
NATIONAL ADVISORY COMM E 
FOR AERONAUTICS 

TECHNICAL NOTE 3283 

AERODYNAMIC FORCES, MOMENTS, AND STABILITY 

DERIVATIVES FOR SLENDER BODIES O F  

GENEFLAL CROSS SECTION 

By Alvin H. Sacks 

Ames Aeronautical Laboratory 
Moffett Field, Calif. 



NACA TN 3283 

TAB- OF CONTENTS 

Summary 
Introduction 
List of Important Symbols 
General Analysis 

Differential Equation and Pressure Relation 
Total Forces and Moments 

Reduction of the integrals 
The complex potential 

Stability Derivatives 
Relationships Among the Stability Derivatives 

Apparent Mass 
Applications of the Theory 

Wings with Thickness and Camber 
Plane Wing-Body Combination 

I 

Wing-Body-Vertical-Fin Combination 
Concluding Remarks 
Appendix A: Differentiation of a Contour Integral 
Appendix B: The Residue A1 of the Complex Potential 
References 
Tables 
Figures 



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 3283 

AEBODYNAMIC FORCES, MOmNTS, AND STABILITY 

DERIVATIVES FOR SLENDER BODIES OF 

GENERAL CROSS SECTION 

By Alvin H. Sacks 

SUMMARY 

The problem of determining the total forces, moments, and stability 
derivatives for a slender body performing slow maneuvers in a compressible 
fluid is treated within the assumptions of slender-body theory. General 
expressions for t h e  total forces (except drag) and moments are developed 
in terms of the geometry and motions of the airplane, and formulas for 
the stability derivatives are derived in terms of the mapping functions 
of the cross sections. 

All components of the motion are treated simultaneously and second 
derivatives as well as first are obtained, with respect to both the 
motion components and their time rates of change, Coupling of the longri- 
tudinal and lateral motions is thus automatically included. A number of 
general relationships among the various stability derivatives are found 
which are independent of the configuration, so that, at most, only 35 
of a total of 325 first and second derivatives need be calculated 
directly. Calculations of stability derivatives are carried out for two 
triangular wings with camber and thickness, one with a blunt trailing 
edge, and for two wing-body combinations, one having a plane wing and 
vertical .fin. 

The influence on the stability derivatives of the squared terms in 
the pressure relation is demonstrated, and the apparent mass concept as 
applied to slender-body theory is discussed at some length in the light 
of the present analysis. It is shown that the stability derivatives can 
be calculated by apparent mass although the general expressions for the 
total forces and moments involve additional terms. 

INTRODUCTION 

Ever since R. T. Jones (ref. 1) in 1946 demonstrated the use of 
Munkls apparent mass concept of 1924 (ref. 2) for solving problems of 
slender wings in a compressible flow, an ever-increasing number of 
investigators have entered the field of analysis now commonly known as 
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slender-body theory. The stability derivatives of slender triangular 
wings were treated by Ribner (ref. 3) in 1947 following the pattern of 
Jones, and in 1948 Spreiter (ref. 4) extended the latter's result by 
means of conformal mapping to include certain wing-body combinations, 
Shortly thereafter, in 1949, Ward's general analysis for slender pointed 
bodies in steady supersonic flow (ref. 5) was published. 

After the appearance of Ward's analysis, a number c;f papers were 
written on various aspects of slender-body theory including extensions 
to subsonic flow and to "not-so-slender" bodies (e.g., refs. 6 and 7) ,  
and in 1952 Phythian (ref. 8) developed an analysis ~zhich included time 
variations in forward velocity and angles of incidence. Although many 
papers (e.g., refs. 9 and 10) have been devoted to the calculation of 
various stability derivatives for specific configurations, it is only in 
the past few months that a report by Miles (ref. 11) has given the com- 
plete counterpart of Ward's analysis for unsteady flow. 

The determination of stability derivatives has long been of concern 
to the engineer in connection with the dynamic beha~ior of airplanes, 
but the problem has assumed even greater proportions in the more recent 
slender configurations of missile design. The stability derivatives them- 
selves correspond to the coefficients of a Taylor expansion representing 
a particular component of force (say lift) or moment as a function of 
the airplane motions. The coefficient of any particular motion (say q) 
in the expansion is equal to the partial derivative of the force or 
moment component with respect to that motion. Ordinarily, stability 
derivatives are defined as these partial derivatives evaluated with all 
of the independent variables except a set to zero, so that the usual 
stability derivatives depend upon the initial angle of attack as well as 
on the configuration. In the present paper, however, all derivatives 
are evaluated with all of the independent variables (a, P, p, q, r, &, b, 
$, 4, I?) set to zero. The advantages of this choice will become apparent 
in the course of the analysis. 

The present paper employs an approach believed to be novel in 
slender-body theory and is concerned with developing formulas for the 
forces and moments as well as the stability derivatives for general 
slender wing-body combinations .' The significance of the squared terms 
in the pressure relation for slender configurations precludes the 
possibility of considering the longitudinal and lateral motions inde- 
pendently, so all motions of the airplane are treated simultaneously. 

'While the present analysis was being carried out, Bryson (ref. 12) 
published a paper treating essentially the same subject from a different 
viewpoint based on the tacit assumption that all the forces, moments, 
and stability derivatives can be obtained from the apparent mass analogue. 
This assumption and some of Bryson's results are discussed in a later 
section. 
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The mathematical r e s t r i c t i o n s  on the  genera l i ty  of the  shapes t h a t  
can be r igorously  handled have been discussed i n  d e t a i l  by Ward ( r e f .  5 )  
and more r ecen t l y  f o r  the  unsteady case by Miles ( r e f .  11). Such d i s -  
cussion w i l l  not  be repeated i n  t h i s  repor t .  

LIST OF IMPORTANT SYMBOLS 

an coe f f i c i en t  of - term i n  s e r i e s  expansion of the  mapping 
on 

function L = f ( a )  = a  + 3 
n=o 

I 
coe f f i c i en t  of - term i n  expansion of the  complex po t en t i a l  

~ ( 0  f 

value of Al a t  a = p = p = q = r = 0 

Uo dS coe f f i c i en t  of 2n ( i n  expansion of F ( C  ) ; B = - - 
2n  dx . 

dis tance  from ai rplane nose t o  pivot  .point 

complex po t en t i a l  (p + i q  

length  of a i rp lane  

force  i n  t he  z d i rec t ion  (approximately l i f t )  

r o l l i n g  moment about the  x  ax i s  

reference length 

p i t ch ing  moment about p ivot  point  x  = cl 

yawing moment about pivot  point  x  = cl 

angular r o l l i n g  ve loc i t y  about the  x  ax i s  

pressure 

angular p i tching ve loc i ty  about the y  ax i s  

f l u i d  speed r e l a t i v e  t o  axes f ixed  i n  the  body 

component of qr normal t o  body contour i n  plane x  = const.  
( pos i t i ve  i n t o  the  f l u i d )  
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qs component of qr t angen t ia l  t o  body contour i n  plane 
x = const. (pos i t ive  counterclockwise looking upstream) 

r angular yawing ve loc i ty  about the  z ax i s  

ro radius  of transformed c i r c l e  corresponding t o  a i rplane cross 
sect ion 

S cross-sectional  a rea  

s r reference area  

t time 

uo component of f l i g h t  ve loc i ty  along negative x ax i s  

o component of f l i g h t  ve loc i ty  along pos i t ive  y ax i s  

V V, - r(x-cl) 

v1 speed of a point  f ixed  i n  t he  xyz system of axes 

ur,vr,wr components of qr i n  t he  x,y,z d i rec t ions  

W o component of f l i g h t  ve loc i ty  along posi t ive  z ax i s  

W wo - q(x-c1) 

Y force  i n  the  y d i rec t ion  ( s i de  force)  

XYZ Cartesian coordinates f ixed  i n  the  body ( x  rearward, 
y t o  starboard, z upward) 

a angle of a t t a ck  (angle between a r b i t r a r i l y  chosen xy plane 
and f l i g h t  d i rec t ion)  

B angle of s i de s l i p  (angle  between xz plane and f l i g h t  
d i rec t ion)  

8 angle between the  pos i t ive  y ax i s  and the  tangent t o  t he  
body contour i n  a plane x = const. 

P f l u i d  mass density 

V outward normal t o  the body contour i n  plane x = const. 
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(c complex coordinate of centroid of cross-sectional area 
(YC + izc) 

u complex coordinate in transformed circle plane 

9 velocity potential 

Ip,"yt} partial derivatives of P with respect to x,y,z, and t 
929 'pt 

92 2% 
velocity potentials for unit velocity of the cross section in 
the y,z directions 

9' velocity potential associated with variations in shape and size 
of cross section with x 

'4f stream function 

qs stream function along the contour of the cross section 

Special Notations 

contour integral taken once round the body cross section in the 
positive (counterclockwise) sense 

Force coefficients: Cy = 
I , etc. 

( 1/59 puo2sr 

Moment coefficients: C, = M etc. 
(1/2)~uo~sr~r 

Stability derivatives: 

All derivatives are evaluated at 

* 
a = p = p = q = r = a = p = p = q = r = O  
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real part 

imaginary part 

derivative of ( ) with respect to time 

complex conjugate of ( ) 

GENERAL ANALYSIS 

The problem to be treated here is the determination of the aero- 
dynamic forces and moments (except drag) and the stability derivatives 
for a smooth slender airplane or missile of arbitrary cross section per- 
forming slow maneuvers in a compressible fluid. The configuration will 
be limited in that the base ( if any) of the fuselage and all wing trail- 
ing edges must lie in a plane essentially normal to the longitudinal body 
axis. 

Differential Equation and Pressure Relation 

The linearized differential equation for the velocity potential of 
unsteady motion of a compressible fluid is the well-known wave equation 

where the system of axes APE is fixed relative to the undisturbed fluid, 
co is the speed of sound in the undisturbed fluid, and T is time as 
measured in the kl system. Thus the velocity potential Q is express- 
ible as @ = @(A,p,!,r). 

