INDEPENDENT ORBITER ASSESSMENT

ANALYSIS OF THE ELECTRICAL POWER GENERATION/POWER REACTANT STORAGE AND DISTRIBUTION SUBSYSTEM

(McDonnell-Douglas Astronautics Co.) 205 p

N90-10918

Unclassified

0211534
INDEPENDENT ORBITER ASSESSMENT

ANALYSIS OF THE ELECTRICAL POWER GENERATION/POWER REACTANT STORAGE AND DISTRIBUTION SUBSYSTEM

5 DECEMBER 1986
INDEPENDENT ORBITER ASSESSMENT

ANALYSIS OF THE ELECTRICAL POWER GENERATION/POWER REACTANT STORAGE AND DISTRIBUTION SUBSYSTEM

5 December 1986

This Working Paper is Submitted to NASA under Task Order No. VA86001, Contract NAS 9-17650
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 EXECUTIVE SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2.0 INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Purpose</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Scope</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Analysis Approach</td>
<td>4</td>
</tr>
<tr>
<td>2.4 EPG/PRSD Ground Rules and Assumptions</td>
<td>5</td>
</tr>
<tr>
<td>3.0 SUBSYSTEM DESCRIPTION</td>
<td>6</td>
</tr>
<tr>
<td>3.1 Design and Function</td>
<td>6</td>
</tr>
<tr>
<td>3.2 Interfaces and Locations</td>
<td>8</td>
</tr>
<tr>
<td>3.3 Hierarchy</td>
<td>8</td>
</tr>
<tr>
<td>4.0 ANALYSIS RESULTS</td>
<td>19</td>
</tr>
<tr>
<td>4.1 Analysis Results - Hydrogen Tanks</td>
<td>20</td>
</tr>
<tr>
<td>4.2 Analysis Results - H2 Relief Valve/Filter Packages</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Analysis Results - H2 Valve Modules</td>
<td>21</td>
</tr>
<tr>
<td>4.4 Analysis Results - Oxygen Tanks</td>
<td>21</td>
</tr>
<tr>
<td>4.5 Analysis Results - O2 Relief Valve/Filter Packages</td>
<td>21</td>
</tr>
<tr>
<td>4.6 Analysis Results - O2 Valve Modules</td>
<td>21</td>
</tr>
<tr>
<td>4.7 Analysis Results - O2 & H2 Lines and Fittings</td>
<td>21</td>
</tr>
<tr>
<td>5.0 REFERENCES</td>
<td>22</td>
</tr>
<tr>
<td>APPENDIX A ACRONYMS</td>
<td>A-1</td>
</tr>
<tr>
<td>APPENDIX B DEFINITIONS, GROUND RULES, AND ASSUMPTIONS</td>
<td>B-1</td>
</tr>
<tr>
<td>B.1 Definitions</td>
<td>B-2</td>
</tr>
<tr>
<td>B.2 Project Level Ground Rules and Assumptions</td>
<td>B-4</td>
</tr>
<tr>
<td>B.3 Subsystem Specific Ground Rules and Assumptions</td>
<td>B-6</td>
</tr>
<tr>
<td>APPENDIX C DETAILED ANALYSIS</td>
<td>C-1</td>
</tr>
<tr>
<td>APPENDIX D POTENTIAL CRITICAL ITEMS</td>
<td>D-1</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>EPG/PRSD OVERVIEW ANALYSIS SUMMARY</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2</td>
<td>EPG SUBSYSTEM OVERVIEW</td>
<td>9</td>
</tr>
<tr>
<td>Figure 3</td>
<td>PRSD SUBSYSTEM OVERVIEW</td>
<td>10</td>
</tr>
<tr>
<td>Figure 4</td>
<td>PRSD HYDROGEN TANKS</td>
<td>11</td>
</tr>
<tr>
<td>Figure 5</td>
<td>PRSD H2 RELIEF VALVE/FILTER PACKAGES</td>
<td>12</td>
</tr>
<tr>
<td>Figure 6</td>
<td>PRSD H2 VALVE MODULES</td>
<td>13</td>
</tr>
<tr>
<td>Figure 7</td>
<td>PRSD OXYGEN TANKS</td>
<td>14</td>
</tr>
<tr>
<td>Figure 8</td>
<td>PRSD O2 RELIEF VALVE/FILTER PACKAGES</td>
<td>15</td>
</tr>
<tr>
<td>Figure 9</td>
<td>PRSD O2 VALVE MODULES</td>
<td>16</td>
</tr>
<tr>
<td>Figure 10</td>
<td>PRSD COMPONENT LOCATIONS</td>
<td>17</td>
</tr>
<tr>
<td>Figure 11</td>
<td>PRSD PORTS - LEFT SIDE</td>
<td>18</td>
</tr>
<tr>
<td>Figure 12</td>
<td>PRSD PORTS - RIGHT SIDE</td>
<td>18</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table I</td>
<td>SUMMARY OF IOA FAILURE MODES AND CRITICALITIES</td>
<td>19</td>
</tr>
<tr>
<td>Table II</td>
<td>SUMMARY OF IOA POTENTIAL CRITICAL ITEMS</td>
<td>20</td>
</tr>
</tbody>
</table>
Independent Orbiter Assessment
Analysis of the Electrical Power Generation/Power Reactant Storage and Distribution Subsystem

1.0 EXECUTIVE SUMMARY

The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). Direction was given by the STS Orbiter and GFE Projects Office to perform the hardware analysis using the instructions and ground rules defined in NSTS 22206, Instructions for Preparation of FMEA and CIL, 10 October 1986. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents (Appendix C) the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Power Reactants Storage and Distribution (PRSD) System hardware.

The EPG/PRSD hardware is required for performing critical functions of cryogenic hydrogen and oxygen storage and distribution to the Fuel Cell Powerplants (FCP) and Atmospheric Revitalization Pressure Control Subsystem (ARPCS). Specifically, the EPG/PRSD hardware consists of the following:

- Hydrogen (H2) tanks
- Oxygen (O2) tanks
- H2 Relief Valve/Filter Packages (HRVFP)
- O2 Relief Valve/Filter Packages (ORVFP)
- H2 Valve Modules (HVM)
- O2 Valve Modules (OVM)
- O2 and H2 lines, components, and fittings

The IOA analysis process utilized available EPG/PRSD hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Figure 1 presents a summary of the failure criticalities for each of the seven major divisions of the EPG/PRSD. A summary of the number of failure modes, by criticality, is also presented below with Hardware (HW) criticality first and Functional (F) criticality second.

<table>
<thead>
<tr>
<th>Summary of IOA Failure Modes By Criticality (HW/F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality:</td>
</tr>
<tr>
<td>Number :</td>
</tr>
</tbody>
</table>

For each failure mode identified, the criticality and redundancy screens were examined to identify critical items. A summary of Potential Critical Items (PCIs) is presented as follows:

<table>
<thead>
<tr>
<th>Summary of IOA Potential Critical Items (HW/F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality:</td>
</tr>
<tr>
<td>Number :</td>
</tr>
</tbody>
</table>
2.0 INTRODUCTION

2.1 Purpose

The 51-L Challenger accident prompted the NASA to readdress safety policies, concepts, and rationale being used in the National Space Transportation System (NSTS). The NSTS Office has undertaken the task of reevaluating the FMEA/CIL for the Space Shuttle design. The MDAC is providing an independent assessment of the Orbiter FMEA/CIL for completeness and technical accuracy.

2.2 Scope

The scope of the independent FMEA/CIL assessment activity encompasses those Shuttle Orbiter subsystems and GFE hardware identified in the Space Shuttle Independent FMEA/CIL Assessment Contractor Statement of Work. Each subsystem analysis addresses hardware, functions, internal and external interfaces, and operational requirements for all mission phases.

2.3 Analysis Approach

The independent analysis approach is a top-down analysis utilizing as-built drawings to breakdown the respective subsystem into components and low-level hardware items. Each hardware item is evaluated for failure mode, effects, and criticality. These data are documented in the respective subsystem analysis report, and are used to assess the NASA and Prime Contractor FMEA/CIL reevaluation results. The IOA analysis approach is summarized in the following Steps 1.0 through 3.0. Step 4.0 summarizes the assessment of the NASA and Prime Contractor FMEAs/CILs that is performed and documented at a later date.

Step 1.0 Subsystem familiarization
 1.1 Define subsystem functions
 1.2 Define subsystem components
 1.3 Define subsystem specific ground rules and assumptions

Step 2.0 Define subsystem analysis diagram
 2.1 Define subsystem
 2.2 Define major assemblies
 2.3 Develop detailed subsystem representations

Step 3.0 Failure events definition
 3.1 Construct matrix of failure modes
 3.2 Document IOA analysis results
Step 4.0 Compare IOA analysis data to NASA FMEA/CIL
 4.1 Resolve differences
 4.2 Review in-house
 4.3 Document assessment issues
 4.4 Forward findings to Project Manager

2.4 EPG/PRSD Ground Rules and Assumptions

The EPG/PRSD ground rules and assumptions used in the IOA are defined in Appendix B.
3.0 SUBSYSTEM DESCRIPTION

3.1 Design and Function

The EPG/PRSD consists of hardware that is required for cryogenic hydrogen and oxygen storage and distribution to the FCP and ARPCS. Reference Figures 2 and 3. The EPG/PRSD consists of the following divisions:

1. The Hydrogen (H2) tanks can number from 2 to 5 (each tank having a 1:1 correspondence to an oxygen tank). The H2 reactant is stored in the tank at an initial temperature of -424 degrees F. Each tank consists of an A and B heater, heater controller pressure sensor, tank pressure sensor, fluid temperature sensor, quantity sensor, heater assembly temperature sensor, relief valve and port, and fill and vent Quick Disconnects (QD) with caps. The reactant flow to the fuel cells is controlled by operation of the heaters which in turn are controlled by the heater controller. Reference Figure 4.

2. There is a H2 Relief Valve/Filter Package for each H2 tank. All HRVFP's have a filter, and the ones for tanks 1 and 2 contain a manifold relief valve, while those for tanks 3 and 4 contain a check valve. The filters extract reactant impurities which could degrade fuel cell performance. The manifold relief valves relieve excess manifold pressure by allowing reactants to flow into tanks 1 or 2. The check valves prevent reactants from flowing back into the tank in the event it is at a low pressure. Tanks 4 and 5 share a check valve. Reference Figure 5.

3. There are 2 H2 Valve Modules. Both HVMs contain a check valve (one for tank 1, one for tank 2), a manifold shutoff valve and its position indicator, and a manifold pressure sensor. HVM 1 contains a horizontal drain QD and cap. HVM 1 also contains one fuel cell reactant supply valve and its position sensor, while HVM 2 contains two of each. HVM 2 also contains a Ground Support Equipment (GSE) valve and GSE Time Zero (T-O) fill QD. The manifold valves can be used to isolate manifold 1 from 2. The GSE valve and fill QD allow the fuel cells to run on ground reactants before launch. Reference Figure 6.
4. The Oxygen (O2) tanks flown on a mission can number from 2 to 5. The O2 reactant is stored in the tank at an initial temperature of -300 degrees F. Each tank contains heaters labeled A1, A2, B1 and B2, with one heater assembly consisting of A1 and B1 and the other containing A2 and B2. The tanks also consist of a temperature sensor for each heater assembly, fluid temperature sensor, quantity sensor, pressure sensor, heater controller pressure sensor, relief valve and port, fill QD and cap, and vent QD and cap. In a five tank configuration, the B heater in tanks 4 and 5 are not operational. Reference Figure 7.

5. There is an O2 Relief Valve/Filter Package for each O2 tank. All ORVFP's have a filter, plus the ones for tanks 1 and 2 contain a manifold relief valve, while those for tanks 3 and 4 contain a check valve. Reference Figure 8.

6. There are 2 O2 Valve Modules. Both OVM's contain a check valve (one for tank 1, one for tank 2), a manifold shutoff valve and its position indicator, a manifold pressure sensor, and an ECLSS system supply valve and its position sensor. HVM 1 contains one fuel cell reactant supply valve and its position sensor, while HVM 2 contains two of each. HVM 1 contains a GSE valve and GSE fill T-O QD. HVM 2 contains a horizontal drain QD and cap. Reference Figure 9.

7. The O2 and H2 lines, components, and fittings made up a separate category outside of the six major divisions.
3.2 Interfaces and Locations

The EPG/PRSD interfaces directly with the FCP and ARPCS. Hydrogen and Oxygen are supplied to the FCP's while oxygen is supplied to the ARPCS. The PRSD subsystem components are installed in the mid-fuselage of the Orbiter beneath the payload bay liner. The H2 and O2 tanks are arranged on both sides of the mid-fuselage in a random type of order. Reference Figure 10. The O2 and H2 relief and drain ports are located on both sides of the Orbiter fuselage. Reference Figures 11 and 12.

3.3 Hierarchy

Figures 2 and 3 illustrate the hierarchy of the EPG and PRSD systems, respectively. The PRSD subsystems are depicted in Figures 4 through 9.
ELECTRICAL POWER GENERATION

POWER REACTANTS STORAGE & DISTRIBUTION SUBSYSTEM

FUEL CELL POWERPLANT SUBSYSTEM

EPG INTERFACE BUT NOT CONSIDERED IN THIS ANALYSIS.
Figure 3 - PRSD SUBSYSTEM OVERVIEW

In this analysis but not considered PRSD INTERFACE

(1 of 3) POWERPLANT

Fuel Cell

(1 of 2)

O2 Valve Module

(1 per tank)

Filter Package

O2 Relief Valve

(1 of 2 to 5)

Oxygen Tanks

(1 of 2)

H2 Valve Module

(1 per tank)

Filter Package

H2 Relief Valve

H2 Hydrogen Tanks

Distribution

Power Reactants Storage and
HYDROGEN TANK

A HEATER B HEATER TANK FILL QUICK DISCONNECT (QD) TANK FILL QD CAP

TANK PRESSURE SENSOR TANK RELIEF VALVE RELIEF PORT 1 (TANKS 1, 2, & 4)

TANK FLUID TEMPERATURE SENSOR TANK QUANTITY SENSOR

TANK VENT QD TANK VENT QD CAP TANK HEATER CONTROLLER PRESSURE SENSOR

RELIEF PORT 2 (TANKS 3 & 5) HEATER ASSEMBLY TEMPERATURE SENSOR

--- OPTIONAL TANKS
Figure 6 - PRSD H2 VALVE MODULES

H2 VALVE MODULES

1. CHECK VALVE
2. MANIFOLD SHUTOFF VALVE
 3. MANIFOLD SHUTOFF VALVE POSITION SENSOR
 4. MANIFOLD PRESSURE SENSOR

 5. HORIZONTAL DRAIN QD (MODULE 1 ONLY)
 6. HORIZONTAL DRAIN QD CAP (MODULE 1 ONLY)

 7. FUEL CELL REACTANT SUPPLY VALVE (2 IN MODULE 2)
 8. FUEL CELL REACTANT SUPPLY VALVE POSITION SENSOR (2 IN MODULE 2)

 9. GSE SUPPLY VALVE (MODULE 2 ONLY)
10. GSE T-O FILL QD (MODULE 2 ONLY)
Figure 7 - PRSD OXYGEN TANKS

OXYGEN TANK

A1 HEATER A2 HEATER B1 HEATER B2 HEATER TANK HEATER ASSEMBLY 1 TEMPERATURE SENSOR TANK HEATER ASSEMBLY 2 TEMPERATURE SENSOR

TANK FLUID TEMPERATURE SENSOR TANK QUANTITY SENSOR TANK FILL QD TANK FILL QD CAP TANK VENT QD TANK VENT QD CAP TANK PRESSURE SENSOR

TANK HEATER CONTROLLER PRESSURE SENSOR TANK RELIEF VALVE RELIEF PORT

--- OPTIONAL TANKS
Figure 8 - PRSD O2 RELIEF VALVE/FILTER PACKAGES

- O2 RELIEF VALVE/ FILTER PACKAGE
 - 1
 - FILTER
 - MANIFOLD RELIEF VALVE (PACKAGES 1&2 ONLY)
 - 2
 - CHECK VALVE (PACKAGES 3&4 ONLY)

--- OPTIONAL PACKAGES
Figure 11 - PRSD PORTS - LEFT SIDE

Figure 12 - PRSD PORTS - RIGHT SIDE
4.0 ANALYSIS RESULTS

Detailed analysis results for each of the identified failure modes are presented in Appendix C. Table I presents a summary of the failure criticalities for each of the seven major subdivisions of the EPG/PRSD. Further discussion of each of these subdivisions and the applicable failure modes is provided in subsequent paragraphs.

<table>
<thead>
<tr>
<th>Criticality:</th>
<th>1/1</th>
<th>2/1R</th>
<th>2/2</th>
<th>3/1R</th>
<th>3/2R</th>
<th>3/3</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2 Tanks</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td>HRVFP</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>HVM</td>
<td>8</td>
<td>12</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>O2 Tanks</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>ORVFP</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>OVM</td>
<td>10</td>
<td>16</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>O2 & H2 Lines</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>38</td>
<td>38</td>
<td>-</td>
<td>31</td>
<td>4</td>
<td>51</td>
<td>162</td>
</tr>
</tbody>
</table>

Of the 162 failure modes analyzed, 82 were determined to be PCIs. A summary of the PCIs is presented in Table II. Appendix D presents a cross reference between each PCI and a specific worksheet in Appendix C.
TABLE II Summary of IOA Potential Critical Items

<table>
<thead>
<tr>
<th>Criticality:</th>
<th>1/1</th>
<th>2/1R</th>
<th>2/2</th>
<th>3/1R</th>
<th>3/2R</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2 Tanks</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>HRVFP</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>HVM</td>
<td>8</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>O2 Tanks</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>ORVFP</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>OVM</td>
<td>10</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26</td>
</tr>
<tr>
<td>O2 & H2 Lines</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>38</td>
<td>38</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>82</td>
</tr>
</tbody>
</table>

4.1 Analysis Results - Hydrogen Tanks

Failures related to the H2 tanks and outer components were analyzed. Critical failures were due to external leaks, ruptures, loss of annulus vacuum, mechanical failures of valves, and restricted flow out of relief ports. Noncritical failures involved faulty tank pressure outputs and the inability of QDs to mate/demate.

Components which make up the tanks were individually analyzed. Critical failures involved faulty heater controller output and malfunctioning heater elements. Noncritical failures involved faulty heater temperature, tank quantity, and fluid temperature outputs. Ten failures were identified to be PCIs.

4.2 Analysis Results - HRVFP

Critical failures of components involved clogged filters, mechanical failures of valves, and external leakage. There were no noncritical failures. Six failures were identified to be PCIs.
4.3 Analysis Results - HVM

Critical failures of components involved mechanical and electrical failures of valves, and external leakage. Noncritical failures involved the inability of QDs to mate/demate, faulty output of pressure and valve position sensors, and electrical failures of valves. Twenty failures were identified to be PCIs.

4.4 Analysis Results - Oxygen Tanks

Failures related to the O2 tanks and outer components were analyzed. Critical failures were due to external leaks, ruptures, loss of annulus vacuum, mechanical failures of valves, and restricted flow out of the relief port. Noncritical failures involved faulty tank pressure outputs and the inability of QDs to mate/demate.

Components which make up the tanks were individually analyzed. Critical failures involved faulty heater controller output and malfunctioning heater elements. Noncritical failures involved faulty heater temperature, tank quantity, and fluid temperature outputs. Ten failures were identified to be PCIs.

4.5 Analysis Results - ORVFP

Critical failures of components involved clogged filters, mechanical failures of valves, and external leakage. There were no noncritical failures. Six failures were identified to be PCIs.

4.6 Analysis Results - OVM

Critical failures of components involved mechanical and electrical valve failures, and external leakage. Noncritical failures involved the ability of QDs to mate/demate, faulty output of pressure and valve position sensors, and electrical failures of valves. Twenty-six failures were identified to be PCIs.

