INDEPENDENT ORBITER ASSESSMENT

ANALYSIS OF THE
ELECTRICAL POWER
DISTRIBUTION AND CONTROL/
REMOTE MANIPULATOR SYSTEM
SUBSYSTEM

12 FEBRUARY 1987
INDEPENDENT ORBITER ASSESSMENT
ANALYSIS OF THE ELECTRICAL POWER DISTRIBUTION AND
CONTROL/REMOTE MANIPULATOR SYSTEM SUBSYSTEM

12 FEBRUARY 1987

This working paper is submitted to NASA under
Task Order No. VA86001, Contract NAS 9-17650
CONTENTS

<table>
<thead>
<tr>
<th>Sections</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 EXECUTIVE SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2.0 INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Purpose</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Scope</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Analysis Approach</td>
<td>5</td>
</tr>
<tr>
<td>2.4 EPD&C/RMS Ground Rules and Assumptions</td>
<td>5</td>
</tr>
<tr>
<td>2.5 Analysis Subsystem Identification Coding</td>
<td>6</td>
</tr>
<tr>
<td>3.0 SUBSYSTEM DESCRIPTION</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Design and Function</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Interfaces and Location</td>
<td>8</td>
</tr>
<tr>
<td>3.3 Hierarchy</td>
<td>8</td>
</tr>
<tr>
<td>4.0 ANALYSIS RESULTS</td>
<td>16</td>
</tr>
<tr>
<td>4.1 Analysis Results - Remote Manipulator Arm</td>
<td>16</td>
</tr>
<tr>
<td>4.2 Analysis Results - Manipulator Deploy Control</td>
<td>17</td>
</tr>
<tr>
<td>4.3 Analysis Results - Manipulator Latch Control</td>
<td>17</td>
</tr>
<tr>
<td>4.4 Analysis Results - Manipulator Arm Shoulder Jettison Jettison</td>
<td>17</td>
</tr>
<tr>
<td>5.0 REFERENCES</td>
<td>18</td>
</tr>
<tr>
<td>APPENDIX A ACRONYMS</td>
<td>A-1</td>
</tr>
<tr>
<td>APPENDIX B DEFINITIONS, GROUND RULES, AND ASSUMPTIONS</td>
<td>B-1</td>
</tr>
<tr>
<td>B.1 Definitions</td>
<td>B-2</td>
</tr>
<tr>
<td>B.2 Project Level Ground Rules and Assumptions</td>
<td>B-4</td>
</tr>
<tr>
<td>B.3 Subsystem Specific Ground Rules and Assumptions</td>
<td>B-6</td>
</tr>
<tr>
<td>APPENDIX C DETAILED ANALYSIS</td>
<td>C-1</td>
</tr>
<tr>
<td>APPENDIX D POTENTIAL CRITICAL ITEMS</td>
<td>D-1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1 - EPD&C/RMS ANALYSIS OVERVIEW SUMMARY ... 2
Figure 2 - EPD&C/RMS SUBSYSTEM (05-6I) OVERVIEW ... 9
Figure 3 - EPD&C/RMS REMOTE MANIPULATOR ARM (05-6IA) 10
Figure 4 - EPD&C/RMS MANIPULATOR DEPLOY CONTROL (05-6IB) 11
Figure 5 - EPD&C/RMS MANIPULATOR LATCH CONTROL (05-6IC) 12
Figure 6 - EPD&C/RMS MANIPULATOR ARM SHOULDER JETTISON AND RETENTION ARM JETTISON (05-6ID) ... 15

LIST OF TABLES

Table I - SUMMARY OF IOA FAILURE MODES AND CRITICALITIES 16
Table II - SUMMARY OF IOA POTENTIAL CRITICAL ITEMS .. 16
Independent Orbiter Assessment
Analysis of the Electrical Distribution and Control/
Remote Manipulator System Subsystem

1.0 EXECUTIVE SUMMARY

The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). Direction was given by the Space Transportation System (STS) Orbiter and Government Furnished Equipment (GFE) Projects Office to perform the hardware analysis using the instructions and ground rules defined in National Space Transportation System (NSTS) 22206, Instructions for Preparation of FMEA and CIL, 10 October 1986.

The IOA approach features a top-down analysis of the Electrical Power Distribution and Control (EPD&C)/Remote Manipulator System (RMS) hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained in the NASA FMEA/CIL documentation. This report documents (Appendix C) the results of the independent analysis of the EPD&C/RMS (both port and starboard) hardware.

The EPD&C/RMS subsystem hardware provides the electrical power and power control circuitry required to safely deploy, operate, control, and stow or guillotine and jettison two (one port and one starboard) RMSs. The EPD&C/RMS subsystem is subdivided into the four following functional divisions:

- Remote Manipulator Arm
- Manipulator Deploy Control
- Manipulator Latch Control
- Manipulator Arm Shoulder Jettison and Retention Arm Jettison

The IOA analysis process utilized available EPD&C/RMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based on the severity of the effect for each failure mode.

Figure 1 presents a summary of the failure criticalities for each of the four subdivisions of the EPD&C/RMS subsystem. A summary of the number of failure modes, by criticality combination, is also presented below with Hardware (HW) criticality on the left of the slash and Functional (F) criticality on the right of the slash or (HW/F).
EPD&C/RMS Analysis Summary

<table>
<thead>
<tr>
<th>CRIT</th>
<th># FMEAS</th>
<th># PCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>2/1R</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td>2/2</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>3/1R</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/2R</td>
<td>109</td>
<td>0</td>
</tr>
<tr>
<td>3/3</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>345</td>
<td>117</td>
</tr>
</tbody>
</table>

Remote Manipulator Arm

<table>
<thead>
<tr>
<th>CRIT</th>
<th># FMEAS</th>
<th># PCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2/1R</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>2/2</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>3/1R</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/2R</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3/3</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>48</td>
<td>31</td>
</tr>
</tbody>
</table>

Manipulator Arm Shldr/Retn Arm & Jett

<table>
<thead>
<tr>
<th>CRIT</th>
<th># FMEAS</th>
<th># PCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2/1R</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>2/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/1R</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/2R</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3/3</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>79</td>
<td>72</td>
</tr>
</tbody>
</table>

Manipulator Latch Control

<table>
<thead>
<tr>
<th>CRIT</th>
<th># FMEAS</th>
<th># PCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/1R</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/1R</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/2R</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>3/3</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>144</td>
<td>0</td>
</tr>
</tbody>
</table>

Manipulator Deploy Control

<table>
<thead>
<tr>
<th>CRIT</th>
<th># FMEAS</th>
<th># PCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2/1R</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2/2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3/1R</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/2R</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>3/3</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>74</td>
<td>14</td>
</tr>
</tbody>
</table>

Figure 1 - EPD&C/RMS Analysis Summary Overview
Summary of IOA Failure Modes by Criticality (HW/F)

<table>
<thead>
<tr>
<th>Criticality:</th>
<th>1/1</th>
<th>2/1R</th>
<th>2/2</th>
<th>3/1R</th>
<th>3/2R</th>
<th>3/3</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>23</td>
<td>79</td>
<td>15</td>
<td>0</td>
<td>109</td>
<td>119</td>
<td>345</td>
</tr>
</tbody>
</table>

For each failure mode identified, the criticality and redundancy screens were examined to identify critical items. A summary of Potential Critical Items (PCIs) is presented as follows:

Summary of IOA Potential Critical Items (HW/F)

<table>
<thead>
<tr>
<th>Criticality:</th>
<th>1/1</th>
<th>2/1R</th>
<th>2/2</th>
<th>3/1R</th>
<th>3/2R</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>23</td>
<td>79</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>117</td>
</tr>
</tbody>
</table>
2.0 INTRODUCTION

2.1 Purpose

The STS-51L Challenger accident prompted the NASA to readdress safety policies, concepts, and rationale being used in the National Space Transportation System (NSTS). The NSTS Office has undertaken the task of reevaluating the FMEA/CIL for the Space Shuttle design. The MDAC is providing an independent assessment of the Orbiter FMEA/CIL reevaluation results for completeness and technical accuracy.

2.2 Scope

The scope of the independent FMEA/CIL assessment activity encompasses those Shuttle Orbiter subsystems and Government Furnished Equipment (GFE) hardware identified in the Space Shuttle Independent FMEA/CIL Assessment Contractor Statement of Work. Each subsystem analysis addresses hardware, functions, internal and external interfaces, and operational requirements for all mission phases.
2.2 Analysis Approach

The independent analysis approach is a top-down analysis utilizing as-built drawings to breakdown the respective subsystem into components and low-level hardware items. Each hardware item is evaluated for failure mode, effects, and criticality. These data are documented in the respective subsystem analysis report, and used to assess the NASA and Prime Contractor FMEA/CIL reevaluation results. The IOA analysis approach is summarized in the following steps 1.0 through 3.0. Step 4.0 summarizes the assessment of the NASA and Prime Contractor FMEAs/CILs that is performed and documented at a later date.

Step 1.0 Subsystem Familiarization

1.1 Define subsystem functions
1.2 Define subsystem components
1.3 Define subsystem specific ground rules and assumptions

Step 2.0 Define Subsystem Analysis Diagram

2.1 Define subsystem
2.2 Define major assemblies
2.3 Define detailed subsystems representations

Step 3.0 Define Failure Events

3.1 Construct matrix of failure modes
3.2 Document IOA analysis results

Step 4.0 Compare IOA Analysis Data to NASA FMEA/CIL

4.1 Resolve differences
4.2 Review in-house
4.3 Document assessment issues
4.4 Forward findings to Project Manager

2.4 Ground Rules and Assumptions

The EPD&C/RMS specific ground rules and assumptions used in the IOA are defined in Appendix B.
2.5 Analysis Subsystem Interfacing Identification Coding

In order to provide for ease of cross-referencing and comparisons of subsystems, the analysis of the EPD&C/RMS subsystem is further subdivided into the four separate subdivisions that comply with the EPD&C/Interfacing Subsystem Identifiers defined in Tables 4.0 and 5.0, Rockwell International Space Division Reliability Desk Instruction No. 100-2G, Flight Hardware Failure Mode Effects Analysis (FMEA) & Critical Items List (CIL), dated January 31, 1984.

The EPD&C/RMS subsystem interfacing identifiers and subdivision names are as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-6</td>
<td>Electrical Power Distribution and Control (EPD&C)</td>
</tr>
<tr>
<td>05-6IA</td>
<td>Remote Manipulator Arm</td>
</tr>
<tr>
<td>05-6IB</td>
<td>Manipulator Deploy Control</td>
</tr>
<tr>
<td>05-6IC</td>
<td>Manipulator Latch Control</td>
</tr>
<tr>
<td>05-6ID</td>
<td>Manipulator Arm Shoulder Jettison and Retention Arm Jettison</td>
</tr>
</tbody>
</table>
3.0 SUBSYSTEM DESCRIPTION

3.1 Design and Function

The EPD&C/RMS subsystem provides the electrical power and power control circuitry required to safely deploy, operate, control, and stow one port and one starboard RMS. The EPD&C/RMS is a subset of the Orbiter EPD&C subsystem and uses the same three main busses and the same type of distribution and control hardware that is used to supply electrical power to the rest of the space shuttle subsystems. In addition, electrical power and control circuitry is provided to guillotine the appropriate cabling and jettison either or both the remote manipulator arms in the event it becomes necessary for crew/vehicle safety.

Although the EPD&C/RMS subsystem is designed to supply the required electrical power to both a port and a starboard RMS on a given mission, only one RMS can be powered-on at a given time. The port and starboard RMSs are essentially mirror images of one another. Some of the EPD&C/RMS electrical power control switches are common to both the port and starboard systems and some switches are dedicated to one or the other RMS. The port and starboard EPD&C/RMS subsystems are essentially identical in design. The port and starboard systems do differ in that power and control bus assignments are not the same for both systems.

The EPD&C/RMS subsystem consists of the following subdivisions:

1. The EPD&C/RMS Remote Manipulator Arm (05-6IA) subdivision consists of the hardware to provide Main Bus 28 volts Direct Current (DC) and 115 volts, three-phase (3-PH) and single-phase (1-PH), 400 Hertz (Hz) Alternating Current (AC) primary and backup (standby redundant) power to both the port and starboard (only one at a time) Remote Manipulator Arms for operation of its control electronics, heaters, lights and drive motors.

2. The EPD&C/RMS Manipulator Deploy Control (05-6IB) subdivision consists of the hardware to provide Main Bus 28 volts DC and 115 volts, 3-phase (3-PH), 400 Hz AC power to the Motor Control Assemblies (MCAs) to control power to the two electrical motors that drive the actuator to physically drive the appropriate Manipulator Positioning Mechanism (MPM) to stow or deploy the port and starboard Remote Manipulator Arms.
3. The EPD&C/RMS Manipulator Latch Control (05-6IC) subdivision consists of the hardware to provide Main Bus 28 volts DC and 115 volts, 3-phase (3-PH), 400 Hz AC power to the MCAs to control power to the three sets of electrical motor pairs that drive the retention latch actuators to release or latch position. There are three retention latch mechanisms with one located at each of the forward, mid, and aft positions for the port arm and another set for the starboard arm.

4. The EPD&C/RMS Manipulator Arm Shoulder Jettison and Retention Arm Jettison (05-6ID) subdivision consists of the hardware to provide the 28 volts DC and control switching to safely arm and fire the Pyro Initiator Controllers (PICs) that enable detonation of the explosives to guillotine the necessary RMS cables and jettison either or both the port and/or starboard arms if it becomes necessary for crew/vehicle safety.

3.2 Interfaces and Locations

The remote manipulator arm is attached to the Orbiter longeron (port, starboard, or both) through a roll-out deployment mechanism. The RMS is operated by a crewmember using direct viewing and Closed Circuit Television (CCTV) from the Display and Control (D&C) station on the aft flight deck. Most of the EPD&C/RMS switches are located on panels A8A2 and A14. The Payload Bay Mechanical (PLBM) power switches that control the power to the Motor Control Assemblies are located on panel R13A1 in the cockpit and the circuit breakers are located on the standard circuit breaker panels.

3.3 Hierarchy

Figure 2 illustrates the hierarchy of the EPD&C/RMS and the corresponding subdivisions. The subdivisions are represented in Figures 3 through 6.
Figure 2 - EP&CC/RMS SUBSYSTEM (05-61) OVERVIEW
Figure 3 - EPD&C/RMS REMOTE MANIPULATOR ARM (05-6IA)
Figure 4 - EPD&C/RMS MANIPULATOR DEPLOY CONTROL (05-61B)
Figure 5 - EPD&C/RMS MANIPULATOR LATCH CONTROL (05-6IC)
Figure 5 - EPD&C/RMS MANIPULATOR LATCH CONTROL (05-6IC) - CONTINUED
Figure 5 - EPD&C/RMS MANIPULATOR LATCH CONTROL (05-6IC) - CONCLUDED
Figure 6 - EPD&C/RMS MANIPULATOR ARM SHOULDER JETTISON AND RETENTION ARM JETTISON (05-6ID)
4.0 ANALYSIS RESULTS

Detailed analysis results for each of the identified failure modes are presented in Appendix C. Table I presents a summary of the failure criticalities for each of the four major subdivisions of the RMS/EPD&C. Further discussions of each of the subdivisions and the applicable failure modes is provided in subsequent paragraphs.

<table>
<thead>
<tr>
<th>Criticality:</th>
<th>1/1</th>
<th>2/IR</th>
<th>2/2</th>
<th>3/1R</th>
<th>3/2R</th>
<th>3/3</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-6IA</td>
<td>3</td>
<td>15</td>
<td>13</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>48</td>
</tr>
<tr>
<td>05-6IB</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>74</td>
</tr>
<tr>
<td>05-6IC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>70</td>
<td>74</td>
<td>144</td>
</tr>
<tr>
<td>05-6ID</td>
<td>10</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>79</td>
</tr>
<tr>
<td>TOTAL</td>
<td>23</td>
<td>79</td>
<td>15</td>
<td>0</td>
<td>109</td>
<td>119</td>
<td>345</td>
</tr>
</tbody>
</table>

Of the three hundred and forty-five (345) failure modes analyzed, twenty-three (23) single failures were determined to result in possible loss of crew or vehicle, and fifteen (15) were determined to result in loss of mission. A summary of the potential critical items is presented in Table II. Appendix D presents a cross reference between each Potential Critical Item (PCI) and a specific worksheet in appendix C.

<table>
<thead>
<tr>
<th>Criticality:</th>
<th>1/1</th>
<th>2/IR</th>
<th>2/2</th>
<th>3/1R</th>
<th>3/2R</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>23</td>
<td>79</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>117</td>
</tr>
</tbody>
</table>

4.1 Analysis Results - Remote Manipulator Arm (05-6IA)

The EPD&C/RMS Remote Manipulator Arm subdivision provides the DC and AC electrical power to the port and the starboard systems for operation of the control electronics, heaters, lights and drive motors. There are forty-eight (48) failure modes identified for this subdivision. Of these, three (3) are Criticality 1/1; fifteen (15) are Criticality 2/1R; thirteen (13) are Criticality 2/2; eight (8) are Criticality 3/2R; and nine (9) are Criticality 3/3.
4.2 Analysis Result - Manipulator Deploy Control (05-6IB)

The EPD&C/RMS Manipulator Deploy Control subdivision provides the DC and AC electrical power to the port and the starboard systems for control and operation of the Manipulator Positioning Mechanisms to stow and deploy the respective arms. There are seventy-four (74) failure modes identified for this division. Of these, ten (10) are Criticality 1/1; two (2) are Criticality 2/1R; two (2) are Criticality 2/2; thirty (30) are Criticality 3/2R; and thirty (30) are Criticality 3/3.

4.3 Analysis Results - Manipulator Latch Control (05-6IC)

The EPD&C/RMS Manipulator Latch Control subdivision provides the DC and AC electrical power to the port and the starboard systems for control and operation of the retention latch actuators to latch and release the respective forward, mid and aft retention latch mechanisms. There are one hundred and forty-four (144) failure modes identified for this division. Of these, seventy (70) are Criticality 3/2R; and seventy-four (74) are Criticality 3/3.

4.4 Analysis Results - Manipulator Arm Shoulder Jettison and Retention Arm Jettison (05-6ID)

The EPD&C/RMS Manipulator Arm Shoulder Jettison and Retention Arm Jettison (05-6ID) subdivision provides the 28 volts DC and control switching to safely arm and fire the Pyro Initiator Controllers (PICs) that enable the detonation of the explosives to guillotine the necessary RMS cables and jettison either or both the port or starboard arms if it becomes necessary for crew/vehicle safety. There are seventy-nine (79) failure modes identified for this division. Of these, ten (10) are Criticality 1/1; sixty-two are (62) Criticality 2/1R; one is Criticality 3/2R; and six (6) are Criticality 3/3.
5.0 REFERENCES

Reference documentation available from NASA and Rockwell International Space Division was used in the analysis. The documentation used in the analysis includes the following:

1. NSTS 22206, Instructions for Preparation of Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL), Oct. 10, 1986

3. VS72-956099, Rockwell International Electrical Schematics, Remote Manipulator System

APPENDIX A

ACRONYMS and ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>AOA</td>
<td>Abort Once Around</td>
</tr>
<tr>
<td>AMP</td>
<td>Ampere</td>
</tr>
<tr>
<td>ATO</td>
<td>Abort To Orbit</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>CIL</td>
<td>Critical Items List</td>
</tr>
<tr>
<td>CKT</td>
<td>Circuit</td>
</tr>
<tr>
<td>CUR</td>
<td>Current</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>EPD&C</td>
<td>Electrical Power Distribution and Control</td>
</tr>
<tr>
<td>FMC</td>
<td>Forward Motor Controller</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Mode Effects Analysis</td>
</tr>
<tr>
<td>FPC</td>
<td>Forward Power Controller</td>
</tr>
<tr>
<td>FUNC</td>
<td>Functional</td>
</tr>
<tr>
<td>FWD</td>
<td>Forward</td>
</tr>
<tr>
<td>GUIL</td>
<td>Guillotine</td>
</tr>
<tr>
<td>HDW</td>
<td>Hardware</td>
</tr>
<tr>
<td>HERM</td>
<td>Hermetically</td>
</tr>
<tr>
<td>HW/F</td>
<td>Hardware/Functional</td>
</tr>
<tr>
<td>HZ</td>
<td>Hertz (cycles per second)</td>
</tr>
<tr>
<td>IOA</td>
<td>Independent Orbiter Analysis</td>
</tr>
<tr>
<td>JETT</td>
<td>Jettison</td>
</tr>
<tr>
<td>LIM</td>
<td>Limiting</td>
</tr>
<tr>
<td>MCIU</td>
<td>Manipulator Controller Interface Unit</td>
</tr>
<tr>
<td>MDAC</td>
<td>McDonnell Douglas Astronautics Company</td>
</tr>
<tr>
<td>MDM</td>
<td>Multiplexer/Demultiplexer</td>
</tr>
<tr>
<td>MFR</td>
<td>Manned Foot Restraint</td>
</tr>
<tr>
<td>MMC</td>
<td>Mid Motor Controller</td>
</tr>
<tr>
<td>MN</td>
<td>Main 28 VDC Power Bus</td>
</tr>
<tr>
<td>MPC</td>
<td>Mid Power Controller</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NSTS</td>
<td>National Space Transportation System</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>OA</td>
<td>Operational Aft</td>
</tr>
<tr>
<td>OF</td>
<td>Operational Forward</td>
</tr>
</tbody>
</table>

A-1
ACRONYMS and ABBREVIATIONS (Cont'd)

P - Pass
PBM - Payload Bay Mechanical
PCA - Power Controller Assembly
PCI - Potential Critical Item
PH - Phase
PIC - Pyro Initiator Controller
POS - Position
PYRO - Pyrotechnic
RMS - Remote Manipulator System
RPC - Remote Power Controller
RTLS - Return To Launch Site
STBD - Starboard
TAL - TransAtlantic Abort Landing
VAC - Volts Alternating Current
VDC - Volts Direct Current
1-PH - Single Phase
3-PH - Three Phase
APPENDIX B

DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions
B.2 Project Level Ground Rules and Assumptions
B.3 Subsystem-Specific Ground Rules and Assumptions
APPENDIX B
DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions

Definitions contained in NSTS 22206, Instructions For Preparation of FMEA/CIL, 10 October 1986, were used with the following amplifications and additions.

INTACT ABORT DEFINITIONS:

RTLS - begins at transition to OPS 6 and ends at transition to OPS 9, post-flight

TAL - begins at declaration of the abort and ends at transition to OPS 9, post-flight

AOA - begins at declaration of the abort and ends at transition to OPS 9, post-flight

ATO - begins at declaration of the abort and ends at transition to OPS 9, post-flight

CREDIBLE (CAUSE) - an event that can be predicted or expected in anticipated operational environmental conditions. Excludes an event where multiple failures must first occur to result in environmental extremes

CONTINGENCY CREW PROCEDURES - procedures that are utilized beyond the standard malfunction procedures, pocket checklists, and cue cards

EARLY MISSION TERMINATION - termination of onorbit phase prior to planned end of mission

EFFECTS/RATIONALE - description of the case which generated the highest criticality

HIGHEST CRITICALITY - the highest functional criticality determined in the phase-by-phase analysis

MAJOR MODE (MM) - major sub-mode of software operational sequence (OPS)

MC - Memory Configuration of Primary Avionics Software System (PASS)

MISSION - assigned performance of a specific Orbiter flight with payload/objective accomplishments including orbit phasing and altitude (excludes secondary payloads such as GAS cans, middeck P/L, etc.)
MULTIPLE ORDER FAILURE - describes the failure due to a single cause or event of all units which perform a necessary (critical) function

OFF-NOMINAL CREW PROCEDURES - procedures that are utilized beyond the standard malfunction procedures, pocket checklists, and cue cards

OPS - software operational sequence

PRIMARY MISSION OBJECTIVES - worst case primary mission objectives are equal to mission objectives

PHASE DEFINITIONS:

PRELAUNCH PHASE - begins at launch count-down Orbiter power-up and ends at moding to OPS Major Mode 102 (liftoff)

LIFTOFF MISSION PHASE - begins at SRB ignition (MM 102) and ends at transition out of OPS 1 (Synonymous with ASCENT)

ONORBIT PHASE - begins at transition to OPS 2 or OPS 8 and ends at transition out of OPS 2 or OPS 8

DEORBIT PHASE - begins at transition to OPS Major Mode 301 and ends at first main landing gear touchdown

LANDING/SAFING PHASE - begins at first main gear touchdown and ends with the completion of post-landing safing operations
B.2 IOA Project Level Ground Rules and Assumptions

The philosophy embodied in NSTS 22206, Instructions for Preparation of FMEA/CIL, 10 October 1986, was employed with the following amplifications and additions.

1. The operational flight software is an accurate implementation of the Flight System Software Requirements (FSSRs).

 RATIONALE: Software verification is out-of-scope of this task.

2. After liftoff, any parameter which is monitored by system management (SM) or which drives any part of the Caution and Warning System (C&W) will support passage of Redundancy Screen B for its corresponding hardware item.

 RATIONALE: Analysis of on-board parameter availability and/or the actual monitoring by the crew is beyond the scope of this task.

3. Any data employed with flight software is assumed to be functional for the specific vehicle and specific mission being flown.

 RATIONALE: Mission data verification is out-of-scope of this task.

4. All hardware (including firmware) is manufactured and assembled to the design specifications/drawings.

 RATIONALE: Acceptance and verification testing is designed to detect and identify problems before the item is approved for use.

5. All Flight Data File crew procedures will be assumed performed as written, and will not include human error in their performance.

 RATIONALE: Failures caused by human operational error are out-of-scope of this task.
6. All hardware analyses will, as a minimum, be performed at the level of analysis existent within NASA/Prime Contractor Orbiter FMEA/CILs, and will be permitted to go to greater hardware detail levels but not lesser.

RATIONALE: Comparison of IOA analysis results with other analyses requires that both analyses be performed to a comparable level of detail.

7. Verification that a telemetry parameter is actually monitored during AOS by ground-based personnel is not required.

RATIONALE: Analysis of mission-dependent telemetry availability and/or the actual monitoring of applicable data by ground-based personnel is beyond the scope of this task.

8. The determination of criticalities per phase is based on the worst case effect of a failure for the phase being analyzed. The failure can occur in the phase being analyzed or in any previous phase, whichever produces the worst case effects for the phase of interest.

RATIONALE: Assigning phase criticalities ensures a thorough and complete analysis.

9. Analysis of wire harnesses, cables, and electrical connectors to determine if FMEAs are warranted will not be performed nor FMEAs assessed.

RATIONALE: Analysis was substantially complete prior to NSTS 22206 ground rule redirection.

10. Analysis of welds or brazed joints that cannot be inspected will not be performed nor FMEAs assessed.

RATIONALE: Analysis was substantially complete prior to NSTS 22206 ground rule redirection.

11. Emergency system or hardware will include burst discs and will exclude the EMU Secondary Oxygen Pack (SOP), pressure relief valves and the landing gear pyrotechnics.

RATIONALE: Clarify definition of emergency systems to ensure consistency throughout IOA project.
APPENDIX B (cont'd)
DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.3 EPD&C/RMS-Specific Ground Rules and Assumptions

The IOA analysis was performed to the component level wherever it was deemed appropriate and the components were identifiable on the drawings. The analysis was performed to the assembly level for those assemblies that are common to general EPD&C usage. The analysis considered the worst case effects of the hardware or functional failure on the subsystem, mission, and crew and vehicle safety.

1. Component age life was not considered in the analysis.

 RATIONALE: Component age analysis is beyond the scope of this task.

2. A RMS mission is considered to be uncradling, grappling a berthed payload, unberthing it, deploying it, and then retrieving a rotating payload, reberthing it, and performing Manned Foot Restraint (MFR) operations. Any failure that prevents the completion of any of these tasks is considered to be loss of mission.

 RATIONALE: This is the most demanding RMS mission possible. This causes the worst case criticalities for certain failures because they will prevent completion of this mission.

3. Any failure that causes uncommanded motion of any part of the RMS will be considered to be the highest criticality until it is definitely established that there is no time at which the given uncommanded motion would be of no consequence or absolutely could not occur.

