) =0 for k <Y and/or k>Y +m.

Here, Y is an appropriate reference integer and X, S'XY <& K< XY+m-S X .
By choosing m sufficiently large (e.g., Lagrange interpolation with m = 7)
the resulting interpolating polynomial gives a high degree of accuracy without
the need to cluster grid points about £&. To use the interpolation poly-
nomial given by equation (20) in the present context, let (A ] be the

g

square matrix of order n + 1 with the ijth element

@), = aj_l(g)) h| 1,2, s n+ 1 (21)

£°1]
i.e., [Ag] has identical rows and each row has as elements the successive
coefficients in the interpolation polynomial. Premultiplying {u} by [a.]

g

and using equation (20) leads to the relation
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[8 1{u} = {u(e)}. (22)
The matrix [AE] may be regarded as an interpolation matrix. If the mass
is at a grid point, equation (20) shows that [AE] is a matrix with a single

nonzero column consisting of ones.

If the mass is not at a grid point, some care must also be taken in de-
fining a diagonal matrix [DE] that gives the effect at the grid points of
multiplying by the discontinuous function Dg(x) which changes from unity
to zero across x=£. Suppose that 3 lies in the subinterval
xj_1 <E S_xj, j=1,2, , Do Then if [DEI is the diagonal matrix of

order n + 1 with the diagonal elements

(Dg)yy = Lo (23)

[Dg] { £} gives the vector of values of the function bg(x)f(x) at the
grid points.

Using the matrices [a_] and D, ] introduced above and introducing

3 £

the diagonal matrices [Sg] and [TE] defined by
[SE] = M[x - &l (24)
1,1 = wo%(g = R)[1] (25)

the concentrated mass terms in equations (13) and (14) lead to the explicit

matrix expressions
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2 2
[6),1 = [D [T I[ (a1 ~ [1]8[1;]
p - _ 2 2
[655) = [D [T I[ (8] = [1]® + @7(s 1(a ]8[1,] (26)
~ ~ 2
[B))] = [Hy,] = [D 1S, 114, ]1L,]

where [I] is the identity matrix and [II] is the integrating matrix of Refs.

[9] and [14]. To arrive at equation (26) use has been made of the relations

9 = 1,197 = 11,17
(27)
W = 106 = 1115600
to express the displacements v and w in terms of the curvatures v~ ~
and WwW°- as was done in Ref. [9]. The effect of several concentrated masses
is obtained by superposition.
If the concentrated mass, M, is placed at the free end of the rotating
beam, (i.e., £ = L), the boundary conditions v°““(L) =0 and w~"(L) =0
must be replaced by the differential equations for the inplane and out-of-

plane motion of the concentrated mass. However, it is shown in Ref. [14] that
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the application of an appropriate limiting procedure to the governing equa-
tions for Vv and w given by equations (13) and (l4) for an interior con-—
centrated mass as 2 tends to L produces the proper boundary conditions
for a concentrated mass at £ = L. Hence, equations (13) and (14), which
have been derived assuming that the concentrated mass is not at the free end
of the beam, remain valid for the case in which the mass is at the free end of
the beam. Thus, for computation there is no need for any different treatment

if the mass is at the free end.

NUMERICAL RESULTS

The stability of a beam which is rotating in a plane perpendicular to the
axis of rotation and clamped off this axis as indicated in Fig. 1 has been
analyzed to determine the critical rotational speeds for buckling in the
inplane and out—of-plane directions. An application of the-integrating matrix
technique to treat the case of a beam with a continuous mass distribution is
described in Ref. [9]. In the present paper, attention is directed to the
case in which the mass distribution is approximated by concentrated masses at
discrete points along the length of the beam. There are several well-
established discrete mass approximations which can be used in dynamic analyses
of beams. However, the less usual concentrated mass representation employed
in Ref. [6] is adopted here to allow a rigorous comparison of the present
numerical results with the analytical results given in Ref. [6]. It should be
emphasized that this choice is not restrictive as all the observations made
and the conclusions reached based on the numerical studies using the mass

model of Ref. [6] are equally valid for other discrete mass representations.
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In the present studies, three concentrated mass approximations to a
uniform beam are considered, as indicated in Fig. 2. In each case, the sum of
the concentrated masses is maintained equal to the total mass of the uniform
beam. As in Ref. [9], numerical results here are obtained by dividing the
beam into ten equal segments and using an integrating matrix [11] which
expresses the integrand as a seventh—degree polynomial in the form of Newton”s
forward-difference interpolation formula. The computer program which 1is
employed to solve the eigenvalue problem given in equation (17) uses the
double shift QR algorithm (Ref. [16]) and is written to take advantage of any
uncoupling which may be present in the combined matrix equation. Stability
analyses were made for each of the three concentrated mass representations de-
picted in Fig. 2 over a range of values of the ratio R/L for a fixed value of
the beam length. The resulting stability boundaries are shown in Fig. 3,
where the nondimensional critical rotational speeds for buckling in the in-
plane and out-of-plane directions are presented as a function of R/L. Also
shown in Fig. 3 for comparison with the present results are the corresponding
boundaries for the beam with a uniform mass distribution obtained in Ref.
{9]. The nondimensional rotational speed in Fig. 3 involves the inplane bend-
ing stiffness EI,,. The numerical results are for the particular case in
which the inplane and out-of-plane bending stiffnesses are equal, that is,
EI,, = EIyy.

