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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3283

AFRODYNAMIC FORCES, MOMENTS, AND STABILITY
DERIVATIVES FOR SLENDER BODIES OF
GENFRAIL: CROSS SECTICN

By Alvin H. Sacks
SUMMARY

The problem of determining the total forces, moments, and stability
derivatives for a slender body performing slow maneuvers in a compressible
fluid is treated within the agsumptions of slender-body theory. General
expressions for the total forces (except drag) and moments are developed
in terms of the geometry and motions of the airplane, &nd formulas for
the stability derivatives are derived in terms of the mapping functions
of the cross sections. :

All components of the motion are treated simultaneously and second
derivatives as well as first are obtained, with respect to both the
motion components and their time rates of change. Coupling of the longi-
tudinal and lateral motions is thus automatically included. A number of
general relationships among the various stability derivatives are found
which are independent of the configuration, so that, at most, only 35
of a total of 325 first and second derivatives need be calculated
directly. Calculations of stability derivatives are carried out for two
triangular wings with camber and thickness, one with a blunt trailing
edge, and for two wing-body combinations, one having a plane wing and
vertical -fin.

The influence on the stability derivatives of the squared terms in
the pressure relation is demonstrated, and the apparent mass concept as
applied to slender=body theory is discussed at some length in the light
of the present analysis. It is shown that the stability derivatives can
be calculated by apparent mass although the general expressiocns for the
total forces and moments involve additional terms.

INTRODUCTION

Ever since R. T. Jones (ref. 1) in 1946 demonstrated the use of
Munk's apparent mass concept of 1924 (ref. 2) for solving problems of
slender wings in a compressible flow, an ever-increasing number of
investigators have entered the field of analysis now commonly known as
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slender-body theory. The stability derivatives of slender triangular
wings were treated by Ribner (ref. 3) in 1947 following the pattern of
Jones, and in 1948 Spreiter (ref. L4) extended the latter's result by
means of conformal mapping to include certain wing-body combinations.
Shortly thereafter, in 1949, Ward's general analysis for slender pointed
bodies in steady supersonic flow (ref. 5) was published.

After the appearance of Ward's analysis, a number of papers were
written on various aspects of slender-body theory including extensions
to subsonic flow and to "not-so=-slender" bodies (e.g., refs. 6 and 7),
and in 1952 Phythian (ref. 8) developed an analysis which included time
variations in forward velocity and angles of incidence. Although many
papers (e.g., refs. 9 and 10) have been devoted to the calculation of
various stability derivatives for specific configurations, it is only in
the past few months that a report by Miles (ref. 11) has given the com-
plete counterpart of Ward's analysis for unsteady flow.

The determination of stability derivatives has long been of concern
to the engineer in connection with the dynamic behavior of airplanes,
but the problem hag assumed even greater proportions in the more recent
slender configurations of missile design. The stability derivatives thenm-
selves correspond to the coefficients of a Taylor expansion representing
a particular component of force (say 1ift) or moment as a function of
the airplane motions. The coefficient of any particular motion (say q)
in the expansion is equal to the partial derivative of the force or
moment component with respect to that motion. Ordinarily, stability
derivatives are defined as these partial derivatives evaluated with all
of the independent variables except o set to zero, so that the usual
stability derivatives depend upon the initial angle of attack as well as
on the configuration. In the present paper, however, all derivatives
are evaluated with all of the independent variables (a, B, Py Qy T5 &y B,
ﬁ, é, T) set to zerc. The advantages of this choice will become apparent
in the course of the analysis.

The present paper employs an approach believed to be novel in
slender~body theory and is concerned with developing formulas for the
forces and moments as well as the stability derivatives for general
slender wing-body combinations.® The significance of the squared terms
in the pressure relation for slender configurations precludes the
possibility of considering the longitudinal and lateral motions inde=
pendently, so all motions of the airplane are treated simultaneously.

lWhile the present analysis was being carried out, Bryson (ref. 12)
published a paper treating essentially the same subject from a different
viewpoint based on the tacit assumption that all the forces, moments,
and stability derivatives can be obtained from the apparent mass analogue.
This assumption and some of Bryson's results are discussed in a later
section.
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The mathematical restrictions on the generality of the shapes that
can be rigorously handled have been discussed in detail by Ward (ref. 5)
and more recently for the unsteady case by Miles (ref. 11). Such dis-
cussion will not be repeated in this report.

LIST OF IMPORTANT SYMBOLS

an coefficient of ;%- term in series expansion of the mapping
o -]
a
function § = f(g) = 04—§: =
ot
n=o0
Ay coefficient of % term in expansion of the complex potential
F(£)
A value of Ay at a=B=p=q=1r=0
. . . . Up dg
B coefficient of In { in expansion of F({); B = =2 ==
. 21 dx
ca distance from airplane nose to pivot -point
F complex potential @ + iV
l length of airplane
L force in the =z direction (approximately 1ift)
L' rolling moment about the x axis
2% reference length
M pitching moment about pivot point x = ¢
N yvawing moment about pivot point x = ¢
i) angular rolling velocity about the x axis
D1 pressure
o angular pitching velocity about the y axis
. fluid speed relative to axes fixed in the body
dy component of a4y normal to body contour in plane x = const.

(positive into the fluid)



Vi

Uy, Vy, Wy

Xyz
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component of q. tangential to body contour in plane
x = const. (positive counterclockwise looking upstream)

V + 1iW
angular yawing velocity about the 2z axis

radius of transformed circle corresponding to airplane cross
section

cross~sectional area

reference area

time

component of flight velocity along negative x axis
component of flight velocity along positive y axis
Vo - r(x-ci)

speed of a point fixed in the xyz system of axes
components of dyp in the x,y,z directions
component of flight velocity along positive =z axis
Wo = a(x=ci1)

force in the y direction (side force)

Cartesian coordinates fixed in the body (x rearward,
y to starboard, z upward)

angle of attack (angle between arbitrarily chosen xy plane
and flight direction)

angle of sideslip (angle between =xz plane and flight
direction)

angle between the positive y axis and the tangent to the
body contour in a plane x = const.

fluid mass density
outward normal to the body contour in plane x = const.

y + 1z
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>
§c complex coordinate of centrold of cross-sectional area
(yo + ize)
g complex coordinate in transformed circle plane

velocity potential

? Y’}- partial derivatives of @ with respect to x,y,z, and t

o_,0 velocity potentials for unit velocity of the cross section in
27’8 the y,z directions
! velocity potential associated with variations in shape and size
of cross section with x
¥ stream function
Ws stream function along the contour of the cross section
Special Notations
j{‘ contour integral taken once round the body cross section in the
positive (counterclockwise) sense
Force coefficients: Cvy = —————X—————, ete.
Y 2
(1/2)pUsr
Moment coefficients: Cp = M , ete.
(1/2)pUo®Sply
Stability derivatives:
=]
_ acy_ _ Ay o _ dey

RO ANCA NS
ol — doa a<’ )
Uo
C —_——T C = —3; etc.
(G,Zr ) 3 <f)],r§> YPP a(ﬁi 2 c

A1l derivatives are evaluated at
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R real part

| § imaginary part

(o) derivative of ( ) with respect to time
(-) complex conjugate of ( )

GENERAL ANALYSTS

The problem to be treated here is the determination of the aero-
dynamic forces and moments (except drag) and the stability derivatives
for a smooth glender airplane or missile of arbitrary cross section per-
forming slow maneuvers in a compressible fluid. The configuration will
be limited in that the base (if any) of the fuselage and all wing trail=-
ing edges must lie in a plane essentially normal to the longitudinal body
axis.

Differential Equation and Pressure Relation

The linearized differential equation for the velocity potential of
unsteady motion of a compressible fluid is the well-known wave equation

1
oF O = O = Bup = g = O (1)

where the system of axes Mg is fixed relative to the undisturbed fluid,
co 1is the speed of sound in the undisturbed fluid, and T is time as
measured in the A& system. Thus the velocity potential ¢ is express-
ible as & = ®A,u,t,T).

In general, the pressure relation associated with the velocity
potential @ is given by (ref. 13, p. 19)

_p_;.._:_q) -_ql fpl < >+const. (2)

where p, is pressure and q is the magnitude of the fluid velocity
expressible as® ’

0% = 0% + 0% + c1>§2 (3)

2The subscripts on p and q are used to dlstlngulsh them from the
angular velocities of rolling and pitching.
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It will be convenient for &
the present problem to introduce
a coordinate system x3yz which
is fixed in the airplane. The
axes chosen for this purpose are
shown in the sketch and comprise
a Cartesian coordinate system
endowed with the translational
velocities Ug, Vg; Wo and the
rotational velocities p, q, r
of the airplane. (Note that
this does not constitute a com-
pletely right-hand system.)

The x3; axis passes through
the airplane nose, and the ori-
gin of the x3yz system is
fixed at an arbitrary distance
¢y from the nose as shown in
the sketch.