4.7 Analysis Results - O2 and H2 Lines, Components and Fittings

Critical failures involved external leakage and restricted flow. There were no noncritical failures. Four failures were identified to be PCIs.
5.0 REFERENCES

Reference documentation available from NASA and Rockwell was used in the analysis. The documentation used included the following:

24. Rockwell International Specifications for PRSD

b. MC276-0012, Disconnect, Gas Supply, Rev. C, 3-24-77.

c. MC282-0063, Storage Assembly, Power Reactant - Orbiter, Rev. H, 6-4-82.

d. MC284-0429, Valve, Shutoff, Unidirectional and Bidirectional O2 and H2, Rev. B, 10-30-75.

e. MC284-0440, Valve, Pressure Relief, Cryogenic, Rev. C, 5-14-79.

f. MC286-0054, Filter, Cryogenic, Rev. A, 9-17-75.

g. MC449-0185, Sensor, Control Pressure, Rev. E, 2-01-79.

h. MC999-0097, Metallic Pressure Vessel, Space Shuttle Orbiter, Requirements for, Rev. C, 11-10-75.

i. ME273-0074, Coupling, Half, Quick Disconnect, Female Fitting, Rev. F, 7-21-75.

j. ME273-0075, Coupling, Half, Quick Disconnect, Male Fitting, Rev. F, 7-10-75.

25. Rockwell International Drawings

d. V070-454374, Panel - H2 Pressure Relief, PRSD, Electrical Power Subsystem, Assy. of, 4-14-75.
e. V070-454377, Panel - O2 Pressure Relief, PRSD Electrical Power Subsystem, Assy. of, 4-14-75.
h. V070-454410, Panel - Oxygen Control, RH Side, Assy. of, 4-3-75.
i. V070-454411, Panel - Hydrogen Control, RH Side, Assy. of, 4-3-75.
j. V070-454710, Panel - Oxygen Control, LH Side, Assy. of, Rev. E, 3-12-82.
k. V070-454712, Braze & Insulation - H2 Control Valves & Components, LH Side, Assy. of, Rev. C, 4-17-79.
m. V070-454716, Braze & Insulation - H2 Control Valves & Components, RH Side, Assy. of, Rev. E, 4-86.
o. V070-454899, Electrical Power Subsystem Instl-RH Side, X0693 to X0 919, Rev. B, 12-10-82.
r. V525-454161, Panel - Tank Set 4, O2 Pressure Relief, Electrical Power Subsystem, Assy. of, Rev. E, 7-6-84.
APPENDIX A
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOA</td>
<td>Abort Once Around</td>
</tr>
<tr>
<td>ARPCS</td>
<td>Atmospheric Revitalization Pressure Control Subsystem</td>
</tr>
<tr>
<td>Assy</td>
<td>Assembly</td>
</tr>
<tr>
<td>ATO</td>
<td>Abort To Orbit</td>
</tr>
<tr>
<td>CIL</td>
<td>Critical Items List</td>
</tr>
<tr>
<td>CRIT</td>
<td>Criticality</td>
</tr>
<tr>
<td>CRYO</td>
<td>Cryogenic</td>
</tr>
<tr>
<td>C&W</td>
<td>Caution and Warning System</td>
</tr>
<tr>
<td>ECLSS</td>
<td>Environmental Control and Life Support System</td>
</tr>
<tr>
<td>EGIL</td>
<td>Electrical, General Instrumentation, and Lighting Engineer</td>
</tr>
<tr>
<td>EPG</td>
<td>Electrical Power Generation</td>
</tr>
<tr>
<td>EPS</td>
<td>Electrical Power System</td>
</tr>
<tr>
<td>F</td>
<td>Functional</td>
</tr>
<tr>
<td>FCP</td>
<td>Fuel Cell Powerplant</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Mode and Effect Analysis</td>
</tr>
<tr>
<td>GFE</td>
<td>Government Furnished Equipment</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>HR</td>
<td>Hour</td>
</tr>
<tr>
<td>HRVFP</td>
<td>Hydrogen Relief Valve/Filter Package</td>
</tr>
<tr>
<td>H2</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>HVM</td>
<td>Hydrogen Valve Module</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>IOA</td>
<td>Independent Orbiter Assessment</td>
</tr>
<tr>
<td>JSC</td>
<td>Lyndon B. Johnson Space Center</td>
</tr>
<tr>
<td>LB</td>
<td>Pound</td>
</tr>
<tr>
<td>LH</td>
<td>Left Hand</td>
</tr>
<tr>
<td>MDAC</td>
<td>McDonnell Douglas Astronautics Company</td>
</tr>
<tr>
<td>MECO</td>
<td>Main Engine Cutoff</td>
</tr>
<tr>
<td>MPS</td>
<td>Main Propulsion Subsystem</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NSTS</td>
<td>National Space Transportation System</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>OMRSD</td>
<td>Operations and Maintenance Requirements and Specification Document</td>
</tr>
<tr>
<td>OMS</td>
<td>Orbital Maneuvering Subsystem</td>
</tr>
<tr>
<td>ORVFP</td>
<td>Oxygen Relief Valve/Filter Package</td>
</tr>
<tr>
<td>O2</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OVM</td>
<td>Oxygen Valve Module</td>
</tr>
<tr>
<td>PCI</td>
<td>Potential Critical Item</td>
</tr>
<tr>
<td>PLS</td>
<td>Primary Landing Site</td>
</tr>
<tr>
<td>PRCB</td>
<td>Program Requirements Control Board</td>
</tr>
<tr>
<td>PRSD</td>
<td>Power Reactant Storage and Distribution</td>
</tr>
<tr>
<td>psi</td>
<td>Pounds Per Square Inch</td>
</tr>
<tr>
<td>psig</td>
<td>Pounds Per Square Inch Gauge</td>
</tr>
<tr>
<td>QD</td>
<td>Quick Disconnect</td>
</tr>
<tr>
<td>Rev</td>
<td>Revision</td>
</tr>
<tr>
<td>RH</td>
<td>Right Hand</td>
</tr>
</tbody>
</table>
RI - Rockwell International
RTLS - Return to Landing Site
STS - Space Transportation System
TAL - Transatlantic Abort Landing
T-O - Time Zero
Xo - X Axis of Orbiter
APPENDIX B

DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions
B.2 Project Level Ground Rules and Assumptions
B.3 Subsystem-Specific Ground Rules and Assumptions
APPENDIX B
DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions

Definitions contained in NSTS 22206, Instructions For Preparation of FMEA/CIL, 10 October 1986, were used with the following amplifications and additions.

INTACT ABORT DEFINITIONS:

- **RTLS** - begins at transition to OPS 6 and ends at transition to OPS 9, post-flight
- **TAL** - begins at declaration of the abort and ends at transition to OPS 9, post-flight
- **AOA** - begins at declaration of the abort and ends at transition to OPS 9, post-flight
- **ATO** - begins at declaration of the abort and ends at transition to OPS 9, post-flight

CREDIBLE (CAUSE) - an event that can be predicted or expected in anticipated operational environmental conditions. Excludes an event where multiple failures must first occur to result in environmental extremes

CONTINGENCY CREW PROCEDURES - procedures that are utilized beyond the standard malfunction procedures, pocket checklists, and cue cards

EARLY MISSION TERMINATION - termination of onorbit phase prior to planned end of mission

EFFECTS/RATIONALE - description of the case which generated the highest criticality

HIGHEST CRITICALITY - the highest functional criticality determined in the phase-by-phase analysis

MAJOR MODE (MM) - major sub-mode of software operational sequence (OPS)

MC - Memory Configuration of Primary Avionics Software System (PASS)

MISSION - assigned performance of a specific Orbiter flight with payload/objective accomplishments including orbit phasing and altitude (excludes secondary payloads such as GAS cans, middeck P/L, etc.)
MULTIPLE ORDER FAILURE - describes the failure due to a single cause or event of all units which perform a necessary (critical) function

OFF-NOMINAL CREW PROCEDURES - procedures that are utilized beyond the standard malfunction procedures, pocket checklists, and cue cards

OPS - software operational sequence

PRIMARY MISSION OBJECTIVES - worst case primary mission objectives are equal to mission objectives

PHASE DEFINITIONS:

PRELAUNCH PHASE - begins at launch count-down Orbiter power-up and ends at moding to OPS Major Mode 102 (liftoff)

LIFTOFF MISSION PHASE - begins at SRB ignition (MM 102) and ends at transition out of OPS 1 (Synonymous with ASCENT)

ONORBIT PHASE - begins at transition to OPS 2 or OPS 8 and ends at transition out of OPS 2 or OPS 8

DEORBIT PHASE - begins at transition to OPS Major Mode 301 and ends at first main landing gear touchdown

LANDING/SAFING PHASE - begins at first main gear touchdown and ends with the completion of post-landing safing operations
APPENDIX B
DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.2 IOA Project Level Ground Rules and Assumptions

The philosophy embodied in NSTS 22206, Instructions for Preparation of FMEA/CIL, 10 October 1986, was employed with the following amplifications and additions.

1. The operational flight software is an accurate implementation of the Flight System Software Requirements (FSSRs).

 RATIONALE: Software verification is out-of-scope of this task.

2. After liftoff, any parameter which is monitored by system management (SM) or which drives any part of the Caution and Warning System (C&W) will support passage of Redundancy Screen B for its corresponding hardware item.

 RATIONALE: Analysis of on-board parameter availability and/or the actual monitoring by the crew is beyond the scope of this task.

3. Any data employed with flight software is assumed to be functional for the specific vehicle and specific mission being flown.

 RATIONALE: Mission data verification is out-of-scope of this task.

4. All hardware (including firmware) is manufactured and assembled to the design specifications/drawings.

 RATIONALE: Acceptance and verification testing is designed to detect and identify problems before the item is approved for use.

5. All Flight Data File crew procedures will be assumed performed as written, and will not include human error in their performance.

 RATIONALE: Failures caused by human operational error are out-of-scope of this task.
6. All hardware analyses will, as a minimum, be performed at the level of analysis existent within NASA/Prime Contractor Orbiter FMEA/CILs, and will be permitted to go to greater hardware detail levels but not lesser.

 RATIONALE: Comparison of IOA analysis results with other analyses requires that both analyses be performed to a comparable level of detail.

7. Verification that a telemetry parameter is actually monitored during AOS by ground-based personnel is not required.

 RATIONALE: Analysis of mission-dependent telemetry availability and/or the actual monitoring of applicable data by ground-based personnel is beyond the scope of this task.

8. The determination of criticalities per phase is based on the worst case effect of a failure for the phase being analyzed. The failure can occur in the phase being analyzed or in any previous phase, whichever produces the worst case effects for the phase of interest.

 RATIONALE: Assigning phase criticalities ensures a thorough and complete analysis.

9. Analysis of wire harnesses, cables, and electrical connectors to determine if FMEAs are warranted will not be performed nor FMEAs assessed.

 RATIONALE: Analysis was substantially complete prior to NSTS 22206 ground rule redirection.

10. Analysis of welds or brazed joints that cannot be inspected will not be performed nor FMEAs assessed.

 RATIONALE: Analysis was substantially complete prior to NSTS 22206 ground rule redirection.

11. Emergency system or hardware will include burst discs and will exclude the EMU Secondary Oxygen Pack (SOP), pressure relief valves and the landing gear pyrotechnics.

 RATIONALE: Clarify definition of emergency systems to ensure consistency throughout IOA project.
APPENDIX B
DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.3 EPG/PRSD - Specific Ground Rules and Assumptions

1. Component age life will not be considered in the analysis.
 RATIONALE: Component age life analysis is beyond the scope of this task.

2. Cryogenic system pressure to the fuel cell will be assumed lost if unable to maintain minimum supply conditions of 100 PSI for H2 and/or O2 tanks.
 RATIONALE: Minimum requirements definition. Flight rule definition.

3. An O2 cryo tank will be assumed lost if both of its heaters fail to function (i.e., neither heater will function with the delta current sensors enabled).
 RATIONALE: Systems failure definition. Flight rule definition.

4. An H2 cryo tank will be assumed lost if neither of its heaters will function.
 RATIONALE: Systems failure definition. Flight rule definition.

5. An impending loss of all cryo O2 or all cryo H2 tanks will be cause to exercise the highest-priority abort mode the loss/leak will allow.
 RATIONALE: Flight rule definition.

 Enter next PLS daily go/no-go if two O2 (H2) tanks fail during lift-off and on-orbit.
 RATIONALE: Flight rules go/no-go criteria.

7. Ascent abort decision will be needed for any EPG/PRSD/FCP problems that will not support four hours on-orbit plus entry time.
 RATIONALE: Flight operations rules.
8. A fuel cell will be considered failed if the following conditions exist.
 a. An abnormal or unexplained voltage versus current performance loss of >0.5 volts for a single FC based on predicted performance data.
 b. Coolant pump or H2 pump/H2O separator is lost.
 c. Fuel cell stack-coolant temperature >255 degrees (242.5) degrees F or <175 degrees (182.5) degrees F.
 d. Coolant pressure >75 (71.4) PSIA and increasing.
 e. Fuel cell unable to discharge water to the ECLSS H2O storage tanks or overboard via the fuel cell H2O relief system.
 f. Local KOH concentration >48 percent (45 percent) dry or <24 percent (29 percent) wet as indicated by fuel cell stack-coolant temperature, condenser exit temperature, and current relationship.
 g. Fuel cell reactant valve fails closed.
 h. Cannot be connected to a main bus.
 i. Fuel cell H2O pH high confirmed.
 j. Fuel cell 02 reaction chambers cannot be purged.
 k. Fuel cell end-cell heater failing on.
 l. Fuel cell substack delta volts >150 millivolts and increasing.

 RATIONALE: Systems failure definition.

9. Loss of one fuel cell is considered cause for priority flight and abort decision.

 RATIONALE: Mission flight rule definition.

10. Loss of two fuel cells is considered cause for abort mission.

11. Loss of three fuel cells is considered loss of life/vehicle in all mission phases.

 RATIONALE: Flight rule definition.
12. Loss of two fuel cells in the first stage of ascent is considered loss of life/vehicle.

RATIONALE: SRB loads are too high for one fuel cell to support. Voltage may go <25v which will shut down the GPCs.

13. Although the ECLSS product-water storage is a separate system from EPG, it will be considered as a failable redundant product-water relief line for purposes of the EPG functional criticality scenarios.

RATIONALE: This assumption violates general ground rule 3.1.1.6 but is essential for evaluating failures associated with the water relief line.

14. Filter failure will only be considered in the case of total flow blockage. Cases of improper/insufficient filtering will not be considered except where obvious.

RATIONALE: The effect of 'poor' filter performance on downstream components is beyond the scope of our efforts.

15. The start/sustaining heater on the left-hand FCP (FCP #1) is assumed to be disconnected. Thus, this FCP cannot be maintained operational at no-load, and will be considered shutdown if the load cannot be maintained at greater than 2 KW.

RATIONALE: Load needed to maintain operating temperature. RH FCP uses sustaining heater to maintain temperatures at no-load.

16. For all "failed open" failure modes for valves which are normally open, redundancy screen B will be assumed failed.

RATIONALE: The failure is not detectable until the valve is required to be closed.

17. Five O2 and H2 tanks are being used as the baseline configuration under study.

RATIONALE: The configuration for all redundant components is being considered for this analysis.

18. Inadvertant Fuel Cell shutdown during RTLS and TAL abort is considered loss of crew/vehicle.

RATIONALE: Loss of FCP 1/Bus A is loss of OMS Engine Purge Capability (required for TAL) and Aft Compartment MPS Helium Purge Capability (required for RTLS and TAL).
This section contains the IOA analysis worksheets generated during the analysis of this subsystem. The information on these worksheets is intentionally similar to the NASA FMEAs. Each of these sheets identifies the hardware item being analyzed, and parent assembly, as well as the function. For each failure mode, the possible causes are outlined, and the assessed hardware and functional criticality for each mission phase is listed, as described in the NSTS 22206, Instructions for Preparation of FMEA and CIL, 10 October 1986. Finally, effects are entered at the bottom of each sheet, and the worst case criticality is entered at the top.

LEGEND FOR IOA ANALYSIS WORKSHEETS

Hardware Criticalities:
1 = Loss of life or vehicle
2 = Loss of mission or next failure of any redundant item (like or unlike) could cause loss of life/vehicle
3 = All others

Functional Criticalities:
1R = Redundant hardware items (like or unlike) all of which, if failed, could cause loss of life or vehicle.
2R = Redundant hardware items (like or unlike) all of which, if failed, could cause loss of mission.

Redundancy Screen A:
1 = Is Checked Out PreFlight
2 = Is Capable of Check Out PreFlight
3 = Not Capable of Check Out PreFlight
NA = Not Applicable

Redundancy Screens B and C:
P = Passed Screen
F = Failed Screen
NA = Not Applicable
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86

SUBSYSTEM: EPG

MDAC ID: 200

HIGHEST CRITICALITY

HDW/FUNC

FLIGHT: 3/1R

ABORT: 3/1R

ITEM: H2 (PRE-FLIGHT) FILL QUICK DISCONNECT (4) & VENT QD'S (5)

FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH

SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:

1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE

PART NUMBER: MC276-0010-0210

CAUSES: CONTAMINATION, FATIGUE, CORROSION

EFFECTS/RATIONALE:

EACH TANK HAS FILL AND VENT QD'S, WITH THE EXCEPTION OF TANKS 4 AND 5 WHICH SHARE A FILL QD. ALL QD'S ARE ALSO CAPPED FOR ADDITIONAL REDUNDANCY. FAILURE OF A QD ALONE IS NOT DETECTABLE. BOTH CAP AND QD HAVE TO LEAK FOR A TANK LEAK TO OCCUR.

REFERENCES:

REPORT DATE 12/03/86 C-2
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPG
MDAC ID: 201

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 (PRE-FLIGHT) FILL QUICK DISCONNECT (4) & VENT QD'S (5)
FAILURE MODE: INABILITY TO MATE/DEMATE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0010-0210

CAUSES: CORROSION, BINDING, DEBRIS

EFFECTS/RATIONALE:
THE MISSION COULD BE DELAYED IF THE TANKS CANNOT BE FILLED OR THE QD CANNOT BE RELEASED. THE FILL QD ALSO FUNCTIONS AS A VERTICAL DRAIN AT PAD.

REFERENCES:

REPORT DATE 12/03/86 C-3
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/1R
MDAC ID: 202 ABORT: 3/1R

ITEM: H2 (PRE-FLIGHT) FILL AND VENT QD CAPS (9)
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0010-0260

CAUSES: CONTAMINATION, FATIGUE, CORROSION

EFFECTS/RATIONALE:
Each tank has its own vent QD cap and fill QD cap, except tanks 4 and 5 which share a fill QD cap. The QD's themselves are a level of redundancy to stop leaks. Both cap and QD have to leak for a tank leak to occur. Failure of the cap alone is not detectable.

REFERENCES:

REPORT DATE 12/03/86 C-4
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 203 ABORT: 3/3

ITEM: H2 TANK PRESSURE SENSOR (5)
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL: 3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: 3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO: 3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0185-003

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
THESE PRESSURE SENSORS HAVE NO EFFECT ON OTHER COMPONENTS; THEY ONLY DRIVE GAUGES. FULL OUTPUT WOULD CAUSE THE CREW TO TURN OFF THE HEATERS. THE CREW WOULD CHECK RELIEF VALVE CRACK PRESSURE, AND QUANTITY AND TEMPERATURE SENSORS TO SEE IF THE PRESSURE SENSOR WAS ACCURATE.

REFERENCES:

REPORT DATE 12/03/86 C-5
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86

SUBSYSTEM: EPG
MDAC ID: 204

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 TANK PRESSURE SENSOR (5)
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0185-003

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD CAUSE THE CREW TO TURN THE HEATERS ON. THE CREW WOULD CHECK THE TEMPERATURE AND QUANTITY SENSORS TO SEE IF THE PRESSURE READING WAS ACCURATE.

REFERENCES:

REPORT DATE 12/03/86 C-6
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPG
MDAC ID: 205

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 TANK PRESSURE SENSOR (5)
FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0185-003

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
AN INACCURATE READING MAY CAUSE THE CREW TO MANUALLY OPERATE THE HEATERS, TO KEEP THE PRESSURE READING WITHIN TOLERANCES. THE CREW COULD USE THE TEMPERATURE AND QUANTITY SENSORS TO SEE IF THE PRESSURE READING WAS ACCURATE. A SMALL ERROR WILL NOT CAUSE ANY PROBLEMS.

