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FOREWORD

This report presents the results of engine tests and
a discussion thereof, as conducted by GE Aircraft Engines,
Cincinnati, Ohio. These engine tests were performed on
behalf of the NASA Lewis Research Center, Cleveland, Ohio,
under Contract NAS3-24210. The program was carried out
under the technical cognizance of Mr. R.D. Hager of the
Advanced Turboprop Project Office. The contract effort
was conducted at the Evendale Plant of GE Aircraft Engines

by the GE36 Project Department.
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1.0 ENGINE TEST SUMMARY

This Engine Test Report covers the UDF™ (unducted fan) Engine 082-001
ground testing at the GE Aircraft Engines Peebles Test Facility and includes
Builds 1 through 3 of Engine 082-001. Note: A new build number indicates a

significant change in engine hardware.

The UDF™ engine successfully completed a ground-test program exceeding
100-hours duration. The basic concepts of the engine have been successfully

demonstrated. Some of the accomplishments are as follows:
. Full thrust (25,000 pounds corrected) demonstrated
L Full propulsor rotor speed demonstrated (1393+ rpm)

. Specific fuel consumption (sfc) was better than predicted; sfc
of < 0.24 1b/hr/1b was demonstrated

. Flawless operation of the F404 gas generator

L4 Counterrotation of structures, turbines, and fan blades
L Actuation system operation successfully demonstrated

° Control system operation successfully demonstrated

o New fan blade design successfully demonstrated

o Reverse thrust successfully demonstrated.

The UDF™ was ground tested at Peebles for a total run time of 100:51

hours. This was split between Builds 1 through 3 as follows.

Run Time Total

Build per Build Run Time
1 5:24 5:24

2 29:20 43:44

3 66:07 100:51

In Figures 1-1 through 1-4, the engine run time is a function of Stage 1
propulsor fan speed (XN48), Stage 2 propulsor fan speed (XN49), exhaust gas
temperature (T46), and thrust, respectively. Thrust data were available for

Build 3 only. Note that on the plots of run time as a function of propulsor
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speed, there is a large amount of time spent in the ranges of 600 to 700 rpm
and 700 to 800 rpm. Most of this time was spent in the immediate vicinity of
700 rpm, which is idle for this engine. Also note that the vast majority of
time spent in the 1400 to 1500 rpm range was actually spent near 1400 rpm.

1.1 SIGNIFICANT HARDWARE CHANGES AND MODIFICATIONS

Significant hardware changes and modifications which occurred during the
UDF™ ground test are listed below. A more detailed discussion is provided in

the sections enumerated.

Section
Build 1 to 1A
Forward stationary carbon seal and 2R bearing replaced 3.1
Build 1A
Forward telemetry system antenna modified 3.2
Added pipe-elbow air scoops to exhaust nozzle to aid aft 3.3
telemetry system cooling
Build 1A to Build 2
All propulsor turbine blades replaced (Stages 1-4 and 6-11) 3.4
Propulsor turbine blade tip clearances increased 3.4
Damper pins added between all propulsor turbine blades 3.4, 3.5
Spool distress repaired 3.4
Pipe-elbow scoops were replaced with aerodynamic air scoops 3.3
Leading edge plugs were installed in propulsor fan blades 3.11
Installed redesigned stationary exhaust nozzle (centerbody) 3.7, 7.3
Installed hardware to solve subidle oil leak problem 3.6
Build 2
Propulsor Stage 2, No. 7 fan blade replaced after blade-out 3.10
Added additional holes to telemetry system air scoops 3.3
Installed compressor discharge pressure (PS3) accumulator
system 6.0

Installed redesigned fan bypass bleed valve diffuser 3.9




Section

Build 2 to Build 3

Installed redesigned propulsor Stages 1 and 2 fan blades 3.11
Installed improved PS3 accumulator system 6.0
Build 3

No significant changes

Postbuild 3

Replaced all propulsor Stage 1 turbine blades 3.17
Replaced three propulsor Stage 11 turbine blades 3.17
Added positive mechanical retention feature to 1R bearing nut 3.17
Replaced 1R and 2R bearings 3.17
Repaired IGV (inlet guide vane) - lip replaced with honeycomb 3.17
Drilled oil drain holes in propulsor 3.17
Borescope ports added to mixer frame to gain better

access to Stage 1 turbine blades 3.17
Replaced actuator control rods 3.17
Installed additional air scoops for cooling aft

telemetry system 3.3

1.2 OVERALL HISTORY OF UDF™ ENGINE TESTING

Tables 1-1 through 1-3 present an overall history of UDF™ testing.



Table 1-1. GE36 Test History - Engine 082-001, Build 1/1A.
Date (1985) TRT
Aug. 29 First Run to Idle; Broken Carbon Seal 0:02
Caused Internal 0il Leak Resulting in
a Rotor Unbalance; Caused a Turbine Rub
Which Cracked Some Stage 11 Turbine Blades
Aug. 30-Sept. 11 Engine Removed from Site; Carbon Seal and
2R Bearing Replaced
Build 1A
Sept. 14 Engine Returned to Test; Idle Achieved 0:11
Sept. 15-17 Worked Instrumentation Faults
Sept. 18 Mechanical Check-Out 0:14
Sept. 19 Mechanical Check-Out 1:10
Reached Full Propulsor Speed
Sept. 20-26 Modified Forward Telemetry Antenna
Sept. 27 Reached 22,000 1bf; Shutdown Due to 3:43
High Aft Telemetry Temperatures
Sept. 28-0Oct. 1 Added Air Scoops to Exhaust Nozzle to
Cool Aft Telemetry System
Oct. Reached 24,000 1bf; Engine S/D Following 5:24
Stall (Stage 1 Turbine Blade Failure)
Oct. Engine Removed for Repair




Table 1-2. GE36 Test History - Engine 082-001, Build 2.
Build 2
Date (1986) Run Time TRT
Jan. 30-31 Resumed Testing; Mechanical Check-Out; 3:38 9:02
Reached 22,000 Thrust
Feb. 2-3 Testing With Facility Fans On; Fan Bypass 9:49 15:13
Bleed Valve Calibration; Bleed Valve
Diffuser Can Failure; Engine Trim Balance
(20,000 Maximum Thrust)
Feb. 5-8 Repaired Instrumentation and Aft 13:28 18:52
Telemetry System
Feb. 9 Telemetry System Check-Out (to 1200 rpm 15:16 20:40
Fan Speed); Started Down Power Calibration
Ran Twice to 24,000 Thrust; on 2nd 24,000
Pt. Lost Stage 2, No. 7 Fan Blade Shell
Feb. 17-18 Engine Health Check - With New Blade 16:30 21:54
Reached 1200 rpm Fan Speed; 16,000 Thrust;
Tested with Vortex Destroyer
Feb. 28 Turbine Frame Stress Investigation; 20:36 26:00
1000 rpm Maximum Fan Speed
March 5 Stress Survey; 1029 rpm Maximum Fan Speed 22:55 28:19
March 6-30 Moved Engine from Site 4A to 3D
April 1-2 Stress Survey; 1150 rpm Maximum Fan Speed 25:44 30:68
April 3-7 Added Additional Holes to Aft Telemetry
System Cooling Scoops
April 8 Reverse Testing/Cooling Scoop Testing 26:22 31:46
April 18 Control Verification; Control Fault Caused 28:30 33:54
Stage 2 Overspeed; Engine Shutdown
April 19-23 Installed PS3 Accumulator to Slow
Propulsor Accel Rate
April 24 Engine Test With PS3 Accumulator; 29:20 34:44

1150 rpm Maximum Fan Speed




Table 1-3. GE36 Test History - Engine 082-001, Build 3.

Build 3
Date (1986) Run Time TRT
June 20 Returned to Test; Achieved Idle 0:16 35:02
June 23 Reverse Testing; 0:45 35:29
Mechanical Check-Out; 1270 rpm Maximum 2:07 36:51
Fan Speed
June 24 Mechanical Check-0Out/Trim Balance 4:33 39:17
Reached 24,000 Maximum Thrust
June 25 Trim Balance/Bleed Valve Calibration 8:18 43:02
Reached 18,000 Thrust
June 26 Bleed Valve Calibration/Trim Balance 10:00 44: 44
Reached 23,000 Thrust
June 29 Bleed Valve Calibration; Reached 12:17 47:01
19,000 Thrust
June 30 Down Power Calibration; Shutdown from 12:51 47:35
19,000 Thrust Due to Fuel Leak; Aft
Propulsor Rotor Locked up Until
Engine Cooled
July 1 Down Power Calibration; Reached 17:36 52:20
24,000 Thrust;
Performance Optimization Testing 20:18 55:02
July 3 Performance Optimization/Vibration 25:38 60:22
Survey/Trim Balance; Reached 21,000 29:53 64:37
Thrust Control Tests; Reached 24,000 1bf
July 4 Reverse Testing (to 850 rpm Fan Speed) 30:34 65:28
July 4-7 LCF Cycles (100) 59:45 94:29
July 8 Bodes; Reached 21,000 Thrust; Trim 62:31 97:15
Balance; Reached 22,000 Thrust;
Propulsor Rotors Locked Together 66:07 100:51
after a Normal Shutdown
End of Ground Testing at Peebles




2.0 INTRODUCTION

2.1 ENGINE DESCRIPTION

The UDF™ engine is a new aircraft engine concept that is based on an
ungeared, counterrotating, unducted ultra-high-bypass turbofan configuration.
This engine is being developed by General Electric to provide a high thrust-
to-weight ratio power plant with exceptional fuel efficiency for subsonic

aircraft application.

The engine encompasses the operational flexibility and fuel efficiency of
a two-spool core gas generator with the propulsive efficiency of a propeller
(moderate diameter and tip speed). The engine is based on an aft-mounted,
counterrotating power turbine that aerodynamically couples with a basic gas
generator engine and provides for direct conversion of the gas generator
engine power into propulsive thrust without requiring a gearbox or additional
shafting. The concept of counterrotating fan blades is being utilized to
capitalize on the full propulsive efficiency of this configuration; that is,
the exit swirl from the first blade row is recovered by the second row and
converted into propulsive thrust. The turbine transmits its power through two
counterrotating power turbine frames which, in turn, transmit power to the
UDF™ blades through the polygonal support rings which act as the primary-load
carrying support structure for the fan blades. This isolates the turbine

flowpath from out-of-round distortions from the fan blade loads.

The counterrotating turbine rotors, power turbine frames, fan blades, and
static structures are components which comprise the "propulsor" for the UDF™
engine. Mounted in front of the propulsor is a gas generator engine which
provides the required gas horsepower. The gas generator is a modified produc-

tion F404 turbofan engine.

Figure 2-1 shows a cross-sectional view of the UDF™ engine. An enlarged
cross section of the propulsor is presented in Figure 2-2. Figures 2-3 and
2-4 are UDF™ photos at Peebles Test Site 4A, and Figure 2-5 depicts a UDF™ at
Test Site 3D.

11
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The major design characteristics of the UDF™ engine are as

Gas Generator

upF™

Model

Type

Fan
Compressor
Turbines

Low pressure
High pressure

Rotor speeds

Fan
Compressor

Maximum airflow

Thrust

Thrust-to-weight ratio
Overall compression ratio

(maximum climb)

Engine Propulsor

Maximum nacelle diameter
Fan blade tip diameter

Fan design point tip
speed, physical (maximum

cruise; 35,000 ft; 0.80 Mach;

154)

Fan rotor speed

Fan disk loading, class SHP/A

(maximum cruise; 35,000 ft;
0.80 Mach; ISA)

Fan blade radius ratio

Power turbine inlet temper-
ature (SL, T/0, ISA +27° F).

F404-GE-400
Low bypass turbofan
3-stage axial flow

7-stage axial flow

One stage
One stage

13,270 rpm (100%)
16,810 rpm (100%)

Approximately 140 1bm/s
16,000 1bf class

8:1 class

26:1

76.4 inches
11.67 feet
780 feet/second

1393 rpm (100%)
87 HP/ft2

0.415
1310° F

follows:

The gas generator/propulsor combination produces an engine with a net

thrust of 25,000 pounds.

incorporated into this engine are:

Advanced unducted

fan aerodynamics

that

Other significant design features which have been

incorporate custom-

tailored composite fan blades over an inner titanium spar that

17
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serves as the attachment mechanism to the engine for the fan
blades.

L Fully developed and available gas generator to provide the
necessary power for the engine.

L DEC (digital electronic control) that provides overall engine
control by monitoring gas generator power and speed and propul-
sor speeds and pitch angles. The engine uses the existing gas
generator control and a separate propulsor control to minimize
development costs without sacrificing control flexibility.

* Hydraulic/mechanical actuation system enabling setting the fan
blade pitch angle of the two fan blade rotors either together
or differentially; this system is driven by the control system.

° Modular assembly of the gas generator and propulsor.

. Individually replaceable propulsor fan blades with the engine

installed on the aircraft or test stand.

2.2 INSTRUMENTATION

The UDF™ instrumentation consists both of static and rotating instrumen-
tation, with the rotating instrumentation being read out by telemetry on the
rotors. Static instrumentation includes temperature, pressure, kulite, strain
gage, and accelerometer instrumentation on the engine, pylon, and nacelle.
Rotating instrumentation includes temperature, pressure, and strain gage
instrumentation on the counterrotating rotors. Detailed information on UDF™
instrumentation is contained in the Instrumentation Plan {Statement of Work
Paragraph 4.2 of Contract No. NAS-24210). 1Included in this is Drawing No.
4013341-034, which shows the engine cross section with the location of engine
instrumentation and the corresponding parameter names. Reference GE36 Second
Ground Test TPS No. MA-0004 for a detailed description of the instrumentation

system and for a list and description of all parameters.




UDF™

3.0 REVIEW OF UDF™ TESTING

The following significant events, data points, and problem areas from

testing will be expanded upon in the indicated sections:

Forward stationary carbon seal failure
Forward telemetry antenna repair

Telemetry system temperature problem
(includes reverse thrust test data)

Stage 1 turbine blade failure and stall event
Turbine blade damper effectiveness

Subidle oil leak problem

Stationary exhaust nozzle (centerbody) replacement
Fan bypass bleed valve calibration

Fan bypass bleed valve diffuser failure/replacement
Propulsor fan-blade-loss event

Propulsor fan blade history and test data

Power turbine frame stress investigation

Effect of "vortex destroyer" on stress

Effect of test site change on stress

Rotor lockup after shutdown resulting from fuel leak

LCF/HCF (low cycle fatigue/high cycle
fatigue) testing

Rotor-to-rotor lockup/propulsor disassembly and
rebuild

Miscellaneous hardware: stress data
0il leak/oil gulping problem

Heat transfer and secondary flow system
Engine systems dynamics

Bearings and seals

Performance

Engine operability

Engine control

Nacelle structures

Builds
Involved Section
1
1 3.2
1,2,3 3.3
1 3.4
1,2,3 3.5
1,2 3.6
1,2 .7,7.3
2,3 3.8
2 3.9
2 3.10
1,2,3 3.11
2 3.12
2,3 3.13
2,3 3.14
3 3.15
1,2,3 3.16
3 3.17
1,2,3 3.18
2,3 3.19
1,2,3 4.0
1,2,3 5.0
1,2,3 6.0
1,2,3 7.0
1,2,3 8.0
1,2,3 9.0
1,2,3 10.0

19
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3.1 FORWARD STATIONARY CARBON SEAL FAILURE

After the first engine start, the engine was shut down due to a low oil
level warning. Carbon seal pieces were found in the propulsor scavenge
screens. The engine was removed from the test site, and the propulsor was
separated from the gas generator. After separation, it was found that the
forward stationary carbon seal was damaged. It was determined that the seal
was damaged during assembly. The 2R bearing was also found damaged, this due
to carbon seal debris. New hardware was added to the engine to help guide the
propulsor rotors together to avoid any damage to the seal (Figure 3-1), which
was completely replaced with new hardware, along with the 2R bearing. The
propulsor was remated with the gas generator with no problems, and the engine

was put back on test. There were no oil leaks when the engine tests resumed.

While running the engine with the damaged carbon seal, the resulting
internal oil leak caused an unbalance in the rotors. This unbalance caused
the Stages 7, 9, and 11 propulsor turbine blades to rub hard against the inner
6-11 spool. Twenty-two Stage 11 blades were found to have cracks in the root.
It was decided to not replace these blades but to closely monitor their stress

levels.

3.2 FORWARD TELEMETRY ANTENNA REPAIR

Operational problems with the forward telemetry system were caused by
insufficient clearance between the static and rotating forward telemetry
antenna components. These components were modified to increase the cold run-

ning clearance from 0.135 to 0.250 inch, as diagrammed in Figure 3-2.

