9. MIDDLE ATMOSPHERE COOPERATION/ SUMMER IN NORTHERN EUROPE (MAC/SINE) AND MAC/EPSILON

9.1 THE MAC/SINE AND MAC/EPSILON CAMPAIGNS

E. V. Thrane
Norwegian Defence Research Establishment
P. O. Box 25, N-2007 Kjeller, Norway

Two major international campaigns dedicated to the study of middle atmosphere dynamics in high latitudes were successfully completed in 1987. MAC/SINE (Middle Atmosphere Cooperation/Summer in Northern Europe) was carried out during the period 7 June - 19 July, whereas MAC/Epsilon took place in the period 12 October - 15 November. In both campaigns a large number of ground-based and rocket techniques were used in a concerted effort to map the dynamical structure of the middle atmosphere over Northern Europe. Although the analysis of the observations has only just started, it is clear that a large and unique data set has been obtained, which we believe will provide new insight into the dynamical processes in this interesting region of the atmosphere. The paper will present a brief overview of the campaigns, their scientific aims, organization and structure.

Organization of MAC/SINE and MAC/Epsilon

Operation Center: Andoya Rocket Range
Project Scientist: Prof. E. V. Thrane
Deputy Project Scientist: Prof. U. von Zahn
Technical Coordinator: Mr. A. Gundersen
Logistics, Technical Management: Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., Koeln, Mr. O. Röhrig
Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt E.V., Wessling, Mr. K. Zdarsky
NASA/GSFC Wallops Flight Facility, Mrs. D. L. Frostrom
Norwegian Space Center, Oslo, Mr. A. Gundersen

Sponsoring Organizations: Bundesministerium für Forschung und Technologie, Bonn
Deutsche Forschungsgemeinschaft, Bonn
National Aeronautics and Space Administration, Washington, DC
Norwegian Space Centre, Oslo
National Agencies in the Participating Countries
Measurements of Dynamical Processes

In order to map the dynamical processes in the middle atmosphere we must be able to measure: Wind speed, density, temperature and pressure as well as small fluctuations of these parameters.

The problem:
To find experimental methods that work where the density is $1/1000\ 000$ of the air density at ground level. For studies of turbulence the accuracy must be better than 0.1%.

A solution:
Measurements of easily detectable trace constituents, such as positive ions.

Scientific goals:
To study dynamical processes, winds, waves and turbulence in the high latitude middle atmosphere. To study the interaction between ionospheric/auroral phenomena and the nonionized upper atmosphere. To study the effects of the ionosphere/middle atmosphere on radio wave propagation in high latitudes.

Experimental tools:

Rockets, SINE:
- 27 Falling spheres (Andoya)
- 28 Chaff (Andoya)
- 4 NASA instrumented rockets (Andoya)
- 12 USSR instrumented rockets (Heiss Island)
- 7 USSR instrumented rockets (Volgograd)
- 4 USSR instrumented rockets (Prof Zubov)

Rockets, Epsilon:
- 5 European instrumented rockets (built in Norway)
- 8 NASA instrumented rockets
- 12 Falling spheres (Andoya)
- 9 chaff (Andoya)
- 18 USSR instrumented rockets (Heiss Island)
- 17 USSR instrumented rockets (Volgograd)

Rocket launches from Andoya Rocket Range during MAC/SINE

Regular rocket firings Mondays, Wednesdays and Fridays at 1100 h UT

In addition, several salvos were launched to study specific phenomena:

- Chaff Salvo 1: 24 June 1987
- Chaff Salvo 2: 26 June 1987
- Chaff Salvo 3: 1 July 1987
- Turbulence/Gravity Wave Salvo: 14 July 1987
- BISCAT Salvo: 15 July 1987
- Sodium/Chaff Salvo: 15 July 1987
<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>OBSERVED PARAMETERS</th>
<th>LOCATION</th>
<th>REAL TIME</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTIAL REFLECTION</td>
<td>(N) DENSITY</td>
<td>RAMFJORDMOEN</td>
<td>N</td>
<td>CD</td>
</tr>
<tr>
<td></td>
<td>TURBULENCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE DRIFT</td>
<td>WINDS</td>
<td>RAMFJORDMOEN</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td>PARTIAL REFLECTION</td>
<td>TURBULENCE</td>
<td>VOLGOGRAD</td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>SOUSY VHF RADAR</td>
<td>TURBULENCE</td>
<td>BLEIK</td>
<td>Y</td>
<td>CD</td>
</tr>
<tr>
<td></td>
<td>WINDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EISCAT</td>
<td>(\theta) DENSITY, (\lambda)</td>
<td>RAMFJORDMOEN</td>
<td>N</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>WINDS</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>MS-RADAR</td>
<td>WINDS</td>
<td>SASKATOON</td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>GLOBMET</td>
<td>WINDS</td>
<td>USSR (7x)</td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>METEOR RADAR</td>
<td>WINDS</td>
<td>VOLGOGRAD</td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>HF-CIRCUIT</td>
<td>PROPAGATION CONDITIONS</td>
<td>ANDENES-ALTA</td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>IONOSONDES</td>
<td>IONOSPHERIC CONDITIONS</td>
<td>ANDENES, RAMFJORDMOEN</td>
<td>Y</td>
<td>A</td>
</tr>
<tr>
<td>A1-ABSORPTION</td>
<td>ABS. 2.2 MHz</td>
<td>VOLGOGRAD</td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>RADIOMETERS</td>
<td>ABSORPTION</td>
<td>ANDENES, FINLAND (9x), KIRUNA (KG1), RAMFJORDMOEN</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGNETOMETERS</td>
<td>GEOMAGNETIC CONDITIONS</td>
<td>ANDENES, FINLAND (9x), KIRUNA (KG1), RAMFJORDMOEN</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td>UB LIDAR</td>
<td>TEMPERATURE, NA-DENSITY, DENSITY</td>
<td>ANDENES</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>UI LIDAR</td>
<td>NA-DENSITY, WINDS</td>
<td>LONGYEARBYEN</td>
<td>N</td>
<td>CS</td>
</tr>
<tr>
<td>CNRS LIDARS</td>
<td>DENSITY, TEMPERATURE</td>
<td>SKIBOTN, ON SHIP</td>
<td>N</td>
<td>CS</td>
</tr>
</tbody>
</table>

A EVERY 20 MINUTES
B SOME(107) NIGHTS 15-21 UT
C CONTINUOUS
CD CONTINUOUS DURING COUNTDOWNS
CS CONTINUOUS WHEN CLEAR SKY
<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>OBSERVED PARAMETERS</th>
<th>LOCATION</th>
<th>REAL TIME</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR MERIDIAN SCANNER</td>
<td>?</td>
<td>ANDENES</td>
<td>N?</td>
<td>CS</td>
</tr>
<tr>
<td>IR INTERFEROMETER (LOWE)</td>
<td>AURORAL, AIRGL.EMISS., TEMPERATURE?</td>
<td>SKIBOTN?</td>
<td>N?</td>
<td>CS</td>
</tr>
<tr>
<td>IR INTERFEROMETERS (WARE)</td>
<td>AURORAL, AIRGL.EMISS., TEMPERATURE?</td>
<td>KIRUNA (KGI)</td>
<td>N?</td>
<td>CS</td>
</tr>
<tr>
<td>SPECTROMETERS (WITT)</td>
<td>AURORAL, AIRGL.EMISS.</td>
<td>ANDENES, KIRUNA (KGI)</td>
<td>Y</td>
<td>CS</td>
</tr>
<tr>
<td>PHOTOMETER (PETERSON)</td>
<td>AURORAL, AIRGL.EMISS.</td>
<td>SKIBOTN?</td>
<td>Y</td>
<td>CS</td>
</tr>
<tr>
<td>PHOTOMETERS (WITT)</td>
<td>AURORAL, AIRGL.EMISS.</td>
<td>ANDENES</td>
<td>Y</td>
<td>CS</td>
</tr>
<tr>
<td>PHOTOMETER (ARR)</td>
<td>AURORAL, AIRGL.EMISS.</td>
<td>ANDENES</td>
<td>Y</td>
<td>CS</td>
</tr>
<tr>
<td>IMAGERS (2 PETERSON)</td>
<td>AURORAL, AIRGLOW STRUCTURE</td>
<td>SKIBOTN?</td>
<td>Y?</td>
<td>CS</td>
</tr>
<tr>
<td>IMAGER (TAYLOR)</td>
<td>AURORAL, AIRGLOW STRUCTURE</td>
<td>SOBANKYLÄ</td>
<td>Y?</td>
<td>CS</td>
</tr>
<tr>
<td>ALL-SKY CAMERA</td>
<td>AURORAL STRUCTURE</td>
<td>ANDENES</td>
<td>N</td>
<td>CD</td>
</tr>
<tr>
<td>ALL-SKY CAMERA (PETERSON)</td>
<td>AURORAL STRUCTURE</td>
<td>KIRUNA (KGI)</td>
<td>N?</td>
<td>CS</td>
</tr>
<tr>
<td>VIDEO CAMERA (PETERSON)</td>
<td>AURORAL, AIRGL. STRUCTURE?</td>
<td>SKIBOTN?</td>
<td>Y?</td>
<td>CS</td>
</tr>
<tr>
<td>FABRY-PEROT ETALONS (3 + 1 OM + 1 TRIPLE)</td>
<td>WINDS</td>
<td>KILPISJÄRVI, KIRUNA (KGI), SVALBARD</td>
<td>N</td>
<td>CS</td>
</tr>
<tr>
<td>STEREO OH TV (TAYLOR)</td>
<td>WAVES</td>
<td>IVALO-SODANKYLÄ</td>
<td>Y</td>
<td>CS</td>
</tr>
<tr>
<td>ALL-SKY IMAGING (REES)</td>
<td>OH-VARIABILITY</td>
<td>KIRUNA (KGI)</td>
<td>N?</td>
<td>CS</td>
</tr>
</tbody>
</table>