For the continuous mass case, it is seen that instability is first en-
countered in the plane of rotation for all values of R/L. Although the entire
beam is in tension for R/L < 0.5, the term mﬂzv which appears in the in-

plane equation of motion represents a component of centrifugal force normal to

the beam which decreases the inplane natural frequency with increasing rota-
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tional speed. Thus, for sufficiently large rotational speeds, the possibility
of buckling in the plane of rotation can not be precluded even when the beam
is entirely under tension. The results (which are numerically exact) indicate
that the limiting value of the ratio R/L below which buckling cannot occur
is R/L = 0.0, The results also show that the stability boundary is
asymptotic to the vertical line given by R/L = 0.0, so that the beam is
stable for R/L = 0.0 for all finite values of the rotational speed. The
numerical results for the case of buckling out of the plane of rotation
indicate that the limiting value of the ratio R/L below which buckling cannot
ocecur is R/L = 0.50. As in the case of inplane buckling, the stability
boundary is asymptotic to the vertical line through the limiting value of R/L,
so that the beam is stable for R/L = 0.50 for all finite values of the
rotational speed. This limiting value is consistent with the fact that for
R/L < 0.50 the beam is entirely in tension and no other destabilizing
centrifugal forces exist as in the case of the inplane direction. The reader
is referred to Ref. [9] for further discussion of this case and comparison
with the results of similar work by others which has appeared in the
literature.

The stability boundaries for the beam with concentrated masses are seen
to exhibit a behavior which is similar to that obtained for the beam with a
continuous mass distribution. Again, because of the destabilizing term mQZV
in the inplane equation of motion, instability is first encountered in the
plane of rotation for all values of R/L. For values of R/L greater than about
1.2, both the inplane and out—-of-plane stability boundaries approach the
corresponding continuous mass boundaries from below as the number of

concentrated masses is increased. As R/L is reduced, the limiting values of
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R/L below which buckling cannot occur approach the limiting values for the
/

beam with continuous mass as the number of discrete masses is increased. For
the inplane case, it should be noted that all the boundaries are asymptotic to
the same vertical line givem by R/L = 0.0, and that they approach the
boundary for the continuous mass beam from the left as the number of
concentrated masses is increased. For out-of-plane buckling the limiting
values of R/L below which buckling cannot occur for the one, two and five-mass
approximations are 1.0, 0.75, and 0.60, respectively. These limiting values
of R/L correspond to values of R/L below which the beam is entirely in
tension. The corresponding stability boundaries are asymptotic to the
vertical lines through the limiting values of R/L and approach the boundary
for the continuous mass beam from the right as the number of concentrated
masses is increased. This 1is in contrast to the behavior for the inplane
direction. The difference in behavior of the inplane and out-of-plane
stability boundaries as R/L is reduced is associated with the term mﬂzv
which appears in the inplane equatidn of motion. As mentioned earlier, this
term represents a component of centrifugal force acting normal to the beam and
decreases the inplane natural frequency with increasing rotational speed. As
the number of concentrated masses representing the continuous mass beam
increases, there are more and more masses being "shifted" toward the clamped
end of the beam (where the displacements v in the buckling mode are smaller)
thereby reducing the destabilizing effect assoclated with the term mﬁzv.

The inplane and out-of-plane buckling of a rotating beam having both one
and two concentrated massés has been treated in Ref. [6], which presents re-
sults from an exact solution of the differential equations obtained by apply-

ing Newton”s law to the mass hypothetically cut from the beam and from equi-
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1ibrium considerations of the massless flexible beam. The present numerical
results for the out—of-plane buckling behavior are in excellent agreement with
the results presented in Ref. [6]. However, the present results for the in-
plane buckling behavior are not in agreement with the results presented in
Ref. [6]. In particular, the inplane stability boundaries in Ref. [6] do not
exhibit the correct limiting behavior as R/L is reduced to zero. It appears
that the development in Ref. [6] has incorrectly accounted for the mﬂzv

term.

CONCLUDING REMARKS

The stability of a flexible beam with discrete masses which is rotating
in a plane perpendicular to the axis of rotation and clamped off this axis was
analyzed to determine the critical rotational speeds for buckling in the in-
plane and out-of-plane directions. The differential equations of motion were
solved numerically using an extended integrating matrix method which includes
the effect of concentrated masses in combination with an eigenanalysis to
determine the eigenvalues from which stability was assessed. Extension of the
integrating matrix method to include concentrated masses and its application
appear to be new. It was shown that the extended integrating matrix proce-
dure, when applied to the governing differential equations of motion for a
beam which includes discrete masses, leads to a matrix eigenvalue problem in
which the matrices associated with the discrete matrices are simply additive
to the matrices previously derived for a beam with continuous mass. The sta-
bility boundaries obtained using the present method of solution were shown to

asymptotically approach the corresponding boundaries for a beam with a
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continuous mass distribution as the number of concentrated masses 1is
increased. As the ratio of the radius of the circle traced out by the clamped
end of the rotating beam to the length of the beam is reduced, the inplane and
out—of-plane behavior was shown to be different due to the presence of a
destabilizing inertial term which appears in the inplane equation of motion.
These results have identified what appears to be an error in the literature
with respect to the limiting behavior of the critical rotational speed for
inplane buckling as the radius of rotation of the clamped end of the beam is

reduced.
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