INDEPENDENT ORBITER ASSESSMENT

ASSESSMENT OF THE BACK-UP FLIGHT SYSTEM

22 FEBRUARY 1988
This Working Paper is Submitted to NASA under
Task Order No. VA86001, Contract NAS 9-17650

PREPARED BY: E.E. Prust
E.E. Prust
Analyst
Independent Orbiter Assessment

PREPARED BY: J.J. Ewell, Jr.
J.J. Ewell, Jr.
BFS Lead
Independent Orbiter Assessment

PREPARED BY: L.W. Hindsdale
L.W. Hindsdale
Analyst
Independent Orbiter Assessment

APPROVED BY: A.J. Marino
A.J. Marino
Section Manager-FMEA/CIL
Independent Orbiter Assessment

APPROVED BY: J.I. McPherson
J.I. McPherson
Project Manager
STSEOS
CONTENTS

1.0 EXECUTIVE SUMMARY 1

2.0 INTRODUCTION 4
 2.1 Purpose 4
 2.2 Scope 4
 2.3 Analysis Approach 4
 2.4 Ground Rules and Assumptions 5

3.0 SUBSYSTEM DESCRIPTION 6
 3.1 Design and Function 6
 3.2 Interfaces and Locations 10
 3.3 Hierarchy 10
 3.4 BFS Sensitivity to Interfacing Subsystem Operation 10
 3.4.1 Inertial Measurement Unit (IMU) 11
 3.4.2 Air Data System (ADS) 11
 3.4.3 Rate Gyro Assemblies (RGA) and Accelerometer Assemblies (AA) 11
 3.4.4 Rotational Hand Controller (RHC) 12
 3.4.5 Speedbrake Thrust Controller (SBTC) 12
 3.4.6 Rudder Pedal Transducer Assembly (RPTA) 12
 3.4.7 Cockpit Switches 12

4.0 ASSESSMENT RESULTS 13
 4.1 Display Driver Unit 15
 4.2 Backup Flight Controller 15
 4.3 General Purpose Computer 15
 4.4 Switches 15
 4.5 Circuit Protectors 16
 4.6 Indicators 16

5.0 REFERENCES 17
APPENDIX A ACRONYMS

APPENDIX B DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions
B.2 Project Level Ground Rules and Assumptions
B.3 Subsystem Specific Ground Rules and Assumptions

APPENDIX C ASSESSMENT WORKSHEETS

APPENDIX D CRITICAL ITEMS

APPENDIX E ANALYSIS WORKSHEETS

APPENDIX F NASA FMEA TO IOA WORKSHEET CROSS REFERENCE

List of Figures

Figure 1 - BFS FMEA/CIL ASSESSMENT
Figure 2 - BFS SUBSYSTEM OVERVIEW
Figure 3 - BFS ENGAGE/DISENGAGE HARDWARE AND DATA INTERFACES

List of Tables

Table I - SUMMARY OF IOA CIL ASSESSMENT
Table II - SUMMARY OF IOA FAILURE MODES AND CRITICALITIES
Table III - SUMMARY OF IOA CRITICAL ITEMS
Table IV - IOA WORKSHEET NUMBERS
Independent Orbiter Assessment
Assessment of the Backup Flight System FMEA/CIL

1.0 EXECUTIVE SUMMARY
The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). Direction was given by the STS Orbiter and GFE Projects Office to perform the hardware analysis using the instructions and ground rules defined in NSTS 22206. Instructions for Preparation of FMEA and CIL, October 10, 1986.
The IOA effort first completed an analysis of the Backup Flight System (BFS) hardware, generating draft failure modes and Potential Critical Items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed NASA post 51-L FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BFS hardware.
The IOA product for the BFS analysis consisted of 29 failure mode "worksheets" that resulted in 21 Potential Critical Items (PCI) being identified. This product was originally compared with the proposed NASA BFS baseline as of Oct. 1986 and subsequently compared with the applicable (as of Nov. 19, 1987) Data Processing System (DPS), Electrical Power Distribution and Control (EPD&C), and Displays and Controls NASA CIL items. The comparisons determined if there were any results which had been found by the IOA but were not in the NASA baseline.
The original assessment determined there were numerous failure modes and potential critical items in the IOA analysis that were not contained in the NASA BFS baseline. Conversely, the NASA baseline contained three FMEAs (IMU, ADTA, and Air Data Probe) for CIL items that were not identified in the IOA product. The IOA prepared worksheets and agreed with the NASA analysis for the three items. This increased the IOA worksheets from 29 to 32 and the PCIs from 21 to 24 for the original assessment as shown in Figure 1.
The NASA and Rockwell conducted several reviews and completed a substantial rewrite of all CILs between Dec. 1986 and Nov. 1987. This effort included eliminating BFS as a unique subsystem by integrating BFS CILs with primary DPS CILs. The revised NASA baseline contained four more FMEAs for CIL items that were not identified in the original IOA BFS product, deleted the IMU CIL related FMEA mentioned in the previous paragraph, and moved the ADTA and AIR Data Probe CILs also mentioned in the previous paragraph to the GN&C subsystem. Once again, the IOA prepared worksheets and agreed with the NASA analysis of the additional
BFS ASSESSMENT OVERVIEW

BFS ASSESSMENT SUMMARY

<table>
<thead>
<tr>
<th>ORIGINAL ASSESSMENT</th>
<th>FINAL RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IOA NASA ISSUES</td>
</tr>
<tr>
<td></td>
<td>IOA NASA ISSUES</td>
</tr>
<tr>
<td>FMEA 32</td>
<td>FMEA 33</td>
</tr>
<tr>
<td>CIL 24</td>
<td>CIL 25</td>
</tr>
</tbody>
</table>

