The MHOST Finite Element Program:
3-D Inelastic Analysis Methods for Hot Section Components

Volume III - Systems' Manual

Shohei Nakazawa
The Finite Element Factory
Sunnyvale, California

July 1989

Prepared for
Lewis Research Center
Under Contract NAS3 - 23697

NASA
National Aeronautics and
Space Administration
This document discusses the internal structure of the MHOST finite element program designed for three-dimensional inelastic analysis of gas turbine hot section components. This computer code is the first implementation of the mixed iterative solution strategy for improved efficiency and accuracy over the conventional finite element method.

This document covers the control structure of the program, the data storage scheme and the memory allocation procedure and the file handling facilities including the read/write sequences.
This document discusses the internal structure of the MHOST finite element program designed for three-dimensional inelastic analysis of gas turbine engine hot section components. The computer code is the first implementation of the mixed iterative solution strategy for improved efficiency and accuracy over the conventional finite element method. The formulation of the mixed iterative solution method is an original development under the HOST project (contract NAS3-23697) and detailed documentation is available in the MHOST Theoretical Manual and other publications. The computer program has been written, tested and maintained at MARC Analysis Research Corporation, Advanced Project Group as a subcontractor to the United Technology Pratt and Whitney Aircraft.

The complete computer program consists of about 450 subroutines and a total of 47,000 lines of Fortran 77 statements. The current version 4.2 is no longer compatible with the ANSI Fortran 66 standard.

This document covers:

(i) the control structure of the program;

(ii) the data storage scheme and the memory allocation procedure;

(iii) the file handling facilities including the read/write sequences.

A brief note on the control variables in the labelled common blocks is given in the control structure section. Pointers for the working arrays in the common block are described in the second section of this document. The files used internally and those produced to communicate with other softwares (such as the graphic post-processing systems) are discussed in detail in the last section.

The appendix includes the brief description of each subroutine in conjunction with the names of common block referenced therein.

The MHOST code has been developed on PRIME 9955 at MARC running under Primos operating system (Rev.19.4.2 of F77 compiler has been used) and recently ported over to Alliant FX/8 running under unix operating system. This version is portable to any other unix-based computers with minimum amount of the conversion work. Versions are available on IBM mainframes with VS-Fortran Compiler (tested at United Technology Pratt and Whitney Aircraft) and CRAY X-MP COS using CFT compiler (the installation at NASA Lewis Research Center).
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
<td>Program Architecture</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>Rules and Conventions</td>
<td>3</td>
</tr>
<tr>
<td>0.3</td>
<td>Subroutines and Common Blocks</td>
<td>5</td>
</tr>
<tr>
<td>0.4</td>
<td>System Dependency</td>
<td>10</td>
</tr>
<tr>
<td>1.0</td>
<td>CONTROL STRUCTURE</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>Overview</td>
<td>17</td>
</tr>
<tr>
<td>1.2</td>
<td>Execution Supervisor and Analysis Drivers</td>
<td>22</td>
</tr>
<tr>
<td>1.3</td>
<td>Control Variables</td>
<td>29</td>
</tr>
<tr>
<td>2.0</td>
<td>DATA STORAGE SCHEME</td>
<td>39</td>
</tr>
<tr>
<td>2.1</td>
<td>Overview</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Memory Allocation Subprogram</td>
<td>40</td>
</tr>
<tr>
<td>2.3</td>
<td>Counters and Pointers</td>
<td>96</td>
</tr>
<tr>
<td>3.0</td>
<td>THE FILE SYSTEM</td>
<td>104</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview</td>
<td>104</td>
</tr>
<tr>
<td>3.2</td>
<td>User Interface</td>
<td>105</td>
</tr>
<tr>
<td>3.3</td>
<td>Restart File</td>
<td>136</td>
</tr>
<tr>
<td>3.4</td>
<td>Post-Processing Data File</td>
<td>149</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>Subroutines</td>
<td>A-1</td>
</tr>
</tbody>
</table>
0.0 INTRODUCTION

The MHOST program has evolved from a small finite element code for testing new and innovative ideas into a versatile package usable as a research and development tool in solid and structural mechanics. Several code developers have worked on this program at various times over four years; more than 47,000 lines of extensively commented Fortran 77 code now make up the program. This document describes the internal architecture of the code. Particular emphasis is placed here on the facilities by which users can modify the code to incorporate new ideas such as different elements or constitutive equations.

The concept of three libraries plays a central role in the MHOST code. These libraries are:

The element library. Almost all the element specific operations are coded in this library with a common interface subroutine. Note that the MHOST code is written based on the mixed iterative solution concept and the element library is accessed significantly more often than in the case for conventional displacement method codes.

The material library. All the constitutive equations built into the MHOST program are accessed through an interface routine for the material library. The nodal evaluation of the constitutive equations in the mixed iterative solution process enables this operation to occur independently of the loop structure for the element formulation.

The solution algorithm library. The MHOST code uses a number of modern iterative solution algorithms and two types of solvers for a linearized system of algebraic equations. These options are accessed directly from the finite element driver routines; from a programming point of view, the routines in the solution algorithm library are not as clearly identifiable as other library routines.

0.1 Program Architecture

The MHOST program is designed and constructed to perform inelastic finite element computations in a reliable manner. A number of analysis driver routines are coded to perform individual clearly defined tasks. Inter-relations between analysis tasks are controlled by the execution supervisor subprogram and the utilities attached to it. All three libraries discussed briefly in the previous section are executed by each analysis driver routine. The program architecture of the MHOST program is illustrated in Figure 1.
Figure 1 Architecture of MHOST Program Version 4.2
The concept of multiple-drivers prevents users from combining unreasonable options, and avoids program troubles. Also this coding strategy allows code developers to add new analysis capabilities without affecting existing functions of the MHOST program.

The nonlinear finite element computations are arranged in a nested loop structure. The outer loops which control the algorithmic operations are coded in the analysis driver routines, while the inner loops involving incremental data addressing are coded in the element assembly submodules, a level below the analysis drivers.

A unique feature of MHOST is that all information is stored at nodes. The finite element nodal database resides in the lower address of working space in the blank common block. The storage allocation for this nodal database is virtually independent of analysis and solution algorithms and takes place before reading the finite element model data.

The working space required to perform the solution is allocated in the higher address portion of the same working space. The allocation of this working space is analysis dependent and takes place inside of the finite element driver routine.

0.2 Rules and Conventions

Coding rules are established to maintain the readability and maintainability of the MHOST program.

Subroutine names are selected as close as possible to a plain English word representing the operation performed by the subroutine. Because of limitations set by the old Fortran standard of six characters, some subroutine names can be cryptic.

A special rule has been implemented for subroutines in the element library:

- SnmmN Shape functions for elements consisting of mm-nodal points in nn-geometrical configuration.

- DnmmN Cartesian derivatives for elements consisting of mm-nodal points in nn-geometrical configuration.

<table>
<thead>
<tr>
<th>nn</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two dimensional</td>
</tr>
<tr>
<td>AX</td>
<td>Axi-symmetric</td>
</tr>
</tbody>
</table>
3D | Three dimensional
SH | Three dimensional shell

Some of the other rules are:

- The subroutine names with string IN are used for data read from the main input channel.
- The string INIT is used to indicate subprograms involving memory allocation, except for INITST which generates the initial stress terms in the stiffness equations.
- The string SUB appears in subroutine names for subroutines involving the subelement scheme and the local-global analysis.
- The subroutine names starting with U indicate user subroutines.

Variable names are chosen as close as possible to a plain English word representing the information contained in the variables. Because of limitations set by the old Fortran standard of six characters, some variable names can be often cryptic.

Note that the implicit data types of Fortran specification are assumed. Variable names starting with I, J, K, L, M and N are integers except for those specifically declared as logical variables.

Some of the variable name conventions are:

- The string MAX is used for the maximum number of entries in adjustable dimensioned arrays.
- The string NEL is used for the actual number of entries in adjustable dimensioned arrays containing element related information.

Statement Numbers

Four-digit statement numbers are used for better visibility of the Fortran program listing. Codes which are ported from other software do not necessarily follow the conventions defined below.

The format statements referred from the read statements are labelled by statement numbers from 1000 to 1999. The format statements referred from the write statements are labelled by statement numbers from 2000 to 2999.
Ends of DO loops are labelled by statement numbers from 5000 to 5999. Statements to which control is transferred by the conditional GO TO statements are labelled by statement numbers from 8000 to 8999.

Efforts have been made to avoid arithmetic IF and GO TO statements in the MHOST code. Instead the block IF structure is implemented wherever possible. Note that this approach has made the code incompatible with Fortran 66 compilers.

0.3 Subroutines and Common Blocks

All the subroutines included in the MHOST program Version 4.2 are listed below in alphabetical order:

ACCLIN ADAPIC ADAPTID ADAPTS
ADD ADDBAN ADDIAG ADDINC
ADDINV ADDFUL ADDSMU ANPLAS
ASMEVEC ASSEM1 ASSEM2 ASSEM3
ASSEM4 ASSEM5 ATTRIB ASSEM3
BANDER BANNER BASAXS BACSUB
BASP5N BASPST BASQOL BASEIN
BEAMIN BFGLSLH BFGRSH BAXSYM
BFILEAD BLCDS01 BMSTRS BFGRSW
BODYIN BOUND1 BOUND2 BFDSTM
BOUNDN BOUNDFR BOUND3 BOUND3
BPSTRES BREAD BOUNIN BOUND3
BSOLID BTHEAM BUCKLE BPSRN
BWRITE CENMAS CENT2D BSHL
CENTAX CENTEM CENTSH BULKIN
CHCHAR CHELM CLENUP CENT\3D
CNODEL CNMSAS CNSTM\N CH\RIN
COMPDF COMPIN COMPRD CLE\\R
CONJUG CONNIN CONIN COIN\R
COPY COPYCH COPYDS CONDSE
COPYSD CORDTZ COROUT COIN\N
CPXBR2 CPXDIV CPXEXC COPYKN
CPXFOR CPXMLU CPXREA CPXFAC
CRLFAW CRPSTN CUTHIL CPXRES
D2D09N D3D08N D3D27N D2D04N
DASHIN DAT1 DAT2 DAMPN
DAT5 DATBMS DATCN41 DAT3
DATIN1 DATIN2 DATIN3 DATER
DATOU1 DATOU4 DAX04N DATOH1
DEMO2N DECINT DBCOMP DAX09N
DECREA
<table>
<thead>
<tr>
<th>Term</th>
<th>Term</th>
<th>Term</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFGUP</td>
<td>DERIV</td>
<td>DIAM</td>
<td>DIRECT</td>
</tr>
<tr>
<td>DISPIN</td>
<td>DISTIN</td>
<td>DIVQ2</td>
<td>DIV2X2</td>
</tr>
<tr>
<td>DMATIN</td>
<td>DMPING</td>
<td>DOT</td>
<td>DSH04N</td>
</tr>
<tr>
<td>DSHELL</td>
<td>DSLOAD</td>
<td>DUPLIC</td>
<td>DXOUT</td>
</tr>
<tr>
<td>DYNAMC</td>
<td>DYNAT</td>
<td>DYNOP</td>
<td>EIGENV</td>
</tr>
<tr>
<td>ELVULV</td>
<td>EQVC</td>
<td>EQVS</td>
<td>EQVSTR</td>
</tr>
<tr>
<td>ERROR</td>
<td>ETRANS</td>
<td>EXTEIN</td>
<td>FESOLN</td>
</tr>
<tr>
<td>FILINT</td>
<td>FILL</td>
<td>FIRST1</td>
<td>FIXINT</td>
</tr>
<tr>
<td>PLOVIN</td>
<td>FORRES</td>
<td>FREDOM</td>
<td>FREFOR</td>
</tr>
<tr>
<td>FRNTFL</td>
<td>FRNTOP</td>
<td>FRONTB</td>
<td>FRONTF</td>
</tr>
<tr>
<td>FRONTR</td>
<td>FRONTS</td>
<td>GAINW</td>
<td>GAUSSP</td>
</tr>
<tr>
<td>GBM02N</td>
<td>GENCOR</td>
<td>GENMOD</td>
<td>GEOMAT</td>
</tr>
<tr>
<td>GETBSP</td>
<td>GO2GLO</td>
<td>GO2ROT</td>
<td>GRAV2D</td>
</tr>
<tr>
<td>GRAV3D</td>
<td>GRAVAX</td>
<td>GRAVBM</td>
<td>GRAVSH</td>
</tr>
<tr>
<td>GSH04N</td>
<td>HARMIN</td>
<td>HEAD</td>
<td>HOLECR</td>
</tr>
<tr>
<td>HOLEDF</td>
<td>HOLEIN</td>
<td>HOLEM</td>
<td>HOOKEM</td>
</tr>
<tr>
<td>HOOKW</td>
<td>HOST</td>
<td>ICLEAR</td>
<td>INCRIN</td>
</tr>
<tr>
<td>INCSEC</td>
<td>INIOP</td>
<td>INITDF</td>
<td>INTFR</td>
</tr>
<tr>
<td>INIT11</td>
<td>INIT12</td>
<td>INITIN</td>
<td>INTSE</td>
</tr>
<tr>
<td>INITST</td>
<td>INRDIR</td>
<td>INFRFC</td>
<td>INSIDE</td>
</tr>
<tr>
<td>INV3D</td>
<td>INTERP</td>
<td>INTINT</td>
<td>INTSQQ</td>
</tr>
<tr>
<td>INV3</td>
<td>INVERT</td>
<td>ITERIN</td>
<td>JACOBI</td>
</tr>
<tr>
<td>JT</td>
<td>KEY</td>
<td>L2NORM</td>
<td>LAXSYM</td>
</tr>
<tr>
<td>LAYINT</td>
<td>LEAST</td>
<td>LETCMD</td>
<td>LEVEL</td>
</tr>
<tr>
<td>LINES</td>
<td>LINES2</td>
<td>LINESR</td>
<td>LINESU</td>
</tr>
<tr>
<td>LMPMAS</td>
<td>LOCVEC</td>
<td>LPSTRN</td>
<td>LPSTRS</td>
</tr>
<tr>
<td>LSHELL</td>
<td>LSOLID</td>
<td>LTBEAM</td>
<td>MADD</td>
</tr>
<tr>
<td>MAIN</td>
<td>MASMAT</td>
<td>MASSIN</td>
<td>MATINV</td>
</tr>
<tr>
<td>MAITONE</td>
<td>MATPT</td>
<td>MATSUM</td>
<td>MAXCON</td>
</tr>
<tr>
<td>MAXIM</td>
<td>MASURE</td>
<td>MID</td>
<td>MIDDLE</td>
</tr>
<tr>
<td>MAXM</td>
<td>MASET</td>
<td>MUL</td>
<td>MULT</td>
</tr>
<tr>
<td>MFAKE</td>
<td>MODAL</td>
<td>MULT</td>
<td>MULT</td>
</tr>
<tr>
<td>NEWACC</td>
<td>NEWADD</td>
<td>NEWMRK</td>
<td>NEWRHS</td>
</tr>
<tr>
<td>NEWVEL</td>
<td>NOFRE</td>
<td>NOSTR</td>
<td>NOTION</td>
</tr>
<tr>
<td>NRMNRM</td>
<td>NUL</td>
<td>NULLINT</td>
<td>NULRNM</td>
</tr>
<tr>
<td>OPTEST</td>
<td>OPTIM</td>
<td>ORIENT</td>
<td>OUTPRO</td>
</tr>
<tr>
<td>PAGE</td>
<td>PAGE2</td>
<td>PAGE2S</td>
<td>PAGE3</td>
</tr>
<tr>
<td>PAGE3S</td>
<td>PERDIN</td>
<td>PERDOP</td>
<td>PJOOP</td>
</tr>
<tr>
<td>PLASTD</td>
<td>PLASTS</td>
<td>PNTNM</td>
<td>POL2D</td>
</tr>
<tr>
<td>POL3D</td>
<td>POLICE</td>
<td>POSTEN</td>
<td>POSTOU</td>
</tr>
<tr>
<td>POSTPR</td>
<td>PREFIN</td>
<td>PRELEM</td>
<td>PRESET</td>
</tr>
<tr>
<td>PRESIN</td>
<td>PRFRMT</td>
<td>PRINCV</td>
<td>PRININ</td>
</tr>
<tr>
<td>PRIN01</td>
<td>PRINO2</td>
<td>PRIN03</td>
<td>PRINOU</td>
</tr>
<tr>
<td>PRIN02</td>
<td>PRINTM</td>
<td>PRINTS</td>
<td>PRINSHL</td>
</tr>
<tr>
<td>PRIN03</td>
<td>PRINTM</td>
<td>PRTRRM</td>
<td>PRWARN</td>
</tr>
<tr>
<td>PRIN04</td>
<td>PRINTM</td>
<td>PRTRRM</td>
<td>PRWARN</td>
</tr>
<tr>
<td>PRNTEL</td>
<td>PRINNO</td>
<td>PRTUP</td>
<td>PUTTIE</td>
</tr>
<tr>
<td>PSDIN</td>
<td>PULSIN</td>
<td>PULDUP</td>
<td>PUTTIE</td>
</tr>
</tbody>
</table>
All the common blocks included in the MHOST program Version 4.2 are listed below in alphabetical order:

COMMON / ADDVAL / ISPRI, KSPRI, IDASH, KDASH, IMASS, KMASS
COMMON / ALGEM / ICREAD, IJPRNT, JILPRNT, ICONSL, JIPSTF, JISCRAF,
 JIPLOTB, JIRSTRT, JCREAD, JIPVARS, JIPSETS, JIFILEX,
COMMON / AUTOIN / CURPER,TOTPER,ARCLEN,ATOLER,BTOLER,CTOLER,
1 JADAP,NCREEP,SCALE
COMMON / BODYFR / POINTS(3,2)
COMMON / BSEECT / BISECT,KBSECT
COMMON / CONTROL / JEND,JITER,JTEMP,JPRINT,JP,JSUB,
1 JINC,JREST,JSAVE,JREDIN,JAUTO,JPOST,
2 JBACK,JOPTIM,JCREEP,JDIST,JCONST,JDYN,
3 NONISO,IHERM,ITRIG,IFYNM,JREPO,JTANGE,
4 JHERM,JFORCE,JUTEMP,JUCEE,F,JDISTS,JUHOC,
5 JDERIV,JUBOUN,IDSTOP,INTSTR,JPLAST,JBAND,
6 JFRONT,JDEFOR, JEMBED,JTEST,JDISP,JFBFGS,
7 IFSCMT,IFLINE,JPRINT,ICOMPS,IPCONJ,JEIGEN,
8 IFBODY,IGRAV,IPCENT,JDAMP,JDYN,JSTAT,
9 JFDXX,JISTIF,JCEMM,JFINIT,JLARGE,JFOLLOW,
+ JWSLP,JRES,JCUMUL,JCUM3
COMMON / COMPAI / NSSTAT,NXSOLV,unik,NUMODL,NECKNL,NXSUPR,
1 NREQUN,NUQUL,MUXM2,NUXM3,NUXDM4
COMMON / COUNT / LININC,LINTOT,NOECHO
COMMON / CTITLE / TITLE(20),IDAT(5),IDATE2,ICIFX,
1 IFCRAY
COMMON / DAMP / DAMPF(3)
COMMON / EIGEN / IEGNC,IGEMS,ICMEG,IMOENO,IDYNMD,JSTRT2,
1 IPIAR,IPTR,A,IPTVED,IMDAM,ICMEG
COMMON / MODSUP / IMPOF,IMDIS,IMVEO,IMFOR,IMDIS,IMVL1
COMMON / ELEMEN / IC,IEL,IDE,LAW,IPAT,IASSEM,
1 JRULE,JCAST,JELO09,JELO10,JELO11,JELO12
COMMON / EUTYP / NEIRED,NEINFR,NEIIND,NEISTR,NEICR,NEIFR,
1 NEINMT,NELEV,NEILAV,NDI,NSHEAR,NELCMP
COMMON / ERRORS / IERR
COMMON / FREE / IA(80),IBEGIN(16),ILENGT(16),
1 NSTRIN,IS,ICOL,NEW
LOGICAL NEW
COMMON / HARMON / OMEG,IIHARM,KHARM,OMEG,BASE,KBASE,
1 ICNFLR,ICNFOR,ICNFRES,ICHFLN,ICFLRN,ICHIC
2 ICCMT
COMMON / ICINCON / FACTOR,INCFGL(21)
COMMON / MACHINE / IDP
COMMON / MAXIMA / MAXCRD,MAXNFR,MAXNOD,MAXSTR,MAXCHR,MAXPRS,
1 MAXLAY,MAXINT,MAXWKR,MAXNL,NSIMAX,MAXCM,
2 MAXSP,MAXCM,MAXTEM,MAXLM,MAXLW,MAXDTM,
3 MAXFIN,MAXBEF,MAXVAR,MAXSET,MAXENL,MAXORD,
4 MAX025,MAX026,MAX027,MAX028,MAX029,MAX030
COMMON / LOUBIN / JLOUB,JINTER,JEXTRA,JWEIGH,JSUBT,JIEST,
1 JCITER,JHRDLS,JGRAM,LOUB03,LOUB04,LOUB05
COMMON / PAGCNT / NPAGE1,NPAGE2
COMMON / PARAM / NTYPE,NELEM,NNODE,NBC,NTIE,NMAX,
1 NTRAN,NTRAC,NPD,NEANG,NEXT,NSUB,
2 NPRINT,NPOST,NSBC,NDUP,NSIZE,NSECT,
3 NSHIFT,NSBFGS,NGMRS,NSPRI,NMASS,NDASH,
4 NDYNMD,NSINC,NSUPER,NHARM,NBASE,NINC,
5 NTER,NPSPTS,NPDMTS,NPULS,NPDMTS,NHARD,
6 NSMCH,NODEM,NMONIT,NPAR40,NPAR41,NPAR42,
7 NPAR43,NPAR44,NPAR45,NPAR46,NPAR47,NPAR48
COMMON / PERPAR / IPTYPE(32),NPVARS,NPSETS,JPERT,
1 NPVCOR,NPP008,NPP009,NPP010,NPP011,NPP012
COMMON / PERPTR / IDMEAN,ISTDEV,IPDATA,IVTYPE,ISKIP,IREDEF,
1 IDINO,IREAC0,IRESD0,IDGRP,ISTIF0,IMASS0,
2 IPPO13,ICMEO0,ICMGP0,ICMGSK,ICTAK,ISETM0,NESSUS
COMMON / PERDAT / IXCOOR,IXCHAR,IXFORC,KXFORC,KXDIST,KXDIST,
1 IXTEMP,IXTEMP,IXBEAM,IXBEAM,IXSPL1,KXSPR1,
2 IXRES,IXPRE0,IXP015,IXP016,IPWBE0,IPWEND
COMMON / PERIOD / JPEROD(2),IPDIS0,IPFORC,INDISP,INFORC
COMMON / POSTPN / IPOINT,JPOINT,KPOINT,NDATA,PRNTBF(6)
COMMON / POWER / IELPHI,IELNMM,IEPSMN,ISIGNM,IFHC0,
1 IFBP,ISPP,ISFF,ISQO,ISOO,ITNM,
2 IPSF,IPSD
COMMON / PREPAR / NRFTS,NRFSDS,NRELM,NRFMT,NRFREA,NRFSEL,
1 NRFCMP,NRFDOF,NRFDS1,LRFENG,LRFFTYP,JCOUNT,
2 JCFLAG,JRFSEL,JRFDIM,NKEPET,MORE
COMMON / PREPTR / IRFTS,IRFMNT,IRFMNA,IRFSD0,IRFSN,IRFSET,
1 IRFNV,IRFSDL,IRFPTV,IRFVEC,IRFVAL,IRFRM0,
2 IRFCOR,IRFID,IRFW0K
COMMON / PULSES / IPULSE,KPULSE,IPDTIM,IPDFOR
COMMON / RESULT / MANVAR(7),JPR,ICM1,NCOMP
COMMON / START1 / IELPRM,ITYP,INEL,ICCHAR,IPRES,ISTRM,
1 ISTRM,ICOP,IPRTM,IPPOST,IDIST,ILEAN,
2 IBPRES,IBTOM,NIMONT,IST116,IST117,IST118
COMMON / START2 / INOD,ITEM,INLV,IPOSU,ITEMDF,DUU
COMMON / START3 / IKBC,ITI,ITR,ITN,ITRAC,ITEX,
1 ISBC,ISSCR
COMMON / START4 / IDINC,IDTDT,IFORCE,IRESD,IRCOMM,ISIGNM,
1 IEPSS,ITSTRN,ITSTRN,ITSTNM,ISIGNM,
2 IIPSTR,ICSTR,ITSTRN,IPSSN,ICSIN,ITSON,
3 IITSN,ISIGNM,HIPSS,ICSSN,ITNSN,ITMAT,
4 IDMIN,IEQCS0,ICOMEN,ITSMN,ITDNSN,ITSW00,
5 IDYV,IDYN,IDSX,IDSX1,IDSX1,IDSX1,ISWELL
6 IEQCS1,IPREF,IDSX3,ITYIELD,IFDNC,IDFTOT,
7 IST443,IST444,IST445,IST446,IST447,IST448
COMMON / START5 / IRL,IREAC,IES,IA8,IBQK,IBSR

SYSTEMS’ MANUAL MHOST Version 4.2 Page : 9

NESSUS NESSUS NESSUS NESSUS NESSUS NESSUS NESSUS
Most of the variables and arrays in the common blocks are used to store control variables and counters. The exceptions are START1 to START8 which contain all the pointer values for working storage allocation.

0.4 System Dependency

The MHOST Version 4.2 program is written in Fortran 77, as closely as possible to ANSI specification. The code has been developed on the PRIME 9955 under PRIMOS F77 Rev. 19.4.2.
In the original version, integer and single precision real word lengths of 32 bits are assumed and double precision is specified by using

\texttt{IMPLICIT REAL*8 (A-H, O-Z)}

for all real variables except for working storage arrays. The ratio of integer and double precision word length is stored in the variable IDP in common block \texttt{MACHIN}. The value is set at 2 in the main program of the original version.

To generate versions for 64 bits/word machines such as CRAYs and CYBERs, the value of IDP must be set 1 (one) in the main program.

The file opening and error handling procedures are system dependent. The subroutine \texttt{INTINT} is called from the main program to perform these functions. An example of this routine for the PRIME version is included here.

\texttt{C SUBROUTINE=INTINT CALLED FROM THE MAIN PROGRAM}

\texttt{SUBROUTINE INTINT}

\texttt{C}

\texttt{C **}

\texttt{C}

\texttt{IMPLICIT REAL*8 (A-H , O-Z)}

\texttt{REAL*4 RWORK}

\texttt{C **}

\texttt{COMMON / VRIDS / ISETUP,MAVAIL,LENREC,NUMREC,LENBLK,NUMBLK,}
\texttt{1 IVPAGE,NVPAGE,IVSTRI,IKRO ,ILCOL ,IPIVCO,}
\texttt{2 IHEDER,IFRNHR,IPIVOT,IPIVRO,IPVKOL,IVEND,}
\texttt{3 ISRECD,IERECD}

\texttt{CHARACTER*20 NAMEIN , NAMEPR , NAMEME , LOGFIL , NAMESC ,}
\texttt{1 NAME08 , NAME09}

\texttt{C --- DEFINE THE BUFFER SIZE FOR SCRATCH FILE \texttt{-----------------------------}}

\texttt{C MAVAIL = 3 000}
\texttt{NEUFFR = MAVAIL * 4 + 12}

\texttt{C **}

\texttt{C OPEN FILES : NAMES READ FROM A SPECIAL FILE \texttt{T$NAMES'}}

\texttt{C}

\texttt{C}

\texttt{SYSTEMS' MANUAL}

\texttt{MHOST Version 4.2}

\texttt{Page : 11}
On the PRIME a user will have to prepare a file called T$FILES in the working directory containing names of all the files to be opened as Fortran I/O units.

On other systems, this operation can be performed either by issuing commands at the operating system level or by duplicating the PRIME version approach directly in the MHOST program.

Note it is recommended that on IBM machines the error and warning message print-outs be disabled for double precision floating point operations. This is due to the fact that the solution of an algebraic system of equations involves double precision variables with fictitiously large exponents.
The real time clock and calendar routine and the CPU clock routine both involve system calls and differ depending on the machinery and operating system. The organization of common block CTITLE in which the date and time are stored may need to be modified depending on how the system returns these values. The actual call to the system’s clock and calendar is made through SUBROUTINE DATER. The following code is used to communicate with the PRIME/PRIMDS:

```fortran
C SUBROUTINE DATER
  SUBROUTINE DATER(IDAT, IDAT4)
    C
    C DATE ROUTINE FOR THE PRIME
    C
    C * * * * * * *
    INTEGER*2 ARRAYS(15), NUM, IDAT(6)
    DIMENSION IDAT4(2)
    NUM=4
    CALL TIMDAT(ARRAYS, NUM)
    IDAT(1)=ARRAYS(1)
    IDAT(2)=ARRAYS(1)
    IDAT(3)=ARRAYS(2)
    IDAT(4)=ARRAYS(2)
    IDAT(5)=ARRAYS(3)
    IDAT(6)=ARRAYS(3)
    I0=ARRAYS(4)
    I1=I0/60
    I2=I0-60*I1
    IDAT4(1)=I1
    IDAT4(2)=I2
    RETURN
  END
```

On the CRAY, this operation is simplified to two system calls in SUBROUTINE HEAD as shown below:

```fortran
C SUBROUTINE HEAD CALLED BY 'DATINI'
  SUBROUTINE HEAD
    1 (VERNO, MONTH, JDATE, ILPRNT, ICONSL)
  C
  C **********************************************************************
  C
  C PICK UP TODAY'S DATE AND TIME AND THEN PRINT 'HOST' LOGO ON THE
  C FIRST PAGE OF LISTING. NOTE THIS OCCURS EVEN WHEN VACANT DATA FILE
  C IS ASSIGNED ( ON PRIME ).
```

SYSTEMS’ MANUAL

MHOST Version 4.2

Page: 13
C
C**
C
IMPLICIT REAL*8 (A-H, O-Z)
C
*** COMMON / CTITLE / TITLE (20), IDAT (5), IDATE2, ICLOCK, 1
 IPCRAY
C
**
C
CALL CLOCK (ICLOCK)
CALL DATE (IDATE2)

WRITE (ILPRNT,1000)
WRITE (ILPRNT,2000)
WRITE (ILPRNT,3000)
WRITE (ILPRNT,1100) IDATE2, ICLOCK, VERSO, MONTH, JDATE, TITLE
WRITE (ICONS1,1001)
WRITE (ICONS1,2000)
WRITE (ICONS1,3000)

C *** THE FOLLOWING STATEMENT MAY CAUSE A WARNING MESSAGE WHEN EXECUTED
C *** ON IBM CMS WITH 'RUNHOST' PROCEDURE FILE.
C
WRITE (ICONS1,1100) IDATE2, ICLOCK, VERSO, MONTH, JDATE, TITLE
WRITE (ICONS1,1002)

**
C
1000 FORMAT (1H1,20(/))
1001 FORMAT (20(/))
1002 FORMAT (///)
2000 FORMAT (*
2X,'MA' RC CC CC CCCCCCC CCCCCCC CCCCCCCCCC '/,
2X,'MAZ' ZRC CC CC CCCCCCC CCCCCCC CCCCCCCCCC '/,
2X,'MAZZ' Z2RC CC CC CC CC CC CC CC '/,
2X,'MA ZZ ZZ RC CC CC CC CC CC CC '/,
2X,'MA ZZZ RC CCCCCCCCC CC CC CCCCCCCCCC CC '/)
3000 FORMAT (*
2X,'MA' Z RC CCCCCCCCC CC CC CCCCCCCCC CC '/,
2X,'MA' RC CC CC CC CC CC CC '/,
2X,'MA' RC CC CC CC CC CC CC '/,
2X,'MA' RC CC CCCCCCC CCCCCCC CC '/,
2X,'MA' RC CC CCCCCCC CCCCCCC CC '/,
2X,'MA' RC CC CC CC CC CC CC '/,
2X,'MA' RC CC CC CC CC CC CC '/,
2X,'MA' RC CC CC CC CC CC CC '/)
1100 FORMAT (///,2X,6HDATE: ,AB,3X,AB,///2X,
Calls to the CPU clock for the execution time are also system dependent. SUBROUTINE TIME in the original PRIME version interfaces with the system's clock and returns the time in seconds as a double precision real variable.

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:

On the CRAY, this operation is simplified and performed at a routine one level higher as:
COMMON / ALGEM /
ICREAD, IPRINT, JLPRINT, ICONSL, IPOSTF, ISCRAF,
IPLTB, IRSTR, PI, LINE, LINE2
COMMON / CONTR /
JEND, JITER, JTEMP, JPRINT, JP, JSUB,
JINC, JRREST, JSAVE, JREDIM, JAUTO, JPOST,
JBACK, JOPTIM, JCREEP, JPRESS, JCONST, JDYN,
NONISO, ITERM, ITTRIG, IDYNM, JREPOT, JTANGE,
JTERM, JFORCE, JUTEMP, JUCOEF, JPRESS, JUHOOK,
JDERIV, JUBOUN, IDSTOP, INISTR, JPLAST, JBAND,
JFRONT, JDEFOR, JEMBED, JTEST, JDISP, JFBGS,
JFRONT, JDEFOR, JEMBED, JTEST, JDISP, JFBGS,
IFSCNT, ILINE, IPRINT, ICMP
COMMON / TIMLOC / CPU0

C
*** GET 'DELTA' VALUES - CALL TO CARY LIBRARY SUBROUTINE

C
CALL SECO (CPU)
C
IF (CPU0 .EQ. 0.0) CPU0 = CPU
CPU = CPU - CPU0
C
NAME(1) = IA1
NAME(2) = IA2
NAME(3) = IA3
NAME(4) = IA4
NAME(5) = IA5
NAME(6) = IA6
C
CALL LINES(3, 3)
WRITE(ICONSL, 1010) NAME, JINC, JITER, CPU
IF (CPU NE. 0.0) WRITE(ILPRINT, 1000) NAME, JINC, JITER, CPU
C
1000 FORMAT(//, 2X, 6A4, 9HINCREMEN, I4, 10H ITERATION, I3, 8H CPTIME=, F9.3,
1 4H SEC)
1010 FORMAT(2X, 6A4, 9HINCREMEN, I4, 10H ITERATION, I3, 8H CPTIME=, F9.3,
1 4H SEC)
RETURN
END

To be able to obtain a reasonably accurate estimate of the CPU time, it is recommended that these routines be modified for the particular system on which the MHOST program is installed.
1.0 CONTROL STRUCTURE

In this chapter, a description of major subprograms is given. This is preceded by a brief note on the architecture of the MHOST program. The third section here is devoted to the definition of control variables appearing in the common blocks.

1.1 Overview

The architecture of the MHOST code is schematically shown in Figure 1. The execution supervisor routine (SUBROUTINE HOST) controls several analysis modules in a consistent manner. In Version 4.2 of the MFDST code, a pair of subroutines, LETCMD and RUMCMD, have been added to check the consistency of the Parameter Data and to generate internal flags for the selection of analysis modules. The intention here is to stop users from combining features of the program package not designed to be used together.

C=SUBROUTINE=HOST CALLED FROM 'HOST: MAIN' PROGRAM
SUBROUTINE HOST
 1 (RWORK , IWORK , ISIZE , VERSNO , MONTH , JDATE)

C
C **
C IMPLICIT REAL*8 (A-H , O-Z)
REAL*4 RWORK
C **
C
C IMPLICIT REAL*8 (A-H , O-Z)
REAL*4 RWORK
C
C **
C
C COMMON / CONTO / JEND , JITER , JTEMP , JPRINT , JP , JSUB ,
 1 JINC , JREST , JSAVE , JREDIM , JAUTO , JPOST ,
 2 JBACK , JOPTIM , JCREEP , JDIST , JCONEST , Jdyn ,
 3 NONISO , ITHERM , ITIRIG , IDYN , JREPOT , JHANG ,
 4 JHERMI , JFORCE , JTEMP , JUOEF , JDIST , JUHOCK ,
 5 JDERIV , JUBOUN , JDISTOP , IMSTR , JPLAST , JBAND ,
 6 JFRONT , JDEFOR , JEMBED , ITEST , JDISP , IFBFGS ,
 7 IPSOM , IPNF , IFPRNT , ICONS , JREQUEST , JREQUEST ,
 8 IFBODY , IFGRAV , IFCENT , JDAMP , LDYN , ISTAT ,
 9 JFDSXX , JDIST , JCNEN , JFINIT , JJAGE , JFOLO ,
 JWKSPL , JFPRNT , JCDUM2 , JCDUM3

C COMMON / ALGEM / ICREAD , IPNF , JLPRNT , ICONS , IPPOST , ISCRAF ,
 1 IPLOTB , IRSTRT , ICEAD , IPVARS , IPSETS , IFILEX ,
 2 PI , LINE , LINE2

C COMMON / ADDVAL / ISPRI , KSPRI , IDASH , KDASH , IMASS , JMASH
C COMMON / TMARCH / DALPHA , DBETA , DGAMMA
C COMMON / AUTOIN / CURPER , TOIPER , ARCLEN , ATOLER , BTOLER , CTOLER,
COMMON / PERIOD / JPEROD(2), IPDISP, IPFORC, INDISP, INFORC
COMMON / POWER / IEI PHI, IEITNM, IEP SNO, ISIG MD, IIFN, IHFC,
 IFIP, ISPP, ISP F, ISQQ, ICQQ, ITNM,
 IPSF, IPDISP, IPFORC, INDISP, INFORC
COMMON / ERRORS / IERR
COMMON / MODSUP / IMFOR0, IMDIS0, IMVEL0, IMFOR1, IMDIS1, IMVEL1
COMMON / HARMON / OMEGAH, IHARM, KHARM, OMEG B, IBASE, KBASE,
 ICNFOR, ICMFOR, ICMRES, ICHFHN, ICBFH N, ICBB EXC,
 ICAMAT
COMMON / LOUBIN / JLOUB, JINTER, JEXTRA, JWEIGH, JSUBRE, JISTRN,
 JCIT E, JHRGLS, JGRAM, LOUB03, LOUB04, LOUB05
COMMON / START5 / IRL, IREAC, IES, IAB, IBQM, ISRL,
 IBLTC, ISKM, ILAST, IRLB, IDINCP, IFORIN,
 IOP, IDAM, IMASMT, IDIAG, IUPTRI, ICOLPT,
 IMASDI, IMASUP, IST521, IST522, IST523, IST524
COMMON / START4 / IDINC, IDIOT, IFORCE, IRESID, IWINOD, ISIGNO,
 IIEPSNO, IPSTRN, ICSTRN, ISTSTR, ISTRS, IISTRN,
 II PSTR, IICSTR, IITSTR, IIPSTNO, ICSTNO, IITSTNO,
 IISTNO, IISNNO, IIPSNO, IICS NO, IITSONO, IDMAT,
 IDMINO, IEQCST, IOMENO, IOMENO, IVSNO, IUSNO,
 IDYNV, IDYNA, IDSX1, IDSX3, IDSX2, IDSX5, IDSX4,
 IEQCSI, IPREF, IDSX3, IYIELD, IDFINC, IDFTOT,
 IST443, IST444, IST445, IST446, IST447, IST448
COMMON / PARAM / NTY PE, NELE M, NNODE, NBC, NTIE, NMAX,
 NTRAN, NTRAC, NF D, NBAND, NEXT, NSUB,
 NPRINT, NPOST, NSBC, NDUP, NSIZE, NBSEC,
 NSHIFT, NSEPFS, NGMRS, ASPRI, NMASS, NDASH,
 NDYNM, NSBN E, NSUPER, NHARM, NBASE, NINC,
 NITER, NPSPTS, NFDP TS, NPULS E, NFDP T S, NHARD,
 NSUMCH, NDIMEN, NMONIT, NPAR40, NPAR41, NPAR42,
 NPAR43, NPAR44, NPAR45, NPAR46, NPAR47, NPAR48
COMMON / BSECT / IBSECT, JBSECT
COMMON / INCO N / FACTOR, INCFLG(21)
COMMON / MACHIN / IDP
COMMON / SUBSTR / NLVSUB(10), NF RSUB(10)
COMMON / SUBELM / ISUBEL, ISUBEF, ISUBPT, NSDATA, ISUBTY, IEMBED
COMMON / SHI FT / ISHIFT, KSHIFT, IFREQ, LFREQ, NOFFST, NFOUND
DATA 1Z / 1H /
DATA MAXSUB / 10 /

C
C **

SYSTEMS' MANUAL
Page : 18
MHOST Version 4.2
WRITE(ICONSL,2000) IZ
2000 FORMAT(' BE', 'GIN', 'EXEC', 'UTIO', 'N', ' ')
C*** JOB PARAMETER INPUT **
C
CALL DATINI
1 (RWORK, IWORK, ISIZE, VERSNO, MONTH, JDATE, NELEM, NNODE,
2 NBC, NTIE, NMAX, NTRAN, NTRAN, NPOST, NLVSUB, NRFSUB,
3 NEXT, JDYN, JTEMP, NPRINT, JREST, JINC, NINC, JLOUB,
4 NSUB, ISTAT, IDYNM, ITEST, JOPTIM, JCREEP, JDIST, NONISO,
5 NDYNMD, IDYNMD, NPOSMD, ITERM, JCOEF, NPOSC, NCR, ATOLE,
6 JDERIV, JUHEC, JEROD, NSBCC, NCREEP, ATOLE, BTOLE,
7 CTOLR, CTOLE, JPOST, INTSTR, JFIELD, JFRONT, JDEPOR, NGRS,
8 JEMBED, NSBEC, JDISP, NSHIFT, NSUPER, JSTOP, IFBFGS, NSPRI,
9 NDASH, NMASS, NSBFGS, IFSCNT, IFLINE, IFPRNT, NHARD, OMAG,
10 NBASE, OMAGB, ICOMPS, NFPTS, NPULSE, IPCONJ, NSSPTS, NSHOCK,
11 NFPTS, NFPTS, LDYN, JFDSXX, JISTIF, JCENT, NHARD, JINIT,
12 JACR, JFLOW, JNKL, JISTRN, JCITER, JHRLS, NDIMEN, JGRAM,
13 JLarge, JFLOU, JWKSL, JISTRN, JCITER, JHRLS, NDIMEN, JGRAM,
14 JFRES, JMONIT)
C
C*** SET THE RUNSTREAM FLAGS FOR MULTIPLE OPTION EXECUTIONS ***************
C
CALL LETCMD
1 (NCOMPD, IFSTAT, IFSOLV, IFINTG, IFMDDL, IFSUPR, IFREQN,
2 IFDUM1, IFDUM2, IFDUM3, IERR)
C
C*** BULK FINITE ELEMENT DATA INPUT ****************************
C
IF (JREST) IS SET ZERO, START FROM SCRATCH AND THE DATA IS READ
FROM THE MAIN CARD READER CHANNEL
IF (JREST) IS NON-ZERO, THE RESTART FILE IS RECOVERED FROM THE
RESTART FILE
C
FLAG 'IPFLG' IS USED FOR CONTROLLING THE PRINTOUT FOR THE INITIAL
VALUES FOR TRANSIENT DYNAMICS

IPFLG = 0 ONLY INITIAL CONDITION IS PRINTED
1 ONLY THE REST OF THE MODEL DEFINITION DATA ARE PRINTED
2 ALL OF THE INFORMATION IS PRINTED
IPFLG = 1

IF(IDYNM .EQ. 1 AND. JDYN .EQ. 2) IPFLG = 2

IF(JREST .EQ. 0) CALL BULKIN (RWORK, IWORK, ISIZE, IPFLG)

*** RESTART FILE INPUT *** NOT SUPPORTED IN VERSION 2.0 **************

IF(JREST .NE. 0) CALL RESTRT (RWORK, IWORK, ISIZE)

CALL FINITE ELEMENT SOLUTION DRIVER Routines

DO 5000 ICOMPD = 1, NCOMPD

CALL RUNCMD

1 (ICOMPD,IFSTAT,IFSOLV,IFINIG,IFMODL,IFBCKL,IFSUPR,IFREQN,
 IFDUM1,IFDUM2,IFDUM3,IFDUM4,IERR)

IF(IFSTAT .EQ. 1) THEN
 CALL STATIC(RWORK, IWORK, ISIZE)

ELSE IF(IFSOLV .EQ. 1) THEN
 CALL FRONTS(RWORK, IWORK, ISIZE)

ELSE IF(IFMODL .EQ. 1) THEN
 CALL MODAL (RWORK, IWORK, ISIZE)

ELSE IF(IFSUPR .EQ. 1) THEN
 CALL SUPER (RWORK, IWORK, ISIZE)

ELSE IF(IFBCKL .EQ. 1) THEN
 CALL BUCKLE(RWORK, IWORK, ISIZE)

ELSE IF(IFREQN .EQ. 1) THEN
 CALL FREDOM(RWORK, IWORK, ISIZE)

ELSE IF(IFINIG .EQ. 1) THEN
 CALL DYNAM(RWORK, IWORK, ISIZE)

The analysis modules represent the control structure for the incremental iterative algorithms implemented in the MHOST code. The source code with comments is designed to serve as the schematic flow chart of the computational process.

The schematic flow of the element and nodal data manipulations is coded in the element assembly submodules identified by the string ASSEM in the subroutine names which are entered from analysis modules. The element assembly submodules perform operations independent of element types and constitutive models. The assumptions introduced in the mechanics aspects of the formulations are explicitly coded at this level. These submodules call the librarian routines for elements and constitutive models.