REFERENCES:

REPORT DATE 12/03/86 C-7
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/24/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/1R
MDAC ID: 206 ABORT: 3/1R

ITEM: H2 TANK HEATER CONTROLLER PRESSURE SENSOR/TRANSUDER (4)
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0185-033

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
FULL OUTPUT WOULD CAUSE THE HEATERS NOT TO COME ON IN THE AUTOMATIC MODE. THE PRESSURE WOULD HAVE TO DROP TO BELOW 100 PSI BEFORE THE TANK IS CONSIDERED LOST, WHICH WOULD HAPPEN AFTER OMS 2. THE CREW COULD CHECK THE TANK PRESSURE AND TEMPERATURE SENSORS TO FIND THE PROBLEM. THE CREW ACTIVATES TANK 1 AND 2 A HEATERS AFTER OMS1. THIS IS 3/1R BECAUSE THE TANK RELIEF VALVES STUCK OPEN COULD CAUSE LOSS OF PRESSURE EARLY. THIS IS DETECTABLE FROM THE TANK PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-8
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/24/86

HIGHEST CRITICALITY

HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

SUBSYSTEM: EPG

MDAC ID: 207

ITEM: H2 TANK HEATER CONTROLLER PRESSURE SENSOR/TRANSDUCER (4)

FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GÖTCH

SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE

PART NUMBER: MC449-0185-033

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD CAUSE THE HEATERS TO BE ON ALWAYS IN THE AUTOMATIC MODE. THE RELIEF VALVE WOULD VENT H2 AND DEplete IT—RELIEF VALVE FLOW RATE AT FULL FLOW PRESSURE IS 97 LB/HR WHILE TANK QUANTITY IS 92.0 LB.
ALSO, THE TANK COULD RUPTURE STARTING 35 HOURS AFTER THE TANK RESIDUAL LEVEL IS REACHED AND THE HEATERS ARE STILL ON, THUS 1/1. THIS IS DETECTABLE FROM THE TANK PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-9
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/24/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 1/1
MDAC ID: 208 ABORT: 1/1

ITEM: H2 TANK HEATER CONTROLLER PRESSURE SENSOR/TRANSDUCER (4)
FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/1R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td>ATO: 1/1</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0185-033

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
THIS FAILURE DEPENDS ON THE DEGREE OF BEING OUT OF TOLERANCE-
WORST CASE IS THE UNION OF ZERO AND FULL OUTPUT. THIS COULD
CAUSE THE HEATERS TO OPERATE ERRATICALLY. THIS IS DETECTABLE
FROM THE TANK PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-10
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 1/1
MDAC ID: 209 ABORT: 1/1

ITEM: H2 TANK HEATER ELEMENT A (5), H2 TANK HEATER ELEMENT B (5)
FAILURE MODE: FAILS ON

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, MECHANICAL SHOCK, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
EACH TANK HAS AN A AND B 105 WATT HEATER ELEMENT. THIS IS CRITICALITY 3/1R BECAUSE THE RELIEF VALVE WOULD VENT THE RESULTANT EXCESSIVE PRESSURE IN THE TANK AND DEPLETE THE H2. THE RELIEF VALVE FLOW RATE AT FULL FLOW PRESSURE IS 97 LB/HR, WHILE THE TANK QUANTITY IS 92.0 LB. THE TANK COULD RUPTURE STARTING 35 HOURS AFTER THE TANK RESIDUAL LEVEL IS REACHED, RESULTING IN CRITICALITY 1/1. THIS IS DETECTABLE FROM TEMPERATURE AND PRESSURE SENSORS.

REFERENCES:

REPORT DATE 12/03/86 C-11
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPG
MDAC ID: 210

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: H2 TANK HEATER ELEMENT A (5), H2 TANK HEATER ELEMENT B (5)
FAILURE MODE: FAILS OFF

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, MECHANICAL SHOCK, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
WHEN THE PRESSURE FALLS BELOW 100 PSI, THE TANK IS CONSIDERED LOST. THIS WILL ALLOW COMPLETION OF ALL ABORTS AND ASCENTS SINCE THE EFFECT WOULD NOT OCCUR UNTIL AFTER OMS 2. THE CREW COULD DETECT THE PROBLEM FROM TEMPERATURE, QUANTITY, AND PRESSURE SENSORS. HOWEVER, THE CRITICALITY IS 3/1R IF A COMBINATION OF TANK RELIEF VALVES AND MANIFOLD RELIEF VALVES FAIL OPEN.

REFERENCES:

REPORT DATE 12/03/86 C-12
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/1R
MDAC ID: 211 ABORT: 2/1R

ITEM: H2 TANK RELIEF VALVE (5)-RV030,RV040,RV500,RV560
FAILURE MODE: FAILED OPEN (ALSO INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0402

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
EARLY DEPLETION OF H2 REACTANT WILL CAUSE FUEL CELL SHUTDOWN, AND ALSO REDUCE TANK PRESSURE. IF SOME TANK'S CHECK VALVE FAILED OPEN, THIS COULD LOSE ALL REACTANT, THUS RESULTING IN CRITICALITY 2/1R. THIS FAILURE IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-13
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPG
MDAC ID: 212

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: H2 TANK RELIEF VALVE (5)-RV030,RV040,RV500,RV560
FAILURE MODE: FAILED CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0402

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
IF THE TANK PRESSURE GETS TOO HIGH, THE TANK COULD RUPTURE, CAUSING LOSS OF REACTANT, FUEL CELL SHUTDOWN, AND LOSS OF THE ORBITER. THE CRITICALITY IS 3/1R IF A TANK HEATER FAILS ON AND ALL TANK RELIEF VALVES FAIL CLOSED.

REFERENCES:

REPORT DATE 12/03/86 C-14
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPG
MDAC ID: 213

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: H2 TANK RELIEF VALVE (5)-RV030, RV040, RV500, RV560
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LAND/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0402

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
REACTANT LEAKING UNDER THE PAYLOAD BAY LINER COULD RESULT IN THE EARLY DEPLETION OF H2 REACTANT, PLUS A POSSIBLE EXPLOSION. THE LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/04/86 BTK C-15
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86

SUBSYSTEM: EPG
MDAC ID: 214

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: H2 RELIEF PORT 1 (1)
FAILURE MODE: RESTRICTED FLOW

LEAD ANALYST: S. GOTTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ON ORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: 40V45VP035

CAUSES: BLOCKAGE, CONTAMINATION, DEBRIS

EFFECTS/RATIONALE:
H2 RELIEF PORT 1 VENTS H2 FROM TANKS 1, 2, AND 4 RELIEF VALVES. IF RESTRICTED, IT WOULD NOT RELIEVE OVERPRESSURIZATION AND A TANK COULD RUPTURE. THERE IS A SEPARATE RELIEF PORT FOR TANKS 3 & 5. THIS IS CRITICALITY 3/1R BECAUSE SAME TANK'S HEATERS WOULD HAVE TO FAIL ON AND ITS CHECK VALVE FAIL CLOSED. THIS IS DETECTABLE FROM TANK PRESSURE GAUGES OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86 C-16
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
HIGHEST CRITICALITY: HDW/FUNC
SUBSYSTEM: EPG
FLIGHT: 3/1R
MDAC ID: 215
ABORT: 3/1R

ITEM: H2 RELIEF PORT 2 (1)
FAILURE MODE: RESTRICTED FLOW

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: 40V45VP045

CAUSES: BLOCKAGE, CONTAMINATION, DEBRIS

EFFECTS/RATIONALE:
H2 RELIEF PORT 2 VENTS H2 FROM TANKS 3 & 5 RELIEF VALVES. IF
RESTRICTED, IT WOULD NOT RELIEVE OVERPRESSURIZATION AND A TANK
COULD RuptURE. THIS CAN DETECTED BY LOOKING AT TANK PRESSURE
GAUGES OVER A PERIOD OF TIME. THERE IS A SEPARATE RELIEF PORT
FOR TANKS 1, 2, AND 4. THIS IS CRITICALITY 3/1R BECAUSE HEATERS
WOULD HAVE TO FAIL ON AND THE CHECK VALVE FAIL CLOSED FOR THE
SAME TANK.

REFERENCES:

REPORT DATE 12/03/86 C-17
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPG
MDAC ID: 216

ITEM: H2 TANK SUBASSEMBLY (5)
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: CORROSION, FATIGUE, TEMPERATURE, POROSITY, OVERPRESSURIZATION

EFFECTS/RATIONALE:
A LEAK IN TANK OR THROUGH RELIEF VALVE WOULD CAUSE DEPLETION OF H2 AND FUEL CELL SHUTDOWN. LEAKAGE UNDER THE PAYLOAD BAY MAY CAUSE OTHER SYSTEMS TO FREEZE AND A POSSIBLE EXPLOSION. THIS IS DETECTABLE THROUGH QUANTITY SENSORS AND CONSOLE CHARTS OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86 C-18
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/04/86</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPG</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>217</td>
</tr>
<tr>
<td>ITEM:</td>
<td>H2 TANK SUBASSEMBLY</td>
</tr>
<tr>
<td>FAILURE MODE:</td>
<td>RUPTURE</td>
</tr>
<tr>
<td>LEAD ANALYST:</td>
<td>S. GOTCH</td>
</tr>
<tr>
<td>SUBSYS LEAD:</td>
<td>M. HIOTT</td>
</tr>
</tbody>
</table>

BREAKDOWN HIERARCHY:

1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Location: MID FUSELAGE
PART NUMBER: MC282-0063-0200

Causes: OVERPRESSURIZATION, TEMPERATURE, FATIGUE

Effects/Rationale:

THE H2 IN THE TANK WOULD BE LOST, AND OTHER EXPLOSIONS MAY RESULT. SHRAPNEL MAY PUNCTURE OTHER SYSTEMS AND THE EXTERIOR OF THE ORBITER. THIS IS DETECTABLE THROUGH QUANTITY AND PRESSURE SENSORS.

REFERENCES:

Report Date: 12/03/86 C-19
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86

SUBSYSTEM: EPG
MDAC ID: 218

ITEM: H2 TANK SUBASSEMBLY
FAILURE MODE: LOSS OF ANNULUS VACUUM

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAVING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: HOLE IN OUTER TANK

EFFECTS/RATIONALE:
CONDUCTIVE AND CONVECTIVE HEAT TRANSFER COULD OCCUR WITHOUT A VACUUM, CAUSING THE REACTANT TO HEAT UP AND BE DEPLETED QUICKLY. THE CAUSE COULD BE FAILURE OF THE VACUUM IONIZATION PUMP AND VACUUM PUMP PRESSURE SENSOR ON GROUND. THIS IS DETECTABLE FROM TANK QUANTITY SENSORS AND CONSOLE QUANTITY CHARTS OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86 C-20
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 219 ABORT: 3/3

ITEM: H2 TANK HEATER ASSEMBLY TEMPERATURE SENSOR (5)
V45T21(-5)07A
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY
6) 7) 8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
FAILURE OF THE SENSOR CAN BE DETECTED BY CHECKING THE TANK FLUID TEMPERATURE OR PRESSURE SENSORS. THE SENSOR IS ONLY CONNECTED TO A GAUGE; IT DOES NOT AFFECT HEATER OPERATION. FULL OUTPUT NORMALLY INDICATES THAT HEATERS ARE CONTINUOUSLY ENERGIZED.

REFERENCES:

REPORT DATE 12/03/86 C-21
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 220 ABORT: 3/3

ITEM: H2 TANK HEATER ASSEMBLY TEMPERATURE SENSOR (5)
V45T21(-5)07A
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTHCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
ZERO OUTPUT NORMALLY INDICATES THAT THE HEATERS ARE NOT OPERATING. LOSS OF THE SENSOR HAS NO HAZARDOUS EFFECT ON THE MISSION OR CREW.

REFERENCES:

REPORT DATE 12/03/86 C-22
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86

SUBSYSTEM: EPG
MDAC ID: 221

HIGHEST CRITICALITY HDW/FUNC FLIGHT: 3/3 ABORT: 3/3

ITEM: H2 TANK HEATER ASSEMBLY TEMPERATURE SENSOR (5)
V45T21(-5)07A

FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>PTL5S: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
AN INACCURATE READING MAY CAUSE THE CREW TO WANT TO MANUALLY OPERATE HEATERS, TO KEEP THE TEMPERATURE READING WITHIN TOLERANCES.

REFERENCES:

REPORT DATE 12/03/86 C-23
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/26/86
SUBSYSTEM: EPG
MDAC ID: 222

HIGHEST CRITICALITY HDW/FUNC: FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 TANK FLUID TEMPERATURE SENSOR (5) V45T21(-4)01A
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
FAILURE OF THE SENSOR HAS NO EFFECT ON HEATER OPERATION. FAILURE OF SENSOR CAN BE DETECTED BY CHECKING HEATER ASSEMBLY TEMPERATURE SENSOR OR TANK PRESSURE SENSOR. FULL OUTPUT WOULD NORMALLY INDICATE THAT THE HEATERS WERE CONTINUALLY ENERGIZED.

REFERENCES:

REPORT DATE 12/03/86 C-24
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/26/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG
MDAC ID: 223
FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 TANK FLUID TEMPERATURE SENSOR (5) V45T21(-4)01A
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD NORMALLY INDICATE THAT THE HEATERS WERE NOT OPERATING. LOSS OF THE SENSOR HAS NO HAZARDOUS EFFECT ON THE CREW OR MISSION.

REFERENCES:

REPORT DATE 12/03/86 * C-25
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/26/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 224 ABORT: 3/3

ITEM: H2 TANK FLUID TEMPERATURE SENSOR (5) V45T21(-4)01A
FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
AN INACCURATE READING MAY CAUSE CREW TO WANT TO MANUALLY OPERATE HEATERS, TO KEEP THE TEMPERATURE READING WITHIN TOLERANCES.

REFERENCES:

REPORT DATE 12/03/86 C-26
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/26/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 225 ABORT: 3/3

ITEM: H2 TANK QUANTITY SENSOR (5) V45Q21(-5)05A
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
FAILURE OF THE SENSOR HAS NO EFFECT ON HEATER OPERATION. THE SENSOR FAILURE CANNOT BE VERIFIED BY LOOKING AT OTHER INSTRUMENTATION. THE CREW WOULD ONLY KNOW THAT TANK CANNOT ALWAYS BE FULL. CREW MIGHT BE ABLE TO FIGURE OUT APPROXIMATE QUANTITY BY TURNING HEATERS ON FOR A CERTAIN TIME AND MEASURE CORRESPONDING FLUID TEMPERATURE OR PRESSURE RISE.

REFERENCES:

REPORT DATE 12/03/86 C-27
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/26/86
SUBSYSTEM: EPG
MDAC ID: 226

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 TANK QUANTITY SENSOR (5) V45Q21(-5)05A
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD HAVE NO AUTOMATIC EFFECT ON THE HEATERS. ZERO OUTPUT WOULD CAUSE THE CREW TO WANT TO TURN HEATERS OFF AND DEACTIVATE TANK.

REFERENCES:

REPORT DATE 12/03/86 C-28
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/26/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 227 ABORT: 3/3

ITEM: H2 TANK QUANTITY SENSOR (5) V45Q21(-5)05A
FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN STORAGE
4) H2 TANKS
5) H2 TANK SUBASSEMBLY

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0200

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
AN INACCURATE READING MAY CAUSE CREW TO CHANGE THE TANK
MANAGEMENT SCHEME. THE CREW COULD OPERATE THE TANK MISTAKENLY
BELOW ITS REDLINE LIMIT.

REFERENCES:

REPORT DATE 12/03/86 C-29
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/26/86
SUBSYSTEM: EPG
MDAC ID: 228

ITEM: H2 LINES, COMPONENTS, & FITTINGS
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>1/1</td>
<td>RTLS: 1/1</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>1/1</td>
<td>TAL: 1/1</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA: 1/1</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td>ATO: 1/1</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: VO70-454898

CAUSES: SHOCK, VIBRATION, FATIGUE, OVERPRESSURE, BRITTLINESS DUE TO TEMPERATURE

EFFECTS/RATIONALE:
ALL REACTANT COULD BE DEPLETED AND CAUSE FUEL CELL SHUTDOWN;
ALSO, A LEAK COULD CAUSE CRYO TO FREEZE OTHER SYSTEMS UNDER THE PAYLOAD BAY. THE LEAKING H2 COULD ALSO CAUSE AN EXPLOSION.
LEAKING IS DETECTABLE FROM TANK QUANTITY AND PRESSURE SENSORS OVER A PERIOD OF TIME.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/26/86
SUBSYSTEM: EPG
MDAC ID: 229

HIGHEST CRITICALITY

FLIGHT: 2/1R
ABORT: 1/1

ITEM: H2 LINES, COMPONENTS, & FITTINGS
FAILURE MODE: RESTRICTED FLOW

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 1/1</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>2/1R</td>
<td>TAL: 1/1</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: VO70-454898

CAUSES: CONTAMINATION, DEBRIS

EFFECTS/RATIONALE:
RESTRICTED FLOW COULD CAUSE NO REACTANT TO REACH THE FUEL CELLS, AND THUS CAUSE THEM TO BE SHUTDOWN. OVERPRESSURE COULD BE VENTED OUT THE TANK RELIEF VALVES AND MANIFOLD RELIEF VALVES. THIS IS DETECTABLE FROM TANK PRESSURE SENSORS. THIS IS CRITICALITY 1/1 FOR TAL BECAUSE A BLOCKAGE IN LINE TO FUEL CELL 1 WOULD CAUSE LOSS OF OMS PURGE CAPABILITY. THIS IS CRITICALITY 1/1 FOR RTLS BECAUSE A BLOCKAGE IN LINE TO FUEL CELL 1 WOULD CAUSE LOSS OF AFT COMPARTMENT MPS HELIUM PURGE CAPABILITY.

REFERENCES:

REPORT DATE 12/03/86 C-31
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/29/86
SUBSYSTEM: EPG
MDAC ID: 230

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: H2 FILTER (5) FL030, FL040, FL500, FL560
FAILURE MODE: RESTRICTED FLOW, CLOGGED

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) H2 DISTRIBUTION
4) H2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC286-0054-0001

CAUSES: CONTAMINATION, DEBRIS, DAMAGED ELEMENT

EFFECTS/RATIONALE:
EACH H2 AND O2 CRYO TANK HAS A FILTER FOR ITS REACTANT POSITIONED AHEAD OF ITS CHECK VALVE. THE FILTER IS REPLACED EVERY 15 FLIGHTS. IF THE FILTER CLOGS, REACTANTS ARE UNABLE TO GET TO THE FUEL CELLS, AND REACTANT IS DEPLETED OUT THE TANK RELIEF VALVE. THIS FAILURE IS DETECTED USING THE TANK PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-32
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/09/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/1R
MDAC ID: 231 ABORT: 2/1R

ITEM: H2 MANIFOLD 1 RELIEF VALVE (1) RV031
FAILURE MODE: FAILED OPEN (ALSO INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0004

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
LOSS OF RV031 BY ITSELF WOULD HAVE NO EFFECT. LOSS OF RV041 ALSO, STILL WOULD HAVE NO EFFECT. IF THE TANK 1 RELIEF VALVE ALSO FAILED OPEN, IT COULD LOSE ALL REACTANT, THUS THE CRITICALITY IS 2/1R. IT MAY BE POSSIBLE TO DETECT THIS FAILURE OVER A PERIOD OF TIME WITH THE TANK 1 QUANTITY SENSOR.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/09/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/1R
MDAC ID: 232 ABORT: 3/1R

ITEM: H2 MANIFOLD 1 RELIEF VALVE (1) RV031
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0004

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
A PRESSURE BUILDUP AND POSSIBLE LINE RUPTURE COULD RESULT IF BOTH RV031 AND RV041 WERE CLOSED. ANY TANK WOULD HAVE TO HAVE ITS OWN RELIEF VALVE FAILED CLOSED, PLUS ITS HEATERS FAILED ON (OR IN MANUAL MODE) TO PRESSURIZE THE LINES ABOVE 302 PSIG. THIS IS DETECTABLE FROM THE MANIFOLD PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-34
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/09/86

HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG
MDAC ID: 233
FLIGHT: 1/1
ABORT: 1/1

ITEM: H2 MANIFOLD 1 RELIEF VALVE (1) RV031
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0004

CAUSES: VIBRATION, CORROSION, FATIGUE, CONTAMINATION

EFFECTS/RATIONALE:
THIS IS CRITICALITY 1/1 BECAUSE A LEAK COULD CAUSE POSSIBLE EXPLOSION OR FREEZING UNDER THE PAYLOAD BAY. A LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-35
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/1R
MDAC ID: 234 ABORT: 2/1R

ITEM: H2 MANIFOLD 2 RELIEF VALVE (1) RV041
FAILURE MODE: FAILED OPEN (ALSO INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0004

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
LOSS OF RV041 BY ITSELF WOULD HAVE NO EFFECT. LOSS OF RV031 ALSO WOULD STILL HAVE NO EFFECT. IF TANK 2 RELIEF VALVE ALSO FAILED OPEN, IT COULD loose ALL REACTANT, THUS THE CRITICALITY IS 2/1R. IT MAY BE POSSIBLE TO DETECT THIS FAILURE OVER A PERIOD OF TIME WITH THE TANK 2 QUANTITY SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-36
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86

HIGHEST CRITICALITY HDW/FUNC

SUBSYSTEM: EPG

FLIGHT: 3/1R

ABORT: 3/1R

MDAC ID: 235

ITEM: H2 MANIFOLD 2 RELIEF VALVE (1) RV041

FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH

SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 RELIEF VALVE/FILTER PACKAGES

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/1R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE

PART NUMBER: MC284-0440-0004

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
A PRESSURE BUILDUP AND POSSIBLE LINE RUPTURE COULD RESULT IF BOTH RV031 AND RV041 FAIL CLOSED. THE CAUSE OF AN EXCESSIVE PRESSURE BUILDUP WOULD BE TANK HEATERS FAILED ON. IT IS CRITICALITY 3/1R IF A TANK'S HEATERS FAIL ON AND TANK RELIEF VALVE FAILS CLOSED. THIS IS DETECTABLE FROM THE MANIFOLD PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-37
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 1/1
MDAC ID: 236 ABORT: 1/1

ITEM: H2 MANIFOLD 2 RELIEF VALVE (1) RV041
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0004

CAUSES: VIBRATION, CORROSION, FATIGUE, CONTAMINATION

EFFECTS/RATIONALE:
THIS IS CRITICALITY 1/1 BECAUSE A LEAK COULD CAUSE POSSIBLE EXPLOSION OR FREEZING UNDER PAYLOAD BAY. A LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-38
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/30/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/1R
MDAC ID: 237 ABORT: 2/1R

ITEM: H2 CHECK VALVE (2) CV031,CV041
FAILURE MODE: FAILS OPEN (INTERNAL LEAKAGE ALSO)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
CV031 CHECKS FLOW INTO TANK 3, CV041 CHECKS FLOW INTO TANKS 4 AND 5. HIGHER PRESSURE DOWNSTREAM OF THE CHECK VALVE THAN UPSTREAM WOULD FORCE REACTANT INTO THE TANK LINE. LOW PRESSURE IN THE TANK OR A LEAK WOULD HAVE TO OCCUR ALSO, IN ADDITION TO A CHECK VALVE FAILURE. THE RESULT COULD BE LOWER CRYO FLOW TO THE FUEL CELLS AND A POSSIBLE SHUTDOWN. THIS FAILS SCREEN B BECAUSE A TANK LEAK OR RELIEF VALVE FAILED OPENED IS NEEDED FOR THE FAILURE TO BE DETECTABLE. THIS IS CRITICALITY 2/1R BECAUSE A COMBINED FAILURE OF THE TANK RELIEF VALVE OPEN COULD LOSE ALL REACTANTS.