3.3 TELEMETRY SYSTEM TEMPERATURE PROBLEMS

Problems with the telemetry system, due to high temperatures, resulted in
design changes to increase cooling. Cooling scoops were added to the rotating
exhaust nozzle to bring in additional ambient air to cool the telemetry system
(especially that of Stage 2). Prior to the addition of cooling scoops, there
were flush vent holes in the exhaust nozzle. The following summarizes the

design changes:
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Run Time With
Configuration Configuration

No Scoops - flush holes (0.468-inch diameter) in 3:43 hr
exhaust nozzle, 60 total. Build 1; August 29 to

September 27, 1985

Data Symbol: None

Pipe Elbow Scoops - with 0.375-inch diameter 1:41 hr
openings, 30 total. Build 1; October 2, 1985
Data Symbol: Pipe

Aerodynamic Scoops - with 0.500-inch diameter 25:44 hr
openings, 30 total. Build 2; January 30 to

April 2, 1986

Data Symbol: Aero

Modified Aerodynamic Scoops - four 0.188-inch diameter  69:43 hr

holes added to side of scoops, 30 total. Build 2;

April 8 to 24, 1986. Build 3; June 20 to July 8, 1986

Data Symbol: Mod Aero

The addition of four holes to the side of the scoops were an attempt to
increase flow to the telemetry system during static ground testing. Sixty of
the modified aerodynamic scoops will be used for flight test. Figures 3-3 and

3-4 illustrate the telemetry system and cooling scoop designs.

Figures 3-5 through 3-8 show both raw telemetry temperature data and data
normalized with the ambient temperature (TAMB)' The data was normalized due
to the large variation in ambient temperature which has a direct effect on the
telemetry temperatures. Note that temperatures recorded during Configuration
3 were cooler than those of Configuration 4. This shows the effect of ambient
temperature on the telemetry temperatures. Also during Configuration 4, there
was more test time and more time at power which would tend to increase temper-
atures. Also note that there is no data for the first two configurations for
Stage 1; the thermocouple was not reading at those times. The telemetry
temperature limit set during ground testing, after the first configuration,

was 300° F.

During reverse thrust testing, Stage 2 telemetry temperatures increased
throughout the time the engine was in reverse. Figures 3-9 and 3-10 show the
telemetry temperatures during a reverse thrust cycle. This was the fifth of a

series of consecutively run reverse cycles.
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3.4 STAGE 1 TURBINE BLADE FAILURE AND STALL EVENT

Sequence of Events

. Engine operating on point at takeoff power (24,000 1lbf), 1,350
rpm propulsor fan speed for 4 minutes

L Stage 1 turbine blade failure: high cycle fatigue (first flex)
cracking at blade root resulting in aft lean of blades

. Contact of Stage 1 blades with Stage 2
L Reduction of Stages 1 and 2 flow area

° IPC stall

. Engine stopcocked about 1.5 seconds after stall initiation

* Rotor axial excursion

L4 Secondary damage to remaining stages resulting from failure of
Stage 1

. Additional rubs experienced by Stages 7, 9, and 11
o Fast coast-down
L Rotor-to-rotor lockup.

Figure 3-11 shows a diagram summarizing the hardware damage.

Results

During testing, prior to the stall, significant first flexural vibratory
response had been observed on all stages of power turbine blading (Figures
3-12 and 3-13). Teardown revealed significant damage to Stage 1. Several
blades had large leading edge root cracks and were leaning aft toward Stage 2.
One local segment of blades was buckled aft into Stage 2. All Stage 2 leading
and trailing edges, as well as all Stage 3 leading edges, were bent circum-
ferentially and severely rubbed. Stages 1, 7, 9, and 11 exhibited severe tip
rub. While Stages 7, 9, and 11 had rubbed previously during Build No. 1 due
to oil leakage past a broken carbon seal, the poststall rubs were more severe.
Stage 4 had very light tip rub only at the trailing edge. Stages 2, 3, 6, and
8 exhibited no tip rub. Stage 10 rubbed only one blade, which was bent at the

platform. Stages 7, 9, and 11 had several bent airfoils. The rotor inner
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spools exhibited local burn spots at Stages 1, 7, 9, and 11 rub locations,
with cracking evident at Stages 7 and 11. Domestic object debris damage was
confined to the power turbine flowpath. Nicks and dents were significant only
on the forward turbine blade stages. The power frame and OGV (outlet guide

vanes) airfoils exhibited only minor debris damage.

Metallurgical evaluation of the Stage 1 blades found root leading edge
cracks on 117 of 124 airfoils. However, none of the airfoils were completely
separated. Crack lengths varied from approximately 0.02 to 1.2 inch. SEM
(scanning electron microscopy) revealed evidence of high cycle fatigue along
the entire fracture surface. Evidence of root fatigue cracking was also found
on Stages 2, 4, 6, and 11. Stages 7 and 9, and the one bent Stage 10 blade,
were found to have tensile cracks at the root braze joints and tensile tears
in some of the platform braze joints. Local burn spots on the spools showed
evidence of severe overtemperature of the Inco 718 substrate. Four locations

at Stage 11 and one at Stage 7 were confirmed cracked.

Posttest review of recorded data indicated stable engine operation while
sitting on point until approximately 0.5 to 1 second prior to the stall. At
that time, propulsor speed started dropping slowly while the control increased
fuel flow to compensate, and vibratory response on the forward turbine blade

stages showed a sudden increase.

Conclusions

Based on the responsiveness of all stages of power turbine blading at
first flexural frequency, it is concluded that the blade and spool design con-
figuration did not provide effective dovetail Coulomb damping as anticipated.
Hardware condition indicates that the Stage 1 blades were cracked to varying
degrees prior to stall and that these cracks propagated in high cycle fatigue
while sitting on point on October 2, 1985. As the cracks grew, the blades
leaned further aft until one or more contacted Stage 2, causing the slow drop-
off in propulsor rotor speed prior to the stall. Contact with Stage 2 rolled
the leading edge, resulting in a sudden reduction in power turbine flow func-
tion. The reduction in flow function caused the F404 gas generator to stall.

The remainder of the damage was secondary during the rapid shutdown.




Corrective Action

All power turbine blades were replaced for Build 2. Spanning across
adjacent blades, coulomb dampers (in the form of René 41 pins) were designed
for all stages of blading as illustrated in Figure 3-14. Effectiveness of the
damper design has been substantiated by component rig spin ("whirligig") and
bench wear tests. Although no evidence of fatigue was indicated for the power
frames, dampers were also added to Stage 12 as a precaution due to a predicted
first flexural response with the outlet guide vane passing frequency. Strain
gages have also been added to the Stages 5 and 12 power frame airfoils for

Build 2.

Low cycle fatigue and crack growth analyses of the spools indicate that
they have sufficient life capability for the remainder of planned testing.
The spools have been weld repaired and the rub coats stripped and reapplied to

provide additional margin.

Because of the severity of rub during Build 1 when 0il leaked past the
forward intershaft carbon seal and during the Build 1A stall, power turbine
blade tip clearances have been increased an additional 0.050-inch on the outer
attached blades and 0.030-inch on the inner attached blades, and all tips have

been tapered to 0.005 to 0.015-inch thickness as a precautionary measure.

3.5 TURBINE BLADE DAMPER EFFECTIVENESS

Coulomb damper pins were added to all turbine blade stages (1-4, 6-11)
and to Stage 12 power turbine frame airfoils (Section 3.4 and Figure 3-14).
Figure 3-15 demonstrates the Stage 1 turbine blade vibratory-stress reduction
resulting from the addition of the damper pins. Figure 3-16 shows the Stage 1
vibratory stress in relation to the scope limits before and after addition of
the dampers. Figures 3-17 through 3-26 illustrate the vibratory stress for
all turbine blade stages after installation of the dampers. Data are from an
accel to 25,000 1bf, except for Stage 11 blades data (bad telemetry signal)
which is from an accel to 22,000 1bf. Section 3.11 contains stress data for

the turbine frame blades.
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3.6 SUBIDLE OIL LEAK PROBLEM

After the carbon seal failure from assembly damage was repaired, the
propulsor still leaked oil into the rotors, flowpath, and nacelles. O0il loss
was visible, both during operation and on shutdown, in the form of smoke and
0il drips. The oil was leaking through the carbon seals during low speed ope-
ration. Although the amount of oil lost was not large, it was decided that it

was desirable to reduce the amount of smoke after shutdown.

During early operation, much of the engine testing was at subidle speeds
and below, as control and starting problems were worked out. The design idle
speed was 650 rpm. Initial testing proved that idle speed had to be increased
to 700 rpm for several reasons: the 650-rpm idle speed was too close to the
subidle rotor critical; the vibration level was unacceptable; the telemetry
cooling system was not effective at the lower speed; and propulsor stresses

were lower at the higher idle speed.

Test data showed that the pressure drop on the aft carbon seal approached
zero using the 650-rpm idle speed. The carbon seal leaked without a positive
pressure drop. At 700 rpm, the seal pressure drop is increased enough to
limit the oil loss out of the aft carbon seal. At higher power settings, the
pressure drop across the seal is well above that which is required for oil

sealing.

At low speeds (subidle), for very short rums, and during stargs until the
elevated idle speed is reached, the propulsor sump is not scavenged properly.
At low speeds, the oil is not pumped to the ends of the rotating sumps where
it can be scavenged. Due to the frame design, scavenge lines at each end of
the sump run uphill initially; this forms a trap that requires some small sump
pressure to overcome prior to flowing to the scavenge element. The scavenge
pump used (from a CF6-50 engine) has a reputation as one that is difficult to
get primed and establish full scavenge flow. For these reasons, a subidle

lube bypass valve was designed and installed on the propulsor lube system.

The initial bypass system was a facility design - air actuated and con-
trolled by the engine stopcock. In order to preclude complete loss of oil to
the engine in a control or valve failure, the system was designed to divert

most, but not all, of the supply oil to the propulsor. At subidle, supply oil
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was diverted to the scavenge circuit just at the exit of the air oil cooler.
Hoses and hardware used were made on site and were not flight quality. The
system, combined with the new higher idle speed, reduced or eliminated the low

speed leak/smoke problem.

For flight-test, the system had to be replaced with a digital electronic-
controlled solenoid valve. The facility system as configured above did not
function as desired on engine shutdown. The scavenge pressure decay lagged
the supply pressure decay, so that the prﬁpulsor supply was actually diverted
to a higher pressure circuit, and briefly, oil flow was increased to the pro-
pulsor. This condition was somewhat alleviated by removing the air oil cooler
from the scavenge circuit (which was not required) and by lowering line losses
in the bypass circuit with flight quality hardware. These changes ended the

leak and smoke problems.

3.7 STATIONARY EXHAUST NOZZLE (CENTERBODY) REPLACEMENT

Between Builds 1 and 2, a redesigned centerbody was installed on the
engine. This redesign was necessary, because analysis and wind tunnel testing
indicated that at some flight conditions there would be an undesirable flow
separation from the centerbody. The predicted flow separation data for both
centerbodies is shown in Figure 3-27. No flow separation was detected or pre-
dicted for ground testing. Figure 3-28 compares the two centerbody designs.

Further information is provided in Section 7.3, Performance.

3.8 FAN BYPASS BLEED VALVE CALIBRATION

During Builds 1 and 2, tests were performed to calibrate the fan bypass
air (from the gas generator) bleed valve. This was done to provide necessary
information about the amount of fan bleed air required to maintain stall
margin in the UDF™. These data are extrapolated for use in finding the amount

of bleed air required in flight.

3.9 FAN BYPASS BLEED VALVE DIFFUSER FAILURE/REPLACEMENT

During Build 2, the fan bypass bleed valve diffuser failed in high cycle
fatigue (Figure 3-29). Until a redesigned diffuser (Figure 3-30) could be
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designed and manufactured, the damaged portion of the diffuser was cut off and

used "as is." When the redesigned diffuser was available, it was installed on

the engine.

3.10 PROPULSOR FAN-BLADE-LOSS EVENT

Summary of Event

. The engine reached test point: 24,000 1bf, 1371 rpm propulsor
fan speed.

L Stage 2, No. 7 composite fan blade shell separated from tita-
nium spar and was released; however, the spar remained attached
to the trunnion,

L No high fan stress or other anomalies prior to blade loss,

b Shutdown initiated at blade loss - 1 second chop to idle and
stopcock within 9 seconds.

. No gas generator stall.
L4 Propulsor spool-down was normal.
L Due to a large imbalance (approximately 260,000 gm/inch) caused

by the missing composite, a noticeable amount of engine vibra-
tion was experienced.

o Control/actuation system functioned normally after blade loss.

Spar Damage

Inspection of the spar following shutdown indicated the titanium had
cracked at the EB (electron beam) weld line the entire width of the spar. The
EB weld crack was clearly visible over the midspan of the blade (Figure 3-31).

Secondary Damage

Blade No. 6, which was next to the released blade, had a slight nick in
the polyurethane coating where the composite material from Blade 7 hit Blade
6 before striking the ground. The nick was an indication that only light

contact occurred.

The isolators contain an absorption material which is intended to yield

under high unbalance conditions such as blade loss. Deformation of the aft
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Spar Crack
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Figure 3-31. Spar Schematic.
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isolator pads was observed, and the isolators were returned to the vendor for
inspection. The aft isolators had their original values of spring rate and
damping coefficient. Since there was deformation of the aft isolator pads,
they were refurbished as a precautionary measure and returned to engine test.

No damage to the forward isolator was observed.

There was also concern that the transfer gearbox attached to released
blade trunnion No. 7 may have suffered some damage. The gearbox was torn down
and both the MPI (magnetic particle inspection) and FPI (fluorescent penetrant

inspection) of the gears and pinnions indicated no abnormal wear.

Bolts attaching the Stage 12 power frame to the rotating exhaust nozzle
showed interference with the OGV assembly, with the heaviest wear at blade
Location 7. The OGV assembly is designed to clear the bolt circle by 0.100
to 0.160 inch. The OGV assembly showed light wear all the way around, with
a l-inch section indicating a harder rub. No repair was required. The oGV

assembly had no other distress.

The Stage 11 turbine blades rubbed the inner spool at some time during
the event, leaving a 4-inch x 3/8-inch rub mark on the inner rotor. The rub
coincided with Stage 2 fan blade Location 4. The indication was a surface
discoloration with no measurable depth. The Stage 11 blade trailing edge tip

did not have any discoloration or tip curl that would suggest a heavy rub.

Both Stages 1 and 2 fan blades were returned to Evendale for inspection.
No debonding was found in the Stage 1 set, but one Stage 2 blade was found to

have a section of composite separating from the spar.

Fan Blade Corrective Action

Corrective action included the addition of a portable ultrasonic scan of
all fan blades following each hour of engine run time. Ultrasonic scanning at
Evendale proved to give accurate results when trying to determine if debonding
has occurred. The ultrasonic scan used when the blades were returned to Even-
dale indicated a Stage 2 blade had started to debond. Portable scan equipment
also verified debonding of the composite. Because the previous test method,
ping checking, indicated the debonded blade was acceptable, the ping test was

discarded as a debonding check.
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Test History of Failed Fan Blade

The blade that failed had been run 20:40 hours prior to the failure. A

breakdown of run time versus propulsor fan speed is provided in Figure 3-32.

3.11 PROPULSOR FAN BLADE HISTORY AND TEST DATA

3.11.1 Fan Blade Test History

None of the original design Stage 1 fan blades had to be replaced due to
failure or debonding. After Build 2, the blades were replaced with redesigned
blades with mechanical retention features. Figures 3-33 and 3-34 compare the
original and redesigned fan blades. All of the redesigned Stage 1 fan blades
ran through Build 3 without problems.

Some of the original design Stage 2 fan blades failed inspection during
Builds 1 and 2 due to debonding. These were replaced once any discrepancy was
found. Figure 3-35 depicts the history of the Stage 2 blades during Builds 1
and 2. Investigation into the two debonded blades found after Build 1 deter-
mined that the probable cause of debonding was from propagation from cracks in
the foam inside the blades. This foam filled the cavity between the composite
shell and the titanium spar. Cracks in the foam during manufacturing propa-
gated into the shell/spar bond. A design change was made (Figure 3-36) to try

to prevent this from happening.

Section 3.10 discusses the Stage 2 fan blade failure in Build 2. After
this fan blade failure, the engine was limited to 1000-rpm fan speed until the

redesigned fan blades were available (Build 3 testing).

