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USE OF THE QUASILINEARIZATION ALGORITHM
FOR THE SIMULATION OF LSS SLEWING

By

Feiyue L1 and P. M. Bainum
Howard University
Washington, DC 20059

ABSTRACT

The use of the Maximum Principle for the large angle slewing of LSS usually results in
the so-called two-point boundary-value problem, in which many requirements (e.g.,
minimum time, small amplitude, and limited control power, etc.) must be satisfied
simultaneously. The successful solution of this problem depends largely on the use of
an efllcient numerical algorithm. There are many candidate algorithms available for
this problem (e.g., quasilinearization, gradient, etc.). Here we discuss only the
quaslilinearization method which has been used for several cases of large angle slewing
of LSS. The basic idea of this algorithm is to make a series of successive
approximations of the solution from a particular solvable case (linear or nonlinear) to
a more general practical case.

For the rigid spacecraft slewing problem with no constraints on the controls, the
solution procedure can be found in the literature. This procedure needs to be modified if
a minimum time for the slewing problem is desired with control limits given. Recently,
an indirect method for finding the minimum time was developed to meet all these

requirements.

For the general mixed (including both rigid and flexible parts) problem, an additional
constraint of small vibrational amplitude on the flexible parts is imposed. To solve
this problem several steps in which the complexity increases gradually are needed, t.c.,
from a linearized version to a final nonlinear problem, from a less constrained case for
the control to a more constrained one, from a nonminimum-time level to a near-
minimum-time slewing in which a trade-off needs to be made between minimum time
and small flexural amplitude requirements. Some examples of these algorithms are
presented for planar slewing maneuvers of the SCOLE configuration.
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Abstract

The use of the Maximum Principle for the large angle
slewing of LSS usually results in the so-called two-point
boundary-value problem, in which many requirements (e.g.,
minimum time, small amplitude, and limited control power, etc)
must be satisfied simultaneously. The successful solution of
this problem depends largely on the use of an efficient
numerical algorithm. There are many candidate algorithms
available for this problem (e.g., quasilinearization, gradient,
etc.). Here we discuss only the quasilinearization method which
has been used for several cases of large angle slewing of LSS.
The basic idea of this algorithm is to make a series of
successive approximations of the solution from a particular
solvable case (linear or nonlinear) to a more general practical
case.

For the rigid spacecraft slewing problem with no
constraints on the controls, the solution procedure can be
found in the literature. This procedure needs to be modified if
a minimum time for the slewing problem is desired with control
limits given. Recently, an indirect method for finding the
minimum time is developed to meet all these requirements.

For the general mixed (including both rigid and flexible
parts) problem, an additional constraint of small vibrational
amplitude on the flexible parts is imposed. To solve this
problem several steps in which the complexity increases
gradually are needed, i.e., from a linearized version to a
final nonlinear problem, from a less constrained case for the
control to a more constrained one, from a non-minimum-time
level to a near-minimum-time slewing in which a trade-off needs
to be made between minimum time and small flexural amplitude
requirements. Some examples of these algorithms are presented
for planar slewing maneuvers of the SCOLE configuration.
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INTRODUCTION

MAXIMUM PRINCIPLE IS APPLIED TO
THE ATTITUDE MANEUVER AND VIBRATION CONTROL
OF LARGE SPACE STRUCTURES

(A) PERFORMANCE INDICES
(B) BOUNDARY CONDITIONS

(C) CONTROL REQUIREMENTS

THIS LEADS TO THE TWO-POINT BOUNDARY-VALUE PROBLEM
(TPBVP)

ONE OF THE METHODS OF SOLVING TPBVP IS THE
QUASILINEARIZATION ALGORITHM

669 .