REFERENCES:

REPORT DATE 12/03/86 C-39
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/30/86
SUBSYSTEM: EPG
MDAC ID: 238

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: H2 CHECK VALVE (2) CV031,CV041
FAILURE MODE: FAILS CLOSED (RESTRICTED FLOW ALSO)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE_LAUNCH</td>
<td>3/1R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ON_ORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DE_ORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
REACTANT IS UNABLE TO LEAVE THE TANK. THIS DEPLETES H2 OUT OF THE RELIEF VALVE AND COULD FORCE FUEL CELL SHUTDOWN. THIS IS DETECTABLE FROM THE TANK PRESSURE SENSOR. FAILURE ALSO OF THE TANK RELIEF VALVE CLOSED, HEATERS ON IN MANUAL MODE, OR FAILED ON, COULD CAUSE AN EXPLOSION, THUS THE CRITICALITY IS 3/1R.

REFERENCES:

REPORT DATE 12/03/86 C-40
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 9/30/86
SUBSYSTEM: EPG
MDAC ID: 239

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: H2 CHECK VALVE (2) CV031,CV041
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>1/1</td>
<td>RTLS: 1/1</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>1/1</td>
<td>TAL: 1/1</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA: 1/1</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td>ATO: 1/1</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
REACTANT DEPLETION INTO THE AREA UNDER THE PAYLOAD BAY COULD
CAUSE EXPLOSION, OR FREEZE OTHER SYSTEMS. THIS MAY RESULT IN LOW
OR NO CRYO FLOW INTO FUEL CELLS. THIS IS DETECTABLE FROM TANK
QUANTITY AND PRESSURE SENSORS AND MANIFOLD PRESSURE SENSORS
OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86 C-41
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/01/86
SUBSYSTEM: EPG
MDAC ID: 240

HIGHEST CRITICALITY HDW/FUNC FLIGHT: 2/1R ABORT: 2/1R

ITEM: H2 CHECK VALVE (1) CV030
FAILURE MODE: FAILS OPEN (INTERNAL LEAKAGE ALSO)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
CV030 CHECKS FLOW INTO TANK 1. HIGHER PRESSURE DOWNSTREAM OF CHECK VALVE THAN UPSTREAM WOULD FORCE REACTANT INTO TANK LINE. LOW PRESSURE IN TANK OR A LEAK WOULD HAVE TO OCCUR IN ADDITION TO THE CHECK VALVE FAILURE. THE RESULT COULD BE LOWER CRYO FLOW TO FUEL CELLS AND POSSIBLE SHUTDOWN. THIS FAILS SCREEN B BECAUSE NEED A TANK LEAK OR RELIEF VALVE FAILED OPEN TO DETECT. THIS IS CRITICALITY 2/1R BECAUSE COMBINED FAILURE OF TANK RELIEF VALVE OPEN COULD LOSE THE VEHICLE DUE TO REACTANT LOSS.

REFERENCES:

REPORT DATE 12/03/86 C-42
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/01/86
SUBSYSTEM: EPG
MDAC ID: 241

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/1R
ABORT: 2/1R

ITEM: H2 CHECK VALVE (1) CV030
FAILURE MODE: FAILS CLOSED (RESTRICTED FLOW ALSO)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
REACTANT IS UNABLE TO LEAVE TANK. THIS DEPLETES H2 OUT THE RELIEF VALVE AND COULD CAUSE FUEL CELL SHUTDOWN. THIS IS DETECTABLE FROM THE TANK PRESSURE SENSOR. FAILURE ALSO OF RELIEF VALVE COULD CAUSE TANK EXPLOSION, IF HEATER IS ON IN MANUAL MODE OR FAILED ON. THIS IS CRITICALITY 2/1R SINCE IF CV030 AND LV031 FAILED CLOSED DURING TAL AND RTLS COULD LOSE OMS PURGE CAPABILITY, AND MPS HELIUM PURGE CAPABILITY RESPECTIVELY.

REFERENCES:

REPORT DATE 12/09/86 C-43
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/01/86
MDAC ID: 242

ITEM: H2 CHECK VALVE (1) CV030
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH

SUBSYSTEM: EPG
MDAC ID: 10/01/86
HIGHEST CRITICALITY

ABORT:

EPG FLIGHT:

1/1

BREAKDOWN HIERARCHY:

1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
REACTANT DEPLETION INTO THE AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION OR FREEZE OTHER SYSTEMS. THIS MAY RESULT IN LOW OR NO CRYO FLOW INTO FUEL CELLS. THIS FAILURE IS DETECTABLE FROM TANK QUANTITY SENSORS AND CONSOLE QUANTITY CHARTS OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86 C-44
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/29/86
SUBSYSTEM: EPG
MDAC ID: 243

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: H2 CHECK VALVE (1) CV040
FAILURE MODE: FAILS OPEN (INTERNAL LEAKAGE ALSO)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
CV040 CHECKS FLOW INTO H2 TANK 2. HIGHER PRESSURE DOWNSTREAM OF CHECK VALVE THAN UPSTREAM WOULD FORCE REACTANT INTO TANK. LOW PRESSURE IN TANK OR LEAK WOULD HAVE TO OCCUR IN ADDITION TO CHECK VALVE FAILURE. THE RESULT COULD BE LOWER CRYO FLOW TO FUEL CELLS AND POSSIBLE SHUTDOWN. FAILS SCREEN B BECAUSE NEED A TANK LEAK OR RELIEF VALVE FAILED OPEN TO DETECT. 2/1R BECAUSE COMBINED FAILURE OF TANK RELIEF VALVE OPEN COULD LOSE VEHICLE DUE TO REACTANT LOSS.

REFERENCES:

REPORT DATE 12/03/86 C-45
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/29/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/1R
MDAC ID: 244 ABORT: 3/1R

ITEM: H2 CHECK VALVE (1) CV040
FAILURE MODE: FAILS CLOSED (RESTRICTED FLOW ALSO)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/1R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
REACTANT IS UNABLE TO LEAVE TANK. THIS DEPLETES H2 OUT THE RELIEF VALVE AND COULD CAUSE FUEL CELL 2 SHUTDOWN IF LV041 WAS CLOSED. THIS IS DETECTABLE FROM TANK PRESSURE SENSOR. FAILURE ALSO OF RELIEF VALVE COULD CAUSE TANK EXPLOSION, IF HEATER IS ON IN MANUAL MODE OR FAILED ON.

REFERENCES:

REPORT DATE 12/03/86 C-46
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/29/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG
MDAC ID: 245
FLIGHT: 1/1
ABORT: 1/1

ITEM: H2 CHECK VALVE (1) CV040
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
REACTANT DEPLETION INTO THE AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION OR FREEZE OTHER SYSTEMS. THIS MAY RESULT IN LOW OR NO CRYO FLOW INTO FUEL CELLS. THIS FAILURE IS DETECTABLE FROM TANK QUANTITY SENSORS AND CONSOLE QUANTITY CHARTS OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86 C-47
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/01/86 HIGHEST CRITICALITY HDW/FUNC SUBSYSTEM: EPG FLIGHT: 2/1R MDAC ID: 246 ABORT: 2/1R

ITEM: H2 HORIZONTAL DRAIN QD (1) TYPE II, CLASS 8
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0010-0280

CAUSES: CONTAMINATION, FATIGUE, CORROSION

EFFECTS/RATIONALE:
HORIZONTAL DRAIN IS USED AFTER LANDING TO DRAIN REMAINING REACTANT FROM PRSD. IF QD AND CAP BOTH LEAK, LOSS OF ALL REACTANT COULD OCCUR, POSSIBLY CAUSING FUEL CELL SHUTDOWN. CAP AND FILL QD'S ARE REDUNDANT ITEMS FOR THIS QD. CANNOT DETECT LOSS OF QD ITSELF.

REFERENCES:

REPORT DATE 12/03/86 C-48
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/01/86
SUBSYSTEM: EPG
MDAC ID: 247

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 HORIZONTAL DRAIN QD (1) TYPE II, CLASS 8
FAILURE MODE: INABILITY TO MATE/DEMATE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0010-0280

CAUSES: CORROSION, BINDING, DEBRIS

EFFECTS/RATIONALE:
DRAIN QD IS NOT USED AT LAUNCH PAD. NO EFFECT AFTER LANDING
BECAUSE MISSION HAS ALREADY ENDED AND CAN DRAIN H2 THROUGH FILL QD.

REFERENCES:

REPORT DATE 12/03/86 C-49
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86
SUBSYSTEM: EPG
MDAC ID: 248

ITEM: H2 HORIZONTAL DRAIN CAP (1)
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0010-0260

CAUSES: CONTAMINATION, FATIGUE, CORROSION

EFFECTS/RATIONALE:
THE CAP IS A LEVEL OF REDUNDANCY OVER THE QD. REACTANT CANNOT LEAK OUT UNLESS THE QD ALSO LEAKS. IF BOTH THE CAP AND QD LEAK, COULD LOSE ALL H2. CANNOT DETECT LOSS OF CAP ALONE.

REFERENCES:

REPORT DATE 12/03/86 C-50
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/02/86
SUBSYSTEM: EPG
MDAC ID: 249

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 MANIFOLD PRESSURE SENSOR (2)
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: ME 449-0177-2501

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
MANIFOLD 1 SENSOR MEASURES PRESSURE BETWEEN TANK 1 CHECK VALVE, FUEL CELL 1 SUPPLY VALVE, MANIFOLD 1 RELIEF VALVE, AND MANIFOLD 1 CROSSOVER VALVE. MANIFOLD 2 SENSOR MEASURES PRESSURE BETWEEN TANK 2 CHECK VALVE, FUEL CELL 2 SUPPLY VALVE, H2 GSE SUPPLY VALVE, MANIFOLD 2 CROSSOVER VALVE AND MANIFOLD 2 RELIEF VALVE. THESE SENSORS HAVE NO EFFECT ON OTHER COMPONENTS. MANIFOLD RELIEF VALVE WOULD DISSIPATE EXCESS PRESSURE.

REFERENCES:

REPORT DATE 12/03/86 C-51
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/02/86
SUBSYSTEM: EPG
MDAC ID: 250

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 MANIFOLD PRESSURE SENSOR (2)
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>RTLS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAL:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATO:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: ME 449-0177-2501

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD CAUSE THE CREW TO CHECK FUEL CELL H2 FLOW METERS AND TANK PRESSURE SENSORS.

REFERENCES:

REPORT DATE 12/03/86 C-52
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/02/86
SUBSYSTEM: EPG
MDAC ID: 251

ITEM: H2 MANIFOLD PRESSURE SENSOR (2)
FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:
A [NA]
B [NA]
C [NA]

LOCATION: MID FUSELAGE
PART NUMBER: ME 449-0177-2501

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
INACCURATE READING MAY CAUSE THE CREW TO CHECK FUEL CELL H2 FLOWMETERS AND TANK PRESSURE SENSORS.

REFERENCES:

REPORT DATE 12/03/86 C-53
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/27/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/1R
MDAC ID: 252 ABORT: 3/1R

ITEM: H2 MANIFOLD 1 SOLENOID CROSSOVER VALVE (1) LV031
FAILURE MODE: FAILS OPEN (ALSO INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4210

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRIC SIGNAL

EFFECTS/RATIONALE:
LV031 IS USED TO ISOLATE H2 FLOW IN TANK 1 AND VALVE MODULE 1 (FUEL CELL 1) FROM FUEL CELL 3 AND VALVE MODULE 2 (FUEL CELL 2) AND THE OTHER TANKS. IF THERE IS A LOW PRESSURE PROBLEM IN VALVE MODULE 1, LV041 WOULD NEED TO BE CLOSED TO PREVENT LOSS OF ALL REACTANT. TANK 1 RELIEF VALVE AND MANIFOLD 1 RELIEF VALVE WOULD HAVE TO FAIL OPEN TO LOSE ALL REACTANT. CLOSING LV041 WOULD STILL SHUTDOWN FUEL CELLS 1 AND 3.

REFERENCES:

REPORT DATE 12/03/86 C-54
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/27/86
SUBSYSTEM: EPG
MDAC ID: 253

HDW/FUNC
FLIGHT: 3/2R
ABORT: 2/1R

ITEM: H2 MANIFOLD 1 SOLENOID CROSSOVER VALVE (1) LV031
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: 3/2R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/2R</td>
<td>ATO: 3/2R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4210

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRIC SIGNAL

EFFECTS/RATIONALE:
IF BOTH CROSSOVER VALVES FAIL SHUT, TANKS 1 AND 2 WOULD DEPLETE FASTER SINCE EACH WOULD HAVE TO FEED A FUEL CELL ALONE. ANY FAILURES THAT PREVENT THE DISTRIBUTION OF THE CONTENTS OF TANKS 1 AND 2 COULD SHUTDOWN 2 FUEL CELLS. 2/1R FOR TAL BECAUSE FAILURE OF TANK 1 OR ITS CHECK VALVE COULD CAUSE FUEL CELL 1 SHUTDOWN AND OMS PURGE LOSS. ALSO, THIS IS CRITICALITY 2/1R FOR RTLS BECAUSE HELIUM PURGE CAPABILITY WOULD BE LOST. DETECTABLE FROM VALVE POSITION INDICATOR. 3/2R IF TANK 1 HAS ITS CHECK VALVE OR FILTER CLOSED, OR TANK RELIEF VALVE OPEN.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/27/86
SUBSYSTEM: EPG
MDAC ID: 254

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: H2 MANIFOLD 1 SOLENOID CROSSOVER VALVE (1) LV031
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORB:</td>
<td>1/1</td>
<td>ACA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORB:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4210

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
EXTERNAL LEAK INTO AREA UNDER THE PAYLOAD BAY COULD CAUSE EXPLOSION OR POSSIBLE FREEZING OF OTHER SYSTEMS. IF ONLY LV031 LEAKS, CAN USE LV041 TO ISOLATE LEAK, BUT MAY LOSE FUEL CELLS 1 AND 3. IF BOTH MANIFOLD CROSSOVER VALVES LEAK, MAY CAUSE LOSS OF ALL REACTANTS. A LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-56
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: EPG
MDAC ID: 255

ITEM: H2 FUEL CELL 1 SOLENOID REACTANT SUPPLY VALVE (1)
LV033
FAILURE MODE: FAILS OPEN (INCLUDES INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>2/1R</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>2/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4200

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
IF LV033 FAILS OPEN, CAN USE LV031 AND IF NEEDED, LV041 TO ISOLATE FUEL CELL 1. THIS IS CRITICALITY 2/1R BECAUSE IF FUEL CELL IS SHUT DOWN BECAUSE OF ONE OF ITS COMPONENTS, THEN THE REACTANT FLOW HAS TO BE STOPPED OR AN EXPLOSION COULD OCCUR. IF CREW CANNOT CLOSE VALVE, MISSION ABORT DECISION WOULD RESULT.

REFERENCES:

REPORT DATE 12/03/86 C-57
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: EFG
MDAC ID: 256

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 1/1

ITEM: H2 FUEL CELL 1 SOLENOID REACTANT SUPPLY VALVE (1)
LV033
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1
5) 6) 7) 8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 1/1</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>2/1R</td>
<td>TAL: 1/1</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4200

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV033 IS USED TO CONTROL H2 FLOW INTO FUEL CELL 1. 2/1R FOR ABORT/ASCENT BECAUSE IF 2 FUEL CELL REACTANT VALVES FAIL, THEN ORBITER IS LOST. EARLIEST ORBITER CAN OPERATE ON ONLY 1 FUEL CELL IS AFTER MECO. CAN DETECT USING FUEL CELL FLOW METER. 1/1 FOR TAL BECAUSE OMS PURGE CAPABILITY WILL BE LOST, AND 1/1 FOR RTLS BECAUSE HELIUM PURGE CAPABILITY WILL BE LOST. FAILURE ONORBIT CAUSES PRIORITY FLIGHT DECISION.

REFERENCES:

REPORT DATE 12/03/86 C-58
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 1/1
MDAC ID: 257 ABORT: 1/1

ITEM: LV033 H2 FUEL CELL 1 SOLENOID REACTANT SUPPLY VALVE (1)
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4200

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
EXTERNAL LEAK INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. LEAK MAY PREVENT FUEL CELL FROM RECEIVING ADEQUATE REACTANT.
LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-59
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/1R
MDAC ID: 258 ABORT: 2/1R

ITEM: H2 FUEL CELL 2 SOLENOID REACTANT SUPPLY VALVE (1) LV043
FAILURE MODE: Fails open (includes internal leakage)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>2/1R</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AGA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>2/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4200

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, JAMMING, CONTAMINATION, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
IF LV043 FAILS OPEN, CREW CAN USE LV041 AND IF NEEDED, LV031 TO ISOLATE FUEL CELL 2. THIS IS CRITICALITY 2/1R BECAUSE IF FUEL CELL IS SHUT DOWN BECAUSE OF ONE OF ITS COMPONENTS, THEN THE REACTANT FLOW HAS TO BE STOPPED OR AN EXPLOSION COULD OCCUR. IF CANNOT CLOSE VALVE, MISSION ABORT DECISION WOULD RESULT.

REFERENCES:

REPORT DATE 12/03/86 C-60
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86
SUBSYSTEM: EPG
MDAC ID: 259

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: LV043
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>ACA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4200

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV043 IS USED TO CONTROL H2 FLOW INTO FUEL CELL 2. 2/1R FOR ABORT/ASCENT BECAUSE IF 2 FUEL CELL REACTANT VALVES FAIL, THEN ORBITER IS LOST. THE EARLIEST THE ORBITER CAN OPERATE ON ONLY 1 FUEL CELL IS AFTER MECO. DETECTABLE USING FUEL CELL FLOWMETER.