Since it is the purpose of this paper to gtudy only instantaneous
forces and moments (i.e., no time histories), it will be sufficient to
choose an instant of time such that the positions of the moving x:yz
system and the stationary M€ system are just coincident. Thus,
equations (1) and (2) will be expressed in the =x1yz system only for
this instant, designated T = 0. TFor this purpose a new function @
is introduced such that

(P(Xl)yyz:t) = (I)(-)\)U-:E)T) ()‘L)

Now, through the use of the transformations relating the moving and
stationary coordinates (see e.g., ref. 13, p. 12, and ref. 1k, p. 79)
one finds at T= 1t = 0 that

_§_(_P§_‘§_+BCP 5x1+5<P8y+5CPBZ
v = O 9Xp X OF ., Cx 02
Ot T dx; OT Oy OT Oz OT

= @y + UgPy, = (Vo + p2 = rx1)Py = (Wo = DY = 9x1)Py
and
@?\ = chl; <I)p_ = cpy; @g = CPZ
It can be seen from the sketch that the guantities (VO + pz - rX1) and
(Wo = py = gx1) are simply the velocity components in the ¥y and z
directions of a point fixed in the x3yz system. Note that in the

corregsponding X component G-Uo + ry + qz) the products ry and gz
are considered negligible compared with Ug.
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With the assumptions of slender bodies, small angles, and slow
maneuvers, the differential equation (1) reduces to Laplace's equation
in planes x; = const. near the body; that is

Pyy + Ppz = O (5)

It follows also that the density © must be treated as a constant
in the pressure relation (2) which now becomes

Dy

1
S =-0 -5 (0,% + 9:%) + const.

=« B - UPy, + (Vo + pz = rx1)P + (Wo = py - ax1)P5 -

POf i

(¢&? + @ZZ) + const. (6)

Here, for the sake of convention, one can transfer the origin of the
moving axes to the body nose by letting

X1=X-Cl.

so that pitching and yawing rotations are still made about an arbitrary
pivot point x = cy. Thus, introducing the notation

V=V, =rxy =V, =-1r(x =~ c1)

W

1l
1]

Wo = ax3 = Wo = q(x = c1)

equation (6) can be written

%% = = @ - USSR + (V 4+ pz)CP:y + (W - py)®, - % (@yz + 0,%) + const.

(7)

This, then, is the pressure relation (referred to the moving body axes)
upon which the calculations of the forces and moments will be based. It
should be noted that a consistent application of the slenderness approx=
imation requires the retention of the squared terms ¢y? and 9,%. Thus
slender-body theory is not a strictly linear theory although the differ-
ential equation (5) is certainly linear. This means that solutions of
equation (5) for @ (and hence the velocities) can be obtained by super-
position, but the pressures cannot. Likewise, the forces and moments
cannot be calculated by superposition except for those special cases in
which the contribution of the squared terms to the loading vanishes.
Furthermore, when the airplane is performing combined maneuvers (e.g,,
simultaneous rolling and pitching), the squared terms may contribute
additional forces and moments. These in fact give rise to the second-
order stability derivatives that will be included in the present analysis.
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Total Forces and Moments

The analysis to be presented here z
for calculating the total forces
(except drag) and moments on a slender
configuration will be the counterpart
of a method originally due to H. Blasius
(ref. 15) for obtaining the forces and
moments on a two=dimensional body of
arbitrary shape immersed in a steady p,dz
incompressible stream.® This analysis,
although not suited to the calculation oy
of total drag, will nevertheless take
proper account of the local forces
associated with leading-edge suction.
Consider a lamina of the slender air-
plane, cut parallel to the yz plane,
of thickness dx 'as shown in the sketch.
One can write immediately the differ-
ential 1ift and side force on an elew«
mental area in terms of the local
pressure Py on the body:

I

%L = py dy dx
and (8)
%Y = - pp dz dx

Now, by introducing the complex variable ¢ = y + iz, one can express
the differential complex force as

32Y =« 1 8L = = py dz dx - i p; dy dx = - i py dx df (9)

where ¢ 1is the complex conjugate of {. In a similar fashion, the
differential rolling moment about the =x axis can be expressed as

d2L| = - Py Z dz dx - P1 ¥ dy dx = = P1 dx R(gdg) (10)

where IR denotes the real part. Further, the differential yawing and
pitching moments about the pivot point =x = c3; are given by

BN -1 d2M = - (837 - 1 @®L) (x = c1) = 1 pa(x - ) ax af (11)

Integration of equations (9), (10), and (11) gives for the total forces
and moments

SThe method of Blasius has been extended to two-dimensional unsteady
incompressible flows by L. M. Milne-Thomson (ref. 16) and recourse will
be had to many of hisg technigues throughout the present analysis.
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Y-iL=-i£Z&fP1dE ]

il/PZ(X - Cl)dx\jf P1 dE
[e]

-Rfoldxfplgaz

where the contour integrals are taken round the boundary of the airplane
cross section in the positive (counterclockwise) sense. Before these
integrations can be effected, the pressure p; must, of course, be
expressed as a function of the complex variable €. Toward this end,

it will be convenient to introduce two new definitions pertaining to
velocities in the fixed and moving coordinate systems. First, the square
of the speed of a point fixed in the xyz system can be written as

S

N = iM (12)

and
L'

s

V12 = U2 + (V + p2z)° + (W - py)® (13)

Second, it is noted that the square of the fluid speed relative to the
Xyz system is given by

a® = u? + V2 4w = (O + Up)T 4 (9, - V - p2)® + (9, - W + py)°
(1%)

so that, neglecting ®,° in comparison with ?y2 and 9,2, one can write
equation (7) in the form ;

Py _ 1L =2 1.2
7% =~ - 5 4 + 5 Va¥ + const. (15)

This expression will now be formed as a function of ¢ through the
introduction of the complex variable R =V + iW and the complex
potential F =@ + iV,

The speed V3 1is immediately expressible as
Us® + [(V + pz) + i(W - py)] [(V + pz) - i(W - py)}

Uo® + (R = ip§) (R + ipl) (16)

Vv, %

while the components vy and wyp of the relative fluid velocity are
related to F through the complex velocity by

vr-iwr=%%-(v+p2)+i(w-py)=%Fg-f{-ilﬁz (17)
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Furthermore, at the body sur-
face it will be seen from the
sketch that

Vo + iwp = qgelf +

1]
—
el

0
]
[
5
S
]

so that
vy = iwp = (g + igy)e~1?
(18)
where qg and g, are the

tangential and normal com=-
ponents of the transverse

relative velocity and 6 is the angle defined in the sketch.
parison of equations (17) and (18) gives

. dr = .7
ag + 1qn=<3§--R -1p§>e19

from which

aF :
6" = <d€ R - 1p§> 210 . piq <d€ R - 1p§> elf - g7

Tt is now noted that (see sketch above)

2+t = f + g = q” - U - 2U.%

2
10 - pj aF _R - ipt \elb
> e2l 21qn(d§ R 1p§> et

(g7

11

(19)

(20)
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Finally, the boundary condition
at the body surface requires that the
normal component of the fluid velocity
relative to the moving xyz system be
equal to the normal component of the
forward flight velocity. Let C be
the contour of the airplane cross
section in the plane X = const. and
let C, represent the projection on
that plane of the contour at x + dx
(see sketch). If Vv 1is the outward
normal to C at any point, and dv
Y is the distance between C and C,

measured along the normal, then the
c above boundary condition is, to the
present order of accuracy,

dv

q.n = UO % (21)

Thus the pressure relation of equation (15) can now be written (for
points on the airplane surface) in the desired form

. 2
. 1 dF — .- R . d. dF -_— s

% (R - ipt) (R + iﬁz) + const. (22)

Reduction of the integrals.- Before making use of equation (22) in
writing the integrals for the forces and moments, it will be useful to
notice from the sketech on page 11 that the differential distances on the
body contour in planes x = const. are related by the angle 6 so that
dy =ds cos & and dz = ds sin 6 where ds 1is the differential arc
length, positive counterclockwise. Hence,

dC = ds eie; dE = ds e'ie; dE = dg e-216 (23)

so that the first integral of equation (12) for the complex lateral force
can be written, after expanding the squared term in the pressure relation,
in the form
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Y - iL = ip fldxf ?.a¢ + ionfldxfCdeE+
o) Yo
igfzﬂfp<%-§— 2d§+i§fldxf(§+ip-§)2d§-
o .
ip Ol_ﬁdxf%%dﬁ+ppf f‘; at +
pUg J/d dx 3: 3t ds = pUy J/\ j{‘dv (R + 1p§)ds -

i 2 f f (R - ipt) (R + ipl)af (24)

Note that the congtant term in the pressure relation contributes nothing
to the contour integrals of equation (12).

The nine contour integrals of equation (24) can be divided into
three types: (a) integrals that do not depend on the velocity potential;
(b) integrals containing the real potential @; and (c¢) integrals con-
taining the complex potential F. The first type can be integrated at
once and these will be dealt with first. The second type will be reduced
to integrals of the third type by determining the stream function on the
boundary, and the third type will then be handled by the method of
residues.

Tt is first noted that f -g-x‘-’ ds 1is simply the rate of change of

cross=sectional area S and that \f[ E-%E ds is the complex conjugate

of the rate of change (in the x direction) of the moment of cross-
sectional area. Thus, one can write

\jf = (R + ipC)ds = %% ip é&-(sfg) (25)

where Z; is the complex conjugate of the position of the centroid of
area of the cross section.

The other two integrals of equation (24) that do not depend on the
velocity potential can be conveniently evaluated by the use of Stokes'
theorem which can be stated in complex form as (see ref. 16, p. 130)
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j(\ f(C,E)dE =
or

§ 2, Dat -
where S

Eif
S

is the area enclosed by the contour.

NACA TN 3283 -

(26)
- 21 {g‘ SE ds

Thus, using the first

form of equation (26), one can write

f (R + ipb)Zat =

where S
second form of equation (26),

# @ - 1pt) @ + 15DT -

Thus, all the integrals of the first type

evaluated.

Before introducing the stream

: in(R + 1 s -
21 fsf 2ip(R + ipt)d

is the airplane cross=sectional

.