The element librarian subprogram (SUBROUTINE DERIV) generates quantities unique to the element used in an analysis. The MHOST code uses standard finite element matrix notation as in ZIENKIEWICZ (1977). The element specific information returned from the librarian subprogram is the strain-displacement array referred to as the B matrix in previous writeups for 1987.

The constitutive equation librarian subprogram (SUBROUTINE STRESS and BMSTRS) is designed to incorporate the nodal storage of stress and strain values. The STRESS subroutine sets up the loop over the points at which
constitutive equations are evaluated. The current implementation is a nested double loop with the outer loop being over the nodes and the inner loop over the integration layers through the thickness. Note that the conventional displacement method can be recovered by restructuring this loop in conjunction with a few minor modifications in the core allocation for stresses and strains.

The librarian subprogram utilizes the constitutive equation package (SUBROUTINE NODSTR) from which individual subprograms for initial strains, stress recovery and the material tangent are called. The librarian subprogram also controls the pre-integration of stresses, strains and the material tangent over thickness for the shell element.

Note that application of the constitutive equation represents one of the most costly operations in nonlinear finite element computations. An attempt is made in MHOST to optimize the execution of this process which occurs, for example, once every iteration during the recovery of the residual vector. At the beginning of each increment, this process may be executed to evaluate the material tangent and to determine the contribution of initial strain terms which are often necessary for proper displacement preconditioning.

Except for a small amount of information related to convergence of the iterative solution, all report generation is performed at the end of an increment. Optionally, post-processing and restart files are written at the end of user-specified increments. Generic reporting subprograms are called from analysis modules inside the increment loop.

1.2 Execution Supervisor and Analysis Drivers

This section describes major subprograms in the MHOST package. For the sake of clarity no listings are attached in this section. Also this section does not discuss the arguments and common blocks appearing in each subroutine.

Execution Supervisor

MAIN PROGRAM - declares work space in blank common as an integer array. Also defines system parameters which are machine independent. Then passes control to actual execution supervisor SUBROUTINE HOST.

SUBROUTINE HOST - controls the sequence of execution for the analysis modules. First, this routine executes the control parameter data reader SUBROUTINE DATINI and checks for consistency by entering SUBROUTINE LETCMD and RUNCMD. The current structure of the code allows certain combinations...
of two analysis modules to be executed sequentially. Analysis modules called from the execution supervisor are:

SUBROUTINE STATIC for a quasi-static incremental iterative solution.

SUBROUTINE DYNAMT for a transient time integration of the dynamic equilibrium equations in an incremental-iterative manner.

SUBROUTINE MODAL for an eigenvalue extraction in vibration mode analysis. This subsystem may be executed after quasi-static analysis for modal analysis of prestressed structures.

SUBROUTINE BUCKLE for an eigenvalue extraction in buckling load calculations. This subsystem is executable only after quasi-static analysis.

SUBROUTINE FRONTS for a quasi-static incremental iterative solution by the out-of-core frontal approach. Note that certain options are not available in this subsystem.

SUBROUTINE SUPER for linear dynamic response calculations by the method of mode superposition.

Input Data Reader

There are three major subprograms:

SUBROUTINE DATIN1 - Reads and interprets the parameter data input called by the execution supervisor. All the default values for control variables are set in this routine.

SUBROUTINE BULKIN - Reads and interprets the finite element model definition data and prints the mesh and loading data for the initial increment (number 0). The bulk data reader is entered before the execution of analysis modules. This subroutine utilizes the following lower level routines:

SUBROUTINE INITI1 for memory allocation of integer workspace in blank common to store nodal and element data.

SUBROUTINE DATIN2 for model data input.

SUBROUTINE DATOU1 for reporting model definition data.

SUBROUTINE CHKELM for the detection of clockwise element connectivity definition which results in a negative Jacobian.
This routine automatically corrects the connectivity table to a counterclockwise direction.

SUBROUTINE SUBDIV for memory allocation of subelement mesh data and automatic mesh generation of subelements.

SUBROUTINE INCRIN - Reads and interprets the loading and constraint data for each increment. This routine is invoked by individual analysis modules from inside the loop over the increments.

SUBROUTINE DATIN3, a small subset of the bulk data reader SUBROUTINE DATINI is used for actual operations including initialization of arrays at the beginning of an increment.

Algebraic Operation Subsystem

There are three groups of routines for the profile solver, frontal solver and eigenvalue extraction, respectively. The profile solution package consists of:

SUBROUTINE CCMPRO - Sets up the integer array for the profile of global stiffness equations to be stored in a profile form.

SUBROUTINE ASSEM5 - Assembles the element stiffness equations into the global equation system stored in a profile form.

SUBROUTINE SOLUT1 - Controls the iterative solution processes including the vector update required for the quasi- and secant-Newton iterations.

SUBROUTINE DECOMP - Factorizes the global stiffness equations stored in a profile form.

SUBROUTINE SOLVER - Performs the back substitution and generates the update vector for the incremental displacement.

The frontal solution package consists of:

SUBROUTINE FRONTW - Estimates the front matrix size to be accommodated in the core memory.

SUBROUTINE INTPR - Allocates memory for the work space required for the frontal solution.

SUBROUTINE PRFRNT - Sets up the elimination table for the frontal solution.
SUBROUTINE FRONTIF - Assembles and factorizes the global stiffness equation simultaneously.

SUBROUTINE FRONTB - Performs the back substitution and generates the updates for the displacement vector.

SUBROUTINE FRONTR - Controls the iterative solution processes including the vector update required for the quasi- and secant-Newton iterations. Calls SUBROUTINE FRONTB for the incremental displacement update vector.

SUBROUTINE VDSKIO - Controls the data stream stored in the in-core buffer area and the actual out-of-core storage devices.

The eigenvalue analysis package consists of:

SUBROUTINE EIGENV - Controls the execution of the eigenvalue extraction subsystem.

SUBROUTINE INIDOP - Initializes the array for eigenvectors.

SUBROUTINE SUBSPC - Performs the subspace iteration and generates a specified number of eigenvalues and eigenvectors.

SUBROUTINE JACOBI - Solves the eigenvalue problem in subspace by the Jacobi iteration.

There are a number of subprograms used commonly by the braic Operation Subsystem:

SUBROUTINE STRUCT - Controls the memory allocation for the global algebraic manipulations at the beginning of every increment.

SUBROUTINE INITI2 - Allocates memory required for the storage of global stiffness matrix and other vectors required in the linear algebraic manipulation of finite element equations.

SUBROUTINE LINESR - Calculates the search distance when the line search option is turned on.

Element Assembly Submodules

These are subprograms that construct vectors and matrices appearing in the algorithmic description of mixed iterative process discussed in the previous subsections.
SUBROUTINE ASSEMI - Assembles the displacement stiffness matrix for
preconditioning purposes. All the kinematic and constitutive options
are tested in this module.

SUBROUTINE ASSEM2 - Assembles the coefficient matrix for transient time
integration by the Newmark family of algorithms. This routine has
evolved from SUBROUTINE ASSEMI and contains all the same options.

SUBROUTINE ASSEM3 - Assembles the coefficient matrix for quasi-static
analysis using the frontal solution subsystem. Large displacement,
stress stiffening and centrifugal mass terms are not available in this
package.

SUBROUTINE ASSEM4 - Calculates the nodal strain and recovers the
residual vector in a mixed form. The subelement solution package is
entered from this subprogram.

Element Loop Structure and Library Routines

In the element assembly submodules, element arrays are generated in the
loops over elements. The protocol for accessing the element library is
designed and implemented to involve a sequence of subroutine calls:

SUBROUTINE ELVULV - Sets up the current element parameters (See Table 2
for variables and values) from the element library table.

SUBROUTINE CNODEL - Pulls out quantities for the current element from
the global nodal array and restores them in the element workspace.
Coordinate transformations necessary for beam and shell elements are
performed in this subprogram.

SUBROUTINE DERIV - Sets up the displacement-strain matrix for the
current element by calling the element library subroutines. Those are:

- SUBROUTINE BPSTRS for plane stress elements, types 3 and 101.
- SUBROUTINE BPSTRN for plane strain elements, types 11 and 102.
- SUBROUTINE BSOLID for three-dimensional solid element, type 7.
- SUBROUTINE BSHELL for three-dimensional shell element, type 75.
- SUBROUTINE BAXSYM for axisymmetric solid-of-revolution elements,
types 10 and 103.
SUBROUTINE BTBEAM for linear Timoshenko beam element, type 98.

SUBROUTINE BASPST for the assumed stress plane stress element, type 151.

SUBROUTINE BASPSN for the assumed stress plane strain element, type 152.

SUBROUTINE BASSOL for the assumed stress three-dimensional solid element, type 154.

SUBROUTINE UDERIV - A slot for user coded element B matrix routine.

The following subprograms are used to calculate terms appearing in the finite element equations:

SUBROUTINE IMPMAS - Calculates nodal weight factor for the strain projection.

SUBROUTINE STIFF - Performs matrix triple products to assemble the element stiffness matrix and the element load vector associated with the initial strain terms.

SUBROUTINE STRAIN - Calculates element strain at specified sampling points and projects to nodes.

SUBROUTINE CNSMAS - Assembles the consistent mass matrix for modal and transient analysis.

SUBROUTINE INITST - Generates initial stress terms for quasi-static, buckling and modal analysis of prestressed structures.

SUBROUTINE CENMAS - Evaluates the centrifugal mass terms for rotating structures at speed.

SUBROUTINE RESID - Calculates the element residual vector for the global element.

SUBROUTINE SUBFEM - Performs the subelement solution and calculates the element residual vector for the subelement mesh.

SUBROUTINE RELDFG - Calculates the relative deformation gradient at the element sampling points and projects to nodes.

SUBROUTINE RESDYN - Calculates the contribution of mass and damping...
terms in the element residual vector when the transient dynamics option is used.

Material Library

A system of subroutines is included in the MHOST code which covers a wide range of material models and initial strain assumptions:

SUBROUTINE SIMPLE - Integrates the stress over the increment assuming the elastic-plastic response of the material is modeled by the total secant modulus approach. Also generates the material modulus matrix.

SUBROUTINE PLASTS - Integrates the stress over the increment and calculates the plastic strain by using the radial return algorithm.

SUBROUTINE PLASTD - Calculates the consistent elastic-plastic modulus if the incremental equivalent plastic strain is positive.

SUBROUTINE WALKEQ - Integrates the Walker unified creep plasticity constitutive equation and also generates a material modulus based on the temperature dependent elasticity assumption.

SUBROUTINE LELAST - Calculates the stress for the constant material modulus given as data.

SUBROUTINE THSTN - Calculates the thermal strain.

SUBROUTINE CRPSN - Calculates the creep strain.

Report Generation Subsystem

A system of subroutines is included in the MHOST code to generate reports on the line printer image file and the formatted post-processing file readable by MENTAT, Version 5 and up (a proprietary interactive pre- and post- processor program developed by and available from MARC Analysis Research Corporation). Note that the format of the post-processing file is similar to that of the MARC General Purpose Finite Element Program, Version 7.1 and the commercially available post-processing packages compatible with this program can easily be modified for use with MHOST.

SUBROUTINE PRININ - Reads and restores the user instructions for the print options. This routine is entered from the model data reader and/or the incremental reader. This program interprets user instructions including the type of information, the locations (either nodes or element integration points) at which the information is
printed and specified by character strings, and the range of nodes or elements specified by integer numbers.

SUBROUTINE PRINU - Writes the reports on the line printer image file. A loop is constructed over the instruction set restored by PRININ.

SUBROUTINE PRINSU - Generates the reports for the subelement solution on the line printer image file. The same control structure as the global solution writer PRINU is implemented. This routine also follows the instruction set generated by PRININ.

SUBROUTINE POSTOU - Writes formatted records on the post-processing file, Fortran Unit 19. All the information generated by the analysis is written. The user has no control over the records to be written on this file. The nodal values of stress and strain invariants and components are written in this subroutine.

SUBROUTINE POSTEN - Packs the nodal value record buffer and writes out the record when the buffer is filled.

1.3 Control Variables

The control variables effective globally through a number of subprograms are stored in the following common blocks:

ADDVAL Variables related to additional point masses, dashpots and springs.

ALGEM Fortran unit numbers and record number counters. Also the value of p is stored in this common block.

AUTOIN Real variables used for automatic load increments. Also control variables for adaptive load increments by the arc length method are stored here.

BODYFR A real array to store the direction of the body force vector for gravity loading or the position of two points defining the axis of rotation for centrifugal loading.

BSECT Pointers and counters for beam section definitions.

CONTRO Control variables and binary switches to activate options built into the MHOST program.

COMPND Flags for sequential execution of multiple analysis drivers.
COUNT Counters for the line on the current page of the line printer image file.
CTITLE The title line and the date and time when the execution is initiated.
DAMP A damping factor array for transient dynamic analyses.
EIGEN Counters for eigenvalue extraction by the subspace iteration method.
MODSUP Counters for transient response calculation by vibration mode superposition.
ELEMEN A element type indicator and flags for element array manipulations.
ELTYP Counters for the element variables which are currently being processed. The entries in this common block are redefined every time the element loop is incremented.
ERRORS Data input error counter.
FREE Working arrays for the free format reader.
HARMON Control variables for harmonic analysis
INCON Variables for the incremental data reader.
MACHIN Machine dependent ratio of the integer and real word lengths.
MAXIMA Maximum number of element variables appearing in the current problem.
LOUBIN Flags for the selection of integration processes for various element arrays.
PAGCNT Counters for the page numbers of the line printer image output file.
PARAM Mesh parameters for the total number of data entries.
PERIOD Parameters to define time periodic loading and boundary conditions.
POSTPN Control variables used for generation of the post-processing file.

POWER Control variables for the power spectrum.

PULSES Counters and pointers for pulse leads in dynamic analysis.

RESULT Control variables for generation of the line printer output file.

SUBELM Control variables for the subelement analysis option.

SUBTYP Element variables for the subelement analysis option. The information stored in this common block is the subelement counterpart of ELTYP and entries are updated every time the loop over the subelements is incremented.

SUBSTR Space allocated for the control variables of the substructure option (not used in Version 4.2).

SHIFT Control variables for the power-shift option in the eigenvalue extraction for modal analysis.

TIME Time parameters for transient dynamics and rate dependent calculations.

TIMLOC The initial value for the CPU clock.

TMARCH Parameters to define the time integration operator.

TRANSF Local coordinate transformation arrays. Typically updated in an element-by-element manner.

TOLER Error and tolerance for the global iterative solution.

VRTDSK Control variables for the out-of-core solution by the frontal process.

ZPRINT Control variables for a definition of a record in the line printer output file.

Control variables which play a significant role are summarized below:

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Common Block</th>
<th>Initial Value</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Class</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>IREAD</td>
<td>ALGEM</td>
<td>5</td>
<td>Fortran unit number for the main data input device.</td>
</tr>
<tr>
<td>ILPRNT</td>
<td>ALGEM</td>
<td>6</td>
<td>Fortran unit number for the line printer output file (Execution log).</td>
</tr>
<tr>
<td>JLPRNT</td>
<td>ALGEM</td>
<td>6</td>
<td>Fortran unit number for the line printer output file (Bulk report).</td>
</tr>
<tr>
<td>ICONSL</td>
<td>ALGEM</td>
<td>1</td>
<td>Fortran unit number for the command input and the execution log output.</td>
</tr>
<tr>
<td>IPOSTF</td>
<td>ALGEM</td>
<td>19</td>
<td>Fortran unit number for the formatted post-processing file.</td>
</tr>
<tr>
<td>ISCRAF</td>
<td>ALGEM</td>
<td>10</td>
<td>Fortran unit number for the working on-line storage (binary).</td>
</tr>
<tr>
<td>IPOSTB</td>
<td>ALGEM</td>
<td>9</td>
<td>Fortran unit number for plotting data output file (binary - not used in Version 4.2).</td>
</tr>
<tr>
<td>IRSTRT</td>
<td>ALGEM</td>
<td>8</td>
<td>Fortran unit number for binary restart file.</td>
</tr>
<tr>
<td>JCREAD</td>
<td>ALGEM</td>
<td>12</td>
<td>Fortran unit number for alternate input data file.</td>
</tr>
<tr>
<td>LINE</td>
<td>ALGEM</td>
<td>0</td>
<td>Line counter for the output unit ILPRNT.</td>
</tr>
<tr>
<td>LINE2</td>
<td>ALGEM</td>
<td>0</td>
<td>Line counter for the output unit JLPRNT.</td>
</tr>
<tr>
<td>CURPER</td>
<td>AUTOIN</td>
<td>0.0</td>
<td>Load factor of the current arc-length iteration step.</td>
</tr>
<tr>
<td>TOTPER</td>
<td>AUTOIN</td>
<td>0.0</td>
<td>Total load factor including the current step of arc-length iteration.</td>
</tr>
<tr>
<td>ARCLEN</td>
<td>AUTOIN</td>
<td>0.0</td>
<td>The arc-length.</td>
</tr>
<tr>
<td>JADP</td>
<td>AUTOIN</td>
<td>0</td>
<td>Flag for the adaptive load increment option.</td>
</tr>
<tr>
<td>Variable Name</td>
<td>Common Block</td>
<td>Initial Value</td>
<td>Content</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>NCREEP</td>
<td>AUTOIN</td>
<td>0</td>
<td>Maximum number of updates for the adaptive time step control for creep strain.</td>
</tr>
<tr>
<td>JEND</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for end-of-iteration.</td>
</tr>
<tr>
<td>JITER</td>
<td>CONTRO</td>
<td>0</td>
<td>Current iteration step of the global solution.</td>
</tr>
<tr>
<td>JTEMP</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for temperature loading.</td>
</tr>
<tr>
<td>JPRINT</td>
<td>CONTRO</td>
<td>0</td>
<td>Full line printer report generation interval for incremental analysis.</td>
</tr>
<tr>
<td>JP</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for pressure loading.</td>
</tr>
<tr>
<td>JSUB</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for substructure.</td>
</tr>
<tr>
<td>JINC</td>
<td>CONTRO</td>
<td>0</td>
<td>Current increment.</td>
</tr>
<tr>
<td>JREST</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for restart jobs.</td>
</tr>
<tr>
<td>JSAVE</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for check-point job to write the restart file.</td>
</tr>
<tr>
<td>JREDIM</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for memory allocation of global arrays for the next solution step.</td>
</tr>
<tr>
<td>JAUTO</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for automatic load incrementation.</td>
</tr>
<tr>
<td>JPOST</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for post file generation.</td>
</tr>
<tr>
<td>JBACK</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for back substitution to avoid the global stiffness assembly and factorization.</td>
</tr>
<tr>
<td>JOPTIM</td>
<td>CONTRO</td>
<td>0</td>
<td>Number of Cuthil-McGee iterations for bandwidth optimization.</td>
</tr>
<tr>
<td>JCREEP</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for the creep strain option.</td>
</tr>
<tr>
<td>Variable Name</td>
<td>Common Block</td>
<td>Initial Value</td>
<td>Flag for the distributed load option.</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>JDIST</td>
<td>CONTRO</td>
<td>0</td>
<td>Selector for the constitutive equation =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 for linear elasticity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 for secant elasticity/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>simplified plasticity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 plasticity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 unified creep plasticity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JDYN</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for the dynamic analysis option.</td>
</tr>
<tr>
<td>NONISO</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for anisotropic material response.</td>
</tr>
<tr>
<td>IOTHERM</td>
<td>CONTRO</td>
<td>0</td>
<td>Flag for temperature dependent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>material response.</td>
</tr>
<tr>
<td>NXSTAT</td>
<td>COMPND</td>
<td>0</td>
<td>Flag for the static analysis module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>as the driver for the second step of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the analysis.</td>
</tr>
<tr>
<td>NXSOLV</td>
<td>COMPND</td>
<td>0</td>
<td>Flag for the optional frontal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>solution for the second step of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>analysis.</td>
</tr>
<tr>
<td>NXINTG</td>
<td>COMPND</td>
<td>0</td>
<td>Flag for the direct time integration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for the second step of the analysis.</td>
</tr>
<tr>
<td>NXMODL</td>
<td>COMPND</td>
<td>0</td>
<td>Flag for modal analysis for the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>second step.</td>
</tr>
<tr>
<td>NXBCKL</td>
<td>COMPND</td>
<td>0</td>
<td>Flag for buckling analysis for the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>second step.</td>
</tr>
<tr>
<td>NXSUPR</td>
<td>COMPND</td>
<td>0</td>
<td>Flag for modal super-position for the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>second step of the analysis.</td>
</tr>
<tr>
<td>Variable</td>
<td>Common Block</td>
<td>Initial Value</td>
<td>Content</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>IDYNMD</td>
<td>EIGEN</td>
<td>0</td>
<td>Number of eigenvalues and eigenvectors to be extracted.</td>
</tr>
<tr>
<td>IPTAR</td>
<td>EIGEN</td>
<td>0</td>
<td>Pointer to the workspace required for the subspace iteration. If the BFGS update is invoked in the static analysis, this variable is used as a pointer for an update vector.</td>
</tr>
<tr>
<td>IPTBR</td>
<td>EIGEN</td>
<td>0</td>
<td>Pointer to the workspace required for the subspace iteration. If the BFGS update is invoked in the static analysis, this variable becomes a pointer for one of the update vectors.</td>
</tr>
<tr>
<td>IC</td>
<td>ELEMEN</td>
<td>0</td>
<td>Current element type. This variable is updated when the element loop is incremented.</td>
</tr>
<tr>
<td>IEL</td>
<td>ELEMEN</td>
<td>0</td>
<td>Current element number.</td>
</tr>
<tr>
<td>IDF</td>
<td>ELEMEN</td>
<td>0</td>
<td>Number of d.o.f. per element being processed.</td>
</tr>
<tr>
<td>JLAW</td>
<td>ELEMEN</td>
<td>0</td>
<td>Constitutive equation type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 7</td>
</tr>
<tr>
<td>IPATH</td>
<td>ELEMEN</td>
<td>0</td>
<td>Flag for the integration method options for assembly and recovery.</td>
</tr>
<tr>
<td>Variable</td>
<td>Common Block</td>
<td>Initial Value</td>
<td>Content</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>IASSEM</td>
<td>ELEMEN</td>
<td>0</td>
<td>Flag to indicate element assembly operations.</td>
</tr>
<tr>
<td>NELCRD</td>
<td>ELTP</td>
<td>0</td>
<td>Number of coordinate entries per node for the current element.</td>
</tr>
<tr>
<td>NELNFR</td>
<td>ELTP</td>
<td>0</td>
<td>Number of d.o.f. per node for the current element.</td>
</tr>
<tr>
<td>NELNOD</td>
<td>ELTP</td>
<td>0</td>
<td>Number of nodes per current element.</td>
</tr>
</tbody>
</table>

Variable Name

Common Block

Initial Value

Content

<table>
<thead>
<tr>
<th>NELSTR</th>
<th>ELTP</th>
<th>0</th>
<th>Number of generalized stress/strain components per node for the current element.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NELPR</td>
<td>ELTP</td>
<td>0</td>
<td>Number of distributed load types for the current element.</td>
</tr>
<tr>
<td>NELINT</td>
<td>ELTP</td>
<td>0</td>
<td>Number of integration points for the current element.</td>
</tr>
<tr>
<td>NELLV</td>
<td>ELTP</td>
<td>0</td>
<td>Number of d.o.f. per current element.</td>
</tr>
<tr>
<td>NELLAT</td>
<td>ELTP</td>
<td>0</td>
<td>Number of integration layers for the shell element to calculate resultant quantities.</td>
</tr>
<tr>
<td>NDI</td>
<td>ELTP</td>
<td>0</td>
<td>Number of direct strain/stress components for the current element.</td>
</tr>
<tr>
<td>NSHEAR</td>
<td>ELTP</td>
<td>0</td>
<td>Number of shear strain/stress components for the current element.</td>
</tr>
<tr>
<td>NELCMP</td>
<td>ELTP</td>
<td>0</td>
<td>Number of LDamina strain/stress components (differs from NELSTR only for shells).</td>
</tr>
<tr>
<td>IA</td>
<td>FREE</td>
<td></td>
<td>Buffer for the card image read from IREAD file.</td>
</tr>
<tr>
<td>Variable Name</td>
<td>Common Block</td>
<td>Initial Value</td>
<td>Content</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>MAXCRD</td>
<td>MAXIMA</td>
<td>1</td>
<td>Maximum number of coordinate entries in the current mesh.</td>
</tr>
<tr>
<td>MAXNFR</td>
<td>MAXIMA</td>
<td>2</td>
<td>Maximum number of d.o.f. per node in the current mesh.</td>
</tr>
<tr>
<td>MAXNOD</td>
<td>MAXIMA</td>
<td>1</td>
<td>Maximum number of nodes per element in the current mesh.</td>
</tr>
<tr>
<td>MAXCHR</td>
<td>MAXIMA</td>
<td>1</td>
<td>Maximum number of material data entries for the element definition in the current mesh.</td>
</tr>
<tr>
<td>NSUMAX</td>
<td>MAXIMA</td>
<td>0</td>
<td>Maximum number of substructures (not-used in version 4.2)</td>
</tr>
<tr>
<td>MAXBSP</td>
<td>MAXIMA</td>
<td>6</td>
<td>Maximum number of entries in the beam section definition in the mesh.</td>
</tr>
<tr>
<td>MAXDMT</td>
<td>MAXIMA</td>
<td>1</td>
<td>Maximum dimension of the constitutive resultant matrix.</td>
</tr>
<tr>
<td>MAXFRN</td>
<td>MAXIMA</td>
<td>0</td>
<td>Maximum frontal matrix size (valid when the frontal solution option is invoked).</td>
</tr>
<tr>
<td>MAXEAN</td>
<td>MAXIMA</td>
<td>0</td>
<td>Maximum number of entries in the inverse connectivity table. The value is set in INIIT2.</td>
</tr>
<tr>
<td>MAXBET</td>
<td>MAXIMA</td>
<td>0</td>
<td>Maximum number of entries in the element strain-displacement matrix for all the integration points.</td>
</tr>
<tr>
<td>JLOUB</td>
<td>LOUBIN</td>
<td>1</td>
<td>Not used in Version 4.2.</td>
</tr>
<tr>
<td>JINTER</td>
<td>LOUBIN</td>
<td>3</td>
<td>Selector for the integration rule used to generate the strain-displacement equation.</td>
</tr>
</tbody>
</table>

= 1
= 2

Reduced integration
Selective integration
(one point shear sampling)
Selective integration with the
element coordinate transformation.

= 3

Selector for the integration rule
used in the residual force
calculation.

= 1
Full Gaussian quadrature
= 2
One point reduced integration

= 3
Selector for the integration rule
used to generate the stiffness
equations.

= 1
Full Gaussian quadrature
= 2
Selective integration (one point
shear sampling without coordinate
transformation).
= 3
Selective integration with the
element coordinate transformation.

Page counter for the line printer
output on ILPRNT.

Page counter for the line printer
output on JLPRNT

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Common Block</th>
<th>Initial Value</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTYPE</td>
<td>PARAM</td>
<td>0</td>
<td>Number of different element types in the current mesh.</td>
</tr>
<tr>
<td>NELEM</td>
<td>PARAM</td>
<td>0</td>
<td>Total number of elements in the current mesh.</td>
</tr>
<tr>
<td>NBC</td>
<td>PARAM</td>
<td>0</td>
<td>Total number of displacement boundary conditions in the current mesh. The user specified value in the parameter data section is used for memory allocation. The value is updated to the actual value when the boundary displacement data is</td>
</tr>
</tbody>
</table>
read in the model data.

<table>
<thead>
<tr>
<th>PARAM</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNODE</td>
<td>0</td>
</tr>
<tr>
<td>NTIE</td>
<td>0</td>
</tr>
<tr>
<td>NMAX</td>
<td>0</td>
</tr>
<tr>
<td>NTRAN</td>
<td>0</td>
</tr>
<tr>
<td>NSBFGS</td>
<td>0</td>
</tr>
</tbody>
</table>

Total number of nodes in the present mesh.
Total number of tying equations in the present mesh.
Maximum number of terms in the tying equations in the present mesh.
Total number of nodal coordinate transformations specified by the user in the current mesh.
Number of update vectors for the BFGS quasi-Newton method.

2.0 DATA STORAGE SCHEME

This chapter discusses the dynamic core allocation scheme implemented in the MHOST code. The first section outlines the design principle and is followed by the code actually allocating memory in the second section. The third section is devoted to the definition of pointers.

2.1 Overview

A dynamic core allocation strategy is implemented in the MHOST code. An integer array is defined as an entry to blank common. This array is used as the working storage. Except for the frontal solution and transient dynamic analysis options, all the information required for the finite element computation is stored in this workspace. First parameters defining the number of variables for element types in use is copied from the array residing in SUBROUTINE TYPEIN.

The first section of this space stores the nodal variables and element arrays. The amount of memory required to store these data is found from the number of nodes, elements and attributes given by the user as part of the parameter data. This portion of working storage and information stored therein is often referred to as the finite element database. The pointers for the finite element database are defined in SUBROUTINE INITI1 before reading the model data section of the input data file. The model data is read directly into the space allocated for the finite element database.
In finite element computations, space is required to store arrays where size varies depending on the analysis type and mesh topology. For instance, in most of the analysis options, the global stiffness matrix is stored in a profile form. After the model data is read, the mesh topology (element connectivity) is swept through and column heights are calculated for each degree of freedom in SUBROUTINE COMPRO. The pointers for the global arrays are then calculated in INITI2.

For the local-global analysis inherent to the subelement procedure, an indirect accessing scheme is implemented. When the subelement option is invoked by the parameter data, element arrays to store subelement data pointers are prepared as a part of the finite element database. The pointers are calculated only for the global elements which are divided into subelements. The mechanism of this indirect addressing scheme is implemented in the memory allocation routine INITSE and the subelement solution driver routine SUBFEM.

2.2 Memory Allocation Subprograms

The following SUBROUTINE TYPEIN substitutes the element characteristics array into the workspace:

C=SUBROUTINE=TYPEIN CALLED FROM SUBROUTINE 'DATINI'

SUBROUTINE TYPEIN
 1 (IWORK ,RWORK ,IERR ,NTYPE ,ILAST ,ILPRINT,NDIMEN)
C
C**
C*Routine for obtaining input for different types of elements*
C**
C
IMPLICIT REAL*8 (A-H , O-Z)
REAL*4 RWORK
C
DIMENSION IWORK (1) , RWORK (1)
DIMENSION ISTORE (13 , 16)
PARAMETERS TO CHARACTERIZE ELEMENTS AVAILABLE IN THE HOST PROGRAM

DATA ISTORE

NO. TYPE. NCRD. NDOF. NODE. NSTR. NCHR. NINT. NLLV. NLAY. NCMP. NDI. NSHR. JLAW.

1/ 9, 3, 3, 2, 1, 6, 2, 0, 1, 1, 1, 0, 1,
2 3, 2, 2, 4, 3, 6, 4, 3, 1, 3, 2, 1, 2,
3 11, 2, 2, 4, 4, 6, 4, 3, 1, 4, 3, 1, 3,
4 10, 2, 2, 4, 4, 6, 4, 3, 1, 4, 3, 1, 4,
5 7, 3, 3, 8, 6, 6, 8, 3, 1, 6, 3, 3, 5,
6 75, 7, 6, 4, 9, 6, 4, 4, 5, 5, 2, 3, 6,
7 72, 7, 6, 4, 9, 6, 4, 4, 5, 5, 2, 3, 6,
8 98, 6, 6, 2, 6, 6, 1, 3, 1, 6, 3, 3, 7,
9 101, 2, 2, 9, 3, 6, 9, 3, 1, 3, 2, 1, 2,
1 102, 2, 2, 9, 4, 6, 9, 3, 1, 4, 3, 1, 3,
1 103, 2, 2, 9, 4, 6, 9, 3, 1, 4, 3, 1, 4,
2 104, 3, 3, 27, 6, 6, 27, 3, 1, 6, 3, 3, 5,
3 151, 2, 2, 4, 3, 6, 4, 3, 1, 3, 2, 1, 2,
4 152, 2, 2, 4, 4, 6, 4, 3, 1, 4, 3, 1, 3,
5 153, 2, 2, 4, 4, 6, 4, 3, 1, 4, 3, 1, 4,
6 154, 3, 3, 8, 6, 6, 8, 3, 1, 6, 3, 3, 7,

NO. TYPE. NCRD. NDOF. NODE. NSTR. NCHR. NINT. NLLV. NLAY. NCMP. NDI. NSHR. JLAW.

NTYPES = 16
JKEY = -1

FREE FORMAT READER FOR ELEMENT TYPE DEFINITION

CALL FPREOR(IWORK(ILAST+1),IWORK(ILAST+1),13,0,0,IERR,JKEY)

IF(JKEY .EQ. 1) GO TO 501
IF(NTYP .EQ. 0) GO TO 301

DO 201 J = 1 , NTYPE

K = ILAST + 1 - 13*J
IF(IWORK(ILAST + 1) .NE. IWORK(K)) GO TO 201
CALL COPYIN(IWORK(ILAST + 1),IWORK(K), 13)
As seen in the following example, the element data copied by the above subprogram is accessed every time the element loop is incremented:

CALL NUL(REA(IEQPSI), NELLAY*NELNOD)
CALL NUL(REA(IIPSNO), NELCMP*NELLAY*NELNOD)
C >>> START THE FIRST ELEMENT LOOP >>>_peer_88riod
C IERR ERROR FLAG
C
C **
C
C IMPLICIT REAL*8 (A-H, O-Z)
REAL*4 R_3RK
C
C **
C
C DIMENSION IWORK(I)
C
C **
C
/ ALGEM / ICREAD, IPRINT, JPRINT, ICONST, IPOSTF, ISGRAF,
1 IPOSTB, IPRINT, JPRINT, JRSET, IPOSTD, JPOST,
2 PI, LINE, LINE2
COMMON / CONTRO / JEND, JITER, JTEMP, JPRINT, JP, JSUB,
1 JINC, JRESET, JSAVE, JREDIM, JAUTO, JPOST,
2 JBACK, JOPTIM, JCREP, JDIST, JCONST, JDYN,
3 NONISO, JHERM, JTRIG, JIDYN, JREOR, JTBNG,
4 JHERM, JFORCE, JUTEMP, JCOEFF, JDISTS, JHOOK,
5 JDERIV, JBOUND, JSTOP, JINST, JPLST, JPLT,
6 JFRONT, JDEFOR, JMBED, ITEST, JDISP, IFBFGS,
7 IFSCNT, JFLINE, JPRINT, ICOMPS, IPCONJ, JECEN,
8 IFBODY, IFGRAV, IFCENT, JDAMP, LDYN, JSTAT,
9 JFDXX, JISTIF, JCEIM, JFINIT, JPLARGE, JPLOW,
+ JWKSLP, JPRSET, JCDUM2, JCDUM3
COMMON / ELTYP / NELCRD, NELNFR, NELNOD, NELSTR, NELCHR, NELPR,
1 NELINT, NELV, NELLAY, ND , NSHEAR, NELCM,
COMMON / START1 / IELPRM, IETYP, INEL, ICHAR, IPRES, ISTRS,
1 ISTRN, ICOOP, JPRINT, JPOST, JDIST, JLEAN,
2 IBRES, IGBNF, IDONIT, IST116, IST117, IST118
COMMON / PARAM / NTYPE, NELEM, NNODE, NBC, NTIE, NMAX,
1 NTRAN, NTRAC, NF, NBAND, NEXT, NSUB,
2 NPRINT, NPOST, NSBC, NDUP, NSIZE, NBSCET,
3 NSHIFT, NSAFCS, NSMP, NSPRU, NMAS, NDASH,
4 NDYNMD, NSBNC, NSUPR, NHRMN, NBASE, NINC,
5 NITER, NPSPIT, NPDFS, NPLS, NPPTS, NHARD,
6 NSUMCH, NDIMN, NMONT, NPAR40, NPAR41, NPAR42,
7 NPAR43, NPAR44, NPAR45, NPAR46, NPAR47, NPAR48
COMMON / ELEMEN / IC, IEL, IDF, JLAW, IPATH, JASSEM,
1 JRULE, JCRIT, JEL109, JEL110, JEL111, JEL112
C
C **
C
C
SYSTEMS' MANUAL MHOST Version 4.2
Page : 44
DO 5000 II = 1 , NTYPE

IF(II .EQ. ICI) GO TO 8000

5000 CONTINUE
 CALL LINES(1 , 1)
 WRITE(ILPRNT, 9999) ICI
 WRITE(ICONSL, 9999) ICI

9999 FORMAT(2X, 28H***ERROR*** ELEMENT TYPE,I5,12H NOT DEFINED)

C
C **
C IERR = IERR+1
C
C **
C
8000 CONTINUE
 IS1 = IELPRM + 13*(II - 1) + 1
 NELCRD = IWORK(IS1)
 NELNFR = IWORK(IS1+1)
 NELNOD = IWORK(IS1+2)
 NELSTR = IWORK(IS1+3)
 NELCHR = IWORK(IS1+4)
 NELINT = IWORK(IS1+5)
 NELPR = IWORK(IS1+6)
 NELLAY = IWORK(IS1+7)
 NELCMP = IWORK(IS1+8)
 NDI = IWORK(IS1+9)
 NSHEAR = IWORK(IS1+10)
 JLAW = IWORK(IS1+11)
 NELLV = NELNFR*NELNOD
 IDF = NELNFR*NELNOD

C
C **
C
C SPECIAL TREATMENT FOR THE NINE POINT INTEGRATION OF THE QUADRATIC
C LAGRANGIAN ELEMENTS (ONLY IN CASE OF MATRIX ASSEMBLY)
C
C IF (IASSEM .EQ. 0 .AND. NELINT .EQ. 9) NELINT = 4
C
C **
C
C IF (JPRINT .LT. 3 .OR. NBAND .EQ. 0) GO TO 9000
C
C CALL LINES(4, 4)
In the element loops, information related to the element being processed is pulled out from the global finite element database and substituted into the element work arrays. The following SUBROUTINE CNODEL is called before the element data manipulation:

SUBROUTINE CNODEL

1 (REA ,INT ,ISLV ,CTRANS,IEL ,IC ,IFLAG ,ISTEP)

EXTRACTS ELEMENT QUANTITIES AND UPDATES GEOMETRY

ISLV CONSTITUTIVE LAW VALUES

IEL POINTER TO ELEMENT NUMBER

IMPLICIT REAL*8 (A-H,O-Z)

REAL*4 REA

DIMENSION REA(1),INT(1),ISLV(1),CTRANS(3,3)

DIMENSION VTRANS(2,2),TTRANS(3,3),ETRANS(3,3)

COMMON / TMARCH / DALPHA, DBETA, D GAMMA

COMMON / ALGEM / IREAD,ILPRNT,JLPRNT,ICONSL,IPOSTF,ISCRAF,

1 IFLT,ISTRT,JCREAD,IPVARS,IPSETS,IFILEX,

2 PI ,LINE ,LINE2

COMMON / CONTRO / JEN D, JITER, JTEMP, JPRINT, JP , JSUB
C
KISTNO,KISTNO,KISNO,KIPSNO,KICSNO,KITSNO,
IMAISO,IMNOD,IEQPSI,IEQPSI,KEQPSI,KEQPSI,
KDMAT,KDMNO,KTDSNO,KITDST,IXM,IXC,
TVELM,TAELM,IMASEL,KYIELD,IST547,IST548,
IST649,IST650,IST651,IST652,IST653,IST654
COMMON / START7 / ICON,IKBCR,ITRACR,ITRANR,IBETA,IDET
COMMON / START8 / KGEPS,KIGEPS,KGSIG,KIGSIG,KITDST,
1 IGEPSN,OIGEN2,OIGEN2,OIGEN2,OIGEN2,
2 IGEPSN,OIGEN2,OIGEN2,OIGEN2,OIGEN2
COMMON / START9 / KEQCSI,KISNO,KISNO,KISNO,KISNO,KISNO,KISNO,KISNO,
1 KEQCSI,KISNO,KISNO,KISNO,KISNO,KISNO,KISNO,KISNO
COMMON / MACHIN / IDP

**
CALL SEARC1
1 (INT(IELV),INT(INLV),ISLV,MAXNFR,NNODE,1,NELNOD,NELNFR)
CALL SEARCH
1 (REA(ICOR),REA(INOD),ISLV,MAXCRD,NNODE,1,NELNOD,NELCRD)
CALL SEARCH
1 (REA(IKIRL),REA(IDTOD),INT(IELV),1,NFD,1,NELLV,1)
CALL SEARCH
1 (REA(IKIRL),REA(IDCINC),INT(IELV),1,NFD,1,NELLV,1)
CALL SEARCH
1 (REA(DKMNO),REA(IDMNO),ISLV,MAXST2,NNODE,1,NELNOD,NELST2)
CALL SEARCH
1 (REA(KGEPSN),REA(IGEPSN),ISLV,MAXSTR,NNODE,1,NELNOD,NELSTR)
CALL SEARCH
1 (REA(KISNO),REA(IISNO),ISLV,MAXSTR,NNODE,1,NELNOD,NELSTR)
CALL SEARCH
1 (REA(KISNO),REA(IISNO),ISLV,MAXSTR,NNODE,1,NELNOD,NELSTR)
CALL SEARCH
1 (REA(KISNO),REA(IISNO),ISLV,MAXSTR,NNODE,1,NELNOD,NELSTR)
CALL SEARCH

NELST2 = NELSTR * NELSTR
MAXST2 = MAXSTR * MAXSTR
IPP = IPRES + (IEL-1) * MAXPRS * IDP
MAXDIM = MAXCMP * MAXLAY
NELDIM = NELCMP * NELLAY

**
...

1 \text{(REA(KIDSNO), REA(ITDSNO), ISLV, MAXSTR, NNODE, 1, NELNOD, NELSTR)}
 CALL SEARCH
1 \text{(REA(KEQPSI), REA(IEQPSI), ISLV, 1, NNODE, 1, NELNOD, 1)}
 CALL SEARCH
1 \text{(REA(KEQST), REA(IEQST), ISLV, 1, NNODE, 1, NELNOD, 1)}
 CALL SEARCH
1 \text{(REA(KIPSNO), REA(IIPSNO), ISLV, MAXSTR, NNODE, 1, NELNOD, NELSTR)}
 CALL SEARCH
1 \text{(REA(KICSNO), REA(IICSNO), ISLV, MAXSTR, NNODE, 1, NELNOD, NELSTR)}
 CALL SEARCH
1 \text{(REA(KITSNO), REA(IITSNO), ISLV, MAXSTR, NNODE, 1, NELNOD, NELSTR)}
 CALL SEARCH
1 \text{(REA(KEQCSI), REA(IEQCSI), ISLV, 1, NNODE, 1, NELNOD, 1)}
 CALL SEARCH
1 \text{(REA(KIQMNO), REA(IIQMNO), ISLV, MAXSTR, NNODE, 1, NELNOD, NELSTR)}
 CALL SEARCH
1 \text{(REA(KSWIMNO), REA(ISWELL), ISLV, 1, NNODE, 1, NELNOD, 1)}
 CALL SEARCH
1 \text{(REA(KIMPNO), REA(ITEM), ISLV, 1, NNODE, 1, NELNOD, 1)}
 CALL SEARCH
1 \text{(REA(KIDFNO), REA(ITEMDF), ISLV, 1, NNODE, 1, NELNOD, 1)}
 CALL SEARCH
1 \text{(REA(KISTRS), REA(ICHAR), ISLV, MAXCHR, NNODE, 1, NELNOD, NELCHR)}

 \text{N3HARD = NHARD * 3}
1 \text{(REA(KYIELD), REA(IYIELD), ISLV, N3HARD, NNODE, 1, NELNOD, N3HARD)}
 CALL INTERP
1 \text{(REA(ICH) , REA(KISTRS), 1, NELNOD, NELCHR)}

D-MATRIX ROTATION FOR ANISOTROPIC MATERIALS

IF (NONISO .EQ. 1) CALL ROTDMT
1 \text{(REA(KDINO), REA(IPREF), ISLV, NELNOD, NELSTR, NNODE, NDI, NSHEAR)}

*** DYNAMIC CALCULATIONS: QUANTITIES ASSOCIATED WITH NODAL TIME DERIVATIVES

IF (IDYNM .EQ. 1 .AND. JDYN .EQ. 1) THEN

CALL SEARCH
1 \text{(REA(IAELM), REA(IDYNA), INT(IELV), 1, NFD, 1, NELLV, 1)}
 CALL SEARCH
1 \text{(REA(IVELM), REA(IDYNV), INT(IELV), 1, NFD, 1, NELLV, 1)}
END IF

**
IF(IC.EQ.75 .AND. JINC.LT.JLARGE) THEN

**
DO 90 I = 1 , NELNOD
CALL NUL (VTRANS, 4)
CALL NUL (TTRANS, 9)
CALL TSH04N(VTRANS,TTRANS,ETRANS,ETRANS,REA(ICOR),I,
* MAXCRD,NELNOD, SIGN,IFLAG)

I1= NELSTR * IDP *(I - 1)
CALL SHTRAN(REA(KGEPNO+I1),VTRANS,ETRANS,SIGN,NELSTR)
CALL SHTRAN(REA(KIGENO+I1),VTRANS,ETRANS,SIGN,NELSTR)
CALL SHTRAN(REA(KGSINO+I1),VTRANS,TTRANS,SIGN,NELSTR)
CALL SHTRAN(REA(KIGSNO+I1),VTRANS,TTRANS,SIGN,NELSTR)
CALL SHTRAN(REA(KGTDNO+I1),VTRANS,TTRANS,SIGN,NELSTR)
CALL SHTRAN(REA(KITDSNO+I1),VTRANS,TTRANS,SIGN,NELSTR)

DO 70 K = 1 ,MAXSTR
 K1= NELSTR * IDP *(NELSTR *(I - 1)+(K - 1))
 CALL SHTRAN(REA(KDMINO+K1),VTRANS,TTRANS,SIGN,NELSTR)
70 CONTINUE

I2= NELSTR * NELSTR * IDP *(I - 1)
CALL TRANSP(REA(KDMINO+I2),NELSTR)
CALL TRANSP(ETRANS,3)
CALL MATINV(ETRANS,3,3,ISW)

DO 80 J = 1 ,MAXSTR
 J1= NELSTR * IDP *(NELSTR *(I - 1)+(J - 1))
 CALL SHTRAN(REA(KDMINO+J1),VTRANS,ETRANS,SIGN,NELSTR)
80 CONTINUE

90 CONTINUE

**
ELSE IF (IC.EQ.98 .AND. JINC.LT.JLARGE) THEN

CALL TBM02N(CTRANS,REA(ICOR),MAXCRD,NELNOD)

ENDIF

IF(JINC.GE.JLARGE) THEN

UPDATE GEOMETRY FOR LARGE DEFORMATION ANALYSIS

BEGINNING OF INCREMENT (ISTEP = -1):

Xi = X0 + Ui

MID-INCREMENT (ISTEP = 0):

Xi+1/2 = X0 + Ui + 1/2*(si)*(Ui+1 - Ui)

END OF INCREMENT (ISTEP = 1):

Xi+1 = X0 + Ui + (si)*(Ui+1 - Ui)

HALF = 0.5D0
ONE = 1.0D0

IF(NDIMEN.EQ.MAXNFR) THEN
NUMBER OF COORDINATES IS EQUAL TO THE NUMBER OF DEGREES-OF-FREEDOM (CONTINUUM ELEMENTS)

COMPUTE GEOMETRY AT THE BEGINNING OF THE INCREMENT

CALL ADD(REA(ICOR),REA(ICOR),REA(IXRL),NDIMEN*NELNOD)

IF (ISTEP.EQ.0) THEN

COMPUTE HALF OF INCREMENTAL DISPLACEMENTS TO OBTAIN MID-INCREMENT GEOMETRY

CALL ADDSMU(REA(ICOR),ONE,REA(ICOR),HALF,REA(IXRL),
& NDIMEN*NELNOD)

ELSE IF (ISTEP.EQ.1) THEN

USE TOTAL INCREMENTAL DISPLACEMENTS TO OBTAIN END OF INCREMENT GEOMETRY

CALL ADD (REA(ICOR),REA(ICOR),REA(IXRL),NDIMEN*NELNOD)

ENDIF

ELSE IF (MAXNFR.GT.NDIMEN) THEN

NUMBER OF DEGREES-OF-FREEDOM IS GREATER THAN THE NUMBER OF COORDINATES (BEAM AND SHELL ELEMENTS)

DO 10000 I=1,NELNOD

IICOR = ICOR + (I-1)*NELCRD*IDP

SYSTEMS' MANUAL

MHOST Version 4.2

Page : 52
CALL ADD(REA(IICOR), REA(IICOR),
 REA(IIXRL), NDIMEN)

IF(ISTEP.EQ.0) THEN

 COMPUTE HALF OF INCREMENTAL DISPLACEMENTS TO OBTAIN MID-INCREMENT GEOMETRY

 CALL ADDSMU(REA(IICOR), ONE, REA(IICOR),
 HALF, REA(IIXRL), NDIMEN)

ELSE IF(ISTEP.EQ.1) THEN

 USE TOTAL INCREMENTAL DISPLACEMENTS TO OBTAIN END OF INCREMENT GEOMETRY

 CALL ADD(REA(IICOR), REA(IICOR),
 REA(IIXRL), NDIMEN)

ENDIF

CONTINUE

IF(IC.EQ.75) THEN

 UPDATE TRANSFORMATIONS

 DO 20000 I = 1, NELNOD
 CALL NUL (VTRANS, 4)
 20000 CONTINUE
CALL NUL (TTRANS, 9)
CALL TSH04N(VTRANS, TTRANS, ETRANS, CTRANS, REA(ICOR), I,
 & MAXCRD, NELNOD, SIGN, IFLAG)
C
 I1 = NELSTR * IDP *(I - 1)
C
CALL SHTRAN(REA(KGEPNO+I1),VTRANS, ETRANS, SIGN, NELSTR)
CALL SHTRAN(REA(KIGENO+I1),VTRANS, ETRANS, SIGN, NELSTR)
CALL SHTRAN(REA(KGSONO+I1),VTRANS, TTRANS, SIGN, NELSTR)
CALL SHTRAN(REA(KGIDNO+I1),VTRANS, TTRANS, SIGN, NELSTR)
CALL SHTRAN(REA(KGDDS+I1),VTRANS, TTRANS, SIGN, NELSTR)
C
DO 15000 K = 1 , MAXSTR
 K1 = NELSTR * IDP *(NELSTR * (I - 1) + (K - 1))
 CALL SHTRAN(REA(KDMI0+K1),VTRANS, TTRANS, SIGN, NELSTR)
15000 CONTINUE
C
 I2 = NELSTR * NELSTR * IDP *(I - 1)
C
CALL TRANS5(REA(KDMI0+I2), NELSTR)
CALL TRANS5(ETRANS, 3)
CALL MATINV(ETRANS, 3, 3, ISW)
C
DO 16000 J = 1 , MAXSTR
 J1 = NELSTR * IDP *(NELSTR * (I - 1) + (J - 1))
 CALL SHTRAN(REA(KDMI00+J1),VTRANS, ETRANS, SIGN, NELSTR)
16000 CONTINUE
C
20000 CONTINUE
C
ELSE IF(IC.EQ.98) THEN

 UPDATE BEAM TRANSFORMATION

END IF
C
ELSE IF(NDIMEN.GT.MAXNFR) THEN

 SOMETHING IS WRONG!!!!!!!!!!!