REFERENCES:

REPORT DATE 12/03/86 C-61
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86
SUBSYSTEM: EPG
MDAC ID: 260

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: H2 FUEL CELL 2 SOLENOID REACTANT SUPPLY VALVE (1)
LV043
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4200

CAUSES: CORROSION, FATIGUE VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
EXTERNAL LEAK INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. LEAK MAY PREVENT FUEL CELL FROM RECEIVING ADEQUATE REACTANT. LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-62
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86
SUBSYSTEM: EPG
MDAC ID: 261

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: H2 FUEL CELL 3 SOLENOID REACTANT SUPPLY VALVE (1)
LV044
FAILURE MODE: FAILS OPEN (INCLUDES INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>2/1R</td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORB:</td>
<td>2/1R</td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>DEOORB:</td>
<td>2/1R</td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>2/1R</td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>RTLS:</td>
<td></td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>TAL:</td>
<td></td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>AOA:</td>
<td></td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>ATO:</td>
<td></td>
<td></td>
<td>2/1R</td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4200

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, JAMMING, CONTAMINATION, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV044 IS USED TO CONTROL H2 FLOW INTO FUEL CELL 3. IF LV044 FAILS, CREW WOULD HAVE TO USE BOTH LV041 AND LV031 TO ISOLATE FUEL CELL 3. THIS IS CRITICALITY 2/1R BECAUSE IF FUEL CELL IS SHUT DOWN BECAUSE OF ONE OF ITS COMPONENTS, THEN THE REACTANT FLOW HAS TO BE STOPPED OR AN EXPLOSION COULD OCCUR. IF CREW CANNOT CLOSE VALVE, MISSION ABORT DECISION WOULD RESULT.

REFERENCES:

REPORT DATE 12/03/86 C-63
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>10/06/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPG</td>
<td>FLIGHT:</td>
<td>2/1R</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>262</td>
<td>ABORT:</td>
<td>2/1R</td>
</tr>
</tbody>
</table>

ITEM: LV044
FAILURE MODE: FAILS CLOSED
H2 FUEL CELL 3 SOLENOID REACTANT SUPPLY VALVE (1)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4200

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
THIS IS CRITICALITY 2/1R FOR ASCENT/ABORT BECAUSE IF 2 REACTANT VALVES FAIL CLOSED, THE ORBITER IS LOST. THE EARLIEST THE ORBITER CAN OPERATE ON ONLY 1 FUEL CELL IS AFTER MECO. THE FAILURE CAN BE DETECTED FROM FUEL CELL FLOWMETER.

REFERENCES:

REPORT DATE 12/03/86 C-64
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86
SUBSYSTEM: EPG
MDAC ID: 263

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: LV044
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. Gocht
SUBSYS LEAD: M. Hiott

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4200

CAUSES: CORROSION, FATIGUE, CONTAMINATION, VIBRATION

EFFECTS/RATIONALE:
EXTERNAL LEAK INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. LEAK MAY PREVENT FUEL CELL FROM RECEIVING ADEQUATE REACTANT. A LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-65
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86

SUBSYSTEM: EPG

MDAC ID: 264

HIGHEST CRITICALITY HDW/FUNC

FAILURE MODE: FAILS OPEN (ALSO INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH

SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRS D
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE

PART NUMBER: MC284-0429-4210

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV041 is used to isolate H2 flow in Tank 2 and Valve Module 2 (Fuel Cell 2) from Fuel Cell 3 and Valve Module 1 (Fuel Cell 1) and the other tanks. If there is low pressure in Valve Module 2, crew can use LV031 to stop loss of all reactant, but this may cause shutdown of Fuel Cells 3 and 2. Ascent and abort require at least 2 fuel cells until MECO. Tank 2 relief valve and manifold 2 relief valve would have to fail open to lose all reactant. Loss prelaunch would cause mission delay.

REFERENCES:

REPORT DATE 12/03/86 C-66
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/2R
MDAC ID: 265 ABORT: 3/2R

ITEM: H2 MANIFOLD 2 SOLENOID CROSSOVER VALVE (1) LV041
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td></td>
<td>3/2R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td></td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/2R</td>
<td></td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4210

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
3/2R IF TANK 2 RELIEF VALVE FAILS OPEN OR CHECK VALVE FAILS CLOSED. TANK 2 WOULD DEPLETE FASTER SINCE IT ALONE COULD FEED FUEL CELL 2. FAILURE IS DETECTABLE FROM VALVE POSITION INDICATOR. IF BOTH CROSSOVER VALVES FAIL SHUT, TANK 1 WOULD ALSO DEPLETE FASTER SINCE IT ALONE WOULD BE FEEDING FUEL CELL 1.

REFERENCES:

REPORT DATE 12/03/86 C-67
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86
SUBSYSTEM: EPG
MDAC ID: 266

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: H2 MANIFOLD 2 SOLENOID CROSSOVER VALVE (1) LV041
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4210

CAUSES: CORROSION, FATIGUE VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
EXTERNAL LEAK INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION
AND FREEZE OTHER SYSTEMS. IF ONLY LV041 LEAKS, CAN USE LV031 TO
STOP LEAK, BUT COULD LOSE FUEL CELLS 2 AND 3. IF BOTH MANIFOLD
SHUTOFF VALVES LEAK, ALL FUEL CELLS MAY BE SHUTDOWN.
THIS LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE
CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-68
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/1R
MDAC ID: 267 ABORT: 2/1R

ITEM: H2 SOLENOID GSE SUPPLY VALVE (1) LV045
FAILURE MODE: FAILS OPEN (INCLUDES INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4220

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV045 CONTROLS GROUND OPERATION FLOW OF FUEL CELL REACTANT. THIS IS CRITICALITY 3/3 DURING PRELAUNCH BECAUSE VALVE IS OPEN UNTIL T-0. CRITICALITY 2/1R OTHER PHASES BECAUSE REACTANT WOULD ONLY BE CONTAINED BY H2 FILL T-0. LEAK COULD BE ISOLATED BY CLOSING LV041. FUEL CELL 2 WOULD PROBABLY BE SHUT DOWN. LEAK COULD CAUSE LOSS OF ALL REACTANT.

REFERENCES:

REPORT DATE 12/03/86 C-69
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86

HIGHEST CRITICALITY HDW/FUNC

SUBSYSTEM: EPG
MDAC ID: 268

ABORT: 3/3

FLIGHT: 3/3

ITEM: H2 SOLENOID GSE SUPPLY VALVE (1) LV045

FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4220

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
VALVE IS NORMALLY CLOSED EXCEPT FOR BEFORE T-0. A FAILURE PRELAUNCH WOULD CAUSE LAUNCH DELAY. THERE IS NO EFFECT AT OTHER TIMES. VALVE FAILING CLOSED AT LAUNCH SITE MAY CAUSE BACK PRESSURE ON GSE SUPPLY LINE TO ORBITER.

REFERENCES:

REPORT DATE 12/03/86 C-70
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 1/1
MDAC ID: 269 ABORT: 1/1

ITEM: H2 SOLENOID GSE SUPPLY VALVE (1) LV045
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
</tr>
<tr>
<td>ONORB:</td>
<td>1/1</td>
<td>AOA:</td>
</tr>
<tr>
<td>DEORB:</td>
<td>1/1</td>
<td>ATO:</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4220

CAUSES: VIBRATION, CORROSION, FATIGUE, CONTAMINATION

EFFECTS/RATIONALE:
EXTERNAL LEAK INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. THE FAILURE IS DETECTED OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-71
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/07/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/IR
MDAC ID: 270 ABORT: 2/IR

ITEM: H2 FILL GSE SUPPLY T-0 QUICK DISCONNECT (1) PD035
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0012-0210

CAUSES: CONTAMINATION, FATIGUE, CORROSION

EFFECTS/RATIONALE:
THE H2 GSE SUPPLY T-0 QD HAS NO CAP AND ITS ONLY BACKUP IS THE
GSE SUPPLY VALVE. AN EXTERNAL LEAK COULD ONLY OCCUR IF THE VALVE
ALSO LEAKED, BUT IF BOTH LEAKED, COULD LOSE ALL REACTANT. A LEAK
COULD BE ISOLATED BY USING LV041 BUT PROBABLY FUEL CELL 2
WOULD BE SHUT DOWN.

REFERENCES:

REPORT DATE 12/03/86 C-72
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/07/86
SUBSYSTEM: EPG
MDAC ID: 271

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 FILL GSE SUPPLY T-0 QUICK DISCONNECT (1) PD035
FAILURE MODE: INABILITY TO MATE/DEMATE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0012-0210

CAUSES: CORROSION, BINDING, DEBRIS

EFFECTS/RATIONALE:
IF QD CANNOT MATE OR DEMATE AT LAUNCH PAD, THE MISSION WILL BE DELAYED. NO EFFECT ANY OTHER TIMES.

REFERENCES:

REPORT DATE 12/03/86 C-73
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/07/86
SUBSYSTEM: EPG
MDAC ID: 272

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: O2 CHECK VALVE (1) CV010
FAILURE MODE: FAILS OPEN (INTERNAL LEAKAGE ALSO)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [], B [F], C [P]

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
CV010 CHECKS O2 FLOW INTO TANK 1. HIGHER PRESSURE DOWNSTREAM OF CHECK VALVE THAN UPSTREAM WOULD FORCE REACTANT INTO TANK LINE. LOWER PRESSURE IN TANK OR LEAK WOULD HAVE TO OCCUR IN ADDITION TO CHECK VALVE FAILURE. RESULT COULD BE LOWER CYRO FLOW TO FUEL CELLS AND POSSIBLE SHUTDOWN. FAILS SCREEN B BECAUSE NEED A TANK LEAK OR RELIEF VALVE FAILED OPEN TO NOTICE. THIS IS CRITICALITY 2/1R BECAUSE COMBINED FAILURE OF TANK RELIEF VALVE OPEN COULD LOSE VEHICLE DUE TO REACTANT LOSS.

REFERENCES:

REPORT DATE 12/03/86 C-74
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/07/86
SUBSYSTEM: EPG
MDAC ID: 273

FLIGHT: 3/1R
ABORT: 2/1R

ITEM: O2 CHECK VALVE (1) CV010
FAILURE MODE: FAILS CLOSED (RESTRICTED FLOW ALSO)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/1R</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID Fuselage
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
REACTANT IS UNABLE TO LEAVE TANK. THIS DEPLETES H2 OUT THE RELIEF VALVE AND COULD CAUSE FUEL CELL SHUTDOWN. THIS IS DETECTABLE FROM THE TANK PRESSURE SENSOR. FAILURE OF RELIEF VALVE CLOSED ALSO COULD CAUSE TANK EXPLOSION, IF HEATERS ON IN MANUAL MODE OR FAILED ON. 2/1R BECAUSE IF CV010 AND LV011 FAIL CLOSED, COULD LOSE OMS PURGE CAPABILITY FOR TAL, AND HELIUM PURGE CAPABILITY FOR RTLS.

REFERENCES:

REPORT DATE 12/03/86 C-75
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/07/86
SUBSYSTEM: EPG
MDAC ID: 274

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: O2 CHECK VALVE (1) CV010
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: 1/1 RTLS: 1/1
LIFTOFF: 1/1 TAL: 1/1
ONORBIT: 1/1 AOA: 1/1
DEORBIT: 1/1 ATO: 1/1
LANDING/SAFING: 1/1

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: CORROSION, FATIGUE VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
REACTANT LEAKAGE INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION OR FREEZE OTHER SYSTEMS. LEAK MAY RESULT IN LOW OR NO CRYO FLOW INTO FUEL CELLS. THIS IS DETECTABLE FROM TANK QUANTITY AND PRESSURE SENSORS AND MANIFOLD PRESSURE SENSORS OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86 C-76
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/08/86

SUBSYSTEM: EPG
MDAC ID: 275

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: 02 SOLENOID GSE SUPPLY VALVE (1) LV015
FAILURE MODE: FAILS OPEN (INTERNAL LEAKAGE ALSO)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4100

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV015 CONTROLS GROUND OPERATION FLOW OF FUEL CELL REACTANT. THIS IS 3/3 DURING PRELAUNCH BECAUSE VALVE IS OPEN UNTIL T-0. IT IS 2/1R OTHER PHASES BECAUSE FAILURE OF 02 GSE T-0 QD WOULD CAUSE 02 LEAK AND POSSIBLE LOSS OF ALL REACTANT. LEAK COULD BE ISOLATED BY CLOSING LV011, BUT FUEL CELL 1 AND SUPPLY TO ECLSS SYSTEM 1 COULD BE LOST.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/08/86
SUBSYSTEM: EPG
MDAC ID: 276

HIGHEST CRITICALITY
HDW/FUNC

FLIGHT: 3/3
ABORT: 3/3

ITEM: 02 SOLENOID GSE SUPPLY VALVE (1) LV015
FAILURE MODE: Fails closed

LEAD ANALYST: S. Gotch
SUBSYS LEAD: M. Hiott

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:
A [NA]
B [NA]
C [NA]

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4100

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
VALVE IS NORMALLY CLOSED, EXCEPT FOR BEFORE T-0. FAILURE PRELAUNCH WOULD CAUSE LAUNCH DELAY, AND POSSIBLE BACKPRESSURE IN GSE SUPPLY LINE.

REFERENCES:

REPORT DATE 12/03/86 C-78
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/08/86
SUBSYSTEM: EPG
MDAC ID: 277

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: 02 SOLENOID GSE SUPPLY VALVE (1) LV015
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4100

CAUSES: VIBRATION, CORROSION, FATIGUE, CONTAMINATION

EFFECTS/RATIONALE:
EXTERNAL LEAK INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. FAILURE MIGHT BE DETECTED BY MANIFOLD PRESSURE SENSOR, ALSO OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-79
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86
SUBSYSTEM: EPG
MDAC ID: 278

FAILURE MODE: FAILS OPEN (INTERNAL LEAKAGE ALSO)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>2/1R</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>2/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4101

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
VALVE IS NORMALLY OPEN. LV012 AND LV022 SUPPLY BREATHABLE OXYGEN TO THE CREW. FAILURE COULD PREVENT CREW FROM ISOLATING LOW PRESSURE DOWNSTREAM, AND STOPPING POSSIBLE EXPLOSION OR FREEZING OF OTHER SYSTEMS.

REFERENCES:

REPORT DATE 12/03/86 C-80
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86
SUBSYSTEM: EPG
MDAC ID: 279

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: 02 SOLENOID ECLSS SYSTEM 1 SUPPLY VALVE (1) LV012
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4101

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
IF BOTH LV012 AND LV022 ARE FAILED CLOSED, THE CREW WILL NOT BE ABLE TO BREATHE FOR LONG. FAILURE IS DETECTABLE BY FLOW METERS AND PRESSURE SENSORS.

REFERENCES:

REPORT DATE 12/03/86 C-81
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86
HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

SUBSYSTEM: EPG
MDAC ID: 280

ITEM: 02 SOLENOID ECLSS SYSTEM 1 SUPPLY VALVE (1) LV012
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTTCH SUBSYS LEAD: M. HIOPTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLIS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4101

CAUSES: VIBRATION, CORROSION, FATIGUE, CONTAMINATION

EFFECTS/RATIONALE:
EXTERNAL LEAK INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. FAILURE IS DETECTABLE OVER PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-82
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86
SUBSYSTEM: EPG
MDAC ID: 281

ITEM: 02 SOLENOID ECLSS SYSTEM 2 SUPPLY VALVE (LV022)
FAILURE MODE: FAILS OPEN (INTERNAL LEAKAGE ALSO)

LEAD ANALYST: S. GOTTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>2/IR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/IR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/IR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/IR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>2/IR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4101

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
VALVE IS NORMALLY OPEN. LV022 AND LV012 SUPPLY BREATHABLE OXYGEN TO THE CREW. FAILURE COULD PREVENT CREW FROM ISOLATING LOW PRESSURE DOWNSTREAM AND STOPPING POSSIBLE EXPLOSION OR FREEZING OF OTHER SYSTEMS.

REFERENCES:

REPORT DATE 12/03/86 C-83
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86
SUBSYSTEM: EPG
MDAC ID: 282
HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: 02 SOLENOID ECLSS SYSTEM 2 SUPPLY VALVE (1) LV022
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4101

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
IF BOTH LV012 AND LV022 ARE FAILED CLOSED, THE CREW WILL NOT BE ABLE TO BREATHE FOR LONG. FAILURE IS DETECTABLE BY FLOW METERS AND PRESSURE SENSORS.

REFERENCES:

REPORT DATE 12/03/86 C-84
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86
SUBSYSTEM: EPG
MDAC ID: 283

ITEM: 02 SOLENOID ECLSS SYSTEM 2 SUPPLY VALVE (1) LV022
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTL:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4101

CAUSES: VIBRATION, CORROSION, FATIGUE, CONTAMINATION

EFFECTS/RATIONALE:
EXTERNAL LEAK INTO AREA UNDER THE PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. A LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-85
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/1R
MDAC ID: 284 ABORT: 2/1R

ITEM: 02 FILL GSE SUPPLY T-0 QUICK DISCONNECT (1) PD015
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0012-0110

CAUSES: CONTAMINATION, FATIGUE, CORROSION

EFFECTS/RATIONALE:
THE O2 GSE SUPPLY T-0 QD HAS NO CAP AND ITS ONLY BACKUP IS THE O2 GSE SUPPLY VALVE TO PREVENT LEAKS. A LEAK COULD BE ISOLATED BY LV015, LV011, AND LV021 IN ORDER. A LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/10/86

SUBSYSTEM: EPG
MDAC ID: 285

HIGHEST CRITICALITY HDW/FUNC

FLIGHT: 3/3
ABORT: 3/3

ITEM: 02 FILL GSE SUPPLY T-0 QUICK DISCONNECT (1) PD015
FAILURE MODE: INABILITY TO MATE/DEMATE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0012-0110

CAUSES: CORROSION, BINDING, DEBRIS

EFFECTS/RATIONALE:
IF THE QD CANNOT MATE ON THE PAD, THE FUEL CELLS CANNOT USE GROUND REACTANT. IF QD CANNOT DEMATE, THE MISSION WILL BE DELAYED. NO EFFECT ANY OTHER TIMES.

REFERENCES:

REPORT DATE 12/03/86 C-87
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/14/86
SUBSYSTEM: EPG
MDAC ID: 286

ITEM: 02 MANIFOLD PRESSURE SENSOR (2)
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SATING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: ME 449-0177-2503

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
MANIFOLD 1 SENSOR MEASURES PRESSURE BETWEEN TANK 1 CHECK VALVE, ECLSS SYSTEM 1 SUPPLY VALVE, FUEL CELL 1 SUPPLY VALVE, MANIFOLD 1 RELIEF VALVE, 02 GSE SUPPLY VALVE, AND THE MANIFOLD 1 CROSSOVER VALVE. MANIFOLD 2 SENSOR MEASURES PRESSURE BETWEEN TANK 2 CHECK VALVE, MANIFOLD 2 CROSSOVER VALVE, FUEL CELL 2 SUPPLY VALVE, ECLSS SYSTEM 2 SUPPLY VALVE, AND MANIFOLD 2 RELIEF VALVE. THESE SENSORS HAVE NO EFFECT ON OTHER COMPONENTS. MANIFOLD RELIEF VALVES WOULD DISSIPATE EXCESS PRESSURE. CREW WOULD MAKE SURE ALL VALVES ARE OPEN TO FUEL CELLS.

REFERENCES:

REPORT DATE 12/03/86 C-88
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/14/86
SUBSYSTEM: EPG
MDAC ID: 287

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: 02 MANIFOLD PRESSURE SENSOR (2)
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: ME449-0177-2503

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD CAUSE THE CREW TO CHECK FUEL CELL FLOW METERS AND TANK PRESSURE SENSORS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/14/86

HIGHEST CRITICALITY
HDW/FUNC:

FLIGHT: 3/3
ABORT: 3/3

SUBSYSTEM: EPG

MDAC ID: 288

ITEM: 02 MANIFOLD PRESSURE SENSOR (2)

FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTCH

SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:

1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>ACA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: ME449-0177-2503

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
AN INACCURATE READING MAY CAUSE THE CREW TO CHECK FUEL CELL
FLOWMETER AND TANK PRESSURE SENSORS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/14/86
SUBSYSTEM: EPG
MDAC ID: 289

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: LV013
02 FUEL CELL 1 SOLENOID REACTANT SUPPLY VALVE (1)
FAILS OPEN (INCLUDES INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>2/1R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>2/1R</td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>2/1R</td>
<td></td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>2/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4102

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV013 IS USED TO CONTROL 02 FLOW INTO FUEL CELL 1. IF FUEL CELL 1 IS SHUTDOWN, VALVE WOULD NEED TO BE CLOSED OR COULD LOSE VEHICLE. COULD USE LV011 AND LV021 IF NEEDED TO ISOLATE FUEL CELL, BUT COULD NOT STOP REACTANT FLOW.