In general, the pressure relation associated with the velocity 
potential @ is given by (ref. 13, p. 19) 

P,= -m, - 1 q12 + f pld($) + const. 
P 2 

where pl is pressure and ql is the magnitude of the fluid velocity 
expressible as2 

q1 2 = @ c + 4 2 + Q 2  P 5 (3) 

2~he subscripts on p and q are used to distinguish them from the 
angular velocities of rolling and pitching. 
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It will be convenient for € 
the present problem to introduce 
a coordinate system xlyz which 
is fixed in the airplane. The 
axes chosen for this purpose are 
shown in the sketch and comprise 
a Cartesian coordinate system 
endowed with the translational 
velocities Uo, Vo, Wo and the 
rotational velocities p, q, r 
of the airplane. (~ote that 
this does not constitute a com- 
pletely right-hand system.) 
The xl axis passes through 
the airplane nose, and the ori- 
gin of the xlyz system is 
fixed at an arbitrary distance 
cl from the nose as shown in 
the sketch. 

Since it is the purpose of this paper to study only instantaneous 
forces and moments (i.e., no time histories), it will be sufficient to 
choose an instant of time such that the positions of the moving xlyz 
system and the stationary bk, system are just coincident. Thus, 
equations (1) and (2) will be expressed in the xlyz system only for 
this instant, designated T = 0. For this purpose a new function 9 
is introduced such that 

Now, through the use of the transformations relating the moving and 
stationary coordinates (see e.g., ref. 13, p. 12, and ref. 14, p. 79) 
one finds at T = t = 0 that 

and 

It can be seen from the sketch that the quantities (vo + pz - rxl) and 
(wo - py - qxl) are simply the velocity components in the y and z 
directions of a point fixed in the xlyz system. Note that in the 
corresponding x component (-uo + ry + qz) the products ry and qz 
are considered negligible compayed with Uo. 
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With 
maneuvers , 
i n  planes 

the assumptions of slender bodies, small angles, and slow 
the d i f f e ren t i a l  equation (1) reduces t o  Laplace's equation 
xl = const. near the body; t h a t  i s  

It follows a lso  tha t  the density P must be t reated as  a constant 
i n  the pressure r e l a t ion  (2)  which now becomes 

1 - (my2 + mz2) + const. 
2 

Here, fo r  the sake of convention, one can t ransfer  the or igin of the 
moving axes t o  the body nose by l e t t i n g  

so tha t  pitching and yawing rotat ions a re  s t i l l  made about an a rb i t r a ry  
pivot point x = c l .  Thus, introducing the notation 

equation (6) can be written 

This, then, is  the pressure r e l a t ion  (referred t o  the moving body axes) 
upon which the calculations of the forces and moments w i l l  be based. It 
should be noted tha t  a consistent application of the slenderness approx- 
imation requires the retent ion of the squared terms qy2 and 'PZ2.  Thus 
slender-body theory i s  not a s t r i c t l y  l inear  theory although the d i f f e r -  
e n t i a l  equation ( 5 )  i s  cer ta in ly  l inear .  This means tha t  solutions of 
equation (5) fo r  V (and hence the veloci t ies)  can be obtained by super- 
posit ion, but t3e pressures cannot. Likewise, the forces and moments 
cannot be calculated by superpositioa except fo r  those special  cases i n  
which the contribution of the squared terms t o  the loading vanishes. 
Furthermore, when the airplane i s  performing combined maneuvers ( e . g . , 
simultaneous ro l l ing  and pitching),  the squared terms may contribute 
addi t ional  forces and moments. These i n  f a c t  give r i s e  t o  the second- 
order s t a b i l i t y  derivatives t h a t  w i l l  be included i n  the present analysis.  
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Total Forces and Moments 

The analysis to be presented here 
for calculating the total forces 
(except drag) and moments on a slender 
configuration will be the counterpart 
of a method originally due to H. Blasius 
(ref. 15) for obtaining the forces and 
moments on a two-dimensional body of 
arbitrary shape immersed in a steady 
incompressible stream. This analysis, 
although not suited to the calculation 
of total drag, will nevertheless take 
proper account of the local forces 
associated with leading-edge suction. 
Consider a lamina of the slender air- 
plane, cut parallel to the yz plane, 
of thickness dx as shown in the sketch. 
One can write immediately the differ- 
ential lift and side force on an ele- 
mental area in terms of the local 
pressure pl on the body: 

and 

Now, by introducing the complex variable ( = y -I- iz, one can express 
the differential complex force as 

- 
where 5 is the complex conjugate of 5 1 .  In a similar fashion, the 
differential rolling moment about the x axis can be expressed as 

where a denotes the real part. Further, the differential yawing and 
pitching moments about the pivot point x = cl are given by 

Integration of equations (91, (lo), and (11) gives for the total forces 
and moments 

- - - 

3 ~ h e  method of Blasius has been extended to two-dimensional unsteady 
incompressible flows by L. M. Milne-Thomson (ref. 16) and recourse will 
be had to many of his techniques throughout the present analysis. 
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and 

where the contour integrals are taken round the boundary of the airplane 
cross section in the positive ( counterclockwise) sense. Before these 
integrations can be effected, the pressure pl must, of course, be 
expressed as a function of the complex variable 5 .  Toward this end, 
it will be convenient to introduce two new definitions pertaining to 
velocities in the fixed and moving coordinate systems. First, the square 
of the speed of a point fixed in the xyz system can be written as 

Second, it is noted that the square of the fluid speed relative to the 
xyz system is given by 

so that, neglecting Tx2 in comparison with my2 and TZ2, one can write 
equation (7) in the form 

This expression will now be formed as a function of through the 
introduction of the complex variable R = V + iW and the complex 
potential F = 9 + iq. 

The speed V1 is immediately expressible as 

while the components vr and wr of the relative fluid velocity are 
related to F through the complex velocity by 

m m - - 
v, - iwr = -- - (V + pz) + i ( ~  - py) = - - R - ipl 

a( (35 
( 17) 
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Furthermore, a t  t he  body sur-  
face  it w i l l  be seen from the  
sketch t h a t  

= (qs - iqn)ei@ 

so  t h a t  

vr - i w r  = (qs + iqn)emie 

( 18) 

where qs and qn a r e  the  
t angent ia l  and normal com- I 
ponents of the  transverse 
r e l a t i v e  ve loc i ty  and 8 i s  the  angle def ined. in  the  sketch. Com- 
parison of equations (17) and (18) gives 

from which 

It i s  now noted t h a t  ( see  sketch above) 

2 2 vr2 + wr2 = qs + qn2 = qr - uO2 - 2UOOX 
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L Finally,  the boundary condition 
a t  the body surface requires tha t  the 
normal component of the f l u i d  veloci ty  
re la t ive  t o  the moving xyz system be 
equal t o  the normal component of the 
forward f l i g h t  velocity. Let C be 
the contour of the airplane cross 
section i n  the plane x = const. and 
l e t  C1 represent the projection on 
tha t  plane of the contour a t  x + dx 
(see sketch). If V i s  the outward 
normal t o  C a t  any point, and dv 

Y i s  the distance between C and C1 
measured along the normal, then the 
above boundary condition is, t o  the 
present order of accuracy, 

Thus the pressure re la t ion  of equation (15) can now be written ( f o r  
points on the airplane surface) i n  the desired form 

1 - 
g (R - ipc) (R + ipf) + const. 

Reduction of the integrals . -  Before making use of equation (22) i n  
writ ing the integrals  fo r  the forces and moments, it w i l l  be useful t o  
notice from the sketch on page 11 that  the d i f f e ren t i a l  distances on the 
body contour i n  planes x = const. are  related by the angle 8 so tha t  
dy = ds cos 8 and dz = ds s in  8 where ds i s  the d i f f e ren t i a l  arc  
length, posit ive counterclockwise. Hence, 

so tha t  the f i r s t  in tegra l  of equation (12) fo r  the complex l a t e r a l  force 
can be written, a f t e r  expanding the squared term i n  the pressure relat ion,  
i n  the form 
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Note t h a t  the  constant term i n  the  pressure r e l a t i o n  contributes nothing 
t o  the  contour in tegra l s  of equation (12) .  

The nine contour i n t eg ra l s  of equation (24) can be divided i n t o  
th ree  types: ( a )  in tegra l s  t h a t  do not depend on the  ve loc i ty  po ten t ia l ;  
(b )  i n t eg ra l s  containing the r e a l  po t en t i a l  Q; and ( c )  i n t eg ra l s  con- 
t a in ing  t he  complex po t en t i a l  F. The f i r s t  type can be in tegrated a t  
once and these  w i l l  be d e a i t  wi th  f i r s t .  The second type w F l l  be reduced 
t o  i n t eg ra l s  of t he  t h i r d  type by determining the  stream function on t he  
boundary, and the  t h i r d  type w i l l  then be handled by the  method of 
residues.  

It i s  f i r s t  noted t h a t  f ds i s  simply the  r a t e  of change of 

cross-sectional  a rea  S and t h a t  f 2 ds  i s  the  complex conjugate 

of t he  r a t e  of change ( i n  the  x d i rec t ion)  of the  moment of cross- 
sec t iona l  area.  Thus, one can wri te  

- 
where cc i s  t he  complex conjugate of the  posi t ion of t he  centroid of 
a r ea  of t he  cross section.  

The other two in tegra l s  of equation (24) t h a t  do not depend on t he  
ve loc i ty  po t en t i a l  can be conveniently evaluated by the  use of Stokes' 
theorem which can be s t a t ed  i n  complex form as ( see  r e f .  16, p. 130) 
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where S is the area enclosed by the contour. Thus, using the first 
form of equation (26), one can write 

where S is the airplane cross-sectional area. Similarly, from the 
second form of equation (26), 

Thus, all the integrals of the first type discussed above have been 
evaluated. 

