
THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

NASA/MSFC GRANT NCC8-016

Annual Report

KNOWLEDGE-BASED MACHINE VISION SYSTEMS FOR SPACE STATION AUTOMATION

August i, 1988 - July 31, 1989

Dr. Heggere S. Ranganath

Principal Investigator

Laure J. Chipman

Department of Computer Science

The University of Alabama in Huntsville

Huntsville, AL 35899

VIS!L;N _Y_eT_:_ _.]" _HACF: SThT_L_,_$ AUT_J_ATI')_

Annual ?cport, l Auo. lO_q- TI Ju|.]_,o._

(At _Onmn Univ.) a_: i_ CSCL 22?

N')O- i0174

August 23, 1989

I Introduction

a. Vision Systems

Vision systems which can perceive environment through sensors and

respond with appropriate action or decision have numerous industrial,

military and space applications. To place vision systems in context,

we must understand the image-to-decision paradigm, the basis of

vision systems. In this paradigm, the raw, sensed image, is

progressively transformed into an explicit symbolic description of

the scene's content with respect to some semantic model which is used

in the decision making process. Various stages of image-to-decision

paradigm are shown in Figure I. In stage i, the system computes local

and global image properties such as gradient, texture, histogram,

etc. which are useful for segmenting the image in stage 2.

Segmentation is the process of partitioning the given image into

meaningful regions, surfaces and objects. In stage 3, significant

attributes (features) of each region or object are extracted. These

features can be used to identify individual scene components.

Relational descriptors of stage 4 specify relation of each scene

component with others which is very useful, in stage 5, for making

decisions.

b. NASA applications for vision systems

Vision systems can be used to automate routine space station

operations, thereby relieving crewmen of repetitive tasks. This

increases the Crew time available for operations which require human

low.level analysis

senior • determination of local

Image properties
STAGE i

FIGURE I.

intermediate-level

analysis

II III

• division of image Into
regions, surfaces, objects

• determination of generic
scene attributes

STAGE 2

STAGE 3

high-level analysis

I
,_ [relational consistency

v I and decision

Signal.To-Symbols Paradigm for Computer Vlson

STAGE

STAGE 5

_L

skills. Vision systems can be used to observe experiments, record data

and alert astronauts only when necessary. Within the space modules and

nodes vision intelligent robots can be used for operations such as

locate, fetch, store and repair.

Vision systems are also useful for orbital docking, servicing,

assembly and other advanced space station operations. NASA inhouse

research shows that providing computer vision capability for the

orbital maneuvering vehicle (OMV) offers several advantages:

provides independence from docking aids and communication links;

eliminates communication time delay for vehicle control and reduces

operator training cost for remote control [i].

NASA is also investigating the possibility of using vision system

for weather prediction by tracking cloud motion. In short, reliable

vision systems are needed to automate space station and other advanced

NASA operations.

SCOPE OF WORK

The purpose of this study was to evaluate and provide a realistic

assesment of computer vision techniques which have the potential for

use on space station and related applications. Specifically, the task

included the following:

i. Identification of performance requirements.

2. Evaluation of recent signal processing chips.

3. Selection of candidate systems for further investigation.

The three major approaches selected for study are:

a) Conventional algorithmic approach.

b) Expert vision system approach.

c) Neural network approach.

4. The winning methods in 3 will be simulated to study and verify

performance capabilities.

Knowledge Based Approach for vision

Because of the limited competence of conventional vision systems,

knowledge based approach is selected for detailed investigation.

Although a basic understanding of vision is emerging, computer vision

systems are not as competent in "seeing" as humans. One reason for the

limited competence of computer vision systems is the failure to

integrate knowledge about the viewing environment into the vision

process and the reliance on "weak" problem-solving methods. "Weak"

methods, general purpose and domain-independent techniques, were

advocated in the earlier days of artificial intelligence; however,

these methods did not produce systems which performed as competently

as humans. The success of these methods greatly depends on the way the

problem-solving process uses domain-specific knowledge to constrain

the solution. One of the major results to emerge during the last two

decades of AI research has been the recognition of the limited

effectiveness of these weak methods to solve hard problems. On the

other hand, domain-dependent problem-solving techniques use as much

domain-specific knowledge, including procedures, as is necessary to

attain the desired level of competence but only within a highly

restricted class of problems. The emphasis on domain-dependent

techniques evolved into the expert system approach to problem-

solving.

Neural Network approach appears to have great potential. However,

this technology is in early stages of development and not yet ready for

large scale implementation. A hybrid system which integrates good

features of Knowledge Based and Neural Network approaches appears

feasible in near future.

The first year research effort concentrated on the development of

Knowledge Based Vision System (Expert Vision System). A general

description of Expert Vision System is presented in chapter II. A

description of the system that is being simulated on perceptics is

given in chapter III. Conclusions and recommendations are made in

chapter IV.

ZI. EXPBRT VISION 8¥STBM

Expert systems illustrate the adage ,,knowledge is power". These

systems have attained a high level of competence in solving a

class of problems simply by possessing and using a great deal of

domain dependent knowledge, represented explicitly and applied

flexibly. Standard expert system architectures, called "shells",

have evolved which contain everything needed to solve the

problem except expert's knowledge. The expert system builder

fills up the shell with the rules and facts used by the expert

and the shell provides the inference engine and user interface,

explanation subsystem, etc. In short, it is the knowledge which

imparts the shell the problem solving power of human experts.