ENDIF
C

CALL QUIT('NO. ', 'DIME', 'NS ', 'GT. ', 'NO. ', 'DOF ', 0)

ENDIF

ENDIF

RETURN

Note that the coordinate transformations necessary for the shell elements take place in this subprogram.

The following subroutine INITI1 calculates pointers for the finite element database:

SUBROUTINE INITI1

1 (R WORK , IWORK , ISIZE)

**

ALLOCATES CORE FOR DATA INPUT AND zeroes OUT CORE

**

VARIABLES

IAEIM /START6/ ELEMENT ARRAY FOR NODAL ACCELERATION
IBASE /HARMON/ HARMONIC BASE MOTION Magnitude and PHASE
IBETA /START7/ ELEMENT BETA MATRIX
IBSECT /BSECT/ POINTER TO BEAM SECTION PROPERTY SETS
IBTLC /START5/ POINTER FOR THE LAST ADDRESS
ICH /START6/ ELEMENT MATERIAL PROPERTY ARRAY (LOCAL)
ICHAR /START1/ ELEMENT MATERIAL PROPERTY ARRAY (GLOBAL)
ICMFOR /HARMON/ POINTER TO THE COMPLEX MODAL FORCE
ICMRES /HARMON/ POINTER TO THE COMPLEX MODAL RESPONSE
ICNFOR /HARMON/ POINTER TO THE COMPLEX MODAL FORCE VECTOR
IconLT /START5/ POINTER TO ARRAY DEFINING THE LOCATIONS OF THE
ICROF /START7/ ELEMENT CONNECTIVITY ARRAY
ICOPI /START1/
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICOR</td>
<td>NODAL COORDINATE ARRAY</td>
</tr>
<tr>
<td>ICSTNO</td>
<td>NODAL CREEP STRAIN</td>
</tr>
<tr>
<td>IDASH</td>
<td>POINTER TO THE ADDED DASHPOT DAMPING VALUES</td>
</tr>
<tr>
<td>IDET</td>
<td>DETERMINANTS ARRAY AT INTEGRATION POINTS</td>
</tr>
<tr>
<td>IDFINC</td>
<td>INCREMENTAL DEFORMATION GRADIENT ARRAY</td>
</tr>
<tr>
<td>IDFTOT</td>
<td>TOTAL DEFORMATION GRADIENT ARRAY</td>
</tr>
<tr>
<td>IDIAG</td>
<td>POINTER TO DIAGONAL COMPONENTS OF GLOBAL STIFFNESS ARRAY STORED IN PROFILE FORM</td>
</tr>
<tr>
<td>IDINC</td>
<td>INCREMENTAL DISPLACEMENT ARRAY</td>
</tr>
<tr>
<td>IDINCPSI</td>
<td>INCREMENTAL DISPLACEMENT ARRAY</td>
</tr>
<tr>
<td>IDMNO</td>
<td>NODAL DMATRIX ARRAY ALLOCATION</td>
</tr>
<tr>
<td>IDP</td>
<td>WORD LENGTH (1 REAL WORD = IDP INTEGER WORD)</td>
</tr>
<tr>
<td>IDSTR</td>
<td>DISTRIBUTED LOAD INPUT ARRAY</td>
</tr>
<tr>
<td>IDX1</td>
<td>WORKING ARRAY FOR DYNAMICS</td>
</tr>
<tr>
<td>IDX2</td>
<td>WORKING ARRAY FOR DYNAMICS</td>
</tr>
<tr>
<td>IDTOT</td>
<td>TOTAL DISPLACEMENT VECTOR</td>
</tr>
<tr>
<td>IDUP</td>
<td>DUPLICATED NODE CONNECTIVITY</td>
</tr>
<tr>
<td>IDYNA</td>
<td>GLOBAL ACCELERATION ARRAY</td>
</tr>
<tr>
<td>IEQST</td>
<td>INCREMENTAL NODAL EQUIVALENT PLASTIC STRAIN BY LAYER</td>
</tr>
<tr>
<td>IEQPSI</td>
<td>INCREMENTAL NODAL EQUIVALENT PLASTIC STRAIN BY LAYER</td>
</tr>
<tr>
<td>IEQPSI</td>
<td>TOTAL NODAL EQUIVALENT PLASTIC STRAIN BY LAYER</td>
</tr>
<tr>
<td>IETM</td>
<td>TOTAL NODAL EQUIVALENT PLASTIC STRAIN BY LAYER</td>
</tr>
<tr>
<td>IEXT</td>
<td>TOTAL NODAL EQUIVALENT PLASTIC STRAIN BY LAYER</td>
</tr>
<tr>
<td>IFORCE</td>
<td>TOTAL NODAL EQUIVALENT PLASTIC STRAIN BY LAYER</td>
</tr>
<tr>
<td>IFORIN</td>
<td>TOTAL NODAL EQUIVALENT PLASTIC STRAIN BY LAYER</td>
</tr>
<tr>
<td>IFREQ</td>
<td>HIGH FREQUENCY BOUNDS FOR POWER SHIFT</td>
</tr>
<tr>
<td>IGEPSI</td>
<td>TOTAL GENERALIZED NODAL STRAIN COMPONENTS</td>
</tr>
<tr>
<td>IGNMS</td>
<td>TOTAL GENERALIZED NODAL STRESS COMPONENTS</td>
</tr>
<tr>
<td>IGSPNO</td>
<td>TOTAL GENERALIZED NODAL STRESS COMPONENTS</td>
</tr>
<tr>
<td>IGSTNO</td>
<td>TOTAL GENERALIZED NODAL STRESS COMPONENTS</td>
</tr>
<tr>
<td>IIHARM</td>
<td>HARMONIC NODAL FORCE MAGNITUDE AND PHASE</td>
</tr>
<tr>
<td>IIICSNO</td>
<td>INCREMENTAL GENERALIZED NODAL STRAIN COMPONENTS</td>
</tr>
<tr>
<td>IIGENO</td>
<td>INCREMENTAL GENERALIZED NODAL STRAIN COMPONENTS</td>
</tr>
<tr>
<td>IIGNO</td>
<td>INCREMENTAL GENERALIZED NODAL STRESS COMPONENTS</td>
</tr>
<tr>
<td>IIGNO</td>
<td>INCREMENTAL GENERALIZED NODAL STRESS COMPONENTS</td>
</tr>
<tr>
<td>IIOQNO</td>
<td>INCREMENTAL GENERALIZED NODAL STRESS COMPONENTS</td>
</tr>
<tr>
<td>IIPSNO</td>
<td>INCREMENTAL GENERALIZED NODAL BACKSTRESS (SHIFT TENSOR) COMPONENTS BY LAYER</td>
</tr>
<tr>
<td>IIPSNO</td>
<td>INCREMENTAL GENERALIZED NODAL BACKSTRESS (SHIFT TENSOR) COMPONENTS BY LAYER</td>
</tr>
<tr>
<td>IISNNO</td>
<td>INCREMENTAL GENERALIZED NODAL STRAIN COMPONENTS</td>
</tr>
<tr>
<td>IISNNO</td>
<td>FOR SHELL ELEMENTS BY LAYER</td>
</tr>
<tr>
<td>IISSINO</td>
<td>INCREMENTAL GENERALIZED NODAL STRESS COMPONENTS</td>
</tr>
<tr>
<td>IISSINO</td>
<td>INCREMENTAL GENERALIZED NODAL STRESS COMPONENTS</td>
</tr>
</tbody>
</table>
FOR SHELL ELEMENTS BY LAYER
INCREMENTAL THERMAL STRAIN AT NODES
POINTER FOR THE BOUNDARY CONSTRAINTS
POINTER FOR THE BOUNDARY CONSTRAINT BUFFER
LAST ADDRESS USED IN THE WORKING AREA
LINEPRINTER ID. NUMBER
POINTER TO DIAGONAL COMPONENTS OF GLOBAL
CONSISTENT MASS ARRAY STORED IN PROFILE FORM
NODAL ARRAY FOR LUMPED MASS MATRIX
POINTER TO THE ADDED MASS VALUES
POINTER TO UPPER TRIANGULAR PART OF GLOBAL
CONSISTENT MASS ARRAY STORED IN PROFILE FORM
PERIODIC DISPLACEMENT INPUT ARRAY
ELEMENT CONNECTIVITY
PERIODIC NODAL FORCE INPUT ARRAY
TOTAL NODAL BACKSTRESS (SHIFT TENSOR) COMPONENTS
BY LAYER
PERIODIC DISPLACEMENT PERIOD ARRAY
PERIODIC NODAL FORCE PERIOD ARRAY
FLAG FOR POST FILE GENERATION
FLAG FOR PRESSURE LOADING
FLAG FOR PRINT OPTION BUFFER
TOTAL NODAL PLASTIC STRAIN COMPONENTS
BY LAYER
NODAL EACTION FORCE ARRAY
NODAL RESIDUAL FORCE ARRAY
STRESS BOUNDARY CONDITION INDEX ARRAY
STRESS BOUNDARY CONDITION INPUT BUFFER
POINTER FOR THE LIST OF POWER SHIFT POINTS
NODAL TOTAL STRESS ARRAY
TOTAL NODAL STRESS COMPONENTS FOR
SHELL ELEMENTS BY LAYER
SIZE PARAMETER FOR THE CURRENT WORKING STORAGE
POINTER TO THE ADDED SPRING STIFFNESSES
POINTER FOR NODAL FORCE INTEGER VALUES
POINTER FOR NODAL FORCE REAL VALUES
POINTER ARRAY FOR NODAL TRANSFORMATION
NODAL COORDINATE TRANSFORMATION BUFFER
THERMAL STRAIN (TOTAL) AT NODES
STIFFNESS ARRAY STORED IN PROFILE FORM
NO LONGER USED IN VERSION 1.7 OR UP
HARMONIC BASE MOTION NODE AND D.O.F. LIST
POINTER TO NODAL LIST OF BEAM SECTIONS
POINTER TO THE LIST OF D.O.F. WITH ADDED DAMPING
ELEMENT WORK AREA FOR GENERALIZED INITIAL STRESS
GENERALIZED INITIAL STRESS AT INTEGRATION POINTS
HARMONIC NODAL LOAD NODE AND D.O.F. LIST
ELEMENT WORK AREA FOR CREEP STRAIN INCREMENT
CREEP STRAIN INCREMENT AT INTEGRATION POINTS
ELEMENT WORK AREA FOR GENERALIZED STRAIN
GENERALIZED STRAIN AT INTEGRATION POINTS
GENERALIZED STRESS AT INTEGRATION POINTS

SYSTEMS' MANUAL
Page : 58
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIGSNO</td>
<td>ELEMENT WORK AREA FOR GENERALIZED STRESS</td>
</tr>
<tr>
<td>KIPSMO</td>
<td>ELEMENT WORK AREA FOR INCREMENTAL PLASTIC STRAIN</td>
</tr>
<tr>
<td>KIPSTR</td>
<td>INC.PLASTIC STRAIN AT INTEGRATION POINTS</td>
</tr>
<tr>
<td>KISNNO</td>
<td>ELEMENT WORK AREA FOR INC. STRAIN</td>
</tr>
<tr>
<td>KISTNO</td>
<td>ELEMENT WORK AREA FOR INC. STRESS</td>
</tr>
<tr>
<td>KISTRN</td>
<td>INC. STRAIN AT INTEGRATION POINTS</td>
</tr>
<tr>
<td>KISTRS</td>
<td>INC. STRESS AT INTEGRATION POINTS</td>
</tr>
<tr>
<td>KITISMO</td>
<td>ELEMENT WORK AREA FOR INC. THERMAL STRAIN</td>
</tr>
<tr>
<td>KITSTRI</td>
<td>INC. THERMAL STRAIN AT INTEGRATION POINTS</td>
</tr>
<tr>
<td>KMASS</td>
<td>ADDVAL. POINTER TO THE LIST OF D.O.F. WITH ADDED MASS</td>
</tr>
<tr>
<td>KPSNTO</td>
<td>ELEMENT WORK AREA FOR PLASTIC STRAIN</td>
</tr>
<tr>
<td>KPSRTN</td>
<td>PLASTIC STRAIN AT INTEGRATION POINTS</td>
</tr>
<tr>
<td>KSHIFT</td>
<td>SHIFT. POINTER FOR THE NUMBER OF MODES ON EACH SHIFT</td>
</tr>
<tr>
<td>KSBSPI</td>
<td>ADDVAL. POINTER TO THE LIST OF D.O.F. WITH ADDED STIFFNESS</td>
</tr>
<tr>
<td>KIDSSN</td>
<td></td>
</tr>
<tr>
<td>KISTTSN</td>
<td></td>
</tr>
<tr>
<td>KISTSTRN</td>
<td></td>
</tr>
<tr>
<td>LFRSEQ</td>
<td>SHIFT. LOW FREQUENCY BOUNDS FOR POWER SHIFT</td>
</tr>
<tr>
<td>MAXBET</td>
<td>STACK</td>
</tr>
<tr>
<td>MAXBSP</td>
<td>MAXIMA. MAXIMUM NUMBER OF BEAM SECTION PROPERTIES</td>
</tr>
<tr>
<td>MAXCHR</td>
<td>MAXIMA.</td>
</tr>
<tr>
<td>MAXCMP</td>
<td>MAXIMA.</td>
</tr>
<tr>
<td>MAXCRD</td>
<td>MAXIMA.</td>
</tr>
<tr>
<td>MAXDMT</td>
<td>STACK</td>
</tr>
<tr>
<td>MAXINT</td>
<td>MAXIMA. MAXIMUM NUMBER OF INTEGRATION POINTS / ELEMENT</td>
</tr>
<tr>
<td>MAXLAY</td>
<td>MAXIMA. MAXIMUM NUMBER OF INTEGRATION LAYERS / ELEMENT</td>
</tr>
<tr>
<td>MAXNFR</td>
<td>MAXIMA. MAXIMUM NUMBER OF NODAL D.O.F. / NODE</td>
</tr>
<tr>
<td>MAXNLV</td>
<td>MAXIMA.</td>
</tr>
<tr>
<td>MAXNOD</td>
<td>MAXIMA. MAXIMUM NUMBER OF NODES / ELEMENT</td>
</tr>
<tr>
<td>MAXPRJ</td>
<td>MAXIMA. MAXIMUM NUMBER OF DIST. LOAD ENTRIES / ELEMENT</td>
</tr>
<tr>
<td>MAXXTR</td>
<td>MAXIMA. MAXIMUM NUMBER OF STRESS COMPONENTS / NODE</td>
</tr>
<tr>
<td>MAXWRK</td>
<td>MAXIMA.</td>
</tr>
<tr>
<td>NBASE</td>
<td>PARAM. NUMBER OF D.O.F. WITH HARMONIC BASE MOTION IMPOSED</td>
</tr>
<tr>
<td>NBC</td>
<td>PARAM. NUMBER OF BOUNDARY CONDITIONS</td>
</tr>
<tr>
<td>NBSCT</td>
<td>PARAM. NUMBER OF BEAM SECTION PROPERTY SETS</td>
</tr>
<tr>
<td>NDASH</td>
<td>PARAM. NUMBER OF D.O.F. WITH ADDED DAMPING</td>
</tr>
<tr>
<td>NDUP</td>
<td>PARAM. NUMBER OF DUPLICATED NODAL POINTS</td>
</tr>
<tr>
<td>NELEM</td>
<td>PARAM. TOTAL NUMBER OF ELEMENTS</td>
</tr>
<tr>
<td>NEXT</td>
<td>PARAM. NOT USED IN VERSION 2.0</td>
</tr>
<tr>
<td>NFOUNDS</td>
<td>SHIFT. NUMBER OF EIGENVALUES/EIGENVECTORS FOUND IN P-SHIFT</td>
</tr>
<tr>
<td>NFRRSUB</td>
<td>SUBSTR. NOT USED IN VERSION 2.0</td>
</tr>
<tr>
<td>NHARM</td>
<td>PARAM. NUMBER OF D.O.F. WITH HARMONIC NODAL FORCES APPLIED</td>
</tr>
<tr>
<td>NLIUSUB</td>
<td>SUBSTR. NOT USED IN VERSION 2.0</td>
</tr>
<tr>
<td>NMASS</td>
<td>PARAM. NUMBER OF D.O.F. WITH ADDED MASS</td>
</tr>
<tr>
<td>NMAX</td>
<td>PARAM.</td>
</tr>
</tbody>
</table>
C NNODE /PARAM/ NUMBER OF NODE IN THE MESH
C NOFFST /SHIFT/ NUMBER OF OFFSETS FOR NEW EIGENVALUES/EIGENVECTORS
C NPRINT /PARAM/ NUMBER OF PRINT OPTIONS
C NSBC /PARAM/ NUMBER OF STRESS BOUNDARY CONDITIONS
C NSBNC /PARAM/
C NSHIFT /PARAM/ NUMBER OF POINTS FOR POWER SHIFT
C NSPRI /PARAM/ NUMBER OF D.O.F. WITH ADDED STIFFNESS
C NSUB /PARAM/ NOT USED IN VERSION 1.7 AND UP
C NSUMAX /MAXIMA/ NOT USED IN VERSION 1.7 AND UP
C NSUMCH /PARAM/ SUM OF PROFILE COLUMN HEIGHTS FOR UPPER
C NTIE /PARAM/ TRIANGULAR PART OF GLOBAL ARRAY STORED IN PROFILE FORM
C NTRAC /PARAM/ NUMBER OF TYING CONSTRAINT DATA SETS
C NTRAN /PARAM/ NUMBER OF NODAL FORCE VECTOR INPUT
C NTYPE /PARAM/ NUMBER OF NODAL COORDINATE TRANSFORMATION DATA
C _IHARM _/HARMON/ FREQUENCY OF EXCITATION FOR HARMONIC BASE MOTION
C _IHARM /HARMON/ FREQUENCY OF EXCITATION FOR HARMONIC NODAL LOADS
C
C***
C
C IMPLICIT REAL*8 (A-H,O-Z)
C REAL*4 WORK
C
C *** -1- ***
C
C COMMON / ADDVAL / ISPRI ,KSPRI ,IDASH ,KDASH ,IMASS ,KMASS
C COMMON / ALGEM / ICREAD ,ILPRNT ,JLPRNT ,ICONSL ,IPOSTF ,ISCRAF ,
C 1 IPRINT ,ISTRT ,JCREAD ,IPVARS ,IPSETS ,IFILEX ,
C 2 PI ,LINE ,LINE2
C COMMON / CONTRO / JEND ,JITER ,JTEMP ,JPRINT ,JP ,JSUB ,
C 1 JINC ,JREST ,JSAVE ,JREDIM ,JAUTO ,JPOST ,
C 2 JBACK ,JOPTIM ,JCREEP ,JDIST ,JCONST ,JDYN ,
C 3 NONISO ,IOTHERM ,ITRIG ,IDYN ,JREPOT ,JTANG ,
C 4 JOTHERM ,JFORCE ,JUTEMP ,JUCOF ,JDISTS ,JHUOK ,
C 5 JDERIV ,JUBOUN ,IDSTOP ,INSTR ,JPLAST ,J_BAND ,
C 6 JFRONT ,JDEPOL ,JEMBED ,ITEST ,JDISP ,JBFPS ,
C 7 IPSCNT ,ILINE ,IPPRNT ,ICOMPS ,IPCONJ ,JEIGEN ,
C 8 IFBODY ,IFGRAV ,IPCENT ,J农贸 ,J_DYN ,JISTAT ,
C 9 JFSKXX ,JISTIF ,JCEIM ,JFINIT ,J_LARGE ,JFOLON ,
C + JWORKL ,JPRES ,JCNUM2 ,JCNUM3
C COMMON / DAMP / DAMPF(3)
C COMMON / EIGEN / IEQNC ,IGNMS ,IOMEG ,IMENO ,IDYNMD ,ISTR2 ,
C 1 IPTAR ,IPTBR ,IPTVEF ,IMSAM ,IOMEG
C COMMON / MODSUP / IMPOR0 ,IMDIS0 ,IMVLO ,IMPOR1 ,IMDIS1 ,IMVEL1
C COMMON / HARMON / OMEG ,IHARM ,KHARM ,OMEGB ,IBASE ,KBASE ,

SYSTEMS' MANUAL

MHOST Version 4.2

Page: 60
COMMON / PERPAR / IPTYPE(32),NPTYPE,NPVAR, NPSET, JPERT , NESSUS
COMMON / PERPTR / IMEANS,ISTDEV, IPDATA, IVTYPE, ISKIP ,IREDEF, NESSUS
COMMON / PERDAT / IXCOORD, IXCHAR, IXFORCE, KXFORC, KXDIST, XDIST, NESSUS
COMMON / POWER / IPEBP, ISPP, ISFF, ISQQ, ICQQ ,IITM , NESSUS
COMMON / PULSES / IPULSE, KPULSE, IPDTIM, IPDPOR
COMMON / MAXIMA / MAXCXR, MAXNFR, MAXNO, MAXSTR, MAXCHR, MAXPR,
1 MAXLAY, MAXINT, MAXWRK, MAXLV, NSUMAX, MAXCMP,
2 MAXBSP, MAXGMR, MAXTEM, MAXBOL, MAXRM, MAXLM ,
3 MAXFRN, MAXBET, MAXVAR, MAXSET, MAXEAN, MAXORD,
4 MAX025, MAX026, MAX027, MAX028, MAX029, MAX030
COMMON / PARAM / NTYPE, NELEM, NNODE, NBC, NTIE ,NMAX , NESSUS
1 NTRAN, NTRAC, NPD, NBAND, NEXT, NSUB , NESSUS
2 NPRINT, NPOST, NSBC, NDUP, NSIZE, NSBECT , NESSUS
3 NSHIFT, NSPIGS, NSPI, NSPRI, NMASS, NDASH , NESSUS
4 NDYMD, NSENC, NSUPER, NHARM, NSBASE, NINC , NESSUS
5 NTOT, NPSPTS, NPPTS, NPULSE, NP0PTS, NHARD , NESSUS
6 NSUMCH, NDIMEN, NMONIT, NP40, NP41, NP42 , NESSUS
7 NP43, NP44, NP45, NP46, NP47, NP48
COMMON / TMARCH / DALPHA, DBETA, DGAMMA
COMMON / PERIOD / JPEROD(2), IPDISP, IPFORCE, INDISP, INFORCE
COMMON / SUBELM / ISUBEL, ISUBNP, ISUBPT, NSDATA, ISUBTY, ISUBED
COMMON / SHIFT / ISHIFT, KSHIFT, IFREQ, LSHIFT, NOFFST, NFIND
COMMON / SUBTYP / NSURCH, NSUNFR, NSUNOD, NSUNSTR, NSUCR, NSUPR ,
1 NSUNIT, NSULV, NSUTEM, NSUNDI, NSUSHR, NSUIDF
COMMON / BSECT / IBSECT, KBSECT
COMMON / START1 / IELPRM, ITP, INEL, ICHAR, IPRES, ISTRS ,
1 ISTRN, ICP, IPRINT, IPPOST, DIST, ILEAN ,
2 IBPRES, IBNORM, IMONIT, IST116, IST117, IST118
COMMON / START2 / INOD, ITEM, INLV, IPOSU, ITEMDF, IDUP
COMMON / START3 / IBC, ITR, ITRAN, ITAY, IEXT ,
1 ISBC, ISBRC
COMMON / START4 / IDINC, IDINT, IFORCE, IRESID, IWINOD, ISIGNO ,
1 IEMPSO, IEPSTN, ICSTRN, IISTRN, IISTRS, IISTRN ,
2 IIIPSTR, IIICSTR, ITTSTR, ITPSNO, ICTSNO, IITSTNO ,
3 IISTNO, IISNNO, IIPSNO, IICSNO, IITSNO, IDMAT ,
4 IIMINO, IEQCST, IMOENO, IIOMNO, ITDSNO, IVSWIO ,

SYSTEMS' MANUAL

MHOST Version 4.2

Page : 61
DIMENSION RWORK (ISIZE), IWORK (ISIZE)

DIMENSION YIELDC(3)

*** -2- **

MAXCRD = 1
MAXNFR = 2
MAXNOD = 1
MAXSTR = 1
MAXCHR = 1
MAXINT = 2
MAXPRS = 1
MAXLAY = 1
MAXMET = 1
MAXWRK = 1
MAXDMT = 1

**
MAXNLV = 1
MAXCMP = 1
MAXBSP = 6
MAXLWK = 1

MAXELM = NELEM + NDUP + NTIE

YIELDC(1) = 1.00D+36
YIELDC(2) = 0.00D+00
YIELDC(3) = 0.00D+00

**

MAXNLV = NSUMAX
IELPRM = 1

IF(NTYPE.EQ.0) GO TO 2

**

DO 1 I = 1 ,NTYPE
 IC = I
 IS1 = IELPRM + (IC-1)*13 + 1

1 IF (MAXCRD.LT.IWORK(IS1)) MAXCRD = IWORK(IS1)
 IF (MAXNFR.LT.IWORK(IS1+1)) MAXNFR = IWORK(IS1+1)
 IF (MAXNOD.LT.IWORK(IS1+2)) MAXNOD = IWORK(IS1+2)
 IF (MAXSTR.LT.IWORK(IS1+3)) MAXSTR = IWORK(IS1+3)
 IF (MAXCHR.LT.IWORK(IS1+4)) MAXCHR = IWORK(IS1+4)
 IF (MAXINT.LT.IWORK(IS1+5)) MAXINT = IWORK(IS1+5)
 IF (MAXPRS.LT.IWORK(IS1+6)) MAXPRS = IWORK(IS1+6)
 IF (MAXLAY.LT.IWORK(IS1+7)) MAXLAY = IWORK(IS1+7)
 IF (MAXCMP.LT.IWORK(IS1+8)) MAXCMP = IWORK(IS1+8)
 MWRK = IWORK(IS1+3)* MAXINT
 IF (MAXWRK.LT.MWRK) MAXWRK = MWRK
 MNLV = IWORK(IS1+1)*IWORK(IS1+2)
 IF (MAXNLV.LT.MNLV) MAXNLV = MNLV
 MWBE = IWORK(IS1+1)*IWORK(IS1+2)
 * IWORK(IS1+3)* MAXINT
 IF (MWBE.GT.MAXBET) MAXBET = MWBE
 MLWK = MAXINT *IWORK(IS1+7)
 * IWORK(IS1+8)
 IF (MAXLWK.LT.MLWK) MAXLWK = MLWK
 MDMT = IWORK(IS1+3)*IWORK(IS1+3)
IF(MDMT.GT.MAXDMT) MAXDMT = MDMT

*** CORE ALLOCATION FOR BEAM SECTION PROPERTY SETS ***

IF (NBSECT .EQ. 0) GO TO 110

IBSEC9 = IIAST
KBSEC9 = IBSEC9 + NBSECT * MAXBSP * IDP
ILAST = KBSEC9 + NBSECT

IF (IIAST.EQ.2*(IIAST/2)) IIAST = IIAST + 1

110 CONTINUE

*** CORE ALLOCATION FOR POWER SHIFT IN EIGEN ANALYSIS ***

IF (NSHIFT .EQ. 0) GO TO 120

ISHEF = IIAST
IFREQ = ISHEF + NSHIFT * IDP
LFREQ = IFREQ + NSHIFT * IDP
KSHIF = LFREQ + NSHIFT * IDP
ILAST = KSHIF + NSHIFT
IF (ILAST.EQ.2*(ILAST/2)) ILAST = ILAST + 1

CONTINUE

**
*** CORE ALLOCATION FOR ADDED STIFFNESS, DAMPING AND MASS ***
**

IF (NSPRI .EQ. 0) GO TO 132

ISPRI = IIAST
KSPRI = ISPRI + NSPRI * IDP
ILAST = KSPRI + NSPRI * 2

IF (ILAST.EQ.2*(ILAST/2)) ILAST = ILAST + 1

CONTINUE

IF (NDASH .EQ. 0) GO TO 134

IDASH = IIAST
KDASH = IDASH + NDASH * IDP
ILAST = KDASH + NDASH * 2

IF (ILAST.EQ.2*(ILAST/2)) ILAST = ILAST + 1

CONTINUE

IF (NMASS .EQ. 0) GO TO 136

IMASS = IIAST
KMASS = IMASS + NMASS * IDP
IIAST = KMASS + NMASS * 2

IF (IIAST.EQ.2*(IIAST/2)) ILAST = IIAST + 1

CONTINUE

**
*** CORE ALLOCATION FOR PULSE LOAD DEFINITION ***
**

IF(NPULSE .EQ. 0) GO TO 138

IPDTIM = IIAST
IPDFOR = IPDTIM + NPDPTS * IDP
IPULSE = IPDFOR + NPDPTS * IDP
KPULSE = IPULSE + NPULSE * 2 * IDP
IIAST = KPULSE + NPULSE * 2

IF (IIAST .EQ. 2*(IIAST/2)) ILAST = ILAST + 1

138 CONTINUE

C **
C CORE ALLOCATION FOR FLAGS AND COUNTERS ASSOCIATED WITH EACH GLOBAL
C ELEMENT FOR THE TREATMENT OF EMBEDDED SINGULARITIES BY MEANS OF
C SUBELEMENT MESH REPRESENTATIONS
C **

IF (JEMBED .GT. 0)

IEMBED = ILAST
IF(JEMBED .GT. 0) IEMBED = ILAST + NELEM
ISUBEL = IEMBED
IF(JEMBED .GT. 0) ISUBEL = IEMBED + NELEM
ISUBNP = ISUBEL
IF(JEMBED .GT. 0) ISUBNP = ISUBEL + NELEM
ISUBPT = ISUBNP
IF(JEMBED .GT. 0) ISUBPT = ISUBNP + NELEM
ISUBTY = ISUBPT

NSDATA = 34

IF(JEMBED .GT. 0) ISUBTY = ISUBPT + NELEM * NSDATA

C **
C *** CORE ALLOCATION FOR ELEMENT INTEGRATION POINT WORKING ARRAYS ****
C **

ICHAR = ISUBTY + MAXEI/

IF (ICHAR.EQ.2*(ICHAR/2)) ICHAR = ICHAR + 1
IPRES = ICHAR + MAXCHR * NNODE * IDP
ISIG = IPRES + 2 * MAXPRS * NNODE * IDP
IEPS = ISIG + MAXLWK * IDP
KPSTRN = IEPS + MAXLWK * IDP
KCSTRN = KPSTRN + MAXLWK * IDP
KTSTRN = KCSTRN + MAXLWK * IDP
KDMAT = KTSTRN + MAXLWK * IDP
KEEPS = KDMAT + MAXDMT * IDP
KIGEPS = KEGEPS + MAXWRK * IDP
KIGSIG = KIGSIG + MAXWRK * IDP
KGRST = KGRST + MAXWRK * IDP
KISTRS = KISTRS + MAXWRK * IDP

MHOST Version 4.2
ILAST = KISTS + MAXCHR * IDP * MAXNOD

IPRINT = ILAST
IMONIT = IPRINT + 12 * NPRINT
IPPOST = IMONIT + 4 * NMONIT
ILAST = IPOST
IF (ILAST.EQ.2*(ILAST/2)) ILAST = ILAST + 1

**
C *** CORE _IC_ FOR NODAL QUANTITIES ***
**

INOD = ILAST
IWINDO = INOD + MAXCRD * NNODE * IDP
IWBRES = IWINDO + NNODE * IDP
IWBNORM = IWBRES + JPRES * NNODE * IDP
ISIGNO = IWBNORM + JPRES * NNODE * IDP
IEPSNO = ISIGNO + MAXCMP * NNODE * IDP
IPSTNO = IEPSNO + MAXCMP * NNODE * IDP
ICSTNO = IPSTNO + MAXCMP * NNODE * IDP
ITSTNO = ICSTNO + MAXCMP * NNODE * IDP
IITSNO = ITSTNO + MAXCMP * NNODE * IDP
IISSNO = IITSNO + MAXCMP * NNODE * IDP
IIIPSNO = IISSNO + MAXCMP * NNODE * IDP
IIICSNO = IIIPSNO + MAXCMP * NNODE * IDP
IIITSNO = IIICSNO + MAXCMP * NNODE * IDP
IIIDNO = IIITSNO + MAXCMP * NNODE * IDP
IIIDSNO = IIIDNO + MAXCMP * NNODE * IDP
IIGENO = IIIDSNO + MAXSTR * NNODE * IDP
IIGSNO = IIGENO + MAXSTR * NNODE * IDP
IIGSNO = IIGSNO + MAXSTR * NNODE * IDP
IIGIDNO = IIGSNO + MAXSTR * NNODE * IDP
IIGIDNO = IIGIDNO + MAXSTR * NNODE * IDP
IPREF = IIGIDNO + MAXSTR * MAXSTR * NNODE * IDP
IYIELD = IPREF + NNODE * 3 * NONISO * IDP
IMASNO = IYIELD + NNODE * 3 * NHARD * IDP

**
C ***
**

IEQPSI = IMASNO + NNODE * IDP
IEQPSI = IEQPSI + NNODE * IDP * MAXLAY
IEQPSI = IEQPSI + NNODE * IDP * MAXLAY
IEQPSI = IEQPSI + NNODE * IDP * MAXLAY
IEQPSI = IEQPSI + NNODE * IDP * MAXLAY
IVSWTO = IEQPSI + NNODE * IDP * MAXLAY
ISWELL = IVSWTO + NNODE * IDP * MAXLAY
ITEM = ISWELL + NNODE * IDP * MAXLAY
ITEMDF = ITEM + NNODE * IDP * MAXLAY
INLV = ITEMDF + NNODE * IDP * MAXLAY

IF(JLARGE.NE.999999) THEN

LARGE DEFORMATION ANALYSIS

IDFTOT = INLV + NNODE*MAXNFR
IDFINC = IDFTOT + NNODE*NDIMEN*NDIMEN*IDP
ILAST = IDFINC + NNODE*NDIMEN*NDIMEN*IDP

ELSE

SMALL DEFORMATION ANALYSIS

ILAST = INLV + NNODE*MAXNFR

ENDIF

*** ALLOCATE STORAGE FOR BOUNDARY CONDITIONS ***

IKBC = ILAST
IKBCR = IKBC + 3 * NBC
IF (IKBCR.EQ.2*(IKBCR/2)) IKBCR= IKBCR+1

IEXT = IKBCR + NBC * IDP
ITI = IEXT + 3 * NEXT
ITR = ITI + 3 * NTIE * (NMAX+1)
IF (ITR.EQ.2*(ITR/2)) ITR = ITR + 1

ITRAN = ITR + NTIE * NMAX * IDP
ITRANR = ITRAN + 3 * NTRAN
IF (ITRANR.EQ.2*(ITRANR/2)) ITRANR= ITRANR+1

ITRAC = ITRANR + NTRAN * IDP
ITRACR = ITRAC + 4 * NTRAC
IF (ITRACR.EQ.2*(ITRACR/2)) ITRACR= ITRACR+1

ISBC = ITRACR + 2 * NTRAC * IDP
ISBCR = ISBC + 2 * NSBC
IF (ISBCR.EQ.2*(ISBCR/2)) ISBCR = ISBCR + 1
ILAST = ISBCR + NSBC * IDP

IDUP = ILAST
ILAST = IDUP + 2 * NDUP
IF (ILAST.EQ.2*(ILAST/2)) ILAST = ILAST + 1

*** IF HARMONIC (COMPLEX) NODAL LOADS ARE SPECIFIED, ADD... ************

IHARM = ILAST
KHARM = IHARM + 2 * NHARM * IDP
ILAST = KHARM + 2 * NHARM
IF (ILAST.EQ.2*(ILAST/2)) ILAST = ILAST + 1

*** IF HARMONIC (COMPLEX) BASE EXCITATIONS ARE SPECIFIED, ADD... *****

IBASE = ILAST
KBASE = IBASE + 2 * NBASE * IDP
ILAST = KBASE + 2 * NBASE
IF (IIAST.EQ.2*(IIAST/2)) IIAST = IIAST + 1

I_S = ILAST
ICMEG = I6_S + 2 * NSBNC * IDP
IIAST = ICMEG + 2 * NSBNC * IDP

SYSTEMS' MANUAL
Page : 69
ICMFOR = ILAST
ICMRES = ICMFOR + 2 * NSUPER * IDP
ICHHFN = ICMRES + 2 * NSUPER * IDP
ICBHFN = ICHHFN + 2 * NSUPER * IDP
ICCMAT = ICBHFN + 2 * NSUPER * IDP
ICBEXC = ICCMAT + 2 * NBASE * IDP * 2 * NBASE * IDP
ILAST = ICBEXC + 2 * NBASE * IDP

_180 CONTINUE

C **
C *** CORE ALLOCATION FOR FREQUENCY DOMAIN ANALYSIS ***
C **

IF (LDYN .NE. 4) GO TO 280

IMDAM = ILAST
IHFN = IMDAM + NSUPER * IDP
IHFC = IHFN + NSUPER * 2 * IDP
IPSF = IHFC + NSUPER * 2 * IDP
IPSD = IPSF + NPSPTS * IDP
IFBP = IPSD + NPSPTS * IDP
ISPP = IFBP + NFPPTS * IDP
ISFF = ISPP + NSUPER * NSUPER * IDP
ISQQ = ISFF + NSUPER * NSUPER * IDP
ICQQ = ISQQ + NSUPER * NSUPER * IDP * 2
ISIGMO = ICQQ + NSUPER * NSUPER * IDP * 2
IEPSMO = ISIGMO + NSUPER * NNODE * IDP * MAXCMP * MAXLAY
IELPHI = IEP5MO + NSUPER * NNODE * IDP * MAXCMP * MAXLAY
IELTNM = IELPHI + MAXNOD * IDP * MAXNFR
ITNM = IELTNM + MAXNOD * IDP
ILAST = ITNM + NSUPER * NNODE * IDP