Before introducing the stream function for the evaluation of the 
first two integrals of equation (243, it is well to note that the time 
differentiation can be taken outside the integral sign with no diffi- 
culty, but the x differentiation cannot since the contour of inte- 
gration is itself a function of x. It is shown in Appendix A that 

where C is the contour of integration round the airplane cross section 
and the surface of the airplane can be expressed either as 

Corresponding to these expressions for the surface are the expressions 
for the slopes of the surface 

- -  dvldx az, - _ P 

ax cos 8 
and 

a ~ ,  - = -  
ax sin 6 
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so t ha t ,  r e ca l l i ng  t he  r e l a t i ons  
of equations ( 2 3 ) ,  one can wri te  

§ 'Pxd( = - ax 

( + i$)ds 

ax 
ds  

(29 )  

Now, i n  order t o  express the  

required i n t eg ra l  f i n  terms 

of the  complex po tgn t ia l  through 
the  r e l a t i on  9 = F + i*, the stream 
function on the  boundary w i l l  be 
obtained from the  boundary condition 
of equation (21).  That i s ,  the  
t o t a l  outward normal of the  f l u i d  veloci ty  i n  the  plane x = const. i s  
given by the  sum of q, and the  normal ve loc i ty  of a point  on the  
boundary considered f ixed i n  the  xyz system. Hence, ( see  sketch),  

and it i s  reca l led  t h a t  s i n  6 = dz/ds and cos 8 = dy/ds. The sense 
of ds i s  indicated by the  arrow along the  contour. Thus, in tegra t ing  
along the contour, one f inds  t ha t  the stream function on t he  su-rface i s  
given by 

where ~ ( x ,  t j  i s  an a r b i t r a r y  function of x and t. Now qs can a l s o  
be exy;resseii a s  a function of +,he colnplex var iables  5 and R by noting 
that. 

and 
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The i n t e g r a l  yf 'Pdr i s  now expressible i n  terms of the  complex poten- 
d 

t i a l  s ince  'P = + i+ and the  i n t eg ra l  q d l  can be evaluated from 

equation (31).  That is, i f  one s e t s  $ = r0 + where represents  
t he  i n t eg ra l  term of equation (31) ,  then 

Now, q1 taken once round the  contour has the  value U, ,J' ds or 

dS simply Uo - and it i s  reca l led  t h a t  a - 5% ds = - (stc), 80 t ha t  
d x  dx 

upon evaluating ~ ' ~ d r  by t he  second form of Stokesf theorem (eq. (26) )  

- 
and noting t h a t  ~ ( x ,  t)d[ = 0, one f inds  

- 
where c0 i s  t he  complex conjugate of the  point  a t  which the  integra- 

t i o n  w a s  begun on the  boundary. The f i n a l  expression f o r  j' 'Pd? 

i s  therefore  

(34) 
and the  time der ivat ive  i s  
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Of the  remaining int .egrals  i n  equation (24) there  i s  one which s t i l l  
requ i res  modification before the  method of res idues  can be applied,  
Specif ica l ly ,  s ince  F = + 2 i q  one can -+rite 

and the  second i n t e g r a l  can be in tegra ted  by p a r t s  using equation ( 3 3 )  

dS and not ing t h a t  9 taken once round the  contour has the  value Uo -. 
dx 

The r e su l t i ng  expression i s  

so t h a t  equation (24) f o r  the  complex force  can f i n a l l y  be wri t ten  
( a f t e r  co l l ec t ion  and cancel la t ion of terms) i n  the  form 

It should be pointed out t h a t  severa l  terms have vanished by v i r t ue  of 
the f a c t  t h a t  the  x ax@ passes through the  a i rp lane  nose. In  par-  
t i c u l a r ,  note t h a t  S = {, = 0 a t  x = 0. 

The complex po ten t ia l .  - Although equation (37) appears qu i te  
unwieldy, a l l  of the  contour i n t eg ra l s  a r e  now i n  a form which admits of 
evaluation by the  method of residues.  For a body moving through s t i l l  
a i r ,  a s  i n  the  present  problem, a l l  ve loc i t i e s  vanish at  i n f i n i t y  and the  
complex po t en t i a l  F can be expanded i n  a Laurent s e r i e s  of the  form 



18 NACA TN 3283 

where ~ ( x )  is a source strength and the coefficients A~(x,~) give the 
intensities of all the higher order singularities representing the 
desired body shape and motions. This expansion applies only for large 
values of 5, but since there are no singularities outside the body, the 
contour integrals can be evaluated around a contour sufficiently large 
to insure the validity of the expansion. The arbitrary function ~ ( x ,  t) 
is of no concern here since it can contribute nothing to the contour 
integrations. For the determination of drag, on the other hand, this 
function would be required. 

From equation (38), the derivative of F is 

so that 

Now it is seen that the residue of (dF/do2 is zero since there is no 
1 term in the expansion. Therefore, 

Also 

Similarly, if one writes the conjugate function 

it follows that 

and 
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- 
The coef f ic ien t  B (and, hence, B) can be evaluated by ca lcu la t ing  the  

i n t eg ra l  1 5 ds  i n  two d i f f e r en t  ways. Thus 

and, by v i r t ue  of Gauss1 theorem, 

where rl i s  the  radius  of a c i r c l e  enclosing the  bad.y cross  sect ion.  
Hence, it i s  seen t h a t  

The f i n a l  expression fo r  the  complex l a t e r a l  force i s  obtained by 
using equations (39) t o  (44) i n  rewri t ing equation (37).  That is, 

For t he  case of steady s t r a i g h t  f l i g h t  p = 0 )  , the  complex 

force  of equation (45) reduces t o  t h a t  given by Ward ( r e f .  5 ) .  Although 
equation (45) appl ies  t o  slendcr a i rplanes  having cross sect ions  of 
a r b i t r a r y  shape, it i s  of int .erest  t h a t  i n  a large  number of p r ac t i c a l  
cases, it i s  possible t o  choose t he  x ax i s  so as  t o  place the  enter 
of cross-sectional  a rea  always along the  axis  and thus t o  make S c  
equal t o  zero. The simplest example would be an a i rplane having mirror 
symmetry of a rea  about both the  y and z axes. I f  the  wings have no 
thickness, t h i s  places no r e s t r i c t i o n  on the  wings themselves wi5h regard 
t o  number of wings, arrangement, dihedral ,  camber, e t c .  Equation (45) 
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as it stands gives the total side force and lift on a slender configura- 
tion having a nose at the forward end. However, it can also be used to 
give the contribution to these forces of a segment of the airplane lying 
between the planes x = Z1 and x = Z2 by simply evaluating Y - iL for 
2 = Z1 and 2 = Z2 and subtracting the  result,^. 

If one considers the transformation of the arbitrary cross section 
in the 5 plane to a circle in the o plane 

it can be shown - (see Appendix B) that the dependence of the residue Al 
(and, hence, Al) on the rolling velocity p is determined by the form 
of f(o) and therefore by the shape of the airplane cross section. It 
is found that Al is independent of p if a, vanishes and if f(a) 
contains either only odd negative powers of a (n odd) or else only even 
negative powers of o (n even). It can be seen tha% if n is odd then 
f(-a) = - f(o) and, hence, the cross section has symmetry about two 
orthogonal axes. The statement can therefore be made that for airplanes 
having symmetry about both the y and z axes (no dihedral) one can 
determine the total complex force if he knows only the complex potential 
due to pure translation in the yz plane. 

An expression for the pitching and yawing moments can now bs 
obtained from equation (12) by a procedure exactly parallel to that used 
in obtaining equation (45). Making use of the foregoing evaluations of 
the required contour integrals, one finds that the resulting expression 
is 

The evaluation of the integrals for the rolling moment L' is 
somewhat different due to the additional appearing in the expression 
of equation (123, so that the integrand of some of the contour integrals 
appearing here will be nonanalytic in the variable of integration. This 
precludes a direct application of the method of residues. Such an 



in tegra l ,  which does, i n  f ac t ,  a r i s e  i s  1 (5tXF. However, i n  t h i s  § - 
instance it can be shown with t he  a i d  of equations (26) and (31) t h a t  

Evaluation of other required contour i n t eg ra l s  b y  means of equations ( 2 6 ) ,  
(31) ,  and (38) y ie lds  

and it can be shown i n  a manner p a r a l l e l  t o  t h a t  of Appendix A t h a t  

so  t h a t  the  f i n a l  expression f o r  the  r o l l i n g  moment can be wrf t ten  i n  
the  form 

or,  s ince ~ ( 5 d I )  = $ d(fT1, 



In the case of configurations possessing mirror symmetry about both 
the y and z axes (no dihedral), the general expression of equation (51) 
can be greatly simplified. If one writes for such a case 

where (P2 and (Pg represent pure translations along the y and z axes, 
(P4 is a pure rotation about the x axis, and (P' is associated with 
the variation of cross section with x, it can be shown from symmetry 
considerations that 

Hence, 

and, since (P4 is the potential due to pure rotation about the x axis, 
it follows that 

Therefore, recalling that 5 = 0 for configurations having symmetry 
about the y and z axes, one finds that the general expression of equa- 
tion (51) reduces to 

and it has already been pointed out that for these cases Al is inde- 
pendent of the rolling velocity p. Thus, for symmetrical configura- 
tions, the rolling moment has now been expressed as the sum of two inde- 
pendent parts, one due to pure rolling and one due to pure translation, 

STABILITY DERIVATIVES 

The specific maneuvers to be considered here will now be defined 
so that stability derivatives can be determined. Rotations are performed 
about the xyz (body) axes4 at an attitude defined by the angles of 