Figure 1 - BFS FMEA/CIL ASSESSMENT

BACKUP FLIGHT CONTROLLER

<table>
<thead>
<tr>
<th>FMEA</th>
<th>CIL</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9</td>
<td>2 0</td>
</tr>
</tbody>
</table>

GENERAL PURPOSE COMPUTER

<table>
<thead>
<tr>
<th>FMEA</th>
<th>CIL</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4 0</td>
</tr>
</tbody>
</table>

SWITCHES

<table>
<thead>
<tr>
<th>FMEA</th>
<th>CIL</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5</td>
<td>5 0</td>
</tr>
</tbody>
</table>

CIRCUIT PROTECTORS

<table>
<thead>
<tr>
<th>FMEA</th>
<th>CIL</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>8</td>
<td>7 0</td>
</tr>
</tbody>
</table>

DISPLAY DRIVER UNIT

<table>
<thead>
<tr>
<th>FMEA</th>
<th>CIL</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4 0</td>
</tr>
</tbody>
</table>

INDICATORS

<table>
<thead>
<tr>
<th>FMEA</th>
<th>CIL</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

IMU, ADTA, AD PROBE

<table>
<thead>
<tr>
<th>FMEA</th>
<th>CIL</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3 0</td>
</tr>
</tbody>
</table>

* NASA PROPOSED BASELINE AS OF OCTOBER 1986
** FINAL NASA BASELINE AS OF NOVEMBER 18, 1987

NOTES:
1. THE IOA BFS ANALYSIS WENT ONE LEVEL DEEPER THAN THE ROCKWELL/NASA ANALYSIS, THEREFORE MULTIPLE IOA FAILURES ARE COVERED BY INDIVIDUAL NASA FAILURES.
2. THE IOA TREATED THE GPC AS ONE BLACK BOX. THE ROCKWELL/NASA ANALYSIS CONSIDERED BOTH THE CPU AND IOP.
3. THE IOA AND NASA/ROCKWELL ANALYSES ADDRESS THE SAME FAILURE MODES BUT DOCUMENT THEM DIFFERENTLY.
4. THE IMU FAILURE IMPACT ON BFS CONTAINED IN THE PROPOSED BASELINE OCT 1186 WAS DELETED FROM THE CIL AND THE ADTA/AD PROBE.
 CILS WERE MOVED TO UTILC IN THE FINAL NOV. 1887 BASELINE.
failures. This increased the IOA worksheets from 32 to 33 and the PCIs from 24 to 25 for the final assessment. The IOA assessment of the final updated baseline (Nov. 19, 1987) results in agreement on all BFS CIL items even though there are differences in number of items and assigned criticalities. Figure 1 presents an overview of the assessment results.

The differences in assigned criticalities are due to different interpretation and application of the FMEA/CIL preparation instructions contained in NSTS 22206. The IOA analyzed BFS hardware failures with the assumption the BFS had been or would be engaged. The NASA analyzed BFS hardware failures as an integral part of the DPS or EPD&C and therefore counted generic PASS failures when assigning criticalities to BFS hardware failure modes. The IOA interpretation neither added to or subtracted from the CIL.

The IOA and NASA analyses differed in level of detail and method of failure mode documentation. As a result, there are some differences in the number of CIL items. Regardless, a complete mapping exists between the IOA and FMEA/CIL items. Multiple IOA failures map into one FMEA for some hardware components and vice versa for other BFS elements.
2.0 INTRODUCTION

2.1 Purpose

The 51-L Challenger accident prompted the NASA to readdress safety policies, concepts, and rationale being used in the National Space Transportation System (NSTS). The NSTS Office has undertaken the task of reevaluating the FMEA/CIL for the Space Shuttle design. The MDAC is providing an independent assessment of the Orbiter FMEA/CIL reevaluation results for completeness and technical accuracy.

2.2 Scope

The scope of the independent FMEA/CIL assessment activity encompasses those Shuttle Orbiter subsystems and GFE hardware identified in the Space Shuttle Independent FMEA/CIL Assessment Contractor Statement of Work. Each subsystem analysis addresses hardware, functions, internal and external interfaces, and operational requirements for all mission phases.

2.3 Analysis Approach

The independent analysis approach is a top-down analysis utilizing as-built drawings to divide the respective subsystem into components and low-level hardware items. Each hardware item is evaluated for failure mode, effects, and criticality. These data are documented in the respective subsystem analysis report, and are used to assess the proposed post 51-L NASA and Prime Contractor FMEA/CIL. The IOA analysis approach is summarized in the following Steps 1.0 through 3.0. Step 4.0 summarizes the assessment of the NASA and Prime Contractor FMEA/CIL which is documented in this report.

Step 1.0 Subsystem familiarization
1.1 Define subsystem functions
1.2 Define subsystem components
1.3 Define subsystem specific ground rules and assumptions

Step 2.0 Define subsystem analysis diagram
2.1 Define subsystem
2.2 Define major assemblies
2.3 Develop detailed subsystem representations

Step 3.0 Failure events definition
3.1 Construct matrix of failure modes
3.2 Document IOA analysis results

Step 4.0 Compare IOA analysis data to NASA FMEA/CIL
4.1 Resolve differences
4.2 Review in-house
4.3 Document assessment issues
4.4 Forward findings to Project Manager
2.4 Ground Rules and Assumptions

The ground rules and assumptions used in the IOA are presented in Appendix B. The subsystem specific ground rules were defined to limit the analysis to single-failed-parts for each failure mode. A subset of the failure mode keywords were identified for the BFS team. This allowed for commonality in the analysis results.
3.0 SUBSYSTEM DESCRIPTION

The following sections describe the BFS subsystem hardware. This hardware comprises a GPC, DDUs, BFCs, several switches, status indicators, and circuit protectors. An overview of the system components is shown in Figure 2.