280 CONTINUE

C **
C *** CORE ALLOCATION FOR ELEMENT NODE WORKING STORAGE ***
C **

ICOLPT = ILAST
IELV = ICOLPT + MAXNFR*NNODE
ICOR = IELV + MAXNLV
IF (ICOR.EQ.2*(ICOR/2)) ICOR= ICOR+1

IETM = ICOR + MAXNOD * MAXCRD * IDP
ICH = IETM + MAXLAY * MAXNOD * IDP
IPP = ICH + MAXCHR * IDP
IWINOD = IPP + MAXPRS * IDP
ISNOD = IWINOD + MAXNOD * NNODE
IF(ISNOD.EQ.2*(ISNOD/2)) ISNOD = ISNOD + 1
IENOD = ISNOD + MAXCMP * MAXNOD * IDP * MAXLAY
KPSTNO = IENOD + MAXCMP * MAXNOD * IDP * MAXLAY
KSTNO = KPSTNO + MAXCMP * MAXNOD * IDP * MAXLAY
KSTNO = KSTNO + MAXCMP * MAXNOD * IDP * MAXLAY
KIPSNO = KSTNO + MAXCMP * MAXNOD * IDP * MAXLAY
KICSNO = KIPSNO + MAXCMP * MAXNOD * IDP * MAXLAY
KITSNO = KICSNO + MAXCMP * MAXNOD * IDP * MAXLAY
KIDSNO = KITSNO + MAXCMP * MAXNOD * IDP * MAXLAY
KEQPST = KIDSNO + MAXCMP * MAXNOD * IDP * MAXLAY
KEQPSI = KEQPST + MAXNOD * IDP * MAXLAY
KEQCSI = KEQPSI + MAXNOD * IDP * MAXLAY
KIOMNO = KEQCSI + MAXNOD * IDP * MAXLAY
KSWLNO = KIOMNO + MAXSTR * MAXNOD * IDP
KIMPNO = KSWLNO + MAXNOD * IDP
KIDPNO = KIMPNO + MAXNOD * IDP
KOMINO = KIDPNO + MAXNOD * IDP
KGEFPNO = KOMINO + MAXSTR * MAXNOD * IDP
KIGENO = KGEFPNO + MAXSTR * MAXNOD * IDP
KIGSNO = KIGENO + MAXSTR * MAXNOD * IDP
KIGSNO = KIGSNO + MAXSTR * MAXNOD * IDP
KIGTENDO = KIGSNO + MAXSTR * MAXNOD * IDP
KYIELD = KIGTENDO + MAXSTR * MAXNOD * IDP
IXR = KYIELD + NHARD * MAXNOD * IDP * 3
IXIRL = IXRL + MAXNLV * IDP
IXELM = IXIRL + MAXNLV * IDP
IXELM = IVELM + MAXNLV * IDP * IDYNM
IXP = IAEIM + MAXNLV * IDP * IDYNM
IXK = IXP + MAXNLV * IDP
IDET = IXK + MAXNLV * MAXNLV * IDP
IM = IDEMT + MAXINT * IDP
IXC = IXM + MAXNLV * MAXNLV * IDP * IDYNM
IBETA = IXC + MAXNLV * MAXNLV * IDP * IDYNM
IDYNA = IDYNA + NNODE * MAXNFR * IDP
IDYNV = IDYNV + NNODE * MAXNFR * IDP * IDYNM
IRL = IRL
C *** PERIODIC LOADING ARRAYS **

NPDISP = JPEROD(1)
NPFORC = JPEROD(2)

IPDISP = ILAST
IPFORC = IPDISP + NPDISP * IDP * IDYNM
INDISP = IPFORC + NPFORC * IDP * IDYNM
INFORC = INDISP + NPDISP * IDYNM
ILAST = INFORC + NPFORC * IDYNM

IF (ILAST.EQ.2*(ILAST/2)) ILAST = ILAST + 1

IF (NHARM .EQ. 0 .AND. NBASE .EQ. 0) GO TO 320
ICNFOR = ILAST
ILAST = ICNFOR + NNODE * MAXNFR * IDP * 2
320 CONTINUE

IRL = IIAST
IFORCE = IRL + NNODE * MAXNFR * IDP * 2
IF(IFSCNT .NE. 0) IFORCE = IFORCE + NNODE * MAXNFR * IDP
IDINC = IFORCE + NNODE * MAXNFR * IDP
IREAC = IDINC + NNODE * MAXNFR * IDP * 2
IF(IPCNJ .NE. 0) IREAC = IREAC + NNODE * MAXNFR * IDP
IF(IFSCNT .NE. 0) IREAC = IREAC + NNODE * MAXNFR * IDP
IRLB = IREAC + NNODE * MAXNFR * IDP
IDINCP = IRLB + NNODE * MAXNFR * IDP
IFORIN = IDINCP + NNODE * MAXNFR * IDP
IBTLC = IFORIN + NNODE * MAXNFR * IDP
IEGNVC = IBTLC
IBTLC = IEGNVC + NSENC * NNODE * MAXNFR * IDP * 2
IDSTTR = IBTLC + NNODE * MAXNFR * IDP * IDYNM
IDSX1 = IDSTTR + NNODE * MAXNFR * IDP * IDYNM
IDSX2 = IDSX1 + NNODE * MAXNFR * IDP
IDSX3 = IDSX2 + NNODE * MAXNFR * IDP * IDYNM
ILAST = IDSX3 + NNODE * MAXNFR * IDP * IDYNM

C

C ***
C *** CORE ALLOCATION FOR PERTURBATION DATA SETS ************
C ***

C

ISKIP = ILAST
IREDEF = ISKIP + NPSETS + 1
ILAST = IREDEF + NPVARS * IDP
IF (ILAST .EQ. 2*(ILAST/2)) ILAST = ILAST + 1

IF (NPSETS .EQ. 0) GO TO 680

*** ARRAYS NEEDED IN ANY TYPE OF PERTURBATION ANALYSIS ***************

IMEANS = ILAST
ISTDEV = IMEANS + NPVARS*IDP
IPDATA = ISTDEV + NPVARS*IDP
IVTYPE = IPDATA + NPVARS*NPSETS*IDP
ILAST = IVTYPE + NPVARS
IF (ILAST .EQ. 2*(ILAST/2)) ILAST = ILAST + 1

*** ARRAYS USED FOR THE PERTURBED STATIC PROBLEM ***********************

IDINC0 = ILAST
IREAC0 = IDINC0 + NNODE*MAXNFR*IDP
IRESD0 = IREAC0 + NNODE*MAXNFR*IDP
ILAST = IRESD0 + NNODE*MAXNFR*IDP

*** ARRAYS USED FOR THE PERTURBED EIGENVALUE PROBLEM ***********************

IDGRP = ILAST
ILAST = IDGRP + 2*NSBWC

*** PERTURBATION WORKSPACE USED FOR VARIABLE MANIPULATIONS ***************

IPWBEG = ILAST
IXCOOR = IPWBEG
IXCHAR = IXCOOR + IPTYPE(1)*NNODE*MAXCRD*IDP
IXFORC = IXCHAR + IPTYPE(2)*NNODE*MAXCHR*IDP
KXFORC = IXFORC + IPTYPE(3)*NTRAC*2*IDP
IXDIST = KXFORC + IPTYPE(3)*NTRAC*4
IF (IXDIST .EQ. 2*(IXDIST/2)) IXDIST = IXDIST+1
KXDIST = IXDIST + IPTYPE(4)*NNODE*2*MAXPRS*IDP
IXTEMP = KXDIST + IPTYPE(4)*NELEM
IF (IXTEMP .EQ. 2*(IXTEMP/2)) IXTEMP = IXTEMP+1
JXTEMP = IXTEMP + IPTYPE(5)*NNODE*MAXLAY*IDP
IXBEAM = JXTEMP + IPTYPE(5)*NNODE*MAXLAY*IDP
IXSPRI = IXBEAM + IPTYPE(6)*NBSECT*MAXBSP*IDP
KXSPRI = IXSPRI + IPTYPE(7)*NSPRI*IDP
IXFVEC = KXSPRI + IPTYPE(7)*NSPRI*3
IF (IXFVEC .EQ. 2*(IXFVEC/2)) IXFVEC = IXFVEC+1
IXPRES = IXFVEC + IPTYPE(8)*NNODE*MAXNFR*IDP
IXPREF = IXPRES + IPTYPE(8)*NNODE*IDP
IPWEND = IXPREF + IPTYPE(9)*NNODE*3*IDP
ILAST = IPWEND

680 CONTINUE

C

IBTLC = ILAST
ISTRT2 = IBTLC

C *** MESSAGE OUTPUT AND RETURN TO DATA INPUT ROUTINES ***************

C

ILAST1 = ILAST + 2*NNODE + 16
NPX = ILAST1 - ITYP + 1
NSHORT = ILAST1 - ISIZE

C

CALL LINES(4,4)
WRITE(ILPRINT,2001) ILAST1

2001 FORMAT(//,2X,47HNUMBER OF WORDS NEEDED IN BLANK COMMON FOR DATA,
*6H INPUT,18,/,2X,43H**,
*18H**********************)
IF(NSHORT .GT. 0) GO TO 900

C

C **

C ** INITIALIZE DATA IN BLANK COMMON AND CONTINUE EXECUTION **

C

CALL NULINT(IWORK(ITYP), NPX)

C

SPECIAL INITIALIZATION FOR YIELD FUNCTION ARRAY

C

ISTART = IYIELD
IEND = IYIELD + NNODE*3*NHARD*IDP
ISTEP = 3*NHARD*IDP

C

DO 800 INDEX = ISTART, IEND, ISTEP
 CALL COPY(YIELDC, RWORK(INDEX), 3)

800 CONTINUE

C

RETURN

C

C **

C ** PRINT-OUT THE AMOUNT OF CORE REQUIRED AND TERMINATE EXECUTION **

C

900 CONTINUE
IERR = IERR + 1
CALL LINES(3,3)
WRITE(ILPRNT,2005) NSHORT
2005 FORMAT(//,2X,'INCREASE BLANK COMMON AND ISIZE WITH',I8,' WORDS')
C
CALL QUIT('MEMD','RY A','LLOC','ATO','N',',',IERR)
C
**
C
END

The following SUBROUTINE INIT2 calculates pointers for the global
arrays:

C=SUBROUTINE=INITI2 CALLED BY SUBROUTINE 'STRUCT'
SUBROUTINE INITI2(RWORK,IWORK,ISIZE)
C
**
C
IMPLICIT REAL*8 (A-H,O-Z)
REAL*4 RWORK
C
**
C
COMMON / ALGEM / ICREAD,ILPRNT,JLPRNT,ICONS,L,IPOSTF,ISCRAF,
1 IPTYPE,IREAD,ISAVE,IRETRY,JPOST,
2 IP,LJ,LINLT,LJPLT
COMMON / CONTRO / JEND ,JITER ,JTEMP ,JPRINT ,JP ,JSUB ,
1 JINC ,JREST ,JSAVE ,JREDIM,JAUTO ,JPOST ,
2 JBACK ,JOPTIM,JCREEP,JDIST ,JCONST ,JDNM ,
3 NONISO,NTERM ,ITRIG ,IDYNM ,JREPOL ,JANGE ,
4 JHERM,JFORCE,JTEMP,JUOEF,JDISTS,JUHCK ,
5 JDERIV,JBOUND,JSTOP,JINST,JPLAST ,JUHCK ,
6 JFEXT,JREGION,JEMBED,JTEST ,JDISP ,JFBFGS ,
7 JPCNT,IFPRT,JMCPS,JPCUT,IPMPS,IPMPS,JPCUT ,
8 JFDXS,JSTAT ,JTERM ,JFINIT,IPMPS,JUHCK ,
9 IFBDY,IPGRAV,IPCENT,JDAMP ,JUHCK ,
+ JWKSLE,JPRES,JDEF ,JCDUM2,JCDUM3
COMMON / PERPRA / IPTYPE(32),NPRTYPE,NPVAR ,NPSET S,JPERT ,
1 NESSUS
NPVCON,NP008,NP009,NP010,NP011,NP012
NESSUS

SYSTEMS' MANUAL
Page : 75
COMMON / PERPTR / IMEANS, ISTDEV, IPDATA, IVTYPE, ISKIP, IREDEF, NESSUS
1 IDINCO, IREACO, IRESDO, IDGRO, ISTIFO, IDMASS0, NESSUS
2 IPP13, IOMEGO, IOMEGP, IOMEGK, IETF, IZETAK NESSUS
COMMON / PERIOD / JPEROD(2), IPDISP, IPFORC, INDISP, INFORC
COMMON / EIGEN / IEGVC, IGMS, IOMEG, IDNO, IDYMD, ISTRT2,
1 IPTAR, IPTBR, IPTVED, IDAM, IOMEGD
COMMON / ERRORS / IERR
COMMON / MAXIMA / MAXCRD, MAXNFR, MAXNOD, MAXSTR, MAXCHR, MAXPRS,
1 MAXLAY, MAXINT, MAXWK, MAXNLV, NSUMAX, MAXCMP,
2 MAXBSP, MAXGR, MAXTEM, MAXELM, MAXLW, MAXMT,
3 MAXFRN, MAXMET, MAXVAR, MAXSET, MAXEKE, MAXORD,
4 MAXO25, MAXO26, MAXO27, MAXO28, MAXO29, MAXO30
COMMON / PARAM / NTYPE, NELEM, NNODE, NBC, NTE, NMAX,
1 NIRAN, NTRAC, NFD, NBAND, NEXT, NSUB,
2 NPRMT, NPOST, NSC, NDU, NSIZE, NBSECT,
3 NSHIFT, NSBFGS, NGMS, NSPI, NMASS, NDASH,
4 NDYNMD, NSENC, NSUPER, NHARM, NBASE, NTNC,
5 NITER, NPSPTS, NPDISP, NPRES, NPRINT, NPOST,
6 NSUMCH, NDIMEN, NDIC, NPAR40, NPAR41, NPAR42,
7 NPAR43, NPAR44, NPAR45, NPAR46, NPAR47, NPAR48
COMMON / START1 / IELPRM, ITP, INEL, ICHAR, IPRES, ISTRS,
1 ISTRN, ICON, IPRINT, IPOST, IDIST, ILEAN,
2 IBPRES, IBNORM, IMONIT, IDST16, IDST17, IDST18
COMMON / START3 / IKBC, ITI, ITKAC, ITM, ITIAN, ITIRAC, ITEXT,
1 ISBC, ISBCR
COMMON / START5 / IRL, IREAC, IES, IAB, IBQM, ISRL,
1 IBTLC, ISKM, ILAST, IRLB, IDINCP, IPORIN,
2 IOP, IDAMMT, IMSMT, IDIAG, IUPTR, ICOLPT,
3 IDMSD, IDASUP, ISTR21, ISTR22, ISTR23, ISTR24
COMMON / START4 / IDINCO, IDIOT, IPORCE, IRESID, IWINOD, ISIGNO,
1 IEPNSO, IPSTR, ICST, ISTR, ISTRN, ISTRN,
2 IIPIST, IICST, IIT, IPNS0, ICST0, ICST0,
3 IISINO, ISNNO, IIPNS0, ICSNO, IISN0, IDMAT,
4 IDMO0, IDQCSL, IDMO0, IOMNO, IOMNO, IVSWT0,
5 IDYNV, IDYNA, IDSX1, IDSX2, IDSIR, IDSSW,
6 IDQCSL, IPREF, IDSX3, IYIELD, IDFNC, IDFNT,
7 IST443, IST444, IST445, IST446, IST447, IST448
COMMON / MACHIN / IDP

C
C *** CONSTRUCT THE REVERSE CONNECTIVITY TABLE ****************************
C
IBEG = INEL
IEND = IBEG + NELEM*MAXNOD
C
C ... F ind the maximum number of elements at a node
C
MAXEAN = 0
DO 130 NN = 1, NNODE
 NF = 0
 DO 120 IN = IBEG, IEND
 IF (IWORK(IN) .EQ. NN) NF = NF+1
 120 CONTINUE
 IF (MAXEAN .LT. NF) MAXEAN = NF
130 CONTINUE
C
... ALLOCATE SPACE FOR THE REVERSE CONNECTIVITY TABLE
C
ILEAN = ILAST
ILAST = ILEAN + NNODE*MAXEAN
C
CALL NULINT(IWORK(ILEAN), MAXEAN*NNODE)
C
... CONSTRUCT THE REVERSE CONNECTIVITY TABLE
C
DO 160 NN = 1, NNODE
 NF = 0
 IN = INEL-1
 DO 150 IE = 1, NELEM
 DO 140 IJ = 1, MAXNOD
 IN = IN+1
 IF (IWORK(IN) .EQ. NN) THEN
 NF = NF+1
 IM = ILEAN+(NN-1)*MAXEAN+NF-1
 IWORK(IM) = IE
 ENDIF
 140 CONTINUE
 150 CONTINUE
160 CONTINUE
C
**
C
IADRES = ILAST
IBILC = ILAST
ISKM = IBILC + NEXT*NFD*IDP
IQCM = ISKM + NEXT*NEXT*IDP
ISRL = IQCM + NEXT*IDP
IAB = ISRL + NEXT*IDP
ILAST = IAB + (4*NBAND + 2)*IDP
C
IF(MOD(ILAST, 2) .EQ. 0) ILAST = ILAST + 1

C

C **

C

IDIAG = ILAST

IF (IDIAG.EQ.2*(IDIAG/2)) IDIAG = IDIAG + 1

IUPTRI = IDIAG + NFD*IDP

C

C

IH = (NFD + NSUMCH) * IDP

NSIZE = NFD + NSUMCH

C

ILAST = ILAST + IH

IOP = ILAST

IF(MOD(IOP,2) .EQ. 0) IOP = IOP + 1

C

IF(JDYN .EQ. 1) THEN

IESIZE = (MAXNFR * MAXMOD)**2 * IDP

IDAMMT = IOP

IMASMT = IDAMMT + IESIZE

ILAST = IMASMT + IESIZE

ENDIF

C

IF(JEIGEN .EQ. 1) THEN

IMASDI = IOP

IMASUP = IMASDI + NFD * IDP

IPTAR = IMASDI + IH

IPTBR = IPTAR + NSBNC * NFD * IDP

IPTVED = IPTBR + NSBNC * NFD * IDP

ILAST = IPTVED + NSBNC * NFD * IDP

ENDIF

C

IF(IFBFGS .EQ. 1) THEN

IPTAR = IOP

IPTBR = IPTAR + NFD * NSBFC * NFD * IDP

IIAST = IPTBR + NFD * NSBFC * NFD * IDP

ENDIF

C

*** ADDITIONAL ALLOCATION FOR THE EIGENPROBLEM PERTURBATION **********

C

IF (JEIGEN .EQ. 0 .OR. NPSETS .EQ. 0) GO TO 300

C
ISTIFO = ILAST
IMASS0 = ISTIFO + IH
IOMEG0 = IMASS0 + IH
IOMEGP = IOMEG0 + NDYNMD * IDP
ILAST = IOMEGP + NDYNMD * IDP

... CHECK HOW MANY PERTURBATION TERMS THERE IS ROOM IN CORE FOR ...

ITERM = (1+2*NFD)*NDYNMD*IDP
ILEFT = ISIZE-ILAST
IF (ILEFT .LE. 0) ILEFT = 0
MAXORD = ILEFT/ITERM
IF (MAXORD .GT. (NITER+2)) MAXORD = NITER+2
IF (MAXORD .LE. 2) MAXORD = 3

... IN EITHER CASE GO ON AND ESTIMATE THE MINIMAL REQUIREMENTS

IOMEGK = ILAST
IETAK = IOMEGK + NDYNMD*MAXORD*IDP
IZETAK = IETAK + NFD*NDYNMD*MAXORD*IDP
ILAST = IZETAK + NFD*NDYNMD*MAXORD*IDP
CONTINUE

*** CHECK AGAINST THE SIZE OF BLANK COMMON AVAILABLE ********************

CALL LINES (7 , 7)
WRITE(ILPRNT,2000) NFD , NBAND
2000 FORMAT(/,2X,21HDATA ON SYSTEM MATRIX,/, * 2X,21H**,/, * 5X,16HNUMBER OF D.O.F.,I15,/, * 5X,16HHALF-BANDWIDTH ,I15)

CALL LINES (4 , 4)
ILAST1 = ILAST + 16
NPX = ILAST1 - IADRES + 1
WRITE(ILPRNT,2001) ILAST1
2001 FORMAT(/,2X,44HTOTAL NUMBER OF WORDS NEEDED IN BLANK COMMON,I8,/, *2X,52H**)
NSHORT = ILAST1 - ISIZE
IF (NSHORT .LE. 0) GO TO 200

*** WORKING STORAGE NOT SUFFICIENT !
IERR = IERR + 1
CALL LINES (3, 3)
WRITE(*,1) NSHORT
1 FORMAT(//,2X,35HINCREASE BLANK COMMON AND IBLK WITH,1B,6H WORDS)
CALL QUIT('MEMD','RY A','LLOC','ATIO','N ',',',IERR)

200 CONTINUE
CALL NULINT (IWORK(IADRES) , NPX)
RETURN
END

The following SUBROUTINE INITSE defines the pointers for the subelement data storage:

C=SUBROUTINE=INITSE CALLED BY SUBROUTINES 'SUBEIN', 'SUBDIV'
SUBROUTINE INITSE
 (IWORK , RWORK , isize , KEMBED , KSUBEL , KSUBNP , KSUBTY , NNODE ,
 NELEM , NHARD , IERR , IPOINT , NSDATA , IELEM , ILAST , IDP)
C
C **
C
IMPLICIT REAL*8 (A-H , O-Z)
REAL*4 RWORK
C
C **
C
DIMENSION IWORK (isize) , RWORK (isize)
DIMENSION IPOINT (NSDATA)
C
C **
C
COMMON / SUBTYP / NSUCRD , NSUNFR , NSUNOD , NSUSTR , NSUCHR , NSUCMP ,
 1 NSUINT , NSULV , NSULAY , NSUNDI , NSUSHR , NSUIDF
COMMON / ALGEM / ICREAD , ILPRNT , JLPRNT , ICONSL , IPOSTF , ISCRAF ,
 1 IPLOTB , IIRSTRT , JCREAD , IPVARS , IPSETS , IFILEX ,
 2 PI , LINE , LINE2
C
C **
C
FUNCTION
 --
 ALLOCATES CORE STORAGE FOR THE SUBELEMENT MESH ASSOCIATED
 WITH THE IELEM-TH MASTER ELEMENT

SYSTEMS' MANUAL MHOST Version 4.2
Page : 80
ARGUMENTS

- **IWORK**: INTEGER WORKING SPACE
- **RWORK**: SINGLE PRECISION REAL WORK SPACE
- **ISIZE**: TOTAL SIZE OF THE WORKING ARRAY
- **KEMBER**: THE FLAGS INDICATING THE PRESENCE OF SUB-ELEMENT DIVISION
 - = 1 FOR UNIFORM 2X2 SUBELEMENT GRID
 - = 10 FOR USER DEFINED SUBELEMENT GRID
 - < 0 SUBELEMENT MESH DEFINED BUT THE CORE IS NOT ALLOCATED
- **KSUBELEN**: NUMBER OF SUBELEMENTS
- **KSUEBNP**: NUMBER OF NODES IN THE SUBELEMENT NODES
- **KSUBTY**: SUBELEMENT TYPE
- **NNODE**: NUMBER OF NODES IN THE GLOBAL MESH
- **NELEM**: NUMBER OF ELEMENTS IN THE GLOBAL MESH
- **IERR**: ERROR COUNTER (IF IERR .GT. 0) EVENTUALLY THE JOB SHOULD QUIT
- **IPOINT**: ARRAY FOR SUBELEMENT ARRAY POINTERS
- **NSDATA**: NUMBER OF ENTRIES PER ELEMENT FOR THE SUBELEMENT POINTER ARRAY
- **IELEM**: COUNTER FOR THE CURRENT ELEMENT
- **ILAST**: LAST ADDRESS OF THE WORKING STORAGE (UPDATED IN THIS ROUTINE)
- **IDP**: RATIO OF THE REAL / INTEGER WORD LENGTH

POINTERs

IPOINT(I ,IELEM)

<table>
<thead>
<tr>
<th>I</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ELEMENT CONNECTIVITY</td>
</tr>
<tr>
<td>2</td>
<td>PHYSICAL COORDINATES</td>
</tr>
<tr>
<td>3</td>
<td>ELEMENT COORDINATES</td>
</tr>
<tr>
<td>4</td>
<td>TOTAL NODAL DISPLACEMENT</td>
</tr>
<tr>
<td>5</td>
<td>INCREMENTSAL NODAL DISPLACEMENT</td>
</tr>
<tr>
<td>6</td>
<td>CORRECTIONAL NODAL DISPLACEMENT</td>
</tr>
<tr>
<td>7</td>
<td>TOTAL NODAL STRAIN</td>
</tr>
<tr>
<td>8</td>
<td>TOTAL NODAL STRESS</td>
</tr>
<tr>
<td>9</td>
<td>TOTAL NODAL PLASTIC STRAIN</td>
</tr>
<tr>
<td>10</td>
<td>TOTAL NODAL CREEP STRAIN</td>
</tr>
<tr>
<td>11</td>
<td>TOTAL NODAL THERMAL STRAIN</td>
</tr>
<tr>
<td>12</td>
<td>GENERALIZED NODAL STRESS (TOTAL)</td>
</tr>
<tr>
<td>13</td>
<td>GENERALIZED NODAL STRAIN (TOTAL)</td>
</tr>
</tbody>
</table>
C 14 I INCREMENTAL NODAL STRAIN
C 15 I INCREMENTAL NODAL STRESS
C 16 I INCREMENTAL NODAL PLASTIC STRAIN
C 17 I INCREMENTAL NODAL CREEP STRAIN
C 18 I INCREMENTAL NODAL THERMAL STRAIN
C 19 I GENERALIZED NODAL STRESS (INCREMENTAL)
C 20 I GENERALIZED NODAL STRAIN (INCREMENTAL)
C 21 I LUMPED MASS COEFFICIENT FOR SMOOTHING
C 22 I NODAL MATERIAL TANGENT
C 23 I NODAL TEMPERATURE
C 24 I TEMPERATURE DIFFERENCE
C 25 I EQUIVALENT PLASTIC STRAIN (TOTAL)
C 26 I EQUIVALENT PLASTIC STRAIN (INCREMENT)
C 27 I EQUIVALENT CREEP STRAIN (TOTAL)
C 28 I EQUIVALENT CREEP STRAIN (INCREMENT)
C 29 I TOTAL SHIFT TENSOR
C 30 I INCREMENTAL SHIFT TENSOR
C 31 I TVSEWL
C 32 I SWELL
C 33 I GENERALIZED INITIAL STRESS
C 34 I YIELD FUNCTION DEFINED AT NODES
C

**
C IF(KEMBED .EQ. 0) RETURN
C
WRITE(ICONSL,2000) IELEM
2000 FORMAT(' SUBELEMENT CORE ALLOCATION FOR ELEMENT NO.
C CALL SUBELV
1 (IWORK ,KSUBTY,IERR)
C
IPOINT(1) = ILAST
IPOINT(2) = IPOINT(1) + NSUNOD * KSUBEL
IPOINT(3) = IPOINT(2) + NSUCRD * KSUBNP * IDP
IPOINT(4) = IPOINT(3) + NSUCRD * KSUBNP * IDP
IPOINT(5) = IPOINT(4) + NSUNFR * KSUBNP * IDP
IPOINT(6) = IPOINT(5) + NSUNFR * KSUBNP * IDP
IPOINT(7) = IPOINT(6) + NSUNFR * KSUBNP * IDP
IPOINT(8) = IPOINT(7) + NSUCMP * KSUBNP * IDP
IPOINT(9) = IPOINT(8) + NSUCMP * KSUBNP * IDP
IPOINT(10) = IPOINT(9) + NSUCMP * KSUBNP * IDP
IPOINT(11) = IPOINT(10) + NSUCMP * KSUBNP * IDP
IPOINT(12) = IPOINT(11) + NSUCMP * KSUBNP * IDP
IPOINT(13) = IPOINT(12) + NSUSTR * KSUBNP * IDP

SYSTEMS' MANUAL

Page : 82

MHOST Version 4.2
IPOINT(14) = IPOINT(13) + NSUSTR * KSUBNP * IDP
IPOINT(15) = IPOINT(14) + NSUCMP * KSUBNP * IDP * NSULAY
IPOINT(16) = IPOINT(15) + NSUCMP * KSUBNP * IDP * NSULAY
IPOINT(17) = IPOINT(16) + NSUCMP * KSUBNP * IDP * NSULAY
IPOINT(18) = IPOINT(17) + NSUCMP * KSUBNP * IDP * NSULAY
IPOINT(19) = IPOINT(18) + NSUSTR * KSUBNP * IDP
IPOINT(20) = IPOINT(19) + NSUSTR * KSUBNP * IDP
IPOINT(21) = IPOINT(20) + NSUSTR * KSUBNP * IDP
IPOINT(22) = IPOINT(21) + KSUBNP * IDP
IPOINT(23) = IPOINT(22) + NSUSTR * KSUBNP * IDP * NSULAY
IPOINT(24) = IPOINT(23) + KSUBNP * IDP
IPOINT(25) = IPOINT(24) + KSUBNP * IDP
IPOINT(26) = IPOINT(25) + KSUBNP * IDP
IPOINT(27) = IPOINT(26) + KSUBNP * IDP
IPOINT(28) = IPOINT(27) + KSUBNP * IDP
IPOINT(29) = IPOINT(28) + KSUBNP * IDP
IPOINT(30) = IPOINT(29) + NSUCMP * KSUBNP * IDP * NSULAY
IPOINT(31) = IPOINT(30) + NSUCMP * KSUBNP * IDP * NSULAY
IPOINT(32) = IPOINT(31) + NSUCMP * KSUBNP * IDP * NSULAY
IPOINT(33) = IPOINT(32) + NSUCMP * KSUBNP * IDP * NSULAY
IPOINT(34) = IPOINT(33) + NSUSTR * KSUBNP * IDP
KLAST = IPOINT(34) + NHARD * KSUBNP * IDP * 3

C CALL NULINT(IWORK(ILAST), KLAST - ILAST + 1)
C *** UPDATE THE LAST ADDRESS
C
C **
C
C subroutine SUBFEM accesses the arrays defined by the
C subelement pointer analysis:
C
C C=SUBROUTINE=SUBFEM CALLED BY SUBROUTINE 'ASSEM4'
C SUBROUTINE SUBFEM
C 1 (RWK , IWORK , ISIZE , IPOINT , IELEM , NSUBEL , NSUBNP , NSUBY ,
C 2 NSDATA , KEMBED , WORKSP , ISLV)
C
C **
C
C IMPLICIT REAL*8 (A-H , O-Z)

SYSTM'S MANUAL

Page : 83
REAL*4 RWORK

C **
C /
ALGEM /
ICREAD, ILPRNT, JLPRNT, ICONSL, IPOSTF, ISCRAF,
 IPLOTB, IPSTRT, JCREAD, IPVARS, IPSETS, IFLEX,
 PI , LINE , LINE2
COMMON / CONTRO /
JEND , JITER , JTEMP , JPRINT , JP , JSUB ,
 JINC , JREST , JSAVE , JREDIM , JAUTO , JPOST ,
 JBACK , JOPTIM , JCREEP , JDIST , JCONST , J Dyn,
 NONISO , I THERM , I TRIG , IDYNA , JREPO , J TANGE ,
 JTHERM , JFORCE , JUTEMP , JCOEF , JDIST , JHOOK ,
 JDERIV , JBOUN , IDSTOF , INSTR , JPLAST , J BAND ,
 JFRONT , JDELFOR , JEMBED , ITEST , JDISP , J 0 FGS ,
 IPSCNT , IFLINE , JPRINT , ICOMPS , ICONJ , JEIGEN ,
 IPBODY , IPGRAV , IFCENT , JDAMP , J DyN , J STAT ,
 JFRON , JSTIF , JCENTM , JFINIT , J LARGE , JFOLLOW ,
 JWKS L , JPRES , JCUDM2 , JCUDM3
COMMON / ELYTP /
NELCRD , NELNFR , NELNOD , NELST , NELCH , NELPR ,
 NELINT , NELLV , NELLAY , NDI , NSHEAR , NELCMP
COMMON / ELEMEN /
IC , IEL , IDF , JLAW , IPATH , LASEM ,
 JRULE , JCART , JEL009 , JEL010 , JEL011 , JEL012
COMMON / SUBTPY /
NSUCR , NSUNFR , NSUNOD , NSUSP , NSUCH , NSUCMP ,
 NSUINT , NSULV , NSULAY , NSUSH , NSUIDF
COMMON / TRANSF /
CTRANS(9) , XJACOB(9)
COMMON / LOUBIN /
JLOUB , JINTER , JEXTRA , JWEIGH , JSUBRE , JISTN ,
 JCITER , JHRLS , JGRAM , LOUB03 , LOUB04 , LOUB05
COMMON / MAXIMA /
MAXCRD , MAXNFR , MAXNOD , MAXSTR , MAXCH , MAXPR ,
 MAXLAY , MAXINT , MAXWK , MAXLV , NSUMAX , MAXCMP ,
 MAXBSP , MAXGMR , MAXTEM , MAXELK , MAXINT ,
 MAXFRN , MAXBET , MAXVAR , MAXSET , MAXEAN , MAXORD ,
 MAX025 , MAX026 , MAX027 , MAX028 , MAX029 , MAX030
COMMON / PARAM /
NTRYP , NELME , NNODE , NBC , NTIE , NMAX ,
 NITAN , NITAC , NFD , NBADE , NEXT , NSUB ,
 NPRINT , NPOST , NSEC , NDUP , N SIZE , NSECT ,
 NSHTF , NSBFGS , NGMRS , NSPIR , NMASS , N DASH ,
 NDYNM , NSBN , NSUP , NHARM , NSBASE , NTINC ,
 NITER , NPSPTS , NFDPTS , NPULSE , NFDPTS , NHARD ,
 NSUMAX , NDMEN , NMONIT , NPAR40 , NPAR41 , NPAR42 ,
 NPAR43 , NPAR44 , NPAR45 , NPAR46 , NPAR47 , NPAR48
COMMON / ERRORS / I ERR
COMMON / MACHIN / IDP
COMMON / TIME / TTMINC , TOTINC , RUNTIM
COMMON / START1 /
IELPRM , ITYP , INEL , ICHAR , IPRES , ISTRS ,
 ISTRN , ICOP , IPRINT , IPOST , IDIST , ILEAN ,
COMMON / START2 / INOD, ITEM, INLV, IPOSU, ITEMDF, IDUP
COMMON / START3 / IBEC, ITT, ITR, ITRAN, ITRAC, IEXT,
 ISBC, ISBCR
COMMON / START4 / IDINC, IDTOT, ILOAD, IRESID, INOD, IDIGNO,
 IEPSNO, IPTSTRN, ICTSTRN, IITSTRN, IITSTRN, IITSTRN,
 IITSTRN, IDSTNO, IDCSTNO, IICSTNO, IDTSTNO, IDTSTNS,
 IDVPST, IDVPSI, KEQPST, KEQPSI, KIIPST, KIIPPSI,
 KIDIPT, KICNSTNO, KICSTNO, KICTSTNO, KICSTNS,
 KIPSTNO, KIPSETNO, KEQSTNO, KEQPSI, KIIPST, KIIPPSI,
 KIIPSTNO, KIIPSTNS, KIIPSTNS, KIIPSTNS, KBSTNO,
 KBSTNS, KBSTNS, KBSTNS, KBSTNS, KBSTNS, KBSTNS,
 KBSTNS, KBSTNS, KBSTNS, KBSTNS, KBSTNS, KBSTNS,
COMPLETE MIXED FINITE ELEMENT SOLUTION FOR THE SUBELEMENT MESH SUBDIVISION. RESULTS ARE FED BACK TO THE GLOBAL MESH AS A MODIFIED RESIDUAL FORCE VECTOR, AND NODAL QUANTITIES ASSOCIATED WITH THE SUBELEMENT GRIDS ARE RESTORED FOR FURTHER DATA MANIPULATIONS.

ARGUMENTS

RWORK SINGLE PRECISION REAL WORKAREA
IWORK INTEGER WORKAREA
ISIZE TOTAL SIZE FOR THE WORKAREA
IPOINT POINTER ARRAY FOR THE SUBELEMENT DATA STORAGE
IELEM INDEX FOR THE CURRENT 'MASTER7 ELEMENT
NSUBEL ARRAY FOR THE NUMBER OF SUBELEMENT ELEMENTS
NSUBNP ARRAY FOR THE NUMBER OF SUBELEMENT NODES
NSUBTY ARRAY FOR THE SUBELEMENT ELEMENT TYPES
NSDATA NUMBER-OF-ENTRIES/ELEMENT IN IPOINT
KEMBED FLAG FOR THE EMBEDDED SUBELEMENTS
WORKSP DOUBLE PRECISION REAL WORKSPACE

POINTERS

IPOINT(-,IELEM) I ARRAY

1	I ELEMENT CONNECTIVITY
2	I PHYSICAL COORDINATES
3	I ELEMENT COORDINATES
4	I TOTAL NODAL DISPLACEMENT
5	I INCREMENTAL NODAL DISPLACEMENT
6	I CORRECTIONAL NODAL DISPLACEMENT
7	I TOTAL NODAL STRAIN
8	I TOTAL NODAL STRESS
9	I TOTAL NODAL PLASTIC STRAIN
10	I TOTAL NODAL CREEP STRAIN
11	I TOTAL NODAL THERMAL STRAIN
12	I GENERALIZED NODAL STRESS (TOTAL)
13	I GENERALIZED NODAL STRAIN (TOTAL)
14	I INCREMENTAL NODAL STRAIN
15	I INCREMENTAL NODAL STRESS
16	I INCREMENTAL NODAL PLASTIC STRAIN
17	I INCREMENTAL NODAL CREEP STRAIN
18	I INCREMENTAL NODAL THERMAL STRAIN
19	I GENERALIZED NODAL STRESS (INCREMENTAL)
20	I GENERALIZED NODAL STRAIN (INCREMENTAL)
21	I LUMPED MASS COEFFICIENT FOR SMOOTHING
CALL TIMOUT
 1 ('SUBE', 'LEME', 'NT L', 'OOP ', 'ENTE', 'RED ')

WRITE(ICONSL,2000) IELEM
 2000
FORMAT(30X,'IELEM =',I5)

KSUBEL = NSUBEL(IELEM)
KSUBNP = NSUBNP(IELEM)
KSUBTY = NSUBTY(IELEM)
LBACK = 0
JMATRX = 1
KLAW = JLAW
ICONVG = 0
CIOLE = RELERR

INITIALIZE HERE THE NUMBER OF INTEGRATION POINTS / ELEMENT TO BE
ABLE TO USE SOME 'TRICKS' OF 'REDUCED' INTEGRATION AT LATER STAGE

IF(JWEIGH .GE. 2) IGAUS = 0
IF(JWEIGH .GE. 4) IGAUS = 3
IF(JWEIGH .GE. 4) IGAUS = 2
ITRANS = 0
IF(JWEIGH .GE. 3) ITRANS = 1
IGAUS = 0
ITRANS = 0
C

C **
C *** SET UP CONTROL VARIABLES ASSOCIATED WITH THE 'VARIATIONAL'
C *** STRAIN RECOVERY AND THE NODAL 'RESIDUAL' CALCULATION FOR THE
C *** AUGMENTED LAGRANGIAN TYPE ITERATION
C *** S.N. 12-09-83/01-31-84/03-21-84
C ***
C *** JINTER = 1 'REDUCED' INTEGRATION FOR THE RECOVERY PROCESS
C *** = 2 'FULL' INTEGRATION
C *** = 3 'TRAPEZOIDAL' INTEGRATION
C *** = 4 'SELECTIVE' GAUSS INTEGRATION
C ***
C *** JEXTRA = 1 'FULL' INTEGRATION FOR THE RESIDUALS
C *** = 2 'REDUCED' INTEGRATION
C ***
C **
C
C JGAUS: CONTROL VARIABLE FOR THE 'RECOVERY' INTEGRATION
C
JGAUS = 1
IF (JINTER .EQ. 2) JGAUS = 0
IF (JINTER .EQ. 3) JGAUS = 2
IF (JINTER .EQ. 4) JGAUS = 3
JTRANS = 0
IF (JWEIGHT .EQ. 3) JTRANS = 1

C KGAIJS: CONTROL VARIABLE FOR THE 'RESIDUAL' INTEGRATION
C
KGAIJS = 0
IF (JEXTRA .EQ. 2) KGAIJS = 1
IF (JWEIGHT .EQ. 2) KGAIJS = 3
INTRSD = NELINT
IF (JEXTRA .EQ. 2) INTRSD = 1
KTRANS = 0
IF (JWEIGHT .EQ. 3) KTRANS = 1

C **
C ARRANGE SUBELEMENT POINTERS FOR THE GLOBAL WORKAREA
C **
C
J CONN = IPOINT(1 , IELEM)
J POORD = IPOINT(2 , IELEM)
J ECORD = IPOINT(3 , IELEM)
J DISPL = IPOINT(4 , IELEM)

SYSTEMS' MANUAL
MHOST Version 4.2
Page : 88
J DISPI = IPOINT(5 , IELEM)
J DISPC = IPOINT(6 , IELEM)
J STRAN = IPOINT(7 , IELEM)
J STPST = IPOINT(8 , IELEM)
J TPLAS = IPOINT(9 , IELEM)
J CREPT = IPOINT(10 , IELEM)
J THERT = IPOINT(11 , IELEM)
J GSTRS = IPOINT(12 , IELEM)
J GSTRN = IPOINT(13 , IELEM)
J STRNI = IPOINT(14 , IELEM)
J STRSI = IPOINT(15 , IELEM)
J PLASI = IPOINT(16 , IELEM)
J CREPI = IPOINT(17 , IELEM)
J THERI = IPOINT(18 , IELEM)
J GSTRI = IPOINT(19 , IELEM)
J GSTNI = IPOINT(20 , IELEM)
J LUMP = IPOINT(21 , IELEM)
J DMATX = IPOINT(22 , IELEM)
J TEMPR = IPOINT(23 , IELEM)
J TMPDF = IPOINT(24 , IELEM)
J EQPST = IPOINT(25 , IELEM)
J EQPSI = IPOINT(26 , IELEM)
J ECCST = IPOINT(27 , IELEM)
J ECCSI = IPOINT(28 , IELEM)
J EMEGT = IPOINT(29 , IELEM)
J EMEGI = IPOINT(30 , IELEM)
J TVSWL = IPOINT(31 , IELEM)
J SWELL = IPOINT(32 , IELEM)
J TDSTR = IPOINT(33 , IELEM)
J YIELD = IPOINT(34 , IELEM)

IPOINT(5 , IELEM)
IPOINT(6 , IELEM)
IPOINT(7 , IELEM)
IPOINT(8 , IELEM)
IPOINT(9 , IELEM)
IPOINT(10 , IELEM)
IPOINT(11 , IELEM)
IPOINT(12 , IELEM)
IPOINT(13 , IELEM)
IPOINT(14 , IELEM)
IPOINT(15 , IELEM)
IPOINT(16 , IELEM)
IPOINT(17 , IELEM)
IPOINT(18 , IELEM)
IPOINT(19 , IELEM)
IPOINT(20 , IELEM)
IPOINT(21 , IELEM)
IPOINT(22 , IELEM)
IPOINT(23 , IELEM)
IPOINT(24 , IELEM)
IPOINT(25 , IELEM)
IPOINT(26 , IELEM)
IPOINT(27 , IELEM)
IPOINT(28 , IELEM)
IPOINT(29 , IELEM)
IPOINT(30 , IELEM)
IPOINT(31 , IELEM)
IPOINT(32 , IELEM)
IPOINT(33 , IELEM)
IPOINT(34 , IELEM)

IASSEM = 1

IPOINT(ii , IELEM)
IPOINT(12 , IELEM)
IPOINT(13 , IELEM)
IPOINT(14 , IELEM)
IPOINT(15 , IELEM)
IPOINT(i6 , IELEM)
IPOINT(17 , IELEM)
IPOINT(18 , IELEM)
IPOINT(19 , IELEM)
IPOINT(20 , IELEM)
IPOINT(21 , IELEM)
IPOINT(22 , IELEM)
IPOINT(23 , IELEM)
IPOINT(24 , IELEM)
IPOINT(25 , IELEM)
IPOINT(26 , IELEM)
IPOINT(27 , IELEM)
IPOINT(28 , IELEM)
IPOINT(29 , IELEM)
IPOINT(30 , IELEM)
IPOINT(31 , IELEM)
IPOINT(32 , IELEM)
IPOINT(33 , IELEM)
IPOINT(34 , IELEM)
CALL SUBELV
1 (IWORK , KSUBTY , IERR)

IASSEM = 0

CALL SUBALC
1 (WORKSP , ISTIFF , IELSTF , ILOADV , ILOAD , ISIZE , KSUBNP , KSUBEL ,
2 NSUNFR , NSUNOD , NSUSTR , NSUINT , IEBETA , IELDET , IELCOR , IELDMT ,
3 KLAST , ILAST , IDP , NUSCRD , ILSLDS , ILEIDS , IELGTD , JELGID ,
4 JELDMT , KPSIZE , KSIZE , JELEPS , JELUMP , JELDRK , JELSTR , JELSTR ,
5 JSUCHR , NSUCHR , IREACT , JRESID)

CALL SMASTR
1 (RWORK , IWORK , ISLV , CTRANS , IELEM , IC , 0)

IF(JINC .GE. 1 .AND. JITER .GE. 1) GO TO 7900

C **
C PHASE 0 : PREPARATION OF LUMPED 'GRAMM' MATRIX FOR STRAIN
C
C **
C
CALL NUL(_ORK(JLUMPM) , KSUBNP)

DO 4900 ISUBEL = 1 , KSUBEL

CALL SNODEL
1 (ISUBEL , IWORK (JCONNC) , RWORK (JPCORD) , RWORK (JDMATX) ,
2 WORKSP (IELCOR) , WORKSP (IELDMT) , KSUBEL , KSUBNP ,
3 NSUNOD , NSUSTR , NUSCRD , NSUNFR ,
4 RWORK (JDISPI) , RWORK (JDISPL) , WORKSP (ILEIDS) , WORKSP (IELIDS) ,
5 KCONNC , JCONNC , RWORK (JTDSTR) , WORKSP (IELGTD) ,
6 RWORK (JGSTR) , WORKSP (IELSTR))

CALL IMPMAS
1 (RWORK (JLUMPM) , WORKSP (IELDET) , IWORK (KCONNC) , NSUNOD ,
2 NSUINT , KSUBNP , KSUBTY , RWORK (ICHAR) ,
3 WORKSP (IELCOR) , NUSCRD , ISUBEL , KSUBEL ,
4 RWORK (JPCORD) , NUSCRD , CTRANS , JGRAM)

4900 CONTINUE

7900 CONTINUE

CALL NUL
1 (RWORK (JTDSTR) , NSUSTR*KSUBNP)

C **
C MIXED ITERATIVE SOLUTION FOR THE SUBELEMENT GRID
C
C **
(I) Total number of iterations and convergence tolerance are the same as those defined for the global mesh.