 RATIONALE: Uncommanded motion in its worst case could possibly cause physical damage to the vehicle that would preclude safe reentry.
4. The loss of primary power causes loss of primary mode of operation of the RMS, which will cause loss of mission.

RATIONALE: Backup RMS power is standby redundant and provides for safe release of the payload and cradling the arm for some failures. Therefore, loss of primary power is considered to be Criticality 2 even though backup power is available since loss of primary power causes loss of primary mode of operation of a RMS.

5. EPD&C/RMS failures are only considered for the on-orbit phase.

RATIONALE: During ascent, entry, and aborts the RMS is latched and unpowered. Inadvertent power application to the retention latch mechanism or stow/deploy actuator motors would require multiple failure combinations which is beyond the scope of this analysis. Prelaunch failures are not included as part of the EPD&C/RMS analysis since failures that could occur during prelaunch would be general EPD&C and are covered in that analysis.

6. Failure modes for port and starboard arms were analyzed as individual failures and no consideration was given to any provision of redundancy that could exist on a two RMS mission.

RATIONALE: The individual analysis was done to ensure that, indeed, the port and starboard RMS were similar. There are differences, however, in remote power control and power bus assignments that are a function of port or starboard location.
APPENDIX C
DETAILED ANALYSIS

This section contains the IOA analysis worksheets generated during the analysis of this subsystem. The information on these worksheets is intentionally similar to the NASA FMEAs. Each of these sheets identifies the hardware item being analyzed, and the parent assembly, as well as the function. For each failure mode, the possible causes are outlined, and the assessed hardware and functional criticality for each mission phase is listed, as described in the NSTS 22206, Instructions for Preparation of FMEA and CIL, 10 October 1986. Finally, effects are entered at the bottom of each sheet, and the worst case criticality is entered at the top.

LEGEND FOR IOA ANALYSIS WORKSHEETS

Hardware Criticalities:
1 = Loss of life or vehicle
2 = Loss of mission or next failure of any redundant item (like or unlike) could cause loss of life/vehicle
3 = All others

Functional Criticalities:
1R = Redundant hardware items (like or unlike) all of which, if failed, could cause loss of life or vehicle.
2R = Redundant hardware items (like or unlike) all of which, if failed, could cause loss of mission.

Redundancy Screen A:
1 = Is Checked Out PreFlight
2 = Is Capable of Check Out PreFlight
3 = Not Capable of Check Out PreFlight
NA = Not Applicable

Redundancy Screens B and C:
P = Passed Screen
F = Failed Screen
NA = Not Applicable

C-1
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/29/86
SUBSYSTEM: EPD&C
MDAC ID: 4001

ITEM: SWITCH, S4
FAILURE MODE: FAILS TO SWITCH FROM OFF POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS POWER SWITCH, PRIMARY/OFF/BACKUP
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 3-POSITION
7) SWITCH, S4

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/2</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2S4
PART NUMBER: ME452-0102-7403

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE EITHER PRIMARY OR BACKUP 28 VDC AND 115 VAC POWER TO EITHER THE PORT OR STBD REMOTE MANIPULATOR ARM. INABILITY TO PROVIDE ELECTRICAL POWER TO THE RMS NEGATES ITS USE FOR MISSION FUNCTIONS. LOSS OF MISSION RESULTS.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-2
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/29/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 1/1
MDAC ID: 4002 ABORT: /NA

ITEM: SWITCH, S4
FAILURE MODE: CONTACTS SHORT TO GROUND WHILE RMS IS IN USE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL ASA2
4) RMS POWER SWITCH, PRIMARY/OFF/BACKUP
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 3-POSITION
7) SWITCH, S4
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2S4
PART NUMBER: ME452-0102-7403

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE EITHER PRIMARY OR BACKUP 28 VDC AND 115 VAC POWER TO EITHER THE PORT OR STBD REMOTE MANIPULATOR ARM. LOSS OF POWER TO AN RMS IN USE COULD REQUIRE JETTISON OF THE RMS IF SAFE JETTISON IS AN OPTION. IF THE RMS CANNOT BE SAFELY JETTISONED, LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-3
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/29/86
SUBSYSTEM: EPD&C
MDAC ID: 4003

ITEM: SWITCH, S4
FAILURE MODE: FAILS TO SWITCH PRIMARY POWER ON.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS POWER SWITCH, PRIMARY/OFF/BACKUP
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 3-POSITION
7) SWITCH, S4
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2S4
PART NUMBER: ME452-0102-7403

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE PRIMARY 28VDC AND 115 VAC POWER TO EITHER THE PORT OR STBD REMOTE MANIPULATOR ARM.
LOSS OF PRIMARY POWER RESULTS IN LOSS OF PRIME MODE OF OPERATION OF THE RMS. THE ARM CAN BE SAFELY STOWED WITH BACKUP POWER. LOSS OF USE OF THE RMS RESULTS IN LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-4
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/29/86
SUBSYSTEM: EPD&C
MDAC ID: 4004

HIGHEST CRITICALITY
FLIGHT: 2/2
ABORT: /NA

ITEM: SWITCH, S4
FAILURE MODE: FAILS TO SWITCH BACKUP POWER ON.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL ASA2
4) RMS POWER SWITCH, PRIMARY/OFF/BACKUP
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 3-POSITION
7) SWITCH, S4

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/2</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73ASA2S4
PART NUMBER: ME452-0102-7403

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE BACKUP 28VDC POWER TO THE REMOTE MANIPULATOR ARM. BACKUP POWER TO THE RMS IS STANDBY REDUNDANT. BACKUP POWER IS REQUIRED TO POSITION AND STOW THE ARM IN THE EVENT OF FAILURE OF PRIMARY POWER SYSTEM. WITH NO POWER REDUNDANCY AVAILABLE, THE ARM COULD NOT SAFELY BE USED TO FULFILL MISSION REQUIREMENTS, THUS LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-5
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/29/86
SUBSYSTEM: EPD&C
MDAC ID: 4005

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: SWITCH, S4
FAILURE MODE: PRIMARY POWER FAILS OPEN WHILE ARM IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS POWER SWITCH, PRIMARY/OFF/BACKUP
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 3-POSITION
7) SWITCH, S4
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2S4
PART NUMBER: ME452-0102-7403

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF PRIMARY 28VDC AND 115 VAC POWER TO THE RMS. BACKUP POWER TO THE RMS IS STANDBY REDUNDANT.

IF LOSS OF PRIMARY POWER OCCURRED AT A TIME WHEN THE ARM WAS IN A POSITION SUCH THAT IT COULD NOT BE SAFELY JETTISONED, A SUBSEQUENT FAILURE IN THE BACKUP POWER SYSTEM COULD CAUSE LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-6
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/29/86
SUBSYSTEM: EPD&C
MDAC ID: 4006

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: SWITCH, S4
FAILURE MODE: FAILS CLOSED IN PRIMARY POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS POWER SWITCH, PRIMARY/OFF/BACKUP
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 3-POSITION
7) SWITCH, S4

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIFTOFF: /NA TAL: /NA
ONORBIT: 3/3 AOA: /NA
DEORBIT: /NA ATO: /NA
LANDING/SAFING: /NA

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2S4
PART NUMBER: ME452-0102-7403

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNABLE TO POWER DOWN THE RMS WITH THE POWER SWITCH.
NO EFFECT. PRIMARY POWER TO THE CIRCUIT COULD BE INTERRUPTED USING SWITCH S1 (MN A) AND CIRCUIT BREAKER CB17 (AC1).

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-7
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/30/86
SUBSYSTEM: EP&D&C
MDAC ID: 4007

HIGHEST CRITICALITY: HDW/FUNC
FLIGHT: 2/2
ABORT: /NA

ITEM: SWITCH, S1
FAILURE MODE: FAILS TO SWITCH FROM OFF POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61A
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS SELECT SWITCH, PORT/OFF/STBD
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/2</td>
<td>AOA</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2S1
PART NUMBER: ME452-0102-7203

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
- LOSS OF ABILITY TO PROVIDE EITHER 28 VDC PRIMARY OR BACKUP POWER TO EITHER PORT OR STBD REMOTE MANIPULATOR ARMS. THE 'RMS SELECT' SWITCH (S1) IS A SINGLE POINT FAILURE ITEM.
- LOSS OF USE OF THE RMS TO FULFILL MISSION REQUIREMENTS, THUS LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/30/86
SUBSYSTEM: EPD&C
 MDAC ID: 4008

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: /NA

ITEM: SWITCH, S1
FAILURE MODE: CONTACTS SHORTS TO GROUND WHILE RMS IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS SELECT SWITCH, PORT/OFF/STBD
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S1
8)
9)

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIFTOFF: /NA TAL: /NA
ONORBIT: 1/1 AOA: /NA
DEORBIT: /NA ATO: /NA
LANDING/SAFING: /NA

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2S1
PART NUMBER: ME452-0102-7203

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE EITHER 28 VDC PRIMARY OR BACKUP POWER TO THE REMOTE MANIPULATOR ARM BEING USED (AND ALSO THE OTHER ARM). THE 'RMS SELECT' SWITCH (S1) IS A SINGLE POINT FAILURE ITEM.

LOSS OF POWER TO AN RMS IN USE WOULD RESULT IN LOSS OF MISSION. POSSIBLE LOSS OF VEHICLE/CREW IF ARM IN USE CANNOT BE STOWED OR SAFELY JETTISIONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-9
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/30/86
SUBSYSTEM: EPD&C
MDAC ID: 4009

HIGHEST CRITICALITY
FLIGHT: 1/1
ABORT: /NA

ITEM: SWITCH, S1
FAILURE MODE: FAILS OPEN WHILE EITHER ARM IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS SELECT SWITCH, PORT/OFF/STBD
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2S1
PART NUMBER: ME452-0102-7203

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION,
CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF BOTH PRIMARY AND SECONDARY POWER TO THE REMOTE
MANIPULATOR ARM BEING USED.
LOSS OF BOTH PRIMARY AND BACKUP POWER TO THE RMS WOULD CAUSE
LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE/CREW IF THE ARM IN
USE CANNOT BE STOWED OR SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-10
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86
SUBSYSTEM: EPD&C
MDAC ID: 4010

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: SWITCH, S8
FAILURE MODE: FAILS OFF WHILE ARM IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) PORT RMS HEATER A, AUTO/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S8

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2S8
PART NUMBER: ME452-0102-7101

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO CONTROL RPC 27 IN MPC1 TO ENABLE THE PORT RMS MN A 28 VDC HEATER BUS.

ANY SUBSEQUENT FAILURE IN THE PORT RMS HEATER SYSTEM B COULD CAUSE LOSS OF MANIPULATOR POSITIONING CAPABILITY, WHICH COULD CAUSE LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE/CREW IF ARM COULD NOT BE STOWED OR SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-11
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86
SUBSYSTEM: EPD&C
MDAC ID: 4011

ITEM: SWITCH, S10
FAILURE MODE: FAILS OFF WHILE ARM IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61A
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) PORT RMS HEATER B, AUTO/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S10

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2S10
PART NUMBER: ME452-0102-7101

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO CONTROL RPC 28 IN MPC2 TO ENABLE THE PORT RMS MN B 28 VDC HEATER BUS.
ANY SUBSEQUENT FAILURE IN THE PORT RMS HEATER SYSTEM A COULD CAUSE LOSS OF MANIPULATOR POSITIONING CAPABILITY, WHICH COULD CAUSE LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE/CREW IF ARM COULD NOT BE STOWED OR SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86
SUBSYSTEM: EPD&C
MDAC ID: 4012

ITEM: SWITCHES, S8, S10
FAILURE MODE: FAILS TO SWITCH FROM OFF TO AUTO POSITION.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) PORT RMS HEATERS A & B, AUTO/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 3-POSITION, 2 EACH
7) SWITCHES, S8, S10
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFINING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2S8, S10
PART NUMBER: ME452-0102-7101

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO ENABLE AUTO CONTROL OF EITHER OR BOTH PORT RMS HEATER BUS POWER SYSTEMS A/B.

BOTH HEATER SYSTEMS A & B ARE THERMOSTATICALLY CONTROLLED AND ARE NOMINALLY USED WITH BOTH IN THE AUTO POSITION WHILE OPERATING THE ARM. LOSS OF REDUNDANCY IN THE HEATER SYSTEMS WOULD PRECLUDE OPERATION OF THE ARM THUS RESULTING IN LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-13
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86
SUBSYSTEM: EPD&C
MDAC ID: 4013

ITEM: SWITCH, S7
FAILURE MODE: FAILS OFF WHILE ARM IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) STBD RMS HEATER A, AUTO/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S7
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2S7
PART NUMBER: ME452-0102-7101

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
- LOSS OF ABILITY TO CONTROL RPC 26 IN MPC1 TO ENABLE THE STBD RMS MN A 28 VDC HEATER BUS.
- ANY SUBSEQUENT FAILURE IN THE STBD RMS HEATER SYSTEM B COULD CAUSE LOSS OF MANIPULATOR POSITIONING CAPABILITY, WHICH COULD CAUSE LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE/CREW IF ARM COULD NOT BE STOWED OR SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-14
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86
SUBSYSTEM: EPD&C
MDAC ID: 4014

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: SWITCH, S9
FAILURE MODE: FAILS TO SWITCH FROM OFF TO AUTO POSITION.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) STBD RMS HEATER B, AUTO/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S9

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2S9
PART NUMBER: ME452-0102-7101

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO CONTROL RPC 29 IN MPC2 TO ENABLE THE STBD RMS MN B 28 VDC HEATER BUS.
ANY SUBSEQUENT FAILURE IN THE STBD RMS HEATER SYSTEM A COULD CAUSE LOSS OF MANIPULATOR POSITIONING CAPABILITY, WHICH COULD CAUSE LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE IF ARM COULD NOT BE STOWED OR SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/2
MDAC ID: 4015 ABORT: /NA

ITEM: SWITCHES, S7, S9
FAILURE MODE: FAILS TO SWITCH FROM AUTO TO OFF POSITION.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) STBD RMS HEATER A & B, AUTO/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 3-POSITION, 2 EACH
7) SWITCHES, S7, S9
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2S7, S9
PART NUMBER: ME452-0102-7101

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO ENABLE AUTO CONTROL OF EITHER OR BOTH THE STBD RMS HEATER SYSTEMS A/B.

Both heater systems A & B are thermostatically controlled and are nominally used in the auto position while operating the arm. Loss of redundancy in the heater systems would preclude operation of the arm thus resulting in loss of mission.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-16
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86
SUBSYSTEM: EPD&C
MDAC ID: 4016

ITEM: FUSE, F1
FAILURE MODE: FAILS OPEN PRIOR TO ARM DEPLOYMENT.

LEAD ANALYST: ROBINSON
LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS POWER SWITCH, S4
5) PRIMARY SWITCH POSITION, (MN A) FUSE
6) FUSE, 2 AMP
7) FUSE, F1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2F1
PART NUMBER: ME451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
- LOSS OF ABILITY TO PROVIDE PRIMARY (28 VDC MN A) POWER TO EITHER REMOTE MANIPULATOR ARM, THE MCIU, OR LOAD PANEL A8A1.
- BACKUP POWER IS STANDBY REDUNDANT.
- LOSS OF PRIMARY POWER WOULD NEGATE USE OF RMS TO FULFILL MISSION REQUIREMENTS. LOSS OF MISSION RESULTS.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86 HIGHEST CRITICALITY
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4017 ABORT: /NA

ITEM: FUSE, F1
FAILURE MODE: FAILS OPEN WHILE ARM IS IN USE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS POWER SWITCH, S4
5) PRIMARY SWITCH POSITION, (MN A) FUSE
6) FUSE, 2 AMP
7) FUSE, F1
8)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFFOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2F1
PART NUMBER: ME451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE PRIMARY (28 VDC MN A) POWER TO EITHER REMOTE MANIPULATOR ARM, THE MCIU, OR LOAD PANEL A8A1. BACKUP POWER IS STANDBY REDUNDANT.
ANY SUBSEQUENT FAILURE IN THE BACKUP POWER COULD CAUSE LOSS OF VEHICLE/CREW IF ARM CANNOT BE STOWED OR SAFELY JETTISONED

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-18
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/2
MDAC ID: 4018 ABORT: /NA

ITEM: FUSE, F2
FAILURE MODE: FAILS OPEN PRIOR TO ARM DEPLOYMENT,

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS POWER SWITCH, S4
5) BACKUP SWITCH POSITION, (MN B) FUSE
6) FUSE, 2 AMP
7) FUSE, F2
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2F2
PART NUMBER: ME451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE BACKUP (28 VDC MN B) POWER TO EITHER REMOTE MANIPULATOR ARM. BACKUP POWER IS STANDBY REDUNDANT.
LOSS OF BACKUP POWER PRIOR TO DEPLOYMENT WOULD NEGATE THE USE OF THE REMOTE MANIPULATOR ARM TO FULFILL MISSION REQUIREMENTS, THUS LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-19
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86

SUBSYSTEM: EPD&C

MDAC ID: 4019

HIGHEST CRITICALITY

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT</td>
<td>2/1R</td>
</tr>
<tr>
<td>/NA</td>
<td>/NA</td>
</tr>
</tbody>
</table>

ITEM: FUSE, F2

FAILURE MODE: FAILS OPEN WHILE ARM IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS POWER SWITCH, S4
5) BACKUP SWITCH POSITION, (MN B) FUSE
6) FUSE, 2 AMP
7) FUSE, F2
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2F2

PART NUMBER: ME451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

LOSS OF ABILITY TO PROVIDE BACKUP (28 VDC MN B) POWER TO EITHER REMOTE MANIPULATOR ARM. BACKUP POWER IS STANDBY REDUNDANT.

BACKUP POWER WOULD ONLY BE USED AFTER PRIMARY FAILURE OCCURRED WHILE IN USE. LOSS OF BACKUP POWER WHILE REMOTE MANIPULATOR IS USING BACKUP POWER COULD RESULT IN LOSS OF VEHICLE/CREW IF ARM CANNOT BE STOWED OR SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86 HIGHEST CRITICALITY
SUBSYSTEM: EPD&C HDW/FUNC
MDAC ID: 4020 FLIGHT: 3/2R
ABORT: /NA

ITEM: RESISTOR, A3R2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) SWITCH, PORT HEATER A, S8
5) RESISTOR, CURRENT LIMITING
6) RESISTOR, 1.2K OHM, 2 WATT
7) RESISTOR, A3R2
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2A3R2
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO ENABLE RPC 27 (MPC 1, MN A) TO PROVIDE AUTO HEATER A POWER TO PORT REMOTE MANIPULATOR ARM.
ANY SUBSEQUENT FAILURE IN HEATER SYSTEM B COULD CAUSE LOSS OF MANIPULATOR POSITIONING CAPABILITY, THUS LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-21
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86
SUBSYSTEM: EPD&C
MDAC ID: 4021

ITEM: RESISTOR, A3R3
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) SWITCH, PORT HEATER B, S10
5) RESISTOR, CURRENT LIMITING
6) RESISTOR, 1.2K OHM, 2 WATT
7) RESISTOR, A3R3
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABO RT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFIN G</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2A3R3
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO ENABLE RPC 28 (MPC 2, MN B) TO PROVIDE AUTO HEATER B POWER TO PORT REMOTE MANIPULATOR ARM.
ANY SUBSEQUENT FAILURE IN HEATER SYSTEM A COULD CAUSE LOSS OF MANIPULATOR POSITIONING CAPABILITY, THUS LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-22
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86
SUBSYSTEM: EPD&C
MDAC ID: 4022

ITEM: RESISTOR, A2R2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61A
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) SWITCH, STBD HEATER A, S7
5) RESISTOR, CURRENT LIMITING
6) RESISTOR, 1.2K OHM, 2 WATT
7) RESISTOR, A2R2
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>RTLS:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>TAL:</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td></td>
<td>AOA:</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>ATO:</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2A2R2
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO ENABLE RPC 26 (MPC 1, MN A) TO PROVIDE AUTO HEATER A POWER TO STBD REMOTE MANIPULATOR ARM.
ANY SUBSEQUENT FAILURE IN HEATER SYSTEM B COULD CAUSE LOSS OF MANIPULATOR POSITIONING CAPABILITY, THUS LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-23
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/31/86
SUBSYSTEM: EPD&C
MDAC ID: 4023

ITEM: RESISTOR, A2R3
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) SWITCH, STBD HEATER B, S9
5) RESISTOR, CURRENT LIMITING
6) RESISTOR, 1.2K OHM, 2 WATT
7) RESISTOR, A2R3
8)
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A []
B [P]
C [P]

LOCATION: 36V73A8A2A2R3
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

LOSS OF ABILITY TO ENABLE RPC 29 (MPC 2, MN B) TO PROVIDE AUTO HEATER B POWER TO STBD REMOTE MANIPULATOR ARM.

ANY SUBSEQUENT FAILURE IN HEATER SYSTEM A COULD CAUSE LOSS OF MANIPULATOR POSITIONING CAPABILITY, THUS LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4024

ITEM: RESISTOR, A1R1
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61A
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS POWER SWITCH SCAN CIRCUIT, MDM OF4
5) PRIMARY POWER ON/OFF (V54S06000E)
6) RESISTOR, ISOLATION
7) RESISTOR, 5.1K OH, 1/4 WATT
8) RESISTOR, A1R1
9) RESISTOR, AIR1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2A1R1
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF SWITCH SCAN MEASUREMENT. THE 'RMS PRIMARY POWER ON' MEASUREMENT (V54S06000E) TO MDM OF4 WILL ALWAYS INDICATE 'OFF'. MEASUREMENT NOT CRITICAL TO OPERATION OF SYSTEM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-25
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4025

ITEM: RESISTOR, A1R2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS POWER SWITCH SCAN CIRCUIT, MDM OF4
5) BACKUP POWER ON/OFF (V54S06001E)
6) RESISTOR, ISOLATION
7) RESISTOR, 5.1K OH, 1/4 WATT
8) RESISTOR, A1R2
9) RESISTOR, AIR2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2A1R2
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF SWITCH SCAN MEASUREMENT. THE 'RMS BACKUP POWER ON' MEASUREMENT (V54S06001E) TO MDM OF4 WILL ALWAYS INDICATE 'OFF'. MEASUREMENT NOT CRITICAL TO OPERATION OF SYSTEM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-26
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/03/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
<td>FLIGHT:</td>
<td>3/3</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4026</td>
<td>ABORT:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

ITEM: RESISTOR, A3R1
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1. RMS, 05-6IA
2. REMOTE MANIPULATOR ARM
3. PANEL A8A2
4. RMS HEATER POWER SWITCH SCAN CIRCUIT, MDM OF4
5. PORT HEATER A POWER AUTO/OFF (V54S0760E)
6. RESISTOR, ISOLATION
7. RESISTOR, 5.1K OH, 1/4 WATT
8. RESISTOR, A3R1
9.

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2A3R1
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

LOSS OF SWITCH SCAN MEASUREMENT. THE 'PORT RMS HEATER A POWER AUTO' MEASUREMENT (V54S0760E) TO MDM OF4 WILL ALWAYS INDICATE 'OFF'.
MEASUREMENT NOT CRITICAL TO OPERATION OF SYSTEM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
C-27
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4027

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, A2RI
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL A8A2
4) RMS HEATER POWER SWITCH SCAN CIRCUIT, MDM OF4
5) STBD HEATER A POWER AUTO/OFF (V54S0960E)
6) RESISTOR, ISOLATION
7) RESISTOR, 5.1K OH, 1/4 WATT
8) RESISTOR, A2RI
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A8A2A2RI
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION,
CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF SWITCH SCAN MEASUREMENT. THE 'STBD RMS HEATER A POWER
AUTO' MEASUREMENT (V54S0760E) TO MDM OF4 WILL ALWAYS INDICATE
'OFF'.
MEASUREMENT NOT CRITICAL TO OPERATION OF SYSTEM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/2
MDAC ID: 4028 ABORT: /NA

ITEM: CIRCUIT BREAKER, CB17
FAILURE MODE: FAILS OPEN PRIOR TO ARM DEPLOYMENT.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL M73C
4) AC SYSTEM 1 POWER
5) CIRCUIT BREAKER, 1-PH, 3 AMP
6) CIRCUIT BREAKER, CB17
7)
8)
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/2</td>
<td>AOA: /NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129CB17
PART NUMBER: MC454-0026-2030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE PRIMARY AC POWER (SYSTEM 1) TO THE RMS LOAD PANEL A8A1 PRIMARY POWER CONTROL CIRCUIT. BACKUP POWER IS STANDBY REDUNDANT.
LOSS OF PRIMARY POWER CONTROL CIRCUIT POWER WOULD NEGATE USE OF REMOTE MANIPULATOR ARM. LOSS OF MISSION WOULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-29
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4029

ITEM: CIRCUIT BREAKER, CB17
FAILURE MODE: FAILS OPEN WHILE ARM IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL M73C
4) AC SYSTEM 1 POWER
5) CIRCUIT BREAKER, 1-PH, 3 AMP
6) CIRCUIT BREAKER, CB17

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABO RT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129CB17
PART NUMBER: MC454-0026-2030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE PRIMARY AC POWER (SYSTEM 1) TO THE RMS LOAD PANEL A8A1 PRIMARY POWER CONTROL CIRCUIT. BACKUP POWER IS STANDBY REDUNDANT.

LOSS OF PRIMARY AC POWER WHILE ARM IS IN USE WOULD CAUSE LOSS OF PRIMARY MODE OF OPERATION, THUS LOSS OF MISSION. ANY SUBSEQUENT FAILURE IN BACKUP SYSTEM COULD CAUSE LOSS OF VEHICLE/CREW IF ARM COULD NOT BE STOWED OR SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4030

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: CIRCUIT BREAKER, CBI7
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61A
2) REMOTE MANIPULATOR ARM
3) PANEL M73C
4) AC SYSTEM 1 POWER
5) CIRCUIT BREAKER, 1-PH, 3 AMP
6) CIRCUIT BREAKER, CBI7
7)
8)
9)

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIFTOFF: /NA TAL: /NA
ONORBIT: 3/3 AOA: /NA
DEORBIT: /NA ATO: /NA
LANDING/SAFING: /NA

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129CB17
PART NUMBER: MC454-0026-2030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE CIRCUIT PROTECTION FOR LOAD PANEL A8A1 AC POWER SYSTEM 1 POWER CONTROL CIRCUIT. POWER CAN BE REMOVED BY SWITCH.
CIRCUIT BREAKER IS NORMALLY CLOSED THUS THE FAILURE COULD REMAIN UNDETECTED UNTIL POWERDOWN OF CIRCUIT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-31
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4031

ITEM: CIRCUIT BREAKER, CB19
FAILURE MODE: FAILS OPEN PRIOR TO DEPLOYMENT OF ARM.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL M73C
4) AC SYSTEM 2 POWER
5) CIRCUIT BREAKER, 1-PH, 3 AMP
6) CIRCUIT BREAKER, CB19
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129CB19
PART NUMBER: MC454-0026-2030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE BACKUP AC POWER (SYSTEM 2) TO THE RMS LOAD PANEL A8A1 BACKUP POWER CONTROL CIRCUIT. BACKUP AC POWER IS STANDBY REDUNDANT.
LOSS OF BACKUP POWER CONTROL CIRCUIT WOULD NEGATE USE OF REMOTE MANIPULATOR ARM FOR SAFETY REASONS THUS LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-32
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4032

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: CIRCUIT BREAKER, CB19
FAILURE MODE: FAILS OPEN WHILE ARM IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL M73C
4) AC SYSTEM 2 POWER
5) CIRCUIT BREAKER, 1-PH, 3 AMP
7) CIRCUIT BREAKER, CB19
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAVING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129CB19
PART NUMBER: MC454-0026-2030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE BACKUP AC POWER (SYSTEM 2) TO THE RMS LOAD PANEL A8A1 BACKUP POWER CONTROL CIRCUIT. BACKUP AC POWER IS STANDBY REDUNDANT.
LOSS OF BACKUP AC POWER WHILE ARM IS IN USE WOULD CAUSE LOSS OF BACKUP MODE OF OPERATION WHICH SHOULD ABORT THE MISSION. ANY SUBSEQUENT FAILURE IN PRIMARY SYSTEM COULD CAUSE LOSS OF VEHICLE/CREW IF ARM CANNOT BE STOWED OR SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-33
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4033

ITEM: CIRCUIT BREAKER, CBI9
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PANEL M73C
4) AC SYSTEM 2 POWER
5) CIRCUIT BREAKER, 1-PH, 3 AMP
6) CIRCUIT BREAKER, CBI9
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129CB19
PART NUMBER: MC454-0026-2030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE CIRCUIT PROTECTION FOR BACKUP AC POWER (SYSTEM 2) TO THE RMS LOAD PANEL A8A1 POWER CONTROL CIRCUIT. POWER CAN BE REMOVED BY SWITCH.
CIRCUIT BREAKER IS NORMALLY CLOSED THUS THE FAILURE COULD REMAIN UNDETECTED UNTIL POWERDOWN OF CIRCUIT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4034

ITEM: RELAY, K1
FAILURE MODE: FAILS OPEN PRIOR TO ARM DEPLOYMENT.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PORT PRIMARY POWER (MN A)
4) MID POWER CONTROLLER ASSY (MPC) 1
5) RELAY, 50 AMP FUSED, K1
6) RELAY, K1
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A25K1
PART NUMBER: MC455-0134-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF PRIMARY (28 VDC MN A) POWER TO THE PORT REMOTE MANIPULATOR ARM. BACKUP POWER IS STANDBY REDUNDANT.
LOSS OF MISSION BY LOSS OF PRIME MODE OF RMS OPERATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-35
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4035

ITEM: RELAY, K1
FAILURE MODE: FAILS OPEN WHILE ARM IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PORT PRIMARY POWER (MN A)
4) MID POWER CONTROLLER ASSY (MPC) 1
5) RELAY, 50 AMP FUSED, K1
6) RELAY, K1
7)
8)
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:
A [1]
B [NA]
C [NA]

LOCATION: 40V76A25K1
PART NUMBER: MC455-0134-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

LOSS OF PRIMARY (28 VDC MN A) POWER TO THE PORT REMOTE MANIPULATOR ARM. BACKUP POWER IS STANDBY REDUNDANT. BACKUP POWER IS STANDBY REDUNDANT.

