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Abstract. A pgeneral theory for the study of degenerate Hopf
bifurcation in the presence of symmetry has been carried out only in
situations where the normal form equations decouple into phase/
amplitude equations. In this paper we prove a theorem showing that in
general we expect such degeneracies to lead to secondary torus
bifurcations. We then apply this theorem to the case of degenerate
Hopf bifurcation with triangular (D,) symmetry proving that in
codimension two there exist regions of parameter space where two
branches of asymptotically stable 2-tori coexist but where no stable
periodic solutions are present.

Although this study does not lead to a theory for degenerate Hopf
bifurcations in the presence of symmetry, it does present examples
that would have to be accounted for by any such general thcory.




One of the more interesting features of degenerate Hopf bffurcations fn
the presence of symmetry fis the appearancé. via secondary bifurcation, of
quasiperfodic motion on a torus. In this paper we concentrate on two- _
parameter systemz of ODE and prove theorems thet allow us to find and compute

the direction of branching for some of these tori. The advantage of our

approach is that we determine this information using only the Taylor expansion

of the vector field at the point where degenerate Hopf bifurcation océurs.
The simplest form of Hopf bifurcation with symmetry group I' occurs as

follows. We assume that I {s a compact Lie group acting absolutely

irreducibly on a vector space V, that {s, the only matrices on V which

commute with T are multiples of the identity.
Let

dZ/dtzf(Z.A).ZlV OVIVOC (l-l)

be a system of ODE where f (s I-equivariant. [n compliex coordinates,
absolute irreducibility implies that

F(Z,A) = &(M)Z + .00 ™ (1.2)

where a()) € C. We say that (1.1) has a Hopf bifurcation at X = 0 |f
a(0) s purely imaginary.
The standard Hopf theorem (V = R, [ = |) states that (f the elgenvalue

crossing condition

d_np 2 0 .3
o e{a)(0) (1.3)

holds, then there exists a unique branch of perlodic solutions to (1.1).
Moreover, if a certain coefficient wup fnvoliving the second and third order

terms in f satisfies




Nz*fi. (1.4)

then the airection of branching (supercritical or subcritical) and the
asymptotic stability of these pérlodic solutions are determined. We call a
Hopf bifurcation degenerate if either (1.3) or (1.4) fafls. Such
singularities are studied by Takens [1974] and Golubitsky & Langford [1981].

In Hopf bifurcation with symmetry we have a degeneracy If elther the
direction of branching or the asymptotic stabllity of a branch of perfodic
solutions 1s not determined at the lowest order that It could have beeh. We
are interested in st.ch degeneracies oecadse they may be unavpldeble In two
parameter systems. Oegenerate Hopf bifurcations with 0(2)-symmetry have been
studied extensively for the past few years and the results concerning this
specific case are discussed in Section 2.

We now explain why one should expect Invarfant tor! to be produced by
perturbing certain of these degeneracies. To do this we recall some of the
theory of Hopf bifurcation with symmetry. We assume that f 1{s {n Birkhoff

normal form, that is we assume

f is T x S‘-equlvariant (1.5)

where for xéc & VeC we have (v,68)(xec) = (yx)o(e!®). The S' symmetry
comes from phase shifts. We detect branches of periodic solutions by choosing
a subgroup £ & T x s! such that

dim FIx(Z) = 2 (1.6)
where

Fix(L) = {(z e VOC: 0z = 2, Yo &), (1.7)

In normal form .:Fix(L)xR + Fix(X). Thus, the differential equation (1.1)
restricted to Fix(I) satisfies the hypotheses of standard Hopf bifurcation.
In partfcular, 1f (1.3) and (1.4) hold for the restricted system then there




exists & branch of periodic solutions for (1.1) in Fix(Z) and the direction
of branching (fn 1) is deterﬁined. (Golubftsky & Stewart {1985] show that
the assumption that f is in Birkhoff normal form 1s not needed to prove
these points.) ' .

Stabiiity of these solutions however, 1s not determined Ly the standard
Hopf theorem, since tﬁe Floquet multipliers corresponaing to elgenvectors fn
Fix(z)* also enter into this determination of stabllity. I[n this paper ue‘
focus on degeneracies produced when determining stability along known branches
of periodic solutions obtained using (I.6). Specifically, suppose that one
tracks along a branch of perfodic solutions and that at some specfal value
A = A\g the periodic solutfon loses stability by having a simple complex
conjugate pair of Floquet multipilers cross through the unit circle with
nonzero speed. The torus bifurcation theorem (see looss [1987]) guarantees
the existence of-lnvarian% tori. Suppose now that (1.1) depends on a second
parameter u and that the critical value \g also depends on u. We can
imagine a situation where as u s varied )y moves into the orfgin, say at
u = 0. When this happens we will find a degenerate Hopf bifurcation with
symmetry. Moreover, it seems reasonable that the speed of the Floquet
exponent that crosses through zero and the direction of branching of the

=
branch of tor! can be determined from the Tay.or expansion of f at the

oriain and with A and u set to zero. Our results are summarized in
Theorems 4.5 and 4.6.
We note that several authors have consider=d the bifurcation of tori from
branches of periodic solutions. See Renardy [1932), Rand [1982] and Ruelle
"{1973). An important point here is that the Floquet matrix itself commutes
with the fsotropy subgroup I and as a result the Floquet multipliers may be
forced by symmetry to have high multiplfcity. See Chossat & Golubltsky
{1988). Thus the assumption above that the Floquet multipiiers are simple may

not always be satisfied.




The scenarfo that we described above does happen in the case of 0(2)
symmetry. However, as we explain in Section 2, there is a8 relatively simple
way to analyze the resulting tori (the torus bifurcation theorem is not needed
there). In addition, the resulting flow on the torus fs particularly simple.
Symmetry forces the flow to be linear.

A mo?e interesting example occurs in Hopf bifurcation with D, symmetry.
Here the generic-Hopf theory has been worked out (Goiubitsky & Stewart [1986)
and van Gils & Valkering [l986]i. Because in this case dim V = 2, it follows
that dim Fix(£)* = 2 and the Floquet muitipliers discussed above must be
simple. It Is this example (1tself motivated by considering rings of
oscillators) that has motivated our theorem. In Section 3 we dfscuss the
general results for Hopf bifurcation with D, symmetry while In Section 5 we
f1lustrate our theorem by expiicitly calculating the direction of branching of
tori{ in the D, case. Bifurcation diagrams corresponding to degenerate Hopf
bifurcation with Dy symmetry are presented In Section 6.