3.1 Design and Function

The Backup Flight System provides the flight crew with a vehicle control capability to be used if the primary system malfunctions. The BFS software resides in one General Purpose Computer, normally GPC 5, during ascent and entry. In the event a generic failure occurs in the Primary Avionics Software System (PASS) or three or more primary GPCs fail, the crew will engage the BFS. During dynamic flight phases (all except onorbit), no capability to return to the primary system is provided once the BFS is engaged.

Hardware elements included in this report are those specific to the BFS. Evaluation of components such as nav aids and flight control sensors that are common to the BFS and the PASS and components such as dedicated instrument displays that are driven by the BFS outputs are excluded from this report. Processing schemes differ between PASS and BFS with the result that some component failures become more critical with BFS engaged. It is beyond the scope of this report to present all the software differences between PASS and BFS or to present a comparison of the failure criticalities for non BFS-unique hardware with or without BFS engaged.

The BFS is limited by definition, for this report, to those unique hardware items that function in response to the action taken by the flight crew to engage or disengage the BFS. A schematic diagram of these hardware items is shown in Figure 3. More specifically, the BFS consists of the following components:

1. Two DDUs which supply power to the BFS engage switches on the left and right RHCs and to the Hand Controller Engage Drivers (HCEDs) in the Backup Flight Controller (BFC) modules. Each DDU has three power supplies (A, B and C) redundantly tied through regulators to two of the three Main A, B and C buses.

2. Three BFCs, each with identical modules A and B, which receive inputs from crew configured switches and output discrete signals to their respective GPCs. Logic circuits select which GPCs control flight critical buses and drive CRT displays prior and subsequent to BFS engagement.

3. One GPC loaded with backup flight software. From a hardware standpoint, a GPC consists of a Central Processing Unit (CPU) and an Input/Output Processor (IOP), each with many subcomponents. Since there is
Figure 2 - BFS SUBSYSTEM OVERVIEW
Figure 3 - BFS ENGAGE/DISENGAGE HARDWARE AND DATA INTERFACES
only one GPC to provide the backup control capability it will be treated as a black box. Regardless of what hardware component fails rendering the GPC inoperable, the criticality is the same as a generic black box failure.

4. Twenty crew activated switches (15 GPC, 2 BFS engage, 1 BFS disengage, and 2 CRT) that are used to control GPC operating configuration and CRT interfaces with the BFS GPC.

5. Crew interface with the BFS is through the Multifunction CRT Display System (MCDS). During normal flight operations, one of the cathode ray tubes (CRTs) in the forward station will be commanded by the BFS. BFS MCDS selection in the forward station is governed by the BFS CRT switch on panel C3 or the GPC/CRT key on the keyboard. Current preengage BFS procedures call for CRT 3 to be the BFS CRT in the forward station.

The BFS operates in one of two operating states: engaged or disengaged. The BFS is intended to remain in a disengaged state during routine operations allowing the PASS to control the vehicle. Both the engage and disengage states are provided to the GPCs through a set of three hardware modules called Backup Flight Controllers (BFCs). These BFCs provide interface through a series of discrete signals between the GPCs and associated crew station switches. Engage is accomplished by verifying that the BFS GPC output switch is in the backup position and that the DDU power supply breakers are in, and depressing the engage momentary pushbutton on either the right or the left RHC.

When one of the RHC buttons is depressed, three discretes (A, B, C) of ones are sent to the BFS GPC through the BFC modules. The BFS GPC must receive two of three discretes plus a zero discrete from the I/O terminate B before the BFS can be engaged. After the BFS is engaged, control of the vehicle is assumed by the BFS, and the PASS GPCs go to a state of software halt. The BFS then controls the flight critical and payload data buses and specified display keyboard buses. Indications that the BFS is engaged are that BFC eyebrow panel lights on F2 and F4 will be ON, the BFS output talkback (TB) on panel 06 will be gray, and all PASS GPC output TBs on panel 06 will be barberpole.

In the disengaged state, the BFS GPC processes vehicle control parameters in parallel with the PASS GPCs. The BFS maintains knowledge of the vehicle state by listening on the flight critical data buses commanded by the PASS GPCs. The disengaged BFS GPC also performs limited SM and FDA functions during OPS 1, 3, and 6. To disengage the BFS from the engage state, the BFC disengage switch on panel F6 is positioned to DISENGAGE (up position). The engage discretes to the BFS will be reset to zero and the I/O terminate discrete set to one. Control of the FC and PL data buses will be released to the PASS. This is indicated by the BFC light going OFF, the PASS output TBs going gray, and
BFS output TB going barberpole. The PASS GPCs must be re-Initial Program Loaded (re-IPLed) prior to disengage. Thus the BFS disengage capability is provided only during quiescent vehicle flight.

If BFS is engaged it will drive several dedicated instrument displays in the forward station. This is instrumentation needed to safely fly the vehicle during the final phases of entry and landing. Two of the three Attitude Direction Indicators (ADIs) are driven by the BFS in OPS 1 and OPS 3. The four scales (Alpha, Accel, M/Vel, EAS) of the Alpha/Mach Indicator (AMI) are driven by BFS in OPS major modes 304 and 305. Likewise, the four scales (Alt Accel, Alt Rate, Alt, Rad Alt) of the Altitude/Vertical Velocity Indicator (AVVI) are driven by the engaged BFS in major modes 304 and 305. The Horizontal Situation Indicator (HSI) provides magnetic heading, course, course deviation, glide slope deviation, and primary and secondary bearing, and the Surface Position Indicator (SPI), provides elevons, body flap percent, rudder, aileron, and speedbrake percent. The HSI and SPI are driven by the engaged BFS.