LOSS OF MISSION BY LOSS OF PRIME MODE OF RMS OPERATION. SUBSEQUENT LOSS OF BACKUP POWER COULD RESULT IN LOSS OF VEHICLE IF RMS COULD NOT BE SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
C-36
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4036

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RELAY, K1
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PORT PRIMARY POWER (MN A)
4) MID POWER CONTROLLER ASSY (MPC) 1
5) RELAY, 50 AMP FUSED, K1
6) RELAY, K1
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REdundancy Screens: A [] B [] C []

LOCATION: 40V76A25K1
PART NUMBER: MC455-0134-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
APPLIES UNTIMELY PRIMARY (28 VDC MN A) POWER TO THE PORT REMOTE MANIPULATOR ARM. POWER CANNOT BE REMOVED FROM ARM.
INABILITY TO DEPOWER THE REMOTE MANIPULATOR ARM BY RELAY ACTION WOULD HAVE NO EFFECT ALONE. SUBSEQUENT FAILURES MAY WARRANT CONSIDERATION OF DEPOWERING MN A BUS IN MPC1

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-37
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
HIGHEST CRITICALITY HDW/Func

SUBSYSTEM: EPD&C
FLIGHT: 2/2
MDAC ID: 4037
ABORT: /NA

ITEM: RELAY, K2
FAILURE MODE: FAILS OPEN PRIOR TO ARM DEPLOYMENT.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) STBD PRIMARY POWER (MN A)
4) MID POWER CONTROLLER ASSY (MPC) 1
5) RELAY, 50 AMP FUSED, K2
6) RELAY, K2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/Func</th>
<th>ABORT</th>
<th>HDW/Func</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A25K2
PART NUMBER: MC455-0134-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF PRIMARY (28 VDC MN A) POWER TO THE STBD MANIPULATOR ARM. BACKUP POWER IS STANDBY REDUNDANT.
LOSS OF MISSION BY LOSS OF PRIME MODE OF RMS OPERATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-38
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4038

HIGHEST CRITICALITY
HDW/FUNC

FLIGHT: 2/1R
ABORT: /NA

ITEM: RELAY, K2
FAILURE MODE: FAILS OPEN WHILE ARM IS IN USE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) STBD PRIMARY POWER (MN A)
4) MID POWER CONTROLLER ASSY (MPC) 1
5) RELAY, 50 AMP FUSED, K2
6) RELAY, K2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A25K2
PART NUMBER: MC455-0134-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF PRIMARY (28 VDC MN A) POWER TO THE STBD MANIPULATOR ARM.バック POWER IS STANDBY REDUNDANT.
LOSS OF MISSION BY LOSS OF PRIME MODE OF RMS OPERATION.
SUBSEQUENT LOSS OF BACKUP POWER COULD RESULT IN LOSS OF VEHICLE/CREW IF ARM CANNOT BE STOWED OR SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-39
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4039

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RELAY, K2
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) STBD PRIMARY POWER (MN A)
4) MID POWER CONTROLLER ASSY (MPC) 1
5) RELAY, 50 AMP FUSED, K2
6) RELAY, K2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A25K2
PART NUMBER: MC455-0134-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
APPLIES UNTIMELY PRIMARY (28 VDC MN A) POWER TO THE STBD MANIPULATOR ARM. POWER CANNOT BE REMOVED FROM ARM.
INABILITY TO DEPOWER THE REMOTE MANIPULATOR ARM BY RELAY ACTION WOULD HAVE NO EFFECT ON THE SYSTEM WITH NO OTHER FAILURES INVOLVED. SUBSEQUENT FAILURES MAY WARRANT CONSIDERATION OF DEPOWERING MN B TO MPC1.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-40
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/13/86
SUBSYSTEM: EPD&C
MDAC ID: 4040

ITEM: FUSE, F26
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PORT MN BUS A, SYSTEM 1 POWER
4) MID POWER CONTROLLER ASSY (MPC) 1
5) RELAY, K1
6) FUSE, 50 AMP
7) FUSE, F26
8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A25F27
PART NUMBER: ME451-0016-1050

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
- LOSS OF PRIMARY (28 VDC MN A) POWER TO THE PORT REMOTE MANIPULATOR ARM. BACKUP POWER IS STANDBY RESUNDANT.
- LOSS OF MISSION BY LOSS OF PRIME MODE OF RMS OPERATION.
- SUBSEQUENT LOSS OF BACKUP POWER COULD RESULT IN LOSS OF VEHICLE/CREW IF THE ARM CANNOT BE STOWED OR SAFELY JETTISIONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-41
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/13/86

SUBSYSTEM: EPD&C
MDAC ID: 4041

ITEM: FUSE, F27
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PORT MN BUS A, SYSTEM 1 POWER
4) MID POWER CONTROLLER ASSY (MPC) 1
5) RELAY, K2
6) FUSE, 50 AMP
7) FUSE, F27

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONS ORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A25F27
PART NUMBER: MB451-0016-1050

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF PRIMARY (28 VDC MN A) POWER TO THE STBD REMOTE MANIPULATOR ARM. BACKUP POWER IS STANDBY REDUNDANT.

LOSS OF MISSION BY LOSS OF PRIME MODE OF RMS OPERATION.
SUBSEQUENT LOSS OF BACKUP POWER WHILE ARM IS IN USE COULD RESULT IN LOSS OF VEHICLE IF ARM CANNOT BE STOWED OR SAFELY JETTISONED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4042

HIGHEST CRITICALITY

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS: /NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL: /NA</td>
</tr>
<tr>
<td>LONORB:</td>
<td>3/2R</td>
<td>AOA: /NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO: /NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
</tr>
</tbody>
</table>

HDW/FUNC

LOCATION: 40V76A25RPC27
PART NUMBER: MC450-0017-1200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
- LOSS OF ABILITY TO PROVIDE HEATER A (28 VDC MN A) POWER TO PORT REMOTE MANIPULATOR ARM.
- LOSS OF HEATER POWER B TO PORT MANIPULATOR ARM COULD RESULT IN LOSS OF MANIPULATOR POSITIONING CAPABILITY, THUS LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-43
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86

SUBSYSTEM: EPD&C

MDAC ID: 4043

HIGHEST CRITICALITY HDW/FUNC

FLIGHT: 3/2R

ABORT: /NA

ITEM: REMOTE POWER CONTROLLER, RPC 26

FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) STBD HEATER A POWER (MN A)
4) MID POWER CONTROLLER ASSY (MPC) 1
5) REMOTE POWER CONTROLLER, 20 AMP
6) REMOTE POWER CONTROLLER, RPC 26

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A25RPC26

PART NUMBER: MC450-0017-1200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

LOSS OF ABILITY TO PROVIDE HEATER A (28 VDC MN A) POWER TO STBD REMOTE MANIPULATOR ARM.

LOSS OF HEATER POWER B TO STBD MANIPULATOR ARM COULD RESULT IN LOSS OF MANIPULATOR POSITIONING CAPABILITY, THUS LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-44
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4044

ITEM: REMOTE POWER CONTROLLER, RPC
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) MCIU PRIMARY POWER (MN A)
4) FWD POWER CONTROLLER ASSY (MPC) 1
5) REMOTE POWER CONTROLLER, 10 AMP
6) REMOTE POWER CONTROLLER, RPC 4
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 81V76A22RPC4
PART NUMBER: MC450-0017-1100

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE PRIMARY (28 VDC MN A) POWER TO MANIPULATOR CONTROLLER INTERFACE UNIT (MCIU). THERE ARE NO PROVISIONS TO PROVIDE BACKUP POWER TO THE MCIU.

SINCE THERE ARE NO PROVISIONS TO PROVIDE BACKUP POWER TO THE MCIU, IF RPC 4 FAILS OPEN, THE RESULT IS LOSS OF PRIMARY MODE OF OPERATION OF THE REMOTE MANIPULATOR ARM, THUS LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-45
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/05/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4045 ABORT: /NA

ITEM: REMOTE POWER CONTROLLER, RPC 31
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PORT BACKUP POWER (MN B)
4) MID POWER CONTROLLER ASSY (MPC) 2
5) REMOTE POWER CONTROLLER, 10 AMP
6) REMOTE POWER CONTROLLER, RPC 31
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DE ORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A26RPC31
PART NUMBER: MC450-0017-1100

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
Loss of backup (28 VDC MN B) power to port remote manipulator arm prior to start of arm deployment would negate use of arm thus loss of mission. Backup power is standby redundant.
Loss of backup power prior to deployment or while arm is in use would abort operation of arm thus loss of mission. Loss of backup after loss of primary while arm is in use could result in loss of vehicle if arm cannot be stowed or safely jettisoned.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/05/86
SUBSYSTEM: EPD&C
MDAC ID: 404G

ITEM: REMOTE POWER CONTROLLER, RPC 30
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61A
2) REMOTE MANIPULATOR ARM
3) STBD BACKUP POWER (MN B)
4) MID POWER CONTROLLER ASSY (MPC) 2
5) REMOTE POWER CONTROLLER, 10 AMP
6) REMOTE POWER CONTROLLER, RPC 30

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A26RPC30
PART NUMBER: MC450-0017-1100

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF BACKUP (28 VDC MN B) POWER TO STBD REMOTE MANIPULATOR ARM PRIOR TO START OF ARM DEPLOYMENT WOULD NEGATE USE OF ARM THUS LOSS OF MISSION. BACKUP POWER IS STANDBY REDUNDANT.

LOSS OF BACKUP POWER PRIOR TO DEPLOYMENT OR WHILE ARM IS IN USE WOULD ABORT OPERATION OF ARM THUS LOSS OF MISSION. LOSS OF BACKUP AFTER LOSS OF PRIMARY WHILE ARM IS IN USE COULD RESULT IN LOSS OF VEHICLE IF ARM CANNOT BE STOWED OR SAFELY JETTISONED

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-47
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/05/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4047 ABORT: /NA

ITEM: REMOTE POWER CONTROLLER, RPC 28
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) PORT HEATER B POWER (MN B)
4) MID POWER CONTROLLER ASSY (MPC) 2
5) REMOTE POWER CONTROLLER, 10 AMP
6) REMOTE POWER CONTROLLER, RPC 28
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAfING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A26RPC28
PART NUMBER: MC450-0017-1100

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE HEATER B (28 VDC MN B) POWER TO PORT REMOTE MANIPULATOR ARM.
LOSS OF BOTH HEATER POWER B AND HEATER POWER A COULD RESULT IN LOSS OF MANIPULATOR POSITIONING CAPABILITY.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-48
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/05/86
SUBSYSTEM: EPD&C
MDAC ID: 4048

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: REMOTE POWER CONTROLLER, RPC 29
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IA
2) REMOTE MANIPULATOR ARM
3) STBD HEATER B POWER (MN B)
4) MID POWER CONTROLLER ASSY (MPC) 2
5) REMOTE POWER CONTROLLER, 10 AMP
6) REMOTE POWER CONTROLLER, RPC 29
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A26RPC29
PART NUMBER: MC450-0017-1100

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF ABILITY TO PROVIDE HEATER B (28 VDC MN B) POWER TO STBD REMOTE MANIPULATOR ARM.
LOSS OF BOTH HEATER POWER B AND HEATER POWER A COULD RESULT IN LOSS OF MANIPULATOR POSITIONING CAPABILITY.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-49
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4101

ITEM: SWITCH, S1
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL R13A2
4) PL BAY MECH (PBM), SYS 1, 3-PH AC POWER, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 2-POS
7) SWITCH, S1
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/ FUNC</th>
<th>ABORT</th>
<th>HDW/ FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 32V73R13A051
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE PAYLOAD BAY MECHANICAL (PBM) SYSTEM 1, 3-PHASE AC POWER. ALTHOUGH PBM POWER IS USED BY OTHER PAYLOAD BAY SYSTEMS, ONLY THE RMS EFFECTS ARE CONSIDERED HERE.
INABILITY TO PROVIDE SYSTEM 1, 3-PHASE AC POWER TO REMOTE MANIPULATOR RETENTION SYSTEM. FAILURE OF SYSTEM 2 COULD CAUSE LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-50
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4102 ABORT: /NA

ITEM: SWITCH, S1
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL RI3A2
4) PL BAY MECH (PBM), SYS 1, 3-PH AC POWER, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 2-POS
7) SWITCH, S1
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFINING</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 32V73RI3A2S1
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTENTIONAL APPLICATION OF PAYLOAD BAY MECHANICAL (PBM)
SYSTEM 1, 3-PHASE AC POWER.
UNTENTIONAL APPLICATION OF SYSTEM 1, 3-PHASE AC PBM POWER
SHOULD HAVE NO EFFECT AS A SINGLE FAILURE. WITH SWITCH FAILED
CLOSED. POWER CAN BE REMOVED BY CIRCUIT BREAKER OPERATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-51
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4103

HDW/FUNC: FLIGHT: 1121/86 HIGHEST CRITICALITY
ABORT: 2/1R/NA

ITEM: SWITCH, S2
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL R13A2
4) PL BAY MECH (PBM), SYS 2, 3-PH AC POWER, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 2-POS
7) SWITCH, S2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 32V73RI3A2S2
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE PAYLOAD BAY MECHANICAL (PBM) SYSTEM 2, 3-PHASE AC POWER. ALTHOUGH PBM POWER IS USED BY PAYLOAD BAY SYSTEMS ONLY THE RMS IS CONSIDERED HERE.

INABILITY TO PROVIDE SYSTEM 2, 3-PHASE AC PBM POWER TO REMOTE MANIPULATOR RETENTION SYSTEM. FAILURE OF SYSTEM 1 COULD CAUSE LOSS OF VEHICLE OR MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-II174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-52
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/21/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
<td>FLIGHT:</td>
<td>3/3</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4104</td>
<td>ABORT:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

ITEM: SWITCH, S2

FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL R13A2
4) PL BAY MECH (PBM), SYS 2, 3-PH AC POWER, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 2-POS
7) SWITCH, S2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:

A [] B [] C []

LOCATION: 32V73RI3A2S2

PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

UNINTENTIONAL APPLICATION OF PAYLOAD BAY MECHANICAL (PBM) SYSTEM 2, 3-PHASE AC POWER.

UNINTENTIONAL APPLICATION OF SYSTEM 2, 3-PHASE AC PBM POWER SHOULD HAVE NO EFFECT. WITH THE SWITCH FAILED CLOSED. POWER COULD BE REMOVED BY CIRCUIT BREAKER OPERATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-53
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/02/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/2
MDAC ID: 4105 ABORT: /NA

ITEM: SWITCH, S5
FAILURE MODE: OPEN, FAILS TO CLOSE TO EITHER DEPLOY OR STOW.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL A8A2
4) PORT RMS DEPLOY/STOW
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 2-POS
7) SWITCH, S5
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 32V73A8A2S5
PART NUMBER: ME452-0102-7201

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE CONTROL VOLTAGE TO OPERATE THE STOW/DEPLOY ACTUATOR.
LOSS OF OPERATION OF THE STOW/DEPLOY ACTUATOR WOULD CAUSE LOSS OF MISSION AND POSSIBLY REQUIRE JETTISON OF REMOTE MANIPULATOR ARM IF IT CANNOT BE SAFELY STOWED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-54
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/02/86 HIGHEST CRITICALITY
SUBSYSTEM: EPD&C HDW/FUNC
MDAC ID: 4106 FLIGHT: 1/1
ABORT: /NA

ITEM: SWITCH, S5
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PANEL A8A2
4) PORT RMS DEPLOY/STOW
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 2-POS
7) SWITCH, S5
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 32V73A8A2S5
PART NUMBER: ME452-0102-7201

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNINTENTIONAL APPLICATION OF POWER TO THE STOW/DEPLOY ACTUATOR MOTORS.
UNTIMELY OPERATION OF THE STOW/DEPLOY ACTUATOR MOTORS COULD CAUSE PHYSICAL DAMAGE TO THE RMS/PAYLOADS/ORBITER. POSSIBLE LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-55
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/02/86
SUBSYSTEM: EPD&C
MDAC ID: 4107

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/2
ABORT: /NA

ITEM: SWITCH, S2
FAILURE MODE: OPEN, FAILS TO CLOSE TO EITHER DEPLOY OR STOW.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL ABA2
4) STBD RMS DEPLOY/STOW
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 2-POLE, 2-POS
7) SWITCH, S2
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/2</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 32V73A8A2S2
PART NUMBER: ME452-0102-7201

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE CONTROL VOLTAGE TO OPERATE THE STOW/DEPLOY ACTUATOR.

LOSS OF OPERATION OF THE STOW/DEPLOY ACTUATOR COULD CAUSE LOSS OF MISSION AND POSSIBLY REQUIRE JETTISON OF THE REMOTE MANIPULATOR ARM IF IT CANNOT BE SAFELY STOWED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-56
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/02/86
SUBSYSTEM: EPD&C
MDAC ID: 4108

HIGHEST CRITICALITY
FLIGHT: 1/1
ABORT: /NA

ITEM: SWITCH, S2
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL A8A2
4) STBD RMS DEPLOY/STOW
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 4-POLE, 2-POS
7) SWITCH, S2
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 32V73A8A2S2
PART NUMBER: ME452-0102-7201

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTENTENTIONAL APPLICATION OF POWER TO THE STOW/DEPLOY ACTUATOR MOTORS.
UNTIMELY OPERATION OF THE STOW/DEPLOY ACTUATOR MOTORS COULD CAUSE PHYSICAL DAMAGE TO THE RMS/PAYLOADS/ORBITER. POSSIBLE LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-57
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/02/86
SUBSYSTEM: EPD&C
MDAC ID: 4109

ITEM: FUSE, F6
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL A8A2
4) PORT RMS DEPLOY/STOW SWITCH, S5
5) FUSE, CONTROL VOLT CA2
6) FUSE, 1 AMP
7) FUSE, F6

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB: I T</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2F6
PART NUMBER: ME451-0018-0100

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE CONTROL VOLTAGE TO STOW/DEPLOY SYSTEM 1 SWITCH POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO STOW/DEPLOY THE REMOTE MANIPULATOR ARM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-58
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/02/86
SUBSYSTEM: EPD&C
MDAC ID: 4110

ITEM: FUSE, F5
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL A8A2
4) PORT RMS DEPLOY/STOW SWITCH, S5
5) FUSE, CONTROL VOLT BC1
6) FUSE, 1 AMP
7) FUSE, F11
8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2F5
PART NUMBER: ME451-0018-0100

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE CONTROL VOLTAGE TO STOW/DEPLOY SYSTEM 2 SWITCH POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 1 WOULD CAUSE LOSS OF ABILITY TO STOW/DEPLOY THE REMOTE MANIPULATOR ARM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-59
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/02/86
SUBSYSTEM: EPD&C
MDAC ID: 4111

ITEM: FUSE, F11
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL A8A2
4) STBD RMS DEPLOY/STOW SWITCH, S6
5) FUSE, CONTROL VOLT CA2
6) FUSE, 1 AMP
7) FUSE, F5
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A8A2F11
PART NUMBER: ME451-0018-0100

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE CONTROL VOLTAGE TO STOW/DEPLOY SYSTEM 1 SWITCH POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO STOW/DEPLOY THE REMOTE MANIPULATOR ARM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/02/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C
FLIGHT: 3/2R
MDAC ID: 4112
ABORT: /NA

ITEM: FUSE, F10
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL A8A2
4) STBD RMS DEPLOY/STOW SWITCH, S6
5) FUSE, CONTROL VOLT BC1
6) FUSE, 1 AMP
7) FUSE, F10
8)
9)

CRITICALITIES

+--+--+--+
<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
+--+--+--+

LOCATION: 36V73A8A2F10
PART NUMBER: ME451-0018-0100

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE CONTROL VOLTAGE TO STOW/DEPLOY SYSTEM 2 SWITCH POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 1 WOULD CAUSE LOSS OF ABILITY TO STOW/DEPLOY THE REMOTE MANIPULATOR ARM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4113

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K72
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) DEPLOY ACTUATOR MOTOR POWER, AC3PBM
6) HYBRID RELAY, ACTUATOR DEPLOY
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K72

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K72
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE 3-PHASE, AC3 PBM VOLTAGE TO ACTUATOR SYSTEM 1 MOTOR TO DRIVE TO DEPLOY POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO DEPLOY THE REMOTE MANIPULATOR ARM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-62
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86

SUBSYSTEM: EPD&C
MDAC ID: 4114

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: /NA

ITEM: HYBRID RELAY, K72
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSÝS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) DEPLOY ACTUATOR MOTOR POWER, AC3PBM
6) HYBRID RELAY, ACTUATOR DEPLOY
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K72
9)...

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120K72
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNINTENTIONAL APPLICATION OF 3-PHASE, AC3 PBM VOLTAGE TO ACTUATOR SYSTEM 1 MOTOR TO DRIVE TO DEPLOY POSITION.
UNTIMELY OPERATION OF A DEPLOY ACTUATOR MOTOR COULD CAUSE PHYSICAL DAMAGE TO THE RMS/PAYLOADS/ORBITER. LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-63
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4115 ABORT: /NA

ITEM: HYBRID RELAY, K49
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) DEPLOY ACTUATOR MOTOR POWER, AC2PBM
6) HYBRID RELAY, ACTUATOR DEPLOY
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K49
9) HYBRID RELAY, 3-PHASE

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIFTOFF: /NA TAL: /NA
ONORBIT: 3/2R AOA: /NA
DEORBIT: /NA ATO: /NA
LANDING/SAFING: /NA

LOCATION: 40V76A118K49
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE 3-PHASE, AC2 PBM VOLTAGE TO ACTUATOR SYSTEM 1 MOTOR TO DRIVE TO DEPLOY POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO DEPLOY THE REMOTE MANIPULATOR ARM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4116
HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: /NA

ITEM: HYBRID RELAY, K49
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) DEPLOY ACTUATOR MOTOR POWER, AC2PBM
6) HYBRID RELAY, ACTUATOR DEPLOY
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K49
9) RMS, 05-6IB

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAfING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118K49
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
- UNINTENTIONAL APPLICATION OF 3-PHASE, AC2PBM VOLTAGE TO ACTUATOR SYSTEM 1 MOTOR TO DRIVE TO DEPLOY POSITION.
- UNTIMELY OPERATION OF A DEPLOY ACTUATOR MOTOR COULD CAUSE PHYSICAL DAMAGE TO THE RMS/PAYLOADS/ORBITER. LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-65
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4117

ITEM: HYBRID RELAY, K60
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) DEPLOY ACTUATOR MOTOR POWER, AC3PBM
6) HYBRID RELAY, ACTUATOR STOW
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K60

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K60
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE 3-PHASE, AC3 PBM VOLTAGE TO ACTUATOR SYSTEM 1 MOTOR TO DRIVE TO STOW POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO STOW THE REMOTE MANIPULATOR ARM WHICH COULD REQUIRE JETTISON OF THE ARM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
C-66
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 1/1
MDAC ID: 4118 ABORT: /NA

ITEM: HYBRID RELAY, K60
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) DEPLOY ACTUATOR MOTOR POWER, AC3PBM
6) HYBRID RELAY, ACTUATOR STOW
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K60
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120K60
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNINTENTIONAL APPLICATION OF 3-PHASE, AC3 PBM VOLTAGE TO ACTUATOR SYSTEM 1 MOTOR TO DRIVE TO STOW POSITION.
UNTIMELY OPERATION OF A STOW ACTUATOR MOTOR COULD CAUSE PHYSICAL DAMAGE TO THE RMS/PAYLOADS/ORBITER. LOSS OF MISSION AND POSSIBLY CAUSE LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-67
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4119

ITEM: HYBRID RELAY, KS1
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) DEPLOY ACTUATOR MOTOR POWER, AC2PBM
6) HYBRID RELAY, ACTUATOR STOW
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, KS1
9) RMS, 05-6IB

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K51
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE 3-PHASE, AC3 PBM VOLTAGE TO ACTUATOR SYSTEM 1 MOTOR TO DRIVE TO THE STOW POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO STOW THE REMOTE MANIPULATOR ARM WHICH COULD REQUIRE JETTISON OF THE ARM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-68
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4120

HIGHEST CRITICALITY
HDW/FUNC

ITEM: HYBRID RELAY, K51
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) DEPLOY ACTUATOR MOTOR POWER, AC2PBM
6) HYBRID RELAY, ACTUATOR STOW
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K51
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [], B [], C []

LOCATION: 40V76A118K51
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
- UNINTENTIONAL APPLICATION OF 3-PHASE, AC3 PBM VOLTAGE TO ACTUATOR SYSTEM 1 MOTOR TO DRIVE TO THE STOW POSITION.
- UNTIMELY OPERATION OF A STOW ACTUATOR MOTOR COULD CAUSE PHYSICAL DAMAGE TO THE RMS/PAYLOADS/ORBITER. LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-69
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4121

ITEM: HYBRID RELAY, K22
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) DEPLOY ACTUATOR MOTOR POWER, AC2PBM
6) HYBRID RELAY, ACTUATOR DEPLOY
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K22

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SATING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K22
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE 3-PHASE, AC2 PBM VOLTAGE TO ACTUATOR SYSTEM 2 MOTOR TO DRIVE TO THE DEPLOY POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 1 WOULD CAUSE INABILITY TO DEPLOY THE REMOTE MANIPULATOR ARM THUS CAUSING LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-70
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86

SUBSYSTEM: EPD&C

MDAC ID: 4122

HIGHEST CRITICALITY

FLIGHT: 1/1

ABORT: /NA

ITEM: HYBRID RELAY, K22

FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) DEPLOY ACTUATOR MOTOR POWER, AC2PBM
6) HYBRID RELAY, ACTUATOR DEPLOY
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K22
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118K22

PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNINTENTIONAL APPLICATION OF 3-PHASE, AC2 PBM VOLTAGE TO ACTUATOR SYSTEM 2 MOTOR TO DRIVE TO THE DEPLOY POSITION.