In Section 4 we present our hypotheses and theorems. This section can be
read directly after the Introduction since explicit knowledge of the 0(2)
and D, examples s not needed for the general theory. In Section 5 we show
how to find two-frequency motions by applying standard Hopf bifurcation
results to a certain normal vector fleld whose existence is found In Section 4

using results of Krupa [1988].




s¢. Degenerate Hopf Bifurcation with O(2) Svmmetry

We begin by surveying some of the results on degenerate Hopf bifurcations
with 0(2) symmetry. 7This problem has been studiéd by Erneux & Matkowsky
[{1984]), Knobloch [1986], Chossat (1986], Golubitsky 8 Roberts [1987], Nagats
[1986], and Crawford & Knobloch {1988].

The action of 0(2) on RY = cec Is generated by

(a) 8(z.2p) = (e'®z), e'®2;), 46 = s0(2) Con
\&.

(b) ‘(ZIozz) = (iloiz).
Consider the 0(2)-equivariant system of ODE
92 . F(z,)), F(0,3) = 0 .
at (Z24}) ( ) (2.2)

depending on a bifurcation parameter A. We assume that (2.2) has a Hopf
bifurcation at A = 0; due to symmmetry the eigenvalues o()X) & fw(d) of
(df)g,, are each of muitiplicity two. By Hopf bifurcation we mean that
0(0) = 0, «(0) = wy ¢ O.
Van Gils & Mallet-Paret (1984], Chossat 8 looss [1985], Golubitsky &
Stewart [1985] and others:-have shown that i{f
o’(0) # 0, (2.3)

then two branches of periodic solutions z(t) bifurcate from the origin and,

moreover, these solutions may be detected by their symmetry. They are:

(a; rotating waves (RW): 6z(t) = 2(t-0)
(2.4)

(b) standing waves (SW): «z(t) = z(t).

Generically, the exchange of stabllity for such systems goes as follows.
Assume that x = 0 {s asymptotically stable when ) ¢ 0. Then for elther
branch (2.4) to consist of asymptotically stable periodic solutions, both .




branches must be supercritical and then precisely one branch consists of
stable solutions. More precisely, there are two coefficfents, derived from
the third order terms of f, which determine the direction of branching of
solutions (2.4) with stability being determined by which cuefficiert is
larger.

Erneux 3 Matkowsky [1984]) observed that when such systems depend on two
parameters, ’

dz'F 1Ay}, .
at (Z+2,u) (2.5)

it s possible to arrange for & distinguished value of u , say u = 0, where
both cubic coefficients are equal. They show that invariant 2-tor! exist in
(2.5) for u near 0. The types of bifurcation diagrams which may occur are
shown In Figure 2.1. (The direction of branching and the stablility of the
2-tor{ depend on fifth and seventh order terms In f. See Golubitsky &
Roberts (1987).)

In retrospect the existence of these 2-tor! can be understood in a
relatively simple way. First, assume that (2.5)'Is in Birkhoff normal form
which means that now f may be assumed to be 0(2) x Sl-equivariant (cf.
Golublitsky & Stewart (1985]). In normal form, (2.5) splits iInto
phase~ampl {tude equations where the amplitude equations have the form

d (r r r
g[rh) = pertrdiridam il + arrdeirdamed-rh 1] @e

where ry = (z]. Nontrivial equiiibria (r|,r;) of (2.6) correspond to
standing waves (r, = ry) , rotating waves (r,r, « 0) or Invariant 2-tori
(ry # ra, ryrp ¢ 0).

Thus the Erneux & Matkowsky 2-tor| are on the same footing as the
periodic solutions (n the study of degenerate Hopf bifurcation with 0(2)
symmetry. Swift (1984) noted that the amplitude ec iations (2.6) have
D4-symmetry (generated by (r),r;) + (ry,-rp), (-r|,r;) and (rz.;l)).




Hopf bifurcatfons can be studied using

Therefore, degenerate 0(2)
D4-equivariant singularity theory Just as degenerate Hopf bifurcation without
symmetry can be studied by Z;-equivariant singularity theory (see Golubitsky &
Langford [:981]5.' The D4-classification was éarrled out up to (topological)
D4-codimension two in Golubitsky & Roberts [1987]. See al'-., ~"rawford &
Knobloch [l§88] or Golubftsky, Stewart & Schaeffer [15]0.°

It should also be noted that these 2-tor{ have a st ¢ ..:: w¢rust ire due to
the 0(2)xS! symmetry of normal form. The -flow on the < *» ! ‘s f{near.
Chossat [1986] has shown that this property persists, evenr {f f !s.not
assumed to be in Birkhoff normal form. His trchnique Is to use a L{apunov-

Schmidt reduction to look for two frequency sclutions of the form
z(t) = elWtR _q (2.7
nt :

where Re Is the rotation matrix corresponding to 8 & S0(2). The function

(2.7) has two Independent frequencies {f w/n Is irrational.



$3. Generic Hopf Blfurcation with 0n Symmetry

When n33 the group D, has two-dimensional Irreducible represen.:tions.
Thus, in systems with D symmetr{. Hopf bifurcation from a D,-1nvariant
steady state may occur by eigenvalues of muitiplicity one or two crossing the
imaginary axis. In this section we review the results of Golubitsky & Stewart
(1986] and van Gils & Valkering [1986] about generic 0,-Hopf bifurcation In
the cdouble elgenvalue case. See also Golubitsky, Stewart & Schaeffer [1988].

Without loss of genera!{ty we may assume that the action of Dn on
R2 a ¢ Is generated by

(@) yez = e!'Y where vy = 2%/n, and

(3.1)
(b) «x(z2) = 2.

It 1s possible to choose coordinates on cz such that the action of D x 5!
{s generated by

(8) ve(2,2p) = (e!¥r,elV2,)
(b) K'(ZleZ) = (zz.zl) (3.2)

(€) 8e(z[.2zp) = (e%),e7182,),

It can be shown that for zach n, there are precisely three {conjugacy
classes of) isotropy subgroups whose fixed point subspaces are two-
dimensional. There exists a unique branch of periodic solutions for each of
these subgroups in D,~symmetric generic Hopf bifurcation. There is a

discrete analogue of a ‘rotating wave’ and two Glisorete analogues of ‘standing
waves’,

The rotating wave has [sotropy subgroup

Zo * ((vov)iy @ Z,}.




The standing waves each have [sotropy subgroups Isomorphic to 2. The
symmetry of one of the standing waves !s generated by «; the symmetry of the
other standing wave s generated by (x,®) @ D, x s!, at least when n # 0
mod 4. See Golubitsky & Stewart [1986]) for detalls.