3.2 Interfaces and Locations

The BFS GPC and three BFCs are located in Avionics Bays 1 and 2. All other hardware components are located in the forward flight deck. The BFS interfaces with Orbiter subsystems via the flight critical and payload data buses and flight forward and flight aft MDMs.

3.3 Hierarchy

Figure 2 illustrates the hierarchy of the BFS hardware components.

3.4 BFS Sensitivity to Interfacing Subsystem Operation

An exhaustive comparison of the BFS and PASS is beyond the scope of this report. However, a limited investigation of BFS sensitivity to operation in certain guidance, navigation and control subsystems was performed. References 12 and 13 constituted the BFS capability description for this investigation.

Compared to the PASS, the BFS capability for fault detection is limited due to minimum redundancy management capability. As a result, the BFS is substantially more vulnerable to malfunctions in interfacing subsystems. The specific subsystems investigated included the Inertial Measurement Units (IMUs), Air Data System (ADS), Rate Gyro Assemblies (RGA) and Accelerometer Assemblies (AA), Rotational Hand Controller (RHC), Speedbrake Thrust Controller (SBTC), Rudder Pedal Transducer Assembly (RPTA), and a limited collection of cockpit switches.
3.4.1 Inertial Measurement Unit (IMU)

The BFS does not use the Built in Test Equipment (BITE) or the ECHO features provided by the IMU hardware. The BFS only faults an IMU when it has detected a Communications Fault (COM FAULT). In nominal operations, the BFS uses a mid value select. If one IMU is COM FAULTED, the lowest numbered IMU which has not been COM FAULTED will be selected. If two IMUs have been COM FAULTED, then data from the remaining IMU will be processed. If all three IMUs are COM FAULTED, the system will then try to reselect the last failed IMU.

This data selection process makes the BFS extremely sensitive and vulnerable to IMU number 1 malfunctions which do not result in a COM FAULT on IMU number 1. Without regard to IMU number 1 performance, a simple COM FAULT on either IMU number 2 or 3 will allow that performance to be immediately propagated throughout the entire GN&C system.

3.4.2 Air Data System (ADS)

The data from this subsystem is vital to many computations, since several of the items measured by this subsystem are used throughout the GN&C software. The main item of concern is the Nose Landing Gear Uplock Discrete, V51X0300X. This discrete is used by the BFS software to determine if a correction factor is applied in the angle of attack calculation, the corrected static pressure calculation, and the corrected total pressure calculation. These three terms are then used to determine Mach number, pressure altitude, dynamic pressure (Q-Bar), equivalent airspeed (EAS), and estimated true airspeed. The inclusion of the correction factor in the calculation is due to changes in the flow around the ADS when the nose gear is down.

Depending on the size of the correction factor being applied, the corrected static pressure and corrected total pressure values could be changed by a significant amount. Any calculations which use these values in either a first or second order calculation would be in error, and this error would be factored into the Guidance and Navigation functions. The errors could be large enough to cause a loss of the vehicle.

3.4.3 Rate Gyro Assemblies (RGA) and Accelerometer Assemblies (AA)

The BFS uses three of the four RGAs on the Orbiter and three of four RGAs on the Solid Rocket Boosters (SRB). Similarly, the BFS uses only three of the four AAs. One set of scale factor and bias data is used for the three Orbiter RGAs, another set of scale factor and bias data is used for the RGAs on the SRBs, and another set of scale factor and bias data is used for all AAs. The PASS provides scale factor and bias data for each of the RGAs and AAs.

The use of a single set of scale factor and bias data for a group of RGAs and AAs is acceptable if the LRUs are very consistent.
If however, the performance of the LRUs is inconsistent, the data coming back could have large, over-compensated variations.

3.4.4 Rotational Hand Controller (RHC)

The BFS does not support RHC processing in ascent modes. The BFS does not validate the RHC inputs by using the data good indicator as in the PASS. There is no requirement to process the left RHC data before or after the right RHC data. The lack of a requirement for the order of processing RHC data is different than that found in the PASS. There may be a need to process the Commander's inputs before the Pilot's, as is done in the PASS.

3.4.5 Speedbrake Thrust Controller (SBTC)

The BFS does not have manual throttling capability in ascent as does the primary. The BFS does process both SBTCs.

3.4.6 Rudder Pedal Transducer Assembly (RPTA)

The BFS processes only the Commander's inputs. There is no redundancy when the BFS is engaged.

3.4.7 Cockpit Switches

The following switches are redundant, one set at the Commander's station and another set at the Pilot's station. The BFS processes only those switches at the Commander's station. Therefore, when the BFS is engaged, the PLT switches can not be considered redundant to the CDR switches.