The advent of expert shell has greatly simplified the

construction of expert systems.

Expert systems exist in diverse fields, from agriculture to

space exploration. One reason for their wide applicability is

that expert system technology is able to solve many different

problems uniformly. The expert knowledge is represented

uniformly and a generic inference engine mechanically applies

the expert k_owledge to the given problem instance, in doing so,

derives the problem solution. As long as the knowledge can be

represented within the knowledge representation language, the

specific domain which generates the knowledge is irrelevant. It

seems reasonable to expect that the expert system technology

will expand the problem solving capability of computers to new

areas and domains.

Computer vision provides a challenging domain for the

application of expert system technology. Very little work has

been done towards the development of goal directed, knowledge-

driven systems[2],[7]. In order to achieve its goal the vision

system must use knowledge about the scene or environment and

objects in them, as well as knowledge about the imaging

system. Most existing vision systems use no or very little

scene knowledge. Also, whatever little knowledge is used is

implicitly embedded in image analysis procedures. If scene

knowledge and the rules for how it is used is represented

explicitly, vision systems become flexible. In this pap_,

such vision systems are called Expert Vision Systems. An expert

vision system uses knowledge to achieve high performance level

at every stage of image-to-decision paradigm. In order to get a

feel for expert system, consider the following debatable

assertions made by Rosenfield[10].

Some debatable assertions: Rosenfield, in his position paper,

has made some debatable assertions to stimulate discussion on

issues of expert vision systems. An analysis of these assertions

highlights the issues and problems associated with expert vision

systems and suggests possible ways for designing them. In this

section, author states each assertion and then gives his

position. The major issues of expert vision systems discussed

are : hardware architecture, representation and the use of

spatial knowledge.

ASSERTION 1: Expert vision Systems Are Inefficient.

There is no evidence which suggests that expert vision systems

cost more and require more computation. However, we believe they

can be more reliable and flexible. Eventually, system

performance becomes more important than cost. Low cost systems

that do not work are not at all useful.

ASSERTION 2: Any Standard "Expert System" Package Can Be Used

To Represent Scene Knowledge; There Is Nothing Special About

Spatial Knowledge.

Standard expert systems function in highly restricted arenas

in which the domain is symbolic and expertise is well-defined.

But much Of the vision is pictorial. We must extract useful

information and make it explicit. It is difficult to describe

shape constraints on natural objects and the spatial relations

that hold among them. None of the existing techniques can

represent scene knowledge adequately. In short, a scheme to

represent scene or spatial knowledge must be developed.

ASSERTION 3: Scene knowledge must be expressed in terms of

image properties rather than scene properties, to make it easier

to use in analysing the image.

Deriving image properties from scene parts is relatively easy

(perspective projection), but, the inverse process is not easy.

We feel that scene knowledge must be represented at different

levels of detail. Properties such as connectivity and inclusion

which are invariant to the position of the view point must be

explored. These properties are common to image as well as scene

parts. Topological features seem to be very useful in describing

scenes.

ASSERTION 4: If we are dealing with only one type of scene,

the scene knowledge required is not great.

Spatial knowledge associated with vision systems which operate

within limited man made environments may be relatively small.

However, the type and amount of knowledge required may change

from application to application. Therefore, knowledge

representation shell must be general enough to accomodate wide

range of decision applications.

ASSERTION 5: Scene knowledge cannot be used in processing a

raw image; the image must be segmented and converted into

symbolic form.

This statement is not true. Scene knowledge is useful at each

stage of image analysis. For example, knowledge of scene content

may be used to select the most suitable segmentation algorithm.

ASSERTION 6: The system will first segment the image, then

label the parts, then check the labels for consistency.

We must use scene knowledge to improve the labeling process.

When in doubt, we must assign multiple labels to an image part

and then seek additional evidence by examining relational

consistency as defined by the scene model. Thus, we can defer

our decision until certainty measure becomes very high.

ASSERTION 7: The system will apply a standard set of processes

in a standard order to any input image.

The system must determine processes to be applied and the

order of application based on data and the goal. The image need

not be processed from left-to-right and top-to-bottom. For

example, why should the system search for tanks on a lake? Scene

knowledge must be used to reduce computation time.

ASSERTION 8: At the segmentation stage, when the system deals

with the image, it has to do a lot of computation, and

parrellelism is desirable. Afterwards, the system deals only

with symbolic data, which requires much less computation.

This is true. The system architecture must provide

parrellelism for low-level image operations. We suggest modular

design and blackboard architecture.

ASSERTION 9: It may be difficult to formulate constraints that

define a given class of objects or scenes, but we can build a

system that learns these constraints from examples, just as

people do.

At this point in time vision systems that can learn from

examples are not feasible.

7/U_SZBZLZTY

During the last decade researchers in the area of image

processing concentrated on low and intermediate aspects of

vision[lO]. Last decade's research has produced: methods and

algorithms for image enhancement, restoration, segmentation and

registration; methods for describing image components and

relations that exist among them; techniques for handling time

varying images; architectures which can perform several hundred

million operations per second(systoliC arrays, cellular logic

arrays, cyto computer, MPP, ZMOB, etc.); preliminary designs of

realtime systems(image correlators, target recognition systems,

etc.)