The exchange of stabllity for these branches goes as follows. Suppose
the Dp-invariant steady state !s stable subcritically and loses stability by
having elgenvalues cross the Imaginary axis with nonzero speed. When n ¢ 4,

no branch is stable unlecs all branches are supercritical. There Is one third

order term that determines vhether the rotatin, waves are supercritlcél and
another third order term that determines whether the standing waves are
(Jointly) supercritical. No branch consists of stable trajectories uniess all
branches are supercritical, In which case precisely one branch consists of
stable so utions.

Supposing that all branches are supercritical then it can be determined
at third order whether the rotating wave or one of the standing waves is
stable. If a standing wave {s tn be stable, then which one is stable f{s

determined by a coefficient of order

nt2 n oxd
m = 933 n even 13.3)

In Section 5 we show that the conditions for our torus bifurcatiun
thcorem (Theorem 4.5) may be satisfied when, n a two-parameter system, there
Is an isolated value ¢f the parameters where a Hopf bifurcation occurs and the
bifurcating branches are neutrally stable at third order.

The remainder of this section |s devoted to discussing these results In
more detall. The notation we set here will be used In Section 5. We begin by

describing the 0 x s! fnvartants and equivariants.




Recall m as defined In (3.3) and define

(8) N = lzll2 + lzzl2
2 2
b P= 2z 4
(b) 1z 11251 (3.4)
(€) S = (22" + (Z;z)"
(@ T 1012)1%-12512H (2)2,)"- (3, 2,)™)
Proposition 3.1: Let Dn » sl act on cz as defined by (3.2).
(a) Every smooth " x s'-invariant gernm f':c2 + R has the form
f(zl.zz) = h(NopoS.T) (3.5)
for some smooth germ h:rd « R,
(b) Every smooth Dn x Sx-equivariant gern g:c2 + c2 has the form
z, ] z,°2, [ Zlm.lzzm f z,Mlz,m
= A en| 27| 4| A+ ol A (3.6)
r2) J | 22°22 Lz 2™ L2, 2™
where A,B,C,D are complex-valued D, x sl-invariant gerns.
We consider the system of ODE
dz
—-— )y 3.7
at a(z,2) ( )

where g:csz + cz is Dn X Sl-equlveriant. That is, we assume that we are

studying Hopf bifurcation with D,-symmetry for a system of ODE which is

already In Poincare-Birkhoff normal form to all orders.

In Table 3.1 we present the equations determining the branching of

solutions for each of the three isotropy subgroups mentioned above. These

resuits are taken from Golublitsky 8 Stewart [1986].




Solution Type Branching Equations
Rotating Wave (u,0) Re(A + Buz) =0
Standing Wave | (u,u) Re(A + Bué + CueM 2 4+ pyeM) = o

Standing wWave 2

n# 0mod 4 (u.~u)

Re(A + Bu - Cuém2 - Duzm) =0
n=0mod 4 (u,elmi/ny)

Table 3,1: Branching equations for maximal isotropv.

The asymototic stability of these solutions are determined by the signs
of the real parts of the eigenvalues of dg evaluated at the solution. The
actual computation of these eigenvalues is aided substantially by the
existence of the D x s! symmetry. In particuler. for each of the three

isotropy subgroups I, the space CZ may be written as
Y
Fix(L) @ Fix(L) (3.8)

where I acts nontrivially on Fix(I)*. Since dg evaluated at a solution
commutes with I, It follows that both Fix(I) and Fix(I)* are dg
Invariant subspaces. Thus, the efgenvalues of dg are obtained in each case
by finding the eiggnvelues of two 2x2 matrices. Moreover, the S! symmetry
forces one eigenvalue of dg!Fix(L) to have real part zero. Also, for
rotating waves when n # 4, the group Zb acts on le(in)* as nontrivial
rotations and forces dt;ule(;‘.n)'b to itself be a scalar muitiple of a
rotation matrix.

Using this group theoretic Information, It is possible to compute the
signs of the real parts of the eigenvalues of dg. These results are

summarized in Table 3.2.




Solution Type EV of daiFix(E) EV’s of daiFix(g;*

Rotating Wave -Re{ AytB) + O(u) -Re B

Standing Wave 1 -Re(2Ay+8) + O(u) tr = Re(B-(m+1)Cué™4) 4 o(y2™2,
: det = -Re(8C) + O(u)

Standing Wave 2 -Re(2A\+8) + O(u) tr = Re(B+(m+1)Cu2™4) 4+ g(y2m-2,

det = Re(BT) + 0(u)
Jable 3,2: Signs of Elgenvalues of dg along primary branches.

The directions of branching and tne asymptotic stability of the branches

discussed above follow from Tables 3.1 and 3.2 assuming that the nondegeneracy
condi{tions

(a) Re(Ay+B) # 0
(b) Re(B) 2 0
(c) Re(2Ay+B) + 0

(3.9)
(d) Re(BC) * 0
(e) Re(Ah) + 0
hold when evaluated at the origin. Qbserve that these branches are all
neutrally stable at third order if
Re 8(0,0) = 0. (3.10)

It is this coefficient that may vanish in a two-parameter system and that must

be zero in order to apply our torus bifurcation theorem.




$4. The Torys Bifurcation Theorem

asymptotic stabllity of certain fnvariant 2-tori {n codimension two

bIfurcations occurring In a class of symmetric Systems of QODE. The genera)
Theorems 4 5 and 4.6 are complemented y explicit formulas for computation
that are derived in Section 5,

A number of hypotheses are needed to prove our

theorem and we describe them now ypPotheses abstract propeftles of the

. These h
D

n~€quivariant systems described in Sectfon 3. we return to 0,
Sections 5 ang 6, where the results of this sect

Speclflca!ly.

sSymmetry in
fon are appifed.
we consider the two-parameter system of ODE

d-z- FZQA'
ot ( u)

(4.1)

where f:¢" x g2, ¢n Is smooth.

The roles of the Parameters
distinguished as follows,

We assume that (4.1) undergoes a Hop
perameter )

Aand u are

f bifurcation

Is varted and that a secondary torus
“ry branch of peric t~

as the Primary bifurcation
btfurcates off of a prin.

solutions as Is further
varied. The role ¢, the auxilary Parameter
torus bifurcation to coalesce with the primary Mo,

varied,

Is to allow the secondary

pf bifu-cation as u |s

We study here the simplest Instances of

such a codimension two
bifurcation consistent with symmetry,

We now state the hypotheses needed to
define this simplest setting.