<table>
<thead>
<tr>
<th>Switch Description</th>
<th>Station</th>
<th>Code</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACAN source for HSI</td>
<td>F6</td>
<td>S4</td>
<td>V72K8587X</td>
</tr>
<tr>
<td>MSBLs source for HSI</td>
<td>F6</td>
<td>S4</td>
<td>V72K8589X</td>
</tr>
<tr>
<td>Nav source for HSI</td>
<td>F6</td>
<td>S4</td>
<td>V72K8588X</td>
</tr>
<tr>
<td>ADI Attitude Ref PB a</td>
<td>F6</td>
<td>S3</td>
<td>V72K2051X</td>
</tr>
<tr>
<td></td>
<td>PB b</td>
<td></td>
<td>V72K2052X</td>
</tr>
<tr>
<td>ADI Attitude Inertial</td>
<td>F6</td>
<td>S3</td>
<td>V72K2015X</td>
</tr>
<tr>
<td>ADI Attitude LV/LH</td>
<td>F6</td>
<td>S3</td>
<td>V72K2016X</td>
</tr>
<tr>
<td>ADI Attitude reference</td>
<td>F6</td>
<td>S3</td>
<td>V72K2017X</td>
</tr>
</tbody>
</table>

12
4.0 ASSESSMENT RESULTS

The IOA analysis of the BFS hardware initially generated 29 failure mode worksheets and identified 21 Potential Critical Items before starting the assessment process. In order to facilitate comparison, additional worksheets were generated. The analysis results were compared to the proposed NASA Post 51-L baseline. Upon completion of the assessment, there was agreement on all CIL items. The FMEAs for non-CIL items have not yet been revised; therefore, an IOA assessment of non-CIL FMEAs is not included in this report.

A summary of the quantity of NASA CIL items assessed versus the IOA baseline is presented in Table I.

<table>
<thead>
<tr>
<th>Component</th>
<th>NASA</th>
<th>IOA</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDU</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BFC</td>
<td>2</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>GPC</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Switches</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Circuit Protectors</td>
<td>7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

The differences in the number of CIL items for a specific component are attributable to differences in the depth of analyses and documentation approach.

Appendix C presents the detailed assessment worksheets for each failure mode identified and assessed. Appendix D highlights the NASA Critical Items and corresponding IOA worksheet ID. Appendix E contains the additional IOA analysis worksheets that were prepared to support the NASA FMEA/CIL assessment. Appendix F provides a cross reference between the NASA FMEA and corresponding IOA worksheets.

Table II presents a summary of the IOA failure criticalities. Further discussion of each of these subdivisions and the applicable failure modes is provided in subsequent paragraphs.
Of the failure modes analyzed, twenty-five were determined to be critical items. A summary of the IOA critical items is presented in Table III.

The scheme for assigning IOA assessment (Appendix C) and analysis (Appendix E) worksheet numbers is shown in Table IV.
4.1 Display Driver Unit

The NASA update documented loss of output and partial output for the left and right DDUs as four separate failures. The IOA documented the same failures on one analysis worksheet. The analyses agree that DDU output failure should be a CIL item.

4.2 Backup Flight Controller

The NASA update considered BFCs as black box components of the Data Processing and Software system. Two BFC CIL failure modes were identified: loss/erroneous output (2/1R) and inadvertent engage (3/1R, fails B screen). The IOA recognized the single point failure potential (criticality 1/1) of several functional components within the BFCs and elected to document failures at lower than black box level of detail. The disparity in criticality assignment is attributed to a philosophical difference between the IOA and FMEA. The IOA criticality is based on the effects of a failure occurring to a BFS component after a generic PASS failure, i.e., when the BFS is required. The NASA analysis considers a generic PASS failure as the first failure when assigning criticality to BFS components. As a result, for many component failure modes, the IOA criticality will appear to be more severe than the FMEA criticality.

The specific IOA BFC failures are mapped into the higher level NASA FMEAs in the final assessment. The IOA agrees with the FMEA criticalities if the PASS failure is considered.

In summary, the IOA makes two recommendations:
1. FMEAs should be generated for functional components within the BFC.
2. Instructions contained in NSTS 22206 should clearly specify whether PASS failures should be considered when assigning criticalities to BFS hardware failure modes.

4.3 General Purpose Computer

The IOA generated two failure mode worksheets for the BFS GPC which correspond to four FMEAs. The IOA treated the GPC as a black box, identified no output and erroneous output as failure modes, and assigned a criticality of 1/1 to each. The NASA update identified the same two failures but treated the GPC as two black boxes i.e., a CPU and an IOP and gave each failure a 2/1R criticality. The analyses agree that GPC output failures should be CIL items. The criticality discrepancy is due to the same philosophical difference discussed in the previous section. The IOA therefore recommends no change to the updated NASA GPC FMEAs.

4.4 Switches

Except for minor criticality differences, the IOA and FMEA agree on five switch failure CIL items. The IOA analysis originally identified a failed open BFC disengage switch (3/2R, fails B
screen) as a sixth CIL candidate. As a result of further review during the assessment task, the IOA believes the crew can readily detect the failure and perform a simple work-around procedure if necessary to disengage the BFS on orbit. Therefore, the IOA concludes the fail open mode for the BFC disengage switch contacts should not be considered as a critical item and recommends the failure be documented in the updated FMEAS for non-CIL items.

4.5 Circuit Protectors

The IOA identified open circuit of fuses F9, F10, F11, and F49 as criticality 1/1 failures and documented them as four separate CIL items. The same four fuses and failure modes are documented as criticality 2/1R in two updated FMEAs. The IOA concludes that since both approaches identify the same components and failure modes as CIL items there are no significant issues.

The NASA update includes two EPD&C-D&C Subsystem FMEAs that identify open circuit failure of circuit breakers CB29, 30, and 32 as 3/1R criticality and includes them as CIL items because they fail the B screen. The IOA initially concluded that all redundancy screens were passed. Upon further review, the IOA agrees with the NASA update.

The IOA prepared three supplemental worksheets for failures overlooked in the original analysis. These covered open and short circuit failures in the BFS GPC and BFC main bus isolation diodes and open circuit failure of fuse F28 in the main bus supply line to the BFS BFC power monitor logic. The IOA agrees with the FMEA for these CIL items.