3.11.2 Fan Blade Test Data

Figure 3-37 summarizes fan blade vibratory stresses for Builds 1, 2, and
3. Figures 3-38 through'3-42 present specific examples of stress data. Note
there are differences in fan blade stress levels with seemingly equivalent
test points. This difference is caused to a large degree by differing wind
conditions (that is, wind direction, velocity, gusting). Figure 3-43 depicts
the strain gage locations. Location No. 4, which gives the highest first flex

vibratory stress, is the strain gage used for the given data.
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o Composite Shell

(Carbon Fiber-S-Glass Epoxy Matrix)
e Titanium Spar
o Foam Filled Cavities

Figure 3-33. Original Fan Blade Airfoil
Mechanical Design.
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Laminated Composite
Stiffener Bonded
Into Place

Composite
Dowel
Pins

¢ Plug Retrofit Creates Stiff
‘Closed-Box’ To Preclude Crack
Propagation And Increase Tolerance
To Thermal Cycling

Figure 3-36. Fan Blade Structural Improvement.
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Fan Blade Response with Facility Fans

At the first test site (4A) a set of 12 facility fans were arranged in
front of the UDF™ inlet. Figure 3-44 shows a schematic of the facility fan
configuration. These fans attempt to simulate forward velocity of an engine
and try to smooth out airflow through and around the engine. It was desired
to see if some combination of these fans would lower fan blade stress. The
results can be seen in Figure 3-44; the first data point (no fans on) gave a
lower vibratory stress level than with any number of fans on. Stress levels
varied widely, depending on the number of fans that were on, but all levels
were higher than those without any fans. Since the engine centerline and
the facility fan centerline were not in line, it was believed that the fans
created additional disturbances in the flow field instead of smoothing the

airflow.

3.12 POWER TURBINE FRAME STRESS

During Build 2, power turbine frame vibratory stresses were higher than
predicted. The stresses were found to be predominantly 2/rev forced response.
This was caused from the fan Rotor 2 nodal, first flex mode (note that the
turbine frame and the fan blade rotor are mechanically linked). This causes
the frame stress to track the fan blade stress. Figure 3-45 provides a stress

comparison.

A detailed investigation into the frame stress allowed the vibratory
stress limits to be increased for the forced response mode (Figure 3-46). A
summary of this investigation and its results is in Table 3-1; supporting data

is shown in Figures 3-47 and 3-48. Build 3 data is presented in Figure 3-49.

3.13 EFFECT OF VORTEX DESTROYER ON STRESS

Vortices were seen between the ground and the fan blades at the bottom of
the engine. Visualization of these vortices was aided by having moisture on
the ground or by releasing smoke bombs. To see if the placement of a vortex
destroyer (a large metal grating) under the fan blades would reduce the fan
blade and power turbine frame vibratory stress levels, a vortex destroyer was

placed under the fan blades approximately 6 inches off the ground. Fan blade
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Results:

o Updated Scope Limits Versus Site 4A

Response

® HCF Testing

Stage 5 Strut Gage #KD4H06 Stage 12 Strut Gage #KD4S07
50
-~ 4 - - °
] (-]
2 Updated Limits .g Updated Limits
. x
. 30 |-
g
& 20l @
B B
3 Original Limits $
O 10} o
8 i.
IR LIRSk
0.7 0.9 1.1 13 0.7 0.9 1.1 1.3
Rotor Speed (rpm/thousands) Rotor Speed (rpm/thousands)
2/17  2/18 2/18 2/28 2/28 17 218/ 2/18 2/28 2/28
o + . a X s} + 0 'y X
Figure 3-46. Power Turbine Frames Vibratory Response, Updated Scope
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Alternating Stress (ksisa)

® Frame Properties Better Than
Material Handbook Average
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Figure 3-48.
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® Peak Levels
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Figure 3-49. Power Frame Vibratory Response, Build 3.
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stress data both with and without the vortex destroyer is contained in Figure
3-50.

Since this testing was performed after the Stage 2 fan blade loss, and before

The same type of data are shown for the turbine frames in Figure 3-51.

installation of the redesigned fan blades, the engine was limited to 1000-rpm
fan speed, thus limiting available analytical data for comparison. The vortex
destroyer seemed to have a small positive or negligible effect on stresses;
it was

however, decided to complete all remaining engine testing with the

destroyer in place. Wind conditions and the limited data (due to the 1000-rpm

fan speed limit) did make comparisons difficult.

Table 3-1. Power Turbine Vibratory Response Resolution.

Vortex Destroyer
Change Test Sites

Component Strain Distribution Test

No Significant Effect {(Section 3.13)
Slight Improvement (Section 3.14)

Mean Stress Analysis Verified

Stage 12 Engine Gage Poorly Located
for 2N Mode

New Stage 12 Gage Applied Which
Read Maximum Stress

Material HCF Testing Significant Property Improvement

Over Handbook Average
Updated Scope Limits Stage 5 Frame Okay

Stage 12 Frame Marginally Okay

3.14 EFFECT OF TEST SITE CHANGE ON STRESS

To try to reduce vibratory stress levels in the fan blades and the forced
vibration of the power turbine frames, the engine was moved from Site 4A to
3D.

from 28 inches to 64 inches as well as eliminated the frontal blockage area at

The site change increased the clearance between the ground and fan blades

Site 4A caused by the permanent facility fan system that was in front of the
UDE™
3-52) and the turbine frames (Figure 3-53).

inlet. Stress data are shown from both sites for the fan blades (Figure
There was no significant decrease
in either fan blade or turbine frame stresses. Fan blade stress data, after

the site change, was prior to the installation of the redesigned fan blades
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so that a direct comparison of fan blade stress could be made. Fan speed was
limited to 1000 rpm until the redesigned fan blades were installed. Turbine
frame stress data, after the site change, is from Build 3 (after installation

of the redesigned fan blades).

3.15 ROTOR LOCKUP AFTER SHUTDOWN RESULTING FROM FUEL LEAK

While running a power-down calibration at 19,000 1bf on June 30, 1986, a
fuel leak was observed, and the engine was quickly shut down. After propulsor
spoot down, the Stage 2 rotor would not rotate until the engine had cooled for
several hours. At that time, the exact cause was not known; however, based on
a later teardown, it is believed that the IGV lip seal had deflected thermally
and bound to the 1-4 inner spool. When the engine had cooled sufficiently,
the IGV and the spool separated enough to allow rotation of the Stage 2 rotor.
From looking at strain gage data for Stages 1 and 2 turbine blades, it appears
(Figure 3-54) that the IGV and spool had started to rub as early as June 24.
Heat generated from this interference eventually closed the Stage 1 turbine
blade clearance causing severe turbine blade tip rubs; Section 3.17 discusses

this further.

3.16 LOW/HIGH CYCLE FATIGUE TESTING

During Build 3, 100 low cycle fatigue cycles were run for endurance test-

ing. The cycle that was run is shown in Figure 3-55.

No dedicated high cycle fatigue testing was necessary because cycles in
excess of 1 x 10® were accumulated through the course of normal testing. The
number of cycles accumulated on each component was calculated using the compo-
nent first flex natural frequency and the engine run time versus propulsor rpm

relationship.

Table 3-2 shows the number of high- and low-cycle fatigue cycles that the

turbine blades, fan blades, and power frame airfoils experienced.

3.17 ROTOR-TO-ROTOR LOCKUP/PROPULSOR DISASSEMBLY AND REBUILD

During an attempt to make a normal start, it was noticed that the forward

and aft rotors although locked together could be turned with force. During
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trim balancing, previously, the engine had run up to 22,000 1bf. No problems
occurred before the rotors locked. The force required to turn the rotors
increased when the blade actuation system was commanded to full reverse. It
was found that the forward actuator would not move to full reverse (-20°), but
only went to -12°. The rotors did not free up as the engine cooled, and the

decision was made to remove it from the test site to investigate the problem.

Table 3-2. GE36 HCF Cycle Count.

Turbine Blades HCF Cycles LCF Cycles Remarks
Stage 1 6.23 x 108 100 53 Cracked Blades
Stage 2 4.09 x 108 100 No Discrepancies
Stage 3 5.00 x 106 100 No Discrepancies
Stage &4 18.18 x 106 100 No Discrepancies
Stage 6 14.10 x 10% 100 No Discrepancies
Stage 7 7.5 x 10° 100 No Discrepancies
Stage 8 15.15 x 10% 100 No Discrepancies
Stage 9 1.2 x 108 100 No Discrepancies
Stage 10 2.5 x 108 100 No Discrepancies
Stage 11 1.3 x 108 100 3 Cracked Blade
Fan Blades 3.69 x 109/ 100 No Discrepancies
Stages 1/2 3.78 x 108 100
Power Frames 4.04 x 108/ 100 No Discrepancies
Stage 5/12 4.2 x 108 100

When the engine was returned to the vertical build stand, it was noted
that the rotors rotated freely. The actuation system was exercised and found
that the forward system still would not travel to the full reverse extension.
With the actuation system in the stopped reverse position, the rotors became
bound in the same manner as seen on the test stand. A scale was utilized to
measure the force required to rotate the forward rotor holding the aft rotor
stationary. With the engine vertical and the actuator fully forward {(feather

or 90°), the force to turn the Stage 1 rotor was 4 1lb. When the actuator was



driven fully aft (full reverse or -20°), the rotors bound, and the force which

was required to turn the forward rotor increased to 40 1b.

Full Forward Full Reverse

Forward Rotor 4 pounds 40 pounds

Aft Rotor 5 pounds 10 pounds

The above tabulation provides a comparison of the forces required to turn
the rotors independently, with the other held stationary. It was also found
that the lack of full travel in the actuator could easily be seen when watch-
ing the actuator. The forward system lacked 0.5 inch of its full travel. As
the pressure in the hydraulic system was increased (actuator in reverse), the
force required to turn the forward rotor increased to 40 1b at 600 psi. The
decision was made to pull the propulsor from the gas generator and begin the

teardown to investigate the rotor binding.

Removal of the propulsor revealed problems unrelated to the rotor bind-
ing. Inlet guide vanes to the propulsor had cracks at the trailing edge ID
(inner diameter) braze. The ID was very irregular, and evidence of contact
with the Stage 1-4 inner spool was noted. The area between the IGV and the
inner seal was black from oil coking, and the Stage 1-4 inner spool was dis-
colored from varnishing. Figure 3-56 diagrams the IGV seal area as-designed,
and after test. Figure 3-57 shows the ALF (aft looking forward) view of the

tear/crack.

The IGV had worn a 0.010-inch groove in the Stage 1-4 inner spool around
the entire circumference. The heat generated by the continual interference
between the IGV and spool resulted in a spool growth that closed the Stage 1
blade tip clearance. The spool had heavy rub indications where the Stage 1
blade tips rubbed. The Stage 1 blade rub appears to have begun as early as
June 24, after 3 hours of Build 3 testing (Figure 3-58). Examination of the
strain gage data for Stages 1 and 2 of the power turbine indicates the IGV-to-

inner spool rub occurred prior to the Stage 1 blade rub (Section 3.15).

The Stage 1 blades were found to have HCF cracks that initiated at the
leading edge root. The blades with the most visible cracks are illustrated in

Figure 3-59. There is a total of 124 Stage 1 blades; of these, 19 blades had
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360° Braze Tear/Crack

360° Hard Ru%
360° Rub

(0.01 Deep, No Discoloration)

Figure 3-56. IGV and 1-4 Inner Spool.
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ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Stage One Blade Cracks at Leading Edge Root.

Figure 3-59.
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cracks visible to the naked eye, and an additional 34 were found cracked when
examined at 40X. The entire set was removed, and new blades were installed.
Tip clearance was increased an additional 0.037 inch at the blade leading edge

and 0.016 inch at the trailing edge for the new set of blades.

The Stage 2 polygonal ring was removed, followed by the outer seal. The
seal teeth had no damage, and coating wear was normal for the engine run time.

A cross-sectional view of the seal is shown in Figure 3-60.

Following removal of the Stage 1 polygonal ring, the aft stationary hard-
ware was removed. The eight actuator control rods which penetrate the No. 2
bearing static housing were all observed to have varying degrees of wear. The
heaviest wear was on the rods at 12 and 6 o'clock. The aft support had heavy
scoring on the forward OD (outer diameter) where the aft actuator travels over
it. Wear marks were in the same position as the sting tube support brackets.
Blocks providing support were reduced to lightweight springs during rebuild.
The scored area was cleaned and covered with a Teflon coating (Emralon 333) to
reduce friction between the actuator and support. The coating when scratched

will not flake but will lubricate to protect the material below.

The aft actuation subassembly was lifted out followed by a borescope of
the forward sumps. Entering the sump through the mid-driveshaft actuator rod
cutouts revealed the source of the binding rotors. The No. 1 roller bearing
(1IR) outer race nut had come completely off (Reference Figures 6-2 and 6-3,
Section 1.1). The actuator could not travel the full distance because the nut

was interfering with the last 0.5 inch of actuator travel.

The 6-12 assembly, less the midshaft, was removed for further inspection

and set in the teardown tooling.

Upon removal of the forward actuator, the 1R bearing housing was removed
so that access to the 1R bearing could be made. The outer race nut was laying
inside the actuator assembly, and the outer race was found almost completely
off. The rollers were pushed inward and the two shafts were easily separated.
The rollers sustained disassembly damage, making the bearing not serviceable
but repairable. The outer race had no visible grooves. The outer race nut
backed off as a result of Stage 1-5 rotor aft shaft growth caused by thermal

expansion.
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Because the carbon seal aft of the 1R bearing, sealing the cavity, was in
remarkably good condition and repairable, the seal was removed for inspection,
the carbon segments were replaced, and the seal assembly installed. The mid-
sump seal aft of the carbon seal had rubbed grooves about 0.14-inch long X
0.04-inch deep in the honeycomb. As shown in Figure 3-61, the honeycomb and

seal teeth were all serviceable and reused.

All Stage 11 blades were heavily rubbed, and Stage 10 was lightly rubbed
(Figure 3-62); 3 Stage 11 blades were discovered with cracks in the leading
edge root, and the inner spool had evidence of a hard rub. The outer spool
(odd rotor) aft stages are cantilevered from the Stage 5 power frame. If the
IR bearing were not providing adequate radial support, it would account for a
rub at the aft stages of the outer spool. The 3 cracked Stage 11 blades were
replaced prior to rebuild. Table 3-3 summarizes the results of the turbine

blade inspection.

Table 3-3. Turbine Blade Inspection Summary.

Stage 1 2 3 4 6 7 8 9 10 11

No. of Blades 124 118 120 94 90 72 84 54 82 56

No. Cracked 19 0 0 0 0 - - - - 0
(1% Visual)

Additional No. 0 0 0 0 - o+ 0 0¥ 0 3
Cracked
(Borescope)

Additional 0 0 - - - - - - - -
No. Cracked
(10x Visual)

Additional 34 - - - - - - _ - -
No. Cracked
(40x Visual)
Total Cracked 53 0 0 0 0 0 0 0 0 3
(42.7%) (5.4%)

* Approximately 25% Sample; Others Inspected 1009
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The 2R bearing was removed for a detailed examination at Evendale. One
roller had a rounded micro dent which would not affect the design intent of
the part. The 2R bearing was serviceable and was stored for later use, if

required.

Corrective action for the binding rotors included an improved locking
feature for the 1R outer race nut and other spanner nuts in the propulsor
assembly. Upon installation of a new No. 1 roller bearing, the spanner nut
was installed with a small amount of Loctite applied axially in four places
across the threads of the nut. Both threaded surfaces were cleaned and dried
prior to nut installation. An additional locking feature was added with two
pins installed between the shaft and nut, which were also tack welded in place
(Reference Figure 6-4). The inner race nut was installed only with Loctite.
A new carbon seal was also installed to replace the one damaged from the 1R
bearing problem. In addition, the 1B inner race nut had Loctite applied; all

others were untouched and remained as they were.

The IGV was repaired and modified to include a honeycomb seal to prevent
spool damage 1if a reoccurrence of the rub persists in later engine operation.
Figure 3-63 is a view of the I1GV/spool seal area. During assembly of the pro-
pulsor to the gas generator, the gap between the IGV and spool was checked and

measured at 0.125 to 0.188 inch, with a minimum of 0.125 inch per the drawing.

0il drain holes were drilled into the 1-4 inner, 1-2 outer, and 3-4 outer

turbine spools to drain any accumulated oil.

Borescope ports were added through the mixer frame flange for better
visibility to the IGV and Stage 1 blades. The inspection interval was set at

10 hours to keep better records of Stage 1 blade activity and IGV spool gap.