- bpsS(R + ipt.) (27)

area. ©Similarly, from the

- 2pS(R +'i§Ec) (28)

discussed above have been

function for the evaluation of the

first two integrals of equation (24), it is well to note that the time
differentiation can be taken outside the integral sign with no diffi-

culty, but the x differentiation

gration is itself a function of x.

jopcpxd"g'=%fcpdf-fcwz%zl

is the contour of integration round the airplane cross section

where C

cannot since the contour of inte-
It is shown in Appendix A that

f Ny 4
ox

C

and the surface of the airplane can be expressed either as

Z

1l

or

It

y

Corresponding to these expressions
for the slopes of the surface

Zl(XJ.Y)

Yl(X) z)

for the surface are the expressions

BZl - . dv/dx

ox cos O
and

oYy _ dv/dx

ox sin 6
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-

so that, recalling the relations
of equations (23), one can write

fCPXdE=§a;fCPd'§'+
a .
j{‘aﬁ.(¢% + 1®y)ds

= gi j[‘QdE + ij{ﬁgi %% ds
(29)

ds

Now, in order to express the

required integral LjFCPdE in terms

of the complex potential through

the relation @ =TF + iV, the stream
function on the boundary will be
obtained from the boundary condition
of equation (21). That is, the
total outward normal of the fluid velocity in the plane x = const. is
given by the sum of q, and the normal velocity of a point on the
boundary considered fixed in the xyz system. Hence, (see sketch),

‘gg = (V + pz)sin 6 - (W - py)cos 6 + Ug %& (30)

and it is recalled that sin 6 = dz/ds and cos 6 = dy/ds. The sense
of ds is indicated by the arrow along the contour. Thus, integrating
along the contour, one finds that the stream function on the surface is
given by

N1~

vzZ - Wy + % Y- + Uo/1 %% ds + G(x,t)

where G(x,t} is an arbitrary function of x and t. Now Vg can also
be expressed as a function of the complex variables € and R by noting
that '

I(RY) = vz - Wy = - £ (R¢ - D)
and

¥ o+ 2 =t
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whence

Vo= - LR -RD + 1otl sy, f 2 as + 6(x,t) (31)

The integral ‘ff ®df is now expressible in terms of the complex poten-
tial since @ = F o+ iV and the integral \j[\WdQ can be evaluated from

equation (31). That is, if one sets V¥ =V, + Vi where ¥; represents
the integral term of equation (31), then

fwdE=fwan+fwldE=f voal + 18], -ffdwl (32)

Now, V¥; taken once round the contour has the value Uo\j[ — ds or
simply Ug %% and it is recalled that J{\Q-—— ds = é% (Sg;), so that
upon evaluating j{\Wde by the second form of Stokes' theorem (eq. (26))
and noting that j[‘G(x,t)dE = 0, one finds

f ¥t = -8(R + 158) + Uglo L - up & <s§c> (33)

where CO is the complex conjugate of the point at which the integra-
tion was begun on the boundary. The final expression for \fCCPdC

is therefore

fﬁpd"g_ =f-15d-§--+ i fﬂfdf =j[§df+ U4 €q %;S{- - i8(R + ipGe) - iU -(%}-{(s_fc)
(34)

and the time derivative is

f@g?:—aﬁf@c@:—a—; Fal - is@% (35)
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Of the remaining integrals in equation (24) there is one which still
requires modification before the method of residues can be applied.
Specifically, since F = F + 2i¥ one can write

jfEdF=f'§-(d§+21d1!f)=f§df+21f€d\li

and the second integral can be integrated by parts using equation (33)

and noting that V¥ taken once round the contour has the valus Uy %ﬁ.
be
The resulting expression is
f ¢ ar =f CaF + 21S(R + ipL,) + 21U a@_ (st,) (36)
b4
so that equation (24) for the complex force can finally be written
(after collection and cancellation of terms) in the form
1 - — 1 = -
Y - il = ipL/F dx ji-j{‘FdQ + pd/\ S éﬁ dx + ipUg j{\FdQ -
o ot A ot
x=1
10U, f Fal - oUg [UOCO 9B _5(® + 2ipt,) - Uy X (s C)J +
o ax dx x=1
2
1 . [ 1=
i-efpdx /d—F- ag - pUp Rg'—s-dx—ip Rdx JF +
2/ \ a¢ ax
o 0 Yo
1 SR 1 _ -
ppu/w dx.ﬁ Car + ippd/1 S(R + ipl,)ax (37)
o] ¢ o]

It should be pointed out that several terms have vanished by virtue of
the fact that the x axis passes through the airplane nose. In par-
ticular, note that S =, =0 at x = 0.

The complex potential.- Although equation (37) appears quite-
unwieldy, all of the contour integrals are now in a form which admits of
evaluation by the method of residues. For a body moving through still
air, as in the present problem, all velocities vanish at infinity and the
complex potential F can be expanded in a Laurent series of the form

F = B(x)Int + Z éf-l-(é‘-»gl-»"l’l4+ D(x,t) (38)

n=1
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where B(x) is a source strength and the coefficients Ap(x,t) give the
intensities of all the higher order singularities representing the
‘desired body shape and motions. This expansion applies only for large
values of €, but since there are no singularities outside the body, the
contour integrals can be evaluated around a contour sufficiently large
to insure the validity of the expansion. The arbitrary function D(x,t)
ig of no concern here since it can contribute nothing to the contour
integrations. For the determination of drag, on the other hand, this
function would be required.

From equation (38), the derivative of F is

(o]
& _B
¢ ¢t n+1
so that n=1
aF \* Ef.-%‘i
at ¢2 ¢ n+1 gn+1
n=1 n=1

Now it is seen that the residue of (dF/dC)2 is zero s1nce there is no
l/C term in the expansion. Therefore,

aF \2 aF \?
~— )} dC = 2%i Reg{ —= =0
g () <dz> (39)
Also
de f — df = 2xi Res< ) = 21iB (40)
Similarly, if one writes the conjugate function
o0 —
- B(x) 1n€ + Z (), 5y, ) (1)
. - q
it follows that
J[ Fa€ = - 2niB{, - 2nih; (42)

and

fE—=j[E§-F%dE -2ﬂ1Res<C > + 2mih, (43)
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The coefficient B (and, hence, B) can be evaluated by calculating the

integral ‘j[‘gg ds 1in two different ways. Thus
n

P oV : N av . as
on ds = Bsds—[“C_Uofdxds—Uodx

and, by virtue of Gauss' theorem,

a5 an
Q‘Eds=f<5—q)> rlde=f—]3—’-rlde=2n3
on o \or r=rq o T1

where 13 is the radius of a circle enclosing the body cross section.
Hence, it is seen that

B=5=20138 (k)
21 dx

The final expression for the complex lateral force is obtained by
using equations (39) to (L44) in rewriting equation (37). That is,

Y - iL = 2mpUpha, _; + pUo l:S(R + 2ipt,) + Uo % (sgcy} +
x=1

] 1 = 1
2ﬁp/§.@é.dx+pfs§5dx+2nippf Ldx +
Jo L oS A

t
[ —
ippk/p S(R + ipf.)ax (45)
o
: . 3A; _ OR
For the case of steady straight flight i;— = 5* =p =0 ), the complex
t t

force of equation (L45) reduces to that given by Ward (ref. 5). Although
equation (45) applies to slender airplanes having cross sections of
arbitrary shape, it is of interest that in a large number of practical
cases, it is possible to choose the x axis so as to place the center

of crosgs-sectional area always along the axis and thus to make gc

equal to zero. The simplest example would be an alrplane having mirror
symwetry of area about both the y and z axes. If the wings have no
thickness, this places no restriction on the wings themselves with regard
to number of wings, arrangement, dihedral, camber, etc. Equation (U45)
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as it stands gives the total side force and 1ift on a slender configura-
tion having a nose at the forward end. BHowever, it can also be used to
give the contribution to these forces of a segment of the airplane lying
between the planes x = 13 and x = lp by simply evaluating Y - iL for
1 =1; and 1 = l, and subtracting the results.

If one considers the transformation of the arbitrary cross section
in the € plane to a circle in the o plane

(= f(o) = 0 + E% ' (L46)

it can be shown (see Appendix B) that the dependence of the residue A,
(and, hence, A1) on the rolling velocity p is determined by the form
of f(o) and therefore by the shape of the airplane cross section. It
is found that A; is independent of p if a, vanishes and if f(o)
contains either only odd negative powers of o (n odd) or else only even
negative powers of o (n even). It can be seen that if n is odd then
f(-0) = = (o) and, hence, the cross section has symmetry about two
orthogonal axes. The statement can therefore be made that for airplanes
having symmetry about both the y and z axes (no dihedral) one can
determine the total complex force if he knows only the complex potential
due to pure translation in the yz plane.

An expregsion for the pitching and yawing moments can now be
obtained from equation (12) by a procedure exactly parallel to that used
in obtaining equation (45). Making use of the foregoing evaluations of
the required contour integrals, one finds that the resulting expression
is

t & k 3 [ (= o pirT
N « iM = = ETEQUO/ (x = cp) —*= dx - onf (x = c1) —[S(R + 2ipt.) +
o) BX o. sx

dx 0

— 1 — 1 -
Uoi(scc)]dx-enpl (x-cl)%‘%dx-pf (x-vcl)S-g-%dx

1 - 1 — —
2ﬂiopf (x - c1)Epax - ippf (x - c1) (R +1pE)s ax  (b7)
(0]

O

The evaluation of the integrals for the rolling moment L' is
somewhat different due to the additional € appearing in the expression
of equation (12), so that the integrand of. some of the contour integrals
appearing here will be nonanalytic in the variable of integration. This
precludes a direct application of the method of residues. Such an
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integral, which does, in fact, arise is & \jf t{dr. However, in this

instance it can be shown with the aid of equations (26) and (31) that

I fCQdF ffﬁdﬂr oSR(RE,) + Ug fﬁﬁ-——ds (48)