In summary, there are no issues regarding BFS related circuit protectors between the IOA and updated NASA FMEAs.

4.6 Indicators

There is an exact match between the IOA and the baseline FMEAs for the BFC engage lights. There are no issues.
5.0 REFERENCES

Reference documentation available from NASA and Rockwell was used in the analysis. The documentation used included the following:

1. NSTS 22206 Instructions for Preparation of Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL), 10 October 1986

2. JSC 18820 Data Processing System Briefs, Basic, Rev. A, PCN-1, 4-20-85

3. VS70-971099 Rockwell Integrated Systems Schematics, OV-99, 103, 104 GNC & DPS, 3-14-85

6. JSC 18817 Flight Procedures Handbook, Deorbit Prep, 3-1-83

7. TD123 Backup Flight System Software Workbook, BFS 2102, 8-10-82

9. NSTS 08171 FILE I Operations and Maintenance Requirements and Specifications Document, 7-14-86

10. JSC 12820 STS Operational Flight Rules, PCN-1, 2-14-86

11. TD198/A198 GNC Overview Workbook, GNC OV 2102, 8-30-83

APPENDIX A
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADTA</td>
<td>Air Data Transducer Assembly</td>
</tr>
<tr>
<td>AOA</td>
<td>Abort Once Around</td>
</tr>
<tr>
<td>ATO</td>
<td>Abort to Orbit</td>
</tr>
<tr>
<td>BFC</td>
<td>Backup Flight Controller</td>
</tr>
<tr>
<td>BFS</td>
<td>Backup Flight System</td>
</tr>
<tr>
<td>BSS</td>
<td>Backup System Services</td>
</tr>
<tr>
<td>CITL</td>
<td>Critical Items List</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRIT</td>
<td>Criticality</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode Ray Tube</td>
</tr>
<tr>
<td>C&W</td>
<td>Caution and Warning System</td>
</tr>
<tr>
<td>DDU</td>
<td>Display Driver Unit</td>
</tr>
<tr>
<td>DEU</td>
<td>Display Electronics Unit</td>
</tr>
<tr>
<td>DPS</td>
<td>Data Processing System</td>
</tr>
<tr>
<td>DU</td>
<td>Display Unit</td>
</tr>
<tr>
<td>EVA</td>
<td>Extra Vehicular Activity</td>
</tr>
<tr>
<td>FA</td>
<td>Flight Aft</td>
</tr>
<tr>
<td>FF</td>
<td>Flight Forward</td>
</tr>
<tr>
<td>FM</td>
<td>Failure Mode</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Mode and Effects Analysis</td>
</tr>
<tr>
<td>GPC</td>
<td>General Purpose Computer</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>HCED</td>
<td>Hand Controller Engage Driver</td>
</tr>
<tr>
<td>IMU</td>
<td>Inertial Measurement Unit</td>
</tr>
<tr>
<td>IOA</td>
<td>Independent Orbiter Assessment</td>
</tr>
<tr>
<td>IOP</td>
<td>Input/Output Processor</td>
</tr>
<tr>
<td>IPL</td>
<td>Initial Program Load</td>
</tr>
<tr>
<td>KU</td>
<td>Keyboard Unit</td>
</tr>
<tr>
<td>LRU</td>
<td>Line Replaceable Unit</td>
</tr>
<tr>
<td>MCDS</td>
<td>Multifunction CRT Display System</td>
</tr>
<tr>
<td>MDAC</td>
<td>McDonnell Douglas Astronautics Company</td>
</tr>
<tr>
<td>MDM</td>
<td>Multiplexer/Demultiplexer</td>
</tr>
<tr>
<td>MM</td>
<td>Major Mode</td>
</tr>
<tr>
<td>MMU</td>
<td>Mass Memory Unit</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NSTS</td>
<td>National Space Transportation System</td>
</tr>
<tr>
<td>OMRSD</td>
<td>Operational Maintenance Requirements and Specifications Document</td>
</tr>
<tr>
<td>OMS</td>
<td>Orbital Maneuvering System</td>
</tr>
<tr>
<td>PAS</td>
<td>Primary Avionics System</td>
</tr>
<tr>
<td>PASS</td>
<td>Primary Avionics Software System</td>
</tr>
<tr>
<td>PB</td>
<td>Pushbutton</td>
</tr>
<tr>
<td>PCI</td>
<td>Potential Critical Item</td>
</tr>
<tr>
<td>RCS</td>
<td>Reaction Control System</td>
</tr>
<tr>
<td>RHC</td>
<td>Rotational Hand Controller</td>
</tr>
<tr>
<td>RI</td>
<td>Rockwell International</td>
</tr>
<tr>
<td>RM</td>
<td>Redundancy Management</td>
</tr>
<tr>
<td>RPC</td>
<td>Remote Power Controller</td>
</tr>
</tbody>
</table>
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>Redundant Set</td>
</tr>
<tr>
<td>RTLS</td>
<td>Return to Landing Site</td>
</tr>
<tr>
<td>SFP</td>
<td>Single Failure Point</td>
</tr>
<tr>
<td>SM</td>
<td>Systems Management</td>
</tr>
<tr>
<td>STS</td>
<td>Space Transportation System</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>TAC</td>
<td>Tacan</td>
</tr>
<tr>
<td>TAL</td>
<td>Transatlantic Abort Landing</td>
</tr>
<tr>
<td>TD</td>
<td>Touch Down</td>
</tr>
<tr>
<td>THC</td>
<td>Translational Hand Controller</td>
</tr>
</tbody>
</table>
APPENDIX B

DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions
B.2 Project Level Ground Rules and Assumptions
B.3 Subsystem-Specific Ground Rules and Assumptions
APPENDIX B
DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions

Definitions contained in NSTS 22206, Instructions For Preparation of FMEA/CIL, 10 October 1986, were used with the following amplifications and additions.