(II) In case of no convergence achieved (if not diverge), this routine returns normally to the main finite element solution with a little warning message.

**

PHASE 1: NODAL STRESS / MATERIAL TANGENT CALCULATION FOR THE DISPLACEMENT PRECONDITIONING

**

\[N_{\text{NHARD}} = 3 \times N_{\text{NHARD}} \]

CALL SUBINT
1 (RWORK(JECORD),NELCRD,KSUBNP,RWORK(KYIELD),RWORK(JYIELD)),
2 N3HARD,NELNOD,RWORK(KSUBNP,RWORK(IXIRL),RWORK(JDISPI)),
CALL SUBINT
1 (RWORK(JECORD),NELCRD,KSUBNP,RWORK(KICNSNO),RWORK(KICNO),RWORK(JSTRNI)),
2 NSUCMP,NELNOD,RWORK(JCREPI)),
CALL SUBINT
1 (RWORK(JECORD),NELCRD,KSUBNP,RWORK(KITSNSO),RWORK(KITSNO),RWORK(JTHERI)),
2 NSUCMP,NELNOD,RWORK(JCREPI)),
CALL SUBINT
1 (RWORK(JECORD),NELCRD,KSUBNP,RWORK(KISTRS),RWORK(KISTRS),RWORK(JSUCHR)),
2 NSUCHR,NELNOD,RWORK(JSUCHR)),
CALL SUBINT
1 (RWORK(JECORD),NELCRD,KSUBNP,RWORK(KIGSNSO),RWORK(JGSTR)),
2 NELSTR,NELNOD,RWORK(JGSTR)),
CALL SUBINT
1 (RWORK(JECORD),NELCRD,KSUBNP,RWORK(KIQCSI),RWORK(KIQCSI),RWORK(JQCSI)),
2 RWORK(KIQCSI),RWORK(JQCSI),
CALL SUBINT
1 (RWORK(JECORD),NELCRD,KSUBNP,RWORK(KIQMNO),RWORK(KIQMNO),RWORK(JOMEGI)),
2 NELSTR,NELNOD,RWORK(JOMEGI)),
CALL SUBINT
1 (RWORK(JECORD),NELCRD,KSUBNP,RWORK(KISWLN0),RWORK(KISWLN0),RWORK(JSWELL)),
2 RWORK(KISWLN0),RWORK(JSWELL)),
CALL SUBINT
1 (RWORK(JECORD),NELCRD,KSUBNP,RWORK(KINPNO),RWORK(KINPNO),RWORK(JTEMPE)),
2 RWORK(KINPNO),RWORK(JTEMPE))
CALL SUBINT
 1 (RWORK (JECORD),NELCRD ,KSUBNP ,RWORK (KTDFNO),
 2 1 ,NELNOD ,RWORK (JMPDF))
CALL SUBT
 1 (WORKSP (JDWRK),RWORK (JGSTRI),RWORK (JIDSTR),KSUBNP*NSUSTR)
CALL STRESS
 1 (RWORK (JSTRAN),RWORK (JSTRI),RWORK (JSTRST),RWORK (JSTSTR),
 2 RWORK (JCRIEP),RWORK (JCREEPI),RWORK (JPLAS),RWORK (JPLAS),
 3 RWORK (JRETH),RWORK (JTHEH),RWORK (JTEMP),RWORK (JSTCHR),
 4 NSUSTR ,NSULAY ,NSUCHR ,LSUNOD ,
 5 KSUBNP ,NSUNDI ,NSUSHR ,JLAW ,
 6 RWORK (JEQPS),RWORK (JEQPSI),KLAW ,RWORK (JDMATX),
 7 JMATRX ,JTEMP ,JCREEP ,JITER ,
 8 JINC ,NONISO ,RWORK (JMPDF),RWORK (JEQCT),
 9 RWORK (JTVSWL),RWORK (JIDSTR),JCONST ,RWORK (JOMEGI),
 + RWORK (JOMEGI),JTERM ,TIMINC ,RUNITM ,
 1 RWORK (JGSTM),RWORK (JGSTM),RWORK (JGSTRS),RWORK (JSTSI),
 2 NSUSTR ,NSUCMP ,LSKMP ,RWORK (JSWELL),
 3 RWORK (JEQPSI),RWORK (JPCORD),NSUCRD ,JPLAST ,
 4 ICIPS ,RWORK (IPREF),RWORK (JYIELD),NHARD ,
 5 JUHOK ,1 ,JWKSLP)
CALL ADD
 1 (RWORK (JIDSTR),RWORK (JIDSTR),WORKSP (JDWRK),NSUSTR*KSUBNP)
C ***
C MAIN ITERATION LOOP
C ***
 1 ISTAR = 1
 2 NSTOPS = NITER + 1
C DO 8000 ISITER = 1 , NSTOPS
C MCITER = ISITER - 1
C FIRST ELEMENT LOOP : STIFFNESS MATRIX ASSEMBLY
C ***
C CX
C IF (ISITER .GT. 1) GO TO 5001
C DO 5000 ISUBEL = 1 , KSUBEL
C IASSEM = 1
C CALL SUBELV
CALL SNODEL
1 (ISUBEL, IWORK (JCONN.), RWORK (JCOORD), RWORK (JDMATX),
2 WORKSP (IELCOR), WORKSP (IELDMT), KSUBEL, KSUBNP,
3 NSUNOD, NSUSTR, NSUCRD, NSUNFR,
4 RWORK (JDISP1), RWORK (JDISPL), WORKSP (IELIDS), WORKSP (IELTDS),
5 KCONNC, KCONNC, RWORK (JDIS), WORKSP (IELGID),
6 RWORK (JGISTR), WORKSP (IELSTR))

CALL SUBDER
1 (WORKSP (IEBETA), WORKSP (IELDET), WORKSP (IELCOR), WORKSP (IELTDS),
2 WORKSP (IELIDS), RWORK (ICFAR), IGNAS, ITRANS)
3 CTRANS

CALL INTERP
1 (WORKSP (JELGID), WORKSP (IELGID), NSUINT, NSUNOD,
2 NSUSTR)
3 CALL INTERP
1 (WORKSP (JELDMT), WORKSP (IELDMT), NSUINT, NSUNOD,
2 NSUSTR*NSUSTR)

IF (ISITER .EQ. 1) CALL STIFF
1 (WORKSP (IELSTF), WORKSP (IELLOAD), WORKSP (JELGID), WORKSP (JELGID),
2 WORKSP (IELDET), NSUSTR, NSUINT, NSULV,
3 NSUIDF, MCITER, WORKSP (JELDMT), 1,
4 1, LBACK, 0, 0)

IF (ISITER .EQ. 1) CALL SYSEQN
1 (WORKSP (ISTIFF), WORKSP (ILOAD), WORKSP (JELSTF), WORKSP (ILOAD),
2 IWORK (JCONNC), NSUNOD, NSUNFR, KSUBNP,
3 KSUBEL, KSIZE, KSIZE, ISUBEL)

C 50000
5001 CONTINUE

C CALL SUBSOL
1 (WORKSP (ISTIFF), WORKSP (ILOAD), KSIZE, RWORK (JDISPC),
2 NSUNFR, KSUBNP, RWORK (JDISPI), NELNFR,
3 NELNOD, NSUNOD, KEMBED, ISITER,
4 WORKSP (JREACT), KSUBEL)

CALL ADD
1 (RWORK (JDISPI), RWORK (JDISPI), RWORK (JDISPC), NSUNFR,KSUBNP)

** CALL PJOOP
* 1 (RWORK (JDISPI), 'DISINC', NSUNFR,KSUBNP)
* CALL PJOOP
* 1 (RWORK (JDISPC), 'DISCOR', NSUNFR,KSUBNP)

C PHASE 2 : NODAL STRAIN RECOVERY

C ***********************
SECOND ELEMENT LOOP:

CALL NUL
1 (RWORK(JGSTNI),NSUSTR*KSUBNP)

DO 5100 ISUBEL = 1, KSUBEL

IASSEM = 0

CALL SUBELV
1 (IWORK, KSUBTY, IERR)

CALL SNODEL
1 (ISUBEL, IWORK(JCONNC), RWORK(JPCORD), RWORK(JDMATX),
2 WORKSP(IELCOR), WORKSP(IELMT), KSUBEL, KSUBEP,
3 NSUNOD, NSUSTR, NSUCRD, NSUNFR,
4 RWORK(JDISPI), RWORK(JDISPL), WORKSP(IELIDS), WORKSP(IELMT),
5 KCONNC, JCONNC, RWORK(JTSTR), WORKSP(IELGID),
6 RWORK(JGSTRI), WORKSP(IELSTR))

CALL SUBDER
1 (WORKSP(IEBETA), WORKSP(IELDET), WORKSP(IELCOR), WORKSP(IELMT),
2 WORKSP(IELIDS), RWORK(ICHAR), JGAUS, JTRANS,
3 CTRANS)

CALL STRAIN
1 (RWORK(JGSTNI), WORKSP(JLEEPS), WORKSP(IELIDS), WORKSP(IEBETA),
2 NSUSTR, NSUINT, NSUNFR, NSUNOD,
3 NSUIDF, KSUBNP, RWORK(JLUMP), WORKSP(IELDET),
4 RWORK(JCONNC), JGAUS, WORKSP(JELIMP), JTEMP,
5 RWORK(JTHERI), RWORK(ICHAR), NSUCHR, JLAW,
6 NSUSTR, KSUBTY, WORKSP(IELCOR), NSUCRD,
7 CTRANS, RWORK(JSTRNI), NSULAY, NSUCMP,
8 WORKSP, WORKSP, RWORK(JCREPT), RWORK(JTHERI),
9 JISTRN, JCITER)

5100 CONTINUE

CALL STRESS
1 (RWORK(JSTRAIN), RWORK(JSTRNI), RWORK(JSTIRST), RWORK(JSTRST),
2 RWORK(JCREPT), RWORK(JCREPI), RWORK(JTTLAS), RWORK(JTLAS),
3 RWORK(JTHERI), RWORK(JTHERI), RWORK(JTTEMP), WORKSP(JSCCHR),
4 NSUSTR, NSULAY, NSUCHR, NSUNOD,
5 KSUBNP, NSUNID, NSUSHR, JLAW,
6 RWORK(JEQPST), RWORK(JEPSI), KLAW, RWORK(JDMATX),
DO 5200 ISUBEL = 1 , KSUBEL

CALL SNODEL
1 (ISUBEL , IWORK (JCONNECT), RWORK (JPCORD), RWORK (JDMAK),
2 WORKSP (IELCOR), WORKSP (IELMT), SUBEL , KSUBEL ,
3 NSUNOD , NSUSTER , NSUCRD , NSUNET ,
4 RWORK (JDISPL), RWORK (JDISPL), WORKSP (IELIDS), WORKSP (IELITS),
5 KCONNECT , JCONNECT , RWORK (JISDIR), WORKSP (JISDIR), WORKSP (JISDIR),
6 RWORK (JISDIR), WORKSP (IELITS))

CALL SUBDER
1 (WORKSP (JELGTD), WORKSP (IELIDS), SUBIS, NSUINT ,
2 NSUNOD ,)

CALL INTERP
1 (WORKSP (JELSTR), WORKSP (IELITS), NSUINT ,
2 NSUNOD ,)

CALL SUBRES
1 (ISUBEL , WORKSP (JOINCON), WORKSP (JELGTD), WORKSP (JELSTR),
2 IWORK (CONNECT), NSUNOD , NSUSTER , NSUNET ,
3 NSUINT , WORKSP (IELLOAD), WORKSP (JEBET), KESIZE ,
4 KSUEBN , RWORK (JDISPL), KSIZE , ICONVG ,
5 CTOLER , WORKSP (IELD), IWORK (JCONNECT), IPRINT ,
6 ICONSL , KSUBEL , MCITER , ENGTOT ,
7 WORKSP (JREACT), WORKSP (JRESID))

CONTINUE

CALL SUBCHK
1 (RWORK (JDISPC), RWORK (JDISPI), KSIZE , DISTOR ,
2 ISITER , ICONVG)

**
C CHECK THE DISPLACEMENT CONVERGENCE
C ***
C
C IF(ICONWG .EQ. 1) GO TO 8100
C
C 8000 CONTINUE
C
C ***
C CALCULATE THE CONTRIBUTION OF SUBELEMENT REFINEMENT IN TERMS OF
C THE GLOBAL RESIDUAL VECTOR
C ***
C
C 8100 CONTINUE
C
C CALL SUBINT
C 1 (RWORK (JECORD),NELCRD,KSUBNP,RWORK (KIGSNO),
C 2 NELSTR,NELNOD,RWORK (JGSTRI))
C IF(JSUBRE .EQ. 0) CALL SUBGLD
C 1 (IC,RWORK (IXP),RWORK (JSTRST),RWORK (JSTRSI),
C 2 IWORK (JCONNC),NSUNOD,NSUSTR,NSUNFR,
C 3 NSUINT,IFD,WORKSP,RWORK (IBETA),
C 4 RWORK (JECORD),RWORK (ICOR),RWORK (JLUMP),NELSTR,
C 5 NSUCRD,NELCRD,NELNOD,KSUBNP,
C 6 KSUBEL,NFD,RWORK (IREAC),IWORK (IEXIST),
C 7 RWORK (ISRL),NEXT,INEXT,RWORK (ICH),
C 8 NELCHR,NELNFR,RWORK (JGSTRI),WORKSP(JTDWRK),
C 9 KEMBED)
C IF(JSUBRE .NE. 0) CALL SUBGLD
C 1 (IC,RWORK (IXP),RWORK (JSTRST),RWORK (JSTRSI),
C 2 IWORK (JCONNC),NSUNOD,NSUSTR,NSUNFR,
C 3 NSUINT,IFD,RWORK (KIGSNO),RWORK (IBETA),
C 4 RWORK (JECORD),RWORK (ICOR),RWORK (JLUMP),NELSTR,
C 5 NSUCRD,NELCRD,NELNOD,KSUBNP,
C 6 KSUBEL,NFD,RWORK (IREAC),IWORK (IEXIST),
C 7 RWORK (ISRL),NEXT,INEXT,RWORK (ICH),
C 8 NELCHR,NELNFR,RWORK (JGSTRI),WORKSP(JTDWRK),
C 9 KEMBED)
C
C RETURN
C END

2.3 Counters and Pointers
Most of the variables used as either counters or pointers are documented in the Fortran source program. In this section, we discuss the counter and pointer variables stored in the common blocks:

START 1

Stores pointers for storing global data and some of the element data. Variables are:

IELPRM Pointer to the array storing the element parameters for all element types used in the present mesh.
ITYP Pointer to the element type identifier array.
INEL Pointer to the element connectivity array.
ICHAR Pointer to the nodal material property data array.
IPRES Flag for pressure loading.
IPRINT Pointer to the line printer output control data array.
IBPRES Pointer to the nodal pressure definition array.
IBNORM Pointer to the nodal array storing the components of the nodal point normal.

START 2

Stores pointers for the global mesh data. Variables are:

INOD Pointer to the nodal coordinate definition array.
ITEM Pointer to the nodal total temperature array.
ITEMDF Pointer to the nodal incremental temperature array.
IDUP Pointer to the array storing the duplicate node input data.

START 3

Stores the pointers for the global nodal constraint and loading data arrays. Variables are:

IKBC Starting address for the nodal displacement constrain
array.

ITI Pointer to the integer array for defining the tying equations.

ITR Pointer to the real array for defining the tying equations.

ITRAN Starting address of the array for nodal coordinate transformation input.

ISBC Starting address of the integer array for storing nodal stress boundary condition data input.

ISBCR Pointer to the real array for the prescribed nodal stress values.

START 4

Stores the pointer for nodal data storage. Variables are:

IDINC Pointer to the incremental displacement array.

IDTOT Pointer to the total displacement array.

IFORCE Pointer to the total load vector due to the mechanical loading.

IRESID Pointer to the residual vector.

IWINOD Not used in version 4.2.

ISIGNO Pointer to the total nodal stress array.

IEPSNO Pointer to the total nodal strain array.

IPSTINO Pointer to the total nodal plastic strain array.

ICSTINO Pointer to the total nodal creep strain array.

ITSTINO Pointer to the total nodal thermal strain array.

IISTINO Pointer to the incremental nodal stress array.

IISNNO Pointer to the incremental nodal strain array.
IIPSNO Pointer to the incremental nodal plastic strain array.

IIICSNO Pointer to the incremental nodal creep strain array.

IITSNO Starting address for the incremental thermal strain defined at nodes.

IDMINO Starting address for the material tangent arrays defined at nodes. In case of shells, the constitutive resultant array is stored.

IOMENO Starting address for the total shift tensor defined at nodes. This array is used for the kinematic hardening and the unified viscoplastic constitutive models.

ITDSNO Starting address for the total initial stress terms due to the initial strain terms defined at nodes.

IDYNA Starting address for the total nodal acceleration array.

IDYNV Pointer to the total nodal velocity array. IDYNA and IDYNV are defined only when the transient analysis option is invoked.

IPREF Pointer to the material orientation vector for anisotropic material response defined at a node.

IDFINC Pointer to the nodal array for the incremental deformation gradient. This array is allocated and used for finite deformation analysis.

IDPTOT Pointer to the nodal array for the total deformation gradient.

IYIELD Pointer to the array used to define nodally the strain hardening slope table.

START 5

Stores pointers for global arrays. Variables are:

IRL Starting address for a vector storing the nodal loads including the residual.

IREAC Starting address for a vector storing the nodal reactions.
IES Starting address for the space of banded global stiffness matrix. Not used in Version 4.2.

IAB Starting address for the space to pull a row of the global stiffness array.

ILAST Pointer to the last word used in the blank common workspace.

IDIA0 Pointer to the array for diagonal entries of the global stiffness array stored in profile form.

IUPTTRI Pointer to the array storing the upper triangular part of the global stiffness array in profile form.

IC0LPT Pointer to the integer array storing the column height for each degree of freedom of the global stiffness matrix in profile form.

IMASDI Pointer to the space reserved for the diagonal entry of the global mass matrix. This space is allocated only when the modal analysis option is invoked.

IMASUP Pointer to the upper triangular entries of the mass matrix stored in profile form.

START 6

Stores pointers for the element workspace. Variables are:

IELV Starting address for the connectivity array of the element being processed.

ICOR Starting address for the nodal coordinate array for the current element.

ISIG Starting address for the element total stress array at integration points.

IEPS Starting address for the element total strain array at integration points.

IXRL Starting address for the total nodal displacement array defined for the current element.
IXIRL Starting address for the incremental nodal displacement array.

IXP Starting address for the workspace to store the element load vector.

IXK Starting address for the workspace for the element stiffness array.

KPSTNO Pointer to the nodal plastic strain array for the current element.

KCSTNO Pointer to the nodal creep strain array for the current element.

KTSTNO Pointer to the nodal thermal strain array for the current element.

KISTNO Pointer to the nodal incremental stress for the current element.

KISNNO Pointer to the nodal incremental strain for the current element.

KIPSNO Pointer to the nodal incremental plastic strain for the current element.

KICSNO Pointer to the nodal incremental creep strain for the current element.

KITSNO Pointer to the nodal incremental thermal strain for the current element.

KDMAT Pointer to the element material tangent array defined at the integration points for the current element.

KDMINO Pointer to the nodal material tangent array for the current element.

KTDSNO Pointer to the nodal array for the initial stress due to initial strains such as thermal and creep effects defined for the current element.

KITDST Pointer to the element initial stress vector.
START 7

Stores more pointers for global and element arrays. Variables are:

ICON Not used in Version 4.2.

IKBCR Starting address for a double precision real array storing the prescribed displacement values.

ITRANR Starting address for a double precision real array storing the angle of rotation for the user specified nodal coordinate transformations.

ITRACR Starting address for a double precision real array storing the values of user specified nodal concentrated loads.

ITRANR Starting address for a double precision real array storing the values of user specified nodal coordinate transformations.

IBETA Starting address for a double precision real array storing the strain displacement matrix at integration points of the current element.

IDET Starting address for a double precision real array storing the determinant of the Jacobian for isoparametric mapping at integration points of the current element.

START 8

Stores pointers for the resultant quantities. Variables are:

KGEPS Pointer to the strain resultant array at element integration points.

KIGEPS Pointer to the incremental strain resultant array at element integration points.

KGEPS Pointer to the strain resultant array at element integration points.

KIGEPS Pointer to the incremental strain resultant array at element integration points.

KGSIG Pointer to the stress resultant array at element
integration points.

KIGSIG Pointer to the incremental stress resultant array at element integration points.

KGIDST Pointer to the total resultant for initial stress at element integration points.

IGEPNO Pointer to the global array for the strain resultants.

IIGENO Pointer to the global array for the incremental strain resultants.

IGSINO Pointer to the global array for the stress resultants.

IIGSNO Pointer to the global array for the incremental stress resultants.

IGTDNO Pointer to the global array for total resultants of initial stress.

KGEPNO Starting address for the nodal array of strain resultants of the current element.

KIGENO Starting address for the nodal array of incremental strain resultants of the current element.

KGSINO Starting address for the nodal array of stress resultants of the current element.

KIGSNO Starting address for the nodal array of incremental stress resultants of the current element.

KGTDNO Starting address for the nodal array of total resultant for initial stresses of the current element.

START 9

Stores pointers for creep related quantities. Variables are:

KEQCSI Pointer to the equivalent incremental creep strain at nodes of the current element.

KEQCST Pointer to the equivalent total creep strain at nodes of
3.0 THE FILE SYSTEM

This chapter is devoted to a discussion of the file system for supporting a series of structural analyses by the MHOST program. In the next section, the overview of this file system is presented followed by a detailed discussion on the user interface (input and output files), restart file, and post-processing data file.

3.1 Overview

The MHOST program is a batch processor and when execution is initiated the user does not need to interact with the program until the Fortran STOP statement is executed (or an execution error is detected by the operating system). Under an interactive operational environment, the code produces a summary of the execution log on the terminal screen. Note that the same information is written on the main output file.

The file system is composed of three parts: the standard input and output files referred to as the user interface; the restart file; and the post processing data file. The main report part is referred to as Fortran unit number ILPRNT (see Block Data Subprogram, common block ALGEM) which consists of the input data echo print (card image print out), the input data as it is interpreted by the MHOST code, and the summary of execution such as the usage of memory and time consumed by CPU. The analysis result part is referred to as Fortran unit number JLPRNT. To make this logical distinction clear, separate header records and page counters are provided to these units.

The user interface files are the standard input file, the log file and the line printer output file. All the instructions to accomplish the analysis task are written in the input file. The MHOST program assumes that the input file is a card image file. That is, the input file is a sequentially accessed, formatted file, and the record length is fixed to 80 bytes. Under most operating systems (perhaps IBM systems are the only exceptions), it is not necessary to declare explicitly the record length. As shown in the next section, records are individually read into the read buffer as 80 separate characters and the user interface routine decodes each line.

The output file is assumed to contain 132 bytes/record which is the standard width for most line printers (as well as other printers driven in the same manner as the line printer). Again, except for IBM systems, this file is opened without explicitly specifying the record length. The line
printer file is logically separated into two parts. As the default setting, the code is delivered with the same Fortran unit number.

The log file is the standard output unit on which the system's messages are printed. This file is defined as Fortran unit ICONSL and is handled in a manner which depends on the computer systems default value for interactive terminal output.

Typically, on PRIME systems, ICONSL is the unit number 1 (one) and under the UNIX environment, unit number 6 (six) is assigned to ICONSL.

The restart file is a sequentially accessed binary file. The record length is fixed to 256 bytes/record. The contents of common block and the work space are written and read by the MHOST code. This file is referred to as Fortran unit number IRSTRT. The unit number 8 (eight) is assigned as default value when the MHOST code is delivered.

The post-processing file is a sequentially written formatted file. A record length of 80 bytes is implicitly assumed but not necessarily declared explicitly when the file is opened (under most operating systems). Except for minor differences in the format to write nodal stresses and strains, construction of this file is compatible with the post-processing file output of the MARC general purpose finite element package version K1. Any commercially available finite element post-processing package can easily be modified to read this file. The MENTAT interactive finite element pre- and post-processing package available from MARC is shipped with the MHOST post-processing interface as a standard feature.

3.2 User Interface

The free format reader is written in Fortran 66 to interpret data coming in through the input data file in a line-by-line manner. Two utilities are available. One is the keyword interpreter SUBROUTINE KEY and another is the free format numeric data reader SUBROUTINE FREFOR:

C SUBROUTINE KEY
 SUBROUTINE KEY(NAME,NOPT,IOPT,NN,IN,IERR)
C
C * * * * * *
C
C CHECKS STRING FOR KEYWORD
C
C NAME KEYWORD NAMES
C NOPT NUMBER OF KEYWORDS
C IOPT KEYWORD FLAG
C INTEGER PARAMETERS
C
C IERR ERROR FLAG
C
C* * * * * *
C
C IMPLICIT REAL*8 (A-H,O-Z)
C
DIMENSION NAME(1), NN(4)
COMMON / ALGEM / ICREAD, ILPRNT, JLPRNT, ICONSL, IPOSTF, ISCRAF,
1 IPLOTB, IRSRT, JCREAD, IPVARS, IPSETS, IFILEX,
2 PI , LINE , LINE2
COMMON / FREE / IA(80), IBEGIN(16), ILENGT(16), NSTRIN, IS, ICOL, NEW
LOGICAL NEW
1 CONTINUE
JKEY=1
CALL STRING (IERR, JKEY, 1)
IS=IS+1
IB=IBEGIN(IS)
IL=ILENGT(IS)
IF (IL.LT.3) GOTO 99
IF (IL.GT.4) IL=4
II=-4
IBI=IB-1
DO 3 I=II, NOPT
II=II+4
DO 2 J=I, IL
IF (IA(IBI+J) .NE. NAME (II+J)) GOTO 3
3 CONTINUE
IOP=I
GOTO 4
2 CONTINUE
GOPT=I
GOTO 4
3 CONTINUE
GOTO 99
4 CONTINUE
C
IF (IN.EQ.0) GOTO 100
DO 5 I=1, IN
IS=IS+1
IB=IBEGIN(IS)
IL=ILENGT(IS)
CALL DECINT(NNI, IA(IB), IL, IERR)
NN(I)=NN(I)
5 CONTINUE
GOTO 100
C
99 CONTINUE
IERR=IERR+1
CALL LINES(I, I)
L=IB-I+IL
WRITE(ILPRNT,1001) (IA(I),I=IB,IL)
1001 FORMAT(2X,11H***ERROR***,5X,25HSTRING IS NOT A KEYWORD:,78A1)
GOTO 1
100 CONTINUE
RETURN
END

C SUBROUTINE FREFOR
SUBROUTINE FREFOR(INIW,REAW,NINT,NREA,NVAR,IERR,JKEY)
C
C* * * * * *
C
C FREE FORMAT ROUTINE
C
C INIW INTEGER WORKSPACE
C REAW REAL WORKSPACE
C NINT NUMBER OF INTEGERS
C NREA NUMBER OF REALS
C NVAR
C IERR ERROR FLAG
C JKEY
C
C* * * * * *
C
C IMPLICIT REAL*8 (A-H,O-Z)
REAL*4 REAW
C
C COMMON / ALGEM / ICREAD,ILPRNT,JLPRNT,ICONS,EEPOSTF,ESCRAF,
1 IPTOT,INRETR,JCREAD,IVARS,IPSETS,IFILEX,
2 PI ,LINE ,LINE2
COMMON/FREE/IA(80),IBEGIN(16),ILENGTH(16),NSTRIN,IS,ICOL,NEW
DIMENSION INIW(1),REAW(1)
LOGICAL LREA,NEW
IC=0
CALL STRING(IERR,JKEY,1)
IF(JKEY.EQ.1) GOTO 30
JKEY=0
C
IF(NINT.LE.0) GOTO 10
DO 1 I=1,NINT
IF(ICOL.LE.76) GOTO 2
1

JKEY=-1
CALL STRING(IERR,JKEY,1)
IF(JKEY.EQ.1) GOTO 30
JKEY=0
2 CONTINUE
IC=IC+1
IS=IS+1
ICOL=ICOL+5
IB=IBEGIN(IS)
IL=ILENGT(IS)
CALL DECINT(IDUM,IA(IB),IL,IERR)
INIW(IC)=IDUM
1 CONTINUE
10 CONTINUE
C
IF(NREA.LE.0) GOTO 20
DO 11 I=1,NREA
IF(ICOL.LE.71) GOTO 12
JKEY=-1
CALL STRING(IERR,JKEY,1)
IF(JKEY.EQ.1) GOTO 30
JKEY=0
12 CONTINUE
IC=IC+1
IS=IS+1
ICOL=ICOL+10
IB=IBEGIN(IS)
IL=ILENGT(IS)
C
REAW(IC)=0.
C
IF(IL .NE. 0)CALL DECREA(REAW(IC),IA(IB),IL,IERR)
C
11 CONTINUE
20 CONTINUE
C
IF(NVAR.EQ.0) GOTO 30
LREA=NVAR.GT.0
NTOF=IABS(NVAR)
IF(ICOL.LE.76) GOTO 23
JKEY=-1
CALL STRING(IERR,JKEY,1)
IF(JKEY.EQ.1) GOTO 30
JKEY=0
23 CONTINUE
 IS=IS+1
 ICOL=ICOL+5
 IB=IBEGIN(IS)
 IL=ILENGT(IS)
 CALL DECINT(NVAR,IA(IB),IL,IERR)
 IF(NVAR.LE.0) GO TO 30

C
 NTOT=NTOT*NVAR
 DO 21 I=1,NTOT
 IF(ICOL.LE.71.OR.(ICOL.LE.76.AND..NOT.LREA)) GO TO 24
 JKEY=-1
 CALL STRING(IERR,JKEY,1)
 IF(JKEY.EQ.1) GO TO 30
 JKEY=0

24 CONTINUE
 IC=IC+1
 IS=IS+1
 ICOL=ICOL+5
 IB=IBEGIN(IS)
 IL=ILENGT(IS)
 IF(LREA) GO TO 22
 CALL DECINT(IDUM,IA(IB),IL,IERR)
 INTW(IC)=IDUM
 GO TO 21

22 CONTINUE
 ICOL=ICOL+5
 C
 REAW(IC)=0.
 C
 IF(IL .NE. 0)CALL DECREA(REAW(IC),IA(IB),IL,IERR)
 C
21 CONTINUE
30 CONTINUE
 RETURN
 END

An example of usage of the above utilities is the parameter data reader
SUBROUTINE DATINI:

C ... SUBROUTINE DATINI ... CALLED BY SUBROUTINE 'HOST' OR 'FEM'
C
SUBROUTINE DATINI
 1 (RWORK, IWORK, ISIZE, VERSNO, MTH, JDATE, NELEM, NNODE,
 2 NEC, NTIE, NMAX, NTRAN, NTRAC, NPOST, NLVSUB, NFRSUB,

SYSTEMS' MANUAL

Page : 109

MHOST Version 4.2
READ THE CONTROL DATA AND PARAMETERS ASSOCIATED WITH THE CORE STORAGE ALLOCATION

- **IMPLICIT REAL*8 (A-H , O-Z)
- REAL*4 RWORK**

**DIMENSION RWORK (ISIZE), IWORK (ISIZE)
- DIMENSION NFRSUB (MAXSUB), NLVSUB (MAXSUB)
- DIMENSION NAME (4, 72), NN (6)
- DIMENSION NAME1 (4, 34), NAME2 (4, 36)
- DIMENSION NAME3 (4, 2)
- DIMENSION JPEROD (2)**

**EQUIVALENCE (NAME(1, 1), NAME1(1, 1))
- EQUIVALENCE (NAME(1, 35), NAME2 (1, 1))
- EQUIVALENCE (NAME(1, 71), NAME3 (1, 1))**

**COMMON / ALGEM / ICREAD, ILPRNT, JLPRNT, ICONS, IPOSTF, ISCRAF,
- IPLOTB, ISTRF, JCREAD, IPVARS, IPSETS, IFILEX,
- PI , LINE , LINE2**

COMMON / COUNT / LININC, LINTOT, NOECHO

COMMON / CTITLE / TITLE (20), IDAT (5), IDATE2, ICLOCK,
IFCRAY

1 COMMON / ERRORS / IERR
COMMON / FREE / IA (80), IBEGIN(16), ILENGT(16),
 NSTRIN, IS , ICOL , NEW

LOGICAL NEW

C ***
C DATA NAME1
C
* /1HE, 1HL, 1HE, 1HM, 1HN, 1HO, 1HD, 1HE, 1HB, 1HO, 1HU, 1HN,
* 1HT, 1HY, 1HL, 1HN, 1HT, 1HR, 1HA, 1HN, 1HF, 1HO, 1HR, 1HC,
* 1HP, 1HO, 1HS, 1HT, 1HS, 1HU, 1HB, 1HS,
* 1HE, 1HX, 1HT, 1HE, 1HP, 1HR, 1HE, 1HS, 1HT, 1HE, 1HM, 1HP,
* 1HP, 1HR, 1HT, 1HN, 1HR, 1HE, 1HS, 1HT, 1HL, 1HO, 1HU, 1HB,
* 1HS, 1HT, 1HR, 1HE, 1HE, 1HN, 1HD, 1H
*, 1HT, 1HE, 1HN, 1HT, 1HD, 1HY, 1HN, 1HA, 1HO, 1HP, 1HT, 1HT,
* 1HT, 1HR, 1HA, 1HC, 1HC, 1HR, 1HE, 1HE, 1HA, 1HN, 1HA, 1HS,
* 1HM, 1HO, 1HD, 1HA, 1HB, 1HU, 1HC, 1HK, 1HT, 1HH, 1HE, 1HR,
* 1HC, 1HO, 1HN, 1HS, 1HD, 1HT, 1HS, 1HT, 1HU, 1HP, 1HL,
* 1HR, 1HE, 1HO, 1HT, 1HA, 1HN, 1HG, 1HU, 1HT, 1HH, 1HE,
* 1HS, 1HC, 1HH, 1HE, 1HU, 1HP, 1HO, 1HR, 1HU, 1HT, 1HE, 1HM/

DATA NAME2

* /1HU, 1HC, 1HO, 1HE, 1HU, 1HP, 1HR, 1HE, 1HU, 1HH, 1HO, 1HO,
* 1HU, 1HD, 1HE, 1HR, 1HU, 1HB, 1HO, 1HU, 1HP, 1HE, 1HR, 1HI,
* 1HB, 1HA, 1HN, 1HD, 1HF, 1HR, 1HD, 1HN, 1HD, 1HE, 1HF, 1HO,
* 1HE, 1HM, 1HB, 1HE, 1HG, 1HM, 1HR, 1HS, 1HB, 1HE, 1HA, 1HM,
* 1HD, 1HT, 1HS, 1HE, 1HS, 1HS, 1HT, 1HT, 1HE, 1HF, 1HG, 1HS,
* 1HS, 1HP, 1HR, 1HL, 1HD, 1HA, 1HS, 1HM, 1HA, 1HS, 1HS,
* 1HS, 1HE, 1HC, 1HA, 1HL, 1HT, 1HA, 1HN, 1HE, 1HH, 1HA, 1HR, 1HM,
* 1HB, 1HA, 1HS, 1HE, 1HC, 1HO, 1HM, 1HP, 1HU, 1HL, 1HS,
* 1HC, 1HO, 1HN, 1HU, 1HS, 1HH, 1HO, 1HC, 1HP, 1HO, 1HW, 1HE,
* 1HN, 1HO, 1HE, 1HC, 1HP, 1HE, 1HR, 1HT, 1HS, 1HT, 1HI, 1HF,
* 1HC, 1HE, 1HN, 1HT, 1HH, 1HA, 1HR, 1HD, 1HF, 1HI, 1HN, 1HI,
* 1HL, 1HA, 1HR, 1HG, 1HF, 1HO, 1HU, 1HL, 1H,

DATA NAME3

* /1HH, 1HO, 1HU, 1HR, 1HM, 1HO, 1HN, 1HI/

C ***
C PARAMETER DATA OPTIONS

C 1 *ELEM MAXIMUM NUMBER AND THE TYPE OF ELEMENT
C 2 *NODE MAXIMUM NUMBER OF NODES
C 3 *BOUND MAXIMUM NUMBER OF DISPLACEMENT CONSTRAINT
C 4 *TYIN FLAG THE TYING OPTION WITH NUMBER OF TYING

SYSTEMS' MANUAL

Page : 111
DEGREE OF FREEDOMS

*TRAN COORDINATE TRANSFORMATION OPTION FORCED WITH THE NUMBER OF POINTS SUBJECTED TO THIS OPER.

*FORC MAXIMUM NUMBER OF NODAL FORCE DATA

*POST FLAG THE POST PROCESSING TAPE GENERATION OPTION

*SUES FLAG THE SUBSTRUCTURING OPTION WITH THE NUMBER OF SUBSTRUCTURES

*EXTE

*PRES FLAG THE NODAL PRESSURE DEFINITION OPTION

*TEMP FLAG FOR THERMAL LOADING

*PRIN FLAG FOR PRINT OUTPUT

*REST FLAG FOR RESTART RUN

*LOUB SET UP NUMERICAL INTEGRATION

*STRE FLAG FOR STRESS BOUNDARY CONDITIONS

*ENDOBVIOUS............

*TEST (RESERVED)

*DYNA INVOKE TRANSIENT TIME INTEGRATION

*OPTI FLAG THE BAND-WIDTH OPTIMIZATION

*TRAC FLAG THE DISTRIBUTED LOADING

*CREE FLAG THE CREEP STRAIN OPTION

*ANIS FLAG ANISOTROPY OPTION

*MODA MODAL ANALYSIS OPTION

*BUCK BUCKLING ANALYSIS OPTION

*THER TEMPERATURE DEPENDENT ELASTICITY OPTION

*CONS CONSTITUTIVE EQUATION SELECTION

*DISTR FLAG FOR DISTRIBUTED LOAD

*DUPL DUPLICATED NODE OPTION

*REPO REPORT GENERATION INTERVAL

*TANG MODIFIED NEWTON OPTION

*UHIE USER SUBROUTINE 'UHEM' OPTION

*SCHM TIME INTEGRATION SCHEME OPTION

*UFOR USER SUBROUTINE 'UFORCE' OPTION

*UTEM USER SUBROUTINE 'UTEMP' OPTION

*UCOE USER SUBROUTINE 'UCOEF' OPTION

*UPRE USER SUBROUTINE 'UPRESS' OPTION

*UHOO USER SUBROUTINE 'UHOOK' OPTION

*UDER USER SUBROUTINE 'UDERIV' OPTION

*UBECC USER SUBROUTINE 'UBOUN' OPTION

*PERI PERIODIC LOADING CONDITION OPTION FOR THE BAND BAND SOLVER (DEFAULT)

*FRON FRONTAL SOLUTION SUBSYSTEM (OPTIONAL)

*DEFO EIGENVALUE EXTRACTION FOR THE STIFFNESS

*EMEE SUBELEMENT MESH ANALYSIS OPTION

*GMRS MULTIPLE GENERIC MODELLING REGIONS OPTION
C 46 *BEAM BEAM SECTION PARAMETER OPTION
C 47 *DISP CONVENTIONAL DISPLACEMENT METHOD
C 48 *SHIF POWER SHIFT FOR EIGEN EXTRACTION
C 49 *BFGS BFGS UPDATE FOR THE NONLINEAR SOLUTION
C 50 *SPRI ADDED STIFFNESS, GROUND SPRING
C 51 *DASH ADDED DAMPING, DASHPOT TO GROUND
C 52 *MASS ADDED MASS
C 53 *SCEN SECANT NEWTON METHOD
C 54 *LINE LINE SEARCH
C 55 *HARM HARMONIC NODAL FORCE LOADING
C 56 *BASE HARMONIC BASE EXCITATION
C 57 *COMP COMPOSITE LAMINATE OPTION FOR ELEMENT 75
C 58 *PULS PULSE LOAD OPTION
C 59 *CONJ CONJUGATE GRADIENT ITERATION
C 60 *SHOC SHOCK SPECTRA OPTION
C 61 *SHIP POWER SPECTRAL DENSITY OPTION
C 62 *NOEC SUPPRESS THE MODAL DATA ECHO PRINT
C 63 *PERT SET UP PERTURBATION SIZE FLAGS
C 64 *STIF STRESS STIFFENING OPTION
C 65 *CENT CENTRIFUGAL MASS STIFFNESS OPTION
C 66 *HARD WORK-HARDENING OPTION FOR PLASTICITY
C 67 *FINI FINITE STRAIN OPTION
C 68 *LARG LARGE DISPLACEMENTS & ROTATIONS OPTION
C 69 *FOLL FOLL OWER FORCES OPTION
C 70 *WKSL USER SUBROUTINE 'WKSL'
C 71 *HOUR(GLASS CONTROL) AS THE NAME INDICATES
C 72 *MONI INVOKES MONITOR UTILITY
C
C **
C
C NOPT = 72
C JSUBRE = 0
C LEOECHO = 0
C IFPRINT = 0
C
C **
C
C SET DEFAULT VALUES
C **
C
C NSHIFT = 0
C JPOST = 0
C NSPRI = 0
C NDASH = 0
C NMASS = 0
C NHARM = 0
C
C
NBASE = 0
NTIE = 0
NDUP = 0
JEMBED = 0
IOTHERM = 0
NCREEP = 1
JEMBED = 0
JDISP = 0
JHRGLS = 0
JWKSLP = 0
JISTRN = 0
JCITER = 0
JREPO = 1
ISTAT = 1
NSBFGS = 0
IDYNM = 0
NGMRS = 1
IPCONJ = 0
JSUB = 0
NSUB = 0
JFRONT = 0
JREST = 0
JCREEP = 0
JTEMP = 0
NEXT = 0
JUBOUN = 0
NONISO = 0
IFBFGS = 0
IFSCNT = 0
IFLINE = 0
NDYNMD = 0
IDYNMD = 100000
NPOSMD = 0
JOTHERM = 0
JCONST = 2
JDYN = 0
JEIGEN = 0
JDEFOR = 0
NBSECT = 0
JFORCE = 0
JPEROD(1) = 0
JPEROD(2) = 0
JUTEMP = 0
JUCOEF = 0
JDIST = 0
C
C **
C READ TITLE CARD AND PRINT THE USUAL PROBLEM HEADER
C **
C
READ(ICREAD, 1000, END=3001) TITLE

1000 FORMAT (20A4)

C
C ************* KEY-WORD INTERPRETER ************************************
C
CALL KEY(NAME, NOPT, IOPT, NN, 6, IERR)

C
SYSTEMS' MANUAL

Page : 115
GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
& 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
& 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
& 60,61,62,63,64,65,66,67,68,69,70,71,72), IOPT

OPTION 1 : *ELEM - MAXIMUM NUMBER OF ELEMENTS IN MODEL

1 CONTINUE
NELEM = NN(1)
CALL TYPEIN
1 (IWORK,WORK,IERR,NTYPE,ILAST,ILRINT,NDIMEN)
GO TO 998

OPTION 2 : *NODE - MAXIMUM NUMBER OF NODES IN MODEL

2 CONTINUE
NNODE = NN(1)
GO TO 998

OPTION 3 : *BOUND - MAXIMUM NUMBER OF BOUNDARY CONDITIONS

3 CONTINUE
NBC = NN(1)
GO TO 998

OPTION 4 : *TYIN - MAXIMUM NUMBER OF TYING CONSTRAINT

4 CONTINUE
NTIE = NN(1)
NMAX = NN(2)
GO TO 998

OPTION 5 : *TRAN - NUMBER OF NODAL COORDINATE TRANSFORMATIONS

SYSTEMS' MANUAL
Page : 116
MHOST Version 4.2
CONTINUE
NTRAN = NN(1)
GO TO 998

C **
C OPTION 6 : *FORC - MAXIMUM NUMBER OF NODAL FORCE ENTRIES
C **
C 6 CONTINUE
NTRAC = NN(1)
GO TO 998

C **
C OPTION 7 : *POST - POST PROCESSING
C **
C 7 CONTINUE
JPOST = 1
NPOST = 1
IF (NN(1).GT.0) NPOST = NN(1)
GO TO 998

C **
C OPTION 8 : *SUBS - INACTIVE IN VERSION 2.0
C **
C 8 CONTINUE
JSUB = NN(1)
NSUB = NN(2)
IF(JSUB.NE.2) GO TO 998
DO 108 J = I,NSUB
CALL FREFOR(NN, NN, 3,0,0, IERR, JKEY)
NLVSUB(NN(1)) = NN(2)
NFRSUB(NN(1)) = NN(3)
108 CONTINUE
GO TO 998