REFERENCES:

REPORT DATE 12/03/86 C-91
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/14/86
SUBSYSTEM: EPG
MDAC ID: 290

ITEM: 02 FUEL CELL 1 SOLENOID REACTANT SUPPLY VALVE (1) LV013
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4102

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
THE CRITICALITY IS 2/1R FOR ASCENT AND ATO/AOA ABORTS BECAUSE IF 2 FUEL CELL REACTANT VALVES FAIL, THEN ORBITER IS LOST. THE EARLIEST AN ORBITER CAN OPERATE ON ONLY 1 FUEL CELL IS AFTER MECO. CAN DETECT FAILURE BY USING FUEL CELL FLOWMETER. 1/1 FOR TAL ABORT BECAUSE FUEL SHUTDOWN LOSES OMS PURGE CAPABILITY. 1/1 FOR RTLS BECAUSE HELIUM PURGE CAPABILITY WOULD BE LOST. FAILURE ONORBIT CAUSES PRIORITY FLIGHT DECISION.

REFERENCES:

REPORT DATE 12/03/86 C-92
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/14/86

SUBSYSTEM: EPG
MDAC ID: 291

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: LV013
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1

5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1/1</td>
<td>RTLS: 1/1</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1/1</td>
<td>TAL: 1/1</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1/1</td>
<td>AOA: 1/1</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1/1</td>
<td>ATO: 1/1</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4102

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
02 LEAKING INTO AREA UNDER THE PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. A LEAK MAY PREVENT THE FUEL CELL FROM RECEIVING ADEQUATE REACTANT. THE FAILURE IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-93
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/15/86
SUBSYSTEM: EPG
MDAC ID: 292

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: 02 MANIFOLD 1 SOLENOID CROSSOVER VALVE (1) LV011
FAILURE MODE: FAILS OPEN (ALSO INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4110

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV011 IS USED TO ISOLATE 02 FLOW FROM TANK 1 AND VALVE MODULE 1 (FUEL CELL 1 AND ECLSS SYSTEM 1) FROM THE OTHER FUEL CELLS AND TANKS. IF THERE IS A LOW PRESSURE PROBLEM IN VALVE MODULE 1, LV021 WOULD NEED TO BE CLOSED TO PREVENT LOSS OF ALL REACTANT. TANK 1 RELIEF VALVE AND MANIFOLD 1 RELIEF VALVE WOULD HAVE TO FAIL OPEN TO LOSE ALL REACTANT. CLOSING LV021 WOULD STILL SHUTDOWN FUEL CELLS 1 AND 3.

REFERENCES:

REPORT DATE 12/03/86 C-94
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/15/86
SUBSYSTEM: EPG
MDAC ID: 293

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: 2/1R

ITEM: 02 MANIFOLD 1 SOLENOID CROSSOVER VALVE (1) LV011
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: 3/2R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/2R</td>
<td>ATO: 3/2R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4110

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
2/1R FOR TAL BECAUSE IF TANK 1 RELIEF VALVE FAILS OPEN, COULD LOSE FUEL CELL 1 AND OMS PURGE CAPABILITY. 2/1R FOR RTLS BECAUSE HELIUM PURGE CAPABILITY WOULD BE LOST. TANK 1 WOULD DEPLETE FASTER SINCE IT ALONE COULD FEED FUEL CELL 1 AND ECLSS SYSTEM 1. FAILURE IS DETECTABLE FROM VALVE POSITION INDICATOR. 3/2R FOR ASCENTS AND OTHER ABORTS IF TANK 1 HAS ITS CHECK VALVE OR FILTER CLOSED, OR TANK RELIEF VALVE OPEN.

REFERENCES:

REPORT DATE 12/03/86 C-95
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/15/86
SUBSYSTEM: EPG
MDAC ID: 294

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: O2 MANIFOLD 1 SOLENOID CROSSOVER VALVE (1) LV011
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 1
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>1/1</td>
<td>RTLS: 1/1</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>1/1</td>
<td>TAL: 1/1</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA: 1/1</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td>ATO: 1/1</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4110

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
LEAK INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. IF ONLY LV011 LEAKS, CAN USE LV021 TO ISOLATE LEAK, BUT MAY LOSE FUEL CELLS 1 AND 3. IF BOTH CROSSOVER VALVES LEAK, MAY CAUSE ALL FUEL CELLS TO BE SHUTDOWN. FAILURE IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-96
INDEPENDENT ORBITER ASSESSMENT
ORBiter SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/15/86
SUBSYSTEM: EPG
MDAC ID: 295

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: 02 MANIFOLD 2 SOLENOID Crossover Valve (1) LV021
FAILURE MODE: Fails open (also internal leakage)

LEAD ANALYST: S. Gotch
SUBSYS LEAD: M. Hiott

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4110

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV021 IS USED TO ISOLATE 02 FLOW FROM TANK 2 AND VALVE MODULE 2 (FUEL CELL 2 AND ECLS SYSTEM 2) FROM THE OTHER FUEL CELLS AND TANKS. IF THERE IS A LOW PRESSURE PROBLEM IN VALVE MODULE 2, LV011 WOULD HAVE TO BE CLOSED TO PREVENT LOSS OF ALL REACTANT. TANK 2 RELIEF VALVE AND MANIFOLD 2 RELIEF VALVE WOULD HAVE TO FAIL OPEN TO LOSE ALL REACTANT. CLOSING LV011 WOULD STILL SHUTDOWN FUEL CELLS 2 AND 3.

REFERENCES:

REPORT DATE 12/03/86 C-97
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/15/86
SUBSYSTEM: EPG
MDAC ID: 296

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: 3/2R

ITEM: 02 MANIFOLD 2 SOLENOID CROSSOVER VALVE (1) LV021
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/2R</td>
<td>TAL:</td>
<td>3/2R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/2R</td>
<td>ATO:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4110

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
THE CRITICALITY IS 3/2R IF TANK 2 RELIEF VALVE FAILS OPEN OR CHECK VALVE FAILS CLOSED. TANK 2 WOULD DEplete FASTER SINCE IT ALONE COULD FEED FUEL CELL 2 AND ECLSS SYSTEM 2. FAILURE IS DETECTABLE FROM VALVE POSITION INDICATOR.

REFERENCES:

REPORT DATE 12/03/86 C-98
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/15/86
SUBSYSTEM: EPG
MDAC ID: 297

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: 02 MANIFOLD 2 SOLENOID CROSSTOVER VALVE (1) LV021
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAfING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4110

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
LEAK INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. IF ONLY LV021 LEAKS, CAN USE LV011 TO ISOLATE LEAK, BUT MAY LOSE FUEL CELLS 3 AND 2 AND ECLSS SYSTEM 2. IF BOTH CROSSTOVER VALVES LEAK, MAY CAUSE ALL FUEL CELLS TO BE SHUT DOWN. FAILURE IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-99
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86

SUBSYSTEM: EPG

MDAC ID: 298

HIGHEST CRITICALITY HDW/FUNC

FLIGHT: 2/1R

ABORT: 2/1R

ITEM: 02 HORIZONTAL DRAIN QD (1)

FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE

PART NUMBER: MC276-0010-0180

CAUSES: CONTAMINATION, FATIGUE, CORROSION

EFFECTS/RATIONALE:
THE HORIZONTAL DRAIN IS USED AFTER LANDING TO DRAIN REMAINING
REACTANT FROM PRSD. A CAP PROVIDES A LEVEL OF REDUNDANCY. IF QD
AND CAP BOTH LEAK, LOSS OF ALL REACTANT COULD OCCUR, POSSIBLY
CAUSING FUEL CELL AND ECLSS SYSTEMS SHUTDOWN. CANNOT DETECT
LOSS OF QD ALONE.

REFERENCES:

REPORT DATE 12/03/86 C-100
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86 HIGHEST CRITICALITY
SUBSYSTEM: EPG HDW/FUNC
MDAC ID: 299 FLIGHT: 3/3
ABORT: 3/3

ITEM: 02 HORIZONTAL DRAIN QD (1)
FAILURE MODE: INABILITY TO MATE/DEMATE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0010-0180

CAUSES: CORROSION, BINDING, DEBRIS

EFFECTS/RATIONALE:
THE DRAIN QD IS NOT USED AT LAUNCH PAD. THERE IS NO EFFECT AFTER LANDING BECAUSE THE MISSION HAS ALREADY ENDED AND CAN DRAIN O2 THROUGH FILL QD.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86
SUBSYSTEM: EPG
MDAC ID: 300

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: 02 HORIZONTAL DRAIN CAP (1)
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC 276-0010-0160

CAUSES: CONTAMINATION, FATIGUE, CORROSION

EFFECTS/RATIONALE:
THE CAP IS A LEVEL OF REDUNDANCY OVER QD. REACTANT CANNOT LEAK OUT UNLESS QD ALSO LEAKS. IF BOTH CAP AND QD LEAK, COULD LOSE ALL O2. CANNOT DETECT LOSS OF CAP.

REFERENCES:

REPORT DATE 12/03/86 C-102
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86
SUBSYSTEM: EPG
MDAC ID: 301

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: 02 FUEL CELL 3 SOLENOID REACTANT SUPPLY VALVE (1)
LV024
FAILURE MODE: Fails Open (Includes Internal Leakage)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>2/1R</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>2/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4103

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV024 is used to control 02 flow into fuel cell 3. If fuel cell 3 is shut down, valve would need to be closed or could lose vehicle. LV021 or LV011 could be used to isolate fuel cell, but could not stop reactant flow.

REFERENCES:

REPORT DATE 12/03/86 C-103
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86
SUBSYSTEM: EPG
MDAC ID: 302

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: 02 FUEL CELL 3 SOLENOID REACTANT SUPPLY VALVE (1) LV024
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4103

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
THE CRITICALITY IS 2/1R FOR ASCENT AND ABORTS BECAUSE IF 2 FUEL CELL REACTANT VALVES FAIL, THEN ORBITER IS LOST. THE EARLIREST AN ORBITER CAN OPERATE ON ONLY 1 FUEL CELL IS AFTER MECO. CAN DETECT FAILURE USING FUEL CELL FLOWMETER. FAILURE ON ORBIT CAUSES PRIORITY FLIGHT DECISION.

REFERENCES:

REPORT DATE 12/04/86 BTK C-104
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86
SUBSYSTEM: EPG
MDAC ID: 303

ITEM: LV024
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4103

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
02 LEAKING INTO AREA UNDER THE PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. A LEAK MAY PREVENT FUEL CELL FROM RECEIVING ADEQUATE REACTANT. A FAILURE IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-105
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86
SUBSYSTEM: EPG
MDAC ID: 304
HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: 02 FUEL CELL 2 SOLENOID REACTANT SUPPLY VALVE (1)
LV023
FAILURE MODE: FAILS OPEN (INCLUDES INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>2/1R</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONSORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>2/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4102

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
LV023 IS USED TO CONTROL 02 FLOW INTO FUEL CELL 2. IF FUEL CELL 2 IS SHUT DOWN, VALVE WOULD NEED TO BE CLOSED OR COULD LOSE VEHICLE. COULD USE LV021 OR LV011 TO ISOLATE FUEL CELL, BUT COULD NOT STOP REACTANT FLOW.

REFERENCES:

REPORT DATE 12/03/86 C-106
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86
SUBSYSTEM: EPG
MDAC ID: 305

ITEM: LV023
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4102

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE, LOSS OF ELECTRICAL SIGNAL

EFFECTS/RATIONALE:
THIS IS CRITICALITY 2/1R FOR ASCENT AND ABORTS BECAUSE IF 2 FUEL CELL REACTANT VALVES FAIL, THEN ORBITER IS LOST. THE EARLIEST AN ORBITER CAN OPERATE ON ONLY 1 FUEL CELL IS AFTER MECO. CAN DETECT FAILURE USING FUEL CELL FLOWMETER. FAILURE ONORBIT CAUSES PRIORITY FLIGHT DECISION.

REFERENCES:

REPORT DATE 12/03/86 C-107
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 1/1
MDAC ID: 306 ABORT: 1/1

ITEM: O2 FUEL CELL 2 SOLENOID REACTANT SUPPLY VALVE (1)
LV023
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULE 2
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0429-4102

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
02 LEAKING INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION AND FREEZE OTHER SYSTEMS. A LEAK MAY PREVENT FUEL CELL FROM RECEIVING ADEQUATE REACTANT. A FAILURE IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-108
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/1R
MDAC ID: 307 ABORT: 2/1R

ITEM: O2 MANIFOLD 1 RELIEF VALVE (1) RV011
FAILURE MODE: FAILED OPEN (ALSO INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0003

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
LOSS OF RV011 BY ITSELF AND COMBINED WITH LOSS OF RV021 WOULD HAVE NO EFFECT. IF TANK 1 RELIEF VALVE ALSO FAILED OPEN COULD LOSE ALL REACTANT, THUS 2/1R. NEED FAILURE UPSTREAM ALSO TO DETECT WITH MANIFOLD 1 PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-109
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86
SUBSYSTEM: EPG
MDAC ID: 308

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: O2 MANIFOLD 1 RELIEF VALVE (1) RV011
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/1R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0003

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
A PRESSURE BUILDUP AND POSSIBLE LINE RUPTURE COULD RESULT IF BOTH RV011 AND RV021 WERE CLOSED. THE CAUSE OF AN EXCESSIVE PRESSURE BUILDUP WOULD BE TANK HEATERS FAILED ON. IT IS CRITICALITY 3/1R IF A TANK'S HEATERS FAIL ON AND ITS TANK RELIEF VALVE FAILS CLOSED. THIS IS DETECTABLE FROM THE MANIFOLD PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-110
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/16/86

HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG
MDAC ID: 309
FLIGHT: 1/1
ABORT: 1/1

ITEM: O2 MANIFOLD 1 RELIEF VALVE (1) RV011
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 RELIEF VALVE/FILTER PACKAGES

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AGA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0003

CAUSES: VIBRATION, CORROSION, FATIGUE, CONTAMINATION

EFFECTS/RATIONALE:
THIS IS CRITICALITY 1/1 BECAUSE A LEAK COULD CAUSE POSSIBLE EXPLOSION OR FREEZING UNDER PAYLOAD BAY. A LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-111
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/17/86
SUBSYSTEM: EPG
MDAC ID: 310

ITEM: O2 MANIFOLD 2 RELIEF VALVE (1) RV021
FAILURE MODE: FAILED OPEN (ALSO INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 RELIEF VALVE/FILTER PACKAGES

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0003

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
LOSS OF RV021 BY ITSELF OR COMBINED WITH RV011 WOULD HAVE NO EFFECT. IF TANK 2 RELIEF VALVE ALSO FAILED OPEN, COULD LOSE ALL REACTANT, THUS 2/1R. NEED FAILURE UPSTREAM TO DETECT WITH MANIFOLD 2 PRESSURE SENSOR.

THE FUNCTION OF THE VALVE IS PRESSURE CONTROL OF THE MANIFOLD.

REFERENCES:

REPORT DATE 12/03/86 C-112
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/17/86 HIGHEST CRITICALITY HDW/FUNC FLIGHT: 3/1R
SUBSYSTEM: EPG ABORT: 3/1R
MDAC ID: 311

ITEM: O2 MANIFOLD 2 RELIEF VALVE (1) RV021
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORB T:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0003

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
A PRESSURE BUILDUP AND POSSIBLE LINE RUPTURE COULD RESULT IF BOTH RV011 AND RV021 WERE CLOSED. THIS FAILURE IS DETECTABLE FROM THE MANIFOLD PRESSURE SENSOR. THE CRITICALITY IS 3/1R IF A TANK'S HEATERS FAIL ON AND ITS TANK RELIEF VALVE FAILS CLOSED.

REFERENCES:

REPORT DATE 12/03/86 C-113
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/17/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG
FLIGHT: 1/1
MDAC ID: 312
ABORT: 1/1

ITEM: O2 MANIFOLD 2 RELIEF VALVE (1) RV021
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GÖTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 RELIEF VALVE/FILTER PACKAGES

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0003

CAUSES: VIBRATION, CORROSION, FATIGUE, CONTAMINATION

EFFECTS/RATIONALE:
A LEAK COULD CAUSE POSSIBLE EXPLOSION OR FREEZING UNDER PAYLOAD BAY. A LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-114
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/17/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/1R
MDAC ID: 313 ABORT: 2/1R

ITEM: 02 CHECK VALVE (2) CV021
FAILURE MODE: FAILS OPEN (INTERNAL LEAKAGE ALSO)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL: 2/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: 2/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO: 2/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
CV021 CHECKS FLOW INTO TANK 3 AND THE OTHER CHECK VALVE CHECKS FLOW INTO TANKS 4 AND 5. HIGHER PRESSURE DOWNSTREAM OF CHECK VALVE THAN UPSTREAM WOULD FORCE REACTANT INTO TANK. LOW PRESSURE IN TANK OR LEAK WOULD HAVE TO OCCUR IN ADDITION TO CHECK VALVE FAILURE. RESULT COULD BE LOWER CYRO FLOW TO FUEL CELLS AND POSSIBLE SHUTDOWN. FAILS SCREEN B BECAUSE NEED A TANK LEAK OR RELIEF VALVE FAILED OPEN TO DETECT. THIS IS 2/1R BECAUSE COMBINED FAILURE OF TANK LEAK OR RELIEF VALVE STUCK OPEN COULD DEPLETE ALL O2.

REFERENCES:

REPORT DATE 12/03/86 C-115
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/17/86
SUBSYSTEM: EPG
MDAC ID: 314

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: 02 CHECK VALVE (2) CV021
FAILURE MODE: FAILS CLOSED (RESTRICTED FLOW ALSO)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AGA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
REACTANT UNABLE TO LEAVE TANK—THIS DEPLETES H2 OUT THE RELIEF VALVE AND COULD CAUSE FUEL CELL SHUTDOWN. FAILURE OF RELIEF VALVE ALSO COULD CAUSE TANK EXPLOSION, IF THE HEATER IS ON IN MANUAL MODE OR FAILED ON. THIS IS DETECTABLE FROM TANK PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-116
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/17/86
SUBSYSTEM: EPG
MDAC ID: 315

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: 02 CHECK VALVE (2) CV021
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
REACTANT LEAK INTO AREA UNDER THE PAYLOAD BAY COULD CAUSE EXPLOSION OR FREEZE OTHER SYSTEMS. MAY RESULT IN LOW OR NO 02 FLOW INTO FUEL CELLS. THIS IS DETECTABLE FROM TANK QUANTITY SENSORS AND CONSOLE QUANTITY CHARTS OVER A PERIOD OF TIME.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 316

HIGHEST CRITICALITY
HDW/FUNC

FLIGHT: 1/1
ABORT: 1/1

ITEM: O2 LINES, COMPONENTS, & FITTINGS
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: V070-454898

CAUSES: SHOCK, VIBRATION, FATIGUE, OVERPRESSURE, BRITTLENESS DUE TO TEMPERATURE.

EFFECTS/RATIONALE:
THIS IS CRITICALITY 1/1 BECAUSE ALL REACTANT COULD DEplete AND CAUSE FUEL CELL SHUTDOWN; ALSO LEAK COULD CAUSE O2 TO FREEZE OTHER SYSTEMS UNDER THE PAYLOAD BAY AND ALSO CAUSE EXPLOSION.
THIS IS DETECTABLE FROM TANK QUANTITY SENSORS AND CONSOLE QUANTITY SENSORS OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86 C-118
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86

SUBSYSTEM: EPG
MDAC ID: 317

ITEM: 02 LINES, COMPONENTS, & FITTINGS
FAILURE MODE: RESTRICTED FLOW

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AGA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: V070-454898

CAUSES: CONTAMINATION, DEBRIS

EFFECTS/RATIONALE:
RESTRICTED FLOW COULD CAUSE NO REACTANT TO REACH FUEL CELL, AND
THUS CAUSE THEM TO BE SHUTDOWN. THIS IS 1/1 FOR TAL IF BLOCKAGE
AFFECTS FUEL CELL 1 BECAUSE IT WOULD CAUSE LOSS OF OMS PURGE
CAPABILITY. ALSO 1/1 FOR RTLS BECAUSE SAME BLOCKAGE WOULD
CAUSE LOSS OF HELIUM PURGE CAPABILITY. FAILURE ONORBIT CAUSES
PRIORITY FLIGHT DECISION. OVERPRESSURE COULD BE VENTED OUT TANK
OR MANIFOLD RELIEF VALVES. THIS IS DETECTABLE FROM TANK PRESSURE
SENSORS OR FUEL CELL FLOW METERS. 2/1R FOR ASCENT AND OTHER
ABORTS BECAUSE BLOCKAGE TO 2 FUEL CELLS WOULD LOSE VEHICLE.