INTACT ABORT DEFINITIONS:

RTLS - begins at transition to OPS 6 and ends at transition to OPS 9, post-flight

TAL - begins at declaration of the abort and ends at transition to OPS 9, post-flight

AOA - begins at declaration of the abort and ends at transition to OPS 9, post-flight

ATO - begins at declaration of the abort and ends at transition to OPS 9, post-flight

CREDIBLE (CAUSE) - an event that can be predicted or expected in anticipated operational environmental conditions. Excludes an event where multiple failures must first occur to result in environmental extremes

CONTINGENCY CREW PROCEDURES - procedures that are utilized beyond the standard malfunction procedures, pocket checklists, and cue cards

EARLY MISSION TERMINATION - termination of onorbit phase prior to planned end of mission

EFFECTS/RATIONALE - description of the case which generated the highest criticality

HIGHEST CRITICALITY - the highest functional criticality determined in the phase-by-phase analysis

MAJOR MODE (MM) - major sub-mode of software operational sequence (OPS)

MC - Memory Configuration of Primary Avionics Software System (PASS)

MISSION - assigned performance of a specific Orbiter flight with payload/objective accomplishments including orbit phasing and altitude (excludes secondary payloads such as GAS cans, middeck P/L, etc.)
MULTIPLE ORDER FAILURE - describes the failure due to a single cause or event of all units which perform a necessary (critical) function

OFF-NOMINAL CREW PROCEDURES - procedures that are utilized beyond the standard malfunction procedures, pocket checklists, and cue cards

OPS - software operational sequence

PRIMARY MISSION OBJECTIVES - worst case primary mission objectives are equal to mission objectives

PHASE DEFINITIONS:

PRELAUNCH PHASE - begins at launch count-down Orbiter power-up and ends at modeing to OPS Major Mode 102 (liftoff)

LIFTOFF MISSION PHASE - begins at SRB ignition (MM 102) and ends at transition out of OPS 1 (Synonymous with ASCENT)

ONORBIT PHASE - begins at transition to OPS 2 or OPS 8 and ends at transition out of OPS 2 or OPS 8

DEORBIT PHASE - begins at transition to OPS Major Mode 301 and ends at first main landing gear touchdown

LANDING/SAFING PHASE - begins at first main gear touchdown and ends with the completion of post-landing safing operations
APPENDIX B
DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.2 IOA Project Level Ground Rules and Assumptions

The philosophy embodied in NSTS 22206, Instructions for Preparation of FMEA/CIL, 10 October 1986, was employed with the following amplifications and additions.

1. The operational flight software is an accurate implementation of the Flight System Software Requirements (FSSRs).

 RATIONALE: Software verification is out-of-scope of this task.

2. After liftoff, any parameter which is monitored by system management (SM) or which drives any part of the Caution and Warning System (C&W) will support passage of Redundancy Screen B for its corresponding hardware item.

 RATIONALE: Analysis of on-board parameter availability and/or the actual monitoring by the crew is beyond the scope of this task.

3. Any data employed with flight software is assumed to be functional for the specific vehicle and specific mission being flown.

 RATIONALE: Mission data verification is out-of-scope of this task.

4. All hardware (including firmware) is manufactured and assembled to the design specifications/drawings.

 RATIONALE: Acceptance and verification testing is designed to detect and identify problems before the item is approved for use.

5. All Flight Data File crew procedures will be assumed performed as written, and will not include human error in their performance.

 RATIONALE: Failures caused by human operational error are out-of-scope of this task.
6. All hardware analyses will, as a minimum, be performed at the level of analysis existent within NASA/Prime Contractor Orbiter FMEA/CILs, and will be permitted to go to greater hardware detail levels but not lesser.

RATIONALE: Comparison of IOA analysis results with other analyses requires that both analyses be performed to a comparable level of detail.

7. Verification that a telemetry parameter is actually monitored during AOS by ground-based personnel is not required.

RATIONALE: Analysis of mission-dependent telemetry availability and/or the actual monitoring of applicable data by ground-based personnel is beyond the scope of this task.

8. The determination of criticalities per phase is based on the worst case effect of a failure for the phase being analyzed. The failure can occur in the phase being analyzed or in any previous phase, whichever produces the worst case effects for the phase of interest.

RATIONALE: Assigning phase criticalities ensures a thorough and complete analysis.

9. Analysis of wire harnesses, cables, and electrical connectors to determine if FMEAs are warranted will not be performed nor FMEAs assessed.

RATIONALE: Analysis was substantially complete prior to NSTS 22206 ground rule redirection.

10. Analysis of welds or brazed joints that cannot be inspected will not be performed nor FMEAs assessed.

RATIONALE: Analysis was substantially complete prior to NSTS 22206 ground rule redirection.

11. Emergency system or hardware will include burst discs and will exclude the EMU Secondary Oxygen Pack (SOP), pressure relief valves and the landing gear pyrotechnics.

RATIONALE: Clarify definition of emergency systems to ensure consistency throughout IOA project.
APPENDIX B
DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.3 BFS-Specific Ground Rules and Assumptions

1. BFS failures are analyzed assuming that the BFS is (or will be) engaged.

 RATIONALE: Failure analysis and criticality determination is done assuming that the BFS must work when called upon to do so.

2. Failures which resulted in BFS engagement are not identified or analyzed.

 RATIONALE: Except for the PASS, it is assumed that other subsystems are operating within normal limits.