Hopf bifurcations in the presence of s

ymmetry,
general theory,

We do not pretend to have a
however, will have to Include the examples

A general theory,
and setting we study here.
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$4.1 Hypotheses on the primary Hopf bifurcation

The simplest form of Hopf bifurcation in the presence of symmetry occurs
under the following hypotheses (see Golubitsky & Stewart [1985)). We let T
be a finite subgroup of O(n) and let T acton € =R" & IR" by

v(x + fy) = yx + {yy. The reason for restricting I to be finite will be

discussed in (H2) below. We assume:
(H1) T acts absolutely irreducibly on R7,

that i{s, the only nxn real matrices commuting with I are scalar multiples of
the identity.

We assume that the f 1In (4.1) commutes with T, undergoes a Hopf
bifurcation at XA = 0 when u = 0, and is in Birkhoff normal form. The first

and third of these assumptions are summarized by:
(H2) f Is I x Sl - equivariant

where the circle group Sl is viewed as the complex numbers of modulus one

y acting on " by complex muitiplication. Thus
= £(0zZ,Au) = of(z,A,u) for all o & T x S,
Hypotheses (H1) and (H2) imply

(a) f(0,A,u) =0
(b} fl-z,A,u) = -F(Z,2,u) v (4.2)
(c) (df)g,y,uv = AA,u)v for all v & ¢

where A(\,u) & C. Hypothesis (k1) Implies that [ x S' acts irreducibly on
c" and hence (4.2a) is valld. Since = & S' acts as -1 on €", (H2)
implfes (4.2b). (H2) also implies that (df)g ,,, commutes with T x S',
from which (4.2c) follows.
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The assumption that (4.1) undergoes a Hopf bifurcatfon at A = u = 0
implies that A(0,0) ls'purely imaginary. We assume that periodic solutions
to (4.1) are generated from this Hopf bifurcation in as simple a way as
possible. We now describe this process Begin by assuming that the

efgenvalue A(),0) crosses the imaginary axis with nonzero speed, that fis,
(H3) 83 = 37 (Re A)(0,0) # 0.

Assumption (H3) implies that for each u near 0 there is a unique
value A(u) at which A{A(u),u) fs purely imaginary. For simplicity, and

without loss of generality, we assume that A(u) 2 0 30 that
(H4) A(Qyu) = fuwy(u).

where w,(0) # 0. Thus, we assume that for each u a Hopf bifurcation from
the trivial steady-state occurs In (4.1) at ) = 0.

Let T cT x s! te an {sotropy subgroup. Golubitsky and Stewart [1985]
show that a unique branch of periodic solutions to (4.1) with symmetry groub

£ can be found when

(H5) dim Fix(Z) = 2.

Due to the assumption of Birkhoff normal form (H2), these perfodic solutions
all have the form

fat

2(t) = ¢ce'®p (4.3)

where ¢ > 0 and
p e Fix(L) 1Is chosen with (p| = I, (4.4)
Moreover, these periodic solutions are found by solving the equation

f(epohou) - fewp = 0,
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and, assuming (H3), (4.5) can be solved uniquely for

(@) w=w (e2m) T uglu) + wa(we’+ wy(we's 0(ef)
(4.6)
() » = 2"(eZ) = aatmleds Ay (e 0(e).

It follows from (4.6b) that this branch of berlodlc solutions fis
supercritical (In A) If 22(0) > 0 and subcritical If 13(0) < 0. We assume

(H6) Vg 3 4 <(a°F)g,0,0(Pupip)s P> # 0

where (due to Birkhoff normal form) p' = p |s an eigenvector of (df)a'o'o

with eigenvaiue w,(0)f. A-calculation shows that

22(0) = -Ag/Ag. (4.7)

To verify (4.7) substitute (4.6) in (4.5), set the coefficient of e’ in

(4.6) to zero, and take the real part of the inner product with p.

4.2 Hypotheses on the secondary torus bifurcation

The assumption of Birkhoff normal form allows us to reduce the problem of
finding periodic solutions of (4.1) to finding stationary solutions of (4.5).
With this assumption the problem of finding a secondary torus bifurcation of
(4.1) 1s reduced to finding a secondary Hopf bifurcation of (4.5). We now
discuss the group theoretic restrictions on the action of I which wil} admit
the possibiiity cf purely imaginary eigenvalues occurring in the 1inearization
of (4.5) along the nontrivial branch of stationary solutions parametrized by
(4.6).

Define

Q(Zyhouew) = F(Z,A,u) - faz. (4.8)
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The linearization dg, evaluated at a solution (4.6), must commute with the

fsotropy subgroup I ¢ rxs‘. Let
Cn- V10V20... .Vk (4.9)

be the {sotypic decomposition under I, that is, each of the VJ's are sums
of isomorphic irreducibile representations under I and the irreducible
representations of I sppearing in distinct VJ’s are themselves distinct.
Since Fix(I) 1s the sum of all the trivial representations of I, we may
take

V, = FIx(I). (4.10)

Suppose now that dg has a complex conjugate pair of purely imaginary
eigenvalues. Generic;lly. we expect the (generalized) elgenspace associated
with these eigenvalues to be In some VJ. without loss of generality we can
take J = 2. The simplest type of torus bifurcation occurs when the purely
imaginary eigenvalues are simple and the simplest way to force this hypothesis

to be valid is to assume

(H7) dim V, = 2.

O

Let L = dg|V, restricted to the branch of solutions parametrized by
(4.6). So

L= Lie?um. (4.11)
We comment on (4.11). Along the branch (4.6)
Z =¢epy A = x'(ez.u) and w = u'(zz‘u).

Moreover, by (4.2b) and (4.8) ¢ Is odd In z. Thus dg Is even In z and

hence in ¢ and the formof L given In (4.11) 1s valid.



By (H7) L 1{s a linear mapping on a two-dimensional space. So L has

purely imaginary efgenvalues precisely when

tr(L) = 0 and det(L) > 0.

We want to guarantee that for some u near 0, there are values of cz for

which L has purely imaginary eigenvalues. That is, we want to guarantee

the existence of solutions to the equation tr L(cz.u) = 0. Now observe that

(d2)g,0,u,0 = (df)g,q,y = Tuolw)l =

by (4.2c) and (H4). Thus L(O,u) = 0 and Taylor’s theorem &llows us to

write
Lied,u) = e2L(e, ). (4.12)
In order to guarantee the existence of solutions to tr(L) = 0, we assume

(HB) tr L(Ovo) = 0v

(H9) 4g = 5%3 (tr L)(0,0) # 0.