- -  --- 

,~olling about the wind axis can be treated as a special case by 
the proper choice of the arbitrary body axes. 
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a t tack  and s i d e s l i p  a t  t = 0, and 
accelera t ions  a r e  permitted i n  t he  
f ixed v e r t i c a l  and hor izontal  
planes. In  par t i cu la r ,  i f  the  
angles of a t t a ck  and s ide s l i p  a t  
t = 0 a re  denoted by a. and Po, 
respectively,  then the  ve loc i t i e s  
V and W a t  any time t a r e  given 
by ( see  sketch) 

From these expressions one f inds  t h a t  

and 

It w i l l  be noticed t h a t  i n  the  above expressions, the  ve loc i ty  Uo (along 
the  x ax i s )  i s  considered constant. This means t h a t  pure pi tching and 
yawing motions (q, r f 0) a r e  performed a t  constant angles of a t t a ck  and 
s ides l ip ,  so t h a t  f o r  such maneuvers the  a i rplane follows a curved f l i g h t  
path. Now, s e t t i n g  t = 0 i n  the above expressions, one f i nds  

- 
R = Uo$ + i U o a  - ( r  - i q )  ( x  - cl) 

and 

3E - = u,; + iu0k - ip(uop + iuoa) - ( r  i q )  ( x  - c l )  
b t  

( 54) 

and these r e l a t i ons  can be subs t i tu ted  d i r e c t l y  i n t o  equations (45), (47),  
and (51) f o r  the  forces  and moments. It w i l l  be noted t h a t  the  subscr ipt  
on & and has been dropped. This means t h a t  f o r  the  r o l l i n g  case 
( p  # 0) 5 and of equation (54) a r e  not  the  time r a t e s  of change of the  
ac tua l  angles of a t t ack  and s i d e s l i p  s ince  & and a r e  measured i n  the 
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fixed vertical an$ horizontal planes. The alternative would have been 
to define & and p e  as,the actual rates of change of a and p (i.e., 
& = kO - pp and p = Po + ap at t = 0 )  in which case the coupling of 
p with a and p .would be obscured by the definition. This would lead, 
for example, to a nonzero value of && when the maneuver consists of 
pure rolling at an initial angle of sideslip. This seems undesirable, 

In seeking stability derivatives for the general problem under con- 
sideration, it will be advantageous to employ the transformation of the 
airplane cross section to the circle (see Appendix B). In this way, it 
will be possible to carry out differentiations of the forces and moments 
explicitly with respect to the airplane motions and thus obtain the 
stability derivatives in terms of the transformation without specifying 
the complex potential. Thus, from Appendix B, 

and therefore 

where al is the coefficient of the l/s term of the mapping function 
and ro is the radius of - the transformed circle. It - is recalled that, 
as shown in Appendix B, Alo is simply the value of Al at a = p = p = 

q = r = 0 and is therefore directly associated with the shape of the con- 
figuration and the choice of axes. 

The stability derivatives will be obtained by partial differentiation 
of the forces and moments with respect to each of the ten independent 
variables a, p, p q r , , , and second derivatives will be 
included; that is, there will be derivatives of the types 

where all derivatives are evaluated at a = p = p = q = r = a = p = p = 
4 = $ = 0 .  The reason for this choice (which is not customary) will 
become more evi&e,nt later, but it can be seen at once that all deriva- 
tives defined in this manner are constant for a given configuration and 
that there will be "cross derivatives" of the type 

C m ~  
which will 

show the mutual influence of the longitudinal and lateral motions. Thus 
the total rolling moment due to sideslip, for instance, will be express- 
ible as 
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For the sake of consistency, all coefficients and derivatives are based 
on the same reference area Sr and reference length Zr. 

If equations (45) and (47) are rewritten with the aid of equations 
(54) to (561, the necessary partial differentiations can be effected with 
no difficulty and all the derivatives of the side force, lift, yawing 
moment, and pitching moment are obtained. The derivation of the rolling- 
moment derivatives is not quite so straightforward as the others since 
the expression of equation (51) for the rolling moment contains integrals 

of the type R [ CPcdT which cannot be handled directly by residues, 
J 

as mentioned previously. However, when this integral is differentiated 
with respect to any motion except p or c, the resulting integral can be 
related to one of the integrals already evaluated by residues. In partic- 
ular, if we write once more 

CP = VCP2+ W(P3 + PCP* f (P1 

it follows from the boundary condition of equation (30) that 

Thus the integral appearing in Czp, for example, will be 

But, by virtue of Green1 s Theorem (see ref. 13, p. 46), 

and again from equation (30) it can be seen that 
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so that, finally, one can write 

This latter integral has already been evaluated with equations (34) and 
(42) to calculate Cy Similarly, the integrals appearing in the other 

P ' 
rolling-moment derivatives can also be evaluated and expressed in terms 
of the mapping function of the cross section. The actual differenti%- 
tions to obtain the rolling-moment derivatives are simple enough if one 
notes that the order of differentiation of the potential is important 
in that the expression of equation (51) has been written for a specific 
instant of time (t = 0). That is, 9 must be differentiated with respect 
to time first, then integrated to give the rolling moment, and finally . 

differentiated with respect to the desired motion. Thus, since cP is 
linear in the angles a and p as well as in the angular velocities 
p, q, and r, one observes that 

and further that 

a2v av - = -. a2v av -.--- = -. , etc. 
akat aa9 acat ap 

The resulting expressions for the stability derivatives are given 
in table I, which is arranged so that all the side-force derivatives 
appear in the first column, all the lift derivatives in the seaond, and 
so on. It is found that a number of derivatives vanish identically, 
that is, regardless of the shape of the cross section. As a matter of 
fact, all but 84 of the possible 325 first and second derivatives vanish 
identically. For obvious reasons, the stability derivatives that are 
identically zero are not listed, but a definite pattern can be seen in 
table I which shows, for instance, that all second derivatives of CL, 
Cy, C,, and Cn vanish except those involving p and that there are no . . . .  
second derivatives involving a, p, p, q, or r. It should be noted that 
the order of differentiation is immaterial so that CLap = CLpa, etc. 
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(1f t h i s  were not the  case, the  t o t a l  number of possible der ivat ives  
would be 350 .) In  the  next section,  a t o t a l  of 49 re la t ionships  a r e  
found among the  s t a b i l i t y  der ivat ives ,  so  t ha t ,  a t  most, only 35 de r i -  
vat ives  need be calcula ted d i r e c t l y  f o r  any given configuration. It i s  
important t o  note t h a t  the  mapping function must be expanded i n  exact ly  
the  form of equation (46) before the  proper coef f ic ien t s  can be obtained 
f o r  use i n  the  formulas of t ab le  I. In  par t i cu la r ,  the  coef f ic ien t  of 
the  o term must be unity.  

Relationships Among the  S t a b i l i t y  D e r i v ~ t i v e s  

From the  general  r e s u l t s  shown i n  t ab le  I, a number of i n t e r e s t i ng  
rec iproca l  re la t ionsh ips  which a r e  independent of t he  configuration a r e  
observed a t  once. For instance, the  s ide  force  due t o  angle of a t t a ck  
i s  equal t o  minus t he  l i f t  due t o  angle of s i de s l i p  ( C  = - cLp). Ya 
Similar  equa l i t i e s  among the  various der ivat ives  a r e  found throughout 
and a r e  l i s t e d  i n  t ab l e  11. It should be noted at  t h i s  point  t h a t  many 
of t he  re la t ionsh ips  of t ab l e  I1 would be obscured by evaluating the  de r i -  
vat ives  a t  a # 0, a s  i s  customarily done. 

Beyond these  simple equa l i t i e s ,  there  a r e  some in t e r e s t i ng  r e l a t i on -  
ships  which can be brought out by an in tegrat ion by par t s .  For example 
( s ee  t ab le  I) ,  

= - C L ~  + L& 

But from t ab l e  I it is  seen t h a t  

Thus, one f i nds  t h a t  
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This is a particularly interesting relationship in that it enables one 
to calculate from the static lift- and moment-curve slopes a quantity 
which would require dynamic tests in the wind tunnel for a direct exper- 
imental measurement. Another quantity of interest in this category can 
be obtained by integrating by parts the expression for 

Cmq 
given in 

table I. The resulting relation is 

which states that the damping in pitch is proportional to the lift-curve 
slope. This result, which is independent of configuration or choice of 
axes, was obtained previously by Bryson (ref. 12) whose analy~is was 
implicitly restricted to bodies having a straight-line axis (i.e., no 
camber of the body or the wings). The apparent mass concept, which was 
the basis for the analysis of reference 12, will be discussed in a later 
section. Other relations obtained here in a manner similar to that for 
equations (57 )  and (58) are given in table 11. 

P 

It is of some interest to look into 
the damping in pitch of wing-body combi- 
nations on the basis of equation (58). 
Since the lift-curve slope is determined 
entirely by the trailing-edge configura- 
tion (see table I), it is evident that a 
wide variety of airplanes can be treated 
at once quite simply. If one considers, 
for instance, a configuration whose 
trailing-edge cross section consists of 
a circle with symmetrically placed 
straight lines, as shown in the sketch, 
it is known from the transformation (refs, 
4 and 12) that the lift-curve slope is 
proportional to the quantity 

Thus, from equation (58), it follows that the ratio of the damping in 
pitch of the wing-body combination to that of the horizontal wing alone 
is also given by this quantity. It is important to note that any changes 
in shape ahead of the trailing edge (e.g., camber and thickness of the 
wings, variation in fuselage shape, etc.) are immaterial. Thus, for such 
configurations, the damping in pitch i.s plotted in figure 1 and it can 
be seen that (1) the body is always destabilizing, and that (2) this 
effect is a maximum for a body diameter to wing span ratio of l / P .  
The damping in pitch is made a maximum, on the other hand, by bringing 
the body to a point (or a line) at or ahead of the wing trailing edge. 
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The relationships given in table I1 are all independent of the con-. 
figuration, at least to the order of the present analysis. It can be 
seen from table I that for configurations involving any symmetries (for 
example if stc = 0), there will be additional relationships among the 
stability derivatives. Such a case will be considered in the section 
titled "Applications of the Theory." 