The cost of vision systems is going down. Many semiconductor

manufacturers are now producing fast digital signal processing

chips at moderate cost. Architectures of these chips are

optimized for image processing. For example, Zoran Corporation

has announced a chip which can con olve or correlate 256 * 256

8-bit image with a 12 * 12 operator in less than 10

milliseconds. The same chip can compute 1024 point complex

discrete Fourier transform in less than 2.4 milliseconds.

Several chips can be cascaded to handle larger images and

operators. Ten years ago real time image correlation was not

this simple. More powerful chips are expected to become

available soon. As a result of these chips, design time and cost

of vision systems will go down considerably.

In short, the majority of the low and intermediate level

vision problems have been solved. High speed image processing

chips are now available at moderate cost. As a result of these

achievements development of expert vision systems has become

feasible.

M_%JOR PROBLEM_

Three major technical problems in the area of expert vision

systems are given below:

ARCHITECTURE: It is clear from image-to-decision paradigm that

vision systems transform pictorial information in an image into

explicit symbolic description of scene components. Early stages

of processing is computation intensive and parallelism is

essential. If modular design is used processors can be added

or deleted as needed. Each processor must be capable of

broadcasting information to the rest of the system. A blackboard

architecture seems appropriate for vision systems.

KNOWLEDGE REPRESENTATION: Vision systems require different types

of knowledge at different stages of image-to-decision paradigm.

Much of vision knowledge is pictorial or iconic. It is not easy

to represent constraints on natural objects and the spatial

relations that hold among them. Spatial knowledge must be

represented at different levels of detail. Properties such as

connectivity, inclusion,etc, which are invariant to the position

of the view point must be explored. In short, spatial knowledge

representation theory is needed. Dr. Ranganath already has a

preliminary design for knowledge representation shell.

SPATIAL REASONING: Spatial reasoning is the process of

inferring scene information from images which is not explicitly

available in the image. Spatial matching is quite different from

symbolic matching. Vision systems may infer based on procedures

rather than rules. Procedures handle spatial matching better

than rules. A theory of sp_ial reasoning is also needed[10].

III. Research and Implementation for Object Recognition

Much of the work on this contract has consisted of research into

machine vision problems and development of a demonstration

system. This system implements some of the capabilities that

would be necessary in a machine vision system for the robot arm

of the laboratory module in the space station.

Much of the early work on the demonstration system consisted of

experimentation with methods of achieving some of the lower-level

tasks needed. The knowledge gained, about what methods are

appropriate and when, can now be incorporated into the

demonstration system.

The general research focused for the most part on the problem of

scene matching. A graph theoretic approach was found to have

merit for a wide range of machine vision problems. The

principles of this approach are presented in this report.

This report describes our research and the progress on design and

implementation of the demonstration system. Section a is an

overview of the problem of object recognition, and the expert

systems approach to the problem. Section b provides details of a

general strategy for object recognition. Included are sections

on the coarse discrimination among different scenes, scene

14

knowledge representation, and scene matching. Section c

describes the design and components of the demonstration machine

vision system under development.

a. The Object Recognition Problem

A necessary component of a machine vision system is the ability

to make sense of an image, by interpreting its parts as being

various objects. A first step towards this goal is provided by

the numerous image segmentation algorithms which have been tried

over the years. An image can be segmented into parts based on

similarities within the parts, of color, intensity, texture,

etc., and based on differences among the parts.

Because of noise, differences in camera position, and limitations

of the algorithms used, a machine vision system needs to make use

of as much knowledge of the expected scene as possible in order

to make sense of an image. An expert systems approach to object

recognition makes use of a knowledge base of known objects to

search for objects "intelligently." An example of a search which

does not make use of "intelligence" is a template matching

approach where a scene is convolved with a template of the object

to be located, and the area of highest response is judged to be

the location of the object.

An expert systems approach makes use of knowledge of objects and

their relationships in order to do a directed search. Knowledge

of objects consists of measurements of their distinguishing

15

attributes. Care must be taken in representing geometrical

information so that it is useful even if differences in scaling,

translation, or rotation occur.

Relationships among objects in an image, such as included-in,

left-of, or above, can also be described in the knowledge base.

This information can help to direct the search for objects in the

image. For example, if a control panel contains 3 rows of

switches, and we are seeking a switch located on the second row,

these relationships will direct the search.

A goal of this approach is to provide a generalized system which

can be used in different environments for different object

recognition tasks. The system should be expandable so that

descriptions of new objects can be added to the knowledge base by

users, and recognition of new objects will not require added

programming.

The idea of using a knowledge base is to perform a focused,

directed search of an image, to find the most prominent features

first and use their locations to find other, less prominent

features. Although our system does not incorporate a

probabilistic approach, rather than saying absolutely that a

certain feature has been found, a system can have a measure of

merit for a feature: Feature A has been found with probability,

or confidence level, 80%. That way, if further searching does

16

not prove consistent with the existence of Feature A, the

confidence level can be reduced and the feature identified as

something other than Feature A.

In order to perform this focused search, the knowledge base

should provide information on different environments in which

scenes are encountered. For example, if the environment is the

interior of the space station lab module, then the objects to be

located generally are arranged in rows and columns on a solid

background. If the environment is space, the features would be

areas of bright intensity against a dark background. Within a

single application, there may be several environments possible,

such as the outsides of panels in the space station, and the

insides of specific cabinets. Different environments would

indicate different algorithms applied to the problem.