REFERENCES:

REPORT DATE 12/03/86 C-119
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 318

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: 02 TANK QUANTITY SENSOR (5) V45Q11(-5)05A
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) 02 TANKS
5) 02 TANK SUB-ASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
SENSOR FAILURE HAS NO EFFECT ON HEATER OPERATION. SENSOR FAILURE CANNOT BE VERIFIED BY LOOKING AT OTHER INSTRUMENTATION. CREW WOULD ONLY KNOW THAT TANK CANNOT ALWAYS BE FULL. CREW MIGHT BE ABLE TO FIGURE OUT APPROXIMATE QUANTITY BY TURNING HEATERS ON FOR A CERTAIN TIME AND MEASURE CORRESPONDING FLUID TEMPERATURE OR PRESSURE RISE.

REFERENCES:

REPORT DATE 12/03/86 C-120
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 319

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: 02 TANK QUANTITY SENSOR (5) V45Q11(-5)05A
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) 02 TANKS
5) 02 TANK SUB-ASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SANING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD HAVE NO AUTOMATIC EFFECT ON HEATERS. ZERO OUTPUT WOULD CAUSE CREW TO WANT TO TURN HEATERS OFF.

REFERENCES:

REPORT DATE 12/03/86 C-121
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 320 ABORT: 3/3

ITEM: 02 TANK QUANTITY SENSOR (5) V45Q11(-5)05A
FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) 02 TANKS
5) 02 TANK SUB-ASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
AN INACCURATE READING MAY CAUSE THE CREW TO CHANGE TANK MANAGEMENT SCHEME. CREW COULD OPERATE TANK MISTAKENLY BELOW ITS REDLINE LIMIT.

REFERENCES:

REPORT DATE 12/03/86 C-122
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 321

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: 02 TANK FLUID TEMPERATURE SENSORS (5) V45T11(-5)01A
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) 02 TANKS
5) 02 TANK SUB-ASSEMBLY

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
FAILURE OF SENSOR HAS NO EFFECT ON HEATER OPERATION. FAILURE CAN BE DETECTED BY CHECKING HEATER ASSEMBLY TEMPERATURE SENSOR OR TANK PRESSURE SENSOR. FULL OUTPUT WOULD CAUSE CREW TO WANT TO TURN OFF HEATERS.

REFERENCES:

REPORT DATE 12/03/86 C-123
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 322 ABORT: 3/3

ITEM: 02 TANK FLUID TEMPERATURE SENSORS (5) V45T11(-5)01A
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) 02 TANKS
5) 02 TANK SUB-ASSEMBLY

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LAND/SAF:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD CAUSE CREW TO WANT TO TURN HEATERS ON.

REFERENCES:

REPORT DATE 12/03/86 C-124
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 323

ITEM: 02 TANK FLUID TEMPERATURE SENSORS (5) V45T11(-5) 01A
FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) 02 TANKS
5) 02 TANK SUB-ASSEMBLY

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
INACCURATE READING MAY CAUSE CREW TO WANT TO MANUALLY OPERATE HEATERS TO KEEP TEMPERATURE READING WITHIN TOLERANCES.

REFERENCES:

REPORT DATE 12/03/86 C-125
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 324 ABORT: 3/3

ITEM: 02 TANK HEATER ASSEMBLY 1 TEMPERATURE SENSOR (5)
V45T11(-5)07A
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) 02 TANKS
5) 02 TANK SUB-ASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
HEATER ASSEMBLY 1 CONSISTS OF HEATERS A1 AND B1 IN EACH 02 TANK. IF 5 TANKS FLY, THE B HEATERS IN TANKS 4 AND 5 WILL NOT BE OPERATIONAL. THE SENSOR IS ONLY CONNECTED TO A GAUGE; IT DOES NOT AFFECT HEATER OPERATION. FULL OUTPUT WOULD CAUSE CREW TO WANT TO TURN HEATERS OFF. FAILURE CAN BE DETECTED BY CHECKING TANK FLUID TEMPERATURE OR PRESSURE SENSORS.

REFERENCES:

REPORT DATE 12/03/86 C-126
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 325

HIGHEST CRITICALITY HDW/FUNC

ITEM: O2 TANK HEATER ASSEMBLY 1 TEMPERATURE SENSOR (5)
V45T11(-5)07A
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5) O2 TANK SUB-ASSEMBLY

FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: 3/3 RTLS: 3/3
LIFTOFF: 3/3 TAL: 3/3
ONORBIT: 3/3 AOA: 3/3
DEORBIT: 3/3 ATO: 3/3
LANDING/SAVING: 3/3

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD CAUSE CREW TO WANT TO TURN HEATERS ON.

REFERENCES:

REPORT DATE 12/03/86 C-127
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

10/20/86 HIGHEST CRITICALITY HDW/FUNC
PG FLIGHT: 3/3
26 ABORT: 3/3

O2 TANK HEATER ASSEMBLY 1 TEMPERATURE SENSOR (5)
OUT OF TOLERANCE

S. GOTCH SUBSYS LEAD: M. HIOTT

RARCHY:

ORAGE

SUB-ASSEMBLY

<table>
<thead>
<tr>
<th>CASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICH</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>2/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MID FUSELAGE
MC282-0063-0100

ATION, SHOCK, CORROSION, ELECTRICAL FAILURE

ALE:
ADING MAY CAUSE CREW TO WANT TO MANUALLY OPERATE
2P TEMPERATURE READING WITHIN TOLERANCES.
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 327

ITEM: O2 TANK HEATER ASSEMBLY 2 TEMPERATURE SENSOR (5) V45T11(-5)09A
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5) O2 TANK SUBASSEMBLY
6)
7)
8)
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td></td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td></td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td></td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td></td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [NA] B [NA] C [NA]

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
HEATER ASSEMBLY 2 CONSISTS OF HEATERS A2 AND B2 IN EACH O2 TANK. IF 5 TANKS FLY, THE B HEATERS IN TANKS 4 AND 5 WILL NOT BE OPERATIONAL. THE SENSOR IS ONLY CONNECTED TO A GAUGE; IT DOES NOT AFFECT HEATER OPERATION.
FULL OUTPUT WOULD CAUSE CREW TO WANT TO TURN THE HEATERS OFF. FAILURE CAN BE DETECTED BY CHECKING TANK FLUID TEMPERATURE OR PRESSURE SENSORS.

REFERENCES:

REPORT DATE 12/03/86
C-129
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 328

HIGHEST CRITICALITY
HDW/FUNC: 3/3
ABORT: 3/3

ITEM: O2 TANK HEATER ASSEMBLY 2 TEMPERATURE SENSOR (5) V45T11(-5)09A
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5) O2 TANK SUBASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTLS:</td>
<td></td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>TAL:</td>
<td></td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>AOA:</td>
<td></td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>ATO:</td>
<td></td>
<td>3/3</td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD CAUSE CREW TO WANT TO TURN HEATERS ON.

REFERENCES:

REPORT DATE 12/03/86 C-130
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 329

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: O2 TANK HEATER ASSEMBLY 2 TEMPERATURE SENSOR (5)
V45T11(-5)09A
FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5) O2 TANK SUBASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, SHOCK, CORROSION, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
INACCURATE READING MAY CAUSE CREW TO WANT TO MANUALLY OPERATE HEATERS TO KEEP TEMPERATURE READING WITHIN TOLERANCES.

REFERENCES:

REPORT DATE 12/03/86 C-131
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 330

ITEM: O2 TANK SUBASSEMBLY (5)
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS: 1/1</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL: 1/1</td>
<td></td>
</tr>
<tr>
<td>ORBIT:</td>
<td>1/1</td>
<td>AOA: 1/1</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO: 1/1</td>
<td></td>
</tr>
<tr>
<td>LANDING/SADF:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: CORROSION, FATIGUE, TEMPERATURE, POROSITY, OVERPRESSURIZATION

EFFECTS/RATIONALE:
LEAK IN TANK COULD CAUSE O2 TO FREEZE OTHER SYSTEMS UNDER PAYLOAD BAY AND ALSO CAUSE EXPLOSION. O2 COULD BE DEPLETED. THIS IS DETECTABLE THROUGH QUANTITY SENSORS AND CONSOLE CHARTS OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86 C-132
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 331

ITEM: O2 TANK SUBASSEMBLY (5)
FAILURE MODE: RUPTURE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORB:</td>
<td>1/1</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAVING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: OVERPRESSURIZATION, TEMPERATURE, FATIGUE

EFFECTS/RATIONALE:
RUPTURE COULD CAUSE DEPLETION OF O2 AND POSSIBLY OTHER EXPLOSIONS. SHRAPNEL MAY PUNCTURE OTHER SYSTEMS, OR EXTERIOR OF ORBITER. THIS IS DETECTABLE THROUGH QUANTITY AND PRESSURE SENSORS.

REFERENCES:

REPORT DATE 12/03/86 C-133
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
SUBSYSTEM: EPG
MDAC ID: 332

HIGHEST CRITICALITY
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: O2 TANK SUBASSEMBLY (5)
FAILURE MODE: LOSS OF ANNULUS VACUUM

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LI TOFF</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DE ORBIT</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: HOLE IN OUTER TANK

EFFECTS/RATIONALE:
CONDUCTIVE AND CONVECTIVE HEAT TRANSFER COULD OCCUR WITHOUT A VACUUM, CAUSING THE REACTANT TO HEAT UP AND BE DEPLETED QUICKLY. FAILURE COULD BE CAUSED BY VACUUM IONIZATION PUMP AND VACUUM ION PUMP PRESSURE SENSOR ON GROUND. THIS IS DETECTABLE FROM TANK QUANTITY SENSOR AND CONSOLE QUANTITY CHARTS OVER PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86
C-134
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/20/86
HIGHEST CRITICALITY
SUBSYSTEM: EPG
HDW/FUNC
MDAC ID: 333
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: O2 RELIEF PORT (1)
FAILURE MODE: RESTRICTED FLOW

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: 40V45VP015

CAUSES: BLOCKAGE, CONTAMINATION, DEBRIS

EFFECTS/RATIONALE:
THERE IS ONLY ONE O2 RELIEF PORT FOR FIVE O2 TANKS. IF BLOCKED,
COULD NOT RELIEVE OVERPRESSURIZATION AND TANKS WOULD RUPTURE.
The CRITICALITY IS 3/1R IF SAME TANK'S HEATERS FAIL ON AND CHECK
VALVE FAILS CLOSED. THIS CAN BE DETECTED BY LOOKING AT
TANK PRESSURE GAUGES OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86 C-135
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 2/1R
MDAC ID: 334 ABORT: 2/1R

ITEM: O2 TANK RELIEF VALVE (5) RV010,RV020,RV410,RV460
FAILURE MODE: FAILED OPEN (ALSO INTERNAL LEAKAGE)

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SALING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0401

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
EACH TANK RELIEF VALVE RELIEVES EXCESS PRESSURE BUILDUP IN THE TANKS ABOVE 1005 PSIG. IF VALVE IS FAILED OPEN, EARLY DEPLETION OF O2 CAN RESULT. THE CRITICALITY IS 2/1R BECAUSE IF SAME TANKS CHECK VALVE IS ALSO FAILED OPEN, COULD LOSE ALL O2. DETECTABLE FROM TANK QUANTITY AND PRESSURE SENSORS AND OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/03/86 C-136
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/1R
MDAC ID: 335 ABORT: 3/1R

ITEM: O2 TANK RELIEF VALVE (5) RV010,RV020,RV410,RV460
FAILURE MODE: FAILED CLOSED

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0401

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
POSSIBLE RUPTURE OF TANK IF PRESSURE CANNOT BE RELIEVED. THIS COULD CAUSE LOSS OF REACTANT AND ORBITER. THE CRITICALITY IS 3/1R IF SAME TANKS HEATERS FAIL ON AND CHECK VALVE FAILS CLOSED.

REFERENCES:

REPORT DATE 12/03/86 C-137
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 1/1
MDAC ID: 336 ABORT: 1/1

ITEM: O2 TANK RELIEF VALVE (5) RV010,RV020,RV410,RV460
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td>RTLS: 1/1</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td>TAL: 1/1</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA: 1/1</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO: 1/1</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0440-0401

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
EARLY DEPLETION OF O2 REACTANT, PLUS POSSIBLE EXPLOSION OR FREEZING DUE TO REACTANT LEAKING UNDER THE PAYLOAD BAY. A LEAK IS DETECTABLE OVER A PERIOD OF TIME FROM CONSOLE QUANTITY CHARTS.

REFERENCES:

REPORT DATE 12/04/86 BTK C-138
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/21/86
SUBSYSTEM: EPG
MDAC ID: 337

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 3/IR

FAILURE MODE: FAILED ON

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5) O2 TANK SUBASSEMBLY
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>1/1</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, MECHANICAL SHOCK, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
THE B HEATERS ARE NOT OPERATIONAL IN A 5 TANK CONFIGURATION, I.E. 3 SETS FOR 5 TANKS. EACH ELEMENT IS 250 WATTS. EACH TANK HAS 2 HEATER ASSEMBLIES, EACH WITH AN A AND B HEATER. FAILURE IS DETECTABLE FROM TEMPERATURE AND PRESSURE SENSORS. THIS IS CRITICALITY 3/1R BECAUSE RELIEF VALVES WOULD VENT RESULTANT EXCESSIVE PRESSURE IN TANK AND DEplete THE O2. RELIEF VALVE FLOW RATE AT FULL FLOW PRESSURE IS 164 LB/HR WHILE TANK QUANTITY IS 781 LB. TANK COULD ALSO RUPTURE 35 HOURS AFTER TANK RESIDUAL LEVEL IS REACHED, THUS 1/1.

REFERENCES:

REPORT DATE 12/03/86 C-139
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/21/86
SUBSYSTEM: EPG
MDAC ID: 338

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

FAILURE MODE: FAILS OFF

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5) O2 TANK SUBASSEMBLY
6) 7) 8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC282-0063-0100

CAUSES: VIBRATION, MECHANICAL SHOCK, ELECTRICAL FAILURE

EFFECTS/RATIONALE:
WHEN PRESSURE FALLS BELOW 100 PSI, TANK IS CONSIDERED LOST. THIS WILL ALLOW COMPLETION OF ALL ABORTS AND ASCENTS SINCE EFFECT WOULD NOT OCCUR UNTIL AFTER OMS-2. HOWEVER THE CRITICALITY IS 3/1R IF A COMBINATION OF TANK RELIEF VALVES AND MANIFOLD RELIEF VALVES FAIL OPEN. THIS COULD BE DETECTED FROM TEMPERATURE, QUANTITY, AND PRESSURE SENSORS.

REFERENCES:

REPORT DATE 12/03/86 C-140
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/21/86
SUBSYSTEM: EPG
MDAC ID: 339

ITEM: O2 TANK HEATER CONTROLLER PRESSURE SENSOR/TRANSUDER (4)
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>ACA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0185-001

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
FULL OUTPUT WOULD CAUSE HEATERS TO REMAIN OFF IN AUTOMATIC MODE.
PRESSURE WOULD HAVE TO DROP TO BELOW 100 PSI BEFORE TANK IS
CONSIDERED LOST, WHICH WOULD HAPPEN AFTER OMS2. CREW COULD CHECK
TANK PRESSURE AND TEMPERATURE SENSORS TO SOLVE PROBLEM. THIS
IS CRITICALITY 3/1R AT LIFTOFF BECAUSE TANK RELIEF VALVES STUCK
OPEN COULD CAUSE LOSS OF PRESSURE EARLY. DETECTABLE FROM TANK
PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-141
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/21/86
SUBSYSTEM: EPG
MDAC ID: 340
HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 3/1R

ITEM: O2 TANK HEATER CONTROLLER PRESSURE SENSOR/TRANSUDER (4)
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0185-001

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD CAUSE HEATERS TO BE ON ALWAYS IN AUTOMATIC MODE AND RELIEF VALVE WOULD VENT O2 AND DEPLETE IT. RELIEF VALVE FLOW RATE AT FULL FLOW PRESSURE IS 164 LB/HR WHILE TANK QUANTITY IS 781 LB.
ALSO TANK COULD RUPTURE STARTING 35 HOURS AFTER TANK RESIDUAL LEVEL IS REACHED AND HEATERS STILL ON, THUS 1/1. THIS IS DETECTABLE FROM TANK PRESSURE AND TEMPERATURE SENSORS.

REFERENCES:

REPORT DATE 12/03/86 C-142
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 1/1
MDAC ID: 341 ABORT: 3/1R

ITEM: O2 TANK HEATER CONTROLLER PRESSURE SENSOR/TRANSUDER (4)
FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/1R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0185-001

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
DEPENDS ON DEGREE OF BEING OUT OF TOLERANCE - WORST CASE IS UNION OF ZERO AND FULL OUTPUT. COULD CAUSE HEATERS TO OPERATE ERRATICALLY. DETECTABLE FROM TANK PRESSURE SENSOR.
A TANK COULD RUPTURE STARTING 35 HOURS AFTER THE TANK RESIDUAL LEVEL IS REACHED AND ITS HEATERS ARE STILL ON, THUS 1/1.

REFERENCES:

REPORT DATE 12/03/86 C-143
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/22/86
SUBSYSTEM: EPG
MDAC ID: 342

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: O2 TANK PRESSURE SENSOR (5)
FAILURE MODE: FULL OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRS D
3) OXYGEN STORAGE
4) O2 TANKS
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>RTL: 3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td>TAL: 3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>AOA: 3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td>ATO: 3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0105-0001

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
THESE PRESSURE SENSORS HAVE NO EFFECT ON OTHER COMPONENTS, THEY
ONLY DRIVE GAUGES. FULL OUTPUT WOULD CAUSE CREW TO TURN OFF
HEATERS. CREW WOULD CHECK RELIEF VALVE CRACK PRESSURE, AND
QUANTITY AND TEMPERATURE SENSORS TO SEE IF
PRESSURE READING WAS ACCURATE.

REFERENCES:

REPORT DATE 12/03/86 C-144
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/22/86

SUBSYSTEM: EPG
MDAC ID: 343

HIGHEST CRITICALITY

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/3</td>
<td>3/3</td>
</tr>
</tbody>
</table>

ITEM: O2 TANK PRESSURE SENSOR (5)
FAILURE MODE: ZERO OUTPUT

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>PRELAUNCH</th>
<th>LIFTOFF</th>
<th>ONORBIT</th>
<th>DEORBIT</th>
<th>LANDING/SAFING</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>3/3</td>
<td>3/3</td>
<td>3/3</td>
<td>3/3</td>
<td>3/3</td>
</tr>
<tr>
<td>ABORT</td>
<td>RTLS: 3/3</td>
<td>TAL: 3/3</td>
<td>AOA: 3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:
A [NA]
B [NA]
C [NA]

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0105-0001

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
ZERO OUTPUT WOULD CAUSE CREW TO TURN HEATERS ON. CREW WOULD CHECK TANK TEMPERATURE AND QUANTITY SENSORS TO SEE IF PRESSURE READING WAS ACCURATE.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/22/86
SUBSYSTEM: EPG
MDAC ID: 344

ITEM: O2 TANK PRESSURE SENSOR (5)
FAILURE MODE: OUT OF TOLERANCE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>3/3</td>
<td>AOA: 3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>3/3</td>
<td>ATO: 3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC449-0105-0001

CAUSES: VIBRATION, SHOCK, ELECTRICAL FAILURE, CONTAMINATION

EFFECTS/RATIONALE:
INACCURATE READING MAY CAUSE CREW TO WANT TO MANUALLY OPERATE HEATERS TO KEEP PRESSURE READING WITHIN TOLERANCE. CREW COULD USE TEMPERATURE AND QUANTITY SENSORS TO SEE IF PRESSURE READING IS ACCURATE. A SMALL ERROR WILL NOT CAUSE ANY PROBLEMS.