3.18 MISCELLANEOUS HARDWARE STRESS DATA

This section presents data on hardware that had no indication of high
stress (vibratory stress was always under limits) during testing and has not

been previously presented in other sections.
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1-4 Inner Spool

Honeycomb

Figure 3-63. IGV and 1-4 Inner Spool.
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Limits

Nomenclature (ksida) Figure
Quter Guide Vanes (0OGV) 20.0 3-64
Inner Guide Vanes (IGV) 3.4 3-65
Forward Outer Rotating Seal 74.0 (2/rev) 3-66
11.0 (3,4/rev)
8.0 (5/rev)
Aft Outer Rotating Seal 15.0 3-67
Turbine Spools 30.0%*
1-4 OQuter 3-68
7-11 Outer 3-69
6~-11 Inner 3-70

% 10.0 for Turbine Blade Rubs

3.19 OIL LEAK/GULPING PROBLEM

During the latter portion of Build 2 and, more markedly, during Build 3,
the propulsor oil consumption limited the UDF™ test time (oil consumption
increased from 0.35 to 1.58 quarts/hour from Build 2 to Build 3). The engine
was limited to about 2.5 hours of testing to allow for reservicing of the pro-
pulsor oil tank. By this stage of testing, the test site facility remote oil

fill system had been removed since it would not be available for flight-test.

Two major leaks contributed to the high oil consumption. The carbon seal
in the starter gearbox was leaking into the core nacelle and then back into
the fan, and oil leaked through worn actuation rods and seals in the aft sump
wall into the sting tube area in the center of the propulsor (aft stationary
support). Oil lost into the sting tube could be pumped out after engine shut-
down. A total of 39 quarts was recovered during Build 3 testing (66 hours).
The fan nacelle and propulsor rotors remained dry, indicating the oil loss was
not through the main propulsor carbon seals. 0il was also found leaking from
an instrumentation fitting in the aft sump wall. The propulsor lube oil leak

limited the engine test time in two ways.

First, as previously stated, the low lube level inside the sting tube
required careful monitoring to ensure that enough oil did not collect to flow
out of the mixer frame. The cavity was pumped approximately every 2.5 hours,
and about 2.5 quarts were removed each time (toward the end of Build 3).
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Figure 3-65. Power Turbine IGV - Engine Test Data.
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Forward Outer Rotating Seal Response, Decel from
25,000 1bf Thrust: February 4, 1986.
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Outer Turbine Spool Response (1-4), Accel to
25,000 1bf Thrust: February 4, 1986.
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Second, combined with the excessive leakage, the gulp limited testing
duration. The propulsor gulps about 2.5 quarts of oil with increasing power
from idle to maximum. This is consistent over all engine testing. As speed
is reduced, the oil level will return. That is, it will return if the propul-
sor is not losing oil from leaks in the sump wall or gearbox carbon seal.
With a normal oil consumption rate, oil gulping is not a problem with the 11

quart tank.

Following Build 3, the leaks were fixed; new actuation rods and seals
were installed in the actuation system, a new starter adapter gearbox was
installed, and the instrumentation fittings were replaced. A larger scavenge
port was installed in the new starter adapter gearbox to improve scavenging
and to keep oil away from the aft carbon seal that leaked on Build 3. A new
flight-type static vent air demister was installed, and oil drain holes were

added to the turbine spools.
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4.0 HEAT TRANSFER AND SECONDARY FLOW SYSTEM

4.1 MIXER FRAME HEAT TRANSFER

The mixer frame flow circuit is shown in Figure 4-1. At takeoff power,
film-hole flow is 15% less than predicted, outer flowpath secondary flow is
10% less than predicted, and total sump flow is 6% higher than predicted. The
outer flowpath flow and sump flow are determined through use of pressure tap
readings, and film-hole flow is determined by subtracting these flows from the

total fan bypass flow.

Figure 4-2 provides a comparison of mixer frame predicted and measured
internal pressures at takeoff power; whereas, a comparison of predicted and
measured flowpath static pressures at takeoff power is depicted in Figure 4-3.
Although very few pressure readings are available, test data indicates that
the pressure drop across the film holes is close to that predicted. The low

film-hole flow appears, therefore, to be due to undersized film flow area.

The total pressure drop available to the frame film holes is very low,
making BFM (backflow margin) a concern. The regions of minimum BFM are the
inner flowpath fairing upstream of the strut leading edge and strut leading
edge cavity at the root. A comparison of predicted and measured pressures for
engine Build 1 is shown in Figure 4-4. While the BFM across the inner flow-
path fairing film holes is slightly less than predicted, the BFM across the

strut leading edge cavity film holes is much higher than predicted.

Installation of power turbine blade dampers for engine Build 2 resulted
in a lower level BFM. The inner flowpath fairing pressures for engine Build 2
are shown in Figure 4-5 for takeoff and maximum cruise, the minimum backflow
condition. Takeoff pressures are taken from test data, and the maximum cruise
pressures are predictions based on test results. The 0.79% BFM at maximum
cruise condition is low, but it is in a very localized region. The BFM in all

other regions is significantly higher.

Figure 4-6 illustrates mixer frame metal temperatures, both predicted and
actual, for hot day takeoff power. All thermocouple data have been scaled up

to hot day conditions by multiplying the raw data by the ratio of the hot day
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Figure 4-1. Mixer Frame Flows at Takeoff Power, Test
Versus Predicted.
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ambient temperature over the test day ambient temperature. No thermocouples
are available along flowpath portions of the frame, but the existing thermo-
couple readings indicate that the frame is adequately cooled. Also, there are

no visible signs of overtemperature.

4.2 POWER TURBINE SECONDARY FLOW SYSTEM

Figure 4-7 illustrates the power turbine secondary flow system. The flow
rates, predicted and actual, are tabulated in Table 4-1. Although the total
secondary flow for engine Build 1 neared prediction, the Stage 1 inner flow-
path purge flow was significantly lower than predicted. This redistribution
of flow is a result of a mixer frame supply hole flow coefficient that is
lower than predicted and shafting hole flow coefficients that are greater than
predicted. The increased pressure drop across the mixer frame supply holes,
combined with reduced pressure drop through the shafting annular holes, serves
to lower the supply pressure to the forward seal. Also, the sump vent flow
was higher than predicted due to large carbon seal leakage areas. This addi-

tional vent flow results in a further decrease in Stage 1 purge flow.

During Build 1 testing, Stage 1 cavity temperature was 830° F at takeoff
power, as compared to 795° F predicted. Although there was no evidence of gas
ingestion, it was observed that the forward seal AP decreases with increase in

power setting. Figure 4-8 plots AP versus P46Q2.

Extrapolation of the test data indicates that for Build 1 testing, back-
flow could occur at maximum power. To maintain positive flow in all cases,
the mixer frame supply hole area was increased from 5.4 in? to 5.84 in?. The
resulting increase in forward seal AP from Build 1 testing to Build 2 testing
is significant (Figure 4-8); however, the impact of this area increase on the
remaining purge flows is negligible. The aft labyrinth seal flow increased
significantly from Build 1 to Build 2 testing, presumably due to an increased

seal clearance, indicated by a reduction in pressure drop across the seal.

During Build 3 engine testing, rubs occurred on two middle inner flowpath
seals (G and H). There is an increase in the flows of these two seals, but
because the system is metered for the most part by the supply hole and the
shafting holes, the total secondary flow increases only slightly (Figure 4-7).
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1,

PROBLEM:

CAUSE:

EXTRAPOLATION OF TEST DATA
INDICATES THAT FORWARD SEAL
COULD BACKFLOW AT MAX POWER,

UNDERSIZED SUPPLY HOLE AND
OVERSIZED ANNULUS HOLES
REDUCE THE SEAL SUPPLY
PRESSURE,

INCREASE SUPPLY HOLE AREA,

BUILD 01 TEST DATA

BUILD 02 TEST DATA

Figure 4-8.

P46/P2

Potential Forward Seal Problem.




It should be noted that the very limited amount of instrumentation makes
direct measurement of most of the individual flows impossible. The available
pressure and temperature readings were used to rebalance the analytical flow
network model which yields the best estimate of the flow distribution. The

two flows leaving the mixer frame (S and T) are directly measured.

According to thermocouple data, all cavities are adequately purged. A

comparison of predicted and actual temperatures is presented in Figure 4-9.

4.3 POWER TURBINE HEAT TRANSFER

The power turbine spool and frame temperatures, predicted and actual, are
shown on Figures 4-10 and 4-11 for hot day takeoff power. The original pre-
dictions (Figure 4-10) were determined using a finite difference heat transfer
program. The actual temperatures (Figure 4=11) have been scaled up to hot day
conditions, as described in the mixer frame section. Because the fan bypass
air temperature is lower than predicted, most of the cavity temperatures are
also lower. The cavity temperatures have a direct impact on the inner spool
temperatures. Unfortunately, there was too little instrumentation to be able
to draw any firm conclusions about inner spool temperatures, as compared to

predictions.

4.4 NACELLE VENTILATION

The nacelle ventilation system is depicted on Figure 4-12, with component
temperatures at takeoff condition. All thermocouple data have been scaled up
to hot day conditions, as described in the mixer frame section. Although some
components are higher in temperature than predicted, all of the hardware is

adequately cooled.

During initial engine Build 1 testing, ambient air was to be brought in
to the nacelle cavity aft of the Stage 2 telemetry through radial holes in the
cowling. However, poor ventilation in that region led to an overheating of
the aft telemetry, probably due to a low level of static pressure at the inner
flowpath. A total of 30 air scoops were then mounted to the holes. The addi-

tional ventilation air resulted in the temperatures presented in Figure 4-13.

121



*I9Mod JJoaYel 1e saanieaadwd] LITAEB) 10310Y§ “g-% 2In81y

*Uu0I3ISa3dUl sen Jo 9OUIPIAY ON

pP2101paid 2a0qQy ST 2anieiaadws] 1Ty Suroed [BIS Yiedmolq 121nQ
uoT10Tpaid Mmolag iy saanleaadwa] LITAR) a3uu]

Jjoayel AeQ I0H 031 Pa3IDa1l0) BIB(] 1S3

OF POOR QééLiT!’

uot13oIpaig
Bl1BQ 3IS9]

90

122



ORIGINAL

PA

QUALITY

\.-‘ '\"'
i
: 1231°F
) h =164
v
\1220°F
h=177
834°F /643°F
h=35/ h=60

Hot Day (+27° F) Rated Take-Off
Steady-State Conditions

h = [BTU/hr. ft2 °F]

Figure 4-10. Power Turbine Temperatures Based on Analysis.
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Test Data
Predicted

TAir = 100° F
VU R
1
W[ — T
N
=
404° F
312° F

Figure 4-13. Forward Fan Blade Hub Temperatures; Hot Day Takeoff,
Mach = 0.0, Full Thrust.

126



It was determined during initial Build 1 testing that, although the aft
telemetry modules were adequately cooled, the solder which fixes the thermo-
couple leads to the aft telemetry circuit board, was overtemperatured. Even
though the solder temperature is not measured directly, it was found that the
solder melts when the nearby air thermocouple reaches a temperature of just

over 300° F.

The solder, although adequately cooled during high power, is marginally
cool at idle conditions. Set to match the prop flow at takeoff, the scoop
direction is misaligned with the flow direction at idle. For +27 DTAMB condi-
tions, the solder temperature is 219° F at takeoff, 235° F at flight idle, and
283° F at ground idle.

Figure 4-13 gives a breakdown of the forward fan blade hub temperatures
for hot day takeoff. The 404° F trunnion temperature is taken from thermo-
couple data. All other temperatures are determined by rebalancing the heat
transfer model on the basis of the trunnion temperature. All temperatures are

higher than predicted, but are still within allowable limits.

4.5 CENTER CAVITY VENTILATION

The center cavity is portrayed (Figure 4-14) with temperatures at takeoff
power; normal operating temperatures are as listed. The actuator axial posi-
tion sensor (LVDT) temperature of 312° F is well below the normal operating
temperature of 360° F (the maximum temperature limit is 400° F). The speed
sensor temperature was not measured directly, but it is probably less than the
LVDT temperature since it sees less radiation from the cavity wall than does
the LVDT. 1In addition, the sump oil may provide a sink to the speed sensor.

There is no indication of speed sensor or LVDT overtemperature problems.
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5.0 ENGINE SYSTEM DYNAMICS

Valuable engine dynamics experience was obtained during ground testing of
the UDF™ Demonstrator Engine (GE36 S/N 082-001). This ground testing, along
with a series of mechanical impedance tests conducted on the support system
and Peebles test facility, was used to modify and verify the analytical model
of the engine. Topics that are discussed in a later section regarding this
subject include such gas generator vibration signatures as: synchronous 1/rev
IPC and HPC responses, linear subidle UDF™ 1/rev signature and its dependency
on support structure/test facility stiffness, linear UDF™ 1/rev response
recorded in the operational speed range, and nonlinear UDF™ 1/rev response

observed during the Stage 2 propulsor airfoil separation event.

The UDF™, with its counterrotating propulsion system, also demonstrated
that more sophisticated methods and hardware are required beyond turbofan
engine experience with regards to propulsor trim balancing and vibration

measuring techniques.

Gas Generator Vibration Signature

The gas generator used to power the GE36 Demonstrator is an F404 engine.
Its rear frame is replaced by the mixer frame, and the gas generator is mated
to the UDF™. Gas generator synchronous IPC (intermediate pressure compressor)
and HPC (high pressure compressor) vibration levels were well within the pre-
scribed F404 limits throughout ground testing. Both the maximum IPC and HPC
1/rev levels observed in the operational speed range during testing occurred
at the F404 fan case vertical location. The maximum IPC 1/rev response was
0.24-inch/second (average velocity) at 11,700 rpm and was observed during

Build 3 testing.

Figure 5-1 presents IPC signatures for Builds 1A, 2, and 3, demonstrating
that the IPC 1/rev levels remained similar and low throughout ground testing.
The maximum HPC 1/rev response was 0.28-inch/second at 13,700 rpm as observed
on Build 2. Figure 5-2 compares HPC 1/rev vibration signatures for Builds 14,
2, and 3 (F404 fan case vertical location). Like the IPC vibration signature,

the HPC synchronous response remained similar and low throughout testing.
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The F404 predicted engine dynamics show little change between the turbo-
fan engine and the GE36 gas generator application. These predictions were
verified by comparing the vibration data from the check-out (at GE-Lynn) of
the turbofan configuration with the results observed during the GE36 ground
test. Demonstrating little change between both configurations, the results
are shown in Figures 5-3 and 5-4; readings were taken at the F404 midframe
horizontal location (only common accelerometer location between the two con-

figurations) for the IPC and HPC 1/rev vibration signatures, respectively.

UDF™ Vibration Signature

The test facility and aircraft structure play a major role in the overall
support structure stiffness of the engine and resulting rigid body mode defi-
nition of the entire system. Mechanical impedance tests were conducted during
January 1986 (between Builds 1A and 2) to obtain the support structure stiff-
ness. The pylon/isolators system was tested with the pylon attached to ground
to obtain pylon and isolator stiffnesses and also mounted at Peebles Site 4A
facility to obtain the entire support system stiffness. These results were
incorporated in both updated linear and nonlinear (propulsor blade-out) ana-
lytical dynamic models and will be referenced in subsequent discussion of UDF™

vibration results.

The rigid-body modes occur primarily in the subidle speed range. Since
the demo engine was tested at both Sites 4A and 3D, subidle resonances were
subject to change due to the differences in facility stiffness properties. To
demonstrate these differences, a comparison of Build 2 UDF™ 1/rev vibration
signature obtained during engine starts at both sites are shown in Figures 5-5
and 5-6. Figure 5-5 compares the subidle vibration signatures at the F404 fan
case vertical location (vertical direction for Peebles test is in line with
the strut). The signatures indicate that the overall support system stiffness
was softer at Site 3D in this direction. Figure 5-6 compares the two subidle
signatures at the same location in the horizontal (normal-to-strut) direction.
Overall system stiffness effects at Site 3D acted to decouple the predominant

rigid-body modes observed at Site 4A.

The UDF™ 1/rev operational speed range vibration signature at the No. 2

ball bearing housing location is illustrated in Figure 5-7 for the vertical
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direction and in Figure 5-8 for the horizontal direction; each indicates the
deflection in mils (DA) as a function of propulsor speed for accels conducted
to 24,000 1bf at Sites 4A (Build 2) and 3D (Build 3). Although the signatures
are similar, differences in levels were noted; the differences in levels are
accounted for by two explanations. The first is that the propulsor blades
were modified, and a nominal correction weight was added to the Stage 2 rotor
between runs. The second explanation deals with the repeatability of vibra-
tion on a closely synchronized counterrotating propulsion system; this subject

will be discussed in a later section.

Stage 2 Airfoil Separation Event

The Stage 2 propulsor airfoil separation event that occurred on Build 2
(Site 4A) led to an opportunity to modify and verify the nonlinear dynamic
model predictions (by mechanical impedance test results) for this event and,
subsequently, to apply this knowledge to the blade-out design criteria of the
aircraft application. The dynamics, both actual and predicted, were presented
during the May 13, 1986 Quarterly Review at the Nasa-Lewis Research Center in
Cleveland, Ohio. A major benefit resulting from this event was proof that the
pyvlon isolators function as designed. This was demonstrated by a significant
reduction of motion through the isolators, and the fact that the isolators

soften with the increased loading and, thus, lower the system resonant speed.