APPARENT MASS 

Perhaps the most striking feature of the results presented in table 
I is the frequent appearance of the quantities [2fi=(Z1 - ro2) + s], 
[2fiht(% + ro 2, - ~ 1 ,  and 2fi1(g1). In fact, since both ro2 and S are 

real, the first two quantities are simply the real parts of 
[2fi(gl - ro2) + S] and [2.rc(Zl + ro2) - s], respectively, while the third 
can be written as the imaginary part of either of these bracketed quan- 
tities. It now becomes evident that a large number of the stability 
derivatives depend only on these two bracketed quantities which, in turn, 
depend only on the shape and size of the airplane cross section. As a 
matter of fact, it can be shown (ref. 17) that the quantities 
pl&[2fi(Z1 - ro2) + S] and pl&[2fi(El + ro2) - S] are identical with the 
integrals defined in incompressible flow theory as the additional appar- 
ent mass of the cross section in the y and z directions, respectively. 

These are given by S p q z  and p(P3dy (refs. 13 and 17) where (P2 S 
and (Pa are the velocity potentials for unit velocity of the cross sec- 
tion in the y and z directions. 

The mathematical basis for the use of the apparent mass to calculate 
the transverse force derivatives of slender bodies in steady flow (as done 
by Munk and Jones in refs. 1 and 2) was established with Ward's formula- 
tion (ref. 5) of the general expression 

since a differentiation with respect to angle of attack, for example, 
yields 

Hence, taking the imaginary part of both sides, one finds 
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where mS3 i s  t he  addi t ional  apparent mass of the  cross sect ion i n  the  
z d i rec t ion  f o r  pure t r ans l a t i on  i n  the  z d i rect ion.  It thus becomes 
c l ea r  t h a t  the  l i f t -curve  slope i s ,  i n  a l l  cases, given by the  apparent 
mass ma3 evaluated a t  the  base of the  body. I f  equation (59) were 
d i f f e r en t i a t ed  with respect  t o  angle of s i de s l i p  ra ther  than angle of 
a t tack,  then the  der ivat ive  Lp would be found t o  involve ms2 r a the r  
than m s a ,  where m3* i s  the apparent mass i n  the  z di rec t ion  f o r  pure 
t r ans l a t i on  i n  t he  y d i rec t ion .  

There remains now the  question of the  r e l a t i o n  between the  apparent 
masses and the  t o t a l  forces  given by equation (59) ;  t ha t  is, under what 
conditions can t he  t o t a l  forces  be calcula ted from the  apparent masses? 
This can perhaps best  be c l a r i f i e d  by s e t t i n g  

where the  f i r s t  two terms represent rigid-body t rans la t ions  of the  cross 
sect ion i n  the  y and z d i rec t ions  and . ( P I  represents var ia t ions  i n  the  
shape and s i ze  of the  cross sect ion with x. For the  steady case, the  
ve loc i ty  components of the  centroid of the  cross sect ion a r e  given by 

and 

so  t h a t  equation (59) can be wr i t t en  i n  the  form 

( yz ) and ( a  - 2 ) represent the  angles Note t h a t  the  quan t i t i es  j3 + - 
t h a t  the  l i n e  of centroids of t h e  cross sect ions  makes with the  f l i g h t  
d i r ec t i on  ( i . e . ,  t he  l o c a l  angles of a t t a ck  and s ide s l i p ) .  It can now 
be seen t h a t  t he  complex force of equation (59) i s  given by the  apparent 
masses and t he  angles of a t t a ck  and s ide s l i p  of the  base cross section,  

S 
- 

provided t h a t  9 ' d l  = 0. 

x=2 
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A s  an example, consider f i r s t  a cambered body with no wings whose 
cross sect ions  near the  base a r e  a l l  c i rcu la r .  I n  t h i s  case 

2 2 - 
T'x=2 = B Z n h y  - ye) + ( z  - zc) so  t h a t  [ P'd!, = 0 and the  

u 
x=2 

apparent mass gives the  s ide  force  and l i f t  a s  wel l  as t h e i r  der ivat ives .  
On t h e  other hand, consider a f l a t  p l a t e  having def lected part ial-span 
f laps .  Here (when t he  p l a t e  i s  a l ined  with t he  f l i g h t  d i rec t ion) ,  the  
e n t i r e  po t en t i a l  a t  the  t r a i l i n g  edge i s  given by cp 'x=2 whose i n t e g r a l  

- [ T1d( does not vanish. Hence, i n  t h i s  case, the  l i f t -curve  slope i s  
c/ 
x= 2 
given by the  apparent mass but the  l i f t  i s  not. This i s  a l s o  t r ue  f o r  a 
body of revolution having f l a t - p l a t e  wings a t  incidence t o  t h e  body. 

For the  unsteady case, as a r e s u l t  of a recen t ly  published r epo r t  
by Miles ( r e f .  ll), one can show t h a t  the  s t a b i l i t y  der iva t ives  can a l s o  
be obtained from apparent mass considerations. This i s  most e a s i l y  seen 
from the  general expression of reference 11 

since,  f o r  example, 

so  t h a t  the  imaginary p a r t  y ie lds  

It should be noted here again t h a t  the  t o t a l  forces  themselves a r e  not, 
i n  general, given by the  apparent masses. Miles a l so  shows i n  reference 
11 t h a t  the  r o l l i n g  moment about the  wind ax i s  i s  given by 

Now, by reasoning exact ly  p a r a l l e l  t o  t h a t  f o r  the  steady case, it can 
be concluded from equations (12), (61),  and (63) t h a t  i n  a l l  cases a l l  
of the  s t a b i l i t y  der ivat ives  (except drag) fo r  r i g i d  slender bodies can 
be obtained from the  apparent masses (o r ,  more generally, t he  " i n e r t i a  
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coefficients"). Also obtainable from the inertia coefficients of the 
cross sections are (1) the total side force and lift, provided that 

T1d7 = 0, (2) the total yawing and pitching moments, provided that 

x= 2 - 
cpld( = 0, and (3) the total rolling mment, provided ax 

that R, ~p'[d? = 0. It is interesting to note that conditions (1) and 

x= 2 

(3) involve symmetries of the cross sections only near the base, but that 
condition (2) is more stringent and is satisfied, for example, by having 
bilateral symmetry of the cross sections over the entire length of the 
airplane. 

An alternative form for the integrals representing the apparent 
masses or inertia coefficients can be shown to be identical with the 
integrals representing the kinetic energy of the fluid associated with 
any desired unit velocity (linear or angular) of the cross section; for 

a% example, p T3dy = - § p'P3 - ds. However, it is essential to note 
an 

that it is only for rigid-body motions of the cross section (as repre- 
sented, for example, by T3) that the two integrals are identical, since 

acp only for such motions does - = - fl?l; at the boundary. Thus, it can be 
an as 

seen that acP1 i p T ' d y  # - I P T f  - ds even if 0' is given proper a n  
dimensions by dividing by a velocity. 

Inasmuch as relatively few inertia coefficients have previously been 
calculated, there seems to be little advantage (other than brevity) in 
expressing the stability derivatives in terms of these coefficients. It 
is felt that the formulas of table I involving the mapping function will, 
in general, be found more useful, although one should certainly make use 
of any of the coefficients already calculated. In this connection, the 
reader is referred to a recent paper of Kuerti, McFadden, and Shanks 
(ref. 17) in which the apparent masses of a number of interesting cross 
sections are listed for simple translation in the y and z directions. 

The apparent mass integral f 'P3dy was also calculated for a few 
shapes in connection with minimum drag problems in reference 18. How- 
ever, the integrations there were (for the rectangle) carried over both 
the exterior and the interior of the cross section since the configura- 
tion treated there was indeed a hollow rectangle made up of four thin 
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wings. It is necessary then, in order to obtain the desired quantity 
[2~lZ(z1 + ro 2, - ~ 3 9  t o subtract the cross-sectional area (as pointed 
out in ref. 17). It should be pointed out in this regard that all the 
results of the present paper are for solid bodies. Thus, if the body con- 
tains a jet, one must add to the calculated lift the negative rate of 
change of momentum (in the z direction) of the air passing through the 
jet. For a simple bent, circular, thin-walled pipe flying approximately 
along its axis, a jet exit velocity equal to the flight velocity just 
doubles the lift given for the solid circular cross section. 

The tabulated values of § 'T&y in reference 18 have been adjusted 

for this internal flow and additional values have been calculated here to 
extend the range of the variable. The results are plotted in ffgure 2 to 
show the increase in lift-curve slope and damping in pitch obtained by 
use of a blunt trailing edge of rectangular cross section, of vertical 
end plates near the trailing edge, and of a biplane with sharp trailing 
edges. It will be recalled that both the lift-curve slope and the damp- 
ing in pitch depend only on the trailing-edge cross section, so the 
results of figure 2 are independent of wing thickness, camber, body shape, 
etc., ahead of the trailing edge. 

It might be mentioned 
here that if the apparent 
masses of a given cross sec- 
tion in two orthogonal 
directions are equal, then 
the apparent mass of the 
cross section is independent 
of its direction of trans- 
lation. This follows from 
the fact that the momentum 
vectors and the velocity 
vectors add in exactly the 

/ 

same fashion. In reference n fins 
n r 3  

17 it was shown that the 
n comers 
regu/or pokgon 

cross sections in the sketch 
possess this important property. It also follows, then, that al = 0 so 
that many of the stability derivatives vanish for such configurations 
( see table I). 

APPLICATIONS OF THE THEORY 

In this section, the results of the foregoing analysis will be 
applied to the calculation of the stability derivatives for several more 
or less special configurations. The first problems to be treated here 
will be concerned with the introduction of wing thickness and camber as 
parameters since the present analysis is applicable to unsymmetrical 
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configurations. Then, although the finned body of revolution has been 
treated by many authors (e.g., ref. 4, 9, 10, and 12), a plane wing-body 
combination will be considered in order to investigate the effect of the 
squared terms in the pressure relation. Finally, stability derivatives 
will be calculated for a wing-body-vertical-fin combination. 