Given a command to search for a particular object, there should

be a sequence of operations to be performed stored in the

knowledge base. This sequence may have alternatives, based on

what features can be found, and with what confidence level.

b. A Strategy for object Recognition

This section describes components in a general strategy for

object recognition. Some of the steps could be accomplished in a

variety of ways. This points out a need for an expert systems

17

approach, so that the appropriate algorithm can be selected for

each step, based on characteristics of the scenes being

processed.

The approach described here is based on the premise that we will

deal with a number of separate scenes, which can be described in

terms of the objects they contain, and the relationships among

the objects. We allow for changes in scaling, illumination, and

translation, and for small changes in rotation. The first step

in the object recognition process is to determine which scene is

being observed. This can be called "coarse discrimination."

Once the scene has been classified, the problem becomes one of

finding the objects in the observed scene and matching them to

those in the stored scene. First we must determine how the

knowledge of the scene layout and of the objects is to be

represented. Then, the procedure for matching can be determined.

Knowledge representation and scene matching are also discussed in

this section.

(i) Coarse Discriminatlon

Distinguishing one scene from another may be called coarse

discrimination. This may be done by the use of global

parameters of the image, such as overall brightness or color.

Another approach is to distinguish scenes based on features

found in the scenes. In terms of distinguishing among broad

classes of scenes, these features would need to be rather

high-level objects, such as identifying cultivated fields in

an aerial photo, or trees in a forest scene on the ground. If

the scenes to be distinguished are several specific scenes,

for example, different scenes within a room or views of

control panels, the features used to discriminate scenes may

be lower-level. For example, a view of a control panel may

contain three long, distinct vertical lines. To distinguish

this panel, we look for these lines, without trying to

determine the objects in which the lines appear. Higher-level

features may be identified in terms of a pattern of

lower-level features. For example, a grid of lights can be

used as a discriminating feature without identifying it as a

grid of lights as such. It may present itself as a series of

lines of very high and uniform texture. We may look for these

lines, then, in order to find the grid of lights.

There needn't be a separate distinguishing feature for each

scene, although for small numbers of scenes this may be the

case. For large numbers of scenes, we may have S scenes and n

features, n < S. A scene can be identified based on the

absence or presence of the n features. This can be

represented as a binary string of length n for each scene. In

19

the best case, n features could distinguish among 2n scenes,

if each possible binary string representing the presence or

absence of features is used.

(ii) Scene Representation

One task in designing an expert vision system is to determine

the means of representing knowledge of scenes and objects.

Research has been done on image databases, for storage and

retrieval of images. The idea is to allow some symbolic query

to facilitate retrieval of a desired image. This same idea

can be used in matching incoming images with the stored

descriptions of scenes. In the original image database

approach, on one end is a user with a symbolic request, on the

other end is a file of images, and in the middle is an

indexing scheme which makes use of the symbolic request and

matches it with some symbolic representation of stored images.

In our application, on one end is an incoming image, on the

other end is a set of stored symbolic representations of

images, and in the middle is a mechanism for converting our

input image to a symbolic representation and matching it with

a representation on file. In both cases, there is a matching

of scene representations. In the expert vision system case,

the problem is less structured, since we can have multiple

views of the same objects or scenes, and we need descriptions

which work for the different views.

20

The addition of new information to the knowledge base in our

system is not an automatic process. Ideally, objects should

be added to the knowledge base by showing the system pictures

of the object at different orientations and having the system

extract knowledge about the object and store it. It should

check for similar objects and ask the user to provide

differentiating features if the description is

indistinguishable from another object. This part of an expert

vision system is beyond the scope of our work.

In the space station application, the scenes are generally

simple structured 2-D panels, with parts that remain nearly

stationary. We have considered two approaches for

representation of relationships among objects: 2-D strings

and graphs.

2-D Strings

The first approach we examined for scene knowledge

representation was the use of 2-D strings. The idea of a

2-D string was developed by S.K. Chang et. al.[ll]. The

strings are created by the use of enclosing rectangles

within objects which are used as "points of view." From

each point of view, there will be other objects which lie

directly above, left of, right of, or below the object.

These relationships are described in two strings, one for

up-down relationships and the other for left-right

relationships. This technique can be simplified by using

21

centroids of objects rather than enclosing rectangles.

Instead of requiring an object to be _ above another

in order to be considered "above," we may say that object A

is above object B if the X pixel coordinate of A's centroid

is significantly less than the X coordinate of B's centroid.

This eliminates the need for splitting objects into several

parts, as is done in method outlined in the paper.

The 2-D strings can be supplemented by another file that

lists, for each object, the objects that enclose it. This

can be used to direct the search for the object, by looking

for the outermost enclosing object first, and working inward

toward the desired object. Within each level of enclosure,

the 2-D strings can be used to direct the search. We

determine which edge (top, bottom, left, right) the desired

object is closest to, in terms of how many other objects lie

between it and the edge, and then work our way inward from

the edge, finding successive objects in the 2-D string.