UNTIMELY OPERATION OF A DEPLOY ACTUATOR MOTOR COULD CAUSE PHYSICAL DAMAGE TO THE RMS/PAYLOADS/ORBITER. LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-71
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4123

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K62
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) DEPLOY ACTUATOR MOTOR POWER, AC3PBM
6) HYBRID RELAY, ACTUATOR DEPLOY
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K62
9) HYBRID RELAY, ACTUATOR DEPLOY

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K62
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE 3-PHASE, AC2 PBM VOLTAGE TO ACTUATOR SYSTEM 2 MOTOR TO DRIVE TO THE DEPLOY POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 1 WOULD CAUSE INABILITY TO DEPLOY THE REMOTE MANIPULATOR ARM THUS CAUSING LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-72
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4124

HIGHEST CRITICALITY
FLIGHT: 1/1
ABORT: /NA

ITEM: HYBRID RELAY, K62
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) DEPLOY ACTUATOR MOTOR POWER, AC3PBM
6) HYBRID RELAY, ACTUATOR DEPLOY
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K62

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118K62
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNINTENTIONAL APPLICATION OF 3-PHASE, AC2 PBM VOLTAGE TO ACTUATOR SYSTEM 2 MOTOR TO DRIVE TO THE DEPLOY POSITION.
UNTIMELY OPERATION OF A DEPLOY ACTUATOR MOTOR COULD CAUSE PHYSICAL DAMAGE TO THE RMS/PAYLOADS/ORBITER. LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-73
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4125

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K24
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) DEPLOY ACTUATOR MOTOR POWER, AC2PBM
6) HYBRID RELAY, ACTUATOR STOW
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K24

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K24
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE 3-PHASE, AC3 PBM VOLTAGE TO ACTUATOR SYSTEM 2 MOTOR TO DRIVE TO THE STOW POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 1 WOULD CAUSE LOSS OF ABILITY TO STOW THE REMOTE MANIPULATOR ARM THUS REQUIRING JETTISON OF THE ARM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-74
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86

HIGHEST CRITICALITY: HDW/FUNC

SUBSYSTEM: EPD&C

FLIGHT: 1/1

MDAC ID: 4126

ABORT: /NA

ITEM: HYBRID RELAY, K24

FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC) - 2 (40V76A118)
5) DEPLOY ACTUATOR MOTOR POWER, AC2PBM
6) HYBRID RELAY, ACTUATOR STOW
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K24

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118K24

PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

UNINTENTIONAL APPLICATION OF 3-PHASE, AC3 PBM VOLTAGE TO ACTUATOR SYSTEM 2 MOTOR TO DRIVE TO THE STOW POSITION.

UNTIMELY OPERATION OF A STOW ACTUATOR MOTOR COULD CAUSE PHYSICAL DAMAGE TO THE RMS/PAYLOADS/ORBITER. LOSS OF MISSION AND POSSIBLY LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-75
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4127

ITEM: HYBRID RELAY, K50
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) DEPLOY ACTUATOR MOTOR POWER, AC3PBM
6) HYBRID RELAY, ACTUATOR STOW
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K50
9) HYBRID RELAY, ACTUATOR STOW

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K50
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE 3-PHASE, AC3 PBM VOLTAGE TO ACTUATOR SYSTEM 2 MOTOR TO DRIVE TO THE STOW POSITION.
A SUBSEQUENT FAILURE IN MANIPULATOR DEPLOY CONTROL SYSTEM 1 WOULD CAUSE LOSS OF ABILITY TO STOW THE REMOTE MANIPULATOR ARM AND POSSIBLY REQUIRE JETTISON OF THE ARM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-76
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/86
SUBSYSTEM: EPD&C
MDAC ID: 4128

HIGHEST CRITICALITY

FLIGHT: 1/1
ABORT: /NA

ITEM: HYBRID RELAY, K50
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) DEPLOY ACTUATOR MOTOR POWER, AC3PBM
6) HYBRID RELAY, ACTUATOR STOW
7) HYBRID RELAY, 3-PHASE
8) HYBRID RELAY, K50
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118K50
PART NUMBER: MC452-0123-0003

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTENTIONAL APPLICATION OF 3-PHASE, AC3 PBM VOLTAGE TO ACTUATOR SYSTEM 1 MOTOR TO DRIVE TO THE STOW POSITION.
UNTENTIMELY OPERATION OF A STOW ACTUATOR MOTOR COULD CAUSE PHYSICAL DAMAGE TO THE RMS/PAYLOADS/ORBITER. LOSS OF MISSION AND POSSIBLY CAUSE LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-77
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4129 ABORT: /NA

ITEM: HYBRID DRIVERS, AR9, 11
FAILURE MODE: FAILS OPEN, ONE OR BOTH.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
5) PORT RMS DEPLOY TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR9, 11
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119AR9, 11
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT AS LONG AS SYSTEM 2 IS FUNCTIONAL.
SUBSEQUENT SIMILAR FAILURE IN SYSTEM 2 WOULD NOT PROVIDE POWER TO DRIVE THE TALKBACK INDICATOR DS4 ON SWITCH S5 ON PANEL A8A2 TO INDICATE 'DEPLOYED'.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-78
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4130 ABORT: /NA

ITEM: HYBRID DRIVERS, AR9, 11
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
5) PORT RMS DEPLOY TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR9, 11

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119AR9, 11
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
COULD GIVE ERRONEOUS SIGNAL TO TALKBACK INDICATOR.
'DEPLOYED' TALKBACK INDICATION NOT CRITICAL.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-79
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4131 ABORT: /NA

ITEM: HYBRID DRIVERS, AR13, 15
FAILURE MODE: FAILS OPEN, ONE OR BOTH.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) PORT RMS DEPLOY TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR13, 15

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118AR13, 15
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RAZONALE:
NO EFFECT AS LONG AS SYSTEM 1 IS FUNCTIONAL.
SUBSEQUENT SIMILAR FAILURE IN SYSTEM 2 WOULD NOT PROVIDE POWER TO DRIVE THE TALKBACK INDICATOR DS4 ON SWITCH S5 ON PANEL A8A2 TO INDICATE DEPLOYED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-80
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4132

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: HYBRID DRIVERS, AR13, 15
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) PORT RMS DEPLOY TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR13, 15
8)
9)

FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIFTOFF: /NA TAL: /NA
ONORBIT: 3/3 AOA: /NA
DEORBIT: /NA ATO: /NA
LANDING/SAFING: /NA

CRITICALITIES

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118AR13, 15
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
COULD GIVE ERRONEOUS SIGNAL TO TALKBACK INDICATOR.
'DEPLOYED' TALKBACK INDICATION NOT CRITICAL.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-81
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4133

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: HYBRID DRIVERS, AR8, 10
FAILURE MODE: FAILS OPEN, ONE OR BOTH.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
5) PORT RMS STOW TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR8, 10
8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119AR8, 10
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT AS LONG AS SYSTEM 2 IS FUNCTIONAL.
SUBSEQUENT SIMILAR FAILURE IN SYSTEM 2 WOULD NOT PROVIDE POWER TO DRIVE THE TALKBACK INDICATOR DS4 ON SWITCH S5 ON PANEL A8A2 TO INDICATE STOWED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-82
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86

SUBSYSTEM: EPD&C

MDAC ID: 4134

HIGHEST CRITICALITY HDW/FUNC

FLIGHT: 3/3

ABORT: /NA

ITEM: HYBRID DRIVERS, AR8, 10

FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
5) PORT RMS STOW TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR8, 10
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119AR8, 10

PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

COULD GIVE ERRONEOUS SIGNAL TO TALKBACK INDICATOR.

THE CRT DISPLAY STOWED INDICATION WOULD DISAGREE WITH THE TALKBACK INDICATOR.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-83
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4135

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: HYBRID DRIVERS, AR12, 14
FAILURE MODE: FAILS OPEN, ONE OR BOTH.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) PORT RMS STOW TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR12, 14
8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118AR12, 14
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION,
CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT AS LONG AS SYSTEM 1 IS FUNCTIONAL.
SUBSEQUENT SIMILAR FAILURE IN SYSTEM 2 WOULD NOT PROVIDE POWER TO DRIVE THE TALKBACK INDICATOR DS4 ON SWITCH S5 ON PANEL A8A2 TO INDICATE STOWED STATE.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-84
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4136

HIGHEST CRITICALITY HDW/FUNC FLIGHT: 3/3 ABORT: /NA

ITEM: HYBRID DRIVERS, AR12, 14
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PORT MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
5) PORT RMS STOW TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR12, 14

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118AR12, 14
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
COULD GIVE ERRONEOUS SIGNAL TO TALKBACK INDICATOR.
THE CRT DISPLAY STOWED INDICATION WOULD DISAGREE WITH THE TALKBACK INDICATOR.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4137

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: HYBRID DRIVERS, AR14, 18
FAILURE MODE: FAILS OPEN, ONE OR BOTH.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
5) STBD RMS DEPLOY TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR14, 18
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117AR14, 18
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT AS LONG AS SYSTEM 2 IS FUNCTIONAL.
SUBSEQUENT SIMILAR FAILURE IN SYSTEM 2 WOULD NOT PROVIDE POWER TO DRIVE THE TALKBACK INDICATOR DS4 ON SWITCH S5 ON PANEL A8A2 TO INDICATE DEPLOYED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4138

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: HYBRID DRIVERS, AR14, 18
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
5) STBD RMS DEPLOY TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR14, 18
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAVING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117AR14, 18
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
COULD GIVE ERRONEOUS SIGNAL TO TALKBACK INDICATOR.
'DEPLOYED' TALKBACK INDICATION NOT CRITICAL.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-87
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4139

ITEM: HYBRID DRIVERS, AR6, 8
FAILURE MODE: FAILS OPEN, ONE OR BOTH.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) STBD RMS DEPLOY TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR6, 8
8)...
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120AR6, 8
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT AS LONG AS SYSTEM 1 IS FUNCTIONAL.
SUBSEQUENT SIMILAR FAILURE IN SYSTEM 2 WOULD NOT PROVIDE POWER TO DRIVE THE TALKBACK INDICATOR DS4 ON SWITCH S5 ON PANEL A8A2 TO INDICATE DEPLOYED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-88
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4140

ITEM: HYBRID DRIVERS, AR6, 8
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) STBD RMS DEPLOY TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR6, 8
8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120AR6, 8
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
COULD GIVE ERRONEOUS SIGNAL TO TALKBACK INDICATOR.
'DEPLOYED' TALKBACK INDICATION NOT CRITICAL.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-89
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4141 ABORT: /NA

ITEM: HYBRID DRIVERS, AR12, 16
FAILURE MODE: FAILS OPEN, ONE OR BOTH.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
5) STBD RMS STOW TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR12, 16
8) |
9) |

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117AR12, 16
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT AS LONG AS SYSTEM 2 IS FUNCTIONAL.
SUBSEQUENT SIMILAR FAILURE IN SYSTEM 2 WOULD NOT PROVIDE POWER TO DRIVE THE TALKBACK INDICATOR DS4 ON SWITCH S5 ON PANEL A8A2 TO INDICATE STOWED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-90
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86
HIGHEST CRITICALITY: FLIGHT: 3/3
SUBSYSTEM: EP&D&C
MDAC ID: 4142
ABORT: /NA

ITEM: HYBRID DRIVERS, AR12, 16
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 1
4) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
5) STBD RMS STOW TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR12, 16
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117AR12, 16
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
COULD GIVE ERRONEOUS SIGNAL TO TALKBACK INDICATOR.
THE CRT DISPLAY STOWED INDICATION WOULD DISAGREE WITH THE TALKBACK INDICATOR.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-91
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86
SUBSYSTEM: EPD&C
MDAC ID: 4143

HIGHEST CRITICALITY

HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: HYBRID DRIVERS, AR2, 4
FAILURE MODE: FAILS OPEN, ONE OR BOTH.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-4 (40V761A20)
5) STBD RMS STOW TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR2, 4
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V761A20AR2, 4
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT AS LONG AS SYSTEM 1 IS FUNCTIONAL.
SUBSEQUENT SIMILAR FAILURE IN SYSTEM 2 WOULD NOT PROVIDE POWER TO DRIVE THE TALKBACK INDICATOR DS4 ON SWITCH S5 ON PANEL A8A2 TO INDICATE STOWED.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-92
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/04/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4144 ABORT: /NA

ITEM: HYBRID DRIVERS, AR2, 4
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) STBD MANIPULATOR DEPLOY SYSTEM 2
4) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
5) STBD RMS STOW TALKBACK INDICATOR DS4
6) HYBRID DRIVERS, TYPE 1, 2 EACH
7) HYBRID DRIVERS, AR2, 4
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120AR2, 4
PART NUMBER: ME477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
COULD GIVE ERRONEOUS SIGNAL TO TALKBACK INDICATOR.
THE CRT DISPLAY STOWED INDICATION WOULD DISAGREE WITH THE TALKBACK INDICATOR.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-93
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4145

ITEM: CIRCUIT BREAKER, CB2
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 1, MCA LOGIC
5) MCA POWER, AC 1, 3-PHASE, MID 1
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB2

LOCATION: 85V73A129CB2
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE AC1 3-PHASE POWER TO AC1 PBM BUS IN MMC1.
LOSS OF AC 3-PHASE POWER TO DRIVE SYSTEM 1 MID RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REPORT DATE 02/25/87 C-94
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4146

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: CIRCUIT BREAKER, CB2
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 1, MCA LOGIC
5) MCA POWER, AC 1, 3-PHASE, MID 1
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129CB2
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT. POWER CAN BE REMOVED BY SWITCH OR RELAY ACTION.
NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-95
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4147

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: CIRCUIT BREAKER, CB7
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 1, MCA LOGIC
5) MCA POWER, AC 2, 3-PHASE, MID 2
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB7
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129CB7
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE AC2 3-PHASE POWER TO AC2 PBM BUS IN MMC2.
LOSS OF AC 3-PHASE POWER TO DRIVE SYSTEM 1 FWD RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE FWD RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-96
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4148 ABORT: /NA

ITEM: CIRCUIT BREAKER, CB7
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 1, MCA LOGIC
5) MCA POWER, AC 2, 3-PHASE, MID 2
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB7
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129CB7
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT. POWER CAN BE REMOVED BY SWITCH OR RELAY ACTION.
NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-97
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4149 ABORT: /NA

ITEM: CIRCUIT BREAKER, CB12
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 1, MCA LOGIC
5) MCA POWER, AC 3, 3-PHASE, MID 2
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB12
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129CB12
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE AC3 3-PHASE POWER TO AC3 PBM BUS IN MMC2. LOSS OF AC 3-PHASE POWER TO DRIVE SYSTEM 1 AFT RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE AFT RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-98
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4150

ITEM: CIRCUIT BREAKER, CB12
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 1, MCA LOGIC
5) MCA POWER, AC 3, 3-PHASE, MID 2
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB12

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129CB12
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT. POWER CAN BE REMOVED BY SWITCH OR RELAY ACTION.
NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-99
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4151 ABORT: /NA

ITEM: CIRCUIT BREAKER, CB3
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 2, MCA LOGIC
5) MCA POWER, AC 1, 3-PHASE, MID 3
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB3
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129CB3
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE AC1 3-PHASE POWER TO AC1 PBM BUS IN MMC3. LOSS OF AC 3-PHASE POWER TO DRIVE SYSTEM 2 AFT RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE AFT RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-100
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4152

ITEM: CIRCUIT BREAKER, CB3
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 2, MCA LOGIC
5) MCA POWER, AC 1, 3-PHASE, MID 3
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB3
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFINING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129CB3
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT. POWER CAN BE REMOVED BY SWITCH OR RELAY ACTION. NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-101
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EP&D&C
MDAC ID: 4153

ITEM: CIRCUIT BREAKER, CB9
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 2, MCA LOGIC
5) MCA POWER, AC 2, 3-PHASE, MID 4
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB9
8) ...
9) ...

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129CB9
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE AC2 3-PHASE POWER TO AC2 PBM BUS IN MMC4. LOSS OF AC 3-PHASE POWER TO DRIVE SYSTEM 2 MID RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE FWD RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4154
HIGHEST CRITICALITY: FLIGHT: 3/3
ABORT: /NA

ITEM: CIRCUIT BREAKER, CB9
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 2, MCA LOGIC
5) MCA POWER, AC 2, 3-PHASE, MID 4
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB9
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129CB9
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT. POWER CAN BE REMOVED BY SWITCH OR RELAY ACTION.
NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-103
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4155

ITEM: CIRCUIT BREAKER, CB13
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 2, MCA LOGIC
5) MCA POWER, AC 3, 3-PHASE, MID 4
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB13
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEOORB:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [], B [NA], C [NA]

LOCATION: 85V73A129CB13
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE AC3 3-PHASE POWER TO AC3 PBM BUS IN MMC4.
LOSS OF AC 3-PHASE POWER TO DRIVE SYSTEM 2 FWD RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE FWD RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-104
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4156 ABORT: /NA

ITEM: CIRCUIT BREAKER, CB13
FAILURE MODE: Fails closed.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) PBM POWER, SYSTEM 2, MCA LOGIC
5) MCA POWER, AC 3, 3-PHASE, MID 4
6) CIRCUIT BREAKER, 3-PH, 3 AMP
7) CIRCUIT BREAKER, CB13
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129CB13
PART NUMBER: ME454-0032-3030

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT. POWER CAN BE REMOVED BY SWITCH OR RELAY ACTION.
NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-105
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4157 ABORT: /NA

ITEM: SWITCH, S2
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL M73C
4) MCA LOGIC, MN A POWER, MID 1, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S2
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129S2
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO DRIVE RPC TO PROVIDE MN A 28 VDC POWER TO MMC1. LOSS OF MN A 28 VDC POWER TO MMC1 DISABLES OPERATION OF SYSTEM 1 MID RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT LOSS OF SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4158 ABORT: /NA

ITEM: SWITCH, S2 FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN A POWER, MID 1, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S2
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129S2
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT.
NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-107
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4159

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: SWITCH, S3
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN A POWER, MID 3, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S3
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A12953
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO DRIVE RPC TO PROVIDE MN A 28VDC POWER TO MMC3. LOSS OF MN A 28 VDC POWER TO MMC3 DISABLES OPERATION OF SYSTEM 2 AFT RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT LOSS OF SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-108
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4160

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: SWITCH, S3
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN A POWER, MID 3, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S3
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>Landing/Safing</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129S3
PART NUMBER: ME452-0102-7401

CAUSES:
MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT.
NO EFFECT.

REFERENCES:
VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-109
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4161

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: SWITCH, S7
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN B POWER, MID 2, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S7

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A12987
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO DRIVE RPC TO PROVIDE MN B 28VDC POWER TO MMC2. LOSS OF MN B 28 VDC POWER TO MMC2 DISABLES OPERATION OF SYSTEM 1 FWD RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT LOSS OF SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-110
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4162
HIGHEST CRITICALITY FLIGHT: 3/3
ABORT: /NA
ITEM: SWITCH, S7
FAILURE MODE: FAILS CLOSED.
LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN B POWER, MID 2, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S7

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129S7
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT.
NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-111
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4163

ITEM: SWITCH, S9
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN B POWER, MID 4, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S9

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>ACA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129S9
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO DRIVE RPC TO PROVIDE MN B 28VDC POWER TO MMC4.
LOSS OF MN B 28 VDC POWER TO MMC4 DISABLES OPERATION OF SYSTEM 2 MID RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT LOSS OF SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-112
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4164

ITEM: SWITCH, S9
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN B POWER, MID 4, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S9

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129S9
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-113
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4165

HIGHEST CRITICALITY

HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: SWITCH, S12
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPETER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN C POWER, MID 2, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S12

CRITICALITIES

FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIFTOFF: /NA TAL: /NA
ONORBIT: 3/2R AOA: /NA
DEORBIT: /NA ATO: /NA
LANDING/SAFING: /NA

LOCATION: 85V73A129S12
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO DRIVE RPC TO PROVIDE MN C 28VDC POWER TO MMC2.
LOSS OF MN C 28 VDC POWER TO MMC2 DISABLES OPERATION OF SYSTEM
1 AFT RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT LOSS OF SYSTEM
2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH
ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-114
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/21/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
<td>FLIGHT:</td>
<td>3/3</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4166</td>
<td>ABORT:</td>
<td>/NA</td>
</tr>
<tr>
<td>ITEM:</td>
<td>SWITCH, S12</td>
<td>FAILURE MODE:</td>
<td>FAILS CLOSED.</td>
</tr>
<tr>
<td>LEAD ANALYST:</td>
<td>ROBINSON</td>
<td>SUBSYS LEAD:</td>
<td>SCHMECKPEPER</td>
</tr>
</tbody>
</table>

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN C POWER, MID 2, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S12
8)
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129S12
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT.
NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-115
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4167

HIGHEST CRITICALITY
HDW/FUNC

FLIGHT: 3/2R
ABORT: /NA

ITEM: SWITCH, S13
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN C POWER, MID 4, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S13
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129S13
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO DRIVE RPC TO PROVIDE MN C 28VDC POWER TO MMC4. LOSS OF MN C 28 VDC POWER TO MMC4 DISABLES OPERATION OF SYSTEM 2 FWD RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT LOSS OF SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH ACTUATOR MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-116
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4168

ITEM: SWITCH, S13
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN C POWER, MID 4, ON/OFF
5) SWITCH, TOGGLE, MAINTAINED
6) SWITCH, 1-POLE, 2-POSITION
7) SWITCH, S13
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 85V73A129513
PART NUMBER: ME452-0102-7401

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
NO EFFECT.
NO EFFECT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-117
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/21/86
SUBSYSTEM: EPD&C
MDAC ID: 4169

ITEM: RESISTOR, R2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN A POWER, MID 1, ON/OFF, S2
5) RESISTOR, CURRENT LIMITING
6) RESISTOR, 1.2K OHM 2 WATT
7) RESISTOR, R2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129R2
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
SWITCH S2 WILL NOT FUNCTION TO DRIVE RPC TO PROVIDE MN A 28VDC POWER TO MMC1.
LOSS OF MN A 28 VDC POWER TO MMC1 DISABLES OPERATION OF SYSTEM 1 MID RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4170

HIGHEST CRITICALITY

ITEM: RESISTOR, R3
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN A POWER, MID 3, ON/OFF, S3
5) RESISTOR, CURRENT LIMITING
6) RESISTOR, 1.2K OHM 2 WATT
7) RESISTOR, R3
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129R3
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
SWITCH S3 WILL NOT FUNCTION TO DRIVE RPC TO PROVIDE MN A 28VDC POWER TO MMC1.
LOSS OF MN A 28 VDC POWER TO MMC3 DISABLES OPERATION OF SYSTEM 2 MID RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-119
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4171 ABORT: /NA

ITEM: RESISTOR, R7 FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN B POWER, MID 2, ON/OFF, S7
5) RESISTOR, CURRENT LIMITING
6) RESISTOR, 1.2K OHM 2 WATT
7) RESISTOR, R7
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIPTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129R7
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

SWITCH S7 WILL NOT FUNCTION TO DRIVE RPC TO PROVIDE MN A 28VDC POWER TO MMC1.

LOSS OF MN A 28 VDC POWER TO MMC2 DISABLES OPERATION OF SYSTEM 1 MID RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-120
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4172 ABORT: /NA

ITEM: RESISTOR, R9
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN B POWER, MID 4, ON/OFF, S9
5) RESISTOR, CURRENT LIMITING
6) RESISTOR, 1.2K OHM 2 WATT
7) RESISTOR, R9
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th></th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129R9
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
SWITCH S9 WILL NOT FUNCTION TO DRIVE RPC TO PROVIDE MN A 28VDC POWER TO MMC1.
LOSS OF MN A 28 VDC POWER TO MMC4 DISABLES OPERATION OF SYSTEM 2 MID RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-121
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86

SUBSYSTEM: EPD&C
MDAC ID: 4173

ITEM: RESISTOR, RI2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IB
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN C POWER, MID 2, ON/OFF, S12
5) RESISTOR, CURRENT LIMITING
6) RESISTOR, 1.2K OHM 2 WATT
7) RESISTOR, R12
8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129R12
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
SWITCH S12 WILL NOT FUNCTION TO DRIVE RPC TO PROVIDE MN A 28VDC POWER TO MMC1.
LOSS OF MN A 28 VDC POWER TO MMC2 DISABLES OPERATION OF SYSTEM 1 MID RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN SYSTEM 2 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-122
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4174 ABORT: /NA

ITEM: RESISTOR, R13
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61B
2) MANIPULATOR DEPLOY CONTROL
3) PANEL MA73C
4) MCA LOGIC, MN C POWER, MID 4, ON/OFF, S13
5) RESISTOR, CURRENT LIMITING
6) RESISTOR, 1.2K OHM 2 WATT
7) RESISTOR, R13
8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 85V73A129R13
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
SWITCH $13 WILL NOT FUNCTION TO DRIVE RPC TO PROVIDE MN A 28VDC POWER TO MMC1.
LOSS OF MN A 28 VDC POWER TO MMC4 DISABLES OPERATION OF SYSTEM 2 MID RETENTION LATCH ACTUATOR MOTOR. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD CAUSE LOSS OF ABILITY TO OPERATE THE MID RETENTION LATCH MECHANISM. LOSS OF MISSION COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-123
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4201

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K20
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61C
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K20
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K20
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-2 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE PORT MANIPULATOR FWD RETENTION LATCH ACTUATOR TO THE LATCH POSITION.
ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO LATCH THE PORT FWD LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-124
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4202

ITEM: HYBRID RELAY, K20
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K20

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K20
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF PLBM AC-2 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR COULD DRIVE THE PORT MANIPULATOR FWD RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT. UNTIMELY ACTUATOR LATCHING COULD CAUSE PHYSICAL DAMAGE TO RMS/ORBITER/PAYLOADS. IF FAILURE OCCURRED WHILE POWER APPLIED TO THE RELEASE DRIVE MOTOR, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE OF THE REDUNDANT SYSTEM RESULTS IN INABILITY TO LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-125
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/22/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
<td>FLIGHT:</td>
<td>3/2R</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4203</td>
<td>ABORT:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

ITEM: HYBRID RELAY, K52
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K52
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K52
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-3 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE STBD MANIPULATOR FWD RETENTION LATCH ACTUATOR TO THE LATCH POSITION.

ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO LATCH THE STARBOARD FWD LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-126
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4204

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K52
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.
LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K52

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K52
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF PLBM AC-3 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR COULD DRIVE THE STBD MANIPULATOR FWD RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR LATCHING COULD CAUSE PHYSICAL DAMAGE TO THE RMS/ORBITER/PAYLOADS. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE IN THE REDUNDANT SYSTEM RESULTS IN INABILITY TO LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-127
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4205

ITEM: HYBRID RELAY, K8
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K8
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K8
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-2 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE PORT MANIPULATOR FWD RETENTION LATCH ACTUATOR TO THE RELEASE POSITION.
ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO RELEASE THE PORT FWD LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-128
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4206

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K8
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K8
9) HYBRID RELAY, K8

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K8
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF PLBM AC-2 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR COULD DRIVE THE PORT MANIPULATOR FWD RETENTION LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT. UNTIMELY ACTUATOR RELEASE COULD CAUSE PHYSICAL DAMAGE TO THE RMS/ORBITER/PAYLOADS. IF THE FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO LATCH, MOTOR FAILURE COULD OCCUR. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM WOULD RESULT IN INABILITY TO RELEASE.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-129
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4207 ABORT: /NA

ITEM: HYBRID RELAY, K64
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STRD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K64
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K64
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-3 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE STBD MANIPULATOR FWD RETENTION LATCH ACTUATOR TO THE RELEASE POSITION.
ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO RELEASE THE STARBOARD FWD LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-130
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4208

ITEM: HYBRID RELAY, K64
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STRD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K64
9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K64
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF PLBM AC-3 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR COULD DRIVE THE STBD MANIPULATOR FWD RETENTION LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT. UNTIMELY ACTUATOR RELEASE COULD CAUSE PHYSICAL DAMAGE TO THE RMS/ORBITER/PAYLOADS. IF THE FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO LATCH, MOTOR FAILURE COULD OCCUR. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM WOULD RESULT IN INABILITY TO RELEASE.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-131
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4209 ABORT: /NA

ITEM: RELAY, K44
FAILURE MODE: FAILS CLOSED IN RESET OR DEADFACE POSITION.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACTUATOR SYS 1, GND-RESET/DFACE RELAY
7) RELAY, LATCHING, 2-POLE
8) RELAY, K44
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K44
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

WILL NOT ALLOW RESET OR DEADFACE OF THE PORT FWD MOTOR CONTROL CIRCUIT AS REQUIRED.
IF FAILED IN THE DEADFACE POSITION, NEITHER THE LATCH OR RELEASE FUNCTION OF PORT SYSTEM 1 FWD ACTUATOR COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-132
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4210

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: RELAY, K76
FAILURE MODE: FAILS CLOSED IN RESET OR DEADFACE POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 1, GND-RESET/DFACE RELAY
7) RELAY, LATCHING, 2-POLE
8) RELAY, K76
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K76
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT ALLOW RESET OR DEADFACE OF THE STBD FWD MOTOR CONTROL CIRCUICT AS REQUIRED.
IF FAILED IN THE DEADFACE POSITION, NEITHER THE LATCH OR RELEASE FUNCTION OF STBD SYSTEM 1 FWD ACTUATOR COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-133
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4211

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: FUSE, F4
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD READY-TO-LATCH SW ASSY 1 (V54X0840E)
7) FUSE, 2 AMP, (K44-B3)
8) FUSE, F4
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLZ:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118F4
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION,
CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PORT FWD SYSTEM 1 'FWD READY TO LATCH' SIGNAL
(V54X0837E) TO EVENT INDICATOR DS10 ON PANEL A8A2 OR (V54X0840E)
TO MDM OA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-134
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/22/86</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4212</td>
</tr>
</tbody>
</table>

HIGHEST CRITICALITY

<table>
<thead>
<tr>
<th>HDW/FUNC</th>
<th>FLIGHT:</th>
<th>ABORT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>/NA</td>
<td>3/3</td>
<td>/NA</td>
</tr>
</tbody>
</table>

ITEM: FUSE, F6

FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD READY-TO-LATCH SW ASSY 1 (V54X1040E)
7) FUSE, 2 AMP, (K76-B3)
8) FUSE, F6
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [], B [], C []

LOCATION: 40V76A120F6

PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE: WILL NOT PROVIDE STBD FWD SYSTEM 1 'FWD READY TO LATCH' SIGNAL (V54X1037E) TO EVENT INDICATOR DS9 ON PANEL A8A2 OR (V54X1040E) TO MDM OA2.

LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-135
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4213

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R27
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD READY-TO-LATCH SW ASSY 1 (V54X0840E)
7) RESISTOR, ISOL, 2.2K OHM
8) RESISTOR, R27

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R27
PART NUMBER: RLR2002201GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PORT FWD SYSTEM 1 'FWD READY TO LATCH' SIGNAL (V54X0840E) TO MDM QA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-136
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SPREADSHEET: EPD&C MDAC ID: 4214
HIGHEST CRITICALITY FLIGHT: 3/3 ABORT: /NA

ITEM: RESISTOR, R67
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD READY-TO-LATCH SW ASSY 1 (V54X1040E)
7) RESISTOR, ISOL, 2.2K OHM
8) RESISTOR, R67
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R67
PART NUMBER: RLR2002201GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE STBD FWD SYSTEM 1 'FWD READY TO LATCH' SIGNAL (V54X1040E) TO MDM OA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-137
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86

SUBSYSTEM: EPD&C

MDAC ID: 4215

ITEM: RESISTOR, R28
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD READY-TO-LATCH SW ASSY 1 (V54X0840E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R28

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R28
PART NUMBER: RLR0701801GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PORT FWD SYSTEM 1 'FWD READY TO LATCH' SIGNAL (V54X0840E) TO MDM OA2 (V54X0840E).
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-138
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4216

ITEM: RESISTOR, R63
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD READY-TO-LATCH SW ASSY 1 (V54X1040E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R63
9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R63
PART NUMBER: RLR0701801GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE STBD FWD SYSTEM 1 'FWD READY TO LATCH' SIGNAL (V54X1040E) TO MDM OA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-139
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4217

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACTUATOR SYS 1, LATCH/RELEASE (K44-A3)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R2
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PORT FWD SYSTEM 1 LATCH/RELEASE ENABLE SIGNAL TO APPROPRIATE ACTUATOR MOTOR RELAY K20/K8.
LOSS OF ABILITY TO OPERATE PORT SYSTEM 1 FWD RETENTION LATCH ACTUATOR TO EITHER LATCH OR RELEASE. SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 COULD RESULT IN LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-140
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4218

HIGHEST CRITICALITY

<table>
<thead>
<tr>
<th>ITEM</th>
<th>FAILURE MODE</th>
<th>LEAD ANALYST</th>
<th>SUBSYS LEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESISTOR, R14</td>
<td>FAILS OPEN.</td>
<td>ROBINSON</td>
<td>SCHMECKPEPER</td>
</tr>
</tbody>
</table>

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 1, LATCH/RELEASE (K76-A3)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R14
9) RESISTOR, R14

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REduNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R14
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE STBD FWD SYSTEM 1 LATCH/RELEASE ENABLE SIGNAL TO APPROPRIATE ACTUATOR MOTOR RELAY K52/K64.

LOSS OF ABILITY TO OPERATE STBD SYSTEM 1 FWD RETENTION LATCH ACTUATOR TO EITHER LATCH OR RELEASE. SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 COULD RESULT IN LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-141
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4219

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R25
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACTUATOR SYS 1, K20 LATCHED, (V54X0860E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R25
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R25
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PORT FWD SYSTEM 1 LATCH ENABLE MONITORING MEASUREMENT (V54X0860E) TO MDM OA2 OR (V54X0859E) TO EVENT INDICATOR ON PANEL A8A2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-142
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4220

HIGHEST CRITICALITY: HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R32
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 1, K52 LATCHED, (V54X1060E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R32

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R32
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE STBD FWD SYSTEM 1 LATCH ENABLE MONITORING MEASUREMENT (V54X1060E) TO MDM OA2 OR (V54X1059E) TO EVENT INDICATOR ON PANEL A8A2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-143
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/22/86
SUBSYSTEM: EPD&C
MDAC ID: 4221

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R26
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACTUATOR SYS 1, K8 RELEASED, (V54X0870E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R26

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R26
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PORT FWD SYSTEM 1 RELEASE ENABLE MONITORING MEASUREMENT (V54X0870E) TO MDM OA2 OR (V54X0869E) TO EVENT INDICATOR ON PANEL A8A2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-144
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/22/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
<td>FLIGHT: 3/3</td>
<td></td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4222</td>
<td>ABORT: /NA</td>
<td></td>
</tr>
</tbody>
</table>

ITEM: RESISTOR, R33
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 1, K64 RELEASED, (V54X1070E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R33
9)

CRITICALITIES
<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R33
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE STBD FWD SYSTEM 1 RELEASE ENABLE MONITORING MEASUREMENT (V54X1070E) TO MDM OA2 OR (V54X1069E) TO EVENT INDICATOR ON PANEL A8A2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-145
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPD&C
MDAC ID: 4223

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: HYBRID DRIVER, AR4
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACT SYS 1, LATCH EVENT, A8A2S6DS5, (V5X40859E)
7) HYBRID DRIVER, TYPE 1
8) HYBRID DRIVER, AR4

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118AR4
PART NUMBER: MG477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PORT FWD SYSTEM 1 LATCH ENABLE SIGNAL (V5X40859E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S6, LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-146
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4224 ABORT: /NA

ITEM: HYBRID DRIVER, AR4
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACT SYS 1, LATCH EVENT, A8A2S6DS5, (V5X40859E)
7) HYBRID DRIVER, TYPE 1
8) HYBRID DRIVER, AR4
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118AR4
PART NUMBER: MC477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE ERRONEOUS PORT FWD SYSTEM 1 LATCH ENABLE SIGNAL (V54X0859E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S6.
LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-147
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPD&C
MDAC ID: 4225

ITEM: HYBRID DRIVER, AR10
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACT SYS 1, LATCH EVENT, A8A2S3DS10, (V54X1059E)
7) HYBRID DRIVER, TYPE 1
8) HYBRID DRIVER, AR10
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120AR10
PART NUMBER: MC477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE STBD FWD SYSTEM 1 LATCH ENABLE SIGNAL (V54X1059E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S3.
LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-148
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPD&C
MDAC ID: 4226

ITEM: HYBRID DRIVER, AR10
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACT SYS 1, LATCH EVENT, A8A2S3DS10, (V54X1059E)
7) HYBRID DRIVER, TYPE 1
8) HYBRID DRIVER, AR10
9) []

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120AR10
PART NUMBER: MC477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE ERRONEOUS STBD FWD SYSTEM 1 LATCH ENABLE SIGNAL (V54X1059E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S3. LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-149
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPD&C
MDAC ID: 4227

ITEM: HYBRID DRIVER, AR5
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACT SYS 1, RELEASE EVENT, A8A2S6DS5, (V54X0859E)
7) HYBRID DRIVER, TYPE 1
8) HYBRID DRIVER, AR5
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118AR5
PART NUMBER: MC477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PORT FWD SYSTEM 1 RELEASE ENABLE SIGNAL (V54X0869E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S6. LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-150
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPD&C
MDAC ID: 4228

HIGHEST CRITICALITY: FLIGHT: 3/3
ABORT: /NA

ITEM: HYBRID DRIVER, AR5
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) FWD ACT SYS 1, RELEASE EVENT, A8A256DS5, (V54X0859E)
7) HYBRID DRIVER, TYPE 1
8) HYBRID DRIVER, AR5

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118AR5
PART NUMBER: MC477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE ERRONEOUS PORT FWD SYSTEM 1 RELEASE ENABLE SIGNAL (V54X0859E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S6.
LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-151
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPDC
MDAC ID: 4229

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: HYBRID DRIVER, AR13
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACT SYS 1, RELEASE EVENT, A8A2S3DS10, (V54X1059E)
7) HYBRID DRIVER, TYPE 1
8) HYBRID DRIVER, AR13

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120AR13
PART NUMBER: MC477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE STBD FWD SYSTEM 1 RELEASE ENABLE SIGNAL (V54X1069E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S3. LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-152
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPD&C
MDAC ID: 4230

ITEM: HYBRID DRIVER, AR13
FAILURE MODE: FAILS CLOSED.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACT SYS 1, RELEASE EVENT, A8A2S3DS10, (V54X1059E)
7) HYBRID DRIVER, TYPE 1
8) HYBRID DRIVER, AR13

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120AR13
PART NUMBER: MC477-0261-0002

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE ERRONEOUS STBD FWD SYSTEM 1 RELEASE ENABLE SIGNAL (V54X1069E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S3.
LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-153
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPD&C
MDAC ID: 4231

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: FUSE, AR4F1
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MNC)-2 (40V76A118)
6) HYBRID DRIVER, AR4, FUSE
7) FUSE, 2 AMP
8) FUSE, AR4F1
9) FUSE, AR4F1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118AR4F1
PART NUMBER: MC451-0018-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PORT FWD SYSTEM 1 LATCH ENABLE SIGNAL (V54X0859E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S6.
LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-154
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPD&C
MDAC ID: 4232

ITEM: FUSE, AR10F1
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) HYBRID DRIVER, AR10, FUSE
7) FUSE, 2 AMP
8) FUSE, AR10F1
9) HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120AR10F1
PART NUMBER: MC451-0018-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE STBD FWD SYSTEM 1 LATCH ENABLE SIGNAL (V54X1059E) TO EVENT INDICATOR DS9 ON PANEL A8A2 SWITCH S3. LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-155
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPD&C
MDAC ID: 4233

HIGHEST CRITICALITY: FLIGHT: 3/3
ABORT: /NA

ITEM: FUSE, AR5F1
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) HYBRID DRIVER, AR5, FUSE
7) FUSE, 2 AMP
8) FUSE, AR5F1

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118AR5F1
PART NUMBER: MC451-0018-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PORT FWD SYSTEM 1 RELEASE ENABLE SIGNAL (V54X0869E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S6. LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-156
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/24/86
SUBSYSTEM: EPD&C
MDAC ID: 4234

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: FUSE, AR13F1
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) HYBRID DRIVER, AR13, FUSE
7) FUSE, 2 AMP
8) FUSE, AR13F1
9) FUSE, AR13F1

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120AR13F1
PART NUMBER: MC451-0018-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE STBD FWD SYSTEM 1 RELEASE ENABLE SIGNAL (V54X1069E) TO EVENT INDICATOR DS5 ON PANEL A8A2 SWITCH S3.
LOSS OF EVENT INDICATION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-157
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4235 ABORT: /NA

ITEM: HYBRID RELAY, K55
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) MID ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K55

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIPTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A117K55
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

WILL NOT PROVIDE PLCM AC-1 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE PORT MANIPULATOR MID RETENTION LATCH ACTUATOR TO THE LATCH POSITION.

ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO LATCH THE PORT MID LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-158
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EP&D&C
MDAC ID: 4236

ITEM: HYBRID RELAY, K55
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) MID ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K55

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A117K55
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF PLBM AC-1 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR COULD DRIVE THE PORT MANIPULATOR MID RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT. UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF THE FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO LATCH THE PORT MID LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-159
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4237

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K69
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K69

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K69
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-2 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE STARBOARD MANIPULATOR MID RETENTION LATCH ACTUATOR TO THE LATCH POSITION.
ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO LATCH THE STBD MID LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-160
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4238

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K69
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K69
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K69
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF PLBM AC-2 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR COULD DRIVE THE STARBOARD MANIPULATOR MID RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF THE FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO LATCH THE STBD MID LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-161
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4239 ABORT: /NA

ITEM: HYBRID RELAY, K43
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) MID ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K43
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A117K43
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-1 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE PORT MANIPULATOR MID RETENTION LATCH ACTUATOR TO THE RELEASE POSITION.
ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO RELEASE THE PORT MID LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-162
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EP&D&C
MDAC ID: 4240

HIGHEST CRITICALITY
HDW/FUNC

FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K43
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) MID ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K43
9) "CRITICALITIES"

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT PHASE</td>
</tr>
<tr>
<td>PRELAUNCH:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
</tr>
<tr>
<td>ONORBIT:</td>
</tr>
<tr>
<td>DEORBIT:</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A117K43
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF PLBM AC-1 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR COULD DRIVE THE PORT MANIPULATOR MID RETENTION LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT. UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF THE FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO LATCH, MOTOR FAILURE COULD RESULT. ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO RELEASE THE PORT MID LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-163
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4241

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K57
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K57
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K57
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONAL:
WILL NOT PROVIDE PLBM AC-2 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE STARBOARD MID MANIPULATOR RETENTION LATCH ACTUATOR TO THE RELEASE POSITION.
ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO RELEASE THE STBD MID LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-164
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4242 ABORT: /NA

ITEM: HYBRID RELAY, K57
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC) - 4 (40V76A120)
6) MID ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K57

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K57
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF PLBM AC-2 115 VAC 400 HZ POWER TO THE SYSTEM 1 MOTOR COULD DRIVE THE STARBOARD MID MANIPULATOR RETENTION LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF THE FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO LATCH, MOTOR FAILURE COULD RESULT. ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO RELEASE THE STBD MID LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-165
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4243

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: RELAY, K57
FAILURE MODE: FAILS CLOSED IN RESET OR DEADFACE POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) MID ACTUATOR SYS 1, GND-RESET/DFACE RELAY
7) RELAY, LATCHING, 2-POLE
8) RELAY, K57

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A117K57
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT ALLOW RESET OR DEADFACE OF THE MID MOTOR CONTROL CIRCUIT AS REQUIRED.
IF FAILED IN THE DEADFACE POSITION NEITHER THE LATCH OR RELEASE FUNCTION OF THE PORT SYSTEM 1 MID RETENTION LATCH ACTUATOR COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN THE RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-166
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4244

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: /NA

ITEM: RELAY, K80
FAILURE MODE: FAILS CLOSED IN RESET OR DEADFACE POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 1, GND-RESET/DFACE RELAY
7) RELAY, LATCHING, 2-POLE
8) RELAY, K88
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K80
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT ALLOW RESET OR DEADFACE OF THE MID MOTOR CONTROL CIRCUIT AS REQUIRED.
IF FAILED IN THE DEADFACE POSITION NEITHER THE LATCH OR RELEASE FUNCTION OF THE STBD SYSTEM 1 MID RETENTION LATCH ACTUATOR COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN THE RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-167
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4245

ITEM: FUSE, F2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) MID READY-TO-LATCH SW ASSY 2 (V54X0842E)
7) FUSE, 2 AMP, (K57-B3)
8) FUSE, F2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REdundancy Screens: A [] B [] C []

LOCATION: 40V76A117F2
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 'MID READY-TO-LATCH' MEASUREMENT (V54X0842E) TO MDM OF4 OR (V54X0838E) TO EVENT INDICATOR DS8 ON PANEL A8A2.

LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-168
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4246

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: FUSE, F4
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID READY-TO-LATCH SW ASSY 2 (V54X1042E)
7) FUSE, 2 AMP, (K57-B3)
8) FUSE, F4
9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120F4
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 'MID READY-TO-LATCH' MEASUREMENT (V54X1042E) TO MDM OA1 OR (V54X1038E) TO EVENT INDICATOR DS7 ON PANEL A8A2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-169
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4247

ITEM: RESISTOR, R29
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) MID READY-TO-LATCH SW ASSY 2 (V54X0842E)
7) RESISTOR, ISOL, 2.2K OHM
8) RESISTOR, R29
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:
A []
B []
C []

LOCATION: 40V76A117R29
PART NUMBER: RLR2002201GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 'MID READY-TO-LATCH' MEASUREMENT (V54X0842E) TO MDM OF4.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
C-170
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY
SUBSYSTEM: EPD&C HDW/FUNC
MDAC ID: 4248 FLIGHT: 3/3

ITEM: RESISTOR, R65 ABORT: /NA
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID READY-TO-LATCH SW ASSY 2 (V54X1042E)
7) RESISTOR, ISOL, 2.2K OHM
8) RESISTOR, R65

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R65
PART NUMBER: RLR2002201GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 'MID READY-TO-LATCH' MEASUREMENT (V54X1042E) TO MDM OA1.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-171
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY
SUBSYSTEM: EPD&C HDW/FUNC
MDAC ID: 4249 FLIGHT:

ABORT: 3/3 /NA

ITEM: RESISTOR, R28
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) MID READY-TO-LATCH SW ASSY 2 (V54X0842E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R28

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LND/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117R28
PART NUMBER: RLR0701801GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 'MID READY-TO-LATCH' MEASUREMENT (V54X0842E) TO MDM OF4.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-172
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4250

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R61
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID READY-TO-LATCH SW ASSY 2 (V54X1042E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R61
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R61
PART NUMBER: RLR0701801GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 'MID READY-TO-LATCH' MEASUREMENT (V54X1042E) TO MDM OA1.
LOSS OF MEASUREMENT.

REFERENCES:
VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-173
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4251

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: RESISTOR, R1
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC) -1 (40V76A117)
6) MID ACTUATOR SYSTEM 1, LATCH/RELEASE (K57-A3)
7) RESISTOR, IS0, 1.2K OHM, 2 WATT
8) RESISTOR, R1
9)

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIPTOFF: /NA TAL: /NA
ONORBIT: 3/2R AOA: /NA
DEORB1IT: /NA ATO: /NA
LANDING/SAFING: /NA

LOCATION: 40V76A117R1
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 LATCH/RELEASE ENABLE SIGNAL TO APPROPRIATE ACTUATOR MOTOR RELAY K55/K43.
LOSS OF ABILITY TO OPERATE PORT SYSTEM 1 MID RETENTION LATCH ACTUATOR TO EITHER LATCH OR RELEASE. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 2 COULD CAUSE LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-174
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4252 ABORT: /NA

ITEM: RESISTOR, R11
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYSTEM 1, LATCH/RELEASE (K80-A3)
7) RESISTOR, ISO; 1.2K OHM, 2 WATT
8) RESISTOR, R11
9) ...

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120R11
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 LATCH/RELEASE ENABLE SIGNAL TO APPROPRIATE ACTUATOR MOTOR RELAY K69/H57.
LOSS OF ABILITY TO OPERATE STBD SYSTEM 1 MID RETENTION LATCH ACTUATOR TO EITHER LATCH OR RELEASE. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 2 COULD CAUSE LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-175
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EP&D&C
MDAC ID: 4253

<table>
<thead>
<tr>
<th>ITEM:</th>
<th>RESISTOR, R25</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAILURE MODE:</td>
<td>FAILS OPEN.</td>
</tr>
</tbody>
</table>

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) MID ACTUATOR SYSTEM 1, K55 LATCHED, (V54X0862E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R25
9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE LAUNCH</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LI TOFF</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DE ORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117R25
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 LATCH ENABLE MONITORING MEASUREMENT (V54X0872E) TO MDM OF4. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-176
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4254

ITEM: RESISTOR, R14
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYSTEM 1, K69 LATCHED, (V54X1062E)
7) RESISTOR, CUR Lim, 5.1K OHM, 1/4 WATT
8) RESISTOR, R14

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R14
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 LATCH ENABLE MONITORING MEASUREMENT (V54X1062E) TO MDM OA1.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-177
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4255

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R26
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) MID ACTUATOR SYSTEM 1, K43 LATCHED, (V54X1062E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R26

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117R26
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 RELEASE ENABLE MONITORING MEASUREMENT (V54X0872E) TO MDM OF4.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-178
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4256

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R15
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYSTEM 1, K57 RELEASED, (V54X1072E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R15

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R15
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 1 RELEASE ENABLE MONITORING MEASUREMENT (V54X1072E) TO MDM OA1. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-179
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86
SUBSYSTEM: EPD&C
MDAC ID: 4257

ITEM: HYBRID RELAY, K75
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K75
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT PHASE</td>
</tr>
<tr>
<td>PRELAUNCH:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
</tr>
<tr>
<td>ONORBIT:</td>
</tr>
<tr>
<td>DEORBIT:</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K75
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-3 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE PORT MANIPULATOR AFT RETENTION LATCH ACTUATOR TO THE LATCH POSITION.
ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO LATCH THE PORT AFT LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-180
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86
SUBSYSTEM: EPD&C
MDAC ID: 4258

ITEM: HYBRID RELAY, K75
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K75

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K75
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-3 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR WHICH COULD DRIVE THE PORT MANIPULATOR AFT RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR LATCHING COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 COULD RESULT IN INABILITY TO LATCH/RELEASE THE STBD AFT LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-181
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4259 ABORT: /NA

ITEM: HYBRID RELAY, K78
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K78
9)...

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A119K78
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-1 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE STARBOARD MANIPULATOR AFT RETENTION LATCH ACTUATOR TO THE LATCH POSITION.
ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO LATCH THE STBD AFT LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS \ JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-182
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86
SUBSYSTEM: EP&D&C
MDAC ID: 4260

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

HDW/FUNC

ITEM: HYBRID RELAY, K78
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYS 1, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K78
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A119K78
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-1 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR WHICH COULD DRIVE THE STBD MANIPULATOR AFT RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT.

UNTIMELY ACTUATOR LATCHING COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 COULD RESULT IN INABILITY TO LATCH/RELEASE THE STBD AFT LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-183
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86 **HIGHEST CRITICALITY** HDW/FUNC
SUBSYSTEM: EPD&C **FLIGHT:** 3/2R
MDAC ID: 4261 **ABORT:** /NA

ITEM: HYBRID RELAY, K73
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON **SUBSYS LEAD:** SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K73

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFINING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [NA] C [NA]

LOCATION: 40V76A118K73
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-3 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE PORT MANIPULATOR AFT RETENTION LATCH ACTUATOR TO THE LATCH POSITION.
ANY SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO RELEASE THE PORT AFT LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-184
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86
SUBSYSTEM: EPD&C
MDAC ID: 4262

HIGHEST CRITICALITY
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

ITEM: HYBRID RELAY, K73
FAILURE MODE: Fails closed, applies untimely power.

LEAD ANALYST: Robinson
SUBSYS LEAD: Schmeckpeper

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K73
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K73
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
Will provide untimely plbm ac-3 115 vac 400 Hz power to the system 1 motor which could drive the port manipulator aft retention latch actuator to the latch position as an unscheduled event.

Untimely actuator latching could cause physical damage. If failure occurred while power was being applied to release, motor failure could result. Subsequent failure of redundant system 2 could result in inability to latch/release the port aft latch.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-185
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86
SUBSYSTEM: EPD&C
MDAC ID: 4263

HIGHEST CRITICALITY: HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K76
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K76
9)...

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFINING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A119K76
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-1 115 VAC 400 Hz POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE STARBOARD MANIPULATOR AFT RETENTION LATCH ACTUATOR TO THE LATCH POSITION.
ANY SUBSEQUENT FAILURE OF 'REDUNDANT SYSTEM 2 WOULD RESULT IN INABILITY TO RELEASE THE STBD AFT LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-186
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/26/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
<td>FLIGHT:</td>
<td>3/2R</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4264</td>
<td>ABORT:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

ITEM: HYBRID RELAY, K76
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON **SUBSYS LEAD:** SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYS 1, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K76

CRITICALITIES

<table>
<thead>
<tr>
<th></th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELALUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SASFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [NA] C [NA]

LOCATION: 40V76A119K76
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-1 115 VAC 400 HZ POWER TO THE SYSTEM 1 MOTOR WHICH COULD DRIVE THE STARBOARD MANIPULATOR AFT RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT.

UNTIMELY ACTUATOR LATCHING COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 2 COULD RESULT IN INABILITY TO LATCH/RELEASE THE STBD AFT LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-187
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86
SUBSYSTEM: EPD&C
MDAC ID: 4265

ITEM: RELAY, K77
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT ACTUATOR SYS 1, GND-RESET/DFACE RELAY
7) RELAY, LATCHING, 2-POLE
8) RELAY, K77
9) RELAY, LATCHING, 2-POLE

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K77
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT ALLOW RESET OR DEADFACE OF THE AFT MOTOR CONTROL CIRCUIT AS REQUIRED.
IF FAILED IN THE DEADFACE POSITION NEITHER THE LATCH OR RELEASE FUNCTION OF THE PORT SYSTEM 1 AFT RETENTION LATCH ACTUATOR COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN THE RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4266 ABORT: /NA

ITEM: RELAY, K11
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (4OV54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (4OV76A119)
6) AFT ACTUATOR SYS 1, GND-RESET/DFACE RELAY
7) RELAY, LATCHING, 2-POLE
8) RELAY, K11
9) RELAY, LATCHING, 2-POLE

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A119K11
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT ALLOW RESET OR DEADFACE OF THE AFT MOTOR CONTROL CIRCUIT AS REQUIRED.
IF FAILED IN THE DEADFACE POSITION NEITHER THE LATCH OR RELEASE FUNCTION OF THE STBD SYSTEM 1 AFT RETENTION LATCH ACTUATOR COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN THE RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-189
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86
SUBSYSTEM: EPD&C
MDAC ID: 4267

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: FUSE, F8
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT READY-TO-LATCH SW ASSY 3 (V54X0844E)
7) FUSE, 2-AMP (K77-A3)
8) FUSE, F8

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118F8
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 'AFT READY-TO-LATCH' MEASUREMENT (V540844E) TO MDM OF1 OR (V54X0839E) TO EVENT INDICATOR DS6 ON PANEL A8A2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-190
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86
SUBSYSTEM: EPD&C
MDAC ID: 4268

HIGHEST CRITICALITY

HDW/FUNC FLIGHT: 3/3
ABORT: /NA

ITEM: FUSE, F2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT READY-TO-LATCH SW ASSY 3 (V54X1044E)
7) FUSE, 2-AMP (K11-A3)
8) FUSE, F2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119F2
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 'AFT READY-TO-LATCH' MEASUREMENT (V541044E) TO MDM OF1 OR (V54X1039E) TO EVENT INDICATOR DS3 ON PANEL A8A2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-191
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/26/86
SUBSYSTEM: EPD&C
MDAC ID: 4269

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R61
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT READY-TO-LATCH SW ASSY 3 (V54X0844E)
7) RESISTOR, ISOL, 2.2K OHM
8) RESISTOR, R61

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R61
PART NUMBER: RLR2002201GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 'AFT READY-TO-LATCH' MEASUREMENT (V540844E) TO MDM OF1.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-192
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/28/86
SUBSYSTEM: EPD&C
MDAC ID: 4270

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R41
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT READY-TO-LATCH SW ASSY 3 (V54X1044E)
7) RESISTOR, ISOL, 2.2K OHM
8) RESISTOR, R41
9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119R41
PART NUMBER: RLR2002201GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 'AFT READY-TO-LATCH' MEASUREMENT (V541044E) TO MDM OF1.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-193
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/28/86</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4271</td>
</tr>
<tr>
<td>ITEM:</td>
<td>RESISTOR, R62</td>
</tr>
<tr>
<td>FAILURE MODE:</td>
<td>FAILS OPEN</td>
</tr>
<tr>
<td>LEAD ANALYST:</td>
<td>ROBINSON</td>
</tr>
</tbody>
</table>

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MTD MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT READY-TO-LATCH SW ASSY 3 (V54X0844E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R62
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT PHASE</td>
</tr>
<tr>
<td>PRELAUNCH:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
</tr>
<tr>
<td>ONORBIT:</td>
</tr>
<tr>
<td>DEORBIT:</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R62
PART NUMBER: RLR0701801GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 'AFT READY-TO-LATCH' MEASUREMENT (V540844E) TO MDM OF1.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-194
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/28/86
SUBSYSTEM: EPD&C
MDAC ID: 4272

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R40
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT READY-TO-LATCH SW ASSY 3 (V54X1044E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R40

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119R40
PART NUMBER: RLR0701801GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 'AFT READY-TO-LATCH' MEASUREMENT (V541044E) TO MDM OF1.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-195
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/28/86 HIGHEST CRITICALITY
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4273 ABORT: /NA

ITEM: RESISTOR, R14
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT ACTUATOR SYSTEM 1, LATCH/RELEASE (K77-A3)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R14
9) RMS, 05-6IC

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIPTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118R14
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

WILL NOT PROVIDE AFT SYSTEM 1 LATCH/RELEASE ENABLE SIGNAL TO APPROPRIATE ACTUATOR MOTOR RELAY K78/K76.