Evaluation of other required contour integrals by means of equations (26),

(31), and (38) yields
Rf(%%)z €at =

f EaF = - 2miA;

and it can be shown in a manner parallel to that of Appendix A that

Rfcpr;dc R< jfcpcd§> - X jf = iF (50)

s0 that the final expression for the rolling moment can be written in
the form

— A - 1_
L' = pUORj[ ptat + pr dx —%fcpgdc - ‘21‘[pr RA;dx =
(e} O

x=1

T - - l_
ppr S(RE, - 2R, )ax - onIf R a%{- (ste)ax (51)
0] (o]

(49)

or, since R@ﬁ)=%ﬂ@%

— 1 — 1 ‘
P 1 1 9 - R -
L' = EpUORf Fa(tet) + > pro dx atj[Fd(CC) 2np1/; RA;dx

x=1

_ Al
PR fZS(RCC - 2RE,)dx - onIf R 5('1;: (sbc)ax ‘ (52)
5 ,

@)
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In the case of configurations possessing mirror symmetry about both
the y and z axes (no dihedral), the general expression of equation (51)
can be greatly simplified. If one writes for such a case

P =VP, + WPy + pP, + @
where @2 and 3 represent pure translations along the y and z axes,
®, is a pure rotation about the x axis, and @' 1is dssociated with

the variation of cross section with x, it can be shown from symmetry
congiderations that

Rf@ZCdE=Rf¢3CdE=Rf¢'§dE=o
Rf@@dé—: pR\j[ <P4§dz

and, since ®, is the potential due to pure rotation about the x axis,

it follows that
R<-§—f®§dz> =0
ot

Therefore, recalling that gc’= O for configurations having symmetry
about the y and z axes, one finds that the general expression of equa-
tion (51) reduces to

Hence,

— l_
I =onpRj[(P4§dC - Qﬂplf RA;dx (53)
o]
x=1

and it has already been pointed out that for these cases A; is inde~-
pendent of the rolling velocity p. Thus, for symmetrical configura-
tions, the rolling moment has now been expressed as the sum of two inde-
pendent parts, one due to pure rolling and one due to pure translation.

STABILITY DERIVATIVES

The specific maneuvers to be considered here will now be defined
80 that stability derivatives can be determined. Rotations are performed
about the xyz (body) axes? at an attitude defined by the angles of

4Rolling about the wind axis can be treated as a special case by
the proper choice of the arbitrary body axes.
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attack and sideslip at t =0, and
accelerations are permitted in the &
fixed vertical and horizontal
planes. In particular, if the
angles of attack and sideslip at

t = 0 are denoted by o, and Bg,
respectively, then the velocities
Vand W at any time t are given
by (see sketch)

&

v

UOBOCOS pt + ’ MNP (/aﬂ,

y
Ugaesin pt = r(x = c1) / \\\;\\\</pf

W= = Uod,oCOS pt +

UoBosin pt = q(x = c1)

From these expressions one finds that

R =V - iW = (UgBp + iUgag)e™Pt - (r - iq) (x = c1)
and

Bﬁ . . ~ipt =int : N o

St 1ip(UgBo + 1Ugag)e~1Pt + e=1Pt (U B, + iUga,) =~

(# - 13) (x - c3) - 1tD(UgBo + iUguo)e=iPt

It will be noticed that in the above expressions, the velocity Ug (along
the x axis) is considered constant. This means that pure pitching and

yawing motions (q, r # 0) are performed at constant angles of attack and

sideslip, so that for such maneuvers the airplane follows a curved flight
path. Now, setting t = O in the above expressions, one finds

R = Ugp + iUoa - (r = iq) (x - 1)
and

g_i = UB + 1Uga = ip(UgB + iUod) - (r - iq) (x = cz) (54)

and these relations can be substituted directly into equations (L45), (h47),
and (51) for the forces and moments. It will be noted that the subscript
on & and é has been dropped. This means that for the rolling case

(p # 0). & and B of equation (54) are not the time rates of change of the
actual angles of attack and sideslip since & and B are measured in the
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fixed vertlcal and horizontal planes. The alternative would have been
to define & and B as, the actual rates of change of o and B (i.e.,

& =dg - Pp and B = Bo + ap at t = 0) in which case the coupling of
p with o and B would be obscured by the definition. This would lead,
for example, to a nonzero value of &Cm& when the maneuver consists of

pure rolling at an initial angle of sideslip. This seems undesirable.

In seeking stability derivatives for the general pfoblem under con=-
sideration, it will be advantageous to employ the transformation of the
airplane cross section to the circle (see Appendix B). In this way, it
will be possible to carry out differentiations of the forces and moments
explicitly with respect to the airplane motions and thus obtain the
stability derivatives in terms of the transformation without specifying
the complex potential. Thus, from Appendix B,

- —_ = .= — asa Aaa. —_
A; = Ra; -Rr02 -1p<aor02 + ayaq + 271 I8 .. > +Alo

I‘OE r04
' (55)
and therefore
S_-;_= g.; - rO .a_t - 1p(aor02 + 8385 + o - -) (56)

where a; is the coefficient of the l/G term of the mapping function
and ro 1is the radius of the transformed circle. It_is recalled that,
ag shown in Appendix B, Alo is simply the value of A; at a =B =p =

q =r = 0 and is therefore directly associated with the shape of the con-
figuration and the choice of axes.

The stability derivatives will be obtained by partial differentiation
of the forces and moments Wlth respect to each of the ten independent
variables a, B, Py 4, T, Q, B, D, q, r and second derivatives will be
included; that is, there will be derivatives of the types

2
oy - To

EORRRCS N

where all derivatives are evaluated at a =B =p=g=Tr =a =3 =D =
d =7 = 0. The reason for this choice (which is not customary) will
become more evident later, but it can be seen at once that all deriva=-
tives defined in this manner are constant for a given configuration and

that there will be "cross derivatives" of the type Cmqp which will

show the mutual influence of the longitudinal and lateral motions. Thus
the total rolling moment due to sideslip, for instance, will be expressg-
ible as
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Cy.¥=0Cy_ +af + BC + pC Foee s

g T Vip T Tlag T Frigg T Mgy

For the sake of consistency, all coefficients and derivatives are based
on the same reference area Sy and reference length lyp.

If equations (45) and (47) are rewritten with the aid of equations
(54) to (56), the necessary partial differentiations can be effected with
no difficulty and all the derivatives of the side force, 1ift, yawing
moment, and pitching moment are obtained. The derivation of the rolling-
moment derivatives is not quite so straightforward as the others since
the expression of equation (51) for the rolling moment contains integrals

of the type ]l‘jf 9fdf which cannot be handled directly by residues,

as mentioned previously. However, when this integral is differentiated
with respect to any motion except p or ﬁ, the resulting integral can be
related to one of the integrals already evaluated by residues. In partic=-
ular, if we write once more

P =V, + WP, + pP, + @

it follows from the boundary condition of equation (30) that

é.??.:y.d_l-;-zg_z.
on ds ds
or
R(tat) =ydy+zdz=-aaipéds
n

Thus the integral appearing in ClB, for example, will be

RJ[ tat = fq)a%c%'ds

But, by virtue of Green's Theorem (see ref. 13, p. 46),

fcpz-a-%ds f%éf’i?-ds

and again from equation (30) it can be seen that
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so that, finally, one can write

Rfécﬂf;dz-—uofcp@zﬂ-%lf?fdg
oB op

This latter integral has already been evaluated with equations (34) and
(¥2) to calculate CYP. Similarly, the integrals appearing in the other

rolling-moment derivatives can also be evaluated and expressed in terms
of the mapping function of the cross section. The actual differentia-
tions to obtain the rolling-moment derivatives are simple enough if one
notes that the order of differentiation of the poterntial @ is important
in that the expression of equation (51) has been written for.a specific
instant of time (t = 0). That ig, ? must be differentiated with respect
to time first, then integrated to give the rolling moment, and finally
differentiated with respect to the desired motion. Thus, since @ is
linear in the angles a and B asg well as in the angular velocities

P, 4, and r, one obgerves that

3% 3% % 3%

= = = = , + » =0
dodt ORdt  Opdt  dadp
and further that
%P 3P d%0 39
= — = — etec.
3t  da opdt  Idp

The resulting expressions for the stability derivatives are given
in table I, which is arranged so that all the side-force derivatives
appear in the first column, all the 1lift derivatives in the second, and
so on. It is found that a number of derivatives vanish identically,
that is, regardless of the shape of the cross section. As a matter of
fact, all but 84 of the possible 325 first and second derivatives vanish
identically. For obvious reasons, the stability derivatives that are
identically zero are not listed, but a definite pattern can be seen in
table I which shows, for instance, that all second derivatives of Cg,
Cy, Cp, and Cp vanish except those %nvglving. p and that there are no
gecond derivatives involving &, é, P, g, or r. It should be noted that
the order of differentiation is immaterial so that CLap = CLpa’ etc.
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(If this were not the case, the total number of possible derivatives
would be 550.) In the next section, a total of 49 relationships are
found among the stability derivatives, so that, at most, only 35 deri=-
vatives need be calculated directly for any given configuration. It is
important to note that the mapping function must be expanded in exactly
the form of equation (U46) before the proper coefficients can be obtained
for use in the formulas of table I. In particular, the coefficient of
the o term must be unity.

Relationships Among the Stability Derivatives

From the general results shown in table I, a number of interesting
reciprocal relationships which are independent of the configuration are
observed at once. For instance, the side force due to angle of attack
is equal to minus the 1lift due to angle of sideslip (CYCL = - CLB).

Similar equalities among the various derivatives are found throughout

and are listed in table II. It should be noted at this point that many

of the relationships of table II would be obscured by evaluating the deri-
vatives at o # O, as is customarily done.