Other information is stored by the use of attributes for

each object type listed in a string. For the space station,

and other highly structured scene environments, objects can

be classified as members of different object types. For

example, SWITCH is an object type, and each individual

switch is an instance of this type. BUTTON, RECTANGLE, and

PANEL are other examples of object types for which many

instances exist. For each object type, we need to define a

22

set of attributes which need not completely describe the

object, but must help to distinguish it from other object

types. Possibilities include relative area, circularity,

rectangularity, and texture. The attributes used should be

invariant to scale and rotation. It is hoped that the same

set of attributes could be used to describe every object

type that occurs on the space station panels. In some

cases, we may want to use a "don't care" value, rather than

an actual measure, such as in the case of the area of a

rectangle. Rectangles on the space station panels usually

enclose sequences of switches, but their size can vary

widely.

The above-below and left-right strings are not useful in

many different environments. Strings representing other

relationships would be useful in other environments and

could make use of the same principles of substring matching

and string distance measurements. Such things as texture or

intensity of objects within a given region could be ordered

and expressed as a string. RI<R2<R3,R4 would indicate that

the intensity of R1 is less than that of R2 which is less

than that of R3 and R4 which are about the same intensity.

Actually, areas, rectangularity, and circularity measures

could be handled similarly rather than using an attribute

file. The drawback is that we would no longer be taking

advantage of the fact that objects of the same type have

similar measurements. There would need to be more data

stored, since the relationship between each object at each

inclusion level would be described.

Advantages of 2-D String Approach

2-D strings provide a simple, intuitive method of scene

description. It is consistent, in that large, composite

objects and small, primitive objects are all described in

the same way. They each have a set of attribute

measurements and two strings, one for above-below

relations of constituent objects, and one for left-right

relations. Primitive objects which contain no other

objects will have null strings.

One problem in matching scenes is that not all objects

may be completely visible in the image. With the use of

2-D strings, a representation of an incoming image can be

matched against stored representations of scenes, and the

"string distance" between the input and the stored scenes

can be calculated. This is similar to the "string

distance" measure used in spelling checkers, in which the

strings are actually words. The scene which has the

smallest distance from the input will be assumed to match

our image.

24

Another problem is that the camera may be positioned in

such a way that only a part of a composite object, such

as a panel or subpanel, may be visible. Again, 2-D

strings provide an advantage in dealing with this

problem. The system may try to match an input image's

string with substrings of strings which are on file to

describe scenes. Alternatively, the strings stored in

the knowledge base can be used as templates, for which we

try to find appropriate objects in the incoming image to

fill in the blanks.

In comparison with strict geometrical approaches which

can be used for highly structured scenes such as ours,

the 2-D string approach is more flexible in terms of

scaling and rotation. A camera needn't be in exactly the

same position each time a scene is viewed in order to be

able to match the scene.

Disadvantages

The 2-D string approach is tailored for use in problems

in which the scene's objects are stationary. It would

not be useful in describing less structured scenes such

as a desktop, on which objects can change positions, or

in describing objects which can change shape, such as

animals or jointed objects.

25

The string method is tolerant of small amounts of

rotation, but if there is a large amount of rotation, the

incoming scene must be normalized so that the strings

describing the input and a stored string can be matched.

Graphical _pproach

After working with the test images for our system, we came

to realize that locating enclosing objects such as

rectangles around rows of switches, can be a difficult task.

Since these rectangles are not actually objects of interest,

we decided to break each scene into a small number of

subscenes, and represent all the relationships among the

lowest-level objects (e.g. switches) within each subscene.

A general approach is to represent these subscenes as

collections of graphs. Several relations among objects can

be used to derive several graphs to describe a scene.

Examples are left-of, above, included-by, adjacent-to.

Matching of scenes consists of finding isomorphisms between

the set of stored graphs and the set of observed graphs.

There are methods for determining distances between two

graphs as well as between two strings.

Graphs are superior to 2-D strings in representing complex

relationships among objects, such as adjacency. Graph

matching techniques may be more complicated, but algorithms

26

for graph matching have been widely studied.

This graph representation approach is also applicable to 3-D

object recognition [12], and to character recognition [18].

The primitives in the scene that map to nodes in graphs can

be lines, curves, or faces of polyhedral objects, rather

than regions as in our application.

(ill) Scene Matching

The scene matching process is difficult because image

segmentation seldom if ever produces results that match

exactly with a stored representation of a scene. If a

graphical matching approach is used, the first step is to

represent an observed scene as a set of graphs. The presence

of extra objects in the observed scene that are not present in

the stored scene will make subgraph matching (in which the

observed scene is a subgraph of the stored scene) ineffective.

A sensible approach to the problem is to use scene and object

knowledge to eliminate extra objects from the observed graphs

before attempting to match.

This elimination can be carried out in several ways. One way

is to first determine by some means probable object centers,

and then match the objects present in the input to these

object centers. For different types of images, different

methods for finding probable centers of objects could be used.

If an object's color is known, the image could be searched to

27

find a patch of that color as a starting point. Likewise, any

other attribute of an object, such as intensity or texture

could be used to find a patch from which to start.

Any object that is not positioned near a probable object

center is not an object described in the knowledge base, and

can be ignored. Another approach is to eliminate objects

based on measurements of some of their attributes. In a given

scene, if the scene consists of man-made objects, we can

classify each object as belonging to a particular class of

objects (e.g. switches, buttons, etc.). For each scene, we

know what object classes will appear. Each object class is

distinguished by a set of ranges for attribute values. Any

object that does not measure as being within the ranges of any

object class in that scene can be ignored in the matching

process.