Hypotheses (H8) and (H9) along with the Implicit Function Theorem

guarantee a unique solution to

tr L(e?o) = 0 (4.13)
gliven by
e = E(u). (4.14)

Now solutions to (4.13) can only exist when E(u) 2 0. Thus. to insure the

existence of such solutions, we assume

(HI0) &30 5 2- (tr L)(0,0) # 0.
du




Implicit di€ferentlation of (4.13) shows that

-qg-(O) z ~Ajo/de.
du

Thus, a unique solution to (4.13) exists when u {s near 0 and

sgn(u) = -sgn(Ag) sgn(810). (4.16)

Finally, in order for L to have purely Imaginary eigenvalues, we muSt

assume
(H11) det L(E(u),u) > O

for all u near 0 satisfying (4.16). Hypothesis (Hl11) will be the subject
of further discussion below.

These eleven hypotheses describe the simpiest situation where a secondary
torus b!Furcation of the type discussed at the beginning of this section might
exist. In particular, these hypotheses guarantee the existence of a Hopf
bifurcation along & nontrivial branch of the steady-state equation, (4.5).
However, as we shall now discuss, the existence of I x Sl-symmetry in (4.1)
insures that the standard Hopf bifurcation, theorem does pot apply since the
Sl-symmetry of normal form forces one efgenvalue of dgiFix(I) to be zero.
Observe that the group theoretic argument which guarantees that dg has one
zero efgenvalue also implies that dg has dim [ + 1 - dim I 2ero
eigenvalues.

Next we make the observation that group-theoretically there are two types
of torus bifurcation. Consider the action of L[ on V;. The assumption that
L = dgiV; can have purely imaginary elgenvalues, coupled with the fact that

L commutes with I, places restrictions on the actfon of I.
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Let K(I) be the kernel of the action of I on V, and let T(I) =
L/K(E). As observed In Golubitsky and Stewart [1985) either

(a) V2 = R®R where T(I) acts absolutely irreducibly on R, or
(b) T(I) acts irreducibly, but not absolutely irreducibly, on V,.

Moreover, since Va3 N Fix(f) = {0} we know that T(I) acts nontrivially on
V2. Hence in case (b), T(I) = zd for some q 3 3, since these are the only
finite groups which act fafthfuily, irreducibly, and not absolutely

Irreducibly on R?, &nd In case (a) T(I) Z;.

Definftion 4.1: When T(I) x 2, we call the tor! resulting from the

secondary torus bifurcation standing tori and when T(I) 2 zq (a > 3) we call
these rotating tor{. .

Observe that (H1!) simplifies In the rotating tor!{ case. There L(ez.u)
commutes with zq and Is hence a multiple of a rotation. Thus group

theoretic restrictions rorce det L(cz.u) 3 0 and (H11) simplifies to
(H11) . AT, = L(0,0) # O,

The situation for standing tor! {s more éomplicated. as group restrictions may
force L(O,u) = 0, In this case we find In examples that

Lie,u) = ¢2™ peed,p) (4.17)

where m depends on T and I but not, In general, on the particular f in

(4.1). For standing tor{ we replace (Hll) with
(Hil)g 4}, = det 0(0,0) > 0

Note that (4.17) s valid for rotating waves; there D s L and ms= |,




Wwe end this subsection by explicitly constructing the action of I on

V,. Observe that each VJ is invariant under S', since S' commutes with
the full group T x S'. Since dim V3 = 2 by (H7), it follows that we may

identify V, with € and the actionof I on V; with a subgroup of st

acting on €. Thus, the action of T(E) on C Is generated by

z + e2%l/a 2

for q as defined above. (Note that standing tori correspond to q = 2.)

4.3 Hopf bifurcation with zero eigenvalues

In this subsection we use results of Krupa [1988] to prove a torus
bifurcation theorem for vector fields f satisfying (H!)-(Hl11). Recall that
f is assumed to be [ x S'-equivariant and to have a periodic solutlon
2(t) = cel®tp,

We now concentrate on determining the form of f on a nelghborhood of
the group orbit X = (I x S')ep. The existence of the perlodic solution
implies that f 1s tangent to X along X. We utilize two results from
Krupa (1988]. Let N(X) denote the I x S'-equivariant normal bundie of
X cc®, let N, denote the Fiber over x and let w:N(X) » X be the

proljection.

Theorem 4.2 There exist T x Sl-equlvariont vector flelds FT and fy such
that
fefy+fy (4.18)

where fr(y) Is In the tangent space to the group orbit of I x st through
y and fly) & Ng(y).




Theorem 4.3: Let x(t) be the trajectory in x = f(x) with x(0) =y and
let 2z(t) be the trajectory in 2 = fy(z) with 2(0) = y. Then

x(t) = &(t)z(t) (4.19)
for some smooth curve &(t) €T x S' with &(C) = Identity.

it follows from Thesrems 4.2 and 4.3 that a Hopf bifurcation to a
perfodic trajectcry 2(t) for FN leads to a trajectory for f on the union

of group orbits through z(t).

Remarks 4.4: (a) When T s finfte, a8ll group orbits are clircles and the
flow fs on @ 2-torus. The S'!-action forces the fiow to be conjugate to
linear. To lowest order, this flow has the form ce'“tz(t). In perturbation

theory language the flow will have the form
ce! (0+0)T (5 4 n(t)) (4.20)
where 6 € R and h(t) & N, are small. Moreover, h(t) 1is a solution of
he(t) = fylp + h(t),r,u). (4.21)

To verify (4.21) Vet (4.20) be a solution to (4.1) and use the
decomposition (4.18).
(b) Observe that

QiNg = f|Np
where g Is defined In (4.8). This follows since
g f -lwz = fN + FT -fwZ,

and fyr and lwz vanish when restricted to Nj.




Iheorem 4,5: Assume (H1)-(H!l). Then for fixed u satisfying (4.15), the e
fs a branch of periodic solutldns to (4.1) parametrized by A which undergoes

a torus bifurcation at X = A* as in (4.6b). When I 1{s finite, a unique
branch of two-frequency trajectories bifurqate from the branch of periodic

solutions at 1A = )",

Proof: Under our hypotheses the complex conjugate pair of eigenvailves of L
that cross through 0 as A 1s varied, do so with nonzero speed. In fact,
when u s fixed,

P 3 3r2 .
Z.(t = £ L L= 4,
aA( rL) acz(tr ) 3% . (4.23)

Both of these factors are nonzero, the first by (H9) and the second by (H3),
(H6) and (4.7). It remains only to show “hat under the hypotheses above, the
normal vector field G = FNle undergoes & Hopf bifurcation at A = A®.
However, it is easy to show that the eigenvalues of dG at ep are just the
Floquet exponents of f at the periodic solution c¢e'®'p minus tw. Thus
the efgenvaluss of dG at ep are the elgenvalues of dg In the direction
Np (where 3 is defined in (4.8)). Hence our hypotheses imply that N
undergoes 8 (simnie) Hopf blfurcation at ) = A* and that the corresponding
complex elgenQZIUes cross the Imaginary axis with nonzero speed. The standard

Hopf Theorem coupled with Remark (4.48) now applies. 0




4.4 Direction and Stability of the Branch of Invariant 2-tori

Next we consider the direction of branching of the branch of 2-tori by
determining the direction of branching of the branch of periodic solutions in
the Hopf bifurcation of G = FNng. Theorem 4.3 implies that asymptotic
stability of the periodic solutions of G in Np implies asymptotic
stability of the invarfant 2-tori in (4.1).