LOSS OF ABILITY TO OPERATE THE PORT SYSTEM 1 AFT RETENTION LATCH ACTUATOR TO EITHER RELEASE OR LATCH. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 2 COULD CAUSE LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/28/86
SUBSYSTEM: EPD&C
MDAC ID: 4274

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: RESISTOR, R2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYSTEM 1, LATCH/RELEASE (K11-A3)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R2
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A119R2
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 LATCH/RELEASE ENABLE SIGNAL TO APPROPRIATE ACTUATOR MOTOR RELAY K78/K76.
LOSS OF ABILITY TO OPERATE THE STBD SYSTEM 1 AFT RETENTION LATCH ACTUATOR TO EITHER RELEASE OR LATCH. SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 2 COULD CAUSE LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-197
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/28/86
SUBSYSTEM: EPD&C
MDAC ID: 4275

HIGHEST CRITICALITY: 3/3
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R59
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT ACTUATOR SYSTEM 1, K75 LATCHED, (V540864E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R59
9) RESISTOR, CUR LIM

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTLS</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R59
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 LATCH ENABLE MONITORING MEASUREMENT (V540864E) TO MDM OA3. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-198
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/28/86
SUBSYSTEM: EPD&C
MDAC ID: 4276

ITEM: RESISTOR, R31
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYSTEM 1, K78 LATCHED, (V54X1064E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R31

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119R31
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 LATCH ENABLE MONITORING MEASUREMENT (V541064E) TO MDM OF1.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/28/86
SUBSYSTEM: EPD&C
MDAC ID: 4277

HIGHEST CRITICALITY: FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R60
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 1
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT ACTUATOR SYSTEM 1, K73 RELEASED, (V54X0874E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R60
9) ANSI

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R60
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 RELEASE ENABLE MONITORING MEASUREMENT (V540874E) TO MDM OA3.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-200
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE</th>
<th>11/28/86</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM</td>
<td>EPD&C</td>
</tr>
<tr>
<td>MDAC ID</td>
<td>4278</td>
</tr>
</tbody>
</table>

ITEM: RESISTOR, R33
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1. RMS, 05-6IC
2. MANIPULATOR LATCH CONTROL
3. STBD MANIPULATOR LATCH CONTROL, SYSTEM 1
4. AFT LATCH ACTUATOR (40V54A17)
5. MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6. AFT ACTUATOR SYSTEM 1, K76 RELEASED, (V54X1074E)
7. RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8. RESISTOR, R33
9.

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119R33
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 1 RELEASE ENABLE MONITORING MEASUREMENT (V541074E) TO MDM OF1. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-201
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4279

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K54
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K54

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K54
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-3 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE PORT FWD RETENTION LATCH ACTUATOR TO THE LATCH POSITION.
ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH THE PORT FORWARD RETENTION LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-202
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4280

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K54
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K54
9) HYBRID RELAY, K54

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K54
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-3 115 VAC 400 Hz POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE PORT FWD RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 1 COULD RESULT IN INABILITY TO LATCH/RELEASE THE PORT FWD LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-203
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4281

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K56
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) FWD ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K56

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAVING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A117K56
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-1 115 VAC 400 Hz POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE STARBOARD FWD RETENTION LATCH ACTUATOR TO THE LATCH POSITION.
ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH THE STBD FWD LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE: 02/25/87 C-204
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>12/06/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
<td>FLIGHT:</td>
<td>3/2R</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4282</td>
<td>ABORT:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM:</th>
<th>HYBRID RELAY, K56</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAILURE MODE:</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER.</td>
</tr>
</tbody>
</table>

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1. RMS, 05-6IC
2. MANIPULATOR LATCH CONTROL
3. STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4. FWD LATCH ACTUATOR (40V54A15)
5. MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6. FWD ACTUATOR SYS 2, LATCH RELAY
7. HYBRID RELAY, 3-POLE
8. HYBRID RELAY, K56

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:
A []
B [NA]
C [NA]

| LOCATION: | 40V76A117K56 |
| PART NUMBER: | MC455-0135-0001 |

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

WILL PROVIDE UNTIMELY PLBM AC-1 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE STARBOARD FWD RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT. UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 1 COULD RESULT IN INABILITY TO LATCH/RELEASE THE STBD FWD LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
C-205
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4283 ABORT: /NA

ITEM: HYBRID RELAY, K66
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K66
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K66
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-3 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE PORT FWD RETENTION LATCH ACTUATOR TO THE RELEASE POSITION.
ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO RELEASE THE PORT FWD LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-206
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4284

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K66
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K66
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K66
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-3 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE PORT FWD RETENTION LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 1 COULD RESULT IN INABILITY TO LATCH/RELEASE THE STBD FWD LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-207
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4285

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K44
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) FWD ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K44
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTL:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A117K44
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-1 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE STARBOARD FWD RETENTION LATCH ACTUATOR TO THE RELEASE POSITION.
ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO RELEASE THE STBD LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-208
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4286

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K44
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) FWD ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K44
9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAVING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A117K44
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION,
CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-1 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE STARBOARD FWD RETENTION LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE.
FUTURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE OF REDUNDANT SYSTEM 1 COULD RESULT IN INABILITY TOLatch/RELEASE THE STBD FWD LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-209
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4287 ABORT: /NA

ITEM: RELAY, K68 FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYS 2, GND RESET/DFACE RELAY
7) RELAY, LATCHING, 2-POLE
8) RELAY, K68
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K68
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT ALLOW RESET OR DEADFACE OF THE FWD MOTOR CONTROL CIRCUIT AS REQUIRED.
IF FAILED IN THE DEADFACE POSITION NEITHER THE LATCH OR RELEASE FUNCTION OF THE PORT SYSTEM 2 FWD RETENTION LATCH ACTUATOR COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN THE RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-210
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4288

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: RELAY, K58
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) FWD ACTUATOR SYS 2, GND RESET/DFACE RELAY
7) RELAY, LATCHING, 2-POLE
8) RELAY, K58

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A117K58
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT ALLOW RESET OR DEADFACE OF THE FWD MOTOR CONTROL CIRCUIT AS REQUIRED.
IF FAILED IN THE DEADFACE POSITION NEITHER THE LATCH OR RELEASE FUNCTION OF THE STBD SYSTEM 2 FWD RETENTION LATCH ACTUATOR COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN THE RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-211
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4289

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: FUSE, F7
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD READY-TO-LATCH ASSY 1 (V54X0841E)
7) FUSE, 2 AMP, (K68-B3)
8) FUSE, F7
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120F7
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 'FWD READY-TO-LATCH' MEASUREMENT (V54X0841E) TO MDM OA2.
LOSS OF MEASUREMENT

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-212
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4290

ITEM: FUSE, F3
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) FWD READY-TO-LATCH ASSY 1 (V54X1041E)
7) FUSE, 2 AMP, (K68-B3)
8) FUSE, F3
9)...

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117F3
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 'FWD READY-TO-LATCH' MEASUREMENT (V54X1041E) TO MDM OF4.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-213
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4291

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R68
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD READY-TO-LATCH ASSY 1 (V54X0841E)
7) ISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R68

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R68
PART NUMBER: RLR2002201GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 'FWD READY-TO-LATCH' MEASUREMENT (V54X0841E) TO MDM OA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-214
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4292 ABORT: /NA

ITEM: RESISTOR, R34
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) FWD READY-TO-LATCH ASSY 1 (V54X1041E)
7) RESISTOR, ISOL, 2.2K OHM
8) RESISTOR, R34

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117R34
PART NUMBER: RLR2002201GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 'FWD READY-TO-LATCH' MEASUREMENT (V54X1041E) TO MDM OF4.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-215
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4293

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R64
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD READY-TO-LATCH ASSY 1 (V54X0841E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R64
9) ...

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R64
PART NUMBER: RLR0701801GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 'FWD READY-TO-LATCH' MEASUREMENT (V54X0841E) TO MDM OA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-216
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4294

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R33
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) FWD READY-TO-LATCH ASSY 1 (V54X1041E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R33
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117R33
PART NUMBER: RLR0701801GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 'FWD READY-TO-LATCH' MEASUREMENT (V54X1041E) TO MDM OF4. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-217
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4295

HIGHEST CRITICALITY HDW/FUNC FLIGHT: 3/2R ABORT: /NA

ITEM: RESISTOR, R12
FAILURE MODE: FAILS OPEN.
LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYSTEM 2, LATCH/RELEASE (K68-A3)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R12

CRITICALITIES

FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIFTOFF: /NA TAL: /NA
ONORBIT: 3/2R AOA: /NA
DEORBIT: /NA ATO: /NA
LANDING/SAFING: /NA

LOCATION: 40V76A120R12
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 LATCH/RELEASE ENABLE SIGNAL TO THE APPROPRIATE ACTUATOR RELAY K54/K66.
LOSS OF ABILITY TO OPERATE THE PORT SYSTEM 2 FWD RETENTION LATCH ACTUATOR TO EITHER RELEASE OR LATCH POSITION. SUBSEQUENT LOSS OF REDUNDANT SYSTEM 1 COULD CAUSE LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-218
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4296

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: /NA

ITEM: RESISTOR, R2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) FWD ACTUATOR SYSTEM 2, LATCH/RELEASE (K58-A3)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R2
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A117R2
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 LATCH/RELEASE ENABLE SIGNAL TO THE APPROPRIATE ACTUATOR RELAY K56/K44.
LOSS OF ABILITY TO OPERATE THE STBD SYSTEM 2 FWD RETENTION LATCH ACTUATOR TO EITHER RELEASE OR LATCH POSITION. SUBSEQUENT LOSS OF REDUNDANT SYSTEM 1 COULD CAUSE LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-219
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4297

ITEM: RESISTOR, R35
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYSTEM 2, K54 LATCHED, (V54X0861E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R35

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RLTS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R35
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 LATCH ENABLE MONITORING MEASUREMENT (V540861E) TO MDM OA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-220
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4298

ITEM: RESISTOR, R31
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) FWD ACTUATOR SYSTEM 2, K56 LATCHED, (V54X1061E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R31

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117R31
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 LATCH ENABLE MONITORING MEASUREMENT (V541061E) TO MDM OF4.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-221
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4299

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R34
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A5)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) FWD ACTUATOR SYSTEM 2, K66 RELEASED, (V54X0871E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R34
9)

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R34
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE FWD SYSTEM 2 RELEASE ENABLE MONITORING MEASUREMENT (V540861E) TO MDM OA2. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-222
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/06/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4300 ABORT: /NA

ITEM: RESISTOR, R30
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) FWD LATCH ACTUATOR (40V54A15)
5) MID MOTOR CONTROLLER (MMC)-1 (40V76A117)
6) FWD ACTUATOR SYSTEM 2, K44 RELEASED, (V54X1071E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R30
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A117R30
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE: WILL NOT PROVIDE FWD SYSTEM 2 RELEASE ENABLE MONITORING MEASUREMENT (V541061E) TO MDM OF4. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-223
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/25/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
<td>FLIGHT:</td>
<td>3/2R</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4301</td>
<td>ABORT:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

ITEM: HYBRID RELAY, K59
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120).
6) MID ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K59
9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K59
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-2 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE PORT MID RETENTION LATCH ACTUATOR TO THE LATCH POSITION.
ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH THE PORT MID RETENTION LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EP&D&C
MDAC ID: 4302

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K59
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K59
9) HYBRID RELAY, K59

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K59
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

WILL PROVIDE UNTIMELY PLBM AC-2 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE PORT MID RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT.

UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH/RELEASE THE PORT MID RETENTION LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-225
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86

HIGHEST CRITICALITY HDW/FUNC

SUBSYSTEM: EP&D&C
MDAC ID: 4303

ITEM: HYBRID RELAY, K76
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K76
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAVING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K76
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-3 115 VAC 400 Hz POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE STARBOARD MID RETENTION LATCH ACTUATOR TO THE LATCH POSITION.
AN ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH THE STBD MID RETENTION LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-226
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4304

HIGHEST CRITICALITY HDW/.func
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K76
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K76
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/func</th>
<th>ABORT</th>
<th>HDW/func</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K76
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-3 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE STARBOARD MID RETENTION LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT. UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH/RELEASE THE PORT MID RETENTION LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-227
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EP&D&C
MDAC ID: 4305

ITEM: HYBRID RELAY, K71
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K71

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTL5:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:

A []
B [NA]
C [NA]

LOCATION: 40V76A120K71
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

WILL NOT PROVIDE PLBM AC-2 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE PORT MID RETENTION LATCH ACTUATOR TO THE RELEASE POSITION.
ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO RELEASE THE STBD MID RETENTION LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-228
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EP&D&C
MDAC ID: 4306

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K71
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K71
9) HYBRID RELAY, 3-POLE

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K71
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-2 115 VAC 400 Hz POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE PORT MID RETENTION LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT. UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH/RELEASE THE PORT MID RETENTION LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-229
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4307 ABORT: /NA

ITEM: HYBRID RELAY, K74
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K74

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K74
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-3 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE STARBOARD MID RETENTION LATCH ACTUATOR TO THE RELEASE POSITION.
ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO RELEASE THE PORT MID RETENTION LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-230
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4308

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K74
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (4OV54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (4OV76A120)
6) MID ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K74
9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K74
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-3 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE STARBOARD MID RETENTION LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD RESULT. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH/RELEASE THE PORT MID RETENTION LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-231
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4309

HIGHEST CRITICALITY:
FLIGHT: 3/2R
ABORT: /NA

ITEM: RELAY, K78
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 2, GND RESET/DFACE RELAY
7) RELAY, LATCHING, 2-POLE
8) RELAY, K78

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K78
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT ALLOW RESET OR DEADFACE OF THE MID MOTOR CONTROL CIRCUIT AS REQUIRED
IF FAILED IN THE DEADFACE POSITION NEITHER THE RELEASE OR LATCH FUNCTION OF THE PORT SYSTEM 2 MID RETENTION LATCH MECHANISM COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN THE RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-232
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4310 ABORT: /NA

ITEM: RELAY, K78 FAILURE MODE: FAILS OPEN.
LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYS 2, GND RESET/DFACE RELAY
7) RELAY, LATCHING, 2-POLE
8) RELAY, K78
9) RELAY, LATCHING, 2-POLE

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120K78
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT ALLOW RESET OR DEFACE OF THE MID MOTOR CONTROL CIRCUIT AS REQUIRED
IF FAILED IN THE DEFACE POSITION NEITHER THE RELEASE OR LATCH FUNCTION OF THE STBD SYSTEM 2 MID RETENTION LATCH MECHANISM COULD BE OPERATED. LOSS OF ABILITY TO DEFACE IF FAILED IN THE RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-233
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86

SUBSYSTEM: EPD&C
MDAC ID: 4311

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: FUSE, F5,
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID READY-TO-LATCH ASSY 2 (V54X0843E)
7) FUSE, 2 AMP, (K78-B3)
8) FUSE, F5
9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120F5
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 'MID READY-TO-LATCH' MEASUREMENT (V54X0843E) TO MDM OF4.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-234
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4312

ITEM: FUSE, F9
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID READY-TO-LATCH ASSY 2 (V54X1043E)
7) FUSE, 2 AMP, (K78-B3)
8) FUSE, F9
9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120F9
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 'MID READY-TO-LATCH' MEASUREMENT (V54X1043E) TO MDM OA3.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-235
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4313

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R66
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID READY-TO-LATCH ASSY 2 (V54X0843E)
7) RESISTOR, ISOL, 2.2K OHM
8) RESISTOR, R66
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R66
PART NUMBER: RLR2002201GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 'MID READY-TO-LATCH' MEASUREMENT (V54X0843E) TO MDM OF4.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-236
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY
SUBSYSTEM: EPD&C HDW/FUNC
MDAC ID: 4314 FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R66
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID READY-TO-LATCH ASSY 2 (V54X1043E)
7) RESISTOR, ISOL, 2.2K OHM
8) RESISTOR, R66
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABSORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R66
PART NUMBER: RLR2002201GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 'MID READY-TO-LATCH' MEASUREMENT (V54X1043E) TO MDM OA3. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-237
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/25/86</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4315</td>
</tr>
<tr>
<td>HIGHEST CRITICALITY</td>
<td>HDW/FUNC</td>
</tr>
<tr>
<td>FLIGHT:</td>
<td>3/3</td>
</tr>
<tr>
<td>ABORT:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

ITEM: RESISTOR, R62
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID READY-TO-LATCH ASSY 2 (V54X0843E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R62

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R62
PART NUMBER: RLR0701801GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 'MID READY-TO-LATCH' MEASUREMENT (V54X0843E) TO MDM OF4. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4316

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R67
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC) - 4 (40V76A120)
6) MID READY-TO-LATCH ASSY 2 (V54X1043E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R67
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R67
PART NUMBER: RLR0701801GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE: WILL NOT PROVIDE MID SYSTEM 2 'MID READY-TO-LATCH' MEASUREMENT (V54X1043E) TO MDM OA3. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-239
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4317

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: RESISTOR, R10
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYSTEM 2, LATCH/RELEASE (K78-A3)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R10

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:IT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120R10
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 LATCH/RELEASE ENABLE SIGNAL TO THE APPROPRIATE RELAY K76/K74.
LOSS OF ABILITY TO OPERATE THE PORT SYSTEM 2 MID RETENTION LATCH ACTUATOR TO EITHER THE RELEASE OR LATCH POSITION.
SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 COULD CAUSE LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-240
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC FLIGHT: 3/2R
SUBSYSTEM: EPD&C ABORT: /NA
MDAC ID: 4318

ITEM: RESISTOR, R2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYSTEM 2, LATCH/RELEASE (K78-A3)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R2
9)...

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DE ORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A120R2
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 LATCH/RELEASE ENABLE SIGNAL TO THE APPROPRIATE RELAY K76/K74.
LOSS OF ABILITY TO OPERATE THE STBD SYSTEM 2 MID RETENTION LATCH ACTUATOR TO EITHER THE RELEASE OR LATCH POSITION.
SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 COULD CAUSE LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-241
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4319

ITEM: RESISTOR, R16
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYSTEM 2, K59 LATCHED, (V54X0863E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R16
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R16
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 LATCH ENABLE MONITORING MEASUREMENT (V54X0863E) TO MDM OA3. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-242
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY: HDW/FUNC:
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4320 ABORT: /NA

ITEM: RESISTOR, R64
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYSTEM 2, K76 LATCHED, (V54X1063E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R64
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R64
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 LATCH ENABLE MONITORING MEASUREMENT (V54X1063E) TO MDM OA3.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-243
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/25/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
<td>FLIGHT:</td>
<td>3/3</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4321</td>
<td>ABORT:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

ITEM: RESISTOR, R17
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A6)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYSTEM 2, K71 RELEASED, (V54X0873E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R17
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT PHASE</td>
</tr>
<tr>
<td>PRELAUNCH:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
</tr>
<tr>
<td>ONORBIT:</td>
</tr>
<tr>
<td>DEORBIT:</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R17
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 RELEASE MONITORING MEASUREMENT (V54X0863E) TO MDM OA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-244
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86

SUBSYSTEM: EPD&C

MDAC ID: 4322

HIGHEST CRITICALITY

FLIGHT: 3/3

ABORT: /NA

ITEM: RESISTOR, R65

FAILRE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) MID LATCH ACTUATOR (40V54A16)
5) MID MOTOR CONTROLLER (MMC)-4 (40V76A120)
6) MID ACTUATOR SYSTEM 2, K74 RELEASED, (V54X1073E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R65

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFIN</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A120R65
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE MID SYSTEM 2 RELEASE ENABLE MONITORING MEASUREMENT (V54X1063E) TO MDM OA3.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-245
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EP&D&C
MDAC ID: 4323

ITEM: HYBRID RELAY, K24
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (4OV54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (4OV76A119)
6) AFT ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K24
9) hybrid relay, k24

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORTH:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 4OV76A119K24
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-1 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE PORT AFT LATCH ACTUATOR TO THE LATCH POSITION. ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH THE PORT AFT RETENTION LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-246
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4324

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K24
FAILURE MODE: Fails closed, applies untimely power.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K24

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A119K24
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-1 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE PORT AFT LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD OCCUR. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH/RELEASE THE PORT AFT RETENTION LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-247
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4325

ITEM: HYBRID RELAY, K27
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K27
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K27
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-2 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE STARBOARD AFT LATCH ACTUATOR TO THE LATCH POSITION.
ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH THE STBD AFT RETENTION LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-248
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY
SUBSYSTEM: EPD&C HDW/FLIGHT: 3/2R
MDAC ID: 4326 ABORT: /NA

ITEM: HYBRID RELAY, K27
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-2 (40V76A118)
6) AFT ACTUATOR SYS 2, LATCH RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K27
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FLIGHT</th>
<th>ABORT</th>
<th>HDW/FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K27
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-2 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE STARBOARD AFT LATCH ACTUATOR TO THE LATCH POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD OCCUR. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH/RELEASE THE STBD AFT RETENTION LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-249
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4327

ITEM: HYBRID RELAY, K12
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K12
9)

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A119K12
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

WILL NOT PROVIDE PLBM AC-1 115 VAC 400 HZ POWER TO THE SYSTEM 1 MOTOR TO DRIVE THE PORT AFT LATCH ACTUATOR TO THE RELEASE POSITION.

ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO RELEASE THE PORT AFT RETENTION LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-250
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4328 ABORT: /NA

ITEM: HYBRID RELAY, K12
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K12
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFIN</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A119K12
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-1 115 V AC 400 HZ POWER TO THE SYSTEM 1 MOTOR WHICH COULD DRIVE THE PORT AFT LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT.
UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD OCCUR. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH/RELEASE THE PORT AFT RETENTION LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-251
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EP&C
MDAC ID: 4328

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K12
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K12

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A119K12
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNYIMRLY PLBM AC-1 115 VAC 400 HZ POWER TO THE SYSTEM 1 MOTOR WHICH COULD DRIVE THE PORT AFT LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT. UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILD POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD OCCUR. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH/RELEASE THE PORT AFT RETENTION LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4329

HIGHEST CRITICALITY
HDW/FUNC

FLIGHT: 3/2R
ABORT: /NA

ITEM: HYBRID RELAY, K29
FAILURE MODE: OPEN, FAILS TO CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A118)
6) AFT ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K29
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K29
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE PLBM AC-1 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR TO DRIVE THE STARBOARD AFT LATCH ACTUATOR TO THE RELEASE POSITION.