Another problem is that in observed scenes there will be

missing or occluded objects. Matching through subgraph

isomorphism is suitable for handling this partial matching of

scenes. Once a matching of scenes is obtained for the objects

that are observable, the location of missing objects can be

postulated from the information in the stored graphs on

relative object locations.

Due to noise, shadows, and limitations in the object finding

algorithms, objects in observed scenes may have widely varying

attribute measures. The attributes used to distinguish among

object types must be selected wisely. The introduction of

fault-tolerance into this object classification has been

studied [15][16][18]. Some researchers use a probabilistic

approach, in which the stored nodes of graphs are considered

as random variables, belonging to different classes with given

probabilities. This approach does not seem appropriate for

applications such as ours, in which a particular object is a

member of a certain class of objects with probability one, and

how that object might app@ar in an observed scene may be hard

to determine. We can deal with this problem by allowing an

observed object to be classified initially as a possible

member of several object classes. Based on attribute

measures, some object classes may be immediately ruled out,

but others may be possibilities to consider. This is taken

into account in the graph matching procedure, limiting the

possible mappings of observed to stored nodes.

Another problem is that changes in scaling, rotation, or

illumination may alter the relations among observed objects.

For example, different illumination angles onto shiny objects

can cause relative intensities of the objects to be different.

This problem must be considered when choosing which relations

to use in describing the scenes. If a standard subgraph

matching algorithm is used, missing arcs cause no problems,

but extra arcs in an observed graph will make it impossible to

find a subgraph isomorphism. Some researchers use a

29

probabilistic approach in which an arc is considered a random

variable taking on different values with different

probabilities [18]. This does help to deal with the problem,

but also makes the scene matching process more complicated.

Many isomorphisms will be found, which must be evaluated to

determine which is the most likely match.

With relations such as left-of and above, significant rotation

would be an insurmountable problem if the scene could not be

rotation normalized. In some types of scenes, normalization

may be achieved by locating a prominent feature and

determining its orientation.

In scenes in which only slight rotation is expected, we can

deal with this problem by using overlapping ranges. In other

words, an object may be left-of another, above it, or both, if

it falls within the overlapping range. In graphical terms,

this translates into having an extra arc in the stored graph

representation of the scene. Then, in the observed scene, an

object in the overlap region is determined to be either

left-of or above the other object. There will be one missing

arc in the observed graph, which is no problem in subgraph

isomorphism algorithms.

3O

c. The Demonstration System

A large part of the work on this contract has been devoted to the

development of a demonstration machine vision system,

implementing the basic task of object recognition.

We have used a Perceptics 9200e Image Processor, on a host

VAXstation, to develop the system. The Perceptics is a general

purpose image processing system, which implements many

lower-level routines that are necessary in any machine vision

system. Other routines have been developed in C on the host

machine, which can access the image memory of the Perceptics.

In order to use realistic test images, we have used photographs

of actual space shuttle simulator panels. One of these is shown

in Figure 2.

The following sections describe the major steps in the processing

of the system. These steps are shown in Figure 3. Also included

is a description of the library of routines used, some developed

on the VAXstation, others provided with the Perceptics.

(i) Scene Identification

The first step in the demonstration system is to identify

which scene is present in the input image. To identify the

scene, the system searches for primitive distinguishing

features. The presence of absence of the features in the

input image is matched with lists of features present for each

31

I

Figure 2: One of the scenes used as a realistic test image for the system.

User

Request

$
l GetImage

"r

Knowledge"_

[3ase j

Identtfy _ l;'ind _L°c_te _Ieasure _ MatchScene R.O.I. Probable Object Objects
Objects Attributes

J ,
Object
Location

Figure 3: The steps in the object recognition process.

ORIGINAL PAGE

BLACK AND WHITE p_

32

scene in the knowledge base. Presently, a scene must have

features that match exactly with one of the scenes in the

knowledge base. It would be possible to allow for closest

matches by computing the string distance between a binary

string denoting presence and absence of features in the input

image with the strings in the knowledge base, and assume the

scene to be the one with the closest match.

The features used for scene identification are sets of lines

in the gradient image with certain characteristics. These

lines correspond to edges in the original image.

Figure 4 depicts the scene identification process for the

panel of Figure 2. In this example, lines of high texture, as

measured by high average difference between neighboring

pixels, are found through the columns of an array of lights,

and also through a row of switches. The diagonal line and the

set of lines in the upper left corner of the image represent

the best matches for two additional features that are present

on other panels but not on this panel.

We use primitive f£atures to keep processing for scene

identification to a minimum, but any features could be used,

as long as the process for finding them could be listed in the

knowledge base.

33

Figure 4: The scene identification process performed on the gradient image of the panel in

Figure _..

Figure 5:

Figure 2.

D q4,a r

Determination of likely starting points for objects, performed on a sub-panel of

ORIGINAL PAGE

34

(ll) Locations of Objects in Observed Scene

Given the location of features in an input image, it is

possible to compute coordinates for a region of interest of

the scene that contains the desired object.

Once an image of the region of interest of the scene is

obtained, we find starting points of probable objects. In

scenes consisting of well-separated blobs on a background, a

method that has proven useful is to search for a specified

number of horizontal and vertical lines of high texture, with

some minimum spacing between them. Figure 5 shows the result

of this process on one of our regions of interest. Most of

the intersection points pass through objects on the image.

There are some false lines, since there is some printing on

the control panels that results in high-texture lines.