REFERENCES:

REPORT DATE 12/03/86 C-146
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/22/86
HIGHEST CRITICALITY
SUBSYSTEM: EPG
FLIGHT: 3/1R
MDAC ID: 345
ABORT: 3/1R

ITEM: O2 (PRE-FLIGHT) FILL AND VENT QD CAPS (9)
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>ONSPHER:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SARING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0010-0160

CAUSES: CONTAMINATION, WEARS OUT, CORROSION

EFFECTS/RATIONALE:
EACH TANK HAS ITS OWN VENT QD CAP AND FILL QD CAP, EXCEPT TANKS 4 AND 5 WHICH SHARE A FILL QD CAP. THE QD'S THEMSELVES ARE A LEVEL OF REDUNDANCY TO STOP LEAKS. BOTH CAP AND QD HAVE TO LEAK FOR A TANK LEAK TO OCCUR.
FAILURE OF CAP ALONE IS NOT DETECTABLE.

REFERENCES:

REPORT DATE 12/03/86 C-147
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/22/86
SUBSYSTEM: EPG
MDAC ID: 346

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: O2 (PRE-FLIGHT) FILL QUICK DISCONNECTS (4) AND VENT QD'S (5)

FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC276-0010-0110

CAUSES: CONTAMINATION, WEARS OUT, CORROSION

EFFECTS/RATIONALE:
EACH TANK HAS ITS OWN FILL AND VENT QD'S, EXCEPT TANKS 4 AND 5 SHARE 1 FILL QD. ALL QD'S ARE ALSO CAPPED FOR ADDITIONAL REDUNDANCY. BOTH CAP AND QD HAVE TO LEAK FOR A TANK LEAK TO OCCUR.
ALSO FAILURE OF TANK CHECK VALVE OPEN OR MANIFOLD RELIEF VALVE FAILED OPEN COULD CAUSE LOSS OF ALL REACTANT. FAILURE OF QD ALONE IS NOT DETECTABLE.

REFERENCES:

REPORT DATE 12/03/86 C-148
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>ITEM</th>
<th>O2 (PRE-FLIGHT) FILL QUICK DISCONNECTS (4) AND VENT QD'S (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAILURE MODE</td>
<td>INABILITY TO MATE/DEMATE</td>
</tr>
</tbody>
</table>

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:

1) EPG
2) PRSD
3) OXYGEN STORAGE
4) O2 TANKS

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:
A [NA]
B [NA]
C [NA]

LOCATION: MID Fuselage
PART NUMBER: MC276-0010-0110

CAUSES: CORROSION, BINDING, DEBRIS

EFFECTS/RATIONALE:
MISSION DELAYED IF CAN'T FILL TANKS OR RELEASE QD. ONLY PRELAUNCH PHASE IS AFFECTED. THE FILL QD ALSO FUNCTIONS AS A VERTICAL DRAIN AT PAD.

REFERENCES:

REPORT DATE 12/03/86
C-149
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPG
MDAC ID: 348

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: O2 FUEL CELL REACTANT VALVE POSITION INDICATORS
(3) V45X1150E, V45X1155E, V45X1160E
FAILURE MODE: READS OPEN WHEN VALVE CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE

PART NUMBER:

CAUSES: ELECTRICAL FAILURE, CORROSION, VIBRATION, SHOCK

EFFECTS/RATIONALE:
SENSOR IS USED TO TELL CREW OF VALVE'S POSITION. NORMALLY, ALL VALVES ARE OPEN. COULD VERIFY ACCURACY FROM FUEL CELL FLOWMETERS.

REFERENCES:

REPORT DATE 12/03/86 C-150
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/04/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPG</td>
<td>FLIGHT: 3/3</td>
<td></td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>349</td>
<td>ABORT: 3/3</td>
<td></td>
</tr>
</tbody>
</table>

ITEM: O2 FUEL CELL REACTANT VALVE POSITION INDICATORS
(3) V45X1150E, V45X1155E, V45X1160E
FAILURE MODE: READS CLOSED WHEN VALVE OPEN

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULES
5)
6)
7)
8)
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT PHASE</td>
</tr>
<tr>
<td>PRELAUNCH:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
</tr>
<tr>
<td>ONORBIT:</td>
</tr>
<tr>
<td>DEORBIT:</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE

PART NUMBER:

CAUSES: ELECTRICAL FAILURE, CORROSION, VIBRATION, SHOCK

EFFECTS/RATIONALE:
COULD VERIFY ACCURACY FROM FUEL CELL FLOWMETERS.

REFERENCES:

REPORT DATE 12/03/86 C-151
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG
FLIGHT: 3/3
MDAC ID: 350
ABORT: 3/3

ITEM: H2 FUEL CELL REACTANT VALVE POSITION INDICATORS
(3) V45X2150E, V45X2155E, V45X2160E
FAILURE MODE: READS OPEN WHEN VALVE CLOSED

LEAD ANALYST: S. Gotch
SUBSYS LEAD: M. Hiott

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULES

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE

PART NUMBER:

CAUSES: ELECTRICAL FAILURE, CORROSION, VIBRATION, SHOCK

EFFECTS/RATIONALE:
SENSOR IS USED TO TELL CREW OF VALVE'S POSITION. NORMALLY, ALL VALVES ARE OPEN. COULD VERIFY ACCURACY FROM FUEL CELL FLOWMETERS.

REFERENCES:

REPORT DATE 12/03/86 C-152
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPG
MDAC ID: 351

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: H2 FUEL CELL REACTANT VALVE POSITION INDICATORS
(3) V45X2150E, V45X2155E, V45X2160E
FAILURE MODE: READS CLOSED WHEN VALVE OPEN

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER:

CAUSES: ELECTRICAL FAILURE, CORROSION, VIBRATION, SHOCK

EFFECTS/RATIONALE:
COULD VERIFY ACCURACY FROM FUEL CELL FLOWMETERS.

REFERENCES:

REPORT DATE 12/03/86 C-153
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 352 ABORT: 3/3

ITEM:
O2 ECLSS SYSTEM SUPPLY VALVE POSITION INDICATOR
(2) V45X1080E, V45X1083E
FAILURE MODE:
READS OPEN WHEN VALVE CLOSED

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE

PART NUMBER:

CAUSES: ELECTRICAL FAILURE, CORROSION, VIBRATION, SHOCK

EFFECTS/RATIONALE:
SENSOR IS USED TO TELL CREW OF VALVE'S POSITION. NORMALLY, ALL
VALVES ARE OPEN. COULD VERIFY ACCURACY FROM FLOWMETERS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 353 ABORT: 3/3

ITEM: O2 ECLSS SYSTEM SUPPLY VALVE POSITION INDICATOR
(2) V45X1080E, V45X1083E
FAILURE MODE: READS CLOSED WHEN VALVE OPEN

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAVING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER:

CAUSES: ELECTRICAL FAILURE, CORROSION, VIBRATION, SHOCK

EFFECTS/RATIONALE:
COULD VERIFY ACCURACY FROM FLOWMETERS.

REFERENCES:

REPORT DATE 12/03/86 C-155
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86

SUBSYSTEM: EPG
MDAC ID: 354

ITEM: O2 MANIFOLD VALVE POSITION INDICATORS (2)
V45X1141E, V45X1146E

FAILURE MODE: READS OPEN WHEN VALVE CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULES

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER:

CAUSES: ELECTRICAL FAILURE, CORROSION, VIBRATION, SHOCK

EFFECTS/RATIONALE:
SENSOR IS USED TO TELL CREW OF VALVE'S POSITION. NORMALMELY, ALL VALVES ARE OPEN. THE FAILURE CAN BE VERIFIED FROM FLOWMETER.

REFERENCES:

REPORT DATE 12/03/86 C-156
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG
FLIGHT: 3/3
MDAC ID: 355
ABORT: 3/3

ITEM: O2 MANIFOLD VALVE POSITION INDICATORS (2)
V45X1141E, V45X1146E
FAILURE MODE: READS CLOSED WHEN VALVE OPEN

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) O2 VALVE MODULES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER:

CAUSES: ELECTRICAL FAILURE, CORROSION, VIBRATION, SHOCK

EFFECTS/RATIONALE:
SENSOR IS USED TO TELL CREW OF VALVE'S POSITION. THE FAILURE CAN BE VERIFIED FROM FLOWMETER.

REFERENCES:

REPORT DATE 12/03/86 C-157
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86

SUBSYSTEM: EPG
MDAC ID: 356

ITEM: 02 MANIFOLD VALVE POSITION INDICATORS (2)
V45X2141E, V45X2146E

FAILURE MODE: READS OPEN WHEN VALVE CLOSED

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULES

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td></td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE

PART NUMBER:

CAUSES: ELECTRICAL FAILURE, CORROSION, VIBRATION, SHOCK

EFFECTS/RATIONALE:
SENSOR IS USED TO TELL CREW OF VALVE'S POSITION. NORMALLY, ALL VALVES ARE OPEN. THE FAILURE CAN BE VERIFIED FROM THE FLOWMETER.

REFERENCES:

REPORT DATE 12/03/86 C-158
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPG FLIGHT: 3/3
MDAC ID: 357 ABORT: 3/3

ITEM: 02 MANIFOLD VALVE POSITION INDICATORS (2)
V45X2141E, V45X2146E
FAILURE MODE: READS CLOSED WHEN VALVE OPEN

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) HYDROGEN DISTRIBUTION
4) H2 VALVE MODULES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER:

CAUSES: ELECTRICAL FAILURE, CORROSION, VIBRATION, SHOCK

EFFECTS/RATIONALE:
SENSOR IS USED TO TELL CREW OF VALVE'S POSITION. THE FAILURE CAN BE VERIFIED FROM THE FLOWMETER.

REFERENCES:

REPORT DATE 12/03/86 C-159
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPG
MDAC ID: 358

HIGHEST CRITICALITY
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: 02 FILTER (5) FL010, FL020, FL410, FL460
FAILURE MODE: RESTRICTED FLOW, CLOGGED

LEAD ANALYST: S. GOTCH SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) 02 DISTRIBUTION
4) 02 RELIEF VALVE/FILTER PACKAGES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC286-0054-0001

CAUSES: CONTAMINATION, DEBRIS, DAMAGED ELEMENT

EFFECTS/RATIONALE:
EACH H2 AND 02 CYRO TANK HAS A FILTER FOR ITS REACTANT POSITIONED AHEAD OF ITS CHECK VALVE. THE FILTER IS REPLACED EVERY 15 FLIGHTS. IF FILTER CLOGS, REACTANTS ARE UNABLE TO GET TO FUEL CELLS, AND REACTANT IS DEPLETED OUT TANK RELIEF VALVE.
THE FAILURE CAN BE DETECTED USING TANK PRESSURE SENSOR.

REFERENCES:

REPORT DATE 12/03/86 C-160
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPG
MDAC ID: 359

HIGHEST CRITICALITY
HDW/FUNC

FLIGHT:
2/1R

ABORT:
2/1R

ITEM:
02 CHECK VALVE (1) CV020
FAILURE MODE:
FAILS OPEN (INTERNAL LEAKAGE ALSO)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABOART</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES:
VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
CV020 CHECKS FLOW INTO TANK 2. HIGHER PRESSURE DOWNSTREAM OF CHECK VALVE THAN UPSTREAM WOULD FORCE REACTANT INTO TANK LINE. LOWER PRESSURE IN TANK OR LEAK WOULD HAVE TO OCCUR IN ADDITION TO CHECK VALVE FAILURE. RESULT COULD BE LOWER CYRO FLOW TO FUEL CELLS AND POSSIBLE SHUTDOWN. FAILS SCREEN B BECAUSE NEED A TANK LEAK OR RELIEF VALVE FAILED OPEN TO NOTICE. THIS IS CRITICALITY 2/1R BECAUSE COMBINED FAILURE OF TANK RELIEF VALVE OPEN COULD LOSE VEHICLE DUE TO REACTANT LOSS.

REFERENCES:

REPORT DATE 12/03/86 C-161
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPG
MDAC ID: 360

HIGHEST CRITICALITY
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: 02 CHECK VALVE (1) CV020
FAILURE MODE: FAILS CLOSED (RESTRICTED FLOW ALSO)

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/1R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: MID FUSELAGE
PART NUMBER: MC284-0428-0010

CAUSES: VIBRATION, MECHANICAL SHOCK, CORROSION, CONTAMINATION, JAMMING, FATIGUE

EFFECTS/RATIONALE:
REACTANT IS UNABLE TO LEAVE TANK. THIS DEPLETES H2 OUT THE RELIEF VALVE AND COULD CAUSE FUEL CELL SHUTDOWN. THIS IS DETECTABLE FROM TANK PRESSURE SENSOR. FAILURE OF RELIEF VALVE CLOSED ALSO COULD CAUSE TANK EXPLOSION, IF HEATER IS ON IN MANUAL MODE OR FAILED ON.

REFERENCES:

REPORT DATE 12/03/86 C-162
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: 02 CHECK VALVE (1) CV020
FAILURE MODE: EXTERNAL LEAKAGE

LEAD ANALYST: S. GOTCH
SUBSYS LEAD: M. HIOTT

BREAKDOWN HIERARCHY:
1) EPG
2) PRSD
3) OXYGEN DISTRIBUTION
4) 02 VALVE MODULE 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td></td>
<td>1/1</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:
A [NA]
B [NA]
C [NA]

LOCATION: MID FUSELAGE

PART NUMBER: MC284-0428-0010

CAUSES: CORROSION, FATIGUE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
REACTANT LEAKAGE INTO AREA UNDER PAYLOAD BAY COULD CAUSE EXPLOSION OR FREEZE OTHER SYSTEMS. LEAK MAY RESULT IN LOW OR NO CRYO FLOW INTO FUEL CELLS. FAILURE IS DETECTABLE FROM TANK QUANTITY AND PRESSURE SENSORS AND MANIFOLD PRESSURE SENSORS OVER A PERIOD OF TIME.

REFERENCES:

REPORT DATE 12/03/86
C-163
APPENDIX D
POTENTIAL CRITICAL ITEMS

<table>
<thead>
<tr>
<th>MDAC ID</th>
<th>ITEM</th>
<th>FAILURE MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>H2 (pre-flight) fill and vent QD's</td>
<td>External leakage</td>
</tr>
<tr>
<td>202</td>
<td>H2 (pre-flight) fill and vent QD caps</td>
<td>External leakage</td>
</tr>
<tr>
<td>207</td>
<td>H2 tank heater controller pressure sensor/transducer</td>
<td>Zero output</td>
</tr>
<tr>
<td>208</td>
<td>H2 tank heater controller pressure sensor/transducer</td>
<td>Out of tolerance</td>
</tr>
<tr>
<td>209</td>
<td>H2 tank heater elements A&B</td>
<td>Fails on</td>
</tr>
<tr>
<td>211</td>
<td>H2 tank relief valve</td>
<td>Fails open (also internal leakage)</td>
</tr>
<tr>
<td>213</td>
<td>H2 tank relief valve</td>
<td>External leakage</td>
</tr>
<tr>
<td>216</td>
<td>H2 tank subassembly</td>
<td>External leakage</td>
</tr>
<tr>
<td>217</td>
<td>H2 tank subassembly</td>
<td>Rupture</td>
</tr>
<tr>
<td>218</td>
<td>H2 tank subassembly</td>
<td>Loss of annulus vacuum</td>
</tr>
<tr>
<td>228</td>
<td>H2 lines, components and fittings</td>
<td>External leakage</td>
</tr>
<tr>
<td>229</td>
<td>H2 lines, components and fittings</td>
<td>Restricted flow</td>
</tr>
<tr>
<td>231</td>
<td>H2 manifold 1 relief valve RV031</td>
<td>Fails open (also internal leakage)</td>
</tr>
<tr>
<td>233</td>
<td>H2 manifold 1 relief valve RV031</td>
<td>External leakage</td>
</tr>
<tr>
<td>234</td>
<td>H2 manifold 2 relief valve RV041</td>
<td>Fails open (also internal leakage)</td>
</tr>
<tr>
<td>236</td>
<td>H2 manifold 2 relief valve RV041</td>
<td>External leakage</td>
</tr>
<tr>
<td>237</td>
<td>H2 check valves - CV031, CV041</td>
<td>Fails open (also internal leakage)</td>
</tr>
<tr>
<td>239</td>
<td>H2 check valves - CV031, CV041</td>
<td>External leakage</td>
</tr>
<tr>
<td>240</td>
<td>H2 check valve - CV030</td>
<td>Fails open (also internal leakage)</td>
</tr>
<tr>
<td>242</td>
<td>H2 check valve - CV030</td>
<td>External leakage</td>
</tr>
<tr>
<td>243</td>
<td>H2 check valve - CV040</td>
<td>Fails open (also internal leakage)</td>
</tr>
<tr>
<td>245</td>
<td>H2 check valve - CV040</td>
<td>External leakage</td>
</tr>
<tr>
<td>246</td>
<td>H2 horizontal drain QD</td>
<td>External leakage</td>
</tr>
<tr>
<td>248</td>
<td>H2 horizontal drain cap</td>
<td>External leakage</td>
</tr>
<tr>
<td>254</td>
<td>H2 manifold 1 solenoid crossover valve - CV031</td>
<td>External leakage</td>
</tr>
<tr>
<td>255</td>
<td>H2 fuel cell 1 solenoid reactant supply valve LV033</td>
<td>Fails open (also internal leakage)</td>
</tr>
<tr>
<td>256</td>
<td>H2 fuel cell 1 solenoid reactant supply valve LV033</td>
<td>Fails closed</td>
</tr>
</tbody>
</table>
H2 fuel cell 1 solenoid reactant supply valve LV033
H2 fuel cell 2 solenoid reactant supply valve LV043
H2 fuel cell 2 solenoid reactant supply valve LV043
H2 fuel cell 3 solenoid reactant supply valve LV044
H2 fuel cell 3 solenoid reactant supply valve LV044
H2 manifold 2 solenoid crossover valve - LV041
H2 solenoid GSE supply valve - LV045
H2 solenoid GSE supply valve - LV045
H2 fill GSE supply T-O QD - PD035
02 check valve - CV010
02 check valve - CV010
02 solenoid GSE supply valve - LV015
02 solenoid GSE supply valve - LV015
02 solenoid ECLSS system 1 supply valve - LV012
02 solenoid ECLSS system 1 supply valve - LV012
02 solenoid ECLSS system 1 supply valve - LV012
02 solenoid ECLSS system 2 supply valve - LV022
02 solenoid ECLSS system 2 supply valve - LV022
02 solenoid ECLSS system 2 supply valve - LV022
02 solenoid ECLSS system 2 supply valve - LV022
02 fill GSE supply T-O QD - PD015
02 fuel cell 1 solenoid reactant supply valve LV013
02 fuel cell 1 solenoid reactant supply valve LV013
02 fuel cell 1 solenoid reactant supply valve LV013
02 manifold 1 solenoid crossover valve - LV011
02 manifold 2 solenoid crossover valve - LV021

External leakage
Fails open (also internal leakage)
Fails closed
External leakage
Fails open (also internal leakage)
Fails closed
External leakage
Fails open (also internal leakage)
External leakage
External leakage
Fails open (also internal leakage)
Fails closed
External leakage
Fails open (also internal leakage)
Fails closed
External leakage
External leakage
Fails open (also internal leakage)
Fails closed
External leakage
External leakage
External leakage
02 horizontal drain QD
02 horizontal drain cap
02 fuel cell 3 solenoid reactant supply valve LV024
02 fuel cell 3 solenoid reactant supply valve LV024
02 fuel cell 3 solenoid reactant supply valve LV024
02 fuel cell 2 solenoid reactant supply valve LV023
02 fuel cell 2 solenoid reactant supply valve LV023
02 fuel cell 2 solenoid reactant supply valve LV023
02 manifold 1 relief valve - RV011
02 manifold 1 relief valve - RV011
02 manifold 2 relief valve - RV021
02 manifold 2 relief valve - RV021
02 check valve - CV021
02 check valve - CV021
02 lines, components and fittings
02 lines, components and fittings
02 tank subassembly
02 tank subassembly
02 tank subassembly
02 tank relief valves
02 tank relief valves
02 tank heater elements A1, A2, B1, B2
02 tank heater controller pressure sensor/transducer
02 tank heater controller pressure sensor/transducer
02 (pre-flight) fill and vent QD caps
02 (pre-flight) fill and vent QD's
02 check valve - CV020
02 check valve - CV020

External leakage
External leakage
Fails open (also internal leakage)
Fails closed
External leakage
Fails open (also internal leakage)
Fails closed
Fails open (also internal leakage)
External leakage
Rupture
Loss of annulus vacuum
Fails open (also internal leakage)
External leakage
Fails on
Zero output
Out of tolerance
External leakage
External leakage
Fails open (also internal leakage)
External leakage

D-3