C **
C OPTION 9 : *NEXT - EXTRNAL D.O.F. INACTIVE IN VERSION 2.0
C **
C 9 CONTINUE
NEXT = NN(1)
GO TO 998
C
C***
C OPTION 10 : *PRES - NODAL PRESSURE DEFINITION
C***
C 10 CONTINUE
 JPRES = 1
 GO TO 998
C
C***
C OPTION 11 : *TEMP - TEMPERATURE LOAD FLAG TO BE SET
C***
C 11 CONTINUE
 JTEMP = 1
 GO TO 998
C
C***
C OPTION 12 : *PRIN - INCREASE THE NUMBER OF PRINT OPTIONS
C***
C 12 CONTINUE
 IF (NN(1).LT.0) IFPRINT = 1
 IF (NN(1).LT.0) NPRINT = IABS(NN(1))
 IF (NN(1).GT.0) NPRINT = NN(1)
 GO TO 998
C
C***
C OPTION 13 : *REST - RESTART TAPE FLAG TO BE SET
C***
C 13 CONTINUE
 JREST = 1
C+ JINC = NN(1)
C+ NINC = NN(2)
C
C*** EXIT IMMEDIATELY WITHOUT READING *END CARD ******************************
C GO TO 16
C
C***
C OPTION 14 : *LOUB - SELECTORS FOR THE NUMERICAL QUADRATURES
C***
C
14 CONTINUE
 JLOUB = 1
 JINTER = NN(1)
 JEXTRA = NN(2)
 JWEIGH = NN(3)
 JGRAM = NN(4)
 IF(JINTER.LT.1.OR.JINTER.GT.4) JINTER = 2
 IF(JEXTRA.LT.1.OR.JEXTRA.GT.3) JEXTRA = 1
 IF(JWEIGH.LT.1.OR.JWEIGH.GT.5) JWEIGH = 1
 IF(JGRAM .LT.0.OR.JGRAM .GT.1) JGRAM = 0

C --- SPECIAL TRICKS FOR INITIAL STRAIN AND CONSISTENT MASS ITERATION --
C
C IF(NN(6) .NE. 0) JISTRN = 1
IF(NN(5) .NE. 0) JCITER = NN(5)
GO TO 998

C **
C OPTION 15 : *STRE - MAXIMUM NUMBER OF STRESS BOUNDARY CONDITIONS
C **
C
15 CONTINUE
 NSTRE = NN(1)
GO TO 998

C **
C OPTION 17 : *TEST FOR THE INTERNAL USE AT MARC DEVELOPMENT
GROUP ONLY - TO INVOKE THIS IS POTENTIALLY DANGEROUS
C
17 CONTINUE
 ISTAT = 0
 IDYNM = 0
 ITEST = 1
GO TO 998

C **
C OPTION 18 : *DYNA - TRANSIENT TIME INTEGRATION PARAMETER
COULD BE SPECIFIED IN VERSION 2.0 OR UP
C
18 CONTINUE
 JDYN = NN(1)
IF(JDYN .LE. 0) JDYN = 1
IF(JDYN .GT. 2) JDYN = 2
ISTAT = 0
IDYNM = 1
ITEST = 0
GO TO 998

C **
C OPTION 19 : *OPTI - BANDWIDTH OPTIMIZER ITERATION CYCLES
C **
C
19 CONTINUE
JOPTIM = NN(1)
IF (JOPTIM .EQ. 0) JOPTIM = 10
GO TO 998

C **
C OPTION 20 : *TRAC - DUMMY - SAME AS OPTION 10
C **
C
20 CONTINUE
JDIST = 1
GO TO 998

C **
C OPTION 21 : *CREE - CREEP AND ITS TIME STEP CONTROL PARAMETERS
C **
C
21 CONTINUE
JCREEP = 1
NCREEP = 3
ATOLER = 0.5D0
BTOLER = 0.5D-1
CTOLER = 0.5D-1

IF(NN(1) .EQ. 0) GO TO 2101

NCREEP = NN(1)

CALL FREFOR
1 (IWORK(ILAST+1) , RWORK(ILAST+1) , 0 , 3 , 0 , IERR , JKEY)

J = ILAST + 1
IF(RWORK(J) .NE. 0.0) CALL COPYSD (RWORK(J) , ATOLER , 1)
J = ILAST + 2
IF(RWORK(J) .NE. 0.0) CALL COPYSD (RWORK(J) , BTOLER , 1)
J = ILAST + 3
IF(RWORK(J) .NE. 0.0) CALL COPYSD (RWORK(J) , CTOLER , 1)
C 2101 CONTINUE
 GO TO 998
C
C **
C OPTION 21 : *ANIS - ANISOTROPIC ELASTICITY
C **
C 22 CONTINUE
 NONISO=1
 GO TO 998
C
C **
C OPTION 22 : *MODAL - MODAL ANALYSIS OPTION AND PARAMETER SET
C **
C 23 NDYNMD=NN(1)
 NSBNC =NN(2)
 INISTR=NN(3)
 IF (NDYNMD .EQ. 0) NDYNMD = 1
 IF (NSBNC .EQ. 0) NSBNC = NDYNMD * 2
 MDYNMD = NDYNMD + 8
 IF (NSBNC .GT. MDYNMD) NSBNC = MDYNMD
 JEIGEN = 1
 LDYN = 1
 IDYNM = 1
 ISTAT = 0
 CALL NULINT(NN,4)
 JKEY = 0
 CALL FREFOR(NN,NN,1,0,0,IERR,JKEY)
 IF (JKEY .EQ. 1) GO TO 998
 NSUPER = NN(1)
 LDYN = 2
 GO TO 998
C
C **
C OPTION 24 : *BUCK - BUCKLING ANALYSIS AND PARAMETERS
C **
C 24 NDYNMD = NN(1)
NSBNC = NN(2)
INTSTR = NN(3)

C IF(NDYNMD .EQ. 0) NDYNMD = 1
IF(NSBNC .EQ. 0) NSBNC = 2 * NDYNMD
MSBNC = 8 + NDYNMD
NSBNC = MIN0(NSBNC, MSBNC)

C ISTAT = 1
IDYNM = 0
JEIGEN = 1

GO TO 998

C **
C OPTION 25 : *THER - TEMPERATURE DEPENDENT PROPERTIES
C **
C 25 CONTINUE
ITHERM = 1
GO TO 998

C **
C OPTION 25 : *CONS - CONSTITUTIVE LAW SELECTION
C **
C 26 CONTINUE
JCONST = NN(1)
IF(JCONST.LT.0.OR.JCONST.GT.4) JCONST = 2
GO TO 998

C **
C OPTION 27 : *DIST - DISTRIBUTED LOAD (SAME AS *TRAC AND *PRES)
C **
C 27 CONTINUE
JDIST=1
GOTO 998

C **
C OPTION 28 : *DUPL - MAXIMUM NUMBER OF DUPLICATED NODES
C **
C 28 CONTINUE
NDUP=NN(1)
GOTO 998
OPTION 29: *REPO - REPORT GENERATION INTERVAL TO BE SET

29 CONTINUE
JREPORT = NN(1)
IF(NN(1).EQ.0) JREPORT = 1
GO TO 998

OPTION 30: *TANG - MODIFIED NEWTON METHOD WITH TANGENT MATRIX SPECIFICATION

30 CONTINUE
JTANG = NN(1)
GO TO 998

31 CONTINUE
JHERM = 1
GO TO 998

OPTION 32: *SCHE - TIME STEPPING SCHEME PARAMETER OPTION

32 CONTINUE
DALPHA = 0.5D0
DBETA = 0.25D0
DGAMMA = 0.5D0
CALL FREFOR(IWORK(IIAST+I),R_3RK(IIAST+I),0,3,0,IERR,JKEY)
CALL COPYSD (R_3RK(IIAST+I) ,DALPHA, I)
CALL COPYSD (R_3RK(IIAST+2) ,DBETA, 1)
CALL COPYSD (R_3RK(IIAST+3) ,DGAMMA, 1)
GO TO 998

OPTIONS 33, 34, 35, 36, 37, 38, 39 - FLAGS FOR USER SUBROUTINES
JUTEMP = 1
GO TO 998

35 CONTINUE
JUCOEF = 1
GO TO 998

36 CONTINUE
JDISTS = 1
GO TO 998

37 CONTINUE
JUHOOK = 1
GO TO 998

38 CONTINUE
JDERIV = 1
GO TO 998

39 CONTINUE
JUBOUN = 1
GO TO 998

**
OPTION 40 : *PERI - PERIODIC LOADING APPLICABLE ONLY FOR TRANSIENT DYNAMICS
**

40 CONTINUE
JPEROD(1) = NN(1)
JPEROD(2) = NN(2)
GO TO 998

**
OPTION 41 : *BAND - BAND MATRIX SOLVER (DEFAULT)
**

41 CONTINUE
JBAND = 1
JFRONT = 0
GO TO 998

**
OPTION 42 : *FRON - FRONTAL SOLUTION
**
CONTINUE

JBAND = 0
JFRONT = 1
GO TO 998

CONTINUE

JDEFOR = 1
IDYNMD = NN(1)
NDYNMD = NN(2)
NSBNC = NN(3)
INTSTR = NN(4)

IF (NDYNMD .EQ. 0) NDYNMD = 1
NSBNC = 2 * NDYNMD
MSBNC = 8 + NDYNMD
IF (NDYNMD .GT. 8) NSBNC = MSBNC
ISTAT = 1
IDYNM = 0
JEIGEN = 1
GO TO 998

CONTINUE

JEMBED = 1
IF (NN(1) .NE. 0) JSUBRE = 1
GO TO 998

CONTINUE

NGMRS = NN(1)
IF(NGMRS .EQ. 0) NGMRS = 1
GO TO 998

C**
C OPTION 46 : *BEAM - MAXIMUM NUMBER OF BEAM SECTION DATA
C**

46 CONTINUE
NBSECT = NNODE
GO TO 998

C**
C OPTION 47 : *DISP - DISPLACEMENT METHOD OPTION
C**

47 CONTINUE
JDISP = 1
GO TO 998

C**
C OPTION 48 : *POWE - POWER SHIFT FOR EIGEN ANALYSIS
C**

48 CONTINUE
NSHIFT = NN(1)
IF(NSHIFT .EQ. 0) NSHIFT = 1
GO TO 998

C**
C OPTION 49 : *BFGS - BFGS UPDATE FOR QUASI-STATIC NONLINEAR ANALYSIS
C**

49 CONTINUE
IFBFGS = 1
NSBFGS = 10
IF(NN(1) .NE. 0) NSBFGS = NN(1)
GO TO 998

C**
C OPTION 50 : *SPRI - ADDED STIFFNESS, GROUND SPRING
C**

50 CONTINUE
NSPRI = NN(1)
IF (NSPRI .EQ. 0) NSPRI = 1
GO TO 998

C***
C OPTION 51: *DASH - ADDED DAMPING, DASHPOT TO GROUND
C***
C 51 CONTINUE
 NĐASH = NN(1)
 IF (NĐASH .EQ. 0) NĐASH = 1
 GO TO 998

C***
C OPTION 52: *MASS - ADDED MASS
C***
C 52 CONTINUE
 NMASS = NN(1)
 IF (NMASS .EQ. 0) NMASS = 1
 GO TO 998

C***
C OPTION 53: *SECA - SECANT NEWTON METHOD OPTION
C***
C 53 CONTINUE
 IFSCNT = 1
 GO TO 998

C***
C OPTION 54: *LINE - LINE SEARCH OPTION
C***
C 54 CONTINUE
 IFLINE = 1
 GO TO 998

C***
C OPTION 55: *HARM - HARMONIC NODAL FORCE LOADING
C***
C 55 CONTINUE
 NHARM = NN(1)
 IF (NHARM .EQ. 0) NHARM = 1
 CALL FREPOR(IWORK(ILAST+1),RWORK(ILAST+1),0,1,0,IERR,JKEY)
CALL COPYSD(RWORK(ILAST+1),OMEGH,1)
GO TO 998

C
C **
C OPTION 56 : *BASE - HARMONIC BASE EXCITATION
C **
C
56 CONTINUE
NBASE = NN(1)
IF (NBASE .EQ. 0) NBASE = 1
CALL FREFOR(IWORK(ILAST+1),RWORK(ILAST+1),0,1,0,IERR,JKEY)
CALL COPYSD(RWORK(ILAST+1),OMEGB,1)
GO TO 998

C
C **
C OPTION 57 : COMPOSITE LAMINATE OPTION
C **
C
57 CONTINUE
ICOMPS = 1
CALL CMPDF
1 (IWORK,RWORK,IERR,NTYPE,ILAST,ILPRNT)

GO TO 998

C
C **
C OPTION 58 : *PULS - PULSE LOAD OPTION
C **
C
58 CONTINUE
NPDPTS = NN(1)
NPULSE = NN(2)
IF (NPDPTS .LT. 2) NPDPTS = 2
IF (NPULSE .EQ. 0) NPULSE = 1
GO TO 998

C
C **
C OPTION 59 : PRECONDITIONED CONJUGATE GRADIENT ITERATION OPTION
C **
C
59 CONTINUE
IPCONJ = 1
IILINE = 1

GO TO 998

SYSTEMS' MANUAL

MHOST Version 4.2

Page: 128
OPTION 60: *SHOC - SHOCK SPECTRA OPTION (INACTIVE)

CONTINUE
 CALL LINES(1,1)
 WRITE(ILPRNT,6000) 61,'SHOC'
 WRITE(ICONSIL,6000) 61,'SHOC'
 IERR = IERR+1
 NSSPTS = NN(1)
 IF (NSSPTS .EQ. 0) NSSPTS = I0
 LDYN = 3
 GO TO 998

OPTION 61: *POWE - POWER SPECTRAL DENSITY OPTION

CONTINUE
 NPSPTS = NN(1)
 NFDPTS = NN(2)
 JFDSXX = NN(3)
 IF (NPSPTS .EQ. 0) NPSPTS = I0
 IF (NFDPTS .EQ. 0) NFDPTS = I0
 LDYN = 4
 GO TO 998

CONTINUE
 LOECHO = 1
 GO TO 998

OPTION 63: *PERT - SET UP PERTURBATION FLAGS

CONTINUE
 CALL LINES(1,1)
 WRITE(ILPRNT,6000) 63,'PERT'
 WRITE(ICONSIL,6000) 63,'PERT'
 IERR = IERR+1
 CALL PERSIZ(NN(1), IERR)
 GO TO 998
OPTION 64 : *STIF - STRESS STIFFENING OPTION

64 CONTINUE
JSTIF = NN(1)
IF (NN(1) .EQ. 0) JSTIF = 1
GO TO 998

OPTION 65 : *CENT - CENTRIFUGAL MASS STIFFNESS OPTION

65 CONTINUE
JCENTM = NN(1)
GO TO 998

OPTION 66 : *HARD - WORK-HARDENING OPTION FOR PLASTICITY

66 CONTINUE
NHARD = NN(1)
IF (NN(1) .EQ. 0) NHARD = 1
GO TO 998

OPTION 67 : *FINIT - FINITE STRAIN OPTION

67 CONTINUE
JFINIT = NN(1)
GO TO 998

OPTION 68 : *LARG - LARGE DISPLACEMENTS AND ROTATIONS OPTION

68 CONTINUE
JLARGE = NN(1)
GO TO 998

OPTION 69 : *FOLL - FOLLWER FORCE OPTION
C **
C 69 CONTINUE
 JPOLOW = NN(1)
 GO TO 998
C
C **
C OPTION 70 : *WLSKP : FLAGS THE USER SUBROUTINE FOR WORKHARDENING
C **
C
70 CONTINUE
 JWKSLP = 1
 GO TO 998
C
C **
C OPTION 71 : *HOUR ... HOURGLASS CONTROL FLAG IN A SPECIAL WAY
C **
C
71 CONTINUE
 JHRGLS = 1
 GO TO 998
C
C **
C OPTION 72 : *MONI - TURN ON THE MONITOR UTILITY
C **
C
72 CONTINUE
 NMNIT = NN(1)
 IF (NMNIT .LT. 1) NMNIT = 1
 GO TO 998
C
C *** NORMAL EXIT BY READING 'END' CARD ****************************
C
16 CONTINUE
 IF (LOECHO .NE. 0) NOECHO = 1
C
C *** A FEW POSSIBLE CONTRADICTIONS IN PARAMETER DATA ARE CHECKED HERE
C
 IF(IFBFGS .EQ. 1 .AND. IFSCNT .EQ. 1) CALL QUIT
 ('CONT', 'RADI', 'CTIO', 'N DE', 'TECT', 'ED ', 1)
C
 IF(IFBFGS .EQ. 1 .AND. IPCONJ .EQ. 1) CALL QUIT
 ('CONT', 'RADI', 'CTIO', 'N DE', 'TECT', 'ED ', 1)
C
 IF(IPCONJ .EQ. 1 .AND. IFSCNT .EQ. 1) CALL QUIT
C
SYSTEMS' MANUAL
Page: 131

MHOST Version 4.2
An example of a typical bulk data reader is the subprogram to read and store the nodal coordinates:

```fortran
C=SUBROUTINE=COORIN CALLED BY SUBROUTINE 'DATIN2'
SUBROUTINE COORIN
1 (INT,REA,IERR,NCRD,ILAST,ILPRNT,NNODE,INOD,
2 MAXCRD,ICHECK)
C
C ***********************************************
C READ IN COORDINATE DATA
C IERR ERROR FLAG
C NCRD NUMBER OF COORDINATES PER NODE
```
C LAST WORD FOR INPUT
KW OUTPUT DEVICE
NNODE NUMBER OF NODES IN MESH
INOD POINTER TO COORDINATES
MAXCRD MAXIMUM NUMBER OF COORDINATES PER NODE
ICHCK ENABLE/DISABLE NODAL THICKNESS CHECK

**

IMPLICIT REAL*8 (A-H,O-Z)
REAL*4 REA

**

COMMON / MACHIN / IDP

**

DIMENSION INT(1), REAL(1)

**

ISI = INOD - MAXCRD*IDP
JKEY = -1

*** CHECK IF THE CORE IS ALLOCATED FOR THE COORDINATE DATA *********

IF (NNODE .GT. 0) GO TO 208

CALL LINES(1,1)
WRITE(ILPRNT,9108)
9108 FORMAT(2X,48H***ERROR***
1 5H DATA)
IERR = IERR + 1

*** CHECK THE NUMBER OF DATA ENTRIES *******************************

208 CONTINUE
IF (NCRD .EQ. 0) NCRD = MAXCRD

*** MCRD: COUNTER OF THE NUMBER OF ACTUAL COORDINATE DATA ENTRIES ****

MCRD = NCRD
IF (MAXCRD .EQ. 7) MCRD = 3
IF (NCRD .LE. MAXCRD) GO TO 607
CALL LINES(1 , 1)
WRITE(ILPRNT,9208) NCRD,MAXCRD
9208 FORMAT(2X,47H***ERROR*** NUMBER OF COORDINATE DIRECTIONS,I5,
*13H GREATER THAN,I5)
IERR = IERR + 1
C
*** READ NUMERIC DATA LINE ***
C
607
ICOUNT = 0
TNEW = 0.D0
TOLD = 0.D0
608 CONTINUE
ICOUNT = ICOUNT + 1
C
CALL NULLINT(INT(ILAST+1),NCRD+1)
CALL FREFOR(INT(ILAST+1),REA(ILAST+1),1,NCRD,0,IERR,JKEY)
C
*** IF THE CURRENT LINE IS THE KEYWORD DATA THEN RETURN ************
C
IF (JKEY .EQ. 1) GO TO 108
C
**
C PROCESS THE NODAL COORDINATE DEFINITION DATA LINE
C**
C
TOLD = TNEW
K = INT(ILAST+1)
TNEW = REA(ILAST+5)
C
*** IF THICKNESS IS NOT GIVEN THE LAST NONZERO VALUE IS TAKEN ********
C
IF (TNEW .EQ. 0.D0) TNEW = TOLD
C
*** RANGE CHECK **
C
IF (K .GT. 0 .AND. K .LE. NNODE) GO TO 308
C
*** ERROR MESSAGES **
C
CALL LINES(1 , 1)
IF (K .LE. 0) WRITE(ILPRNT,9601) K
9601 FORMAT(2X,27H***ERROR*** NODE NUMBER,I5,13H NON-POSITIVE)
C ***
IF (K .GT. NNODE) WRITE(ILPRNT,9701) K, NNODE
9701 FORMAT(2X,27H***ERROR*** NODE NUMBER,I5,13H GREATER THAN,I5)
C
IERR = IERR + 1
C
308 CONTINUE
C
C *** THICKNESS DATA CHECK FOR SHELL ELEMENTS **************************
C
IF (MAXCRD .NE. 7 .OR. ICHECK .EQ. 0) GO TO 8000
IF (ICOUNT .NE. 1 .OR. TNEW .NE. 0.D0) GO TO 8000
C
C *** ERROR MESSAGE FOR THE THICKNESS NOT DEFINED **********************
C
WRITE(ILPRNT,9753)
9753 FORMAT(2X,'***ERROR*** SHELL THICKNESS NOT SPECIFIED IN THE ',
1 'FIRST DATA LINE')
IERR = IERR + 1
C
C *** ADRESSES FOR THE CURRENT (K-TH) NODAL COORDINATES ****************
C
8000 CONTINUE
IS2 = IS1 + K*MAXCRD*IDP
IS3 = IS2 + 6 *IDP
C
C *** STORE THE COORDINATE DATA **
C
CALL COPYSD (REA(ILAST+2) , REA(IS2) , MCRD)
C
IF (MAXCRD .NE. 7) GO TO 408
C
C *** STORE THE SHELL THICKNESS DATA AT NODE ***************************
C
CALL COPY (TNEW , REA(IS3) , 1)
C
408 CONTINUE
508 CONTINUE
C
C *** BACK TO THE FREE FORMAT READER AND PROCESS THE NEXT LINE ***********
C
GO TO 608
C
C *** EXIT **
C
3.3 Restart File

The restart file is designed to store all the information necessary to resume execution of an incremental analysis or to use the final result stored in the file for starting a new set of calculations. The alteration of certain parameter data is supported by the following SUBROUTINES: SAVER to write and RESTART to read the restart file:

C ... SUBROUTINE SAVER ... RESTART FILE WRITER
C
SUBROUTINE SAVER(RWORK, IWORK, ISIZE)
C
C **
C ** **
C ** WRITES A BINARY FILE FOR LATER RESTART **
C ** **
C **
C
C IWORK : INTEGER WORKSPACE
C RWORK : REAL WORKSPACE
C ISIZE : SIZE OF WORKSPACE
C
C **
C
IMPLICIT REAL*8 (A-H,O-Z)
REAL*4 RWORK
C
DIMENSION IWORK(ISIZE), RWORK(ISIZE)
C
COMMON / ADDVAL / ISPRI ,KSPRI ,IDASH ,KDASH ,IMASS ,KMASS
COMMON / ALGEM / ICREAD,ILPRNT,ILPRINT,ICONSL,IPRINT,ISCRAF,
1 IPOINT,IRSTRT,ICREAD,IPVARS,IPSETS,IFILEX,
2 PI ,LINE ,LINE2
COMMON / AUTOIN / CURPER,TOTPER,ARCLEN,AITOLER,BTOLER,CITOLER,
1 JADAP ,NCREEP,SCALE
COMMON / BODYFR / POINTS(3,2)
COMMON / BSECT / IBSECT,KBSECT
COMMON / CONTRO / JEND ,JITER ,JTEMP ,JPRINT ,JP ,JSUB ,
1 JINC ,JREST ,JSAVE ,JREDM ,JAUTO ,JPOST ,
2 JBACK ,JOPTIM ,NCREEP,JDIST ,JCONST,JDYN ,
3 NONISO,ITHERM,ITRIG ,IDYNM ,JREPOT,JTANGE,
COMMON / COMPND / NXSTAT, NXSOLV, NXINIG, NXMOLD, NXBCKL, NXSUPR,
1 NXREQQ, NXDUM1, NXDUM2, NXDUM3, NXDUM4
COMMON / COUNT / LININC, LINTOT, NOECHO
COMMON / DAMP / DAMPF(3)
COMMON / EIGEN / IEGNVC, IEGNS, IOMEG, IDENO, IDYNMD, IRSRT2,
1 IPTAR, IPTBR, IPTVED, IMDAM, IOMEGD
COMMON / MODSUP / IMFORO, IMDISO, IMVELO, IMFOR1, IMDIS1, IMVEL1
COMMON / ELEMEM / IC, IE, IDF, JLAW, IPATH, IASEM,
1 JRULE, JCART, JEL009, JEL010, JEL011, JEL012
COMMON / HARMON / OMEG, IHARM, KHARM, OMEGB, IBASE, KBASE,
1 IGNFOR, ICMFOR, ICMRES, ICHHFN, ICHFNY, ICBEXC,
2 ICCMAT
COMMON / INOCON / FACTOR, INCFLG(21)
COMMON / MAXMA / MAXCRD, MAXNFR, MAXNOD, MAXSTR, MAXCHR, MAXPRS,
1 MAXLAY, MAXINT, MAXWKR, MAXLVL, NSUMAX, MAXCMP,
2 MAXESP, MAXGMR, MAXTEM, MAXELM, MAXLWK, MAXDTR,
3 MAXFRN, MAXBET, MAXVAR, MAXSET, MAXEAN, MAXORD,
4 MAX025, MAX026, MAX027, MAX028, MAX029, MAX030
COMMON / LOUBIN / JLOUB, JINTER, JEXTRA, JWEIGH, JSUBRE, JISTRN,
1 JCTTER, JHRGLS, JGRAM, JLOB03, LOUB04, LOUB05
COMMON / PARAM / NTYPE, NELEM, NPAD, NBC, NTIE, NMAX,
1 NRAN, NTRAC, NFD, NBAND, NEXT, NSUB,
2 NPRINT, NPOST, NSBC, NDUP, NSIZE, NBSET,
3 NSHIFT, NSBEGS, NQMR, NSPRI, NMASS, NDASH,
4 NDYNMD, NSBNC, NSUPER, NHARM, NBASE, NINC,
5 NITER, NPSPTS, NFPTS, NPULSE, NPP015, NHARD,
6 NSUMCH, NDIMEN, MNIT, NPAR40, NPAR41, NPAR42,
7 NPAR43, NPAR44, NPAR45, NPAR46, NPAR47, NPAR48
COMMON / PERPAR / IPTYPE(32), NTYPE, NVARS, NSETS, JPERT, NESSUS
1 NPVCON, NPP008, NPP009, NPP010, NPP011, NPP012, NESSUS
COMMON / PERPTR / IMEANS, ISTDEV, IPDATA, IVTYPE, ISKIP, IREDIF, NESSUS
1 IDINCO, IREA0, IRES0, IDGRP, ISTIF0, IMASS0, NESSUS
2 IPPO13, IOMEGO, IOMEGK, IETAK, IZETAK, NESSUS
COMMON / PERDAT / IXCOOR, IXCHAR, IXFORC, KXFORC, IXDIST, KKDIST, NESSUS
1 IXTEMP, JXTEMP, IXBAM, IXFVEC, IXSPR, KXSPLR, NESSUS
2 IXPRES, IXPREF, XP015, XP016, IPWBE0, IPWEND, NESSUS
COMMON / PERIOD / JPERIOD(2), IPDISP, IPFORC, INDISP, INFORC, NESSUS
COMMON / POSTPN / IPOINT, JPOINT, KPOINT, NDATA, PRNTBF(6)
COMMON / POWER / IELPHI, IELTNM, IEPSMO, ISIGMD, IHFN, IHFC,
1 IFBP, ISPP, ISFF, ISQQ, ICQQ, ITNM,
2 IPSF, IPSD
COMMON / PREPAR / NRFPTS, NRFSDS, NRFLIN, NRFINT, NRFREA, NRFSEL,
1 NRFCMP, NRFDOF, NRFSP2, JRFEND, JRFTP, JCOUNT,
2 JCFLAG, JRFSEL, JRFDOM, NKEPT, MORE
COMMON / PREPTR / IRFPTS, IRFINT, IRFMNR, IRFSDR, IRFSEL, IRFSET,
1 IRFMNV, IRFSDV, IRFPTV, IRFVEC, IRFVAL, IRFNRM,
2 IRFCOR, IRFID, IRFWRK
COMMON / PULSES / IPULSE, KFUSE, IPDTIM, IPDFOR
COMMON / RESULT / MANVAR(7), JPR, ICOM1, NCOMP
COMMON / START1 / IELPM, ITP, INEL, ICHAR, IPRES, ISTRS,
1 ISTRN, ICOP, IPRINT, IPDTL, IDEC,
2 IPRES, IINORM, IMONIT, IST116, IST117, IST118
COMMON / START2 / INOD, IITEM, INLV, IPOSU, IITEMP, IDUP
COMMON / START3 / IKBC, ITI, ITR, ITRAC, IEXT,
1 ISBC, ISBCR
COMMON / START4 / IDINC, IDTOT, IFORCE, IRRESID, IWINDO, ISIGNO,
1 IEPNO, IPSTRN, ICSSTR, ICSLN, ISTS, IISTN,
2 IIIFSTR, IISCSTR, ITISPNO, ICSTNO, ICSTN,
3 IISNNO, IIPSPNO, IICSNNO, IICSNNNO, IDMAT,
4 IDMNO, IEOCSI, IOMENO, ITDSNO, IVSWINO,
5 IDYNV, IDVSA, IDVSB, IDVSC, IDVSD,
6 IEQCSV, IREF, IDX3, IYIELD, IDFINC, IDFTOT,
7 IST444, IST445, IST446, IST447, IST448
COMMON / START5 / IRL, IREAD, IES, IAB, ISEM, ISRL,
1 IBILOG, ISKM, ILAST, IRL, IDINCP, IFRIN,
2 IOP, IDAM, IMASMT, IDIAG, IUPTR, IOLPT,
3 IMASDI, IMASUP, IST521, IST522, IST523, IST524
COMMON / START6 / IELV, IICOR, ISIG, IEPS, IWINDO, ISNOD,
1 IENOD, IPREM, ICH, IPP, IXLRL, IXLRL,
2 IXN, IXX, KPSSTRN, KCSTRN, KSSTRN, KISTR,
3 KSSTRN, KIPSTR, KCSSTR, KSTSTRN, KSSTRN,
4 KISSTN, KISSTN, KIPSSNO, KIPSSNO, KIPSSNO,
5 KIPSSNO, KIPSSNO, KIPSSNO, KIPSSNO, KIPSSNO,
6 IDMAT, KMDNO, KTDSNO, KITDSNO, KMDNO,
7 IVEIL, IAVEIL, IAVEIL, IVEIL, IVEIL, IVEIL,
8 IST431, IST432, IST433, IST434, IST435, IST436
COMMON / START7 / ICON, IKBCR, ITRACR, ITRACR, IBETA, IDET
COMMON / START8 / KGEPS, KGEPS, KGSIG, KGSIG, KGIDST,
1 KIGPSNO, KIGPSNO, KIGPSNO, KIGPSNO, KIGPSNO,
2 KIGPSNO, KIGPSNO, KIGPSNO, KIGPSNO, KIGPSNO
COMMON / START9 / KEQCSI, KOMENO, KSMLNO, KTMPNO, KIDFNO, KDUMMY,
1 KEQCS, KOMENO, KSMLNO, KTMPNO, KIDFNO, KDUMMY
COMMON / SUBELM / ISUBEL, ISUBNP, ISUBPT, NSDATA, ISUBTY, IEMBED
Rewind the restart file to overwrite with the newest data

First store the contents of the common blocks

```
C  **********************************************************************
C **REWIND THE _FILE TO OVERWRITE WITH THE NEWEST DATA**
C  **********************************************************************
C
C  **********************************************************************
C **FIRST STORE THE CONTENTS OF THE COMMON BLOCKS**
C  **********************************************************************
C
WRITE (IRSTR,T) ISPRI,KSPRI,IDASH,KDASH,IMASS,KMASS
WRITE (IRSTR,T) ICREAD,IPRINT,JLPRINT,ICONSL,IPOSTF,ISCRAF,
1         IPLOTE,IRSTRT,ICREAD,IPVARS,IPSETS,IFILEX,
2         PI,L ,LINE2
WRITE (IRSTR,T) CURPER,TOTPER,ARCLEN,ATOLER,BTOLER,COTOLER,
1         JADAP,NCREEP,SCALE
WRITE (IRSTR,T) POINTS( 3, 2)
WRITE (IRSTR,T) IBSECT,KSECT
WRITE (IRSTR,T) JEND,JITER,JTEMP,JPRINT,JP,JSUB,
1         JINC,JREST,JSAVE,JREDIM,JAUTO,JPOST,
2         JBACK,JOPTIM,JCREEP,JDIST,JCONST,JDYN,
3         NONISO,JHERM,ITRIG,JDYNM,JDIF,JTHRENG,
4         JTHERM,JFORCE,JUTEMP,JUCREF,JDIST,JUHOCH,
5         JDERIV,JBOUND,IDSTOP,INTSTR,JPLAST,JBAD,
6         JFRONT,JDEFOR,JEMBED,JTEST,JDISP,IFBFGS,
7         IFSCNT,IFLINE,IPRINT,ICOMP,IPCONJ,IEIGEN,
8         IFBODY,IPGRAV,IPCENT,JDAMP,LDYN,ISTAT,
9         JFDSXX,JISTIF,JCENTM,JFINIT,JLARGE,JPOLOW,
+         JKSLP,JRES,JCDUM2,JCDUM3
WRITE (IRSTR,T) NXSTAT,NXSOV,NXINTG,NXMODL,NXBCKL,NXSUPR,
1         NXREQN,NXDUM1,NXDUM2,NXDUM3,NXDUM4
```
WRITE (IRSTRT) LININC, LINTOT, NOECHO
WRITE (IRSTRT) DAMPF(3)
WRITE (IRSTRT) IEGVC, IGMNS, IOMEG, IOMEO, IDYNMD, ISTR2
WRITE (IRSTRT) IPTAR, IPTBR, IPTVED, IMDAM, IOMEGD
WRITE (IRSTRT) IMFOR0, IMDIS0, IMVLO, IMFOR1, IMDIS1, IMVEL1
WRITE (IRSTRT) IC, IEL, IDF, ILAW, IPATH, IASSEM,
WRITE (IRSTRT) JRULE, JCART, JEL009, JEL010, JEL011, JEL012
WRITE (IRSTRT) OMGH, IHARM, KHARM, OMGB, IBASE, KBASE,
WRITE (IRSTRT) IGNFOR, ICMPOR, ICMASS, ICWHEN, ICWHF, ICBEWR,
WRITE (IRSTRT) ICMAT
WRITE (IRSTRT) FACTOR, ICFLG(20)
WRITE (IRSTRT) MAXCRD, MAXNFR, MAXNOD, MAXSTR, MAXCHR, MAXPRS,
WRITE (IRSTRT) MAXLAY, MAXINT, MAXWRK, MAXNULV, NSUMAX, MAXCMP,
WRITE (IRSTRT) MAXBSP, MAXGMr, MAXTEM, MAXLNM, MAXLINK, MAXDMT,
WRITE (IRSTRT) MAXFNR, MAXBET, MAXVAR, MAXSET, MAXEAN, MAXORD,
WRITE (IRSTRT) MAX025, MAX026, MAX027, MAX028, MAX029, MAX030
WRITE (IRSTRT) JLOUB, JINTER, JEXTRA, JWEIGH, JSUBRE, JSTRN,
WRITE (IRSTRT) JCITE, JHRCLS, JGRAM, LOUB03, LOUB04, LOUB05
WRITE (IRSTRT) NTYPE, NELEM, NNODE, NBC, NTIE, NMAX,
WRITE (IRSTRT) NTRAN, NTRAC, NFD, NBAND, NEXT, NSUB,
WRITE (IRSTRT) NPINT, NPOST, NSEC, NDUP, NSIZE, NSECT,
WRITE (IRSTRT) NSHFT, NSBEGS, NQGRS, NSPRI, NMASS, NDASH,
WRITE (IRSTRT) NDYNMD, NSBNC, NSUPER, NQHARM, NSBASE, NINC,
WRITE (IRSTRT) NITER, NPSPTS, NFPTS, NPULSE, NPPTS, NHARD,
WRITE (IRSTRT) NSUMCH, NPAR36, NMINT, NPAR40, NPAR41, NPAR42,
WRITE (IRSTRT) NPAR43, NPAR44, NPAR45, NPAR46, NPAR47, NPAR48
WRITE (IRSTRT) IPTYPE(32), NTYPE, NPVARS, NPSETS, JPERT,
WRITE (IRSTRT) NPP008, NPP009, NPP010, NPP012
WRITE (IRSTRT) IMEANS, ISTDDEV, IPDATA, IVTYPE, ISKIP, IREDIF,
WRITE (IRSTRT) IDINC0, IREDAC0, IREDSC0, IDGRP, ISTRF0, IDASS0,
WRITE (IRSTRT) IPP013, IOMEGO, IOMEGP, IOMEGK, IETAK, IZETAK
WRITE (IRSTRT) LXCOOR, IXCHAR, IXFORC, IXFORC, IXDIST, IXDIST,
WRITE (IRSTRT) IXTEMP, JXTEMP, IXEAM, IXVEC, IXSPRI, IXSPI,
WRITE (IRSTRT) IPXSF, IPXFORC, IPXFORC, IPXFORC, IPXFORC
WRITE (IRSTRT) IPRECO(2), IPDISP, IPFORC, IPDISP, IPFORC
WRITE (IRSTRT) JPINT, JPINT, KPINT, KDATA, IPRINF(6)
WRITE (IRSTRT) IELPHI, IELTNM, IEPMS, ISIGMO, IHEN, IHFC,
WRITE (IRSTRT) IFBP, ISPP, ISFF, ISIO, ICQ, ITNM,
WRITE (IRSTRT) IPSF, IPSD
WRITE (IRSTRT) NRFPPTS, NRSFSD, NRSFIN, NRFSFD, NRFSF, NRSFSD,
WRITE (IRSTRT) NRFCMP, NRFCOF, NRFSIZ, NRPSDF, NRFTP, JCOUNT,
WRITE (IRSTRT) JCPLAG, JRFSEL, JRFDOM, NKREPT, MORE,
WRITE (IRSTRT) IRFPPTS, IREFINT, IREFMIN, IRFSDR, IREFSEL, IREFSET,
WRITE (IRSTRT) IREFNN, IREFSD, IRFPTV, IRFVEC, IREFVAL, IREFNM,
WRITE (IRSTRT) IRFCOR, IRFID, IRFWRK

SYSTEMS' MANUAL

Page: 140

MHOST Version 4.2
WRITE (IRSTR) IPULSE, KPULSE, IPOTIM, IPDFOR
WRITE (IRSTR) MANVAR(7), IFR, ICOM1, NCOM
WRITE (IRSTR) IELPRM, ITYP, IREL, ICHAR, IPRES, ISTRS,
 1 ISTRN, ICOO, IPINT, IPPOST, IDIST, ILEAN,
 2 IBPRES, IBNORM, IBNORM, IST116, IST117, IST118
WRITE (IRSTR) ISTRD, ITR, ISTR, ISTRF, IDUP
WRITE (IRSTR) ICTL, ITI, ITRN, ITRC, IEXT
 1 ISBC, ISBC
WRITE (IRSTR) IDINS, IDINOT, IPORCE, IPRES, ISNOD, ISIGNO,
 1 IEPSNO, IPSTRN, ICSTRN, ITSTRN, ISTRS, ISTRN,
 2 ITSTRN, IICSTR, IITSTR, IPSTNO, ICSTNO, IICSTNO,
 3 IICSTNO, IISNNO, IIPRNO, ICINSO, IICNOS, IIMAT,
 4 IDIMNO, IECQST, IOENNO, IOMNO, IIDSNO, IVSNO,
 5 IDYNV, IDYNA, IDSX1, IDSX2, IEDIT, ISPELL,
 6 IEQCSI, IPEF, IISX3, IYIELD, IST441, IST442,
 7 IST443, IST444, IST445, IST446, IST447, IST448
WRITE (IRSTR) IRL, IIREC, IDES, IAB, IBQM, ISRL,
 1 IETLC, ISK, ITAIL, IMLB, IDEINCP, IFOREIN,
 2 IOP, IDAM, IMASTM, IDIAG, IUPTR, IUCOLP,
 3 IMASDT, IMASP, IST521, IST522, IST523, IST524
WRITE (IRSTR) IELV, IICR, ISIG, IIEPS, IINOD, IISNO,
 1 IENOD, IETM, ICH, IPP, IXL, IXRL,
 2 IXL, IXK, KSPTRN, KCSTRN, KISTR, KISTR,
 3 KISTR, KIPSTR, KICSTR, KITSTR, KPSTNO, KCSTNO,
 4 KCSTNO, KISNNO, KIPSSN, KICSNOS, KITSNOS,
 5 KITSNOS, KINOD, IEQPST, IEQPSI, KEQPST, KEQPSI,
 6 KMAT, KDINNO, KITDN, KITDST, IDM, IDK,
 7 IVELM, IAEML, IAMESL, KUL, I1647, I1648,
 8 I1649, I1650, I1651, I1652, I1653, I1654
WRITE (IRSTR) ICON, IKBC, ITRACR, ITRANR, IBETA, IDET
WRITE (IRSTR) KEPS, KIGPS, KIGSIG, KIGSIG, KIGDIST,
 1 IEGPSNO, IIGENO, IIGSNO, IIGSNO, IIGSTNO,
 2 KIGPSNO, KIGENO, KIGSNO, KIGSNO, KIGSTNO
WRITE (IRSTR) KEQCSI, KIOMNO, KSWNIO, KINNO, KIDNO, KIDNNY,
 1 KRESNO, KOMINO, KSWNO, IST910, IST911, IST912
WRITE (IRSTR) ISUBL, ISUNB, ISUBL, NSDATA, ISUBY, IEMBED
WRITE (IRSTR) NSUCR, NSUNR, NSUNO, NSUNR, NSUCR, NSUPR,
 1 NSUPR, NSULV, NSUTM, NSUNDo, NSUNDI, NSUSHR, NSUIDF
WRITE (IRSTR) NLVSUB(10), NFSUB(10)
WRITE (IRSTR) ISHTF, KSHTF, IFREQ, LFREQ, NOFFST, NOFOUND
WRITE (IRSTR) TMINC, TOTINC, RUNTIM
WRITE (IRSTR) DALPHA, DBETA, DGAMMA
WRITE (IRSTR) RELERR, ABSERR, REACMX, RESIMX, DISERR, DISATOR,
 1 ENGTOR, ENGRNM
WRITE (IRSTR) ISETUP, MAVAIL, LENREC, NUMREC, LENBLK, NUMBLK,
C **
C ** NEXT STORE THE DATA IN BLANK COMMON IN 64 WORD BLOCKS **
C **
C
NWORDS = 64
NRECDS = ILAST / NWORDS
C
DO 600 JREC = I, NRECDS
 IBEG = I+(JREC-I)*NWORDS
 IEND = JREC*NWORDS
 WRITE (IRSTRT) (IADRK(JJ), JJ=IBEG, IEND)
600 CONTINUE
C
IBEG = 1+NRECDS*NWORDS
IEND = ILAST
IF (IBEG .NE. IEND)
 1 WRITE (IRSTRT) (IWORK(JJ), JJ=IBEG, IEND)
C
C CALL TIMOUT ('REST','ART ','FILE',' GEN','ERAT','ED ')
RETURN
END
C ... SUBROUTINE RESTRT ... RESTART FILE READER
C
SUBROUTINE RESTRT(RWORK, IWORK, ISIZE)
C
C **
C **
C ** READS-IN A BINARY FILE FOR PROBLEM RESTART
C **
C **
C **
C
IWORK : INTEGER WORKSPACE
RWORK : REAL WORKSPACE
ISIZE : SIZE OF WORKSPACE
SYSTEMS' MANUAL

Page : 143

MHOST Version 4.2
COMMON / PARAM / NTYPE , NELEM , NNODE , NBE , NIE , NMAX ,
 NTR , NTRAC , NFD , NBAND , NEXT , NSUB ,
 NPRINT , NPOST , NSBC , NDUP , NSIZE , NSBC ,
 NSHIFT , NSEFBS , NGMF , NSPR , NMSP , NMASS , NDASH ,
 NDYNMD , NSBEC , NSUPER , NBASE , NINC ,
 NITER , NPSPT , NPDPTS , NPULSE , NPDPTS , NHARD ,
 NSUMCH , NDIMEN , NMONIT , NPAR40 , NPAR41 , NPAR42 ,
 NPAR43 , NPAR44 , NPAR45 , NPAR46 , NPAR47 , NPAR48 ,