Trim Balance Experience

The initial efforts to trim balance the propulsors during Build 2 were
hampered by the hardware used. The basic trim balance test sequence was to
separate propulsor speeds by 100 rpm (1.67 Hz) and take amplitude and phase
readings from the existing SD119C Trim Balance Analyzer unit at predetermined
steady-state speed conditions. Making the initial trim balance unsuccessful,
the built-in 3 Hz (%1.5 Hz) bandwidth tracking filter of the SD119C unit did
not adequately separate the vibration response of the two rotors and, thus,

did not give correct amplitude and phase information.

A modified SD119C unit was purchased with a 1.0 Hz (%0.5 Hz) bandwidth
tracking filter and was evaluated during Build 3 testing. Improvements were

achieved in the balance of each rotor utilizing this new unit and applying
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force correction weights. The sensitivity to the force unbalance was deter-
mined to be 325 gram-inches/mil which is 2 to 3 times less sensitive than fan
unbalance in a large bypass turbofan engine. But even with the improvements
noted above, the vibration response observed during power hooks {(constant rpm
thrust excursions) was still considered undesirable. The test on this build
ended before a good set of high thrust data could be obtained during the power

hook excursions.

The amount of data accumulated in these balance exercises did, however,
indicate that one or more excitation sources, other than a pure force unbal-
ance, was contributing significantly to the UDF™ vibration signature of the
engine. Efforts are currently underway to evaluate each of the following

possible sources:

L Changes in either force or mechanical moment unbalance due to
the blade actuation system (from low- to high-power condition)

* Aerodynamic moment unbalance being introduced by any propulsor-
blade tracking problem.

Measuring Techniques

For a simple one degree of freedom system, the maximum sensed deflection
would lag the forcing function (rotor unbalance) by 90° at its first natural
frequency. The deflection level is a function of the unbalance force magni-
tude, the damping, and the mode shape at this given frequency. For a single
rotor application, such as a high bypass turbofan engine, the maximum static
deflection at any circumferential location, even though not necessarily equal,
would occur in one revolution of the rotor and would be repeatable from one
revolution to another, provided the unbalance or rpm were unchanged. Using
this simple one degree of freedom system and assuming that the mode shapes in
the vertical and horizontal directions are identical, Figure 5-9 demonstrates

this point.

The UDF™ engine, on the other hand, may not sense the maximum deflection
at a given circumferential location during a revolution of its counterrotating
propulsor rotors. For example, assume that both the forward and aft rotors
are exactly synchronized, that the forcing functions are equal at each rotor,

and the mode shapes are identical in both the vertical and horizontal planes.
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Now, using the single rotor example above, we have two cases (Figures 5-10 and
5-11) which show either the vertical or the horizontal deflection at a maximum

level, and the other plane at a minimum.

This example indicates that for a given revolution, if the vertical loca-
tion is at the maximum level, the horizontal response is zero, and vice versa.
This example also shows that the maximum deflections in each plane are equal,
and that the minimum deflections are not only equal but are, in fact, zero.
Expanding this example into real-world application, we find that the maximum
response in a given plane will always result in the minimum response occurring

in its orthogonal plane.

First, let the force unbalance of each rotor be different. In this case,
maximum deflection for both the vertical and horizontal planes will still be
equal, as will the minimum levels, but these minimum values will no longer be
zero. Second, let the mode shape definition and force unbalance be different.
At this point, neither maximum nor minimum deflections between the two planes
would be expected to be equal. The final step in approaching the real world
is to leave the one degree of freedom system and enter the actual multidegree
freedom system situation. This step does nothing more than to vary the phase-
angle lag between the lined up forces, and the resultant maximum deflection

circumferential location, as a function of the engine dynamics.

Test data is provided in Figure 5-12 demonstrating the above discussion
and illustrating the UDF™ 1/rev response at ground idle power for the approxi-
mately orthogonally mounted accelerometers at the No. 2 ball bearing housing
location. Also shown is the phase-angle lag between the forward and aft pro-
pulsor 1/rev indicators. The phase data indicates that the rotors are close
but not totally synchronized. The vibration data shows the 1/rev levels are
modulating at the same frequency as the propulsor rotors difference frequency.
These data demonstrate, as earlier stated in the discussion, that the maximum
response in one plane occurs at the minimum response of the other plane, and
vice versa. The two rotors unbalance line up at a phase-angle lag of 240° to
yield the maximum vertical response and at a phase-angle lag of 60° to yield

the maximum horizontal response.
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This discussion explains why variation in vibration would be expected in
the UDF™ 1/rev levels shown in Figures 5-7 and 5-8. Although the rotors are
not precisely synchronized during the throttle advances, they are close, and
therefore, the response at any given speed is dependent upon the orientation

of the unbalances to each other and to the sensing device.

Realizing that this characteristic existed prior to initiation of ground
testing, GE Aircraft Engines developed a system to optimize the chance of cap-
turing the maximum vibration level each revolution. The automatic vibration
engine shutdown/aircraft monitoring system has two sets of orthogonal acceler-
ometers mounted on the engine. Each signal of the orthogonal accelerometer
goes through a software package that takes the square root of the sums of the
responses squared. This method vastly increases the probability of capturing
the maximum vibration response each revolution and is, by far, a more accurate
measuring tool for synchronized counterrotating rotors than the conventional

method utilized to measure high bypass turbofan engine vibration.
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6.0 BEARINGS AND SEALS

This section covers the main propulsor bearings and all actuation system
support bearings. All of the bearings performed well during ground testing,
from a design standpoint. Some problems arose as a result of debris produced
during manufacture of other engine parts; however, engine operability was not
compromised. Seals in the fan blade retention system performed well during
testing except for a few torn fan blade thrust bearing seals resulting from

insufficient lubrication.

6.1 HARDWARE CONDITION

6.1.1 Rotor Support Main Bearings

Debris Ingestion

The main bearings operated well, which was to be expected, as they had

ample capacity.

The two roller bearings were replaced twice during ground testing when
they were exposed at disassembly. They were replaced because debris damage
had scored some of the rollers. The debris was comprised almost exclusively
of 0.007-inch-diameter steel shot particles, with some other manufacturing and
wear debris present in very small quantities. Prior to engine teardown, oil

sample analysis had identified the possibility of a debris problem.

A blind cavity in the forward intershaft carbon seal land, designed to
prevent possible thermal coning, had trapped a quantity of steel shot during
the peening process. The shot did not wash out during manufacture but was

sluiced out by the hot lube o0il during engine running.

Causing extensive scoring of the rollers, the shot became imbedded in the
soft silver plate of the rolling element retainer of the bearing. This would
cause both a breakdown of the hydrodynamic lube film because of the high loads
and low rotational speeds and a diminished fatigue life. However, no surface

distress due to rubbing was observed.

Bearings were returned to the manufacturer for refurbishment, although

only inner rings and cages were usable. The rings were rehoned and the cages
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stripped and replated. The design of the roller retention features permitted

roller removal without damage to the cage.

To prevent further debris damage, the blind cavity was ultrasonically
cleaned and sealed closed with a nichrome strip (Figure 6-1). This was fairly
successful, although one or two pieces of shot were still found in subsequent

oil samples.

Retention Nut Loosening

The outer ring retention nut of the 1R intershaft bearing came loose and
completely disengaged during the final stage of ground testing; this permitted

axial movement of the outer ring.

The nut is believed to have jammed the actuation system preventing blade-
angle adjustment. On teardown, forward and aft rotors could not be separated
in the normal disassembly sequence. This was caused by the rollers no longer
being in contact with the outer raceway. Borescope inspection prior to dis-
assembly had shown the rollers still engaged, so running in this disengaged
condition had not occurred. When the rotors were separated, the bearing was
found to be in remarkably good condition, except for the damage to the roller
corners caused when the rollers dropped into the region of the outer shaft,
from which the ring had moved, and hung up on the shaft shoulder (Figures 6-2
and 6-3).

Examination of the spanner nut indicated no obvious thread damage, and
the Vespel insert retention feature appeared undamaged. The appearance of the
raceway did not indicate any running off the normal roller path; however, some
coning was indicated. The shaft coning was in the direction to move the shaft
radially away from the nut, and the wedge effect would exert an axial force on
the nut in the direction to promote untorquing. There was no damage from ring

spinning on either the outer ring OD or the shaft bore.

For subsequent engine testing, a hole was line-drilled axially in the
thread, and a roll-pin was mechanically locked in the thread to prevent the

nut becoming untorqued (Figure 6-4).
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Figure 6-2. Possible Running Condition with
1R Spanner Nut Loose.
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Figure 6-3. Disassembly Problem and Roller
Corner Damage.
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Figure 6-4. Problem Solution - Positive
Nut Locking.
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6.1.2 Inner Actuation Bearings

Actuation Ball Bearings

No problems were encountered with the large mainshaft actuation ball
bearings. These bearings were examined at the last teardown for any evidence
of irregular wear or cage impact that might occur due to the calculated axial
distortion of the outer ring from the four gear rack loads, but no indication

of abnormalities was seen.

Radial Quill Shaft Gearbox Bearings

The inner bearings supporting the radial shafts could not be seen without
teardown of the gearboxes; however, since no problem existed and they operated

flawlessly, no teardown was performed.

The outer gearboxes were examined because of the loosening of the outer
housing nut. The nut butts against and clamps the outer ball bearing, which
locates the pinion gear. The cause of the loosening was found to be a stackup
problem incurred by a change in a washer thickness (Figure 6-5), and the prob-
lem was corrected. Although the bearings are grease lubricated, most of the

grease had been expelled, and some bearings showed wear.

6.1.3 Actuation Tapered Roller Bearings

The tapered roller bearings supporting the counterbalance torque tubes
and bevel gears were examined and showed no deleterious effect except for some
slight corrosion. This problem was manifest because the grease lubricating
these bearings is centrifuged outwards, and the bearings are not adequately
protected from the high humidity experienced during testing, some of which

occurred during moderate rain.

6.1.4 Fan Retention Bearings and Seals

Setup Bearing

The setup bearing is incorporated to react the blade overturning moment
and carry most of that load. However, at speed, the centrifugal load is suf-

ficiently high that a very large moment would be required to unseat the main
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Figure 6-5. Gearbox Stackup Problem Causing Incorrect Loading
of Ball Bearing and Cap Looseness.
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thrust bearing. Therefore, the setup bearing has a relatively easy life. The
only problem associated with these bearings was, again, corrosion. Although
protected by a silicone seal and lubricated by grease, because the grease 1s
permeable, some corrosion was seen, but not severe and none on the active sur-

faces of the bearing.

Fan Thrust Bearing

Bearing Condition and Seal Condition - The main fan thrust bearing reacts

the considerable centrifugal load of the blade and is subjected to dither from
blade vibrations and actuation system load fluctuations. Therefore, false

brinelling and fretting were the major concerns.

Most noticeable about the condition of the bearings was the disparity in
appearance between forward and aft rotor parts. The front rotor was in a much
hotter environment, sometimes as much as 100° F hotter. Bearings from this
rotor were slightly blued, but the aft rotor bearings were not discolored.
Some fretting corrosion was present on both rotor bearings; however, this had

not progressed to the point were the bearings were unserviceable.

The lubricant in the forward rotor was dry and discolored; whereas, the
aft rotor grease looked like new. Grease seals in some of the forward rotor

parts had been torn due to lack of lubrication.

The roller wear paths on the raceway of the cup and cone showed evidence
of bearing distortion due to the unsymmetrical loads caused by the housings
deflecting, as was predicted by finite element analysis. The bearing cone had
been made more flexible to compensate; however, even the cone bending was not
enough to provide an even loading. Deflection analysis was performed using a

lighter blade weight than we currently have (Figures 6-6 and 6-7).

Thread Clamp Condition - During ground check-out for flight, play in the

trunnion support bearings was discovered which caused blade tip movement. The
clamp load was measured using a unique eddy-current technique for determining
the stretch in the trunnion threads. The technique had been calibrated during
ground testing at Peebles to substantiate the torques used at assembly. The
results revealed a loss of clamp load, and the rings were returned to Evendale

for retorquing the trunnions. This gave us the opportunity to examine all the
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trunnion bearings. Thus, the condition of all of the retention bearings was
known. Due to minor surface distress, coupled with increased trunnion/bearing
thread torque, two bearings were replaced; however, all other bearings were
acceptable for flight testing as is. The consumable parts (seals, shims, and

grease) were also replaced where necessary.

6.2 MEASURED TEMPERATURES

6.2.1 Rotor Support Main Bearings

The main bearings were instrumented initially with three thermocouples at
each bearing location. The thermocouples were at 120° circumferential loca-
tions; however, loss of signal and lack of available recording channels left

only one gage at each position providing good data.

Steady-State Temperatures

The bearing temperatures were influenced by environment (oil, metal, and
cavity temperatures) and by engine speed. The intershaft bearings ran hotter
than the Stage 2 rotor supports, as would be expected due to the higher rela-

tive speed (Figure 6-8).

The Stage 1 rotor bearing temperatures increased from 240° F at 700 rpm
(idle) to 340° F at 1393 rpm (maximum thrust). The Stage 2 rotor bearing
temperatures were lower, with that of the 2B bearing rising 50° F, to 250° F

at maximum thrust. O0il supply temperature rose 100° F over the same ranges.

Transient Temperatures

The bearings did not pick up temperature very rapidly during fast accels.
A 40° F rise in intershaft bearing temperatures is attributable to increased
centrifugal loads. The Stage 2 rotor support bearings changed little during a
2-minute accel to full power. However, a 4-minute accel/decel demonstrated a

similar 40° to 50° F rise in all bearings (Figures 6-9 and 6-10).

6.2.2 Fan Retention Thrust Bearings

The fan retention tapered roller bearings were not instrumented; however,

thermocouples were placed inside the trunnion adjacent to the bearing. Since
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this is a closed cavity, the temperature would not be too far from that of the

bearing.

Steady-State Temperatures

The forward hub temperatures rose from approximately 340° F at 700 rpm to
about 390° F at 1393 rpm. The aft hub went from 190° to 250° F in the same
range (Figure 6-11).

Transient Temperatures

There was little difference between a 2-minute accel and a 4-minute
decel, in that the temperatures of both forward and aft hubs rose about 20° to
40° F. This is due to the fact that the thermocouples were in a closed cavity
and, although influenced by turbine air gas temperatures, they are shielded

from the immediate effect by the fan ring bulkhead plate (Figure 6-12).
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7.0 PERFORMANCE

This section describes the steady-state data acquired during Build 3
testing at Peebles Site 3D and the various analyses employed to support the

test effort. The major items covered are as follows:

. Data summary

. Data reduction methodology

L Comparison between pretest predictions and reduced test data

. LCF cyclic testing and resultant deterioration

14 Comparison between ground and flight pretest cycles and reduced
test data

* Overall summary

. Key results

. Conclusions.

~]
p—

DATA SUMMARY

During Build 1 testing at Site 4A, a total of 46 steady-state DMS (data
management system readings were taken, none of which were usable for perform-
ance analysis since all the points were recorded mainly for mechanical check-

out and were not stable.

During Build 2 testing, 104 steady-state DMS readings were taken at Site
4A, and an additional 31 at Site 3D. Some of the data points were usable for
analysis.

Table 7-1 shows the breakdown of steady-state DMS readings for Build 3.
Note that of the total of 358 data points recorded, 27 readings were expressly
taken to define the baseline performance, with an additional 48 data points
recorded to map the UDF™ performance at off-schedule conditions. Table 7-2

shows the chronology of the acquired data.

Appendix A presents a listing of the Build 3 steady-state data points.

7.2 DATA REDUCTION METHODOLOGY

Figure 7-1 shows the schematic of the engine and the positioning of the

performance-related instrumentation.
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Table 7-1.

Data Summary.

Breakdown of Steady-State DMS Readings

for Build -03.

Points
Zero Readings 86
Ground Idle Readings 2
Flight Idle Readings 16
Trim Balance Data Readings 36
Bleed Evaluation Readings 28
EPR Power Hooks 48
Down Power Calibration 27
LCF Cycles 102
Miscellaneous Data Points 15
Total 358

Table 7-2. Chronology of the Acquired Data.

Breakdown of Steady-State DMS Readings

for Build -03

Readings Date Points
1 to 5 6/20/86 5
6 to 15 6/23/86 10
16 to 31 6/24/86 16
32 to 47 6/25/86 16
48 to 56 6/26/86 9
57 to 70 6/29/86 14
71 to 77 6/30/86 7
78 to 149 7/1/86 72
150 to 197 7/3/86 48
198 to 209 7/4/86 12
210 to 251 7/5/86 42
252 to 304 7/6/86 53
305 to 330 7/7/86 26
331 to 358 7/8/86 28
Total 358
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1pC

Inlet flow - From inlet total rakes, circumferential pressure
statics, physical area, flow coefficient

Pressure ratio - From inlet and exit total pressure rakes

Efficiency - From inlet and exit total pressure and temperature
rakes.