We review the relevant discussion from the ear!ier subsections. Let

y = e(p + h). There fs a branch of equilibria of fy at
h=20 and A= X'(Cz,u) (4.24)

where u"* s defined by (4.16). A Hopf bifurcation for fy occurs along

this branch of equilibria at
2
e” = E£(u) (4.25)

as defined in (4.14), since V, c Ny- Note that E(0) = 0. In fact, Liedow
is Just dFN|V2.

We assume that u has the correct sign so that (4.16) I|s valid, and
hence (4.25) has a solution for €2 when E(u) Is positive, We have
assumed, moreover, that as ) varies through A", the imaginary eigenvalues
of 1 cross the imaginary axis with nonzero speed, as noted in the proof of
Theorem 4.5.

The standard Hopf theorem asserts that there exists a single coefficient
uy, depending on terms of FN through cubic order, that determines the
asymptotic stability of the periodic soiutions (and thel 1iirection of
branching). Moreover, u; Iis defined at the point of Hopf bifurcation given

by (4.24) and (4.25). Thus

ug = pa(u) (4.26)
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Iheorem 4.5:

Under the assumptions Jjust deSCﬁlbed

ua(u) = uKM(u)

k for some integer k. A formula for M{0) can be determined, fn principat,
from the Taylor expansion of f at the origin and the sign of M(0) determines
the asymptotic stability and direction of branching of the branch of 2-tor|
for (4.1). In particular, this branch is supercritical and consists of
asymptctically stable 2-torf when M(0) > 0 and the branch {s subcritical
when M(0) < 0.

Our final (genericity) assumption is:

(H12) M(0) # 0.

The most difficult part of any calculation of invariant 2-tor{ f{s
determining M(0), that is, determining the direction of branching and
stability of the 2-torf. In principle, it might be possible to derive a
general formula for M(0) when k = | using only terms in the Taylor
expansion of f. Inour D, example in the next section we have chosen the
computationally simpler route of Just computing the secondary Hopf bifurcation
on fy directly. One reason is that we find that k = | {s valid for the
séandfng tori and k = 2 {is valid for the rotating tori. At this stage we do

not understand why certain isotropy subgroups force k to be greater than 1.




35 Torus Bifurcations with Triagnquliar Symmetry

In this section we apply our torus bifurcation theorem to a vector field

92 - g(z.A.u) \5.1)
dt
in Dp x Sl-normel form, that is. we assume g has the forn (3.6). As we

discussed in Section 3, see Table 3.1, generically there exist three primary
pranches of periodic solutions to (5.1) corresponding to two-dimensional fixed
point subspaces. we need to determine when hypotheses (HI-HI2) are valid for
each of these branches. Note that hypotheses (H1)-(H3), (H5) and (H7) are
automatically valid in these cases.

In (3.6) the invariant functions A-D are complex-vailued and we denote

these functions by

{a) A=z a+ ia
(b) B =D+ i8 {5.2)
(c) C=c¢ + iy
(d) D=d =+ 16§

Hypothesis (H4) states that a Hopf bifurcation occurs at X = u = 0 and that
the complex eigenvalue crosses the axis with nonzero speed. We simplify our

analysis here by assuming
a= )+ {8 function depending on z-alone} (5.3)

and that a(0) = ag > 0. Thus, we assume that the trivial steady state 2z = 0
is asymptotically stable when A < 0 and loses stability at i = 0.

Moreover, (H4) Is valid as 4 = | # 0.




L Rotating Wave Standing Wave | Standing Wave ¢

Fix(Z) (2:,0) (zx;zl) (Z1»,=-2)7
san(ag) -(ay + b) -(2ay + b) -(2ay + b}
Va (0,22) (22+~22) (22.23)
tr L =20 b=20 b=20 b=20
sgn(ag) -by by - 2¢ by +Zc
d10 -b,, b, b,
(Hi1) 8+ 0 8y ¢ 0 By > 0

Isble 5.1: Data needed to find torus bifurcations along primary branches in
degenerate 03 x 5'-equivariasnt Hopf bifurcatfon. All functions are evaluated

at the origin.

[n our analysis, we begin by assuming that n # 4. The case of square
symmetry (n = 4) {s more complicated (see Golubitsky & Stewart [1986) and
Swift (1988)). In particular, when n ¢ 4 the standing waves are either both
supercritical or both subcritical, and there are no branches of periodic
solutions corresponding to submaximal {sotropy. The criticality of these
branches is determined by sgn(Ag), as noted in Table 5.1. Assuming
b *+ -ay, -2ay validates (H6).

The degeneracy condition needed to have a torus bifurcation, hvpothesis
(HB), is tr L = 0. For each of the branches, (H8) corresponds to b = 0 at
the origin. This could have been seen directly from the stability resuits in
Golub'!tsky & Stewart [1986] since the coefficient b(0) being nonzero was

needed to determine which of these branches of perfodic solutions could be

asymptotically stable. Assuming b(0) = 0 fimplies that standing waves and




rotating waves must be all supercritical or subcritical, depending on the sian
of aN(O). which is assumed to be nonzero.

We again simplify our analysis by assuming that

b(z,u) = u + {a function depending only on z}. (5.4)
[t then follows that A;o = -1 for rotating waves and +! for standing
waves. Thus (H10) is valid and we will have a torus bifurcation if the

complex eigenvalues in the V,-directions are nonzero since (HI10) implies that

these eigenvalues will cross the imaginary axis with nonzero speed. That
these eigenvalues will be nonzero and purely imaginary at the point of
secondary bifurcatfon is governed by (Hll)., Thus we assume B8(0)v(0) # 0,

as indicated in Table S.1,

In our discussion in Section 4 we also assumed that we could solve
uniquely for the point of the secondary bifurcation, as a function of wu,
which follows from 45 # 0. So we assume by(0) # 0, #2¢(0) and (H9) is
verified. (Note that when n 3 5, this condition would be by(0) # 0.)