The minimum spacing chosen is large enough to prevent the

appearance of more than one line in the same direction through

the same objects. Only a minimum is given so that the object

seed points may be found for images that are translated or

scaled differently.

The intersection points of lines found define possible object

locations. We then perform a blob-finding routine that was

provided with the Perceptics software. The routine finds

"objects" in the scene that fall within a specified area

range. Naturally, the set of "objects" found includes many

35

that are not defined in the knowledge base. Shadows, marks

and printing on the control panels, and other regions that do

not correspond to objects will be found by the blob-finding

routine. In order to eliminate these non-objects from

consideration, the possible object locations found in the

previous step are used. Blobs whose centroids are

significantly distant from all intersection points will be

assumed not to correspond to objects described in the

knowledge base.

(iii) Representation of Input Scene as a Grid of Objects

The control panels contain instances of a finite number of

object types, e.g. switches, buttons, knobs, etc. For each

object type, the knowledge base contains an acceptable range

of values for each attribute. The attributes used may differ

depending on the object type. For example, circularity may be

a good attribute to use for knobs, but texture may be better

for switches enclosed in brackets. Since the possible objects

in the input image may be processed in parallel, it may be

worthwhile to measure all attributes, even though some results

may not be used. Once the attribute measures have been

determined, the knowledge base is consulted to determine for

each possible object, the set of object types consistent with

its measurements. For example, Object 1 may "look like" a

36

switch or a button.

any object types.

processing.

Some possible objects will not match to

These will be eliminated from further

For simplicity, the demonstration system represents scenes as

grids, i.e. rows and columns of objects. This provides a

simple way of denoting above-below and left-right relations

among objects. Several grids could be used to describe one

scene. For each object, the knowledge base indicates to which

grid the object belongs.

A more general approach is to assign each object in the

observed scene a number, and create a set of graphs describing

their relationships. A vertex mapping matrix would then be

created, which shows possible mappings between the observed

objects and the stored ones. These mappings are determined

based on degree of the vertices and the types of objects to

which they may correspond.

(iv) Matching of Observed Objects with Stored Objects

The next step is to match the stored grid of objects with the

observed grid. We eliminate rows or columns of the observed

grid that do not contain actual objects. These usually occur

because of vertical or horizontal lines of high texture that

go through areas of printing on the control panels. Then, the

observed grid and the stored grid should match. We calculate

the difference between observed and stored, i.e. how many

37

missing or extra objects occur. If the difference is

acceptable, we assume a match with the stored grid. The

position of the desired object on the Perceptics screen is

shown.

In a more general approach, the system would use a subgraph

isomorphism algorithm to find a matching of observed to stored

objects.

(V) Library of Routines

In any image processing system, there must be a library of

routines to do basic functions such as finding lines or shapes

in the image. In this section we describe some of the major

routines used in the system. Some are built into the

Perceptics and some were programmed on the VAX. Such routines

as finding the gradient image, thresholding, histogramming,

finding blobs and measuring some of their attributes, are

provided in the Perceptics software. A set of line finding

routines was programmed on the VAX.

Perceptics Blob Finder

The blob-finding routine built into the Perceptics provides

very useful results. It finds objects within a given size

range in the image, and computes a number of useful

statistics for each object. The blob finder can be run

interactively or called from within a C program. The

38

demonstration program calls the blob finder and stores its

results in a file on the VAX that is later used by the

program.

The attributes measured for the blobs include area,

perimeter, width, height, and circularity. Many additional

statistics are optional. Unfortunately, we have found that

the statistics that are based on the perimeter measure are

often unreliable. One problem arises if the boundary of an

object is not a solid line. If the boundary is broken, the

perimeter outlines the outside and inside of the boundary,

giving a number roughly double what is expected. Statistics

based on width and height are much less sensitive to these

sorts of problems.

These attributes are currently used to determine if a blob

is a valid object in the scene, or is not valid and should

be ignored.

Line Finders

One prominent feature in most images is the set of lines,

usually from an edge image. If we know that a scene should

have a certain set of lines, these can be searched for in

particular windows, spacings, and orientation ranges. A

window can eliminate looking in areas of the scene where a

line is not likely. Specifying a minimum spacing between

39

lines eliminates some duplication, such as finding two lines

which are really internal to one thick line. Orientation

ranges also help narrow down the extent of the search. If

an image is supposed to have a line in a certain window

oriented at about i0 degrees, the search can be restricted

to lines with orientations of within 5 to 15 degrees.

A line can be detected at a given orientation by finding the

line of pixels in that direction with the maximum intensity

sum. If we use this information alone, there may be a

problem. Consider the case where along one row in the

image, there are 50 white pixels which are scattered along

the line and do not appear to constitute a single bright

line. Another row in the image may contain 30 white pixels

which comprise a single solid line segment. If we decide on

the basis of intensity sum alone, the first row is

considered a better line. So, finding endpoints of a line

and characterizing the brightness of the line between the

endpoints can give a better measure of the strength of a

line. In order to specify endpoints, we could start by

assuming that the first and last white pixel along the line

are the endpoints, then see what percentage of that segment

are white pixels.