Beyond these simple equalities, there are some interesting relation=-
ships which can be brought out by an integration by parts. For example
(see table I),

Oy = - =2 fl(x - ) %[2::11(51 + r6?) - 8] ax

& Splr

.
Srlr {%Z - cy)[2nR(ay + rf) - <) ) u£\ [2nR(Ey + r ) - S]d%}

- C .
CLq + LG,

But from table I it is seen that

Thus, one finds that
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This is a particularly interesting relationship in that it enables one
to calculate from the static 1lift- and moment-curve slopes a gquantity
which would require dynamic tests in the wind tunnel for a direct exper-
imental measurement. Another quantity of interest in this category can
be obtained by integrating by parts the expression for Cmq‘ given in
table I. The resulting relation is

. |
el
Cag + Cug ( - ) CL,, (58)

which states that the damping in pitch is proportional to the lift-curve
slope. This result, which is independent of configuration or choice of
axes, was obtained previously by Bryson (ref. 12) whose analysis was
implicitly restricted to bodies having a straight-line axis (i.e., no
camber of the body or the wings). The apparent mass concept, which was
the basis for the analysis of reference 12, will be discussed in a later
gsection. Other relations obtained here in a manner similar to that for
equations (57) and (58) are given in table II.

.

It is of some interest to look into
the damping in pitch of wing-body combi-
nations on the basis of equation (58).
Since the lift-curve slope is determined
entirely by the trailing~edge configura-
tion (see table I), it is evident that a
wide variety of airplanes can be treated
at once quite simply. If one considers,
for instance, a configuration whose
trailing-edge cross section consists of
a circle with symmetrically placed
straight lines, as shown in the sketch,
it is known from the transformation (refs.
4 and 12) that the lift-curve slope is
proportional to the quantity

2

<’l - E9-2--+ 292:).

So 8o

Thus, from equation (58), it follows that the ratio of the damping in
pitch of the wing-body combination to that of the horizontal wing alone
is also given by this quantity. It is important to note that any changes
in shape ahead of the trailing edge (e.g., camber and thickness of the
wings, variation in fuselage shape, etc.) are immaterial. Thus, for such
configurations, the damping in pitch isg plotted in figure 1 and it can
be seen that (1) the body is always destabilizing, and that (2) this
effect is a maximum for a body diameter to wing span ratio of lAJET.

The damping in pitch is made a maximum, on the other hand, by bringing
the body to a point (or a line) at or ahead of the wing trailing edge.
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The relationships given in table II are all independent of the con- .
figuration, at least to the order of the present analysis. It can be
seen from table I that for configurations involving any symmetries (for
example if S§c = 0), there will be additional relationships among the
stability derivatives. Such a case will be considered in the section
titled "Applications of the Theory."

APPARENT MASS

Perhaps the most striking feature of the results presented in table
T is the frequent appearance of the quantities [2nR(3; - ro°) + S,

[2xR(Fy + ro2) - S), and 27K(3;). In fact, since both ro® and S are

real, the first two quantities are simply the real parts of

[on(ay = r2) + 8] and [2x(8; + rZ) - S], respectively, while the third
can be written as the imaginary part of either of these bracketed quan-
tities. It now becomes evident that a large number of the stability
derivatives depend only on these two bracketed quantities whick, in turn,
depend only on the shape and size of the airplane cross section. As a
matter of fact, it can be shown (ref. 17) that the quantities

oR[27(T, - ro?) + 8] and pR[2n(Fy + ro®) - S] are identical with the
integrals defined in incompressible flow theory as the additional appar-
ent mass of the cross section in the y and z directions, respectively.

These are given by J{\p¢%dz and L?[‘pquy (refs. 13 and 17) where @,

and P5 are the velocity potentials for unit velocity of the cross sec-
tion in the y and z directions.

The mathematical basis for the use of the apparent mass to calculate
the transverse force derivatives of slender bodies in steady flow (as done
by Munk and Jones in refs. 1 and 2) was established with Ward's formula-
tion (ref. 5) of the general expression

Y - il = ionf Pat (59)
x=1

since a differentiation with respect to angle of attack, for example,
yields '

oY - 4iL) _ | 0P 7 . 3
—-———-—-aa 1 = 1pUO g g =R -‘1DU02f CPsdg
x=1

x=1

Hence, taking the imaginary part of both sides, one finds
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Ly = pUo® f Pedy = Uo?(mag) x=1 (60)
x=1

where mgg 1is the additional apparent mass of the cross section in the

7z direction for pure translation in the 2z direction. It thus becomes
clear that the lift-curve slope is, 1in all cases, given by the apparent
mass mgg evaluated at the base of the body. If equation (59) were
differentiated with respect to angle of sideslip rather than angle of
attack, then the derivative Lg would be found to involve mgp rather
than mgg, where mgz 1s the apparent mass in the 2z direction for pure
translation in the y direction.

There remains now the question of the relation between the apparent
masses and the total forces given by equation (59); that is, under what
conditions can the total forces be calculated from the apparent masses?
This can perhaps best be clarified by setting

cp = VCCPZ + WCCPS + (P'

where the first two terms represent rigid-body translations of the cross
section in the y and z directions and @' represents variations in the
shape and size of the cross section with x. For the steady case, the
velocity components of the centroid of the cross section are given by

4.
Vo = vp((p v 2
dx

and

dz ;
wc=-Uo<a-—£
dx

so that equation (59) can be written in the form

Y - il = 1U2 [(B + e (mgp = imgs) - <a, - S.Z..‘i)(mss - imgs)] +
dx dx

x=1
ipUg f orat
x=l
dye dz
Note that the quantities B + ;;— and a = Ef“ represent the angles
X X

that the line of centroids of the cross sections makes with the flight
direction (i.e., the local angles of attack and sideslip). It can now
be seen that the complex force of equation (59) is given by the apparent
masses and the angles of attack and sideslip of the base cross section,

provided that jfm'dﬁ = 0.

x=1
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As an example, consider first a cambered body with no wings whose
cross sections near the base are all circular. In this case

Py =k Zn/(y - yc)2 + (z = zc)2 so that fq)'dﬁ' = 0 and the

x=1
apparent mass gives the side force and 1ift as well as their derivatives.
On the other hand, consider a flat plate having deflected partial-span
flaps. Here (when the plate is alined with the flight direction), the
entire potential at the trailing edge is given by Q'x=l whose integral

@'dz does not vanish. Hence, in this case, the lift-curve slope is

x=1
given by the apparent mass but the 1ift is not. This is also true for a

body of revolution having flat-plate wings at incidence to the body.

For the unsteady case, as a result of a recently published report
by Miles (ref. 11), one can show that the stability derivatives can also
be obtained from apparent mass considerations. This is most easily seen
from the general expression of reference 11

_ ! - |
Y - iL = ionfcpd§+ ip%f‘dxf@dg (61)
(0]

x=1

since, for example,

o(E) i s [orf ok )-8 [ f o

so that the imaginary part yields

U2 Nl
Lg = —9-f mgadx (62)
i O

It should be noted here again that the total forces themselves are not,
in general, given by the apparent masses. Miles also shows in reference
11 that the rolling moment about the wind axis is given by

. _Ql_pUORf Fa((l) + L p__;af § wa(td) (63)

Now, by reasoning exactly parallel to that for the steady case, it can
be concluded from equations (12), (61), and (63) that in all cases all
of the stability derivatives (except drag) for rigid slender bodies can
be obtained from the apparent masses (or, more generally, the "inertia
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coefficients"). Also obtainable from the inertia coefficients of the
cross sections are (1) the total side force and 1ift, provided that

\jFQ'dE = 0, (2) the total yawing and pitching moments, provided that
x=1

1 —_
b/q (x = cp)dx éi.j{\w'dﬁ = 0, and (3) the total rolling moment, provided
0 X '

that R k}? 9'tal = 0. It is interesting to note that conditions (1) and
x=1

(3) involve symmetries of the cross sections only near the base, but that
condition (2) is more stringent and is satisfied, for example, by having
bilateral symmetry of the cross sections over the entire length of the
airplane.

An alternative form for the integrals representing the apparent
masses or inertia coefficients can be shown to be identical with the
integrals representing the kinetic energy of the fluid associated with
any desired unit velocity (linear or angular) of the cross section; for

o9,
example, j[\p®sdy = = J{\p¢g Efi ds. However, it is essential to note
n

that it is only for rigid-body motions of the cross section (as repre-
sented, for example, by @s) that the two integrals are identical, since

..y

only for such motions does 3
g

at the boundary. Thus, it can be

on
' : OP . b e o
geen that o®P'dy £ - 0P E;m ds even if @ is given proper
n
dimensions by dividing by a velocity.

Inasmuch as relatively few inertia coefficients have previously been
calculated, there seems to be little advantage (other than brevity) in
expressging the stability derivatives in terms of these coefficients. It
is felt that the formulas of table I involving the mapping function will,
in general, be found more useful, although one should certainly make use
of any of the coefficients already calculated. In this connection, the
reader is referred to a recent paper of Kuerti, McFadden, and Shanks
(ref. 17) in which the apparent masses of a number of interesting cross
gsections are listed for simple translation in the y and z directions.

The apparent mass integral \jf Pgdy was also calculated for a few

shapes in connection with minimum drag problems in reference 18. How=~
ever, the integrations there were (for the rectangle) carried over both
the exterior and the interior of the cross section since the configura=-
tion treated there was indeed a hollow rectangle made up of four thin
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wings. It is necessary then, in order to obtain the desired quantity
[2nR(a; + roZ) = 8], to subtract the cross-sectional area (as pointed

out in ref. 17). It should be pointed out in this regard that all the
results of the present paper are for solid bodies. Thus, if the body con~
tains a jet, one must add to the calculated 1ift the negative rate of
change of momentum (in the =z direction) of the air passing through the
jet. For a simple bent, circular, thin-walled pipe flying approximately
along its axis, a jet exit velocity equal to the flight velocity Just
doubles the 1lift given for the solid ecircular cross section.