HPC

Flow - From HPT flow function (iteration)

Pressure ratio - From IPC exit conditions and stratification logic to

define inlet pressure, PS3 correlation to define P3

Efficiency - From matching core overall performance.
Bypass Duct
Flow - From IPC exit conditions and stratification logic

Pressure drops - Measurements at IPC exit and duct exit

Temperatures - Measurements at IPC exit and duct exit.
Combustor
Efficiency - Assumed (map value)

Pressure drops - Assumed (map value)

Fuel flow - Measured (including all parameters for corrections).

HPT

All parameters assumed (map).

1eT
Efficiency - Energy balance with IPC
Exit from IPT ~- (T46) - From fuel flow and inlet airflow, together

with assumed secondary flows

- (P46) - Measured.

Mixer Frame

Assumed losses, mixing characteristics.

Secondary Flows

Assumed level and distribution (based on model test and some
measurements) .

Power Turbine

Inlet - Mixer frame exit conditions, secondary flows

Exit - From total pressure and temperature rakes
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Power - From airflow, delta temperature

Efficiency - From delta temperature and delta pressure.

Core Nozzle

Inlet - PT (power turbine) exit conditions
Exit - Ambient conditions.

Thrust

Installed - Measured

Core component - From PT exit conditions, nozzle coefficients
Uninstalled - From installed thrust, assumed drags

UDF™ component - From uninstalled thrust and core thrust.

7.3 COMPARISON OF PRETEST PREDICTIONS AND REDUCED TEST DATA

The steady-state data points used for the performance evaluation were
restricted to the down power calibration and maximum power points recorded on
July 1 and July 3, 1986. Data points taken for UDF™ mapping EPR (engine pres-
sure ratio) power hooks were recorded on July 1, 1986. The pretest prediction
used to compare the test data is the Status D5C cycle. The Status D5C cycle
was expressly defined for Build 3, and it includes the following major items:

. PT derates on efficiency due to open clearances and the blade
damper pins

. PT flow function adjustments for open clearances and the blade
damper pins

L4 Revised exhaust nozzle characteristics as a result of new
nozzle hardware.

Core Performance - Figure 7-2 shows the overall core (F404) temperature

ratio versus pressure ratio. Note that the core performance is approximately
as predicted at takeoff power conditions and is better than predicted at lower
powers (70% takeoff and below). Figure 7-3 presents IPC stall margin versus
corrected flow, illustrating that the IPC operating line was approximately as

predicted.

Power Turbine Performance - Figure 7-4 shows the PT flow function versus

the PT energy function. The PT flow function was within 0.5% of the predicted
value at higher powers (80% takeoff and above). Figure 7-5 illustrates the PT
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efficiency versus PT energy function. The efficiency was within +1.5% of the
predicted value and within the scatter range observed in LP turbines of large

turbofan engines.

UDF™ Performance - Figure 7-6 depicts the UDF™ thrust coefficient versus

power coefficient. Note that the test data describe a shallower slope than
predicted. Thrust coefficient is approximately 4% worse than predicted at a
power coefficient of 1.95 (takeoff condition), nearly as predicted at power
coefficient of 1.70 (92% takeoff), and approximately 4% better than predicted
at power coefficient of around 1.32, which covers a range of power from 30% to
80% takeoff thrust. Figures 7-7 and 7-8 compare predicted versus actual UDF™

rotor blade pitch angles for front and rear rotors, respectively.

Overall Performance - Figure 7-9 shows corrected installed specific fuel

consumption (SFCIIR) versus corrected installed thrust (FNT1QA). The SFCIIR
can be seen to be approximately 4% poorer than predicted at takeoff power. At
92% takeoff thrust the SFCIIR is about as predicted; whereas, at 80% takeoff
thrust and below, SFCIIR is 4% to 6% better than predicted. Most of the dis-
crepancy between actual and predicted performance is due to the characteristic
exhibited by the UDF™, as discussed above under "UDF™ Performance." Magnitude
of overall improvement in excess of that expected from the UDF™ performance
at 70% takeoff thrust and below is due to the core engine performance being

better than predicted, as discussed in "Core Performance."

Nozzle Performance - Between Builds 1 and 2, a redesigned stationary

exhaust nozzle (centerbody) was installed on the engine. The original plug
was analytically predicted to have flow separation at cruise conditions. The
plug was redesigned so that no flow separation would occur at any flight con-
dition. Figure 7-10 compares the original and redesigned plug lines. Scale
models were made of both the original and redesigned plugs, and then tested.
Figure 7-11 makes a comparison of the separation parameter (Fsep) for the two
plugs at cruise conditions, illustrating that the new plug lines would keep
Fsep below potential separation conditions. Figure 7-12 shows a comparison
between predicted and actual engine test data for both plugs to demonstrate
good match between prediction and data. Figure 7-13 presents a comparison

between predicted and engine test nozzle flow coefficient versus core engine

pressure ratio (P46Q2). Note that at P46Q2 of 2.9 and below (approximately
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80% takeoff thrust and below) the calculated flow coefficient is within +1% of
the prediction. However, at takeoff power there is a discrepancy of about 3%.
This is probably due to the fact that the flow coefficient is sensitive to the
UDF™ exit pressure which was not a measured parameter, but rather, the value
being assumed from the performance maps. This discrepancy is not a concern,

since 3% change in flow coefficient changes sfc at thrust by only 0.005%.

EPR Hooks - These test points were run to map UDF™ performance at off-
schedule speeds. The test was conducted at six different propulsor rotational
speeds where the propulsor speed would be held constant, and core power level

would be varied by demanding various EPR levels; hence, EPR hooks.

Figure 7-14 shows installed corrected specific fuel consumption (SFCIIR)
versus installed corrected thrust (FNI1QA) for on-speed schedule and constant
propulsor speed pretest prediction, with Figure 7-15 showing the equivalent
reduced test data. Note that the on-speed schedule lines on both figures are
the same as those found in Figure 7-9. The test further proved that the UDF™
characteristics were different than predicted, with significantly higher speed

sensitivity than prediction.

7.4 LCF CYCLIC TESTING AND RESULTANT DETERIORATION

The LCF testing involved running the engine through a power cycle as is
illustrated in Figure 3-54; a total of 100 complete cycles were run. In the
following comparisons, a sample of early data is compared with a sample of
late data in order to quantify the magnitude of scatter as well as the magni-
tude and source of deterioration. Figure 7-16 shows that the wind conditions
were relatively consistent, and all data points, except one, were within the

prescribed performance testing wind envelope.

Figure 7-17 shows that at corrected installed thrust, corrected installed

specific fuel consumption deteriorated by approximately 0.040%.

Figure 7-18 demonstrates that at EPR, corrected installed thrust followed
the predicted trends and showed no signs of degradation. This indicates that
the power extraction at EPR by the LP turbine and the thrust produced by the

UDF™ for LP turbine power remained unchanged during the tests. Figure 7-19
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Figure 7-19. Core Temperature Ratio Versus Control Pressure Ratio.
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reveals that at EPR, core engine temperature ratio was essentially unchanged,

and the core showed little or no signs of deterioration.

Figure 7-20 illustrates that at EPR, intermediate power compressor (IPC)
efficiency was down 0.60 points during the latter part of the test compared to
the early part of the test. However, Figure 7-21 shows that at EPR, IPC flow
follows the predicted trends, confirming that inlet flow and core engine power
output remained consistent. This implies a dirty IPC, which is further sub-
stantiated by Figure 7-22 indicating that the flow versus speed characteristic
of the IPC deteriorated, with approximately 0.50% drop in corrected IPC flow

at corrected IPC speed.

In general, there was no evidence of mechanical deterioration, with

performance degradation due mainly to a dirty intermediate power compressor.

7.5 DEFINITION OF PREFLIGHT TEST CYCLE

The base cycle used for Build 3 pretest predictions was the Status D5C
cycle. Listed below are the changes made to the Status D5C cycle to define

the preflight test cycle; this being the Status D8B cycle:

o Modify IPC flow-speed characteristics
. Modify IPC efficiency characteristics
. Modify HPC flow-speed characteristics
. Modify HPC efficiency characteristics
. Revise bypass duct losses and effective area

. Scale IPT efficiency

b Modify LPT efficiency characteristics
L4 Modify LPT flow function characteristics
° Modify UDF™ thrust coefficient characteristics at Mach No. = 0.00,

no change at Mach No. 2 0.20
. Use NASA MPS test-derived UDF™ maps for Mach number 2 0.67

. Extra cooling air scoops for telemetry system modeled.

7.6 COMPARISON BETWEEN GROUND PRETEST CYCLES AND REDUCED TEST
DATA

The following comparisons between the ground pretest cycle (Status D5C),

flight pretest cycle (Status D8B), and reduced test data are made to compare

181

-2

/



"013'Y SINSSII [01IU0) SNSISA ASUSIOTIIY Id]  "0z-/ 2an81y

Hdd jonuo)
ve ¢t 0t 8¢ 9'C ve (A4 0¢ 8L

I 1 L 4 1 .

ol

(050 snie)g) ejeq pajopard ——

eleg 4079187
[ eleq 497 Ape3 g
%1

8.

6L

08"

18

c8

1% 3

Kouspa odi

182



96

IPC Flow, Ibs/s
(7] [{e] ©0
(=] N &

86

s §

*

Early LCF Data
Late LCF Data
Predicted Data (Status D5C)

84

2.0

22 24 26 28 30 32
Control EPR
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the starting status, ending status, and data used to define the ending status

against each other.

Figure 7-23 shows the core temperature ratio versus core pressure ratio.
Figure 7-24 illustrates LPT flow function versus LPT energy function. Figure
7-25 demonstrates IPC stall margin versus IPC corrected flow. Figure 7-26 is
a comparison of UDF™ thrust coefficient versus UDF™ power coefficient. Figure
7-27 depicts the overall performance, corrected installed sfc versus corrected
installed thrust. Note that in all of the above comparisons, the Status D8B
cycle more closely matches the test data than did the Status D3C cycle.

7.7 PERFORMANCE SUMMARY

In the testing of the UDF™ engine at Peebles, the following performance

and capabilities were demonstrated:
Performance

. 25,000 1bf installed corrected thrust
L 0.232 1b/hr/1bf installed corrected specific fuel consumption

b 15,000+ physical total shaft horsepower.

Capabilities

o Running at full power statically
. Data was repeatable statically
. Prediction of low speed, low pressure, counterrotating turbine

performance with an accuracy comparable to that of high speed,
conventional, low pressure turbines.

Comparing data recorded early and late in the LCF testing, performance
deterioration was confined to a dirty IPC; there was no evidence of mechanical

deterioration.

7.8 KEY RESULTS

The F404 gas generator provided repeatable and predictable performance

and was better than predicted at lower powers (below 70% takeoff power).

UDF™ blade performance sensitivity to rotational speed was much greater

than predicted.
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At power coefficient = 1.32, thrust coefficient was 4% better than pre-
dicted (approximately 60% takeoff power). At power coefficient = 1.95, thrust

coefficient was 4% worse than predicted (approximately 100% takeoff power).

Power turbine efficiency was approximately as predicted, being within
+1.5 points over the major portion of the operating range. The flow function

was within +0.5% of prediction at high powers (above 80% takeoff thrust).

Overall performance was better than predicted up to 92% takeoff power
(23,000 1bf corrected installed thrust), but was poorer than predicted beyond
929 takeoff power (23,000 1bf corrected installed thrust) due to UDF™ speed

sensitivity as noted above.

At 60% takeoff thrust (15,000 1bf), sfc was approximately 5.50% better
than predicted. At 92% takeoff thrust (23,000 1bf), sfc was approximately as
predicted. At 100% takeoff thrust (25,000 1bf), sfc was approximately 4.00%

worse than predicted.
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8.0 ENGINE OPERABILITY

The most important operability concern with the GE36 proof-of-concept
engine is the stability of the IPC (F404 compressor). Replacing the F404
variable area exhaust nozzle with the GE36 UDF™ propulsor assembly reduced the
Station 48 (F404 nozzle/UDF™ power turbine inlet) flow function by about 15%.
This raises the IPC operating line (Figure 8-1) and reduces the stall margin.
To help increase IPC stall margin and ensure stall-free operation of the IPC,
two design modifications were incorporated:

] Variable Stator 1 and more closed IGV schedule (raises the IPC
stall line)

L IPC bleed system (lowers the IPC operating line).

The GE36 proof-of-concept HPC has an adequate stability margin since the
stall and operating lines are similar to those for the F404. Due to the more
limited operating range and flight envelope encountered during GE36 ground and

flight test, the stall margin requirements are lower.

8.1 IPC STALL MARGIN

Steady-state IPC operating lines at 2,750 ft/OMn/+31° F and at 38,000 ft/
0.80Mn/ISA, as predicted by the Status D6C cycle model, are shown in Figures
8-2 and 8-3. Also shown is the nominal IPC stall line and the, statistically,
worst-case IPC stall line which includes analytical estimate of effects due to
deterioration, inlet pressure distortion, and IPC tracking error. The nominal
stall line shown in these figures is from the F404 green run results with the

GE36 variable geometry schedule (Figures 8-1 and 8-4).

Transient cycle model predictions of IPC operating line migration during
decel transients from maximum power with no IPC bleed and with maximum IPC
bleed are included in Figures 8-2 and 8-3. These predictions demonstrate the
need for, and potential of, the IPC bleed system to prevent IPC stalls during

rapid decel transients.
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8.1.1 IPC Bleed Control System

The IPC bleed valve position is controlled by the DEC. The control logic

opens the bleed valve in response to any one of the following inputs:

a. d(PLA)/dt - throttle retard rate > threshold
b. PLA - throttle step > threshold
c. d(P)/dt - IPC exit pressure decay rate > threshold

d. IPC P/P scheduled maximum allowable P/P (f[XN2R]).

Thresholds '"a" and "b" indicate a decel transient condition to the con-
trol, in which case additional IPC stall margin could be required. Threshold
e would be exceeded in the event of engine surge. Schedule "d" is designed
to maintain a minimum level of IPC stall margin under all normal operating

conditions.

1f thresholds a, b, or c are exceeded, the control logic is designed to
"kick" the valve full open, hold for 5 seconds after the last demand for full
open, and then ramp close in 5 seconds. The slow closing will avoid transient
pressure pulses. In addition, for Input c, the control downtrims fuel flow to
maximum authority, further decreasing engine system pressures. If scheduled
Value d is exceeded, the control modulates the bleed valve to maintain the
scheduled maximum allowable IPC pressure ratio. In the event multiple inputs

are received, the valve kicking logic takes precedent.

8.1.2 Control Threshold for Throttle Retard Rate

Figures 8-2 and 8-3 show the PRS usage (stall pressure ratio normalized
to stall line), as predicted by the transient cycle model, during decel tran-

sients from maximum power without IPC bleed. Shown are decels at various PLA

rates at 2,750 ft/OMn/+31° F and at 38,000 ft/0.8Mn/ISA. Also indicated 1in
these figures is the current status available PRS and the minimum available
PRS as a worst-case estimate. Figure 8-5 shows that with the current level of
available margin at SLS (sea level static) conditions, an IPC stall would be

predicted during a throttle chop from maximum power without IPC bleed, yet a

decel transient at -10°/second d(PLA)/dt would not consume all of the current
available margin. A decel transient from high power at -10°/second d(PLA)/dt,

without IPC bleed, was successfully accomplished without stall during ground
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testing; thus, confirming the analytical prediction. At altitude, however,
the operating line migration during a decel exceeding -9°/second d(PLA)/dt is
expected to consume all of the available margin, even at the current quality

of the engine (Figure 8-6).

Considering the statistically worst-case IPC stability condition, Figures
8-5 and 8-6 show that even an IPC bleed kick threshold of -5°/second d(PLA)/dt
is not sufficient to assure stall-free operation. This illustrates the neces-

sity of the maximum allowable P/P schedule (bleed valve modulation).

8 1.3 Maximum Allowable IPC Pressure Ratio Schedule

The maximum allowable IPC pressure ratio (P15/P2 versus XN2R) was set at
approximately 1% above the engine ground test operating level (Figure 8-7).
This was accomplished at the end of ground testing, after analysis of control
measurement data. The effect of the expected control measurement variation on
this maximum allowable P/P schedule was determined to be equivalent to approx-

imately +0.015 PRS (pressure ratio schedule).

This bleed modulation function will be effective during steady-state
operation if the IPC operating line migrates upward due to the altitude/Mach
effects (not predicted) or deterioration effects. It will also be effective

during decel transients which do not exceed IPC bleed kick threshold levels.