Another measure which is useful in finding lines is the sum

of absolute differences of successive pixels along a

prospective line. In a "good" line, this sum is small: the

4O

line is relatively uniform. In a "poor" line, the sum is

large: there may be many places along the "line" which

change abruptly from one intensity value to a very different

value. This could happen in the case of having several

scattered very bright points along a line, which are not

truly connected and do not define a line. A linear

combination of the measure of intensity difference between

the current line and the line of pixels above and below it,

and the measure of absolute difference of successive pixels

along the line, can be used to measure the goodness of a

line. The intensity difference between lines should be

high, and the difference along the line should be low.

The line finders developed for the demonstration system

incorporate the ideas discussed above. In addition to

vertical and horizontal line finders, there is an angle line

finder that searches for lines that fall within a given

range of angles. All line finders search within a specified

window of the image. The average intensity of a pixel along

every line in the window is computed, along with the average

difference among neighboring pixels. Then, this array of

lines can be searched for a specified number of "best" lines

(based on high intensity and low difference), brightest

lines, or most textured (highest difference) lines. All of

these criteria for lines are useful in some situations.

41

IV. Conclusions and Recommendations

The implementation of the demonstration system on the Perceptics

has provided useful experience in the use of the knowledge based

approach to vision systems. The demonstration system now has

some important capabilities, and can find many objects in the

sample scenes. More work is needed to enhance these capabilities

and to structure knowledge about object locations in a better

way.

Research into scene representation and matching has been

fruitful, and may lead to further development of innovative

graph-based approaches in the contract continuation. In

addition, research into neural networks has laid a groundwork for

future integration of this approach into the demonstration

system, and for evaluation of neural networks in vision problems

in general.

One conclusion that has become apparent in the course of our work

is that no one approach to machine vision will be applicable to

all problems. The need for expert vision systems, to choose

appropriate procedures for different situations, is evident.

In the continuation contract, the following tasks are to be

performed:

I) To complete and demonstrate the knowledge based system which

is being developed on the Perceptics image processing system.

42

2) TO evaluate the previously developed knowledge base and the

overall system performance for real time operation.

3) To provide preliminary design for hardware implementation,

and to evaluate the commercially available high speed signal

processing chips for utilization in this design.

4) To determine the feasibility of incorporating neural network

technology (back propagation technique and harmony model

approach) into design concept.

5) To investigate the possibility of combining expert vision

system with neural network technology to form a hybrid vision

system which inherits the merits of both technologies.

43

REFERENCES

i. Frank L. Vinz, Linda L. Brewster, and Dale Thomas, " Computer vision

for real-time orbital operation ", NASA technical report TM 86457,

Marshall Space Flight Center, Huntsville, AL, August 1984.

2. Ballard, D. H. and Brown, C. M.," Computer Vision", Prentice Hall,

Englewood Cliffs, New Jersey, 1982.

3. S. L. Tanimoto, "A comparison of some image processing methods",

IEEE conference on Pattern Recognition and Image Processing, Chicago,

IL., pp. 280-286, May 31-June 2, 1978.

4. Vanderbrug and Rosenfeld, "Two stage template matching", IEEE

Trans. on Computers, Vol. C-26, pp. 384-393, April 1977.

5. Dudani, Jenney and Bullock, "Correlation and alternatives for

scene matching", IEEE conference on Decision and Control, Clearwater,

FL., pp. 774-779, Dec. 1-3, 1976.

6. M. K. HU, "Visual pattern recognition by moments invariants", IRE

Trans., It-8, pp. 179-187, February 1962.

7. Cohen, P., and Feigenbaum, E.," The handbook of artificial

intelligence ", Volume III, William Kaufmann, Los Altos, CA., 1982.

8. Gonzalez and Wintz, "Digital imaqe processing", Addison-Wesley

publishing company, Inc., 1977.

9. Novak, "Correlation algorithm for radar map matching", IEEE

conference on Decision and Control, Clearwater, FL, pp. 780-790, Dec.

1-3, 1976.

10.Rosenfeld, "Expert vision systems: Some issues," Computer Vision,

Graphics, and Image Processing, pp. 99-117, 1986.

44

II. S.K. Chang et.al., "An intelligent image database system,"

IEEE Transactions on Software Engineering, May 1988, pp. 681-688.

12. J.R. Englebrecht, F.M. Wahl, ,,Polyhedral object recognition

using Hough-space features," Pattern Recognition, Vol. 21, No. 2,

1988, pp. 155-167.

13. R. Greene, "Scene knowledge representation for expert vision

systems," Ph.D. dissertation, University of Alabama in

Huntsville, 1988.

14. L.G. Shapiro, R.M. Haralick, "A metric for comparing

relational descriptions," IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. PAMI-7, No. i, 1985, pp. 90-94.

15. L.G. Shapiro, R.M. Haralick, "Structural descriptions and

inexact matching," IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. PAMI-3, No. 5, Sept. 1981, pp.

504-519.

16. W. Tsai and K. Fu, "Subgraph error-correcting isomorphisms

for syntactic pattern recognition," IEEE Transactions on Systems,

Man, and Cybernetics, Vol. SMC-13, No. i, January/February 1983,

pp. 48-62.

17. J.R. Ullmann, "An algorithm for subgraph isomorphism,"

Journal of the Association for Computing Machinery, Vol. 23, No.

i, January 1976, pp. 31-42.

18. A.K.C. Wong, M. You, "Entropy and distance measures of

random graphs," Proceedings of the Conference on Computer vision

and Pattern Recognition, IEEE, 1983, pp. 371-376.

45