COMMON / PERPAR / IPTYPE (32) , NPTYPE , NPVARS , NPSETS , JPERT ,
 NEISSUS
 NCOM , NPP008 , NPP009 , NPP010 , NPP011 , NPP012 , NEISSUS
 IDINCO , IREACO , IRESDO , IDGRP , ISTIF0 , IMASS0 ,
 IP013 , IOMEG0 , IOMEG1 , IMEG1 , IETAK , IETAK ,
 NEISSUS
 LKOOR , ICHAR , IKFORC , KFORC , KDIST , KDIST ,
 LTEM , LTEM , LEBAM , LVECF , LSPRI , LS PRI ,
 LXPRES , LXPF , LXP015 , LXP016 , LWBE , LPEW ,
 NEISSUS
 JPERIOD (2) , IPDISP , IFORC , INDISP , INFORC
 NCOM / POSTRN / JPOINT , KPOINT , NDATA , PRNBF (6)
 NCOM / POWER / IELEPH , IELENM , IEPSMO , ISIGMO , IHFC ,
 IPFP , ISP , ISQQ , ICQQ , ITNM ,
 IPSF , IPSD
 NCOM / PREPAR / NRPT , NRFDS , NRFLIN , NRFINT , NRFREA , NRFSEL ,
 NRFSCM , NRFDOP , NRFSL , LRFEND , JRPYT , JCOUNT ,
 JCFLAG , JRFSEL , JRFDOM , NKPE , MORE
 NCOM / PREPTR / IRPT , IRPINT , IRFMNR , IRFSER , IRFSET ,
 NEISSUS
 IRFMNV , IRFSDV , IRFPTV , IRFVEC , IRFVNL , IRFNM ,
 NEISSUS
 IRFCOR , IFRID , IFRNK
 NCOM / PULSES / IPULSE , KPULSE , IPDTM , IPDFOR
 NCOM / RESULT / I , I , I , I , I
 NCOM / START1 / IELPH , IYTP , IREL , ICHAR , IPRES , ISTRS ,
 ISTRN , ICP , IPRINT , IPOST , DIST , LLEAN ,
 IEFRES , IENORM , IMONIT , IST116 , IST117 , IST118
 NCOM / START2 / INOD , ITEM , INLV , IPOSG , ITREF , IDUP
 NCOM / START3 / IEB , ITI , ITR , ITRAN , INTAC , IEXT ,
 ISBC , ISBC
 NCOM / START4 / IDINC , IDIOT , IFORCE , IRESID , IWINOD , ISIGNO,
 IEPSCN , IPSTR , ICSTR , ITSTR , ISTRS , IISTR
 NCOM / START5 / IEQCSI , IPEF , IDX3 , IYIELD , IFDNC , IFDTOT ,
 IST443 , IST444 , IST445 , IST446 , IST447 , IST448

SYSTEMS' MANUAL
** READ BACK THE CONTENTS OF THE COMMON BLOCKS **

** READ BACK THE CONTENTS OF THE COMMON BLOCKS **
READ (IRSTR) JEND ,JITER ,JTEMP ,JPRINT ,JP ,JSUB ,
1 JINC ,JREST ,JSAVE ,JREDIM ,JAUTO ,JP collided ,
2 JBACK ,JUPDIM ,JCREEP ,JDIST ,JCONST ,JDYN ,
3 NONISO ,IHERM ,ITRIG ,IDYNM ,JREPOT ,JWAVE ,
4 JIPOR ,JFORCE ,JUTEMP ,JUOEF ,JDISTS ,JUNO ,
5 JDERIV ,JBOUND ,IDSTOP ,LINSTR ,JLAST ,JBAND ,
6 JPRON ,JDEFOR ,JEMBED ,ITEST ,JDISP ,IFBECS ,
7 IPSCMT ,IFLINE ,IFPRINT ,ICOMPS ,IPCONJ ,JEIGEN ,
8 IFBODY ,IPGRAV ,IPCENT ,JDAMP ,JLYN ,ISTAT ,
9 JFDGXX ,JSTIF ,JECENT ,JINIT ,JLARGE ,JFOLOW ,
+ JWASFL ,JPRES ,JCDUM2 ,JCDUM3
READ (IRSTR) NXSTAT ,NXSOLV ,NXING ,NXMODL ,NXBCL ,NXSUPR ,
1 NXREQN ,NXDUM1 ,NXDUM2 ,NXDUM3 ,NXDUM4
READ (IRSTR) LININC ,LININT ,NOCHO
READ (IRSTR) DAMPF(3)
READ (IRSTR) TEGNVC ,IGAMS ,IOMEG ,IDENO ,IDYNM ,ISTR12 ,
1 IPTAR ,IPTBR ,IPTVED ,IDAM ,IOMEGD
READ (IRSTR) IMPOR0 ,IDISI0 ,IMVELO ,IMPOR1 ,IDISI1 ,IMVEL1
READ (IRSTR) IC ,IEL ,IDF ,JLAW ,JPATH ,IASSEM ,
1 JRULE ,JCATR ,JEL009 ,JEL010 ,JEL011 ,JEL012
READ (IRSTR) OMEGCH ,IHMARM ,KHARM ,OMEG ,IBASE ,KBASE ,
1 ICFOR ,ICMFOR ,ICARES ,ICHIFN ,ICBEXC ,
2 ICCMAT
READ (IRSTR) FACTOR ,INCFLG(20)
READ (IRSTR) MAXCRD ,MAXNFR ,MAXMOD ,MAXSTR ,MAXCHR ,MAXFRS ,
1 MAXLAY ,MAXINT ,MAXWK ,MAXLV ,NSUMAX ,MAXCMP ,
2 MAXBSP ,MAXGMR ,MAXTM ,MAXELM ,MAXLW ,MAXDTM ,
3 MAXFRN ,MAXBET ,MAXVAR ,MAXSET ,MAXBEAN ,MAXORD ,
4 MAX025 ,MAX026 ,MAX027 ,MAX028 ,MAX029 ,MAX030
READ (IRSTR) JLOUB ,JINTER ,JEXTRA ,JWEIGH ,JSUBRE ,JISTRN ,
1 JCITER ,JHBLGS ,JGRAM ,JLOUB3 ,JLOUB4 ,JLOUB5
READ (IRSTR) NTYE ,NELEM ,NNODE ,NICE ,NLIE ,NMAX ,
1 NTRAN ,NTRAC ,NFD ,NBAND ,NEXT ,NSUB ,
2 NPRINT ,NPOST ,NSBC ,NDUP ,NSIZE ,NSBCT ,
3 NSHIFT ,NSEFCS ,NGARS ,NSPRI ,NMASS ,NDASH ,
4 NDYNM ,NSENC ,NSUPER ,NHARM ,NBASE ,NINC ,
5 NITER ,NPSPTS ,NFDP ,NPDPS ,NPDTS ,NHARD ,
6 NSUMCH ,NPAR38 ,NMONIT ,NPAR40 ,NPAR41 ,NPAR42 ,
7 NPAR43 ,NPAR44 ,NPAR45 ,NPAR46 ,NPAR47 ,NPAR48
READ (IRSTR) IPTYPE(32) ,NTYPE ,NPVARS ,NPSETS ,JPERT ,
1 NPPCON ,NPP008 ,NPP009 ,NPP010 ,NPP011 ,NPP012
READ (IRSTR) IMEANS ,ISTDEV ,IPDATA ,IVTYPE ,ISKIP ,IREDEF ,
1 IDINCO ,IREAC0 ,IRESO0 ,IDGRP ,ISTRFO ,IMASS0 ,
2 IPP013 ,IOMEG ,IOMEGP ,IOMEGK ,IETAK ,IZETAK
READ (IRSTR) IXCOOR ,IXCHAR ,IXFORC ,KXFORC ,JXDIST ,KXDIST ,

SYSTEMS' MANUAL

Page : 146
1 IXTEMP, JXTEMP, IXBEAM, IXFVEC, IXSPRI, KXS PRI, NESSUS
2 IXPRES, IXPREF, IXP015, IXP016, IPWE B, IPWEND NESSUS
READ (IRSTR') JPEROD(2), IPDISP, IPFORC, INDISP, NESSUS
READ (IRSTR') IP0 INT, JPO INT, KPO INT, NDATA, PRMTBF(6) NESSUS
READ (IRSTR') IELPHI, IELTM, IEPSMO, ISIGNO, IFHN, IHFC, NESSUS
1 IFBP, ISPP, ISFF, ISQQ, ICQ0, ITNM NESSUS
2 IPSF, IPSD NESSUS
READ (IRSTR') NRFPTS, NRFSDS, NRFINT, NRFREA, NRFSEL, NESSUS
READ (IRSTR') NRFomp, NRFDFP, NRFST2, IREFN, JRFETY, JCOUNT, NESSUS
READ (IRSTR') JCFLAG, JRFSEL, JRFDOM, NKEPT, MORE NESSUS
1 IRFFTS, IRFINT, IRFMR, IRFSDR, IRFSel, IRFSET NESSUS
2 IRFANV, IRFSDV, IRFIVP, IRFVEC, IRFVAL, IRFNM NESSUS
2 IRFCOR, IRFID, IRFWRK NESSUS
READ (IRSTR') IPUSE, KPUSE, IGDIM, JPDPR NESSUS
READ (IRSTR') MANVAR(7), JPR, ICOM1, NOCOMP NESSUS
READ (IRSTR') IELPRM, IITP, IINEL, ICHAR, IPRES, ISTRS, NESSUS
1 ISTRN, ICP, IPRINT, IPOST, IDIST, ILEAN, NESSUS
2 IBPRES, IBNORM, IMONIT, IST116, IST117, IST118 NESSUS
READ (IRSTR') INOD, JTEM, IINLV, IPOSU, JITEMF, IUP NESSUS
READ (IRSTR') IEC, ITI, ITR, ITRAN, ITRAC, INEXT, NESSUS
1 ISEC, ISCE R NESSUS
READ (IRSTR') IDINC, IDIOT, IFORCE, IRESID, IWINOD, ISIGNO, NESSUS
1 IEPSON, IEPSTN, IESTRN, IISTRN, IISTRN, NESSUS
2 IIPSTR, IICSTR, IITSTR, IPTSNO, ICSNO, IESTNO, IOTNO, NESSUS
3 IISNO, IISSNO, IIIPSNO, ICNSNO, IITSNO, IDMAT, NESSUS
4 IDIMNO, IIEQST, IOQNO, IOQNO, IOVNO, IVSNO, NESSUS
5 IDYNV, IDYNA, IDSX1, IDSX2, IDSTR, ISWELL, NESSUS
6 IBQCSI, IPREF, IDEX3, TYIELD, IST441, IST442, NESSUS
7 IST443, IST444, IST445, IST446, IST447, IST448 NESSUS
READ (IRSTR') IRL, IREFAC, IES, IAB, IBQM, ISRL, NESSUS
1 IBTLC, ISKM, ILAST, IRLB, IDINCP, IFORIN, NESSUS
2 IOP, IDAM, IMASMT, IDIAG, IUPTRI, ICOMI, NESSUS
3 IMASDI, IMASUP, IST521, IST522, IST523, IST524 NESSUS
READ (IRSTR') IELV, ICOR, ISIG, IEPS, INM0, ISIGNO, NESSUS
1 IEN0D, IE1M, ICH, IPP, IXRL, IXRL, NESSUS
2 IXP, IXX, KPSTN, KCSTRN, KSTRN, KSTRN, NESSUS
3 KISTR, KIPSTR, KICSTR, KITSTR, KPSTNO, KCSNO, NESSUS
4 KINTOS, KISNO, KNSNO, KIPSNO, KICNO, KITSNO, NESSUS
5 IMASNO, IMN0, IPEQST, IEQPSI, KEQPSI, KEQPSI, NESSUS
6 KDMP1, KDMNO, KDSNO, KTSNO, KTM, IXC, NESSUS
7 IVELM, IAEML, IMASEL, KYIELD, IST647, IST648, NESSUS
8 IST649, IST650, IST651, IST652, IST653, IST654 NESSUS
READ (IRSTR') ICON, IKBCR, ITRAC, ITRACR, IBETA, IDET, NESSUS
READ (IRSTR') KGEPS, KICEPS, KGSIG, KIGSIG, KITDS, NESSUS
1 IGEPNO, IIGENO, IGSNO, IIGSIG, IGINO, KIGSIG, KITDS,
2
READ (IRSTR) KGEFNO, KIGENO, KGSINO, KIGSNO, KGIDMO
1
READ (IRSTR) KEQCSI, KIOMNO, KSWINO, KIMPNO, KIDFNO, KDUMMY,
READ (IRSTR) ISUBEL, ISUBNO, ISUBPT, NSDATA, ISUBTY, IEMBED
READ (IRSTR) NSUCRD, NSUNFR, NSUNOD, NSUSIR, NSUCHR, NSUPR,
READ (IRSTR) NSUINT, NSULV, NSUTEM, NSUNDI, NSUSHR, NSUIDF
READ (IRSTR) NLVSUB(10), NFRESUB(10)
READ (IRSTR) ISHIFT, KSHIFT, IFREQ, LFREQ, NOFFST, NFOUND
READ (IRSTR) TIMINC, TOTINC, RUNTIM
READ (IRSTR) RELERR, ABSERR, REACMX, RESIMX, DISERR, DISTOR,
READ (IRSTR) ENCTOR, ENCRTM
READ (IRSTR) ISETUP, MAVAIL, LENREC, NUMREC, LENBLK, NUMBLK,
READ (IRSTR) IVPAGE, NVPAGE, IVSTR, IKRO, ILCOL, IPIVCO,
IHEDE, IFNRH, IPIVOT, IPIVRO, IPVKOL, IVEND,
READ (IRSTR) MAXCOL, NLCOL, LAYPRT, JTENSR

C **
C ** PRINT MESSAGE AND PROCEED WITH THE ANALYSIS AS USUAL **
C **
C
C+ CALL _ ('REST','ART ','FILE',' REA','DER ',' ',i)
CALL TIDKX/f ('REST','ART ','FILE',' WAS',' REA','D ')
C *** STEP UP THE INCREMENT COUNTER

SYSTEMS' MANUAL
Page : 148

MHOST Version 4.2
JINC = JINC+1
C
RETURN
END

3.4 Post-Processing Data File

The MHOST program produces an industry-standard formatted post-processing data file when the user requests it. The format is almost compatible with the MARC general purpose finite element program, Versions J.3 and K.1. The difference is that the stress variables (referred to as element variables in most of the finite element programs) are produced at nodal points and written on the file in a tightly packed manner.

CONTENTS OF HOST POST TAPE - Version 4.2

The following describes the contents of the ten blocks which will be found on the Post Tape. This information is the same for either the binary or the formatted Post Tape.

<table>
<thead>
<tr>
<th>Block Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block I</td>
<td>Title</td>
</tr>
<tr>
<td>NR;80A1;(TITLE(J),J=1,70)</td>
<td>TITLE(J) is Jth character</td>
</tr>
<tr>
<td>Block II</td>
<td>Control Information</td>
</tr>
<tr>
<td>1. NR;6I3;INUM</td>
<td>Number of variables per element</td>
</tr>
<tr>
<td>2. LNUM</td>
<td>Number of nodes in mesh</td>
</tr>
<tr>
<td>3. MNUM</td>
<td>Number of elements in mesh</td>
</tr>
<tr>
<td>4. NDEG</td>
<td>Number of degrees of freedom per node</td>
</tr>
<tr>
<td>5. NSTRES</td>
<td>Dummy</td>
</tr>
<tr>
<td>6. INOD</td>
<td>Number of nodal variables - See Note below.</td>
</tr>
<tr>
<td>7. IPSTCC</td>
<td>Connectivity and coordinate flag (1- given)</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>8.</td>
<td>IPSTYP</td>
</tr>
<tr>
<td>9.</td>
<td>NCRD</td>
</tr>
<tr>
<td>10.</td>
<td>NNOMNX</td>
</tr>
<tr>
<td>11.</td>
<td>IANTYP</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>ICOMPL</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>NBCTRA</td>
</tr>
<tr>
<td>14.</td>
<td>POSTRV</td>
</tr>
<tr>
<td>IDM4</td>
<td>IDM5</td>
</tr>
</tbody>
</table>

Note:

\[\text{INOD} = \{NDEG\} \times JNODE \]

If IANTYP = 2 on 2

\[
\begin{array}{ccc}
4 & 4 \\
15 & 1 \\
16 & 1 \\
\end{array}
\]

IANTYP = 15 only appears during subincrements

IANTYP = 16 only appears during subincrements

If IANTYP = 8 and ICOMPL = 1 JNODE = 2

If IANTYP = 9 and ICOMPL = 1 JNODE = 4

Block II

CODE NUMBER ASSOCIATED WITH ELEMENT VARIABLES

INUM Records; J=1, INUM
Block IV

NR; 6I3; JPLT(J)
Element Variable Code

CONNECTIVITY LIST
If IPSTCC is zero this block will be omitted.

MNUM Records; J=1, MNUM

NR; 6I3; LM(1)
Element Type

LM(2)
Number of Nodes in this Element

LM(3)
1st Node of Element J

LM(NNODMX+2)
Last Node of Element J

Block V

COORDINATE LIST
If IPSTCC is zero this block will be omitted.

LNUM Records; J=1, LNUM

NR; 6E13.6; SUM(1)
1st Coordinate of Jth Node

SUM(2)

SUM(NCRD)
Last Coordinate of Jth Node

Block VI

TRANSFORMATION LIST
If NBCTRA is zero this block will be omitted.

Binary 1 record
Formatted (NBCTRA-1)/6 + 1 records

NR; 6I13; LM(I)
List of nodes which have transformations applied

Block VII

TRANSFORMATION - DIRECTION COSINES
If NBCTRA is zero this block will be omitted.
1 record per each node listed in Block VI if binary tape

NR;6E13.6; D(1,1) D(2,1) D(3,1) D(1,2) D(2,2) D(3,2) D(1,3) D(2,3) D(3,3)

2 records per node if formatted tape

Transformations are for local to global

Blocks VIII, IX and X are repeated for each increment.

Block VIII

INCREMENT, TIME AND FREQUENCY

NR;6E13.6 X1(1) X1(2) X1(3) X1(4) X1(5) X1(6)

Transient Time
Increment number is a real formed as I + J/100
I is the static increment number
J is either the harmonic subincrement or the eigenvector number

Frequency
Flag to read new blocks II, III, IV, V, VI, VII. Set to 1 to read these blocks again.

IANTYP analysis type flag.
Not used; reserved for future expansion.

Block IX

VALUES OF ELEMENT VARIABLES

If INUM is zero, this block is omitted.

If IANTYP=15 or IANTYP=16, this block is omitted.

NUM*NSTRES Records

NR;6E13.6;

VALUE((CI,J), I=1,INUM), J=1,INODE)

VALUE is the name of an array storing all the element variables at nodes.
Block X

VALUE OF NODAL VARIABLES

If INOD is zero, this block is omitted.

INUM Records

NR; 6E136; SUM(1)
SUM(NDEG)
SUM(NDEG+1)
SUM(2*NDEG)
SUM(INOD)

Nodal displacements, velocities, accelerations and reactions

During subincrements:

The first NDEG quantities are:

IANTYP = 15
Nodal Components of Dynamic Mode

IANTYP = 16
Nodal Components of Buckle Eigenvector

NOTES:

NR Indicates the beginning of a new record for the binary post tape.

NR; Format Indicates the beginning of a new set of information which is to be read with the following format:

Appendix 1 provides a sample program to dump the post tape.

The table below provides codes for selecting strains and stresses for plotting:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td>Components of total strain.</td>
</tr>
<tr>
<td>7</td>
<td>Equivalent plastic strain.</td>
</tr>
<tr>
<td>8</td>
<td>Equivalent creep strain.</td>
</tr>
<tr>
<td>9</td>
<td>Total temperature.</td>
</tr>
<tr>
<td>11-16</td>
<td>Component of stress</td>
</tr>
<tr>
<td>17</td>
<td>Equivalent Mises tensile stress.</td>
</tr>
</tbody>
</table>
Mean normal stress (tensile positive) (for Mohr-Coulomb).
User definable quantity to write on post tape.
Physical components of the total plastic strain.
Total equivalent plastic strain.
Second state variable.
Physical components of total creep strain.
Total equivalent creep strain.

If several layers (shell or beam) are to be plotted, the code number should be as follows: code for variable as above + 100 x layer number.

An example of the post tape file for a 20 four node plane stress element used to model a cantilever beam is:

BEAM PROBLEM
16 33 20 2 2 4
1 1 2 4 2 0
0 1 0 0 0 0

BEAM PROBLEM
17
11
12
13
39
1
2
3
7
21
22
23
8
31
32
33
3
4 1 2 5 4
4 2 3 6 5
4 4 5 8 7
4 7 8 11 10
4 8 9 12 11
4 10 11 14 13
4 11 12 15 14
4 13 14 17 16

MHOST Version 4.2
<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>14</th>
<th>15</th>
<th>18</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>16</td>
<td>17</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>17</td>
<td>18</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>19</td>
<td>20</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>20</td>
<td>21</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>22</td>
<td>23</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>23</td>
<td>24</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>25</td>
<td>26</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>26</td>
<td>27</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>28</td>
<td>29</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>29</td>
<td>30</td>
<td>33</td>
<td>32</td>
</tr>
</tbody>
</table>

0.0000	0.50000
0.0000	0.0000
0.0000	-0.50000
2.0000	0.50000
2.0000	0.0000
2.0000	-0.50000
4.0000	0.50000
4.0000	0.0000
4.0000	-0.50000
6.0000	0.50000
6.0000	0.0000
6.0000	-0.50000
8.0000	0.50000
8.0000	0.0000
8.0000	-0.50000
10.000	0.50000
10.000	0.0000
10.000	-0.50000
12.000	0.50000
12.000	0.0000
12.000	-0.50000
14.000	0.50000
14.000	0.0000
14.000	-0.50000
16.000	0.50000
16.000	0.0000
16.000	-0.50000
18.000	0.50000
18.000	0.0000
18.000	-0.50000
20.000	0.50000
20.000	0.0000
20.000	-0.50000
0.0000	0.0000
0.0000	0.0000
0.0000	0.0000
0.0000	0.0000
```
|        |       |       |     |       |       |       |
|        |       |       |     |       |       |       |
| 6003.0 | 5999.0 | -7.9094 | -0.16610E-02 | 0.61575E-02 | 0.60014E-02 |
| -0.18076E-02 | -0.43187E-08 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.29068E-02 | 0.51616E-03 |
| -0.96139E-04 | -0.16456E-02 | 0.49706E-08 | 0.54500E-09 | -0.25099E-09 | -0.42786E-08 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 6003.0 | -5999.0 | 7.9092 | -0.16302E-02 |
| 0.61575E-02 | -0.60014E-02 | 0.18076E-02 | -0.4236E-08 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 6003.0 | 5999.0 | -7.9240 | -0.29525E-02 | 0.61575E-02 | 0.60014E-02 |
| -0.18076E-02 | -0.76764E-08 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.52284E-02 | -0.30447E-03 |
| 0.16348E-03 | -0.3093E-02 | 0.90418E-08 | -0.35351E-09 | 0.25482E-09 | -0.78241E-08 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 6003.0 | -5999.0 | 7.9244 | -0.30660E-02 |
| 0.61575E-02 | -0.60014E-02 | 0.18076E-02 | -0.79171E-08 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 6002.9 | 5998.9 | -7.9588 | -0.34214E-02 | 0.61574E-02 | 0.60013E-02 |
| -0.18076E-02 | -0.89027E-08 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.59185E-02 | -0.50404E-03 |
| -0.36859E-03 | -0.34071E-02 | 0.10247E-07 | -0.39346E-09 | -0.21738E-09 | -0.88584E-08 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 6002.9 | -5998.9 | 7.9579 | -0.33900E-02 |
| 0.61574E-02 | -0.60013E-02 | 0.18076E-02 | -0.88140E-08 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 6002.8 | 5998.8 | -7.9876 | -0.56537E-02 | 0.61572E-02 | 0.60012E-02 |
| -0.18076E-02 | -0.14700E-07 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.97750E-02 | -0.10927E-02 |
| 0.17802E-03 | -0.56015E-02 | 0.16856E-07 | -0.11461E-08 | 0.50583E-09 | -0.14564E-07 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 6002.8 | -5998.8 | 7.9881 | -0.55494E-02 |
| 0.61572E-02 | -0.60012E-02 | 0.18076E-02 | -0.14428E-07 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 6002.8 | 5998.8 | -7.9876 | 0.37059E-02 | 0.61572E-02 | 0.60012E-02 |
| -0.18076E-02 | 0.96353E-08 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.61729E-02 | -0.10849E-02 |
| -0.88108E-03 | 0.35170E-02 | 0.10649E-07 | -0.82053E-09 | -0.55562E-09 | 0.91441E-08 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 6002.8 | -5998.8 | 7.9979 | 0.33281E-02 |
| 0.61572E-02 | -0.60012E-02 | 0.18076E-02 | 0.86529E-08 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 6002.8 | 5998.8 | -7.9876 | 0.17084E-02 | 0.61573E-02 | 0.60012E-02 |
| -0.18076E-02 | 0.44191E-08 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.33956E-02 | 0.26616E-03 |
| 0.93227E-03 | 0.19007E-02 | 0.57894E-08 | -0.13521E-10 | 0.85242E-09 | 0.49419E-08 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
```

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>6002.8</td>
<td>-5998.8</td>
<td>7.9891</td>
<td>0.20930E-02</td>
</tr>
<tr>
<td>0.61573E-02</td>
<td>-0.60012E-02</td>
<td>0.18076E-02</td>
<td>0.54419E-08</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.9393</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6002.8</td>
<td>5998.9</td>
<td>-7.9647</td>
<td>0.67373E-02</td>
<td>0.61573E-02</td>
<td>0.60012E-02</td>
</tr>
<tr>
<td>-0.18076E-02</td>
<td>0.17517E-07</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.11727E-01</td>
<td>-0.89912E-03</td>
</tr>
<tr>
<td>-0.16063E-02</td>
<td>0.67225E-02</td>
<td>0.20266E-07</td>
<td>-0.41724E-09</td>
<td>-0.13365E-08</td>
<td>0.17479E-07</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>6002.8</td>
<td>-5998.9</td>
<td>7.9620</td>
<td>0.67078E-02</td>
</tr>
<tr>
<td>0.61573E-02</td>
<td>-0.60012E-02</td>
<td>0.18076E-02</td>
<td>0.17440E-07</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6002.9</td>
<td>5998.9</td>
<td>-7.9466</td>
<td>0.30772E-02</td>
<td>0.70974E-02</td>
<td>0.46497E-02</td>
</tr>
<tr>
<td>-0.18076E-02</td>
<td>0.80008E-08</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.79708E-09</td>
<td>0.87338E-08</td>
</tr>
<tr>
<td>0.17720E-02</td>
<td>0.33592E-02</td>
<td>0.11251E-07</td>
<td>0.41181E-08</td>
<td>0.37708E-09</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>6002.9</td>
<td>-5998.9</td>
<td>7.9494</td>
<td>0.36411E-02</td>
</tr>
<tr>
<td>0.61574E-02</td>
<td>-0.60013E-02</td>
<td>0.18076E-02</td>
<td>0.94669E-08</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6002.8</td>
<td>5998.9</td>
<td>-7.9636</td>
<td>-0.40192E-02</td>
<td>-0.18076E-02</td>
<td>-0.10450E-02</td>
</tr>
<tr>
<td>-0.18076E-02</td>
<td>0.10450E-07</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.84715E-02</td>
<td>-0.10157E-02</td>
</tr>
<tr>
<td>-0.18358E-02</td>
<td>-0.48038E-02</td>
<td>0.14573E-07</td>
<td>-0.46498E-09</td>
<td>-0.15311E-08</td>
<td>-0.12490E-07</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>6002.8</td>
<td>-5998.8</td>
<td>7.9616</td>
<td>-0.55885E-02</td>
</tr>
<tr>
<td>0.61573E-02</td>
<td>-0.60012E-02</td>
<td>0.18076E-02</td>
<td>-0.14530E-07</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6002.8</td>
<td>5998.7</td>
<td>-7.9986</td>
<td>-0.14157E-03</td>
<td>0.61572E-02</td>
<td>0.60011E-02</td>
</tr>
<tr>
<td>-0.18076E-02</td>
<td>-0.36807E-09</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.14448E-02</td>
<td>0.54107E-03</td>
</tr>
<tr>
<td>0.10165E-02</td>
<td>-0.66112E-03</td>
<td>0.22925E-08</td>
<td>0.23611E-09</td>
<td>0.85422E-09</td>
<td>-0.17189E-08</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>6002.8</td>
<td>-5998.8</td>
<td>7.9986</td>
<td>-0.11807E-02</td>
</tr>
<tr>
<td>0.61572E-02</td>
<td>-0.60012E-02</td>
<td>0.18076E-02</td>
<td>-0.30697E-08</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6002.7</td>
<td>5998.7</td>
<td>-8.0174</td>
<td>-0.12263E-01</td>
<td>0.61572E-02</td>
<td>0.60011E-02</td>
</tr>
<tr>
<td>-0.18076E-02</td>
<td>-0.31883E-07</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.20265E-01</td>
<td>0.10427E-01</td>
</tr>
<tr>
<td>0.36572E-02</td>
<td>-0.10436E-01</td>
<td>0.33235E-07</td>
<td>0.93296E-08</td>
<td>0.52916E-09</td>
<td>-0.27133E-07</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>6002.7</td>
<td>-5998.7</td>
<td>8.0146</td>
<td>-0.86084E-02</td>
</tr>
<tr>
<td>0.61572E-02</td>
<td>-0.60011E-02</td>
<td>0.18076E-02</td>
<td>-0.22382E-07</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.95018E-27</td>
<td>-0.90381E-03</td>
<td>-999.84</td>
<td>-3.9566</td>
<td>-0.19943E-26</td>
<td>7.9155</td>
</tr>
</tbody>
</table>

SYS'TEM'S MANUAL

Page : 157

MPK3ST Version 4.2
The write operation takes place in SUBROUTINE POSTOU:

C=SUBROUTINE=POSTOU CALLED BY SECOND LEVEL DRIVER ROUTINES
SUBROUTINE POSTOU
 1 (IWORK, RWORK, ISIZE)
C
C**
C
C IMPLICIT REAL*8 (A-H, O-Z)
REAL*4 RWORK
C
C**
COMMON BLOCKS IN ALPHABETICAL ORDER

COMMON / ALGEM /
ICREAD, JLPRTNT, JLPRNT, ICONSL, IPOSTF, IXCRAF,
IPLOTO, ISTRU, ICREAD, IPVARS, IPSETS, IFILEX,
PLINE, LINE, LINE2

COMMON / PARAM /
IATYPE, NELEM, NNODE, NBC, NTIE, NMAX,
NIRAN, NITAC, NFD, NBAND, NEXT, NSUB,
NPRINT, IPOST, NSBC, NDUP, NSIZE, NSECT,
NSHIFT, NSBFGS, NGFQS, NPSI, NMASS, NDASH,
NDYNMD, NSNC, NSUPER, NBASE, NINC,
NITER, NPSPTS, NDPS, NPLE, NDPI, NHARD,
NSUMCH, NDIMEN, NMONIT, NPAR40, NPAR41, NPAR42,
NPAR43, NPAR45, NPAR46, NPAR47, NPAR48

COMMON / CTITLE /
TITLE (20), IDAT (5), IDATE2, ICLOCK,
IPCRAY

COMMON / EIGEN /
IEGNVC, IGMNS, IOMUE, IOMINO, IDYNMD, ISTRU2,
IPTAR, IPTBR, IPTVED, IMDAM, IOMEGD

COMMON / ELEMEN /
ICE, JEL, JIDF, JLAW, IPATH, IASSEM,
JRULE, JCAIT, JEL009, JEL010, JEL011, JEL012

COMMON / ELTYP /
NELCRD, NELNFR, NELNOD, NELSTR, NELCHR, NELPR,
NELINT, NELLV, NELLAY, NDI, NSEAR, NELCM

COMMON / ERRORS /
IERR

COMMON / MACHINE /
IDP

COMMON / MAXIMA /
MAXCRD, MAXNFR, MAXNOD, MAXSTR, MAXCHR, MAXPR,
MAXLAY, MAXINT, MAXWRK, MAXNLV, NSUMAX, MAXC,
MAXISP, MAXCHR, MAXLM, MAXNL, MAXLM, MAXMT,
MAXFRN, MAXET, MAXVAR, MAXSET, MAXEAN, MAXORD,
MAX025, MAX026, MAX027, MAX028, MAX029, MAX030

COMMON / CONTROL /
JEND, JITER, JTEMP, JPRINT, JP, JSUB,
JINC, JREST, JSAVE, JREDIM, JAUTO, JPOST,
JBACK, JOPTIM, JCP, JDIST, JCONSTR, JDYN,
NONISO, ITERM, ITTRG, IDYNM, JREDPT, JANGE,
JITHERM, JFORCE, JUTEMP, JUCOEF, JDISTS, JUHOOK,
JDERIV, JUBON, IDSTOP, INSTR, JPLAST, JBAND,
IPOSTF (19) I FORMATTED OUTPUT FILE FOR POST-PROCESSING

VERSION 2.0 GENERATES MARC COMPATIBLE POST TAPE CONTAINING
ONLY MESH DATA AND DISPLACEMENT + REACTION AT NODES.
THIS CAN BE PROCESSED BY INVOKING 'POSTDATA' COMMAND WITH 'MARC'
OPTION IN 'MENTAT' INTERACTIVE SESSION.

SYSTEMS' MANUAL
MHOST Version 4.2
Page: 160
FULLY MENTAT COMPATIBLE POST PROCESSING FILE WILL EVENTUALLY WRITTEN ON IPIOTF FILE AND THEN IPOSTF WILL BE USED FOR THE TOPOLOGICAL MESH DEFINITION OUTPUT TO BE PROCESSED BY 'READ' OPTION IN MENTAT

MINCMP = MAXCMP

IF(MAXCMP .EQ. 8) MINCMP = 5

IZERO = 0
MAXVAL = 50
MAXQNT = 4
LOCATE(1) = ISIGNO
LOCATE(2) = IEPSNO
LOCATE(3) = IPSTNO
LOCATE(4) = ICSTNO

--- HEADER RECORDS ARE WRITTEN IN THE POST TAPE ONLY WHEN THIS ROUTINE IS ENTERED AT THE ZERO-TH INCREMENT. OTHERWISE THE NODAL VALUES ARE WRITTEN IN THE POST TAPE.

IF(JINC .GT. 0) GO TO 9000

--- FIRST RECORD IN THE POST TAPE : TITLE

WRITE(IPOSTF,1000) TITLE
1000 FORMAT(20A4)

--- SECOND RECORD : CONTROL INFORMATION

SET VARIABLES ACCORDING TO THE MARC DOCUMENT

INUM = (MINCMP + 1) * 4
IF(JEIGEN .EQ. 1) INUM = 0
INUM = NNODE
MNUM = NELEM
NDEG = MAXNFR
NSTRES = 2
JNOD = MAXNFR * 2
IPSTOC = 1
IPSTYP = 1
NCRD = MAXCRD
IF(NCRD .EQ. 7) NCRD = 3
 للمدخلي مقابل
IANTYP = 2
IF(JEIGEN .EQ. 1 .AND. IDYNM .EQ. 1) IANTYP = 15
IF(JEIGEN .EQ. 1 .AND. IDYNM .EQ. 0) IANTYP = 16
ICOMPL = 0
NCTIRA = 0
IPOSTR = 1
IDM4 = 0
IDM5 = 0
IDM6 = 0
IDM7 = 0
C
WRITE(IPOSTF,1010) INUM ,INUM ,MINUM ,NDEG ,NSTRES,JNOD ,
1 IPSTCC,IPSTYP,NCRD ,NNODMX,IANTYP,ICOMPL,
2 NCTIRA,IPOSTR,IDM4 ,IDM5 ,IDM6 ,IDM7
1010 FORMAT(6113)
C
--- CODE NUMBER ASSOCIATED WITH ELEMENT VARIABLES -----------------
C
IF(JEIGEN .EQ. 1) GO TO 3000
C
JPILOT(1) = 17
JPILOT(2) = 11
JPILOT(3) = 12
JPILOT(4) = 13
IF(MINCMP .GE. 4) JPILOT(5) = 14
IF(MINCMP .GE. 5) JPILOT(6) = 15
IF(MINCMP .GE. 6) JPILOT(7) = 16
INDX = MINCMP + 1
JPILOT(INDX + 1)= 39
JPILOT(INDX + 2)= 1
JPILOT(INDX + 3)= 2
JPILOT(INDX + 4)= 3
IF(MINCMP .GE. 4) JPILOT(INDX + 5)= 4
IF(MINCMP .GE. 5) JPILOT(INDX + 6)= 5
IF(MINCMP .GE. 6) JPILOT(INDX + 7)= 6
INDX = INDX + MINCMP + 1
JPILOT(INDX + 1)= 7
JPILOT(INDX + 2)= 21
JPILOT(INDX + 3)= 22
JPILOT(INDX + 4)= 23
IF(MINCMP .GE. 4) JPILOT(INDX + 5)= 24
IF(MINCMP .GE. 5) JPILOT(INDX + 6)= 25

SYSTEMS' MANUAL
MHOST Version 4.2
Page : 162
IF(MINCMP .GE. 6)
JPLOT(INDEX + 7) = 26
INDEX = INDEX + MINCMP + 1
JPLOT(INDEX + 1) = 8
JPLOT(INDEX + 2) = 31
JPLOT(INDEX + 3) = 32
JPLOT(INDEX + 4) = 33

IF(MINCMP .GE. 4)
JPLOT(INDEX + 5) = 34

IF(MINCMP .GE. 5)
JPLOT(INDEX + 6) = 35

IF(MINCMP .GE. 6)
JPLOT(INDEX + 7) = 36
 INDEX = INDEX + MINCMP + 1

WRITE(IPOSTF, 1030) (JPLOT(K), K=1, INDEX)

1030 FORMAT(113)

C
3000 CONTINUE
C
C --- DATA BLOCK IV : ELEMENT CONNECTIVITY DATA ------------------------
C
DO 6000 IEL = 1 , NELEM

IC = IWORK(ITYP + IEL - 1)
NELNOD = 0

IF(IC .EQ. 0) GO TO 6007

CALL ELVULV
1 (IWORK , IC , IERR)

IADRES = INEL + MAXNOD * (IEL - 1)
JADRES = IADRES + NELNOD - 1

C ... SPECIAL TRICK ASSOCIATED WITH THE FRONTAL SOLUTION
C
DO 6005 INTNPT = 1 , NELNOD
JNIPNT = INTNPT + IADRES - 1
6005 KPLOT(INTNPT)= IABS(IWORK(JNIPNT))

C 6007 CONTINUE
C
C ... REPLACE THE ASSUMED STRAIN ELEMENTS WITH THE MATCHING MARC/MENTAT
C ELEMENT NUMBERS (A LITTLE INNOCENT LIE THAT WON'T HURT ANYBODY)
C
IC1 = IC

IF (IC .EQ. 151) IC1 = 3
IF (IC .EQ. 152) IC1 = 11
IF (IC .EQ. 153) ICl = 10
IF (IC .EQ. 154) ICl = 7

WRITE (IPOSTF, 1010) ICl , NELNOD, (KFLOT(K), K=1, NELNOD)

CONTINUE

C --- DATA BLOCK V : NODAL COORDINATE DATA -----------------------------
C
DO 6010 INODE = 1 , NNODE
C
IADRES = INOD + MAXCRD * (INODE - 1) * IDP
CALL POSTPR
1 (RWORK(IADRES), NCRD, IPOSTF)
C
CONTINUE

CONTINUE

C --- INCREMENTAL HEADER RECORD --
C
NSUBIN = 1
IF(JEIGEN .EQ. 1) NSUBIN = NDYNMD
C
DO 8000 ISUBIN = 1, NSUBIN
C
RINCRE = JINC
FREQUN = 0
RFLAGS = 0
RANTYP = 0
RDUMMY = 0
C
IF(JEIGEN .EQ. 0) GO TO 5100
C
RINCRE = RINCRE + 0.01DO * ISUBIN
INDX = IOMEG + (ISUBIN - 1) * IDP
CALL COPY (RWORK(INDX), FREQUN, 1)
IF(IDYNM .EQ. 1) RANTYP = 15
IF(IDYNM .EQ. 0) RANTYP = 16
C
CONTINUE

5100 CONTINUE
C
WRITE (IPOSTF, 1020) RUNITM, RINCRE, FREQUN, RFLAGS, RANTYP, RDUMMY
1020 FORMAT (6G13.6)
C
IF(JEIGEN .EQ. 1) GO TO 7500
DO 7000
INUM = (MINCMP + 1) * 4
INITIAL = 0
INODE = 1, NNODE
IREC = 0

CALL NUL(VALUE, MAXVAL)

*** VALUES CALCULATED AT THE LAYER LEVEL ****************************

INTLAY = 1
IF(NELLAY .NE. 1) INTLAY = 3

*** FIRST DATA OF THE SERIES IS TEMPERATURE ****************************

LOCTEM = ITEM + ((INODE - 1) * MAXLAY + INTLAY - 1) * IDP
IREC = 1

CALL COPY(RWORK(LOCTEM), VALUE(IREC), 1)

*** TENSORIAL QUANTITIES AND THEIR INVARIANTS ****************************

(I) TOTAL STRESS
(II) TOTAL STRAIN
(III) PLASTIC STRAIN
(IV) CREEP STRAIN

DO 5200 INTQNT = 1, MAXQNT

INLOC = LOCATE(INTQNT) + ((INODE - 1) * MAXLAY + INTLAY - 1) * IDP * MAXCMP

CALL COPY(RWORK(INLOC), BUFFER, MINCMP)
IF(INTQNT .EQ. 1) CALL EQVS
1 (EQVAL, BUFFER, MINCMP, NDI, NSHEAR, JLAW, NONISO, INODE)
IF(INTQNT .GT. 1) CALL EQVC
1 (EQVAL, BUFFER, MINCMP, NDI, NSHEAR, JLAW)

IREC = IREC + 1
CALL COPY(EQVAL, VALUE(IREC), 1)
IREC = IREC + 1
CALL COPY(BUFFER, VALUE(IREC), MINCMP)
IREC = IREC + MINCMP - 1
5200 CONTINUE
C
 CALL POSTEN(VALUE , INUM , IPOSTF , INODE , NNODE , INITAL)
C
7000 CONTINUE
C
7500 CONTINUE
C
C --- TOTAL DISPLACEMENT AT THE CURRENT INCREMENT AND REACTION FORCE ---
C
C
9550
C
C IF(NTRAN .EQ. 0) GO TO 9550
C
1 CALL TRANS2(NTRAN,RWORK(ITRANR),IWORK(ITRAN),RWORK(IDTOT),
1 NFD,-1.0,NELNFR,JLAW)
1 CALL TRANS2(NTRAN,RWORK(ITRANR),IWORK(ITRAN),RWORK(IDINC),
1 NFD,-1.0,NELNFR,JLAW)
9550
C
 IDVEC = IDTOT
 IF(JEIGEN .EQ. 1) IDVEC = IEGVEC + (ISUBIN - 1) * NFD * IDP
C
DO 5000 INODE = 1 , NNODE
C
... TOTAL DISPLACEMENTS OR EIGENVECTOR
C
JNTLOC = INLV + (INODE - 1) * MAXNFR
KNTLOC = IDVEC + (IWORK(JNTLOC) - 1)*IDP
CALL COPY(RWORK(KNTLOC) , VALUE , MAXNFR)
NENTRY = MAXNFR
C
... NODAL REACTION VECTOR
C
INDX = NELNFR + 1
LNTLOC = IRESID + (IWORK(JNTLOC) - 1)*IDP
CALL COPY(RWORK(LNTLOC) , VALUE(INDX) , MAXNFR)
NENTRY = NENTRY + MAXNFR
C
 CALL POSTPR
1 (VALUE , NENTRY , IPOSTF)
C
5000 CONTINUE
C
 IF(NTRAN .EQ. 0) GO TO 9530
C
 CALL TRANS2(NTRAN,RWORK(ITRANR),IWORK(ITRAN),RWORK(IDTOT),

The data record packing for the element data is carried out in the following subroutine:

C=SUBROUTINE=POSTEN POST FILE GENERATION UTILITY

SUBROUTINE POSTEN
 1 (ARRAY ,NENTRY,IPOSTF,INODE ,NNODE ,INITAL)
C
C**
C
IMPLICIT REAL*8 (A-H , O-Z)
REAL*4 R_DRK
C
C**
C
DIMENSION ARRAY (NENTRY)
C
COMMON / POSTPN / IPOINT,JPOINT,KPOINT,NDATA ,PRNTBF(6)
C
IF(INITAL .NE. 0) GO TO 4950
 IPOINT = 1
 JPOINT = 1
 KPOINT = 1
 NDATA = 6
 INITAL = 1
4950 CONTINUE
C
IPOINT : POINTER FOR THE LAST ENTRY OF THE PRINT BUFFER
JPOINT : POINTER FOR THE CURRENT ARRAY ENTRY TO BE PRINTED
C
JPOINT = 1
C
5000 CONTINUE
C
KPOINT = JPOINT + 5
C
IF(KPOINT .GT. NENTRY) GO TO 6000

CALL COPY (ARRAY(JPOINT) , PRNTBF(IPOINT) , NDATA)
CALL POSTPR(PRNTBF , 6 , IPOSTF)

JPOINT = JPOINT + NDATA
NDATA = 6
IPOINT = 1

GO TO 5000

C --- HALF FILL THE PRINTER BUFFER AND RETURN -----------------------------

6000 CONTINUE

MDATA = NENTRY - JPOINT + 1
NDATA = 6 - MDATA
IPOINT = MDATA + 1

CALL COPY (ARRAY(JPOINT) , PRNTBF(1) , MDATA)

--- IF THE LAST NODE IS ENTERED WRITE THE LAST RECORD EVEN IF IT IS
--- INCOMPLETE

IF(INODE .LT. NNODE) GO TO 9000
IF(MDATA .EQ. 0) GO TO 9000

CALL NUL (PRNTBF(IPOINT) , NDATA)
CALL POSTPR(PRNTBF , 6 , IPOSTF)

9000 RETURN
END
APPENDIX SUBROUTINES

Subroutines included in the MHOST code, Version 4.2, are summarized in this appendix. The routine names are sorted in alphabetical order. A brief description of each routine is given, in conjunction with the names of common blocks referenced therein. Names of routines referenced in some of the vitally important routines are given in this document. Note that almost all subprograms written for the MHOST package are self-documented and further information can be obtained directly from the source listing.

ACCLIN
 Reads in initial acceleration data from the main input data reader.