We summarize our discussion by listing all conditions in Table 5.2

/ (a) a(0) =0, a(0) > O primary Hopf bifurcation
(b) aN(0) >0 periodic solutions subcritical
(¢) b(0)y =0 possibility of secondary torus

bifurcation
(d) B8(0) # 0 torus blfurcation on rotating waves

(e) B8(0)y(0) ¢ O ( >0 ) torus bifurcation on standing wave |
(standing wave 2)

(f) by(0) # 0, *2c(0) See (4.16): unique torus bifurcation along
rotating wave when sgn(u) = ~3gn(by(0})
standing wave | when sgn(u) = -sgn(by(0)-2c(0))
standing wave 2 when san(u) = -san(by(0)+2c(0))

Table 5.2:

Conditions for Torus Bifurcation with Dy-symmetry
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The final issue we must address is the direction of branching of the
secondary branch of 2-tor!, hypothesis (H12). At the end of Sectjon 4, we
discussed the difficulty of deriving a formula for the direction of branching
of the torus branches. Because of this fact, we compute, In Subsections 5.1
and 5.2, the direction of branching of the secondary 2-tori bifurcation along
the rotating and standing waves branches only in the case of D3-symmetry.

Let Bg = B(0) and vo = v(0). We prove the Following:_

Theorem S.1: In degenerate D0j-equivariant Hopf bifurcation. the direction of

branching of the branch of rotating 2-tori Is supercritical |f

Yo -
-2a [b + — (5.5)
NN 38p ! '
Is positive and subcritical if negative.
Theorem 5.2: '~ duyenerate Dj-equivariant Hopf blfurcation, the direction of

branching of the branch of standing 2-tori off of the branch of periodic

standing waves 1 is s..oer- “tical if

Bo [ Boo a
s$gn(vyg) 0 N

2C0"b~

43
+ N
2ay / 61Bovo! 3

(5.6;
Yo

Is positive and subcritical if negative. For secondary bifurcation off of

standing waves 2 we replace (5.6) by:

"38—0{5%”0) 20 . fay) ey (5.7)
Yo 2ay ¥ 61Bgvgl 3 2Co-by

It 1s possible to derive the direction of branching of standing torus 2

from that of standing torus 1 using the following observation first noted in




Swift [1988], using the terminology "parameter" symmetry,

We call the mapping

Q(zy429) = (Z1.-23)

a quasisymmetry since it is in the normalizer of I in 0(4

L =053 x s'. It follows that the map

h = Qg(Qz)
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{5.8)

) but is not in

(5.9}

is TI-equivariant whenever g 1|Is T-equivariant. In this particular case.

the quasisymmetrvy Q interchanges standing waves | and 2.

Since

al

is

vector field equivalent to g. the dynamics of h is the same as that of

Thus., computing the direction of branching of standing torus
the direction of branching of standing torus 2 for g.
It remains only to note using (3.4) and (3.6) that when

transforms to h in (5.9) as follows:

\(a) (N'P'S!T) hd (NQP'-S'-T)

(b) (AvBOCvo) hd ‘AOBV"C"‘D)

Thus (5.7) may be derived from (5.6) by transforming vg to

1 for

“Y¥Q-

h, Qives

(5.10)

Q.




5.1 Rotating Tori for Dj-Symmetry
We let I be the isotropy subgroup of rotating waves
23 = {(YO'Y)}: Y & 23}

with the two-dimensional fixed pofnt space {(z,,0)}. The branching equation
for the periodic solutfons lying in Fix(Z) s given by

A+Bud =0 u

m
o)

(5.1D

From our discussion above concerning the torus bifurcation, we may assume

that the system of ODE (5.1) has the form:

d [ Z) ] = {lag + A + N + aNNNz/z + apP} [ 2, l

¢ EG Zy Z2
(5.12)
= 2.3
212y 2 23
+ {u + byN + i8p} — + {co + Tvp} - + h.o.t
S [ USRI

where N = |z,|2 + |22|2 and P = Izllzlzzlz. The branch of periodic

‘ solutions to (5.1) within 23 Is given by:
Z,(t) = ¢ [ 6 ] elo t, (5.13)

where w = ' (¢2,u) = ag + Boe2 + 0(e"). Along the branch of periodic
solutions, the eigenvector due to translation, corresponding to the eligenvalue
zero, Is constant. In fact (5.12) shows that this eigenvector equals Ip
where p = (1,007, We explolt this fact to explicitiy reduce the vector field
to the normal section. We let

Vp = (z & €*: Re<z.1p> = 0).



-32-

By the implicit function theorem we can solve locally in (5.15a) for

9 =86 (h, €, u) such that

(a) Re<f(e(p + h).A'.u) - i(u. + 8)e(p + h),Ip> = 0, and
{5.15)
(b) 8"(0,0,0) = 0

[f we now let
g(h.e.u,8) = FLE(P + ) ,A (evm)ou) = T(w (£,u) + 8 )e(p + h) (5.16)

then the subspace Vp s fnvariant under 9 and qiV, s the norma|
component of the vector field g. For the details of this reduction see
vanderbauwhede, Krupa 8 Golubitsky [1988) and Krupa (1988].

We note that 8 corresponds to an element n of the Lie algebra L(I)
and determines the drift along the group orbits.

In the language of asymptotic expansions we are iooking for solutions of

the form:

LA |
el (8 +€701E (5 4 ne2at)),

where h is a 2n-periodic function.

In (2,,2;) coordinates we write h = (h;,h3) and h, = x + ly. The
£}

normal vectorfield then {s given by

%% = ez[Z(aN + u) x ¢+ aN1h2|2 +00ixt? + !xnanzlz + thzn“ +edix)
{5.17)
el
%22 = 52[’(11 + 1B + | —2)h2 + 2ayxhy + aNh2|h2|2
€

+0(e? + lunhzl3 + |hzls)]

We remark that B' is of order 52 and occurs in the second equaé!on in

such a way that its value will only influence the period of the bifurcating




beriodic solution, and not fts stability. Therefore, we may suppress 8 .
More Importantly, we observe that the direction of branching is -

determined by the higher order terms. To see this, we rescale the time by

2

letting t = -ezeot. and eliminate the € which factors L(e,u) (see

(4.11)). We obtain:

-8¢ g_: = 2(8N + u)x + BNn’\zlz + h.o.t.

(5.18)

~Bo d: = =(u + 1Bo)ha + (Zayx + (ay + 18o) 1ha1%)h; + h.o.t.