8. 1.4 Final IPC Bleed Control Status

During the engine ground testing, the IPC bleed system was successfully
demonstrated; proper mechanical function and pressure relief capability were
verified. Each of the control inputs (a through d) were individually checked
and verified. By the end of the ground test, threshold levels were adjusted

to appropriate levels, as follows:

a. d(PLA)/dt (throttle rate threshold = -5°/second)
b. PLA (throttle step threshold = -2°/0.25 second)
c. d(P15)/dt (IPC exit pressure decay rate threshold = -20%/second

d. P15/P2 versus XN2R (scheduled maximum allowable IPC pressure
ratio set at approximately 1% above engine ground test operat-
ing level).
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Figures 8-8 and 8-9 show the predicted PRS usage during decel transients
at 2,750 ft/OMn/+31°F and at 38,000 ft/0.8Mn/ISA, with bleed system control
thresholds set as defined previously. For decel transients which exceed -5¢°/
second d(PLA)/dt, the kick function is effective, and the PRS transient usage
is zero. This was demonstrated during a throttle chop from high power in
which the bleed valve kicked open, and the transient data indicated that the
IPC operating line during decel was lower than the steady-state level. For
decel transients which do not exceed -5°/second d(PLA)/dt, the bleed modula-
tion function is effective. If the operating line migrates above the steady-
state ground test level, the control will modulate the bleed to maintain the

maximum allowable P/P during the decel.

Figures 8-8 and 8-9 show that the IPC bleed control system should prevent
the IPC operating line from migrating to even the worst-case stall line, thus,

assuring stall-free operation.

8.2 TRANSIENT TESTING EXPERIENCE

Table 8-1 summarizes the significant transient tests conducted. Small
PLA accels and decels were conducted to verify control functions and to adjust
control gains to appropriate levels to ensure control stability; control fault

trips were checked, resulting in throttle chops and stopcocks.

Several unintentional decel transients were encountered, both operator
and control initiated, due to instrumentation faults and operating limits.
For cycle operability evaluation, large PLA accels, decels, and bodes were
conducted. All transient testing of the demonstrator engine during ground

testing was accomplished without adverse results.

8.3 ENGINE TRANSIENT PERFORMANCE ANALYSIS AND PREDICTIONS

The transient cycle model is used to predict the operating line migration
of the compression components during engine transients. In order to foresee
any stall or operational problems prior to transient testing, good agreement
between the cycle model predictions and test data is necessary. Two engine
transients conducted during the ground test were simulated by the transient

cycle model with good results; a throttle chop from 97% thrust and a throttle
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burst to 20,000 thrust. Figures 8-10 and 8-11 show the transient cycle model

simulations, as compared to the test data, for selected parameters.

The results of these comparisons provide confidence in transient cycle
model predictions of IPC operating line migration during decel transients

which were used in designing and optimizing the IPC bleed control system.

Table 8-1. Significant Transients - GE36 Proof-of-Concept.

Date Maneuver Reason
2-09-86 Throttle Chop from 24,000 Fn No. 7 Aft Blade Debonded
4-18-86 Stopcock at 11,000 Fn XN49 0/S Trip
7-8-86 10 Throttle Bursts to 18,000 Fn Planned
7-8-86 2 Throttle Bursts to 20,000 Fn Planned
7-8-86 Throttle Burst to 21,000 Fn, Planned/Overspeed
Chop to Idle
7-8-86 2 Bodes (Chop from 20,000 Fn Planned
to Idle, Burst to 20,000 Fn)
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9.0 ENGINE CONTROL

This section provides a summary of the GE36 control system performance
during the ground test program performed at GE's engine test facility near
Peebles, Ohio. This summary is divided into three parts; each portion covers

the milestones associated with each of the three engine builds.

9.1 BUILD 1 - ENGINE CONTROL TESTING

The control system performance for Build 1 was successful. A limited

amount of testing was performed due to the propulsor turbine failure.

9.1.1 Speed Sensing Anomaly

During Build 1 testing, it was discovered that the speed being sensed by
the control for the forward propulsor rotor (XN48) was incorrect. A further
study as to the cause showed that the gaps in the target wheel, which was
divided into eight segments, were inducing a superfluous signal onto the mag-
netic speed-sensing pickups (Figure 9-1). This caused a higher sensed speed,
up to two times actual. The situation was initially corrected by a change
in speed signal processing. A more elegant solution was identified for imple-
mentation on Build 2. This solution consisted of locating the teeth on the

target wheel directly at the segment gaps (Figure 9-2).

9.1.2 Pitch Control

For Build 1, the engine was controlled to pitch angle, rather than to

propulsor speed.

9.1.3 Gas Generator Control

The gas generator control performed as expected. The EPR (engine pres-
sure ratio), HP (high pressure) and IP (intermediate pressure) stator control,
and the control of the duct bleed system all exhibited stable operation during
this engine build testing. A new control strategy for stall avoidance and
recovery for the duct bleed system was identified during this build and was

incorporated into the control system during Build 2.
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9.1.4 Throttle System

The throttle system was redesigned to minimize hysteresis. The resolver
was relocated to the HMU (hydromechanical unit) fuel lever to provide a more
accurate indication of fuel lever angle. A rotary potentiometer was added to
the system at the throttle converter to provide an input for PLA which would

provide for a reverse indication and redundancy for the resolver.

9.1.5 Engine Starting

Starting tests during this build achieved expected results. The engine
was first dry motored to check instrumentation and control signals. After
successful dry motoring, the engine was wet motored (engine motoring with fuel
on), also without incident. After wet motoring, the engine was fired to idle
power. The control performed as expected, successfully controlling HP rotor
speed to the HP rotor starting speed schedule. Due to the aforementioned

speed sensing anomaly, limited propulsor speed control testing was performed.

9.1.6 Off-Engine Harnesses

Crosstalk was observed on multiconductor off-engine cables during testing
as well as inaccuracies on alternating current type sensors. This situation
was corrected by placing twisted pairs for each circuit inside the same shield

and removing unused pairs.

9.1.7 Lube Qil Bypass

Scavenge capability of the propulsor lube o0il system was marginal during
Build 1 testing. A solution was identified for use on Build 2. This solution
involved installing in the propulsor lube system a bypass valve which allowed
lube o0il into the propulsor only after a light-off had been detected by the
control. This prevented excess lube oil from entering the propulsor during

start operations, thus minimizing the effects.

9.2 BUILD 2 - ENGINE CONTROL TESTING

Due to lessons learned during Build 1 testing, Build 2 testing involved

further testing of the engine in the realms of transient testing, verification
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of control schedules, and modifications to the control. This testing further
demonstrated the stability of the control system. Full control was maintained

under a blade-out condition.

9.2.1 Speed Control

Closed-loop speed control (modulation of fan pitch to maintain scheduled
fan speed) was used by the control successfully for all power settings, with
the exception of reverse and windmill testing. The propulsor speed was demon-
strated to be stable from 550 rpm to 1400 rpm and from idle to 25,000 1bs,
corrected thrust. This modulation of pitch to control fan speed also was

demonstrated for Mach numbers up to 0.1 using facility fans.

9.2.2 Duct Bleed

Modifications to the duct (fan bypass) bleed control logic were verified
for P15Q2, PLA chop, and simulated stall. A throttle chop from 97% takeoff
thrust was performed without IPC stall; also, unrestricted throttle chops from
all power settings were performed. Figure 9-3 is a schematic of the engine

bleed system.

9.2.3 Transient Testing

A limited number of small, part, and full power throttle chops and small
part power accelerations were performed. During a throttle burst from idle
to 1150 rpm, an overspeed incident occurred. It was determined to have been
caused by the fan pitch actuator becoming force-limited due to a too rapid
response time of the gas generator. A fix was identified to slow down the
accel rate of the core by putting an accumulator on the CDP (compressor dis-
charge pressure) sensing line to the HMU. A preliminary fix was installed
on the engine which adequately slowed the core accel rate. A more pelished

design was used on Build 3.

As a result of the blade-out incident, the engine was chopped from 24,000
corrected thrust to idle, then stopcocked approximately 10 seconds later. As
illustrated in Figures 9-4 through 9~8, the control system maintained complete

control during the blade-out, chop to idle, and subsequent stopcock.
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9.2.4 Control Parameters

All control parameters were stable.

9.2.5 Vibration System

The vibration monitoring system proved to be functional; however, it was
discovered that there was not enough gain in the amplifier for small vibration
signals. As a result of the blade-out incident, readings were gathered that
allowed for the scaling of the vibration signal. To increase its gain by a
factor of four, the amplifier was reworked; this change was implemented during

Build 3 testing.

9.2.6 Overspeed System

The capability of the overspeed system was demonstrated during an over-
speed incident. During a throttle burst from 550 to 1150 rpm, the fan pitch
actuator became force-limited and was unable to modulate fan pitch to control
rear rotor speed. An overspeed condition resulted, which was quickly sensed
by the overspeed system which immediately shut down the engine 1in a controlled

manner.

9.2.7 Reverse Testing

Limited by the telemetry system, this due to high temperatures, reverse
testing for Build 2 consisted of a throttle push from idle to 1000 rpm (3000
1b reverse thrust at static conditions). Figures 9-9 through 9-12 illustrate
a transient from forward idle, to reverse idle; then throttle is pushed until
a maximum propulsor speed of 1000 rpm is obtained, followed by a decel and
return to forward idle. The fan speed is controlled by modulating pitch in
forward thrust, and PLA is used to schedule pitch directly in reverse thrust,

hence, the difference in propulsor speeds in reverse thrust.

9.2.8 Control System Modifications

Two areas of the control system hardware were modified during this build
to improve performance. The hardware modified was the pitch actuation system

transfer valves and the watchdog monitor circuit of the control computer.
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The transfer valves exhibited erratic performance during the beginning
of this build. It was determined that the filtering of the hydraulic oil was
inadequate. To correct this problem, the filters for the hydraulic system

were changed from 5 micron to 3 micron.

The watchdog monitor circuit on the control initiated several inadvertent
automatic shutdowns, later discovered to be caused by noise on the backplane
of the control propagating into the watchdog circuit and inducing erroneous
pulses. This condition was corrected by adding filters to all high speed

lines on the watchdog circuit card.

9.3 BUILD 3 - ENGINE CONTROL TESTING

Build 3 testing was the most successful portion of the ground test, both

in terms of time on test and control system testing.

9.3.1 Endurance Testing

Pitch and EPR controller gains were optimized during the 100 LCF cycles

which were performed (Reference Figure 3-54).

9.3.2 Core Response Modifications

The gas generator response time was reduced with an orifice/accumulator
system (Figure 9-13) in the CDP ({compressor discharge pressure) line to the
HMU (hydromechanical unit) and a control rate control. This modification was
due to an overspeed incident caused by a force-limited actuator. The orifice/

accumulator was sized to give an 8-second idle-to-rated-thrust response.

9.3.3 Reverse Thrust Testing

Reverse testing during Build 3 achieved maximum speeds of 850 rpm limited

by high telemetry temperatures.

9.3.4 UPS (Uninterruptable Power Supply) Systems

The UPS systems for the control were successfully demonstrated during
this build. The UPS powered the control computer, the overspeed unit, and the

peripheral computer. The UPS systems were tested, by removing/reconnecting
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input power, both statically and with the engine running without affecting

control performance in any way.

9.3.5 Transient Testing

Transient testing consisted of accelerations, decelerations, and throttle
bodes. The controller was found to exhibit an underdamped response above 2.85

engine pressure ratio.

Figures 9-14 through 9-17 depict a throttle burst from idle to approxi-

mately 18,500 1bf. Satisfactory control response was demonstrated.

9.4 SUMMARY

Testing of the UDF™ provided valuable data and demonstrated the viability

of the unducted fan concept and its control system.

Further, test results verified that the control system concepts of using
EPR as the thrust parameter and utilizing EPR to schedule propulsor speed are
sound. The modulation of pitch to maintain scheduled propulsor speed has been

demonstrated statically and for Mach numbers up to 0.1.
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10.0 NACELLE STRUCTURES

No problems occurred for any of the nacelle structures components during

ground testing conducted at Peebles, Ohio.

The fan blade airfoil loss provided valuable data pertaining to the
nacelle structural and dynamic integrity. No structural damage occurred, and
the isolators absorbed the unbalance as expected. Based on data taken during
the airfoil loss, the isolator/mount structure provided a minimum margin of

safety of 0.47 and an average margin of safety of 2.54 for all components.

Strain measurements taken on the strut during ground testing revealed
extremely low stress levels. The maximum stress level recorded, 1.4 kpsi peak
to peak, corresponds to a margin of safety of 80.4 based on shear strengths of
the strut material. The minimum margin of safety was found in the composite
mid-fairing. Based on the interlaminar shear strength, this margin was 2.7,
which is an acceptable figure. Based on the strain measurements, the acoustic

fatigue of the strut and fairings was deemed to be of little concern.

10.1 FAN BLADE AIRFOIL LOSS

The fan blade airfoil loss incurred on February 9, 1986 caused a 262,000
gm-inch (577 1b-inch) unbalance load. This failure occurred at a fan speed of
1371 rpm and a thrust level of 24,000 pounds. Engine, isolator, mount beam,

and strut accelerometers were located as shown in Figure 10-1.

At blade-out, the rear-mount horizontal vibration level reached 200 mils
double amplitude, while its normal level is 10 mils. The front mount along
the horizontal axis reached 95 mils, while its normal level is 15 mils. The
engine was then chopped to idle (680 rpm) in 1.23 seconds, where it remained
for 9.0 seconds before being shut down. Vibration levels of the vertical axes
of the front and rear mounts reached 200 mils DA (double amplitude) from their
normal levels of 2 mils each. As attested in Table 10-1, the maximum vibra-

tion levels occurred in the rigid body modes during coast down.

Mount loads were estimated based on relative motion across the isolators

and on the isolator dynamic spring rates (from the Barry Qualification Test

231



"UOTITUTFI(Q 1933WOIITIIIY 100-780 2UT3UF ,4an " 1-01 2andrg

aulbug
pJemIO ’
-— aseg i0je|os|

Inns Uy N \

pJemio4 Buiyoo vy

H H
aulbug
<H _ A/ 4 ﬁ

A A
aseg 10je|0S|
pueH ybiy pueH ys
A f&\<
IL v H
L
nis A
H
v
JUNO Jeay

plemio
=1L/

inng
plem.io

pJsemio4 Buiyoo yv

)\
asegq Joje|os| _IL _
H

nnst e

A

AluQ g piing

H
v

JUNON\ 1UOoJ 4

232



Report). Table 10-2 shows that these loads were well below the design loads.
The minimum margin of safety turned out to be 0.47, which was for the rear
mount along the axial axis at 460 rpm; the load it carried (40.9 kips) was the
maximum load for the system. The average margin of safety for the isolators

was 2.54.

Table 10-1. Vibration Response.

Displacement, mils DA
Sensor 1370 rpm Idle (680 rpm) Coast Down (rpm)

Front Mount Vertical 80 200 560 (460)
Front Mount Horizontal 95 50 385 (280)
Right Rear Vertical 170 200 450 (200)
Right Rear Horizontal 200 105 165 (200)
Right Rear Axial 95 330 980 (460)
Left Rear Vertical® --- --- ---
Left Rear Horizontal 120 130 430 (200)
Left Rear Axial® --- --- ---

* Sensor Inoperable Before Event

The overall response of the isolators indicated that they functioned as
designed, significantly reducing the motion at the pylon/mount interface and
softening with increased loading. The resonant speeds of the system decreased
for the airfoil loss event. Further, the isolators reduced mount loads on the

engine and pylon. These loads were well within design limits.

Physically, the isolators performed as designed during the airfoil loss.
No wear or deformation of the isolator structure was incurred (or in any other
structure). The Met-L-Flex wire mesh showed some minor deformation in the aft
isolators. The mesh in the front isolator was undamaged. All isolators were
sent to the manufacturer, Barry Controls, for inspection and testing. Despite

the fact that all the load-deflection data for the isolators indicated little
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change and were still within limits, the wire mesh in the aft isolators was

replaced. The front isolators were used '"as is."

Predictions that maximum loads would occur in subidle modes were veri-
fied. However, modes were not matched for the front mount (Tables 10-3 and
10-4). Also, as predicted, the highest load occurs on the aft mount in the
axial direction. Both magnitude and speed were in good agreement with predic-

tion; however, the front mount loads measured were higher than predicted.