ANY SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 WOULD RESULT IN INABILITY TO RELEASE THE STBD AFT RETENTION LATCH MECHANISM.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-252
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4330 ABORT: /NA

ITEM: HYBRID RELAY, K29
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A118)
6) AFT ACTUATOR SYS 2, RELEASE RELAY
7) HYBRID RELAY, 3-POLE
8) HYBRID RELAY, K29
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K29
PART NUMBER: MC455-0135-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL PROVIDE UNTIMELY PLBM AC-1 115 VAC 400 HZ POWER TO THE SYSTEM 2 MOTOR WHICH COULD DRIVE THE STARBOARD AFT LATCH ACTUATOR TO THE RELEASE POSITION AS AN UNSCHEDULED EVENT. UNTIMELY ACTUATOR OPERATION COULD CAUSE PHYSICAL DAMAGE. IF FAILURE OCCURRED WHILE POWER WAS BEING APPLIED TO RELEASE, MOTOR FAILURE COULD OCCUR. SUBSEQUENT FAILURE IN SYSTEM 1 WOULD RESULT IN INABILITY TO LATCH/RELEASE THE STBD AFT RETENTION LATCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-253
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4331

ITEM: RELAY, K23
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON **SUBSYS LEAD:** SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYS 2, GND RESET/DFACE RELAY
7) RELAY LATCHING, 2-POLE
8) RELAY, K23

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [NA] C [NA]

LOCATION: 40V76A119K23
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT ALLOW RESET OR DEADFACE OF THE AFT MOTOR CONTROL CIRCUIT AS REQUIRED/
IF FAILED IN THE DEADFACE POSITION NEITHER THE RELEASE OR LATCH FUNCTION OF THE PORT SYSTEM 2 AFT RETENTION LATCH MECHANISM COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN THE RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-254
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4332

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: /NA

ITEM: RELAY, K17
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A118)
6) AFT ACTUATOR SYS 2, GND RESET/DFACE RELAY
7) RELAY LATCHING, 2-POLE
8) RELAY, K17
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118K17
PART NUMBER: MC455-0128-0001

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

WILL NOT ALLOW RESET OR DEADFACE OF THE AFT MOTOR CONTROL CIRCUIT AS REQUIRED/

IF FAILED IN THE DEADFACE POSITION NEITHER THE RELEASE OR LATCH FUNCTION OF THE STBD SYSTEM 2 AFT RETENTION LATCH MECHANISM COULD BE OPERATED. LOSS OF ABILITY TO DEADFACE IF FAILED IN THE RESET POSITION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-255
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4333 ABORT: /NA

ITEM: FUSE, 2 AMP, F3
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT READY-TO-LATCH ASSY 3, (V54X0845E)
7) FUSE, 2 AMP, (K23-B3)
8) FUSE, F3
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119F3
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
- WILL NOT PROVIDE AFT SYSTEM 2 'AFT READY-TO-LATCH' MEASUREMENT (V54X0845E) TO MDM OF1.
- LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-256
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4334 ABORT: /NA

ITEM: FUSE, 2 AMP, F3 FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A118)
6) AFT READY-TO-LATCH ASSY 3, (V54X1045E)
7) FUSE, 2 AMP, (K17-B3)
8) FUSE, F3

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFIN</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118F3
PART NUMBER: MC451-0018-0200

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 'AFT READY-TO-LATCH' MEASUREMENT (V54X0105E) TO MDM OA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-257
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>11/25/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>EPD&C</td>
<td>FLIGHT:</td>
<td>3/3</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>4335</td>
<td>ABORT:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

ITEM: RESISTOR, R49
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT READY-TO-LATCH ASSY 3, (V54X0845E)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R49
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:
A []
B []
C []

LOCATION: 40V76A119R49
PART NUMBER: RLR0022201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 'AFT READY-TO-LATCH' MEASUREMENT (V54X0845E) TO MDM OF1. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
C-258
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4336

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R22
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A118)
6) AFT READY-TO-LATCH ASSY 3, (V54X1045E)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R22

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R22
PART NUMBER: RLR0022201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 'AFT READY-TO-LATCH' MEASUREMENT (V54X1045E) TO MDM OA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4337 ABORT: /NA

ITEM: RESISTOR, R42
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT READY-TO-LATCH ASSY 3, (V54X0845E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R42
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119R42
PART NUMBER: RLR0701801GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 'AFT READY-TO-LATCH' MEASUREMENT (V54X0845E) TO MDM OF1.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-260
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4338

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R23
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A118)
6) AFT READY-TO-LATCH ASSY 3, (V54X1045E)
7) RESISTOR, BLEED, 1.8K OHM
8) RESISTOR, R23

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA: /NA</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R23
PART NUMBER: RLR0701801GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION,
CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 'AFT READY-TO-LATCH' MEASUREMENT
(V54X1045E) TO MDM A21.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-261
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYS: EP&D&C
MDAC ID: 4339

ITEM: RESISTOR, R2
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYSTEM 2, LATCH/RELEASE (K23-A3)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R2
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td>/NA</td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A119R2
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 LATCH/RELEASE ENABLE SIGNAL TO THE APPROPRIATE RELAY K27/K29.
LOSS OF ABILITY TO OPERATE THE PORT SYSTEM 2 AFT RETENTION LATCH ACTUATOR TO EITHER THE RELEASE OR LATCH POSITION.
SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 COULD CAUSE LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-262
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4340

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: RESISTOR, R3
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A118)
6) AFT ACTUATOR SYSTEM 2, LATCH/RELEASE (K17-A3)
7) RESISTOR, ISOL, 1.2K OHM, 2 WATT
8) RESISTOR, R3
9) RESISTOR, R3

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON'ORBIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A118R3
PART NUMBER: RLR4201201GM

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 LATCH/RELEASE ENABLE SIGNAL TO THE APPROPRIATE RELAY K27/K29.
LOSS OF ABILITY TO OPERATE THE STBD SYSTEM 2 AFT RETENTION LATCH ACTUATOR TO EITHER THE RELEASE OR LATCH POSITION.
SUBSEQUENT FAILURE IN REDUNDANT SYSTEM 1 COULD CAUSE LOSS OF MISSION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-263
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4341

ITEM: RESISTOR, R34
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A119)
6) AFT ACTUATOR SYSTEM 2, K24 LATCHED, (V54X0865E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R34
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORBIT:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119R34
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 LATCH ENABLE MONITORING MEASUREMENT (V54X0865E) TO MDM OF1.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-264
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4342

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R33
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A17)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A118)
6) AFT ACTUATOR SYSTEM 2, K27 LATCHED, (V54X0865E)
7) RESISTOR, CUR Lim, 5.1K OHM, 1/4 WATT
8) RESISTOR, R33

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R33
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 LATCH ENABLE MONITORING MEASUREMENT (V54X1065E) TO MDM OA2.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-265
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86
SUBSYSTEM: EPD&C
MDAC ID: 4343

HIGHEST CRITICALITY
FLIGHT: 3/3
ABORT: /NA

ITEM: RESISTOR, R36
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) PORT MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (4OV54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (4OV76A119)
6) AFT ACTUATOR SYSTEM 2, K12 RELEASED, (V54X0875E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R36
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A119R36
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 RELEASE ENABLE MONITORING MEASUREMENT (V54X0875E) TO MDM OF1.
LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-266
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/25/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4344 ABORT: /NA

ITEM: RESISTOR, R31
FAILURE MODE: Fails Open.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6IC
2) MANIPULATOR LATCH CONTROL
3) STBD MANIPULATOR LATCH CONTROL, SYSTEM 2
4) AFT LATCH ACTUATOR (40V54A7)
5) MID MOTOR CONTROLLER (MMC)-3 (40V76A118)
6) AFT ACTUATOR SYSTEM 2, K29 RELEASED, (V54X0875E)
7) RESISTOR, CUR LIM, 5.1K OHM, 1/4 WATT
8) RESISTOR, R31
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 40V76A118R31
PART NUMBER: RLR0705101GR

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK, VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
WILL NOT PROVIDE AFT SYSTEM 2 RELEASE ENABLE MONITORING MEASUREMENT (V54X1075E) TO MDM OA2. LOSS OF MEASUREMENT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/05/86
SUBSYSTEM: EPD&C
MDAC ID: 4501

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: /NA

ITEM: SWITCH, S21
FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, STBD RMS PYRO ARM, JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S21
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELaunch:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONOrbit:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEOrbit:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S21
PART NUMBER: ME452-0102-7254

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM THE STBD RMS SYSTEM A OR SYSTEM B JETTISON/GUILLOTINE PYRO INITIATOR CONTROLLERS (PICS).
INABILITY TO PERFORM RMS JETTISON WHEN IT IS REQUIRED COULD RESULT IN LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-268
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/05/86
SUBSYSTEM: EPD&C
MDAC ID: 4502

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: SWITCH, S21
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, STBD RMS PYRO ARM, JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S21
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S21
PART NUMBER: ME452-0102-7254

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF POWER TO ARM THE STBD RMS SYSTEM A AND/OR SYSTEM B JETTISON/GUILLOTINE PICS. WOULD REQUIRE OTHER PREVIOUS OR SUBSEQUENT FAILURES TO CAUSE UNTIMELY PIC FIRING. POWER CAN BE REMOVED BY OPENING CIRCUIT BREAKERS CB27 & CB33.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-269
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/05/86

SUBSYSTEM: EPD&C

MDAC ID: 4503

HIGHEST CRITICALITY HDW/FUNC

FLIGHT: 1/1

ABORT: /NA

ITEM: SWITCH, S28

FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PORT RMS PYRO ARM, JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S28

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S28

PART NUMBER: ME452-0102-7254

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM THE PORT RMS SYSTEM A OR SYSTEM B JETTISON/GUILLOTINE PYRO INITIATOR CONTROLLERS (PIGS). INABILITY TO PERFORM RMS JETTISON WHEN IT IS REQUIRED COULD RESULT IN LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-270
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/05/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4504 ABORT: /NA

ITEM: SWITCH, S28
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PORT RMS PYRO ARM, JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S28
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>2/1R</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORB:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S28
PART NUMBER: ME452-0102-7254

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF POWER TO ARM PORT RMS SYSTEM A AND/OR SYSTEM B JETTISON/GUILLOTINE PCS.
WOULD REQUIRE OTHER PREVIOUS OF SUBSEQUENT FAILURES TO CAUSE UNTIMELY PIC FIRING. POWER CAN BE REMOVED BY OPENING CIRCUIT BREAKERS CB29 AND CB32.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-271
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86
SUBSYSTEM: EPDSC
MDAC ID: 4505

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: /NA

ITEM: SWITCH, S25
FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO STBD LATCHES, AFT JETTISON/SAFE/GUILLotine
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S25
8)
9)

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIFTOFF: /NA TAL: /NA
LIFTOFF: 1/1 AOA: /NA
DEORB: /NA ATO: /NA
LANDING/SAFING: /NA

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S25
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ACTIVATE THE STBD RMS SYSTEM A OR SYSTEM B AFT LATCH JETTISON/GUILLotine PICS.
INABILITY TO PERFORM RMS JETTISON WHEN IT IS REQUIRED COULD RESULT IN LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-272
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4506

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: SWITCH, S25
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO STBD LATCHES, AFT JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S25
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S25
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF POWER TO ACTIVATE THE STBD RMS SYSTEM A AND/OR SYSTEM B AFT LATCH JETTISON/GUILLOTINE PICS.
WOULD REQUIRE OTHER PREVIOUS OR SUBSEQUENT FAILURES TO CAUSE UNTIMELY PIC FIRING.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-273
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4507

HIGHEST CRITICALITY
FLIGHT: 1/1
ABORT: /NA

ITEM: SWITCH, S32
FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO PORT LATCHES, AFT JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S32

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S32
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ACTIVATE THE PORT RMS SYSTEM A OR SYSTEM B AFT LATCH JETTISON/GUILLOTINE PICS.
INABILITY TO PERFORM RMS JETTISON WHEN IT IS REQUIRED COULD RESULT IN LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-274
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4508

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: SWITCH, S32
FAILURE MODE: Switch fails closed, applies untimely power.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61D
2) Manipulator Arm/Shoulder Jettison & Retention Arm Jettison
3) Panel A14
4) Switch, Pyro Port Latches, Aft Jettison/SAFE/Guillotine
5) Switch, Toggle, Herm-Sealed, Lever-Locked in Center-Pos
6) Switch, 2-Pole, 3-Position
7) Switch, S32
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prelaunch</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>Liftoff</td>
<td>/NA</td>
<td>Tal:</td>
<td>/NA</td>
</tr>
<tr>
<td>Onorbit</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>Deorbit</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>Landing/Safing</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S32
PART NUMBER: ME452-0102-7257

CAUSES: Mechanical/Structural malfunction, Shock vibration, Corrosion, Contamination

EFFECTS/RATIONALE:
Untimely application of power to activate the port RMS system A and/or system B aft latch jettison/guillotine pics. Would require other previous or subsequent failures to cause untimely PIC firing.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-275
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 1/1
MDAC ID: 4509 ABORT: /NA

ITEM: SWITCH, S24
FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO STBD LATCHES, MID JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S24
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S24
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ACTIVATE THE STBD RMS SYSTEM A OR SYSTEM B MID LATCH JETTISON/GUILLOTINE PICS.
INABILITY TO PERFORM RMS JETTISON WHEN IT IS REQUIRED COULD RESULT IN LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-276
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EP&D&C FLIGHT: 2/1R
MDAC ID: 4510 ABORT: /NA

ITEM: SWITCH, S24
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO STBD LATCHES, MID JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S24
8) ...
9) ...

CRITICALITIES
<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S24
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF POWER TO ACTIVATE THE STBD RMS SYSTEM A AND/OR SYSTEM B MID LATCH JETTISON/GUILLOTINE PICS. WOULD REQUIRE OTHER PREVIOUS OR SUBSEQUENT FAILURES TO CAUSE UNTIMELY PIC FIRING.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-277
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4511

ITEM: SWITCH, S31
FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO PORT LATCHES, MID JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S31
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S31
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ACTIVATE THE PORT RMS SYSTEM A OR SYSTEM B MID LATCH JETTISON/GUILLOTINE PICS.
INABILITY TO PERFORM RMS JETTISON WHEN IT IS REQUIRED COULD RESULT IN LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-278
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C
FLIGHT: 2/1R
MDAC ID: 4512
ABORT: /NA

ITEM: SWITCH, S31
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO PORT LATCHES, MID JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S31

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S31
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF POWER TO ACTIVATE THE PORT RMS SYSTEM A AND/OR SYSTEM B MID LATCH JETTISON/GUILLOTINE PICS.
WILL REQUIRE OTHER PREVIOUS OR SUBSEQUENT FAILURES TO CAUSE UNTIMELY PIC FIRING.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-279
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 1/1
MDAC ID: 4513 ABORT: /NA

ITEM: SWITCH, S23
FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO STBD LATCHES, FWD JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S23
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S23
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ACTIVATE THE STBD RMS SYSTEM A OR SYSTEM B FWD LATCH JETTISON/GUILLOTINE PICS.
INABILITY TO PERFORM RMS JETTISON WHEN IT IS REQUIRED COULD RESULT IN LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-280
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4514 ABORT: /NA

ITEM: SWITCH, S23 FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO STBD LATCHES, FWD JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S23
8)
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT PHASE</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>PRELUNCH:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
</tr>
<tr>
<td>ONORB:</td>
</tr>
<tr>
<td>DEORBIT:</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S23 PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF POWER TO ACTIVATE THE STBD RMS SYSTEM A AND/OR SYSTEM B FWD LATCH JETTISON/GUILLOTINE PICS.
WOULD REQUIRE OTHER PREVIOUS OR SUBSEQUENT FAILURES TO CAUSE UNTIMELY PIC FIRING.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-281
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4515

ITEM: SWITCH, S30
FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.
LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO PORT LATCHES, FWD JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S30

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S30
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ACTIVATE THE PORT RMS SYSTEM A OR SYSTEM B FWD LATCH JETTISON/GUILLOTINE PICS.
INABILITY TO PERFORM RMS JETTISON WHEN IT IS REQUIRED COULD RESULT IN LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4516 ABORT: /NA

ITEM: SWITCH, S30
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO PORT LATCHES, FWD JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S30
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S30
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF POWER TO ACTIVATE THE PORT RMS SYSTEM AND/OR SYSTEM B FWD LATCH JETTISON/GUILLOTINE PICS. WOULD REQUIRE OTHER PREVIOUS OR SUBSEQUENT FAILURES TO CAUSE UNTIMELY PIC FIRING.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-283
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86

SUBSYSTEM: EPD&C
MDAC ID: 4517

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: /NA

ITEM: SWITCH, S22

FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO STBD RMS SHOULDER, JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S22
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S22
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ACTIVATE THE STBD RMS SYSTEM A OR SYSTEM B SHOULDER RETRACTOR/GUILLOTINE PICS.
INABILITY TO PERFORM RMS JETTISON WHEN IT IS REQUIRED COULD RESULT IN LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-284
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86
SUBSYSTEM: EPD&C
MDAC ID: 4518

ITEM: SWITCH, S22
FAILURE MODE: FREQUENTLY FAULTY FOR A14 SWITCH, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61D
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO STBD RMS SHOULDER, JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEATED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S22
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S22
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF POWER TO ACTIVATE THE STBD RMS SYSTEM A AND/OR SYSTEM B SHOULDER RETRACTOR/GUILLOTINE PICS. WOULD REQUIRE OTHER PREVIOUS OR SUBSEQUENT FAILURES TO CAUSE UNTIMELY PIC FIRING.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-285
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86

SUBSYSTEM: EPD&C

MDAC ID: 4519

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: /NA

ITEM: SWITCH, S29

FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO PORT RMS SHOULDER, JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S29

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>1/1</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S29
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ACTIVATE THE PORT RMS SYSTEM A OR SYSTEM B SHOULDER RETRACTORS GUILLOTINE PICS.
INABILITY TO PERFORM RMS JETTISON WHEN IT IS REQUIRED COULD RESULT IN LOSS OF VEHICLE/CREW.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-286
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/06/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4520 ABORT: /NA

ITEM: SWITCH, S29
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PYRO PORT RMS SHOULDER, JETTISON/SAFE/GUILLOTINE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S29
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S29
PART NUMBER: ME452-0102-7257

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY APPLICATION OF POWER TO ACTIVATE THE PORT RMS SYSTEM A AND/OR SYSTEM B SHOULDER RETRACTOR/GUILLOTINE PICS.
WOULD REQUIRE OTHER PREVIOUS OR SUBSEQUENT FAILURES TO CAUSE UNTIMELY PIC FIRING.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-287
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86
SUBSYSTEM: EPD&C
MDAC ID: 4521

ITEM: SWITCH, $33
FAILURE MODE: FAILS LOCKED IN SAFE (CENTER) POSITION.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PORT/STBD RMS LATCHES, GROUND RESET/SAFE/DEADFACE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, $33
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14S33
PART NUMBER: ME452-0102-7254

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PERFORM THE GROUND RESET OR DEADFACE FUNCTIONS FOR THE RMS LATCHES.
ON-ORBIT FAILURE WOULD CAUSE INABILITY TO DEADFACE RMS LATCH CIRCUITS PRIOR TO GUILLOTINE ACTION.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-288
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/2R
MDAC ID: 4522 ABORT: /NA

ITEM: SWITCH, S33
FAILURE MODE: FAILS CLOSED, APPLIES UNTIMELY POWER.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) SWITCH, PORT/STBD RMS LATCHES, GROUND RESET/SAFE/DEADFACE
5) SWITCH, TOGGLE, HERM-SEALED, LEVER-LOCKED IN CENTER-POS
6) SWITCH, 2-POLE, 3-POSITION
7) SWITCH, S33
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFINING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 36V73A14S33
PART NUMBER: ME452-0102-7254

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
IF FAILED IN GROUND RESET POSITION, NO EFFECT ON ORBIT SINCE PRE-FLIGHT TEST VOLTAGE IS NOT APPLIED. IF FAILED IN THE DEADFACE POSITION, THE POWER TO THE SWITCH COULD BE REMOVED BY OPENING SYSTEM A CIRCUIT BREAKER.
IF FAILED IN THE DEADFACE POSITION, POWER COULD BE REMOVED BY OPENING THE SYSTEM A CIRCUIT BREAKER (PORT CB29 OR STBD CB27).

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-289
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C
FLIGHT: 3/3
MDAC ID: 4523
ABORT: /NA

ITEM: FUSE, F27
FAILURE MODE: FAILS OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL A14
4) PREFLIGHT TEST BUS POWER
5) SWITCH, PORT/STBD, RMS LATCHES, GROUND-RESET/SAFE/DEADFACE
6) FUSE, CIRCUIT PROTECTION, 3 AMP
7) FUSE, F27
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td>/NA</td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 36V73A14F37
PART NUMBER: ME451-0018-0300

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO PROVIDE PRE-FLIGHT TEST BUS VOLTAGE TO SWITCH S33 ON PANEL A14.
INABILITY TO PERFORM GROUND RESET FUNCTION FOR RMS LATCHES. NO EFFECT IN FLIGHT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-290
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86
SUBSYSTEM: EPD&C
MDAC ID: 4524

HIGHEST CRITICALITY
HDW/FUNC: FLIGHT: 2/1R
ABORT: /NA

ITEM: CIRCUIT BREAKER, CB27
FAILURE MODE: FAILS OPEN. WILL NOT CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL ML 86B:D
4) MN A STBD PYRO JETT, SYSTEM A
5) CIRCUIT BREAKER, 5 AMP
6) CIRCUIT BREAKER, CB27

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 80V73A180CB27
PART NUMBER: ME454-0062-2050

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
- LOSS OF MN A 28 VDC TO ARM THE STBD RMS SYSTEM A AND SYSTEM B JETTISON/GUILLOTINE PICS
- SUBSEQUENT FAILURE OF REDUNDANT SYSTEM WOULD RESULT IN LOSS OF POWER TO ARM THE STBD RMS SYSTEM A AND SYSTEM B JETTISON/GUILLOTINE PICS. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-291
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 3/3
MDAC ID: 4525 ABORT: /NA

ITEM: CIRCUIT BREAKER, CB27
FAILURE MODE: FAILS CLOSED, WILL NOT OPEN.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL ML 86B:D
4) MN A STBD PYRO JETT, SYSTEM A
5) CIRCUIT BREAKER, 5 AMP
6) CIRCUIT BREAKER, CB27
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON/ORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 80V73A180CB27
PART NUMBER: ME454-0062-2050

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF CIRCUIT PROTECTION FOR MN A 28 VDC THAT IS USED TO ARM THE STBD RMS SYSTEM A AND SYSTEM B JETTISON/GUILLOTINE PICS
NO EFFECT. POWER CAN BE REMOVED BY SWITCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-292
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86
SUBSYSTEM: EPD&C
MDAC ID: 4526

ITEM: CIRCUIT BREAKER, CB29
FAILURE MODE: CIRCUIT BREAKER, CB29 FAILS OPEN. WILL NOT CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL ML 86B:D
4) MN B PORT PYRO JETT, SYSTEM A
5) CIRCUIT BREAKER, 5 AMP
6) CIRCUIT BREAKER, CB29
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 80V73A180CB29
PART NUMBER: ME454-0062-2050

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF MN B 28 VDC TO ARM THE PORT RMS SYSTEM A AND SYSTEM B JETTISON/GUILLOTINE PICS

SUBSEQUENT FAILURE OF REDUNDANT SYSTEM WOULD RESULT IN LOSS OF POWER TO ARM THE PORT RMS SYSTEM A AND SYSTEM B JETTISON/GUILLOTINE PICS. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-293
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86
SUBSYSTEM: EPD&C
MDAC ID: 4527

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: CIRCUIT BREAKER, CB29
FAILURE MODE: FAILS CLOSED, WILL NOT OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL ML 86B:D
4) MN B PORT PYRO JETT, SYSTEM A
5) CIRCUIT BREAKER, 5 AMP
6) CIRCUIT BREAKER, CB29
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 80V73A180CB29
PART NUMBER: ME454-0062-2050

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF CIRCUIT PROTECTION FOR MN B 28 VDC THAT IS USED TO ARM THE PORT RMS SYSTEM A AND SYSTEM B JETTISON/GUILLOTINE PICS NO EFFECT. POWER CAN BE REMOVED BY SWITCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-294
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4528 ABORT: /NA

ITEM: CIRCUIT BREAKER, CB33
FAILURE MODE: FAILS OPEN. WILL NOT CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-61D
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL ML 86B:D
4) MN C STBD PYRO JETT, SYSTEM B
5) CIRCUIT BREAKER, 5 AMP
6) CIRCUIT BREAKER, CB33
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 80V73A180CB33
PART NUMBER: ME454-0062-2050

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION,
CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF MN C 28 VDC TO ARM THE STBD RMS SYSTEM A AND SYSTEM B
JETTISON/GUILLOTINE PICS
SUBSEQUENT FAILURE OF REDUNDANT SYSTEM WOULD RESULT IN LOSS OF
POWER TO ARM THE STBD RMS SYSTEM A AND SYSTEM B
JETTISON/GUILLOTINE PICS. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-295
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86
SUBSYSTEM: EPD&C
MDAC ID: 4529
HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: CIRCUIT BREAKER, CB33
FAILURE MODE: Fails closed, will not open.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
 2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
 3) PANEL ML 86B:D
 4) MN C STBD PYRO JETT, SYSTEM B
 5) CIRCUIT BREAKER, 5 AMP
 6) CIRCUIT BREAKER, CB33
 7)
 8)
 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 80V73A180CB33
PART NUMBER: ME454-0062-2050

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF CIRCUIT PROTECTION FOR MN C 28 VDC THAT IS USED TO ARM THE STBD RMS SYSTEM A AND SYSTEM B JETTISON/GUILLOTINE PICS
NO EFFECT. POWER CAN BE REMOVED BY SWITCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-296
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86
SUBSYSTEM: EPD&C
MDAC ID: 4530

ITEM: CIRCUIT BREAKER, CB32
FAILURE MODE: FAILS OPEN. WILL NOT CLOSE.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL ML 86B:D
4) MN C PORT PYRO JETT, SYSTEM B
5) CIRCUIT BREAKER, 5 AMP
6) CIRCUIT BREAKER, CB32
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 80V73A180CB32
PART NUMBER: ME454-0062-2050

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF MN C 28 VDC TO ARM THE PORT RMS SYSTEM A AND SYSTEM B JETTISON/GUILLOTINE PICS
SUBSEQUENT FAILURE OF REDUNDANT SYSTEM WOULD RESULT IN LOSS OF POWER TO ARM THE PORT RMS SYSTEM A AND SYSTEM B JETTISON/GUILLOTINE PICS. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-297
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 11/07/86
SUBSYSTEM: EPD&C
MDAC ID: 4531

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: /NA

ITEM: CIRCUIT BREAKER, CB32
FAILURE MODE: FAILS CLOSED, WILL NOT OPEN.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) PANEL ML 86B:D
4) MN C PORT PYRO JETT, SYSTEM B
5) CIRCUIT BREAKER, 5 AMP
6) CIRCUIT BREAKER, CB32
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS: A [] B [] C []

LOCATION: 80V73A180CB32
PART NUMBER: ME454-0062-2050

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
LOSS OF CIRCUIT PROTECTION FOR MN C 28 VDC THAT IS USED TO ARM THE STBD RMS SYSTEM A AND SYSTEM B JETTISON/GUILLOTINE PICS NO EFFECT. POWER CAN BE REMOVED BY SWITCH.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-298
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4532 ABORT: /NA

ITEM: PIC 1
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR SHOULDER GUILLOTINE SYSTEM B
5) SHOULDER GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 1
7)
8)
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC1
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS SHOULDER GUILLOTINE SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO GUILLOTINE THE PORT SHOULDER CABLES WHICH WOULD NOT ALLOW JETTISON OF THE MANIPULATOR ARM. POSSIBLE LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-299
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4533

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 1
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR SHOULDER GUILLOTINE SYSTEM B
5) SHOULDER GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 1
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC1
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS SHOULDER GUILLOTINE SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO GUILLOTINE THE STBD SHOULDER CABLES WHICH WOULD NOT ALLOW JETTISON OF THE MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-300
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86

SUBSYSTEM: EPD&C
MDAC ID: 4534

HIGHEST CRITICALITY HDW/_FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 12
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR SHOULDER GUILLOTINE SYSTEM A
5) SHOULDER GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 12
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/_FUNC</th>
<th>ABORT</th>
<th>HDW/_FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC12
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS SHOULDER GUILLOTINE SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO GUILLOTINE THE PORT SHOULDER CABLES WHICH WOULD NOT ALLOW JETTISON OF THE MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-301
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86 HIGHEST CRITICALITY
HIGHEST CRITICALITY: HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4535 ABORT: /NA

ITEM: PIC 12
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR SHOULDER GUILLOTINE SYSTEM A
5) SHOULDER GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 12

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC12
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION,
CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS SHOULDER GUILLOTINE SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO
GUILLOTINE THE STBD SHOULDER CABLES WHICH WOULD NOT ALLOW
JETTISON OF THE MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-302
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86

SUBSYSTEM: EPD&C

MDAC ID: 4536

HDW/FUNC: FLIGHT: 2/1R

ABORT: /NA

ITEM: PIC 1, 12

FAILURE MODE: EITHER PIC 1 OR 12 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR SHOULDER GUILLOTINE SYSTEMS A & B
5) SHOULDER GUILLOTINE PYRO INITIATOR CONTROLERS (PICS)
6) PIC 1, 12
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC1,12

PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE PORT RMS SHOULDER GUILLOTINE SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN FOUND THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.

NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS GUILLOTINE PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-303
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4537 ABORT: /NA

ITEM: PIC 1, 12 FAILURE MODE: EITHER PIC 1 OR 12 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR SHOULDER GUILLOTINE SYSTEMS A & B
5) SHOULDER GUILLOTINE PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 1, 12

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC1,12
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE STBD RMS SHOULDER GUILLOTINE SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN FOUND THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.

NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS GUILLOTINE PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-304
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EP&D&C FLIGHT: 2/1R
MDAC ID: 4537 ABORT: /NA

ITEM: PIC 1, 12
FAILURE MODE: EITHER PIC 1 OR 12 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR SHOULDER GUILLOTINE SYSTEM A & B
5) SHOULDER GUILLOTINE PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 1, 12
7) 8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC1,12
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE STBD RMS SHOULDER GUILLOTINE SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN FOUND THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF THE EITHER PIC.
NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS GUILLOTINE PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-304
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
HIGHEST CRITICALITY: HDW/FUNC
SUBSYSTEM: EPD&C
FLIGHT: 2/1R
MDAC ID: 4538
ABORT: /NA

ITEM: PIC 6
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR FWD LATCH GUILLOTINE SYSTEM B
5) FWD LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 6

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC6
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS FWD LATCH GUILLOTINE SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO GUILLOTINE THE FWD LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-305
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C
FLIGHT: 2/1R
MDAC ID: 4539
ABORT: /NA

ITEM: PIC 6
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR FWD LATCH GUILLOTINE SYSTEM B
5) FWD LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 6
7) 8) 9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT PHASE</td>
</tr>
<tr>
<td>PRELAUNCH:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
</tr>
<tr>
<td>ONORBIT:</td>
</tr>
<tr>
<td>DEORBIT:</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC6
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS FWD LATCH GUILLOTINE SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO GUILLOTINE THE FWD LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-306
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>ITEM:</th>
<th>PIC 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAILURE MODE:</td>
<td>FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEAD ANALYST:</th>
<th>ROBINSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYS LEAD:</td>
<td>SCHMECKPEPER</td>
</tr>
</tbody>
</table>

BREAKDOWN HIERARCHY:

1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR FWD LATCH GUILLOTINE SYSTEM A
5) FWD LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 17
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC17

PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

INABILITY TO ARM/FIRE THE PORT RMS FWD LATCH GUILLOTINE SYSTEM A PYRO.

SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO GUILLOTINE THE FWD LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-307
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4541
HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 17
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/both).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR FWD LATCH GUILLOTINE SYSTEM A
5) FWD LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 17
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC17
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS FWD LATCH GUILLOTINE SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO GUILLOTINE THE FWD LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 03/02/87 C-308
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4542

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 6, 17
FAILURE MODE: EITHER PIC 6 OR 17 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR FWD LATCH GUILLOTINE SYSTEMS A & B
5) FWD LATCH GUILLOTINE PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 6, 17
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC6, 17
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE PORT RMS FWD LATCH GUILLOTINE SYSTEM A OR B COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN FOUND THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.

NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS GUILLOTINE PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-309
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4543

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/IR
ABORT: /NA

ITEM: PIC 6, 17
FAILURE MODE: EITHER PIC 6 OR 17 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR FWD LATCH GUILLOTINE SYSTEMS A & B
5) FWD LATCH GUILLOTINE PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 6, 17
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>2/IR</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC6, 17
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE STBD RMS FWD LATCH GUILLOTINE SYSTEM A OR B COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN FOUND THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.
NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS GUILLOTINE PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-310
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4544

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 8
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/ BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR MID LATCH GUILLOTINE SYSTEM B
5) MID LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 8
7) 8)
9) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORB:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAF:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC8
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS MID LATCH GUILLOTINE SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO GUILLOTINE THE MID LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-311
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4545 ABORT: /NA

ITEM: PIC 8 FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR MID LATCH GUILLOTINE SYSTEM B
5) MID LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 8
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC8
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS MID LATCH GUILLOTINE SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO GUILLOTINE THE MID LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-312
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4546

HIGHEST CRITICALITY
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 19
FAILURE MODE: Fails to arm and/or fails to fire (either/both).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR MID LATCH GUILLOTINE SYSTEM A
5) MID LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 19

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC19
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS MID LATCH GUILLOTINE SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO GUILLOTINE THE MID LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-313
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: ED&C
MDAC ID: 4547

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 19
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR MID LATCH GUILLOTINE SYSTEM A
5) MID LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 19
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A1138PIC19
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS MID LATCH GUILLOTINE SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO GUILLOTINE THE MID LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-314
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
HIGHEST CRITICALITY
SUBSYSTEM: EPD&C HDW/FUNC
ABORT: 2/1R
MDAC ID: 4548 /NA

ITEM: PIC 8, 19
FAILURE MODE: EITHER PIC 8 OR 19 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR MID LATCH GUILLOTINE SYSTEMS A & B
5) MID LATCH GUILLOTINE PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 8, 19

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC8, 19
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE PORT RMS MID GUILLOTINE SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.
NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS GUILLOTINE PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-315
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4549

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 8, 19
FAILURE MODE: EITHER PIC 8 OR 19 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SCHMECKPEPER
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR MID LATCH GUILLOTINE SYSTEMS A & B
5) MID LATCH GUILLOTINE PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 8, 19
7)
8)
9)

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIFTOFF: /NA TAL: /NA
ONORBIT: 2/1R AOA: /NA
DEORBIT: /NA ATO: /NA
LANDING/SAFING: /NA

LOCATION: 40V76A138PIC8, 19
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION,
CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE STBD RMS MID GUILLOTINE SYSTEM A OR
B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN
IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF
EITHER PIC.

NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH
PREMATURE ARMING AND PREMATURE FIRING OF AN RMS GUILLOTINE PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-316
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4550

ITEM: PIC 10
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR AFT LATCH GUILLOTINE SYSTEM B
5) AFT LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 10
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC10
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS AFT LATCH GUILLOTINE SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO GUILLOTINE THE AFT LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-317
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86

SUBSYSTEM: EPD&C

MDAC ID: 4551

HIGHEST CRITICALITY HDW/FUNC

FLIGHT: 2/1R

ABORT: /NA

ITEM: PIC 10

FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) PORT MANIPULATOR AFT LATCH GUILLOTINE SYSTEM B
5) AFT LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 10
7)...

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABO RT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC10

PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

INABILITY TO ARM/FIRE THE STBD RMS AFT LATCH GUILLOTINE SYSTEM B PYRO.

SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO GUILLOTINE THE AFT LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-318
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86

SUBSYSTEM: EPD&C
MDAC ID: 4552

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 21
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/both).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR AFT LATCH GUILLOTINE SYSTEM A
5) AFT LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 21
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>abort</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC21
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

INABILITY TO ARM/FIRE THE PORT RMS AFT LATCH GUILLOTINE SYSTEM A PYRO.

SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO GUILLOTINE THE AFT LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-319
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4553
HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 21
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
LEAD: SCHMECKPEPER
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) PORT MANIPULATOR AFT LATCH GUILLOTINE SYSTEM A
5) AFT LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PIC)
6) PIC 21
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC21
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS AFT LATCH GUILLOTINE SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO GUILLOTINE THE AFT LATCH CABLES WHICH WOULD NOT ALLOW JETTISON OF THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-320
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4554

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 10, 21
FAILURE MODE: EITHER PIC 10 OR 21 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR AFT LATCH GUILLOTINE SYSTEMS A & B
5) AFT LATCH GUILLOTINE PYRO INITIATOR CONTROLLER (PICT)
6) PIC 10, 21
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC10, 21
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE PORT RMS AFT LATCH GUILLOTINE SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.

NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS GUILLOTINE PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-321
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4555

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 10, 21
FAILURE MODE: EITHER PIC 10 OR 21 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) PORT MANIPULATOR AFT LATCH GUILLOTINE SYSTEMS A & B
5) AFT LATCH GUILLOTINE PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 10, 21

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC10, 21
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE STBD RMS AFT LATCH GUILLOTINE SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.
NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS GUILLOTINE PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-322
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4556

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 2
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR SHOULDER RETRACTOR SYSTEM B
5) SHOULDER RETRACTOR PYRO INITIATOR CONTROLLER (PIC)
6) PIC 2
7)
8)
9)

RMS, 05-6ID
MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
MID JETTISON CONTROL CONTROL ASSEMBLY 1
PORT MANIPULATOR SHOULDER RETRACTOR SYSTEM B
SHOULDER RETRACTOR PYRO INITIATOR CONTROLLER (PIC)
PIC 2

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC2
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS SHOULDER RETRACTOR JETTISON SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO JETTISON THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-323
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4557 ABORT: /NA

ITEM: PIC 2
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR SHOULDER RETRACTOR SYSTEM B
5) SHOULDER RETRACTOR PYRO INITIATOR CONTROLLER (PIC)
6) PIC 2
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC2
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS SHOULDER RETRACTOR JETTISON SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO JETTISON THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-324
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4558 ABORT: /NA

ITEM: PIC 13
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/Both).

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR SHOULDER RETRACTOR SYSTEM A
5) SHOULDER RETRACTOR PYRO INITIATOR CONTROLLER (PIC)
6) PIC 13

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC13
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS SHOULDER RETRACTOR JETTISON SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO JETTISON THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-325
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C
FLIGHT: 2/1R
MDAC ID: 4559
ABORT: /NA

ITEM: PIC 13
FAILURE MODE: FAILS TO ARM AND/OR FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR SHOULDER RETRACTO SYSTEM A
5) SHOULDER RETRACTO PYRO INITIATOR CONTROLLER (PIC)
6) PIC 13
7)...
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAVING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC13
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS SHOULDER RETRACTO JETTISON SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO JETTISON THE STDB MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-326
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4560
HIGHEST CRITICALITY HDW/FUNC: FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 2, 13
FAILURE MODE: EITHER PIC 2 OR 13 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR SHOULDER RETRACTOR SYSTEMS A & B
5) SHOULDER RETRACTOR PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 2, 13

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC2, 13
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE PORT RMS SHOULDER RETRACTOR JETTISON SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.
NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-327
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: EPD&C
MDAC ID: 4561

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 2, 13
FAILURE MODE: EITHER PIC 2 OR 13 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR SHOULDER RETRACTOR SYSTEMS A & B
5) SHOULDER RETRACTOR PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 2, 13
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC2, 13
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE STBD RMS SHOULDER RETRACTOR JETTISON SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.
NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-328
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C
MDAC ID: 4562

ITEM: PIC 7
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR FWD LATCH BOLT SYSTEM B
5) FWD LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 7
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/IR</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC7
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
- INABILITY TO ARM/FIRE THE PORT RMS FWD JETTISON LATCH BOLT SYSTEM B PYRO.
- SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO JETTISON THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
SUBSYSTEM: EP&C
MDAC ID: 4563

ITEM: PIC 7
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/BOTH).
LEAD ANALYST: ROBINSON

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR FWD LATCH BOLT SYSTEM B
5) FWD LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 7
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC7
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS FWD JETTISON LATCH BOLT SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO JETTISON THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-330
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C
FLIGHT: 2/1R
MDAC ID: 4564
ABORT: /NA

ITEM: PIC 18
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/both).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR FWD LATCH BOLT SYSTEM A
5) FWD LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 18
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC18
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS FWD JETTISON LATCH BOLT SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO JETTISON THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-331
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86

HIGHEST CRITICALITY HDW/FUNC

SUBSYSTEM: EPD&C

FLIGHT: 2/1R

MDAC ID: 4565

ABORT: /NA

ITEM: PIC 18

FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON

SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:

1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR FWD LATCH BOLT SYSTEM A
5) FWD LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 18
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC18

PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS FWD JETTISON LATCH BOLT SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO JETTISON THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-332
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4566 ABORT: /NA

ITEM: PIC 7, 18
FAILURE MODE: EITHER PIC 7 OR 18 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR FWD LATCH BOLT SYSTEMS A & B
5) FWD LATCH BOLT PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 7, 18
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC7,18
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE PORT RMS FWD JETTISON LATCH BOLT SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.

NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-333
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

SUBSYSTEM: EPD&C
MDAC ID: 4567

ITEM: PIC 7, 18
FAILURE MODE: EITHER PIC 7 OR 18 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR FWD LATCH BOLT SYSTEMS A & B
5) FWD LATCH BOLT PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 7, 18
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC7, 18
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE STBD RMS FWD JETTISON LATCH BOLT SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.
NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-334
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
SUBSYSTEM: EPD&C
MDAC ID: 4568

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 9
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR MID LATCH BOLT SYSTEMS B
5) MID LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 9

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON ORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC9
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS MID JETTISON LATCH BOLT SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO JETTISON THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-335
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
SUBSYSTEM: EPD&C
MDAC ID: 4569

ITEM: PIC 9
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR MID LATCH BOLT SYSTEMS B
5) MID LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 9
7) 8) 9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABO RT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC9
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS MID JETTISON LATCH BOLT SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO JETTISON THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-336
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4570 ABORT: /NA

ITEM: PIC 20
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR MID LATCH BOLT SYSTEMS A
5) MID LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 20
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC20
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS MID JETTISON LATCH BOLT SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO JETTISON THE PORT MANIPULATOR ARM. LOSS OF VEHICLE COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS
JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-337
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
SUBSYSTEM: EPD&C
MDAC ID: 4571
HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 20
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/both).
LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR MID LATCH BOLT SYSTEMS A
5) MID LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 20
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC20
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS MID JETTISON LATCH BOLT SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO JETTISON THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
SUBSYSTEM: EPD&C
MDAC ID: 4572

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 9, 20
FAILURE MODE: EITHER PIC 9 OR 20 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR MID LATCH BOLT SYSTEMS A & B
5) MID LATCH BOLT PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 9, 20
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC9, 20
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE PORT RMS MID JETTISON LATCH BOLT SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.
NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-339
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
SUBSYSTEM: EPD&C
MDAC ID: 4573

ITEM: PIC 9, 20
FAILURE MODE: EITHER PIC 9 OR 20 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR MID LATCH BOLT SYSTEMS A & B
5) MID LATCH BOLT PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 9, 20
7)
8)
9)

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: /NA RTLS: /NA
LIFTOFF: /NA TAL: /NA
ONORBIT: 2/IR AOA: /NA
DEORBIT: /NA ATO: /NA
LANDING/SAFING: /NA

LOCATION: 40V76A138PIC9, 20
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE STBD RMS MID JETTISON LATCH BOLT SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.
NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-340
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4574 ABORT: /NA

ITEM: PIC 11
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR AFT LATCH BOLT SYSTEMS B
5) AFT LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 11
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC11
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS AFT JETTISON LATCH BOLT SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO JETTISON THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-341
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
SUBSYSTEM: EPD&C
MDAC ID: 4575

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 11
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR AFT LATCH BOLT SYSTEMS B
5) AFT LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 11

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELACHU:</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC11
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS AFT JETTISON LATCH BOLT SYSTEM B PYRO.
SUBSEQUENT FAILURE OF SYSTEM A WOULD RESULT IN INABILITY TO JETTISON THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-342
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
SUBSYSTEM: EPD&C
MDAC ID: 4576

ITEM: PIC 22
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR AFT LATCH BOLT SYSTEMS A
5) AFT LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 22
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>/NA</td>
<td></td>
<td>ATO:</td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC22
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE PORT RMS AFT JETTISON LATCH BOLT SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO JETTISON THE PORT MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-343
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
SUBSYSTEM: EPD&C
MDAC ID: 4577

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 22
FAILURE MODE: FAILS TO ARM, FAILS TO FIRE (EITHER/BOTH).

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR AFT LATCH BOLT SYSTEMS A
5) AFT LATCH BOLT PYRO INITIATOR CONTROLLER (PIC)
6) PIC 22
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ON'ORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC22
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
INABILITY TO ARM/FIRE THE STBD RMS AFT JETTISON LATCH BOLT SYSTEM A PYRO.
SUBSEQUENT FAILURE OF SYSTEM B WOULD RESULT IN INABILITY TO JETTISON THE STBD MANIPULATOR ARM. LOSS OF VEHICLE/CREW COULD RESULT.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-344
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86
SUBSYSTEM: EPD&C
MDAC ID: 4578

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: /NA

ITEM: PIC 11, 22
FAILURE MODE: EITHER PIC 11 OR 22 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON
SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 1
4) PORT MANIPULATOR AFT LATCH BOLT SYSTEMS A & B
5) AFT LATCH BOLT PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 11, 22
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>/NA</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>2/1R</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A137PIC11, 22
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE PORT RMS AFT JETTISON LATCH BOLT SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.

NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-345
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/19/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: EPD&C FLIGHT: 2/1R
MDAC ID: 4579 ABORT: /NA

ITEM: PIC 11, 22
FAILURE MODE: EITHER PIC 11 OR 22 ARMS/FIRES PREMATURELY.

LEAD ANALYST: ROBINSON SUBSYS LEAD: SCHMECKPEPER

BREAKDOWN HIERARCHY:
1) RMS, 05-6ID
2) MANIPULATOR ARM/SHOULDER JETTISON & RETENTION ARM JETTISON
3) MID JETTISON CONTROL CONTROL ASSEMBLY 2
4) STBD MANIPULATOR AFT LATCH BOLT SYSTEM A & B
5) AFT LATCH BOLT PYRO INITIATOR CONTROLLERS (PICS)
6) PIC 11, 22
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>/NA</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>2/1R</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFIN</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: 40V76A138PIC11, 22
PART NUMBER: ME450-0018-0004

CAUSES: MECHANICAL/STRUCTURAL MALFUNCTION, SHOCK VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
UNTIMELY ARMING/FIRING THE STBD RMS AFT JETTISON LATCH BOLT SYSTEM A OR B PYROS COULD CAUSE LOSS OF VEHICLE. NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT CAN CAUSE UNTIMELY ARMING AND UNTIMELY FIRING OF EITHER PIC.
NO SINGLE FAILURE HAS BEEN IDENTIFIED THAT COULD CAUSE BOTH PREMATURE ARMING AND PREMATURE FIRING OF AN RMS PYRO.

REFERENCES: VS72-956099, ROCKWELL ELECTRICAL SCHEMATIC, RMS JSC-11174, SPACE SHUTTLE SYSTEMS HANDBOOK

REPORT DATE 02/25/87 C-346
APPENDIX D

POTENTIAL CRITICAL ITEMS

<table>
<thead>
<tr>
<th>MDAC ID</th>
<th>ITEM</th>
<th>FAILURE MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001</td>
<td>SWITCH, S4</td>
<td>FAILS TO SWITCH FROM OFF POSITION</td>
</tr>
<tr>
<td>4002</td>
<td>SWITCH, S4</td>
<td>CONTACTS SHORT TO GROUND WHILE RMS IS IN USE</td>
</tr>
<tr>
<td>4003</td>
<td>SWITCH, S4</td>
<td>FAILS TO SWITCH PRIMARY POWER ON</td>
</tr>
<tr>
<td>4004</td>
<td>SWITCH, S4</td>
<td>FAILS TO SWITCH BACKUP POWER ON</td>
</tr>
<tr>
<td>4005</td>
<td>SWITCH, S4</td>
<td>PRIMARY POWER FAILS WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4007</td>
<td>SWITCH, S1</td>
<td>FAILS TO SWITCH FROM OFF POSITION</td>
</tr>
<tr>
<td>4008</td>
<td>SWITCH, S1</td>
<td>CONTACTS SHORT TO GROUND WHILE RMS IS IN USE</td>
</tr>
<tr>
<td>4009</td>
<td>SWITCH, S1</td>
<td>FAILS OPEN WHILE EITHER ARM IS IN USE</td>
</tr>
<tr>
<td>4010</td>
<td>SWITCH, S8</td>
<td>FAILS OFF WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4011</td>
<td>SWITCH, S10</td>
<td>FAILS OFF WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4012</td>
<td>SWITCH, S8, S10</td>
<td>FAILS TO SWITCH FROM OFF TO AUTO</td>
</tr>
<tr>
<td>4013</td>
<td>SWITCH, S7</td>
<td>FAILS OFF WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4014</td>
<td>SWITCH, S9</td>
<td>FAILS OFF WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4015</td>
<td>SWITCH, S7, S9</td>
<td>FAILS TO SWITCH FROM OFF TO AUTO</td>
</tr>
<tr>
<td>4016</td>
<td>FUSE, F1</td>
<td>FAILS OPEN PRIOR TO DEPLOYMENT</td>
</tr>
<tr>
<td>4017</td>
<td>FUSE, F1</td>
<td>FAILS OPEN WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4018</td>
<td>FUSE, F2</td>
<td>FAILS OPEN PRIOR TO DEPLOYMENT</td>
</tr>
<tr>
<td>4019</td>
<td>FUSE, F2</td>
<td>FAILS OPEN WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4028</td>
<td>CKT BREAKER, CB17</td>
<td>FAILS OPEN PRIOR TO DEPLOYMENT</td>
</tr>
<tr>
<td>4029</td>
<td>CKT BREAKER, CB17</td>
<td>FAILS OPEN WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4031</td>
<td>CKT BREAKER, CB19</td>
<td>FAILS OPEN PRIOR TO DEPLOYMENT</td>
</tr>
<tr>
<td>4032</td>
<td>CKT BREAKER, CB19</td>
<td>FAILS OPEN WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4034</td>
<td>RELAY, K1</td>
<td>FAILS OPEN PRIOR TO DEPLOYMENT</td>
</tr>
<tr>
<td>4035</td>
<td>RELAY, K1</td>
<td>FAILS OPEN WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4037</td>
<td>RELAY, K2</td>
<td>FAILS OPEN PRIOR TO DEPLOYMENT</td>
</tr>
<tr>
<td>MDAC ID</td>
<td>ITEM</td>
<td>FAILURE MODE</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>4038</td>
<td>RELAY, K2</td>
<td>FAILS OPEN WHILE ARM IS IN USE</td>
</tr>
<tr>
<td>4040</td>
<td>FUSE, F26</td>
<td>FAILS OPEN</td>
</tr>
<tr>
<td>4041</td>
<td>FUSE, F27</td>
<td>FAILS OPEN</td>
</tr>
<tr>
<td>4044</td>
<td>REMOTE PWR CONTRLR, RPC 4</td>
<td>OPEN, FAILS TO CLOSE</td>
</tr>
<tr>
<td>4045</td>
<td>REMOTE PWR CONTRLR, ROC 31</td>
<td>FAILS TO CLOSE</td>
</tr>
<tr>
<td>4046</td>
<td>REMOTE PWR CONTRLR, RPC 30</td>
<td>OPEN, FAILS TO CLOSE</td>
</tr>
<tr>
<td>4101</td>
<td>SWITCH, S1</td>
<td>OPENS, FAILS TO CLOSE</td>
</tr>
<tr>
<td>4103</td>
<td>SWITCH, S2</td>
<td>OPENS, FAILS TO CLOSE</td>
</tr>
<tr>
<td>4105</td>
<td>SWITCH, S5</td>
<td>OPEN, FAILS TO CLOSE TO EITHER DEPLOY OR STOW</td>
</tr>
<tr>
<td>4106</td>
<td>SWITCH, S5</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4107</td>
<td>SWITCH, S2</td>
<td>OPEN, FAILS TO CLOSE TO EITHER DEPLOY OR STOW</td>
</tr>
<tr>
<td>4108</td>
<td>SWITCH, S2</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4114</td>
<td>HYBRID RELAY, K72</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4116</td>
<td>HYBRID RELAY, K49</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4118</td>
<td>HYBRID RELAY, K60</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4120</td>
<td>HYBRID RELAY, K51</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4122</td>
<td>HYBRID RELAY, K22</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4124</td>
<td>HYBRID RELAY, K62</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4126</td>
<td>HYBRID RELAY, K24</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4128</td>
<td>HYBRID RELAY, K50</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4501</td>
<td>SWITCH, S21</td>
<td>FAILS LOCKED IN SAFE (CENTER) POSITION</td>
</tr>
<tr>
<td>4502</td>
<td>SWITCH, S21</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4503</td>
<td>SWITCH, S28</td>
<td>FAILS LOCKED IN SAFE (CENTER) POSITION</td>
</tr>
<tr>
<td>4504</td>
<td>SWITCH, S28</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>MDAC ID</td>
<td>ITEM</td>
<td>FAILURE MODE</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>4505</td>
<td>SWITCH, S25</td>
<td>FAILS LOCKED IN SAFE (CENTER) POSITION</td>
</tr>
<tr>
<td>4506</td>
<td>SWITCH, S25</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4507</td>
<td>SWITCH, S32</td>
<td>FAILS LOCKED IN SAFE (CENTER) POSITION</td>
</tr>
<tr>
<td>4508</td>
<td>SWITCH, S32</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4509</td>
<td>SWITCH, S24</td>
<td>FAILS LOCKED IN SAFE (CENTER) POSITION</td>
</tr>
<tr>
<td>4510</td>
<td>SWITCH, S24</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4511</td>
<td>SWITCH, S31</td>
<td>FAILS LOCKED IN SAFE (CENTER) POSITION</td>
</tr>
<tr>
<td>4512</td>
<td>SWITCH, S31</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4513</td>
<td>SWITCH, S23</td>
<td>FAILS LOCKED IN SAFE (CENTER) POSITION</td>
</tr>
<tr>
<td>4514</td>
<td>SWITCH, S23</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4515</td>
<td>SWITCH, S30</td>
<td>FAILS LOCKED IN SAFE (CENTER) POSITION</td>
</tr>
<tr>
<td>4516</td>
<td>SWITCH, S30</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4517</td>
<td>SWITCH, S22</td>
<td>FAILS LOCKED IN SAFE (CENTER) POSITION</td>
</tr>
<tr>
<td>4518</td>
<td>SWITCH, S22</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4519</td>
<td>SWITCH, S29</td>
<td>FAILS LOCKED IN SAFE (CENTER) POSITION</td>
</tr>
<tr>
<td>4520</td>
<td>SWITCH, S29</td>
<td>FAILS CLOSED, APPLIES UNTIMELY POWER</td>
</tr>
<tr>
<td>4524</td>
<td>CKT BREAKER, CB27</td>
<td>FAILS OPEN, WILL NOT CLOSE</td>
</tr>
<tr>
<td>4526</td>
<td>CKT BREAKER, CB29</td>
<td>FAILS OPEN, WILL NOT CLOSE</td>
</tr>
<tr>
<td>4528</td>
<td>CKT BREAKER, CB33</td>
<td>FAILS OPEN, WILL NOT CLOSE</td>
</tr>
<tr>
<td>4530</td>
<td>CKT BREAKER, CB32</td>
<td>FAILS OPEN, WILL NOT CLOSE</td>
</tr>
<tr>
<td>4532</td>
<td>PIC 1</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4533</td>
<td>PIC 1</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4534</td>
<td>PIC 12</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4535</td>
<td>PIC 12</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
</tbody>
</table>
APPENDIX D (CONT'D)

POTENTIAL CRITICAL ITEMS (CONT'D)

<table>
<thead>
<tr>
<th>MDAC ID</th>
<th>ITEM</th>
<th>FAILURE MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4536</td>
<td>PIC 1, 12</td>
<td>EITHER PIC 1 OR 12 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4537</td>
<td>PIC 1, 12</td>
<td>EITHER PIC 1 OR 12 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4538</td>
<td>PIC 6</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4539</td>
<td>PIC 6</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4540</td>
<td>PIC 17</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4541</td>
<td>PIC 17</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4542</td>
<td>PIC 6, 17</td>
<td>EITHER PIC 1 OR 12 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4543</td>
<td>PIC 6, 17</td>
<td>EITHER PIC 1 OR 12 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4544</td>
<td>PIC 8</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4545</td>
<td>PIC 8</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4546</td>
<td>PIC 19</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4547</td>
<td>PIC 19</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4548</td>
<td>PIC 8, 19</td>
<td>EITHER PIC 8 OR 19 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4549</td>
<td>PIC 8, 19</td>
<td>EITHER PIC 8 OR 19 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4550</td>
<td>PIC 10</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4551</td>
<td>PIC 10</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4552</td>
<td>PIC 21</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4553</td>
<td>PIC 21</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4554</td>
<td>PIC 10, 21</td>
<td>EITHER PIC 10 OR 21 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4555</td>
<td>PIC 10, 21</td>
<td>EITHER PIC 10 OR 21 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4556</td>
<td>PIC 2</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4557</td>
<td>PIC 2</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4558</td>
<td>PIC 13</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4559</td>
<td>PIC 13</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
</tbody>
</table>
APPENDIX D (CONT'D)

POTENTIAL CRITICAL ITEMS (CONT'D)

<table>
<thead>
<tr>
<th>MDAC ID</th>
<th>ITEM</th>
<th>FAILURE MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4560</td>
<td>PIC 2, 13</td>
<td>EITHER PIC 2 OR 13 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4561</td>
<td>PIC 2, 13</td>
<td>EITHER PIC 2 OR 13 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4562</td>
<td>PIC 7</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4563</td>
<td>PIC 7</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4564</td>
<td>PIC 18</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4565</td>
<td>PIC 18</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4566</td>
<td>PIC 7, 18</td>
<td>EITHER PIC 7 OR 18 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4567</td>
<td>PIC 7, 18</td>
<td>EITHER PIC 7 OR 18 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4568</td>
<td>PIC 9</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4569</td>
<td>PIC 9</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4570</td>
<td>PIC 20</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4571</td>
<td>PIC 20</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4572</td>
<td>PIC 9, 20</td>
<td>EITHER PIC 9 OR 20 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4573</td>
<td>PIC 9, 20</td>
<td>EITHER PIC 9 OR 20 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4574</td>
<td>PIC 11</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4575</td>
<td>PIC 11</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4576</td>
<td>PIC 22</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4577</td>
<td>PIC 22</td>
<td>FAILS TO ARM AND/FAILS TO FIRE (EITHER/BOTH)</td>
</tr>
<tr>
<td>4578</td>
<td>PIC 11, 22</td>
<td>EITHER PIC 11 OR 22 ARMS/FIRES PREMATURELY</td>
</tr>
<tr>
<td>4579</td>
<td>PIC 11, 22</td>
<td>EITHER PIC 11 OR 22 ARMS/FIRES PREMATURELY</td>
</tr>
</tbody>
</table>