CD CONTINUOUS DURING COUNTDOWNS
CS CONTINUOUS WHEN CLEAR SKY
Figure 1. More than 50 ground-based instruments.
Figure 2. Simultaneous measurements made with 24 rocket experiments.
OVERVIEW OF THE MAC/EPSILON CAMPAIGN

Four salvos were launched during the campaign:

Day Salvo: 15 October
Launch criteria: Presence of turbulence (PRE, SOUSY)
Presence of gravity waves (PRE, EISCAT, LIDAR)
Riometer absorption between 0.2 and 2 dB
Clear sky sufficient for LIDAR results
All launch criteria fulfilled

Night Salvo A: 21 October
Launch criteria: Presence of turbulence (PRE, SOUSY)
Presence of gravity waves (PRE, EISCAT, LIDAR)
Riometer absorption between 0.2 and 2 dB
Clear sky sufficient for LIDAR results
All launch criteria fulfilled

Night Salvo A1: 28 October
Launch criteria: Presence of turbulence (PRE, SOUSY)
Presence of gravity waves (PRE, EISCAT, LIDAR)
Riometer absorption between 0.2 and 2 dB
Presence of pulsating aurora
Clear sky sufficient for LIDAR results
All launch criteria fulfilled

Night Salvo B: 12 November
Modified launch criteria
Presence of turbulence (PRE, SOUSY)
Presence of gravity waves (PRE, EISCAT, LIDAR)
Riometer absorption between 0.2 and 2 dB
Modified launch criteria fulfilled.

HOW DID IT GO?

The data analysis is progressing well!

MAC/SINE
Very interesting observations were made by rockets and ground-based instruments. Summer conditions in high latitudes were mapped in greater detail than previously. Of particular importance are layers observed near the mesopause.

47 out of 55 met rockets from Andoya worked, success rate 87%
All instrumented rockets from Andoya worked, success rate 100%
The ground-based instruments performed well.

MAC/Epsilon
Four salvos were launched from Andoya. The launch criteria were fulfilled for three of these. The last salvo was launched under modified conditions. A very good series of measurements of turbulence was obtained.

18.5 out of 21 met rockets from Andoya worked, success rate 88%
Out of 55 rocket instruments launched from Andoya 51 worked, success rate 93%
Most ground-based instruments gave good results.