The tabulated values of \jr Pgdy in reference 18 have been adjusted

for this internal flow and additional values have been calculated here to
extend the range of the variable. The results are plotted in figure 2 to
show the increase in lift-curve slope and damping in pitch obtained by
use of a blunt trailing edge of rectangular cross section, of vertical
end plates near the trailing edge, and of a biplane with sharp trailing
edges. It will be recalled that both the lift-curve slope and the damp~
ing in pitch depend only on the trailing-edge cross section, so the
results of figure 2 are independent of wing thlckness, camber, body shape,
etc., ahead of the trailing edge.

It might be mentioned

here that if the apparent —
masses of a given cross sec- ir
tion in two orthogonal

directions are equal, then

the apparent mass of the
cross section is independent
of its direction of trans-
lation. This follows from
the fact that the momentum
vectors and the velocity
vectors add in exactly the
same fashion. In reference
17 it was shown that the
cross sections in the sketch
possess this important property. It also follows, then, that a; = 0 so
that many of the stability derivatives vanish for such configurations
(see table I).

n fins n comers
n=3 regular polygon

APPLICATIONS OF THE THEORY

In this section, the results of the foregoing analysis will be
applied to the calculation of the stability derivatives for several more
or less special configurations. The first problems to be treated here
will be concerned with the introduction of wing thickness and camber as
parameters since the present analysis is applicable to unsymmetrical
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configurations. Then, although the finned body of revolution has been
treated by many authors (e.g., ref. 4%, 9, 10, and 12), a plane wing-body
combination will be considered in order to investigate the effect of the
squared terms in the pressure relation. Finally, stability derivatives
will be calculated for a wing-body-vertical-fin combination.

Wings with Thickness and Camber

The quantity "camber,"” as introduced here, may be complex, the

imaginary part corresponding to the conventional camber in the vertical
(xz) plane and the real part corresponding to a lateral camber or
"wiggles" in the horizontal (xy) plane. Perhaps the simplest configura-
tion of interest for the present problem can be made up of elliptic cross
sections whose eccentricity and position in the lateral planes are arbi-
trary functions of =x. The required transformation for such a configura-
tion is (see sketch) '

)

¢ b
2 2
£ -ty =0+ =B (64)
ho
so that
2 2
a =« b
ag = Qc; a; = N 5 8 =8z = + .« » =0
a+b

and the radius of the transformed circle is r, = - These guantities

suffice for the calculation of many of the stability derivatives directly
from table I. However, for the rolling derivatives, the complex potential
is, in general, required. The complex potential in the transformed cir-
cle plane can be derived from reference 16, page 239, and is given by
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Ho(a + b)(b cos 7 + ia sin 7)

F1(c) =B ln o -

20
2 [v2]
ip(a® - v¥)(a + b) kn
160° * o (65)
=2

where H, and 7 define the lateral velocity of the centroid given by
. d
Hce17 = R + UO "a% - ipgc (66)

The logarithmic term of equation (65) permits a variation in size of the
ellipse with x. The series term represents the portion of the potential
required to meet the boundary condition of equation (21) when dv/dx is
arbitrary (warped body); this permits a variation of the eccentricity

b/a with x. If now the potential of equation (65) is transformed to the
£ plane by means of equation (64) and the coefficient of the 1/{ term
is evaluated at R = p = 0, it is found that

2 —_

[9) db da b at 2 _p2 )\ at
mo=- 2 (aRav )y (azb) Lo,y (o)
(67)

With this result, one can obtain all of the stability derivatives except
Clp and Cz§ directly from the formulas given in tables I and II, for

any given configuration in this category. Two examples will now be
considered.

The first example will consist of a cambered elliptic cone; that is,
an elliptic btody with constant eccentricity whese span is a linear func-
tion of x. The body axis will be chosen to pass through the center of
the base and the camber line will be represented by a sine curve
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Ze = O sin ﬂx/c as shown in the
&= sketch. This body can be thought
¥ z of as a special case of a cam=-
bered triangular wing having a
blunt trailing edge. The camber,
of course, must be sufficiently
i small to insure the validity of
the slenderness approximations.
c On the other hand, the thickness
| & ratio as indicated by b/a is
arbitrary. ‘Thus the range of
b/a from the flat plate
-- i (b/a = 0) to the circular cone
| (b/a = 1) can be treated as one
problem. It should be mentioned
that the choice of body axes is
arbitrary so that maneuvers about

—— N
—— N

g ~— any other set of orthogonal axes
z x fixed in the body could be
b 4 sec. 5-8 handled equally well. A few of
C:f"___fff:zﬁé> the interesting stability deri=-
Y vatives have been calculated for
this configuration by the formu~
sec. A-A las of tables I and II and the

derivatives Cnp and Cnap are
plotted in figure 3. It is seen that Cnp is always negative for posi-

tive camber, is linear in the camber, and increases with the thickness.
On the other hand, Cnap’ which is negative in all cases, is independent

of the camber and decreases to zero as the thickness ratio increases to
one.

As a second example of a configuration having elliptic cross sec=
tions, the "wing-like" shape developed by Squire (ref. 19) is chosen.
This shape has a variation of eccentricity of the ellipse such that all
profile sections (except the midspan section) have a rounded leading edge
and a pointed trailing edge. In addition to this particular thickness
distribution, for the present problem the wing will be given a camber
identical with that taken for the elliptic cone; that is, z, = d sin ﬁx/c.
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Thus, the wing to be treated
here has the shape illustrated
in the sketch. For this wing,
the major and minor axes of
the ellipse are given by

8~

a=%x (68) !
and c

b = %2 (e - x)x

Q
|
i N

where A 1is aspect ratio and
t 1is the maximum thickness
(thickness of the midspan sec-
tion at x = c¢/2). Some of
the stability derivatives have
been calculated for this wing
by the formulas of tables I

and IT and Cpn.,, and Cp are
P ap C:f"* __::Z§EB

plotted in figure 4. It is 4
found that Cnp displays, in

. . sec. A-A
general, the same variations

with camber and thickness as
did that for the elliptic cone. However, Cnap displays a trend opposite

to that for the elliptic cone. That is, Cnap

thickness, so that the angle~of-attack contribution to the yawing moment
due to rolling is apparently heavily influenced by whether the trailing
edge is blunt or sharp. The derivative CYP was also calculated for

is seen to increase with

both wings and was found to be independent of the thickness. In fact,
for either wing, for the axes chosen,

28
Cyp = - Cig =7

While this result appears to contradict the corresponding relation found
in reference 12 (CYp = CIB), it simply highlights the fact that the analy=-

sis of reference 12 does not include camber although it could be extended
to do so. Clearly, if © = O the two results are in agreement. The
derivative Clr was also calculated for both cambered wings and was

gimilarly found to be independent of the thickness. In fact, Clr was
found to have a value equal to Cnp for zero thickness; that is,

€y, = = 0.4508 &/span.

It is interesting to note that since the trailing-edge cross section
of the Squire wing is a straight line, any stability derivatives that
depend only on the mapping function of the trailing~edge section (see
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table I) will be the same as for a flat-plate wing (e.g., CL@’ CYB, CLB,

CLq, ete.). It is important also that for an elliptic cross section, the

quantity [2n(8; + ro®) - 8] (apparent mass in the z direction) is inde-
pendent of the eccentricity, depending only on the semimajor axis a,
while the quantity [2n(&; - ro®) + S] (apparent mass in the y direction)
depends only on b. Thus it can be seen from table I that all of the
purely longitudinal derivatives (CL@’ CLq, CLg» CLq, Cm,» Cmq: Cmg,» Cmé)

are the same as for a flat-plate wing of local semispan a. Similarly,
all of the purely lateral derivatives (CYB, CnB’ etc.) are the same as

for a flat-plate wing of semispan b if we replace B by minus a, Y
by L, and N by M. One can see, therefore, that the ellipse is a very
special cross section and tends to obscure some of the effects of thick-
ness. For instance, it was seen in figure 2 that [27R(3; + r2) - Sl
for a rectangle increases with the height of the rectangle and that =
blunt trailing edge of rectangular cross section will therefore give an
increase in lif‘t-curve slope over a flat plate and a correspondlng
inerease in the damping in pitch.

For the evaluation of rolling moments it would appear from equations
(51) and (52) that some of the integrations might be quite difficult
because of the nonanalytic character of the integrands. In fact the
stability derivatives Czp and CZ@ contain the same nonanalytic inte-

grands (see table I). However, the integrations can sometimes be advan-
tageously carried out in the transformed circle plane by the method of
residues. For a configuration having an elliptical cross section at the
trailing edge, for example, the calculation of the damping in roll Cy

becomes quite simple with this technique. Specifically, from table I,

srzr Rj[ a(ee) =

Now, since equations (6& and (65) for the required transformation and
complex potential are already in the form of power series in o, and
since on the circle boundary oG = ro=, one can immediately write the
integrand as a power series in o¢ and therefore use the method of resi-
dues. It is found for this case that the residue of this series is

7/

C, oF a(88) 4 (69)

: 2
simply = (ag® = bgsZ)" where the subscript refers to the trailing edge.
8

Thus the damping in roll is given by

2
1 i 2 ‘ nagt bo?
¢, = R2ﬂi—a2-b2)]}=-___2__<l___. (70)
o 5.2 { {8 (80% - o 4S, 1,2 a2
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It is seen from equation (70) that for the Squire wing (by = 0) the damp=-
ing in roll is independent of the wing thickness and camber, remaining
always at the flat-plate value as given by Ribner (ref. 3). For the
elliptic cone, on the other hand, Clp depends on the thickness and the

effect of a blunt trailing edge becomes apparent. Values of Clp for

these cases are plotted in figure 5. It should be noted in general that
since OF/dp is independent of any translational velocity- in the cross
plane, the damping in roll is not affected by camber.