Wings with Thickness and Camber 

The quantity "camber," as introduced here, may be complex, the 
imaginary part corresponding to the conventional camber in the vertical 
(xz) plane and the real part corresponding to a lateral camber or 
"wiggles" in the horizontal ( xy) plane. Perhaps the simplest conf igura- 
tion of interest for the present problem can be made up of elliptic cross 
sections whose eccentricity and position in the lateral planes are arbi- 
trary functions of x. The required transformation for such a configura- 
tion is (see sketch) 

so that 

and the radius of the transformed circle is ro = - These quantities 
2 

suffice for the calculation of many of the stability derivatives directly 
from table I. However, for the rolling derivatives, the complex potential 
is, in general, required. The complex potential in the transformed cir- 
cle plane can be derived from reference 16, page 239, and is given by 
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~,(a + b)(b cos y + ia sin y) 
~ ~ ( 0 )  = B 2n a - + 

20 

where Hc and y define the lateral velocity of the centroid given by 

The logarithmic term of equation (65) permits a variation in size of the 
ellipse with x. The series term represents the portion of the potential 
required to meet the boundary condition of equation (21) when dv/dx is 
arbitrary (warped body); this permits a variation of the eccentricity 
b/a with x. If now the potential of equation (65) is transformed to the 

plane by means of equation (64) and the coefficientof the 115 term 
is evaluated at R = p = 0,  it is found that 

Wlth this result, one can obtain all of the stability derivatives except 
C z F  and C Z ~  directly from the formulas given in tables I and 11, for 

any given configuration in this category. Two examples will now be 
considere3. 

The first example will consist of a cambered elliptic cone; that is, 
an ellistic body with constant eccentricity whose span is a linear func- 
tion of x. The body axis will be chosen to pass through the center of 
the base the camber line will be represented by a sine curve 
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zc = 6 s i n  sx/c as shown i n  the  
sketch. This body can be thought 
of as a spec i a l  case of a cam- 
bered t r i angu la r  wing having a 
blunt  t r a i l i n g  edge. The camber, 
of course, must be s u f f i c i e n t l y  
mal l  t o  insure  t he  v a l i d i t y  of 
t he  slenderness approximations. 
On the  other hand, the  thickness 
r a t i o  a s  indicated by b/a i s  
a rb i t r a ry .  Thus the  range of 
b/a from the  f l a t  p l a t e  
(b/a = 0) t o  the  c i r cu l a r  cone 
(b / a  = 1) can be t r e s t e d  a s  one 
problem. It should be mentioned 
t h a t  the  choice of body axes i s  
a r b i t r a r y  so t h a t  maneuvers about 
any other s e t  of orthogonal axes 

z x f ixed  i n  the  body could be 
sec. B-6  handled equally well .  A few of 

the  i n t e r e s t i ng  s t a b i l i t y  de r i -  
Y va t ives  have been calcula ted f o r  

t h i s  configuration by the  formu- 
sec. A - A  las of t ab l e s  I and I1 and t he  

der iva t ives  Cnp and Cnap a r e  

p l o t t e d  i n  f igure  3. It i s  seen t h a t  Cnp i s  always negative f o r  posi -  

t i v e  camber, i s  l i n e a r  i n  the  camber, and increases with t he  thickness,  
On the  other hand, Cnap, which i s  negative i n  a l l  cases, i s  independent 

of the  camber and decreases t o  zero a s  the  thickness r a t i o  increases t o  
one. 

A s  a second example of a c o n f i g ~ r a t i o n  having e l l i p t i c  cross  sec- 
t i ons ,  the  "wing-likett shape developed by Squire ( r e f .  19) i s  chosen, 
This shape has a va r ia t ion  of e ccen t r i c i t y  of the  e l l i p s e  such t h a t  a l l  
p r o f i l e  sect ions  (except  the  mi3span sect ion)  have a rounded leading edge 
and a pointed t r a i l i n g  edge. I n  addi t ion t o  t h i s  pa r t i cu l a r  thickness 
d i s t r i bu t i on ,  f o r  the  present  problem the  wing w i l l  be given a camber 
i d e n t i c a l  with t h a t  taken f o r  t he  e l l i p t i c  cone; t h a t  is ,  zc = 6 s i n  cx/c. 
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Thus, the  wing t o  be t r ea t ed  
here has the  shape i l l u s t r a t e d  
i n  the  sketch. For t h i s  wing, 
the  major and minor axes of 
the  e l l i p s e  a r e  given by 

A a = - x  
4 ( 6 8 )  

and 

b = 2t ( c  - x)x 7 
where A i s  aspect r a t i o  and 
t i s  the  maximum thickness 
( th ickness  of the  midspan sec- 
t i o n  at  x = c/2).  Some of 
the  s t a b i l i t y  der ivat ives  have 
been calculated f o r  t h i s  wing x 
by the  formulas of t ab les  I sec. B-B 
and I1 and Cnp and Cnap a re  

p lo t t ed  i n  f igure  4. It i s  
found that Cnp displays,  i n  

sec A - A  
general,  the  same var ia t ions  
with camber and thickness a s  
did  t h a t  f o r  the  e l l i p t i c  cone. However, Cna. displays a trend opposite 

t o  t h a t  f o r  the  e l l i p t i c  cone. That i s ,  CnW i s  seen t o  increase with 

thickness,  so t h a t  the  angle-of-attack contribution t o  the  yawing moment 
due t o  r o l l i n g  is  apparently heavily influenced by whether the  t r a i l i n g  
edge i s  blunt or  sharp. The der ivat ive  Cyp was a l so  calcula ted fo r  

both wings and w a s  found t o  be independent of the  thickness.  In f a c t ,  
f o r  e i t h e r  wing, f o r  the  axes chosen, 

While t h i s  r e s u l t  appears t o  contradic t  the  corresponding r e l a t i o n  found 
i n  reference 12 (cyp = cZg) ,  it simply highl ights  the  f a c t  t h a t  the  analy- 

s i s  of reference 12 does not include camber although it could be extended 
t o  do so. Clearly, i f  6 = 0 the  two r e s u l t s  a r e  i n  agreement. The 
der iva t ive  2, 

w a s  a l so  calcula ted f o r  both cambered wings and was 

s imi l a r l y  found t o  be independent of t he  thickness.  I n  f a c t ,  C2, was 

found t o  have a value equal t o  
C n ~  

f o r  zero thickness; t h a t  i s ,  

It i s  i n t e r e s t i ng  t o  note t h a t  s ince  the  trai l ing-edge cross sect ion 
of the  Squire wing i s  a s t r a i g h t  l i ne ,  any s t a b i l i t y  der ivat ives  t h a t  
depend only on t he  mapping function of the  trai l ing-edge sect ion ( see  



NACA TN 3283 

table I) will be the same as for a flat-plate wing (e.g., CLa, CYD9 CLB, 

CLa, etc.). It is important also that for an elliptic cross section, the 
.. 

quantity [ 2fi(Z1 + ro2) - S] (apparent mass in the z direction) is inde- 
pendent of the eccentricity, depending only on the semimajor axis a, 
while the quantity [2n(Zl - ro2) + S) (apparent mass in the y direction) 
depends only on b. Thus it can be seen from table I that all of the 
purely longitudinal derivatives (cLar CL~, CL.,, CL~, Cma, Cmq, C cm4) 
are the same as for a flat-plate wing of local semispan a. Similarly, 
all of the purely lateral derivatives (cy Cng, etc.) are the same as 

B' 
for a flat-plate wing of semispan b if we replace p by minus a, Y 
by L, and N by M. One can see, therefore, that the ellipse is a very 
special cross section and tends to obscure some of the effects of thick- 
ness. For instance, it was seen in figure 2 that [ 2n1&(z1 + ro2) - s ] 
for a rectangle increases with the height of the rectangle and that a 
blunt trailing edge of rectangular cross section will therefore give an 
increase in lift-curve slope over a flat plate and a corresponding 
increase in the damping in pitch. 

For the evaluation of rolling moments it would appear from equations 
(51) and (52) that some of the integrations might be quite difficult . 
because of the nonanalytic character of the integrands. In fact the 
stability derivatives Czp and Czi contain the sm.e nonanalytic inte- 

grands (see table I). However, the integrations can sometimes be advan- 
tageously carried out in the transformed circle plane by the method of 
residues. For a configuration having an elliptical cross section at the 
trailing edge, for example, the calculation of the damping in roll Cz, 

-C 

becomes quite simple with this technique. Specifically, from table I, 

Now, since equations (64) and (65) for the required transformation and 
complex potential are already in the form of power series in o, and 
since on the circle boundary 05 = ro2, one can immediately write the 
integrand as a power series in o and therefore use the method of resi- 
dues. It is found for this case that the residue of this series is 

2 simply l (a, - bO2l2 where the subscript refers to the trailing edge. 
8 

Thus the damping in roll is given by 
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It i s  seen from equation (70) t h a t  f o r  the  Squire wing (bo = 0) t he  damp- 
ing i n  r o l l  i s  independent of the  wing thickness and camber, remaining 
always at  the  f l a t -p l a t e  value as given by Ribner ( r e f .  3 ) .  For t he  
e l l i p t i c  cone, on the  other hand, C z p  depends on t he  thickness and the  

e f f e c t  of a blunt t r a i l i n g  edge becomes apparent. Values of C z p  f o r  

these cases a r e  p lo t t ed  i n  f igure  5.  It should be noted i n  general t h a t  
since a ~ / a ~  i s  independent of any t r ans l a t i oua l  ve loc i ty  i n  the  cross  
plane, the  damping i n  r o l l  i s  not a f fec ted  by camber. 