Common block: MACHIN

ADAPTC
 Controls the adaptive time step size adjustment for creep strain evaluation

Common block: ALGEM

ADAPTD

Common block: TIME, TOLER, CONTO

ADAPTS
 Controls the adaptive load increment size adjustment for the arc length method

Common block: ALGEM

ADD
 Adds two double precision real vectors.

ADDBAN
 Adds the lumped values listed in SVAL with the connectivity specified in LCON to the global array GABF in band form. Not used for profile-stored global arrays.

ADDIAG
 Adds the lumped values listed in SVAL to the global array. This subroutine is the profile-storage counterpart of ADDBAN.
ADDINC
Updates total quantities by adding together the values at the beginning of the increment and the incremental values.

Common block: AUTOIN, ELTYP, CONTRO, SUBEIM, MAXIMA, PARAM, START1, START2, START3, START4, START6, START8, TIME

ASMVEC
Assembles global vector from the d.o.f. conversion table. See also SUBST1.

ASSEM1
Assembles the displacement stiffness matrix for quasi-static analysis. Works with the profile solver.

Common block: ALGEM, ADDVAL, AUTOIN, BSECT, CONTROL, BODYFR, LOUBIN, ELEMEN, ELTYP, ERRORS, MAXIMA, PARAM, PULSES, START1, START2, START3, START4, START5, START6, START7, START8, SUBEIM, SUBSTR, TIME, TRANSF, MACHIN

ASSEM2
Assembles the global time integration operator matrix for direct time integration. Works with the profile solver.

Common block: ALGEM, ADDVAL, AUTOIN, BSECT, CONTROL, BODYFR, LOUBIN, ELEMEN, ELTYP, ERRORS, MAXIMA, PARAM, PULSES, START1, START2, START3, START4, START5, START6, START7, START8, SUBEIM, SUBSTR, TIME, TRANSF, MACHIN

ASSEM3
Assembles the displacement stiffness matrix for quasi-static analysis. Works with the frontal solution.

Common block: ALGEM, ADDVAL, AUTOIN, BSECT, CONTROL, BODYFR, LOUBIN, ELEMEN, ELTYP, ERRORS, MAXIMA, PARAM, PULSES, START1, START2, START3, START4, START5, START6, START7, START8, SUBEIM, SUBSTR, TIME, TRANSF, MACHIN

ASSEM4
Assembles the residual vector for quasi-static and transient dynamic analyses. The routine includes the variational recovery of nodal strains, nodal stress recovery and element loop for the internal force calculation.

Common block: ALGEM, ADDVAL, BSECT, COUNTR, CONTRO, ELEMEN, ELTYP, ERRORS,
ATTRIB

Attributes the element connectivity data by the duplicate node and tying options.

Common block: ALGEM, ERRORS, MAXIMA

BACSUB

Performs back-substitution for the nodal displacement vector as a part of the frontal solution subsystem.

BANDBR

Calculates the maximum bandwidth.

Common block: ELTYP

BANNER

Prints banner on the line printer output file.

BASAXS

Generates strain-displacement matrix for axisymmetric element based on the assumed stress method.

BASEIN

Reads in parameters defining harmonic base excitation.

Common block: MACHIN

BASPSN

Generates strain-displacement matrix for plane strain element derived from the assumed stress method.

BASPST

Generates strain-displacement matrix for plane stress element derived from the assumed stress method.

BAXSYM

Generates strain-displacement matrix for axisymmetric element by the numerical integration.

BEAMIN

Reads in beam section properties.
Common block: MACHIN

BFGSLH
Performs the BFGS update for the left hand side of the nonlinear equations.

BFGSRH
Performs the BFGS update for the right hand side of the nonlinear equations.

BFGSVW
Generates the global projection vectors required for the BFGS update.

BFLOAD
Controls the generation of element body force load vector.

EMSTRS
Evaluates constitutive equations for the beam element. Note that the current version only supports a linear elastic beam element.

ENDTRM
Preintegrates the lamina constitutive matrix to obtain the constitutive resultant with respect to the bending moment - curvature terms for shell elements.

BODYIN
Reads in parameters defining body force loading.

Common block: MACHIN

BOUND1
Applies the displacement constraint by eliminating row and column of the global profile-stored stiffness equations.

BOUND2
Applies the displacement constraint to a global vector.

BOUND3
Applies the displacement constraint to a substructure. Obsolete in Version 4.2.

BOUNDN
Calculates the weighted normal vector at nodes on the boundary.
Common block: ALGEM

BOUNFR
Applies the nodal displacement constraint to the frontal solution elimination process.

BOUNIN
Reads in boundary displacement constraint data.

Common block: MACHIN

BPSTRN
Generates strain-displacement matrix for isoparametric plane strain element by numerical integration.

BPSTRS
Generates strain-displacement matrix for isoparametric plane stress element by numerical integration.

BREAD
Reads an array from a specified Fortran I/O unit stored in binary form.

BSHELL
Generates strain-displacement matrix in resultant form for isoparametric shell element by means of selective reduced integration.

BSOLID
Generates strain-displacement matrix for isoparametric solid element by numerical integration.

BTBEAM
Generates strain-displacement matrix for the linear isoparametric Timoshenko beam element by reduced integration.

BUCKLE
Drives the buckling analysis using subspace iterations for eigenvalue extraction.

Common block: AUTOIN, MAXIMA, CTITLE, DAMP, EIGEN, INCON, MACHIN, ELEMEN, ELTYP, CONTRO, SUBSTR, ERRORS, PARAM, START1, START2, START3, START4, START5, START6, START8, TIME

BULKIN

SUBROUTINES
Supervises the reading operation of the bulk (model) data.

Common block: CONTRO PARAM, SUBELM

External reference: INIT1, DATIN2, DATOUI, CHKELM, SUBDIV

WRITE
Writes an array to a specified Fortran I/O unit in binary form.

CENMAS
Assembles the stiffness matrix entries related to the centrifugal mass terms for an element.

Common block: BODYFR

External reference: NUL, GAUSSP, COPY, S2DO4N, VSH04N, TEMO2N, S1DOZN,
S3DO8N, D2DO4N, D3DO8N, DAXO4N, GSH04N, DEMO2N, SUBT

CENT2D
Calculates the centrifugal load vector for a two-dimensional (plane stress/strain) element.

CENT3D
Calculates the centrifugal load vector for a three-dimensional solid element.

CENTAX
Calculates the centrifugal load vector for an axisymmetric element.

CENTBM
Calculates the centrifugal load vector for a beam element.

CENTSH
Calculates the centrifugal load vector for a shell element.

CHARIN
Reads in material property data.

Common block: MACHIN, ELTYP

CHCHAR
Identifies the value of a number given as a single character.

CHKELM
Checks to see if the element connectivity is given in the counter
clockwise manner. If not, prints warning messages and repairs the connectivity table entries. Dangerous.

Common block: ALGEM, AUTOIN, BSECT, CONTRO, BODYFR, LOUBIN, ELEMT, ELTYP, ERRORS, MAXIMA, PARAM, START1, START2, START3, START4, START5, START6, START7, START8, SUBSTR, TIME, TRANSF, MACHIN

External reference: ELVULV, QNODEL, INSIDE, LINES

CNODEL Pulls out information related to the current element. See Section 2.2 for detail.

Common block: TMARCH, ALGEM, CONTRO, ELTYP, MAXIMA, PARAM, START1, START2, START4, START5, START6, START7, START8, START9, MACHIN

External reference: SEARCl, SEARCH, INTERP, ROTMT, TSHO4N, SHTRAN, TRANSP, MATINV, TBM02N, ADD, ADDSMU, NUL

CNSMAS Assembles the consistent mass matrix for an element.

CNSTNM Constructs a consistent transformation from nodal to modal data for linear dynamics by modal superposition.

Common block: EIGEN, ELTYP, MACHIN, MAXIMA, MODSUP, PARAM, POWER, START1, START2, START6

COLRED Performs column-wise reduction for back-substitution.

COMPDF Copies the definition of element parameters in the workspace for composite shells

Common block: START1

COMPIN Reads material property data for the composite laminate option with shell elements.

Common block: ALGEM

COMPROM
Computes the profile column heights and pointers for profile-storage of the global stiffness array.

Common block: ELTYP, MAXIMA, PARAM, ALGEM

CONDSE
Removes specified row and column of a square matrix.

CONNIN
Reads element connectivity data.

Common block: ELTYP

CONTIN
Adds incremental load (defined as the nodal force) to the total load vector.

Common block: MACHIN

COORIN
Reads coordinate data for nodes.

COPY
Copies a double precision real array to another double precision real array.

COPYDS
Copies a double precision real array to a single precision real array.

COPYIN
Copies an integer array to another integer array.

COPYSD
Copies a single precision real array to a double precision real array.

CORDIR
Transforms the coordinate system defining the strain component from global to local, filters out specific components and transforms back to the original global coordinate system. Used by the strain-displacement matrix routines.

COROUT
Debug writes the nodal coordinates.
CPXBK1, CPXBK2
Back substitutes for the solution of complex matrix equations stored in the band-matrix form.

CPXDIV
Divides a complex number by another complex number.

CPXEXC
Sets up complex harmonic based excitation vector. The function is fully commented.

CPXFAC
Performs the crout decomposition of complex matrix equations stored in the banded form.

Common block: ALGEM

CPXFOR
Sets up the nodal force vector for the complex harmonic analysis.

CPXMUL
Multiplies two complex numbers.

CPXREA
Assembles the complex nodal reaction force vector due to the complex base excitation.

CPXRES
Calculates the harmonic nodal force.

CRPLAW
Defines the equivalent creep strain increment. To be used as a User Subroutine. See also the MHOST Version 4.2 Users' Manual.

CRPSIN
Determines quantities related to creep strain effects.

CUTHIL
Optimizes the band-width of global equations by Cuthil-McGee algorithm. Called by OPTIM.

D2DO4N
Calculates derivatives for two dimensional four node elements.

D2DO9N
Calculates derivatives for two dimensional nine node elements.

D3D08N

Calculates derivatives for three dimensional eight node hexahedral elements.

D3D27N

Calculates derivatives for three dimensional quadratic elements with 27 nodes.

DAMPIN

Reads in parameters defining damping terms in transient dynamic analysis.

Common block: MACHIN

DASHIN

Reads in the definition of additional damping terms in the form of discrete dashpots.

Common block: MACHIN

DAT1

Outputs an integer array on the line printer file.

Common block: ALGEM

DAT2

Outputs a real array on the line printer file.

Common block: ALGEM

DAT3, DAT5

Outputs a pair of integer and real arrays on the line printer file.

Common block: ALGEM

DATEMS

Prints out elastic beam section properties.

Common block: ALGEM

DATCG1

Modifies parameter data during a restart job.
DATER
Calls systems’ routine to pull out today’s date and time of the day. System dependent. See Section 0.4.

DATIN1
Supervises read operations of parameter data.

DATIN2
Supervises read operations of model data and construction of in-core database.

DATIN3
Supervises read operations of incremental data.

DATOU1
Prints out parameter data as interpreted on the line printer.

DATOU4
Prints incremental data as interpreted on the line printer.

SUBROUTINES
DAX04N Calculates derivatives for four node axisymmetric elements.

DAX09N Calculates derivatives for nine node axisymmetric elements.

DEMO2N Calculates derivatives for two node linear Timoshenko beam elements.

DECINT Converts a given string to an integer.
Common block: ALGEM

DECOMP Factorizes a symmetric matrix stored in profile form.
Common block: PARAM

DECREA Converts a given string to a real.
Common block: ALGEM

DEFGUP Updates the total deformation gradient at the end of an increment.

DERIV Controls access to the entries in the element library.
Common block: ALGEM, CONTRO, ELTYP, ELEMEN, ERRORS

DIAM Measures maximum bandwidth from a root node. Called by CUTHIL and used for bandwidth optimization.
Common block: ALGEM

DIRECT Generates three orthogonal vectors, one of which is orthogonal to the plane defined by two given vectors.
Common block: ALGEM
DISPIN
Reads in initial displacements for transient analysis.
Common block: MACHIN

DISTIN
Reads in distributed load data.
Common block: MACHIN

DIV2Q2
Generates two dimensional subelement mesh composed of 9 node quadratic quadrilaterals.

DIV2X2
Generates two dimensional subelement mesh composed of 4 node linear quadrilaterals.

DMATIN
Reads in stress-strain matrix defined directly at nodes.
Common block: MACHIN

DMPING
Sets up the modal damping matrix for the current element.

DOT (Function Subprogram)
Calculates dot-product of two double precision real vectors.

DSH04N
Calculates derivatives for four node shell elements in the lamina coordinate system.

DSHELL
Converts the notation between tensorial and matrix forms for stress-strain matrix.

DSLOAD
Controls the access to the element distributed load routines.
Common block: CONTRO, ELTYP, ELEMEN, MAXIMA, PARAM, START1, START2, START3, START4, START5, START6, START7, MACHIN

DUPLIN
Reads in duplicate node definition data.
Common block: MACHIN

DXOUT
 Prints out a double precision array for debugging purposes.

DYNAMT
 Drives the transient time integration for dynamic analysis.

Common block: ALGEM, AUTOIN, PERIOD, CTITLE, DAMP, EIGEN, INCON, ELEMEN, ELTYP, MAXIMA, CONTR0, SUBSTR, ERRORS, PARAM, START1, START2, MACHIN, START3, TMARCH, START4, START5, START6, TIME

DYNOP
 Assembles the element operator matrix for transient time integration.

Common block: ALGEM, TMARCH

EIGENV
 Drives the eigenvalue extraction subsystem by subspace iteration.

Common block: CONTR0, ELEMEN, EIGEN, SHIFT, ELTYP, PARAM, MACHIN, START3, START4, START5, START7

ELVULV
 Pulls out parameters defining element characteristics from the workspace.

Common block: ALGEM, CONTR0, ELTYP, START1, PARAM, ELEMEN

EQVC
 Calculates the strain invariant from the given deviatoric strain tensor stored in vector form.

EQVS, EQVSTR
 Calculates the stress invariant from the given deviatoric stress tensor stored in vector form.

ERROR
 Prints error message on the line printer output file.

Common block: ALGEM

ETRANS
 Transforms coordinates for the nodal displacement vector according
to user instructions.

Common block: ALGEM

FILINT

Fills an integer array with its address or its inverse order.

Common block: ALGEM

FILL

Fills a double precision real array with a specified number.

FIRST1

Re-numbers the nodes for Cuthill-McKee optimization.

FIXINT

Imposes constraints onto the frontal solution.

External reference: FILINT, VULVRG, COPY

FOLOIN

Reads parameters specifying the concentrated nodal follower force.

Common block: MACHIN

FORRES

Calculates forced vibration response by modal superposition.

FREDOM

Drives the linear dynamic analysis in frequency domain.

Common block: CTITLE, TIME, AUTOIN, START1, START2, START3, START4, START5, START7, START8, ALGEM, EIGEN, MODSUP, POWER, DAMP, INCON, MACHIN, ELEMEN, MAXIMA, ELTYP, CONTRO, SUBSTR, ERRORS, PARAM, SHIFT

External reference: STRUCT, TIMOUT, ASSEMI, SOLUT1, ASSEMI4, RESCON, ADDINC, PRINOU, POSTOU, COPY, NUL, INITST, SUBT, MASMAT, MADD, EIGENV, CNSTNM, PNTTNM, INISQQ, SETRMS, QUIT

FREFOR

Reads free format numeric data line from the card reader.

Common block: ALGEM, FREE
FRNTBL
Sets up the elimination table for the frontal solution and calculates maximum front matrix size.

Common block: ALGEM, PARAM, MAXIMA, MACHIN

FRNTOP

FRONTB
Performs back substitution of global equations factorized the by the frontal process.

FRONTF
Performs forward elimination of global equations by the frontal process.

FRONTR
Performs resolution by frontal solution for a newly defined load vector with a readily factorized system of equations.

FRONTS
Drives the quasi-static solution process utilizing the frontal solution scheme.

Common block: CTITLE, TIME, AUTOIN, START1, START2, START4, START5, START6, ALGEM, EIGEN, INCON, MACHIN, ELEMEN, MAXIMA, ELTYP, CONTRO, SUBSTR, ERRORS, PARAM, START8

FRONIW
Computes the maximum front width from the element connectivity table.

Common block: ALGEM, MAXIMA, MACHIN

GAUSSP
Returns coordinates and weight factors for Gaussian quadrature.

GEM02N
Calculates derivatives for two node linear Timoshenko beam element with respect to element coordinate system.

GENCOR
Generates coordinates for subelement nodes which divide global
element uniformly.

GENNOD
Generates connectivity table for uniformly divided subelement mesh.

GEOMAT
Assembles the geometric stiffness for large displacement and buckling analyses.

External reference: GAUSSP, COPY, S2D04N, S3D08N, D2D04N, DAX04N, DSH04N, D3D08N, NOTION

GETBSP
Extracts data for beam section properties.

Common block: ALGEM

G02GLO
Rotates stresses and strains back to global configuration in finite deformation analysis.

External reference: ROTTEN, ROTBAK

G02ROT
Rotates stresses and strains to mid-increment configuration in finite deformation analysis.

External reference: ROTTEN, ROTFOR

GRAV2D
Produces body force vector due to gravity acceleration for two-dimensional elements.

Common block: ALGEM

GRAV3D
Produces the body force vector due to gravity acceleration for three-dimensional elements.

GRAVAX
Produces the body force vector due to gravity acceleration for axisymmetric elements.

GRAVBM
Produces the body force vector due to gravity acceleration for beam elements.

GRAVSH

Produces the body force vector due to gravity acceleration for shell elements.

GSH04N

Calculates the element normal to four node shells.

HARMIN

Reads in parameters for harmonic base excitation.

Common block: ALGEM

HEAD

Prints the MHOST banner and system's information on the line printer output file and terminal screen.

Common block: CTITLE

HOLECR

Generates coordinate data for an embedded hole represented by a subelement mesh. Called by HOLEDF.

HOLEDF

Defines an element with a parameterized hole using the subelement procedure.

Common block: MAXIMA, ELTYP, SUBTYP, MACHIN, START1, TRANSF, START6

External reference: ELVULV, QNODEL, HOLECR, HOLEM

HOLEIN

Reads parameters to define a embedded hole in a global element.

Common block: ELTYP, SUBELM, MACHIN

HOLEM

Generates connectivity array for an embedded hole represented by a subelement mesh. Called by HOLEDF.

HOOKEM

Calculates the linear elastic stress-strain matrix for beam elements.
HOOKLW

Calculates the linear elastic stress-strain matrix for all element types other than beams.

HOST

Supervises execution of the MHOST code. See Section 1.2 for detail.

Common block: CONTRO, ALGEM, ADDVAL, TMARCH, AUTOIN, PERIOD, POWER, PULSES, EIGEN, ERRORS, MODSUP, HARMON, LOUBIN, START5, START4, PARAM, BSECT, INCON, MACHIN, SUBSTR, SUBELM, SHIFT

ICLEAR

Zero clears an integer array.

INCRIN

Drives the reader and report writer for incremental data.

External reference: DATIN3, DATOU4, DATOU1

INCSBC

Imposes stress boundary conditions.

INIIMP

Creates initial eigenvectors for subspace iteration.

Common block: CONTRO, MAXIMA, ETYPE, ELEMEN, PARAM, EIGEN, START1, START2, START3, START4, START5, START6, START7, START8, MACHIN

External reference: QUIT, NUL, COPY, RATIO, MAXIM

INITDF

Initializes the nodal deformation gradient array.

INITFR

Allocates memory for frontal solution option.

Common block: ALGEM, CONTRO, PARAM, MACHIN, MAXIMA, EIGEN, START5, START6

INITI1

Allocates memory for in-core nodal database.
INITI2
Allocates memory for the profile solution for quasi-static, dynamic and eigenvalue analyses.

Common block: ADDVAL, ALGEM, CONTRO, DAMP, EIGEN, MODSUP, HARMON, POWER, PULSES, MAXIMA, PARAM, TMARCH, PERIOD, SUBELM, SHIFT, SUBTYP, BSEC, START1, START2, START3, START4, START5, START6, START7, START8, START9, SUBSTR, MACHIN, ERRORS

INITIN
Reads parameters defining initial conditions for transient analysis.

Common block: ALGEM, CONTRO, PERIOD, EIGEN, ERRORS, MAXIMA, PARAM, START1, START3, START5, START4, MACHIN

External reference: KEY, DISPIN, VELCIN, ACCLIN, PERDIN, QUIT

INITSE
Allocates memory for the subelement nodal database. See Section 2.2 for detail.

Common block: SUBTYP, ALGEM

External reference: SUBELV, NULINT

INITST
Assembles the global initial stress matrix for quasi-static, dynamic and eigenvalue analysis.

Common block: AUTOIN, EIGEN, CONTRO, BODYFR, LOUBIN, ELEMEN, ETYPE, START1, START5, PARAM, FREE, START2, START4

External reference: NUL, ELVULV, CNODEL, GEOMAT, ASSEM5

INRDIR
Redirects the input stream.

Common block: ALGEM, FREE

INRFRC

SUBROUTINES
Recovers the velocity and acceleration from the displacement update in transient dynamics.

Common block: TMARCH

INSIDE

Checks to see if the element is inside-out and repairs the connectivity array, if necessary, for the linear quadrilateral and hexahedral elements.

INITDYN

Initializes the scratch file for transient dynamics.

INTERP

Interpolates nodal values to the integration points.

INTINT

Initializes the file system and execution environment. System dependent. See Section 0.4. Called by MAIN program.

Common block: VRIDSK

INITSQO

Integrates the spectral density function over a given range of frequencies.

INV3

Inverts a 3 by 3 matrix.

INVERT

Inverts a general square matrix.

Common block: ALGEM

ITERIN

Reads parameters defining convergence criteria.

Common block: TOLE

External reference: FREFOR

JACOB1

Extracts eigenvalues of a square matrix. Called by SUBSPC.

Common block: ALGEM
External reference: MAXIM, SMULT, LINES

JT (Function subprogram)
 Gives the address of a specified entry in a global array stored in band matrix form.

KEY
 Checks to see if a string matches to a keyword.

Common block: ALGEM, FREE

L2NORM
 Calculates 1 norm of a given vector.

LAXSYM
 Calculates the load vector due to body force loading on axisymmetric elements.

Common block: ALGEM

LAYINT
 Integrates lamina quantities to resultants for thick shell elements.

LELAST
 Calculates linear elastic response of a material for a pre-defined stress-strain matrix.

LETCMD
 Sets up the integer control variables for the compound execution of analysis drivers. See Section 1.2 for detail.

Common blocks: ALGEM, CONTRO, COMPND, PARAM, EIGEN, MACHIN

LEVEL
 A part of the front matrix size optimization package. Not used in Version 4.2.

LINES
 Advances the line number of the line printer output file (ILPRNT).

Common block: ALGEM

External reference: PAGE
LINE52 Advances the line number of the line printer output file (JLPRNT).
Common block: MAXIMA, ALGEM, ZPRINT
External reference: PAGE2, PAGE3

LINESR Calculates search distances for the line search algorithm.
Common block: MACHIN, CONTRO, ALGEM, AUTOIN, PARAM, START3, START4, START5, START7, TOLER

LINESU Advances the line number of the line printer output page used for the subelement solution.
Common block: MAXIMA, ALGEM, ZPRINT
External reference: PAGE2S, PAGE 3S

IMPMAS Calculates the diagonalized Gramm matrix for nodal strain projections. Either Gauss-Lobatto or Gauss/now-sum algorithm can be used.

LOCVEC Fills up the address table for the global array stored in band matrix form.
Common block: ELYTYP

LPSTRN Calculates the load vector due to body force loading on plane strain elements.

LPSTRS Calculates the load vector due to body force loading on plane stress elements.

LSHELL Calculates the load vector due to body force loading on shell elements.

LSOLID

SUBROUTINES
Calculates the load vector due to body force loading on solid elements.

LTBEAM
Calculates the load vector due to body force loading on beam elements.

MADD
Adds a matrix to a product of another matrix and a scalar.

MAIN
Main program.

Common block: blank, MACHIN

MASMAT
Assembles the global consistent matrix stored in profile form.

Common block: AUTOIN, EIGEN, CONTRO, BODYFR, LOUBIN, ELEMEN, ELTYP, ERRORS, MAXIMA, BSEC, PARAM, START1, START2, START3, START4, START5, START6, START7, START8, SUBSTR, TIME, TRANSF, MACHIN

MASSIN
Reads in the connectivity and magnitude of added mass.

Common block: MACHIN

MATINV
Inverts a given square matrix.

MATONE
Fills the diagonal entry of a global matrix by unity.

MATPRT
Prints out a two dimensional array with a header.

Common block: ALGEM

MATSUM
Adds two arrays multiplied by given constants for each array.

MAXCON
Finds the maximum connectivity at nodes used for bandwidth optimization.
MAXIM
Pulls out the maximum value from a double precision array.

PERDIN
Reads data defining the periodic loading in transient dynamics.
Common block: MACHIN, ELTYP, PERIOD

PERDOP
Applies periodic loading to the current time integration step.
Common block: ALGEM

PJOOP
Debug - writes a double precision real variable/array.

PLASTD
Calculates a consistent tangent modulus for an elastic plastic material at a given state of stress and deformation history.
Common block: ELEMEN

PLASTS
Calculates the stress state of an elastic-plastic material by return mapping.
Common block: ELEMEN

PAGE
Advances a page of line-printer output file (ILPRNT) and prints the header.
Common block: ALGEM, CTITLE, PAGCNT

PAGE2
Advances a page of line-printer output file (JLPRNT) and prints the header for nodal variables.
Common block: ALGEM, CONTRO, CTITLE, RESULT, TIME, PAGCNT

PAGE3
Advances a page of line-printer output file (JLPRNT) and prints the header for element variables.
Common block: ALGEM, CONTRO, CTITLE, RESULT, TIME, PAGCNT
Same as PAGE2. Used for subelement solution.

Same as PAGE3. Used for subelement solution.

Zero - clears a double precision real array.

Zero - clears an integer array.

Zero - clears space allocated for nodal normals of shell coordinate definition.

Controls execution of the bandwidth optimization option.

Generates the coordinate transformation matrix to the preferred orientation of an anisotropic material.

Performs the outer product of two three-dimensional vectors.

Common block: START2, START3, START4, START5, START6, START7, START8, SUBSTR, TIME, TRANSF, MACHIN

Updates the velocity vector at the beginning of a time integration step.

Computes the nodal pressure and directly adds it into the global load vector.

Computes stress at a given point and generates material tangent.

External reference: NUL, COPY, ROTPRF, THRSTN, CRPSTN, SUBT, SIMPLE, MULT, LELAST, PLASTS, PLASTD, WALKEQ
NOTION
Converts stresses and strains stored in vector form to tensorial form.

NRMNRM
Normalizes the nodal normal vector and stores its components as a part of the coordinate data for shell elements.

MULT
Multiplies two two-dimensional matrices.

MULTT
Multiplies a matrix by the transpose of another matrix.

NEWACC
Updates the acceleration vector at the beginning of a time integration step.

NGWADD
Allocates the acceleration and velocity vector at the beginning of a time step to temporary storage.

NEWMRK
Adds the element stiffness and mass matrices to generate the element time integration operator matrix.

External reference: MADD

NEWRHS
Forms global load vector.

Common block: AUTOIN, BSECT, CONTRO, BODYFR, LOUBIN, ELEMEN, ELTYP, ERRORS, PULSES, MAXIMA, PARAM, START1

MESURE
Calculates a distance from the integration point to a straight line defined by two points.

MID
Calculates the coordinate of the mid edge node. Not used in Version 4.2.

MIDDLE
Drives the calculation of coordinates and connectivity for mid edge nodes. Not used in Version 4.2.
MKFAKE
Sets up a fake connectivity table including tying constraint for bandwidth optimization.

MODAL
Drives the modal analysis.

Common block: CTITLE, TIME, AUTOIN, START1, START4, START5, ALGEM, EIGEN, INCON, MACHIN, ELEMEN, MAXIMA, ELTYP, CONTRO, SUBSTR, ERRORS, PARAM, SHIFT, START8

External reference: STRUCT, TIMOUT, ASSEM1, MASMAT, MADD, EIGENV, POSTOU

PNTINM
Sets up the convolution terms for nodal loads.

POLD2D
Performs polar decomposition of a two-dimensional second order tensor.

POLD3D
Performs polar decomposition of a three-dimensional second order tensor.

POLICE
Debug - writes contents of a specified common block.

POSTEN
Packs the record of nodally defined element variables for the post tape. See Section 3.4 for detail.

Common block: POSTPN

POSTOU
Writes out post processing data. See Section 3.4 for detail.

POSTPR
Writes contents of buffer to the post processing tape.

PREFIN
Reads in the parameters defining the preferred orientation of an anisotropic material.

Common block: MACHIN
PRELEM Extracts information of the current element from the nodal database. A simplified version of CNODEL used in PRINOU.

Common block: CONTRO, ELTYP, MAXIMA, PARAM, START1, START2, START3, START4, START5, START6, START7, START8, MACHIN

PRESET Initializes working arrays used for front matrix size optimization.

Common block: ALGEM

PRESIN Reads parameters defining pressure loads.

Common block: MACHIN

PRFRNT Controls the front matrix size calculation and the subsequent memory allocation.

Common block: CONTRO, PARAM, ELEMEN, ELTYP, MAXIMA, MACHIN, START1, START2, START3

PRINCV Solves a 3 by 3 eigen problem by Jacobi iteration.

PRININ Reads control data for line printer output.

Common block: FREE

PRIN01, PRIN02, PRIN03 Writes an array with a header.

PRINOU Controls the line printer output of the global solution.

Common block: CONTRO, ALGEM, ELEMEN, ELTYP, RESULT, START1, START2, START4, START6, SUBELM, TIME, TRANSF, ZPRINT, MACHIN

PRINSU Controls the line printer output of the subelement solution.
Common block: CONTRO, ALGEM, ELEMEN, ELTYP, RESULT, START1, START2, START4, START6, TIME, TRANSF, ZPRINT, MACHIN

PRNIM
Debug - writes the element stiffness matrix.

Common block: ALGEM, ELEMEN

PRINTS
Debug - writes the global stiffness matrix stored in band matrix form.

Common block: ALGEM

PRNSHL
Prints the nodal coordinate transformation matrix for shells.

PRNTEL
Reports the connectivity table resulting from automatic subelement mesh generation.

PRNINO
Reports the coordinates resulting from automatic subelement mesh generation.

PRTERR
Prints error message and does not STOP but returns the control.

Common block: ALGEM

PRWARN
Prints warning message.

Common block: ALGEM

PSDIN
Reads the power spectrum definition.

Common block: MACHIN

PULSIN
Reads the pulse load definition.

Common block: MACHIN
PUTDUP

Adds the duplicate node option as a special element in the frontal solution subsystem.

PUTTIE

Adds the tying equation as a special element in the frontal solution subsystem.

QNODEL

Extracts element quantities from the global nodal database. This is yet another subset of CNODEL.

Common block: TMARCH, ALGEM, CONTRO, ELTYP, MAXIMA, PARAM, START1, START2, START4, START5, START6, START7, START8, START9, MACHIN

QUIT

Prints the error message and terminates the execution.

Common block: ALGEM

R3DTEN

Defines three-dimensional rotation matrix for decomposition of the deformation gradient.

RAMDSK

Initializes the buffer area used for the out-of-core frontal solution.

Common block: VRIDS, ALGEM, PARAM, MACHIN, START5

RATIO

Subdivides entries of one array by corresponding entries of another array.

RBF

Rotates stress and strain vectors to preferred orientations.

READEX

Reads header and a double precision real array from a binary file.

REASPR

Calculates reaction force due to an added spring.

REDIAG

Reduces the diagonal entries of a profile store global stiffness
RELDGF
Computes the nodal incremental deformation gradient.

RELOAD
Forms the follower force at the end of an increment.

Common block: ALGEM, ADDVAL, AUTOIN, BSECT, CONTRO, BODYFR, LOUBIN, ELENEW, ELTYP, ERRORS, MAXIMA, PARAM, PULSES, START1, START2, START3, START4, START5, START6, START7, START8, SUBELM, SUBSTR, TIME, TRANSF, MACHIN

External reference: NUL, ADD, RTFOLF, ELVULV, CNODEL, DERIV, INTERQ, STIFF, ETRANs, SUBST1, BFLOAD, DSOAD, QUIT

RESCHK
Tests for convergence flag associated with the residual.

RESCON
Tests for convergence in terms of residual reaction and displacement.

Common block: ALGEM, CONTRO, PARAM, START1, START2, START3, START4, START5, START6, START7, START8, SUBELM, SUBSTR, TIME, TRANSF, MACHIN

External reference: ADD, SUBT, TYING2, BOUND2, MAXIM, L2NORM, LINES, SUBT

RESDYN
Calculates the contribution of mass and damping terms to the residual vector. Called by ASSEM4 when the direct time integration flag is on.

Common block: TMARCH, ALGEM

RESEQ1

RESEQ2

RESID
Forms the residual vector. Called by ASSEM4.

Common block: PARAM

RESOLV

Resolves the same equation by frontal solution method for a different load vector.

Common block: ALGEM

RESTRT

Reads the restart file. See Section 3.3 for detail.

Common block: ADDVAL, ALGEM, AUTOIN, BODYPR, BSECT, CONTRA, COMPN, COUNT, DAMP, EIGEN, MODSUP, ELEMEN, HARMON, INCON, MAXIMA, LOUBIN, PARAM, PERIOD, POSTPN, POWER, PULSES, RESULT, START1, START2, START3, START4, START5, START6, START7, START8, START9, SUBELM, SUBTYP, SUBSTR, SHIFT, TIME, TMARCH, TOLER, VRIDSK, ZPRINT

ROTBK

Rotates the stress state back to the global coordinate system in finite deformation analysis.

ROTDMT

Rotates the element stress strain matrix into the global coordinate system for shells.

External reference: ORIENT, COPY, QUIT, MATINV, NUL, TSHIFT, TFULL2, MULT

ROTFOR

Rotates the stress state state into the deformed configuration coordinate system in finite deformation analysis.

ROTPRF

Rotates the stresses and strains defined in global coordinates to the preferred orientation of an anisotropic material.

ROTTEN

Calculates the rotation tensor from the polar decomposition of the deformation gradient in finite deformation analyses.

ROW

Pulls out a complete row from profile stored global matrix.
RSHELL
Treats the random vibration input for shell elements.

RTBEAM
Treats the random vibration input for beam elements.

RTFOLF
Rotates load vector entries treated as follower forces.

RUNCMD
Loads control parameters for compound executions.

Common block: CONTRO, COMPND, MACHIN

SID02N
Shape functions for the one-dimensional two node element.

S2D04N
Shape functions for the two-dimensional four node element.

S2D09N
Shape functions for the two-dimensional nine node element.

S3D08N
Shape functions for the three-dimensional eight node element.

S3D27N
Shape functions for three-dimensional twenty-seven node element.

SAVER:
Writes the restart file. See Section 3.3 for detail.

Common block: ADDVAL, ALGEM, AUTOIN, BODYFR, BSECT, CONTRO, COMPND, COUNT, DAMP, EIGEN, MODSUP, ELEMEN, HARMON, INCCON, MAXIMA, LOUBIN, PARAM, PERIOD, POSTPN, POWER, PULSES, RESULT, START1, START2, START3, START4, START5, START6, START7, START8, START9, SUBELM, SUBTYP, SUBSTR, SHIFT, TIME, TMARCH, TOLER, VRIDS, ZPRINT

SBCIN
Reads in stress boundary condition data.

Common block: MACHIN

SCALER
Scales loading to a given proportion.

Common block: MACHIN, START8

SEARCH
Pulls out double precision real element nodal quantities from the global nodal data base.

SEARCI
Pulls out integer element nodal quantities from the global nodal database.

SELECT
Reads and decodes strings for print option data input.

SETCCM
Sets up the complex coefficient matrix for base excitation.

SETHFN
Sets up the vector for complex modal damping.

SETOLR
Sets the limit for the search distance in the line search option.

SETQMD
Calculates modal damping.

SETRMS
Finds the root-mean-square value for a modal function from the frequency response.

SETUP
Computes the adjacency list for front width optimization. Not functional for Version 4.2.

SHIFIN
Reads parameters defining the power shift in modal dynamics.

Common block: MACHIN

SHOHEI
Debug - writes an integer array.

SHTRAN
Transforms nodally defined shell stress and strain resultants to
values in element coordinates.

SIMPLE
Calculates the stress and generates the tangent modulus for secant elasticity model for elastoplastic response under a monotonically increasing load.

SK
Integrates the element coefficient matrix into the global array stored in band matrix form.

SMASTR
Extracts element quantities from the global element used for subelement analysis. Yet another variation of CNODEL.

Common block: TMARCH, CONTRO, ELTYP, MAXIMA, PARAM, START1, START2, START4, START5, START6, START8, MACHIN

SMULT
Multiplies an array by a scalar.

SNODEL
Transfers global element results into the subelement mesh.

SOLUT1
Controls execution of the linear algebraic equation solver by the profile method.

Common block: AUTOIN, CONTRO, EIGEN, ELTYP, MAXIMA, PARAM, PULSES, START1, START3, START4, START5, START7, MACHIN, TOLER

External reference: ADD, RITFOL, ADDPUL, SUBT, TYING1, BOUND1, DECOMP, BFGSW, BFGSRH, COPY, SOLVER, MADD, MATSUM, BFGSLH, TYING3, L2NORM, TYING2, BOUND2, ADAPTS

SOLUT2
Controls execution of the linear algebraic equation solver by the band matrix method. Not used in Version 4.2.

SOLVER
Solves linear equations for nodal displacement.

Common block: ALGEM, PARAM

SOLVIT

SUBROUTINES

Page : A - 36
Solves a small system of algebraic equations by Gaussian elimination.

SPRIN
Reads parameters defining the added spring stiffness.

Common block: MACHIN

SPSTRS
Generates the strain displacement matrix at a given point in the current element of plane stress type.

SSOLID
Generates the strain displacement matrix at a given point in the current element of three-dimensional continua type.

STATIC
Drives the incremental iterative solution of a quasi-static problem.

STICKIO
Controls the data flow between in-core buffer and the work file for the frontal solution.

Common block: ALGEM, MACHIN, VRDSSK

STIFF
Calculates the current element tangent stiffness matrix and the load vector.

External reference: NUL, MATPRT, SMULT, MULT, TMULT

STRAIN
ReCOVERS strain at nodes.

Common block: COUNTR

STRESS
Controls the nodal stress recovery operation including pre-integration through the shell thickness.

STRING
Decodes the input data string.

External reference: NUL, MATPRT, SMULT, MULT, TMULT

Common block: ALGEM, MACHIN, VRDSSK

STRAIN
ReCOVERS strain at nodes.

Common block: COUNTR

STRESS
Controls the nodal stress recovery operation including pre-integration through the shell thickness.

STRING
Decodes the input data string.
Common block: ALGEM, FREE, COUNT

STRIPB
Finds non-blank entry in a given character string.

STRSBC
Imposes the stress boundary condition called by ASSEM4.

STRUCT
Controls the core allocation and elimination table construction for global matrix manipulation.

Common block: ALGEM, CONTRO, MAXIMA, PARAM, START1, START2, START3, START4, START5, SUBSTR

SUBALC
Allocates working storage for the subelement solution.

SUBCHK
Checks convergence of the subelement solution in terms of displacement update.

Common block: ALGEM, SUBCNV

SUBDER
Controls access to the element library in the subelement solution.

Common blocks: ALGEM, CONTRO, SUBTYP, ELEMEN, ERRORS

SUBDIV
Controls the subelement mesh generation.

Common blocks: ALGEM, CONTRO, ELTYP, ERRORS, MACHIN, MAXIMA, PARAM, START1, START5, START6, SUBTYP

SUBELV
Extracts element definition variable for the current subelement.

Common block: ALGEM, SUBTYP, START1, PARAM, ELEMEN

SUBFEM
Supervises the mixed iterative solution in the subelement mesh. Called by ASSEM4.

Common block: ALGEM, CONTRO, ELTYP, ELEMEN, SUBTYP, TRANSF, LOUBIN,
MAXIMA, PARAM, ERRORS, MACHIN, TIME, START1, START2, START3,
START4, START5, START6, START7, START8, START9, TOLER

External reference: TIMOUT, SUBELV, SUBALC, SMASTR, NUL, SNODEL, LMPMAS,
SUBINT, SUBT, STRESS, ADD, SUBDER, INTERP, STIFF,
SYSEQN, SUBSOL, STRAIN, SUBRES, SUBCHK, SUBGLB, SUBGLD

SUBGLB, SUBGLD
Calculates residual for a global element generated by the subelement solution.

SUBINC
Adds the incremental values of the subelement solution to the total array.

Common block: AUTOIN, CONTRO, SUBTYP, START1, START2, START4, START6,
START8, TIME

SUBINT
Interpolates global quantities at subelement nodes.

SUBRES
Calculates the mixed residual for the subelement solution.

SUBSIN

SUBSOL, SUBSOL2
Back-substitutes for the factors of the global array stored in band matrix form to generate the displacement corresponding to the given load vector. Not used in Version 4.2.

SUBSOL
Solves the subelement stiffness equations for the subelement displacement.

SUBSPC
Controls execution of the subspace iteration for eigenvalue extraction.

Common block: ALGEM, SHIFT

External reference: NUL, UPIX, JACOBI, TIMOUT, COPY, MADD, QUIT, SMULT,
LINES

SUBROUTINES

MHOST Version 4.2

Page : A - 39
SUBST1
Converts the element load vector to the global load vector.

SUBSTN
Adds the element nodal value to the global vector.

SUBT
Subtracts arrays.

SUBVAL
Interpolates element nodal values to a given point specified by the isoparametric coordinate system.

SUPER
Drives modal superposition for linear dynamics.

Common block:
CTITLE, TIME, AUTOIN, START1, START2, START4, START5, ALGEM, EIGEN, MODSUP, HARMON, INCON, DAMP, MACHIN, ELEMEN, MAXIMA, ELTYP, CONTRO, SUBSTR, ERRORS, PARAM, SHIFT, START8

SYSEQN
Assembles the global finite element equations for subelement analysis.

T2D04N
Calculates the local coordinate system for two-dimensional four node elements.

T2D04P
Calculates the local coordinate system for two-dimensional four node elements using the Cayley-Hamilton formula.

T3D08N
Calculates the local coordinate system for three-dimensional eight node element.

TEMO2N
Calculates the local coordinate system for two node beam element.

TEMPIN
Reads in nodal temperature definition data.

Common block:
MACHIN

TFULL2
Transorms the material modulus into fully three-dimensional form.

THRSTN
Calculates thermal strain.

External reference: UTEMP, NUL, UCOEF

TIMEIN
Reads in parameters defining the time increment control.

TIMER
Accesses to the system dependent CPU clock routine. See Section 0.3.

TIMOUT
Reports the job step and elapsed CPU time.

Common block: ALGEM, CONTRO, TIMLOC

TMULT
Multiplies the transpose of an array by a matrix.

TMLTV
Multiplies the transpose of an array by a vector.

TNSPRD
Multiplies two tensors stored in vector form.

TRACIN
Reads in nodal concentrated forces.

Common block: MACHIN

TRANIN
Reads nodal coordinate transformation data.

Common block: MACHIN

TRANS1
Applies a transformation to the global stiffness matrix stored in band matrix form.

TRANS2
Applies a transformation to the global vector.
TRANSP
Transposes a two-dimensional matrix.

TSH04N
Calculates local coordinates for four node shell elements.

TSHIFT
Sets up tensor transformation with respect to the preferred orientation of an anisotropic material.

TYING1
Imposes tying constraints on the global stiffness matrix stored in band matrix form.

TYING2
Imposes tying constraints on the global vector.

TYING3
Releases tying constraints in the global vector.

TYININ
Reads in coefficients of the tying equations.

Common block: MACHIN

TYPEIN
Defines element parameters used in the analysis.

UBOUN, UCOEF, UCOOR, UDERIV, UFORCE, UHOOK, UPRESS, UTEMPD, UTERM, USXX, VSWELL
User subroutines. Fully documented in MHOST Volume 1 USERS' MANUAL.

UNITST
Generates the global unit matrix in profile stored form.

UPTX
Multiplies a banded matrix by a vector.

UPTXL
Multiplies a lumped mass matrix by a vector.

VALINT
Linearly interpolates data given in a table.
VDSKID
Manages a record for out-of-core frontal solution.

Common block: ALGEM, MAXIMA, MACHIN, VRIDSK

VELCIN
Reads initial velocity definition data.

Common block: MACHIN

VMULT
Multiplies an array by a vector.

VSH04N
Generates the local coordinate system for four node shell elements.

VIMULT
Multiplies the transpose of an array by a vector.

VULVRG
Makes the conversion table for the degree of freedom from the connectivity and constraint data.

VVMULT
Multiplies two vectors.

WALCON
Calculates temperature dependent material constraints for the Walker model.

WALKEQ
Calculates stress and internal variables for the Walker model.

WORKIN
Reads in work-hardening data for a homogeneous elastic plastic material.

Common block: MACHIN

WKSLP
Calculates the hardening slope for elastoplasticity.

WRITEX
YIEL

Calculates the yield stress and hardening slope for a given equivalent plastic strain.

External reference: WKSLP

YELIN

Reads in the nodal definition of a stress-strain curve for an elastic plastic material.

Common block: MACHIN