The device used above to permit the use of the method of residues
can always be employed; that is, since OF/dp, §, and { are all express-
ible as power series in o and ¢ and since o and ¢ are related by the
radius of the transformed circle, the integrand becomes an analytic func-
tion of the variable of integration in the transformed plane. However,
if the transformation itself is an infinite series (as is the case for
the finned body of revolution), then the residue and consequently the
damping in roll will emerge as an infinite geries involving combinations
of all the coefficients of the transformation. This series is, in gen=-
eral, considerably more complicated than that entering into derivatives
like CYP. :

Plane Wing-Body Combination

It will be of some interest to consider here certain aspects of the
plane wing-body problem in view of the fact that some stability deriva-
tives had been calculated (see ref. 10) before it was generally realized
that the squared terms in the pressure relation must be retained. A
number of the simpler derivatives can be obtained quickly from table T
if the mappring function of the cross section is known, and one of these
will now be compared with the corresponding derivative obtained in ref=-
erence 10 without the squared terms in the pressure relation. The
required mapping function is an infinite series obtained by making two
successive Joukowsky transformations (see ref. 4), and it is found that

S

8o = gc

1 a2 N o
ay = m 8 + s = a

(71)
T = = (js + a?‘>. &
5 = = =N
8

8p =84 =85 = . » « =0
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where s is the wing
semispan and a is
the body radius (see

F_~_5._4 sketch). Hence, many
of the stability deri=-
a
_(;; / >\ tue of the fact that
N y \\\\_’//j a; is real (see table

N

vatives vanish by vir=-

I). It is noted that

s, a, and Cc are here

all arbitrary func-

¢ - tions of x (within

the slenderness
approximation) and

the body will have a straight axis (plane wing-body) only if . is a

linear function of x. Also, if Cc is not a linear function of x

then the evaluation of Ay (which is required for some derivatives)

becomes a problem which amounts to determining A; ‘¢f the complex poten=-
tial for simple translation. This will be done shortly.

For the pur-
pose of illustrat=-
ing the influence
of the squared
terms in the pres=~
sure relation, the
rolling moment due
to sideslip will be
calculated for the
special case of a
flat triangular
wing mounted sym=
metrically on a
cone=-cylinder as
shown in the
sketch. For this
case, with the axes chosen as shown, it is clear that Qc = 0,

a = const. = ag, and s = so(x/c). It is further noted that (due to
symmetry) there is no rolling moment provided by the portion of the body
ahead of x = X5 and that the rolling moment dve to sideslip at zero
angle of attack is zero (CzB = 0). Therefore, the only pertinent deri=-

vativeS to be calculated is Ciog Which is given by (see table I)

SFor this configuration all of the coupled (second) derivatives of
the rolling moment vanish except Claﬁ and. CZBq’ and it is assumed here

(for purposes of comparison with ref. 10) that q =0,
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_ 8r Ciri aa 2 o __‘
e NGO R RGO
X

(72)

where Sy and 1l have been taken as the gross wing area and the maximum
wing span, respectively. The ratio of this Czaﬁ to that for the wing

alone (ag/sg = 0) is plotted in figure 6 and is compared with the corre-
sponding curve of reference 10. It can be seen that the error incurred
by the omission of the squared terms in the pressure relation ig in excess
of 100 percent for ratios of body diameter to wing span greater than 0.5.
Now since Cqu = - CzaB according to table II, the side force due to

rolling can also be compared with that obtained from a linear pressure
relation by means of equation (72). This comparison is presented in
figure 7 and it is seen that the difference is even more pronounced than
that for the rolling moment due to sideslip. It should be mentioned that
if the wing-body combination is cambered, the contribution of r¢lling
moment by the nose will not, in general, vanish, nor will the rolling
moment at zero angle of attack.

It has been
mentioned that for
a general wing-
body combination e
of the cross sec- ’

tion discussed y
above (i.e., &, % <y

not a linear func=

tion of x), the -d d N

coefficient of the w ¢ f—s ——4
1/¢ term in the
complex potential
must be determined
if all of the stability derivatives are to be calculated. The coeffi=~
cient A; for simple translation (p = O) can perhaps most readily be
obtained from the complex potential for a flat plate in a uniform stream
by use of the transformation

82
-t

(see sketch). The complex potential in the w plane is given by (see
e.g., ref. 16, p. 161)

Fi(w) = - Ho(w cos ¥ - 1 sin 7 Jw? - &) (73)

=(8-6) +



Lo NACA TN 3283 .

so that, by using the above transformation and adding a term Hc§e°iy to
remove the free stream in the € plane and a term B Zn(§ - Cc) to allow
a variation of the radius a with X, one finds after expansion in series
that the coefficient of 1/{ is (for p = 0)

Ay = = Hg [a?cos Y - %-(Qa? - d®)sin 7] - B, (74)

where d =8 + a2/s and it is recalled that Hceiy =R + Uo(dﬁc/dx) for
pure translation. Now, by noting that for R =0

cos Y = U—-g- gy_g.
Hc dx
and
gin 7 = EQ EEE
He dx

one can write finally for this type of configuration

dy i dz da,
- 2 c .t 2 . g2) ==¢ = i
Alo = = UO {a E 5 (Ea ad ) ax 4+ &a dX (yc + 1ZC)] (75)

With Alo determined, all of the stability derivatives except Clp and.
Clﬁ can be obtained directly from tables I and II. The difficulties in

determining Clp and Clﬁ have been discussed in the preceding section.
Wing-Body~-Vertical-Fin Combination

In reference 12, the mapping
function was developed for a body
of revolution having four flat-
plate fins mounted 90° apart (see
sketch). Therefore, one can use
the formulas of table I directly
for such a configuration by first
determining the proper coefficients
in the expansion of the mapping
function. It is important to note
- that for this purpose, the expan-

sion of the mapping function must
be exactly of the form of equation (46). The mapping function given in
reference 12 is not of this form (as can be verified by carrying out the
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expansion), but it can be modified to give the proper form. The resulting
transformation is

a2 \% 1 (h + £)2 7%
- - =|=(h =~ - ol 6
<§ §> a [2( f) + o 160J (76)
and
ro = h z f
where '
d =g

(-5
[T e R By

and it is found after a somewhat laborious expansion that the first six
coefficients are

5 (h - 1) | n

2 2
a1=a2-<hzf> +%—

;(huf)<a +—

=
I

ap

o
V]

Il

]

R CORCDEER
S h-f){[e } h-fM(%_JraZ)' >(77)
e[

[
[6( 'f> 3<h+f ][1(d2+2a +%ﬁ}+

L (a2 + 222)° 4 d2a4 + 3284 L h - f (d2 + 2a2)
16 2 2
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In general,
the integrations
indicated in
table I would
have to be per=
formed numeri-
cally for a given

" configuration of
the type consid=-
ered above. How~-
ever, for a con~
ical configura=
tion, great
simpiification is
achieved and the
integrations
become trivial.
Therefore, a two=

. parameter conical

configuration is chosen to illustrate the effect of a vertical fin on a

number of the stability derivatives; that is, the lower fin is removed by
setting to = a, and t; (or t), a, and s are taken to be proportional
to x (see sketch). Thus, the coefficients given above and the radius

of the transformed circle become proportional to x or x> and most of

the stability derivatives can be readily calculated. It is noted that

for this configuration, with the axes chosen, A;4 = §c = 0. Also, due to

the conical property, CnB = CmOL =0 1if ¢ 1is chosen as 2/3 C.

The stability derivatives obtainable from the coefficient a; (which
in this case is real) and from the radius of the transformed circle rg
have been calculated for a range of the parameters a/s and t/s and are
plotted in figure 8. The purely longitudinal derivatives are of course
unaffected by the vertical fin as seen in figure 8(b) (which is inci-
dentally the same curve as given in figure 1 for a different purpose with
regard to a more general configuration).

Some interesting and important
effects of the vertical fin can be
seen in figures 8(a) and 8(c) which
show a number of the lateral and
"ecoupled" derivatives. First it
should be noted that the two ends
-s s of the a/s scale correspond to

a/s=0 the extreme configurations shown
in the sketch. It is clear that
a/s=10 the solid curves of figures 8(a)
and 8(c) have no meaning for
a/s >'t/s ‘since this would correspond to a vertical fin inside the body.
Therefore, for values of t/s less than 1, the envelope curves (the
dashed curves) corresponding to a/s = t/s have been plotted to fill in

~~
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the rest of the range of a/s from O to 1. It is seen that even at

a/s = 0 a vertical fin of small span is quite ineffective on both stabil-
ity derivatives T and III (see figs. 8(a) and 8(c)). Hence, the ineffec~-
tiveness of small fins is not entirely caused by the body absorbing the
fin, but is partly due to a blanketing effect of the horizontal wing.

The significance of the effect of the vertical fin can perhaps best

be appreciated by considering a relatively familiar derivative Cﬂap

(fig. 8(a)) which can be thought of as the angle-of-attack contribution
to the yawing moment due to rolling. It appears that for fin heights
such that t/s > 1.0 this derivative becomes positive over some portion
of the a/s range (almost the entire range if t/s >1.5). Thus, for
this configuration, the angle~of-attack contribution to the yawing moment
due to rolling can be changed from adverse (negative) to favorable
(positive) by increasing the height of the vertical fin above about 1.5
times the wing semispan, depending on the body radius.