The device used above t o  permit the  use of the  mezhod of res idues  
can always be employed; t h a t  i s ,  s ince  & F / & ~ ,  5 ,  and 5 a r e  a11 express- 
i b l e  a s  power s e r i e s  i n  a and : and since a and 5 a re  r e l a t e d  by the  
radius  of the  transformed c i r c l e ,  the  integrand becomes an analy-tic func- 
t i on  of the  var iable  of in tegra t ion  i n  the  transformed plane. However, 
i f  the  transformation i t s e l f  i s  an i n f i n i t e  s e r i e s  ( a s  is  the  case f o r  
the  finned body of revolution),  then the  residue and consequently the  
damping i n  r o l l  w i l l  emerge a s  an i n f i n i t e  s e r i e s  involving combinations 
of a l l  the coef f ic ien t s  of the  transformation. This s e r i e s  i s ,  i n  gen- 
e r a l ,  considerably more complicated than t h a t  enter ing i n to  der-ivatives 
l i k e  Cy 

P ' 

Plane Wing-Body Combination 

It w i l l  be of some i n t e r e s t  t o  consider here ce r t a in  aspects of the  
plane wing-body problem i n  view of the f a c t  t h a t  some s t a b i l i t y  deriva- 
t i ve s  had been calcula ted ( see r e f .  10) before it was generally r ea l i z ed  
t ha t  the  squared terms i n  the  pressure r e l a t i o n  must be re ta ined.  A 
number of the  simpler der ivat ives  can be obtained quickly from t ab l e  I 
i f  t he  mapping function of the  cross  sect ion i s  known, and one of these 
w i l l  now be compared with the  corresponding der iva t ive  obtained i n  r e f -  
erence 10 without the  squared terms i n  the  pressure r e l a t i on .  The 
required mapping function i s  an i n f i n i t e  s e r i e s  obtained by making two 
successive Joukowsky transformations ( see  r e f .  41, and it i s  found t h a t  
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z where s is the wing 
semispan and a is 
the body radius (see 
sketch) . Hence, many 
of the stability deri- 

a vatives vanish by vir- 
9 tue of the fact that 

Y 

6s4 + al is real (see table 
I). It is noted that 
S, a, and Cc are here 
all arbitrary func- 

l tions of x (within 
the slenderness 
approxima tion) and 

the body will have a straight axis (plane wing-body) only if fc is a 
linear function of x. Also, if C, is not a linear function of x 
then the evaluation of Alo (which is required for some derivatives) 

becomes a problem which amounts to determining Al of the complex poten- 
tial for simple translation. This will be done shortly. 

For the pur- 
z 

pose of illustrat- 
ing the influence 
of the squared 
terms in the pres- 
sure relation, the 
rolling moment due 
to sideslip will be 
calculated for the 
special case of a 
flat triangular 
wing mounted sym- 
metrically on a 
cone-cylinder as 
shown in the 
sketch, For this 

case, with the axes chosen as shown, it is clear that cc = 0, 
a = const. = ao, and s = so(x/c). It is further noted that (due to 
symmetry) there is no rolling moment provided by the portion of the body 
ahead of x = xo and that the rolling moment due to sideslip at zero 
angle of attack is zero (cZp = 0 ) .  Therefore, the only pertinent deri- 

vative5 to be calculated is Cz which is given by (see table I) 
aB 

%or this configuration all of the coupled (second) derivatives of 
the rolling moment vanish except Cza8andCz anditisassumedhere Bs' 
( for purposes of comparison with ref. 10) that q = 0. 
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where Sr and Zr have been taken as the  gross wing area  aad the  maximum 
wing span, respectively.  The r a t i o  of t h i s  CzaD t o  t h a t  f o r  t he  wing 

alone (ao/so = 0) i s  p lo t ted  i n  f igure  6 and i s  compared with the  corre-  
sponding curve of reference 10. It can be seen t h a t  the  e r r o r  incurred 
by t he  omission of the  squared terms i n  the  pressure r e l a t i o n  i s  i n  excess 
of 100 percent f o r  r a t i o s  of body diameter t o  wing span greater  than 0.5. 
Now since 'yap = - 'Zap according t o  t ab l e  11, the  s ide  force  due t o  

r o l l i n g  can a l s o  be compared with t h a t  obtained from a l i n e a r  pressure 
r e l a t i o n  by means of equation ( 7 2 ) .  This comparison is  presented i n  
f igure  7 and it i s  seen t h a t  the di f ference i s  even more pronounced than 
t h a t  f o r  the  r o l l i n g  moment due t o  s ides l ip .  It should be mentioned t h a t  
i f  the  wing-body combination i s  cambered, the contribution of r ~ l l i n g  
moment by the  nose w i l l  not ,  i n  general,  vanish, nor w i l l  t h e  r o l l i n g  
moment a t  zero angle of a t t ack .  

w = ( l ,  - + a2 
c - CC 

It has been z 
mentioned t h a t  f o r  
a general wing- 
body combination 
of the  cross sec- 
t i o n  discussed 
above ( i . e . ,  Cc 
not a l i nea r  func- Y 
t i o n  of x ) ,  the  

(see  sketch). The complex po t en t i a l  i n  the  w plane i s  given by ( s ee  
e.g., r e f .  16, p. 161) 

coef f ic ien t  of the  5 
1/( term i n  the  
complex po t en t i a l  

F ~ ( u )  = - H,(U c6s y - i s i n  y (73) 

t-s-i 

must be determined 
i f  a l l  of the  s t a b i l i t y  der iva t ives  a r e  t o  be calculated.  The coef f i -  
c ien t  Al f o r  simple t rans la t ion  ( p  = 0) can perhaps most r ead i l y  be 
obtained from the  complex po t en t i a l  f o r  a f l a t  p l a t e  i n  a uniform stream 
by use of t he  transformation 
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so that, by using the above transformation and adding a term ~ ~ c e " ~ Y  to 
remove the free stream in the 5 plane and a term B 2n(c - 5,) to allow 
a variation of the radius a with x, one finds after expansion in series 
that the coefficient of 1/f is (for p = 0) 

where d = s + a2/s and it is recalled that ~ ~ e ~ l  = R + ~~(d(,/dx) for 
pure translation. Now, by noting that for R = 0 

cos y =.o (2) 
Hc 

and 

one can write finally for this type of configuration 

With Alo determined, all of the stability derivatives except C and 
Z P  

CZ$ 
can be obtained directly from tables I and 11. The difficulties in 

determining Czp and C 2 ~  have been discussed in the preceding section. 

Wing-Body-Vertical-Fin Combination 

tl 
In reference 12, the mapping 

function was developed for a body 
of revolution having four flat- 
plate fins mounted 90° apart (see 
sketch) . Therefore, one can use 
the formulas of table I directly 

-s  for such a configuration by first 
determining the proper coefficients 
in the expansion of the mapping 
function, It is important to note 

5 u that for this purpose, the expan- 
sion of the mapping function must 

be exactly of the form of equation (46). The mapping function given in 
reference 12 is not of this form (as can be verified by carrying out the 
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expansion), but it can be modified to give the proper form. The resulting 
transformation is 

and 

where 

and it is found after a somewhat laborious expansion chat the first six 
coefficients are 
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I In general, 
the integrations 
indicated in 
table I would 
have to be per- 
f ormed numer i - 
cally for a given 
configuration of 
the type consid- 
ered above. How- 
ever, for a con- 
ical conf igura- 
tion, great 
simpiif ication is 
achieved and the 
integrations 
become trivial. 
Therefore, a two- 
parameter conical 

configuration is chosen to illustrate the effect of a vertical fin on a 
number of the stability derivatives; that is, the lower fin is removed by 
setting t2 = a, and tl (or t), a, and s are taken to be proportional 
to x (see sketch). Thus, the coefficients given above and the radius 
of the transformed circle become proportional to x or 2 and most of 
the stability derivatives can be readily calculated. It is noted that 
for this configuration, with the axes chosen, Alo = 5, = 0. Also, due to 

the conical property, Cng = C,, = 0 if cl is chosen as 213 c. 

The stability derivatives obtainable from the coefficient al (which 
in this case is real) and from the radius of the transformed circle ro 
have been calculated for a range of the parameters a/s and t/s and are 
plotted in figure 8. The purely longitudinal derivatives are of course 
unaffected by the vertical fin as seen in figure 8(b) (which is inci- 
dentally the same curve as given in figure 1 for a different purpose with 
regard to a more general configuration) . 

Some interesting and important 
effects of the vertical fin can be : I ;  seen in figures 8(a) and 8(c) which 
show a number of the lateral and 
"coupled" derivatives. First it 
should be noted that the two ends 

- s of the a/s scale correspond to 
a/s = 0 the extreme configurations shown 

in the sketch. It is clear that 
ahi=/.O the solid curves of figures 8(a) 

and 8(c) have no meaning for 
a/s > t/s since this would correspond to a vertical fin inside the body, 
Therefore, for values of t/s less than 1, the envelope curves (the 
dashed curves) corresponding to a/s = t/s have been plotted to fill in 
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the rest of the range of a/s from 0 to 1. It is seen that even at 
a/s = 0 a vertical fin of small span is quite ineffective on both stabil- 
ity derivatives I and I11 (see figs. 8(a) and 81~)). Hence, the ineffec- 
tiveness of small fins is not entirely caused by the body absorbing the 
fin, but is partly due to a blanketing effect of the horizontal wing. 

The significance of the effect of the vertical fin can perhaps best 
be appreciated by considering a relatively familiar derivative Cnap 
(fig. 8(a) ) which can be thought of as the angle-of -attack contribution 
to the yawing moment due to rolling. It appears that for fin heights 
such that t/s > 1.0 this derivative becomes positive over some portion 
of the a/s range (almost the entire range if t/s > 1.5) . Thus, for . 
this configuration, the angle-of-attack contribution to the yawing moment 
due to rolling can be changed from adverse (negative) to favorable 
(positive) by increasing the height of the vertical fin above about 1.5 
times the wing semispan, depending on the body radius. 