10.2 STRAIN EVALUATION OF THE STRUT

Extensive strain tests were performed on various strut components during
ground testing. Corresponding stress levels were calculated and recorded. As
illustrated in Table 10-5, the greatest stress level recorded was in the upper
middle portion of the mount beam at a high pressure compressor speed of 7800
rpm. This‘stress level, 1.4 kpsi peak-to-peak, is well within the acceptable
levels and corresponds to a margin of safety of 80.4 (compared with the ulti-
mate shear strength of the material of which it 1is made - AMS 5528 stainless
steel). The minimum margin of safety occurs in the mid-fairing in the axial
direction at an intermediate pressure compressor. The recorded stress level
is 0.96 kpsi, peak-to-peak. This corresponds to a margin of safety of 2.7

with respect to the interlaminar shear strength.

Appendix B shows the range of data tested in terms of calculated stress
versus frequencies and speeds; figures contained therein (Figures B-1 through
and B-40) illustrate the positioning of the strain gages used. Note that some

are arranged in rosettes; while others are uniaxial.

10.3 ACOUSTIC FATIGUE

A preliminary acoustic fatigue analysis of the strut fairing calculated a
response frequency of 174 Hz (the fundamental blade passing frequency range
for the engine operating range, 600 to 1400 rpm, is 80 to 187 Hz); however,
this figure is questionable due to the numerous assumptions and uncertainties
involved in the calculation. The operating conditions assumed were those of
cruise. Further, the panel was assumed flat; whereas, a slight panel curva-
ture or irregularity would increase the response frequency; finally, the damp-
ing ratio was estimated rather than known.
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Table 10-3.

UDF™ Engine Comparison of Mount Loads
for Airfoil-Out Event.

Maximum Load

Modified Nastran Model

Test Results®

Location Load, 1b rpm Load, 1b rpm
FMV 8,800 228 24,000 460
FMH 7,500 528 13,300 280

RRMR 10,500 228 16,400 260
RRMA 44,000 444 40,900 460
LRMR 12,000 228 --- ---
LRMA 31,000 420 --- -—-
* Using Barry Mount Data and Relative Deflection,
Unbalance = 262,000 gm-inch
Table 10-4. UDF™ Engine Airfoil-Out Event Comparison

of Deflections (Absolute).

Maximum Displacement, mils DA

Modified Nastran Model Measured Test Results

Location Deflection, mils rpm Deflection, mils rpm

FMV 440 228 560 460

FMH 1120 540 385 280

RRMR 600 450 350 200

RRMA 1100 420 988 460

LRMR 750 228 --- ---

LRMA 1100 420 --- ---
Note: Unbalance = 262,000 gm-inch




Table 10-5. Stress Data - Strut.

s —srrrrrr————prr=rs=r=
! EAUBE w2 IN23 N8
j:FMRlNG, VERT 2 (0.37) 3 (0.19) 1 10.13) :
;FMRIIS. DIA6 3 (0,038) 3 10,091) 1 10.54) ;
.:FMRING. AXIAL 2 (0.98) 2 (0.20) ‘ 2 10,19} ;
;FW 150 3 10.72) 100,70 - 1 10,91} ;
;RR OF SPAR, VERT 0 0 . 4 (0.059)!2
:.RR OF SPAR, DIAG6 0 0 ‘ 4 (0.015)0;
.:RR OF SPAR, HORIZ 0 0 ' 4 (0)e :
':SIDE OF SPAR, VERT 0 0 ' 4 (0,291¢ ;
.!SIDE OF SPAR, HORL 0 ] ‘ 4 (0.22)¢ ;
;SIDE OF SPAR, DIAG 0 0 ' 4 (0,12)¢ |:
'lLT AFT 150 CLEVIS 2 (0.33) 2 (0.3)¢ . 4 10.39) ;
I:HT BN, TOP AFT,VERT 3 10.12) 3 10.10) ' 3 (0.43) ;
‘:HT BN, TOP AFT,DIA6 0 0 | 4 (0.12) ;
l:HT BM,TOP AFT,HORL 3 10.20) 3 10.18) . 3 10.20) I:
':HT BN, BTH AFT,HORZ 3 10.22) 2 (0.1 | 3 10.20) ;
;HT BA,T0P MID,HORL 3 10.01) 2 1.4 | 2 10.20) .E
;HT BN, TOP MID, VERT 3 (0.40) 3 (0.42) 2 10.21) ;
I:NT BM, BTN FuD,VERT 3 (0.18) 3 (0.0D) 20r 4 (0)%
.:AFT AT BN SUPT FTB,HOR 2 11.08) 2 (0.21) | 2 10.10) ;
‘:RT AFT 150 CLEVIS 2 10.08) 3 0.90 | 3 (0.92) :.
':RT RR HT, TANS 0 0 | 4 (0.66)¢ Il
;RR OF SPAR,LNR AFT,VER 3 10.38) 3 (0.41) | 3 (0.38) l:
;SME, HORI 3 (0.18) 3 €0.13) | 2 10.17) é
‘:RR OF SPAR,UPR AFT,VER 0 0 | 4 (01e :
:.SME, DIA6 0 0 4 (0,30)¢ ':
:.SME, HORIZ ----;-_-- 0 4 (0.1;;:;

(s - = = o .

CODES:

0:
1:
2
3
4
L H

FORMAT 1S:

NO DATA AVAILABLE
START/ACCELERATE
START/ACCELERATE TO 700
ACCELERATE TO 24,400 LBS.
ACCELERATE TO 24K F6

OMLY OME DATA POINT AVAILABLE

CODE & (MAKIMUN STRESS
IN KPSI PP)
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For instance, if the curvature of the panel was as slight as 99 inches,
this frequency would then become 383 Hz. What is known is that strain gage
data discussed in Section 10.2 and displayed in Appendix B, show that stresses
are relatively low. Thus, there appears to be no resonant vibration within

the operating range of the engine and that acoustic fatigue is not a problem.



11.0 RESULTS

The 100+ hour ground test program of the UDF™ engine demonstrated

following:

Also

25,000 1bf installed corrected thrust

High fuel efficiency: 0.232 1b/hr/1bf installed corrected sfc
(specific fuel consumption)

15,000+ physical total shaft horsepower

Full propulsor speed (1393+ rpm)

Advanced UDF™ aerodynamics that incorporates custom-tailored
composite fan blades over an inner titanium spar that serves as

the attachment mechanism to the engine for the fan blades

Individually replaceable propulsor fan blades with the engine
installed on the aircraft or test stand

DEC (digital electronic control) provides overall engine con-
trol by monitoring gas generator power and speed and propulsor
speeds and pitch angles; the engine utilizes the existing gas
generator control and a separate propulsor control to minimize
development costs without sacrificing control flexibility; this
control system drives a hydraulic/mechanical actuation system
that permits setting the fan blade pitch angle of the two fan
blade rotors either together or differentially

Flawless operation of the F404 gas generator
Counterrotation of structures, turbines, and fan blades
Reverse thrust capability

Capability to withstand a fan blade airfoil loss with no struc-
tural or secondary damage

Failure of Stage 1 turbine blades and the subsequent damage to
following turbine blade rows; turbine structures withstood the
failures with little or no damage.

demonstrated were the following capabilities:

Running at full power statically

Data was repeatable statically

the
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Prediction of low speed, low pressure, counterrotating turbine
performance with accuracy comparable to that of the high speed,
conventional, low pressure turbines

Comparing data recorded early and late in the LCF testing, per-
formance deterioration was confined to a dirty IPC; there was
no evidence of mechanical deterioration

F404 gas generator provided repeatable and predictable perform-
ance and was better than predicted at lower powers (below 70%
takeoff power)

UDF™ blade performance sensitivity to rotational speed was much
greater than predicted

At power coefficient = 1.32, thrust coefficient was 4% better
than predicted (approximately 60% takeoff power)

At power coefficient = 1.95, thrust coefficient was 4% worse
than predicted (approximately 100% takeoff power)

Power turbine efficiency was approximately as predicted, being
within +1.5 points over the major portion of the operating
range; the flow function was within +0.5% of prediction at high
powers (above 80% takeoff thrust)

Overall performance was better than predicted up to 92% takeoff
power (23,000 1bf corrected installed thrust), and was poorer
than predicted beyond 92% takeoff power (23,000 1bf corrected
installed thrust) due to UDF™ speed sensitivity as noted above

At 60% takeoff thrust (15,000 1bf), sfc was approximately 5.50%
better than predicted

At 92% takeoff thrust (23,000 1bf), sfc was approximately as
predicted

At 100% takeoff thrust (25,000 1bf), sfc was nearly 4.00% worse
than predicted.



12.0 CONCLUSIONS

As a result of the 100+ hour UDF™ test program, it can be concluded that
all of the major objectives of this engine can be and have been met. Some of

these objectives are as follows:

. The demonstrated feasibility of an unducted, ungeared, counter-
rotating ultra-high-bypass turbofan

. Capability to produce at least 25,000 1bf and at least 15,000
shaft horsepower with an engine of this configuration

. Exceptional fuel efficiency as compared to other turbofan or
turbojet engines

. The capability to produce thrust with a new fan blade design
of composite materials over a titanium spar

. The capability to control the engine and actuate the fan blades
with a digital electronic control

. Capability to produce reverse thrust with the fan blades with-
out the use of a thrust reverser

i UDF™ propulsor capable of producing thrust as predicted

. Current computer model cycle deck techniques can adequately
model a counterrotating turbofan

. Propulsor deterioration (large seals, turbine, etc.) was not
encountered over the duration of testing, which exceeded 100
hours

. Operation of the engine, and its performance, is stable at

takeoff power statically.

As expected in an engine program utilizing such new technologies and con-
cepts as the UDF™, numerous problems have been discovered. However, it is
believed that none of these problems will present a major stumbling block to
future flight test of this engine or to the development of this concept into
an important new entry into the arena of subsonic commercial and military
transport aircraft. Every problem that has occurred during ground testing has
been addressed and adequately solved. Fine tuning may be necessary, and more
problems may be discovered of course, as the testing of this engine continues.

No significant fundamental aerodynamic or control problems were uncovered, and
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only two mechanical problems created significant setbacks to the test program.

Both of these problems were solved by rather simple, but successful means:

1. Fan Blade Airfoil Loss - Although static component tests veri-
fied the integrity of the airfoil bonding to the titanium spar,
actual engine testing brought into effect additional factors
leading to the loss of one airfoil. At that time, only the
adhesive qualities of the composite to titanium bonding agent
held the airfoil to the spar. By adding positive retention
features to the design (by adding fasteners), airfoil retention
proved to be of no problem for the duration of testing and is
not expected to present a problem in the future.

2. Turbine Blade Failure - Stage 1 turbine blade dynamic response
was excessive due to insufficient damping, which eventually led
to their failure. Damping, in the form of friction, was intro-
duced to all blade rows by placing simple damper pins between
each blade; this satisfactorily reduced the dynamic response.
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ALF
Beta Angle
BFM
BTAN91
BTAN92
BTWT
cv

DA

DEC
dia.
DMS
DOD
DTAMB
EB

EDM
EPR
F404 Fan
F404-GE-400
FHV
FMH
FMV
FNI1QA
FPI
Fsep

h

HCF

Hz

ID

1F

IGv
IPC

1T

LCF

13.0 SYMBOLS/ABBREVIATIONS

Aft, Looking Forward

Fan Blade Pitch Angle, degrees
Backflow Margin, %

Front Rotor Pitch, degrees

Rear Rotor Pitch, degrees
Boeing Transonic Wind Tunnel
Convex

Double Amplitude

Digital Electronic Control
Diameter

Data Management System

Domestic Object Damage

AT from Standard Day/ISA Conditions
Electron Beam

Electrical Discharge Machining
Engine Pressure Ratio

Bypass Pressure Ratio

Low Bypass Turbofan Gas Generator
Fuel Heating Valve

Front Mount, Horizontal

Front Mount, Vertical

Installed Thrust, 1b
Fluorescent Particle Inspection

Flow Separation Parameter

Coefficient of Heat Transfer (Btu/hr ft2?, ° F)

High Cycle Fatigue

Hertz, cycles/second

Inner Diameter

First-Flexural Frequency, cycles/second
Inlet Guide Vanes

Intermediate Pressure Compressor
First-Torsional Frequency, cycles/second

Low Cycle Fatigue
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LE
LPT

PTO

RDGS
RRMA
RRMR
S/D
sfc
SFCIIR
SG

S/N
T46
T46Q2

TAmb

Leading Edge

Low Pressure Turbine

Left Rear Mount, Axial

Left Rear Mount, Radial

Left Rear Mount, Vertical

Linear Variable Differential Transducer
Maximum

Minimum

Mach Number

Magnetic Particle Inspection

Outlet Guide-Vanes

0-Nodal

F404 Fan Bypass Pressure Ratio

Gas Generator Pressure Ratio

Engine Pressure Ratio

Power Lever Angle, degrees

Ambient Pressure, psi

Stall Pressure Ratio

Static Pressure, psi

Gas Generator Compressor Discharge Pressure, psi
Total Pressure, psi ... (also Power Turbine)
Power Turbine Exhaust Pressure, psi
Peebles Test Operation

Compressor Inlet Pressure, psi

Readings

Right Rear Mount, Axial

Right Rear Mount, Radial

Shutdown

Specific Fuel Consumption, lb/hr/lb
Installed Specific Fuel Consumption, 1lb/lb
Strain Gage

Serial Number

Propulsor Exhaust Gas Temperature, ° F
Gas Generator Temperature Ratio

Ambient Temperature, ° F



TAAPO1 Stage 1 Fan Telemetry Ring Cavity Thermocouple, © F

TAAPO2 Stage 2 Fan Telemetry Ring Cavity Thermocouple, ° F
TAFCO1 Stage 1 Fan Telemetry Ring Cavity Thermocouple, ¢ F
TE Trailing Edge

TT Total Temperature, ° F

2R No. 2 Roller

UDF™ GE36 Unducted Fan Engine

Wog HPC Inlet Flow, lb/second

W48R Power Turbine Flow Function, Corrected

Xh Horizontal Displacement, inch

XV Vertical Displacement, inch

XN48 Stage 1 Propulsor Fan Speed, rpm

XN49 Stage 2 Propulsor Fan Speed, rpm

ZN Z-Nodal
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XN2
XN2R
PCN2R
XN25
XN25R
PCN25R
XN48
XN49
UT91R2
UT92R2
BTAN91
BTAN92
W13
W15
WF36
WF36R2
FNI1QA
SFC184

TAMB
T10
PAMB
P10M
HUMSER
RELHUM
WINVAV
WINAAV
XMO
P46Q2
CT46
T46X

DATA LEGEND

IPC Physical Speed (rpm)

IPC Corrected Speed (rpm)

Percent IPC Corrected Speed (%)

HPC Physical Speed (rpm)

HPC Corrected Speed (rpm)

Percent HPC Corrected Speed (%)

Stage 1 Physical Speed (rpm)

Stage 2 Physical Speed (rpm)

Corrected Stage 1 Tip Speed (feet/second)
Corrected Stage 2 Tip Speed (feet/second)
Stage 1 Pitch Angle (degree)

Stage 2 Pitch Angle (degree)

Bypass Duct Inlet Flow (1b/second)

Bypass Duct Exit Flow (1b/second)

Fuel Flow (lb/hr)

Corrected Fuel Flow (lb/hr)

Corrected Installed Net Thrust (1lb)

Corrected Installed Net Specific Fuel Consumption,

FHV = 18,400 (lbfuel/lbthrust hr)

Ambient Temperature (° R)
Inlet Total Temperature (° R)
Ambient Pressure (psia)

Inlet Total Pressure (psia)
Specific Humidity (grains/lb dry air)
Relative Humidity (%)

Average Wind Velocity (knots)
Average Wind Angle (degree)
Mach Number

Engine Pressure Ratio
Calculated T46 (° R)

Measured T46 (° R)

FRECEDING PAGE BLANYX NOT riLMED

/’/ /
mat 275 mwisnnonasy s
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APPENDIX B

STRAIN DATA FOR THE STRUT

Figures B-1 and B-2 illustrate the locations of all the gages read except
KD FAR1, KD FAR2, and KD FAR3. These three make up the vertical, diagonal,
and axial axes, respectively, of a gage rosette located centrally on the inner

surface of the mid-fairing.

The following graphs (Figures B-3 through B-40) contain maximum stress
locations calculated from strains read on gages located as shown in Figures
B-1 and B-2. These are shown versus engine frequencies and speeds as read
from test diagrams. Each graph (with the exceptions of those combined because
only one situation for each was recorded) displays the maximum stress Versus
speed or frequency for one gage only. Different situations are labeled for
each point. Note that almost all are labeled with either an XN2, an XN25, or

an XN48. These correspond to engine speeds as follows:

L4 XN2 refers to the intermediate pressure COMPressor
L4 XN25 refers to the high pressure compressor

. XN48 refers to the Stage 1 propulsor.

PRECEDING PAGE BLANK NOT FILMED
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