From the first equation we see that x = -lh2|2/2 + ..., and inserting this in
the second equation, we conclude that the direction of branching is not

determined. To the next order in ez we get (keeping the rescaled time)

80 I = 2(ay + wx + anlhz1? + e2(2(agy + 2by)x + (agy + by) 1ha1?)

"

+0e2ix1 + 1ng1H? + €M)

(5.19)
-8o g—'t‘-h ~(u + 18 + e2by)hy + (8 + 1Bo) Ihz12h, + 2axh,
+ 2 (2axha + (Co + Tvodha® + (8 *+by) ihz17hy)
+0(e2uringt® + e2tixt + 1hg1H)2 4+ eM)
From (5.17) we derive that at a perfodic solution
-ay + zzb )
x = N~ N oini? 4 ocedingt” + ).
28N
Then we find the direction of branching from (5.18)
weei{-py + zm,;’[ -3%‘1 + bN] + 0(e? + ihai ™). (5.19)
0

From this equation Theorem 5.1 follows easily,
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5.2 Standing Tori for D3-Symmetry

We let I be the Isotropy subgroup 2, # Z§ of Standing Waves | with
two-dimensional fixed point space {(z,,2;)}. In order to construct Vp and
8" as in the rotating case we first change coordinates in (5.12):

U= (214220 /¥2, v = (2,-23)/V2.

The construction of the reduced vector fleid is mutatis mutandis the same
as in the case of the rotating tor!. Agalin we will suppress 8 , because we
are only interested In the direction of branching. The effect of the chanae

of coordinates is that the primary branch has the same form:

zgit) = (1] elwt,
|_0,'
where in the standing wave case
1
w(edu) = ag + 5 Boe? + 0(e™).

[t occurs at

u a
32y = —(ag + = 2e? - (agy + 2P+ by + =2 )et/2.
2 2 2
The readuced vector field has the form (compare with (5.12))

d—x = CZF(Xv hzc 1K) 52)
dat

$5.20)
g?z = Czq(x. hzv 'K} Cz)

The linear part of 49 depends only on hj. [t is given by the mapping from

¢ into itself by:

" (u+iBg) b [
v e | —2 4 (N Co - Ivo)czlv + [

(u-184) (by=Cqotivy)
5 ° .+ N ; 9 ¢¥v + 01y

2 2
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If we consider this mapning as a mapping on Rz. then its trace equals

u+ (by - 2co)e? + 0(e")
and its determinant equals

3 2 v

- E(UCO - YoBgle® + O(e) .
We apply an e¢-dependent transformatior. to put the |inear part of the vector
field Into normal form. Writing h, = u + {v the transformation is:
u -+ eu
v -+ 4-280/3Yo v .

We rescale the time by ¢, i.e. et = E. After these transformations the

1inear part of the vector field has the form:

D g(2my + wix

dt

92 2 ¢ B (h, + hy) + Te21ah
p 5 (N2 + hs oh2

where g = Vv-3BgYvg/2. We rescale the time once more, Cz’at . t. Then, the

linear vector field has a circle of periodic solutions:
fx 0 3 1 +
T L ] et

We then put the full nonlinear vector fleld up to order three in (x, h;) into
Birkhoff normal form. Phrased Aifferently, after a near identity
transformation in the variables (x, hp) and a truncation at order three, the

resulting vector field has the form:
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'é(xl |n2|21 Mo C)

2 gh, ~ 2
e” =22 = g{x, thzi”, u, €) h3z.
at - 9 2 2
[f we can sulve the equation F = 6 = 0 then we will know the direction of

branching. Straightforward (but rather lengthy) computations show that

- 1 2
F=2age + o— ayih2128o + OL(EZ+1u) (Ixi+1hy1) + Ixithai + 1hgt? + 1x1¥)
Yo

where
el 2 -2
£ = x + — (h2 - hZ)BO
6y

Therefore., at a solution of f = 0 we will have that

Bo 2 el - P
X = - — l Ik =~ —— (h§ - hg) + 0(e? that + ;n2!°).
OYo ZaN ]

Substiting fnto the equations g = 0 then ylelds

3
2 4898 8
u = (2cq - byle” - |h2«2( 97N ° -} + O(ier + |h1|)J

IBKBNYG

3Yo

where «x = (-280/310)1/2. From this equation Theorem 5.2 follows.
The (above mantioned) lengthy calculations were checked with the formula

manipulation program REDUCE,




s6. Th fyr r

The results of Section 5 imply that when derlving the bffurcation
dlagrams for the torus bifurcatfon In degenerate Hcpf bifurcation with

Dy-symmetry, we may assume

(@) A =+ aN + aof

(B) B = u + byN + 8o (6.1)
() C = cq + voi

(&) 0=0,

as only these terms enter the determination of direction of branching and
stabli!fity.

We assume:
ag > 0, Bg > 0, vg ¢ 0 and ay < 0. (6.2)

We make these choices for the followling reasons, First, without loss of
generality, the frequencies ap and By may be assumed to be positive.
Second, the quasisymmetry Q transforms vy, to -y, (and ¢g to -Cp)i %0
we may assume that vy, |3 negative (at the expense of interchanging the two
branches of standing waves). Finally, we are interested mainly In those
situations where asymptotically stable states may exist. Iindeed, stability
can occur only when the primary branches are supsrcritical; hence we assume
ay < 0.

To simpl{fy subseguent calculations rescale time and space to obtalin
85 » 1/2 and vg = -38g. (6.3)

We now find that when a torus bifurcation occurs. it occurs at




(rotating torus)

(6.4)
3N
(t) Ag = o+ ... (stariding torus)
bN-ZCO
and the direction of branching is determined by:
1 )
(a) l - — {rotating torus)
By
(6.5)
(b) {Aa - {standing torus)
by-2¢o day

here supercritical is positive and supcritical {s negative.
We note that it is possible to choose coefficients independently so that

for a fixed wu:

(i) standing wave | is stable at the inftial b!furcation
( choose u < 03,

(i) both a rotuting and a standing torus bifurcate
( choose by > 0 and by > 2co ).

(if1f) either torus may bifurcete first as X {increases
{ choose g > 0 to have standing wave first, co < 0 for rotating wave),

(iv) the rotating torus |s efther supercritical! c¢r subcritical
{ choose by > 1 or by <1},

{v) the standing torus is elther supercritical or subcritical
{ choose gy ¢ 0.25 or 0> ay > -0.25).

Therefore, it is possible to choose parameters so that the bifurcation
diagram pictured in Figure 6.1 occurs. Here we find the possibility of two

stable 2-tori{ and no stable periodic solutions. Note that this phenomenon may




not occur in codimension two for D,-Hopf bifurcation when n 3 5, since cg

is then a higher order term.

Eiqure 6,.1: Bifurcation diagram indicating values of X having two branches
of asymptotically stable 2-tori and nc stable steady-states or periodic

solutions.
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