From the coefficients given in equation (77), it is difficult to
make any statement regarding the convergence of the series required for
derivatives such as Cnp (see table I). Therefore, one i1s at a loss to

say how many terms of the expansion must be retained for satisfactory
calculations. In order to get some idea of the convergence, the deri=-
vatives involving the series were calculated using 2, 3, 4, 5, and 6

terms in the series and the results are presented in figure 9. 1t appears
that for some cases four terms would be sufficient. The results of fig-
ure 9 indicate a strong blanketing effect of the wing on the vertical fin
for t/s < 1l. It can be seen that for a/t = 1 (plane wing-body)

Cnp‘:CnI'):o..:Oo

In reference 20, one of the configurations treated corresponds to
the present conical wing-body-vertical-fin combination for a = 0 (no
body). As this furnishes an interesting check on the present calcula-
tions, the appropriate values of CYP’ CYB’ and CZB have been taken from

that report® and are plotted on figures 8 and 9. It can be seen that the
agreement is excellent, even for those derivatives calculated with only

a few terms of the infinite series (fig. 9). It should be noted in fig-

ure 9 that wherever the best approximation curve (representing 6 terms

in the series) cannot be seen, it is because the results were essentially
identical with the previous approximation.

It is interesting to note that for a cruciform wing-body combination
(ty = t2 = 8), according to equations (76) and (77) and succeeding terms,
one finds that apg=18; = ag =a, =ag=. . . = 0 s0 that many of the
stability derivatives of table I vanish due to the symmetry of such a
configuration if the axis of symmetry is chosen as the x axis; for
example, here again Cnp = Cnﬁ = . . . = 0.

SThe values of Cyns Cyas and Cy;, were taken from figures 11, 23,
and 24 of reference 20 Since there appear to be some typographlcal errors
in equation (58) of that report.
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CONCLUDING REMARKS

A general analysis has been presented for determining the forces
(except drag) and moments and the stability derivatives of a slowly
maneuvering slender wing=body combination of arbitrary cross section.

The results of the general analysis appear as (1) formulas for the forces
and moments in terms of the airplane shape and motions and (2) formulas
for the nonzero stability derivatives in terms of the mapping functions
of the cross sections.

Stability derivatives of the first and second order have been con-
sidered so that the interdependence of the longitudinal and lateral
motions is included. A number of relationships among the various stabil-
ity derivatives were found which are independent of the shape of the air-
plane, so that, at most, only 35 of a total of 325 first and second
derivatives need be calculated directly.

In order to bring out these relationships, the stability derivatives
have been defined somewhat differently from the usual derivatives. TFor
example, the usual derivative of rolling moment due to sideslip would,
in the present analysis, be given by

CZB* = CZB + aclaB + BCZBB + pCZBp + quBq + rCZBr

All derivatives as defined in this paper, then, are constant for a given
airplane. Time rates of change of the angles and angular velocities have
also been included, although these effects vanish for the particular
derivative above.

The use of the apparent mass concept for problems in slender~body
theory has been discussed in the light of the present analysis and on the
basis of previous treatments of slender-body problems by momentum methods.
It is demonstrated that all of the stability derivatives can be calculated
from the apparent masses (or inertia coefficients), but that the general
expresgions for the total forces and moments involve additional terms.

From the results of the general analysis, some of the stability
derivatives have been calculated for (1) two triangular wings having
thickness and camber, (2) a plane wing-body combination, and (3) a wing-
body=-vertical=-fin combination. These three cases have been used to show,
respectively, (1) the effects of camber, thickness, and blunt trailing
edge, (2) the influence of the squared terms in the pressure relation,
and, (3) the effect of a vertical fin on the various stability
derivatives.

It was found that the effect of thickness on the angle-of-attack
contribution to the yawing moment due to rolling was essentially opposite
for blunt and sharp trailing edges, but the effect at zero angle of attack
wag similar in both cases. In both cases, the angle~of-attack
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contribution was independent of the camber while the zero-angle-of-attack
contribution was linear in the camber.

The damping in pitch was shown to be proportional to the lift-curve
slope and therefore to depend only on the base cross section. On this
basis, the lift-curve slopes and damping in pitch were calculated for
(1) a wing=body=-vertical-fin combination, (2} a blunt trailing edge of
rectangular cross section, (3) a sharp trailing edge with end plates,
and (4} a biplane with sharp trailing edges. Sizable increases over the
flat-plate values are shown in the last three cases.

The derivatives usually called CYP and CZB were calculated to be

more than 100 percent in error if the squared terms in the pressure
relation are neglected in the case of a plane wing-body combination of
body diameter to wing span ratio of 0.5 or greater.

A number of stability derivatives were calculated for a conical wing-
body=-vertical-tail combination and the variations with body diameter to
wing span ratio were plotted for various vertical tail spans. The influ-
ence of the vertical fin was found to be markedly altered by the blanket-
ing effect of the wing for small vertical tail spans.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 10, 1954
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{
N

- (x)
if¢d§=—a—f@dy-i—§-fcpdz=ifc P, dy +
ox ox Jg dx Jg Ox 'a(x)

S a(x) a a(x) D b(x)
— Pdy - i — P,dz - i — ®_adz
fb ’ fa<x>

APPENDIX A
DIFFERENTIATION OF A CONTOUR INTEGRAL

Consider a differentiation of the .
contour integral \]f ?df with respect

to x, where the contour is a smooth
closed path that depends on x, as shown
in the sketch. The four points on the
curve, designated a, b, c, and 4,
represent the maximum positive and
negative values of y and z, so that

the function @ on the contour between
a and ¢ can be designated ®Pigyer (or

simply ®;), that between c and a,
Pupper (or @), and those between b

and d and between 4 and b, ¢, and @,
- Clx) respectively. Thus one can write

so that there are now four line integrals to be differentiated. This can
be done directly by means of the formula

3 rs(x) ACONY: ds dr
= fr(x) £(x,y)dy = fr(x) = ay + 2 2(s,%) - £ £(r,0)

which gives
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fc(x) aq)z [X:YJZl(X’y)] q

%fﬂpdf=

a(x) Bx
fa(X) Mulx,y,Z (x,9)] o
o(x) ox

i{ fd(x) acP+[X)Z:Yl(-x;Z)}
b(x) ox

i{fb(x) 0P [x,z,¥1(x,2)] az

a(x) ox

where = Z1(x,y) and y =

k9

ac Z( )X) ‘-a—q)(ax)'*‘
9 0
+ gi P la,x) - gi P, (c,x)
O

az + 20 (a,x) - __.cp+(b x)l
ox

ab
8 ?_(b,x) - - @_(d x)}

Y, (x,z) are alternative expressions for the

contour C and must be single-valued between the prescribed limits of

integration.

Now, if the velocity potential @

then

?, =
and

(P_l_:

is single-valued on the contour,

P, at a(x) and c(x)

¢®_ at b(x) and a(x)

so that all four of the additional terms above cancel and one finds, after

combining like integrals, that

%f@df=£

ox

a(P[X:y; Zl(X’.V)] a

BCP[X, Z’Yl(X; z)] a
ox

4

But the partial derivatives can be rewritten in the form

B(P[x,y,Zl(x,y)] - I:i;? +
ox ox
and
CIEERNCRI )
ox ox

0 o

dz Ox

z2=7Z3 (X; Y)

20 2

oy 9% Jyy) (x,2)
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Therefore, since -a-(B:I = _B__C_E:l , the final result is
X
Z=77 =

—é-fcpci= é'quY+ 'a-cﬂa—zl‘-dy-if—a-cgdz-ifa—q)-a}—l—dz
ox /o Ox Caz ox CB r

= §9d5+f§.°2§2_1dy-if§f’ﬁaﬁdz
ox o 0z Ox c
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APPENDIX B
THE RESIDUE A, OF THE COMPLEX POTENTIAL
From equation (31) it follows that
21¥, = Rt - RC + iptl + 21U, f % ds + 2iG(x,t)

Now, if one maps the body contour in the ¢ plane onto & circle of
radius 71y, center the origin, in the o¢ plane by the transformation

00

€ =r(o) =0 + on

O-I'l
n=o

(where 8&pn is in general complex) then the "boundary function” of
Milne-Thomson (ref. 16, p. 237) is obtained. Noting that on the circle
boundary oo = ro- 8o that

T =% - Z —fm o
=0

one can write the boundary function as

00 -— )
. - &n
21\lfs=R<c+z )—R<—+ r2n0n>+
o
Nn=0

= g re2 v &
ip(o+ z bt Vel Z gn ol | + T(o) + 2iG(x,t)
ot o To
n=0 n=0

where T(o¢) is simply QiUof%v)? ds expressed as a function of o,

Tt has been demonstrated in reference 16 that this boundary function
can be satisfied by setting the complex potential equal to the part of
2iy g containing only the negative powers of o. Thus one can set

b 2

2“)
_ 5 an o To aman
F-R% _G.ﬁ-RT+1p_G—§ _..+1p g g znmn+TN(cr)

n=j n=o m>n
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where Ty(o) represents the portion of T containing negative powers of
6. The residue A; of F can then be expressed as

2 4

- . — azal 3352
A; = Ra; - Rrg® + ip( aore® + a18p + + +oeoe s )+ A1y
T, ro

where A;, is the residue of Ty(o) and it is noted that A;, can depend

only on the shape of the cross section and not on any of the airplane
motiong; that is, Alo _must be a function of x alone and is simply the
value of A; at R =R =p = 0. Therefore 4A;, is zero for any con-
figuration possessing an axis of symmetry if that axis is chosen as the
X axis. '

It can be seen that A; is independent of the rolling velocity p
provided that ag vanishes and that either all the odd n or all the
even n are absent in the expansion of f(¢). This leads to the con-
siderations of symmetry given in the text. It should be noted that for
symmetrical shapes ao 1s the centroid of the cross section.
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Figure I . — Damping -in- pitch for wing - body - vertical -fin combination.
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Figure 2.- Damping -in- pitch and [ift curve slopes for
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Figure 3 .- Effect of camber and fthickness for blunt -
frailing — edge triangular wing (elliptic cone) .
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cross section at the frailing edge .
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pressure relation on calculations of the
rolling moment due to sideslip .
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Figure 8.- Continued .
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