From the coefficients given in equation (77), it is difficult to 
make any statement regarding the convergence of the series requlred for 
derivatives such as Cnp (see table I). Therefore, one is at a loss to 

say how many terms of the expansion must be retained for satisfactory 
calculations. In order to get some idea of the convergence, the deri- 
vatives involving the series were calculated using 2, 3, 4, 5, and 6 
terms in the series and the results are presented in figure 9. It appears 
that for some cases four terms would be sufficient. The results of fig- 
ure 9 indicate a strong blanketing effect of the wing on the vertical fin 
for t/s < 1. It can be seen that for a/t = 1 (plane wing-body) 

- Cnp - Cni = . . . =O. 
In reference 20, one of the configurations treated corresponds to 

the present conical wing-body-vertical-fin combination for a = 0 (no 
body). As this furnishes an interesting check on the present calcula- 
tions, the appropriate values of Cyp9 CyP, and C have been taken from 

2 P 
that report6 and are plotted on figures 8 and 9. It can be seen that the 
agreement is excellent, even for those derivatives calculated with only 
a few terms of the infinite series (fig. 9). It should be noted in fig- 
ure 9 that wherever the best approximation curve (representing 6 terms 
in the series) cannot be seen, it is because the results were essentially 
identical with the previous approximation. 

It is interesting to note that for a cruciform wing-body combination 
(tl = t2 = s), according to equations (76) and (77) and succeeding terms, 
one finds that a. = al = a2 = a4 = a6 = . . . = 0 so that many of the 
stability derivatives of table I vanish due to the symmetry of such a 
configuration if the axis of symmetry is chosen as the x axis; for 
example, here again Cnp = Cnt = . . . = 0. 

 he values of Cy,, Cy,, and C1, were taken from figures 11, 23,  
and 24 of reference 20 zinceythere apsear to be some typographical errors 
in equation (58) of that report. 
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CONCLUDING REMARKS 

A general analysis has been presented for determining the forces 
(except drag) and moments and the stability derivatives of a slowly 
maneuvering slender wing-body combination of arbitrary cross section. 
The results of the general analysis appear as (1) formulas for the forces 
and moments in terms of the airplane shape and motions and (2) formulas 
for the nonzero stability derivatives in terms of the mapping functions 
of the cross sections. 

Stability derivatives of the first and second order have been con- 
sidered so that the interdependence of the longitudinal and lateral 
motions is included. A number of relationships among the various stabil- 
ity derivatives were found which are independent of the shape of the air- 
plane, so that, at most, only 35 of a total of 325 first and second 
derivatives need be calculated directly. 

In order to bring out these relationships, the stability derivatives 
have been defined somewhat differently from the usual derivatives. For 
example, the usual derivative of rolling moment due to sideslip would, 
in the present analysis,. be given by 

All derivatives as defined in this paper, then, are constant for a given 
airplane. Time rates of change of the angles and angular velocities have 
also been included, although these effects vanish for the particular 
derivative above. 

The use of the apparent mass concept for problems in slender-body 
theory has been discussed in the light of the present analysis and on the 
basis of previous treatments of slender-body problems by momentum methods. 
It is demonstrated that all of the stability derivatives can be calculated 
from the apparent masses (or inertia coefficients), but that the general 
expressions for the total forces and moments involve additional terms. 

From the results of the general analysis, some of the stability 
derivatives have been calculated for (1) two triangular wings having 
thickness and camber, (2) a plane wing-body combination, and (3) a wing- 
body-vertical-fin combination. These three cases have been used to show, 
respectively, (1) the effects of camber, thickness, and blunt trailing 
edge, (2) the influence of the squared terms in the pressure relation, 
and, (3 )  the effect of a vertical fin on the various stability 
d m  ivative s . 

It was found that the effect of thickness on the angle-of-attack 
contribution to the yawing moment due to rolling was essentially opposite 
for blunt and sharp trailing edges, but the effect at zero angle of attack 
was similar in both cases. In both cases, the angle-of-attack 
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contribution was independent of the camber while the zero-angle-of-attack 
contribution was linear in the camber. 

The damping in pitch was shown to be proportional to the lift-curve 
slope and therefore to depend only on the base cross section. On this 
basis, the lift-curve slopes and damping in pitch were calculated for 
(1) a wing-body-vertical-fin combination, (2) a blunt trailing edge of 
rectangular cross section, (3) a sharp trailing edge with end plates, 
and (4) a biplane with sharp trailing edges, Sizable increases over the 
flat-plate values are shown in the last three eases. 

The derivatives usually called Cy and CZ were calculated to be 
P P 

more than 100 percent in error if the squared terms in the pressure 
relation are neglected in the case of a plane wing-body combination of 
body diameter to wing span ratio of 0.5 or greater. 

A number of stability derivatives were calculated for a conical wing- 
body-vertical-tail combination and the variations with body diameter to 
wing span ratio were plotted for various vertical tail spans. The influ- 
ence of the vertical fin was found to be markedly altered by the blanket- 
ing effect of the wing for small vertical tail spans. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronauties 

Moffett Field, Calif., June 10, 1954 
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APPENDIX A 

D~ERENTIATION OF A CONTOUR INTEGRAL 

Consider a differentiation of the 

contour integral Tdy with respect 

to x, where the contour is a smooth 
closed path that depends on x, as shown 
in the sketch. The four points on the 
curve, designated a, b, c, and d, 
represent the maximum positive and 
negative values of y and z, so that 
the function 9 on the contour between 
a and c can be designated Tlower (or 
simply T2), that between c and a, 
(Pupper (or vU), and those between b 

and d and between d and b, T+ and (P,, 
respectively. Thus one can write 

so that there are now four line integrals to be differentiated. This can 
be done directly by means of the formula 

which gives 
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where z = zl(x,y) and y = yl(x,z) are alternative expressions for the 
contour C and must be single-valued between the prescribed limits of 
integration. 

Now, if the velocity potential '? is single-valued on the contour, 
then 

and 
9, = 'PI  at a(x) and c(x) 

9, = 9- at b(x) and d(x) 

so that all four of the additional terms above cancel and one finds, after 
combining like integrals, that 

But the partial derivatives can be rewritten in the form 

and 
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Therefore, since , the final result is ax "I z=zl =El y=Y1 
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APPENDIX B 

THE RESIDUE Al OF TRE COMPLEX POTENTIAL 

From equation (31) it follows that 

Now, if one maps the body contour in the plane onto a circle of 
radius ro, center the origin, in the a plane by the transformation 

(where an is in general complex) then the "boundary function" of 
Milne-Thomson (ref. 16, p. 237) is obtained. Noting that on the circle 
boundary a?? = ro2 so that 

one can write the boundary function as 

where ~(a) is simply 2iUo - ds expressed as a function of a, J :  
It has been demonstrated in reference 16 that this boundary function 

can be satisfied by setting the complex potential equal to the part of 
2iJrs containing only the negative powers of a. Thus one can set 
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where ~ ~ ( 0 )  represents the portion of T containing negative powers of 
a. The residue Al of F can then be expressed as 

where Alo is the residue of T~(u) and it is noted that Alo can depend 

only on the shape of the cross section and not on any of the airplane 
motions; that is, Alo - must be a function of x alone and is simply the 
value of A1 at R = R = p = 0 .  Therefore Alo is zero for any con- 
figuration possessing an axis of symmetry if that axis is chosen as the 
x axis. 

It can be seen that Al is independent of the rolling velocity p 
provided that a. vanishes and that either all the odd n or all the 
even n are absent in the expansion of f(a). This leads to the con- 
siderations of symmetry given in the text. It should be noted that for 
symmetrical shapes a. is the centroid of the cross section. 
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TABLE 11.- RELATIONSHIPS AMONG THE STABILITY DERIVATIVES 
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figure 8 . - Damping - in - pitch for wing - body - vertical - fin combination . 



cross section 

fal Blunt trailing edge of rectangular section. 

cross section 

0 .2 .4 .6 .8 /. 0 
h/b =qGzxJ7 

(6) Wing with end plates, 

Figure 2 .  - Damping-in-pitch und lift curve slopes for 
several trailing edge cross sections . 
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h/b 

(C 1 S/e nder biplane. 

figure 2.- Concluded . 
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(o) Yowing moment due to rolling ot zero angle 

of oftuck . 

Figure 3 .  - Effect of camber ond thickness for blunt - 
trailing - edge triangular wing /e / l ip tic cone 1 . 
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(b)  Angle - of - attack contribution to the yawing 

moment due to rolling or the rolling 

moment due to yawing . 

Figure 3.- Concluded . 
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( a )  Yawing moment due to ~ololling a t  zero angle 

of attack . 

Figure 4 .  - Effect of comber and thickness for sharp - trailing - edge 

triangular wirrg (Squire wing) 
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(b)  Angle-of- attack contribution to the yowing 

moment due to rvlling or the rolling 
moment due to yawing . 

Figure 4.- Concluded . 
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Foiling- edge 
cross section 

Figure 5 .  - Effect of thickness on damping in roll 
for blunt - trailing - edge wing having ell/lotic 
cross section a t  the frailing edge . 
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Figure 6. - Influence of  the squared terms in the 

pressure relation on calculations of the 
rolling moment due to sides/@. 
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Figure 7 .  - Influence of the squared terms in the 
pressure relation on calculations of the 
side force due to rolling . 



lo) Stability derivative I. 

fin) 

Figure B . - Stability derivatives for conical wing - body - 
vertical- fin configuratior, . 
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All VCPIU~S OP t/s 

(6) Stability derivative Z. 

I 

Figure 8.- ~ontinued . 
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fc) Sfobi/ity derivative me 

figure 8.- Concluded . 



Figure 9 .  - Calculation of stability derivatives for conical 
wing - body - vertical- fin combination (using different 

numbers o f  terms in infinite series o f  fable 1). 