MAXIMUM PRINCIPLE

STATE EQUATIONS
x = f(x) + B(x)u, x(0)=xq, x(t¢)=x¢

PERPORMANCE INDICES

te
Jy=(172) | (xTax +uTRu)dt
0
te
Jo= [ (1)dt= ¢ lujl€ vy, =1 ... 0

0

SSARY CONDITION

Hy=(172)x"ax + uTRu) + AT(1(x) + Bu)
A =- (dH/9x), A (0) unknown
(3H/2u)=0, Ru=-BTA

Hy= 1 ¢« AT(1(x) + Bu)
A =-(aHy/dx),  A(0) unknown
U;= - Ujp sign(BTA ), i=1_.n

2=g(z), zelx, AN =1z, 2,17
z4(0), z4(tg) known;

z,5(0), zo(tg) unknown.

z,(0) to be determined.
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QUASILINEARIZATION ALGORITHM

(A) LINEAR DIFFERENTIAL EQUATION:

Nonhomogeneous: z=Az+B, z=lz,, z,I, (11)

z,(0), z,(tf) known, z,(0) to be determined

Homogeneous: Z=Az (12)
(a) n solns. of (12) + 1 particular soln. of (11)

(b) n +1 particular solns. of (11)

(B) NONLINEAR CASE:

Linearized equation of (10):
(k1) ~(agraz) 2(k* 1) & p( 2(K) ) (13)
where
z(k) is the kth approximate solution

of the nonlinear equation (10),

z=[zy, 2,17,
z|(k")(0), z,(k"')(tf), known

zz(k’ 1 (0) to be determined
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SeacechAFT Conmo. Las Exeemiment
(SCOLE)

N [
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INEARIZED EQUATION OF MO

where

PLANAR SLEWING OF FLEXIBLE SCOLE

m'| 6] [o

6 is the angle of rotation,

Z'Q L

b P ¢

n nx1 1S the amplitude vector of the flexible modes,

n is the number of mode used,

I is the moment of inertia about the axis of rotation

m, M are the Inertia parameter vector, matrix.
K is the stiffness matrix,

¢ (2) is the mode shape function vector,

@ |=¢(4) . 4 is the coordinate along z axis,

L is the length of the beam,

Ug is the control torque on the Shuttle,

are the control actuators on the beam and the

reflector.




STATE EQUATIONS

S = As + Bu
S' (3 ()
§ = » s'= N 52 =
82 q

BOUNDARY CONDITIONS FOR s

- ef-q -0 1
[1] (1]
s(0)=|-- |, s(tg)=|--
0 0

Q| [0} 2(n+ 1)x1

where n is the number of mode shapes used.

PERFORMANCE INDEX

t
f

J=(172) | (xTox +uTRu)dt , x=S
0

z=Cz, zls, Al - [z,.z2lT

A is the costate vector,
2y(0), z;(ts) known;
25(0) to be determined.
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FIGURE I.1l:

Mast actujators

2
DRAWING OF THE SCOLE CONFIGURATION
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NUMERICAL RESULTS
(A) SLEWING ABOUT X-AXIS (ROLL)

0»? 7, ( first mode sA‘f)e) /s used.
Gf = 20 (deg) . Tf = 40(s)

£ . . T
st ¥ (sas + RO aE 506,75 0]

A

CASE / Y 1s  used,
[/
&) =[ aoo,]
CASE 2: u, 13 usee
00.00/
C\)2= [ e P} J
CASE 3 : U, , U, we used
o
@5 = [ O.D/o.o/
’ 0.0/
CASE 3: U, U3 are used
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CONCLUDING REMARKS

1) Solution has been obtained for nonlinear rigid spacecraft

attitude maneuver (including the rigidized SCOLE).

2) Use of the Maximum Principle can make the states

satisfy the boundary conditions very well.
3) Due the fact that the costates must be used in the method,

the dimension of equations of the system is doubled, and

higher computational ability is needed in this method.

4) Further work on more complicated models (nonlinear

differential equation) is needed.

S5) Need to consider different cost functions and perform

parametric studies.
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