3. Only BFS-specific components and failure modes are analyzed.

 RATIONALE: Failure analysis of PASS/BFS common components is accomplished within the PASS analysis.
APPENDIX C
DETAILED ASSESSMENT

This section contains the IOA assessment worksheets generated during the assessment of this subsystem. The information on these worksheets facilitates the comparison of the NASA FMEA/CIL (pre and post 51-L) to the IOA detailed analysis worksheets included in Appendix E. Each of these worksheets identifies the NASA FMEA being assessed, corresponding MDAC Analysis Worksheet ID (Appendix E), hardware item, criticality, redundancy screens, and recommendations. For each failure mode, the highest assessed hardware and functional criticality is compared and discrepancies noted as "N" in the compare row under the column where the discrepancy occurred.

LEGEND FOR IOA ASSESSMENT WORKSHEETS

Hardware Criticalities:
1 = Loss of life or vehicle
2 = Loss of mission or next failure of any redundant item (like or unlike) could cause loss of life/vehicle
3 = All others

Functional Criticalities:
1R = Redundant hardware items (like or unlike) all of which, if failed, could cause loss of life or vehicle
2R = Redundant hardware items (like or unlike) all of which, if failed, could cause loss of mission

Redundancy Screens A, B and C:
P = Passed Screen
F = Failed Screen
NA = Not Applicable

NASA Data:
Baseline = Pre 51-L FMEA/CIL
New = Post 51-L FMEA/CIL (Baseline plus Proposed Changes)

CIL Item:
X = Included in CIL

Compare Row:
N = Non compare for that column (deviation)

C-1
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-101
NASA FMEA #: 05-3-12200A-1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 101
ITEM: POWER SUPPLY A(B,C) TO L(R) RHC
LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
THIS HARDWARE ITEM IS COVERED IN THE NASA D&C ANALYSIS.

REPORT DATE 02/22/88 C-2
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-101A
NASA FMEA #: 05-3-12200A-2
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 101
ITEM: POWER SUPPLY A(B,C) TO L(R) RHC
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /IR]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /IR]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
THIS HARDWARE ITEM IS COVERED IN THE NASA D&C ANALYSIS.

REPORT DATE 02/22/88 C-3
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-101B
NASA FMEA #: 05-3-12200B-1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 101
ITEM: POWER SUPPLY A(B,C) TO L(R) RHC

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
THIS HARDWARE ITEM IS COVERED IN THE NASA D&C ANALYSIS.

REPORT DATE 02/22/88 C-4
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
NASA DATA:
ASSESSMENT ID: BFS-101C
NASA FMEA #: 05-3-12200B-2
NASA FMEA #: 05-3-12200B-2
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 101
ITEM: POWER SUPPLY A(B,C) TO L(R) RHC
LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>3/1R</td>
<td>P</td>
</tr>
<tr>
<td>IOA</td>
<td>2/1R</td>
<td>P</td>
</tr>
<tr>
<td>COMPARE</td>
<td>N /</td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
THIS HARDWARE ITEM IS COVERED IN THE NASA D&C ANALYSIS.

REPORT DATE 02/22/88 C-5
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-201
NASA FMEA #: 05-5-B30-1-2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 201
ITEM: HALT RELAY
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[F]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA [1 /1]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
The IOA identified component failures within a BFC. The FMEA treated the BFC as a black box. The IOA agrees that failure of that HALT relay is covered by the BFC loss of output/erroneous output FMEA. The IOA recommends that a functional description of the HALT relay and an explanation of the failed closed consequences be added to the FMEA for completeness.

REPORT DATE 02/22/88 C-6
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-202
NASA FMEA #: 05-5-B30-1-2

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 202
ITEM: HALT RELAY

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA [2 /1R] [F] [F] [P] [X] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOA [3 /2R] [P] [F] [P]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE [N /N] [N] [] [] [N]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
The IOA IDENTIFIED COMPONENT FAILURES WITHIN A BFC. THE FMEA TREATED THE BFC AS A BLACK BOX. THE IOA AGREES THAT FAILURE OF THE HALT RELAY IS COVERED BY THE BFC LOSS OF OUTPUT/ERRONEOUS OUTPUT FMEA.
The IOA RECOMMENDS THAT A FUNCTIONAL DESCRIPTION OF THE HALT RELAY AND AN EXPLANATION OF THE FAILED OPEN CONSEQUENCES BE ADDED TO THE FMEA FOR COMPLETENESS.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-203
NASA FMEA #: 05-5-B30-1-2

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 203
ITEM: HAND CONTROLLER ENGAGE DRIVER

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>2/1R</td>
<td>F</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>IOA</td>
<td>2/1R</td>
<td>P</td>
<td>F</td>
<td>P</td>
</tr>
</tbody>
</table>

COMPARE: [/] [N] [] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
THE IOA IDENTIFIED COMPONENT FAILURES WITHIN A BFC. THE FMEA TREATED THE BFC AS A BLACK BOX. THE IOA AGREES THAT FAILURE OF THE HALT CONTROLLER ENGAGE DRIVER IS COVERED BY THE BFC LOSS OF OUTPUT/ERRONEOUS OUTPUT FMEA.

REPORT DATE 02/22/88 C-8
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-204
NASA FMEA #: 05-5-B30-1-2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 204
ITEM: HAND CONTROLLER ENGAGE DRIVER

LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[F]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA [1 /1]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
The IOA identified component failures within a BFC. The FMEA treated the BFC as a black box. The IOA agrees that failure of the halt controller engage driver is covered by the BFC loss of output/erroneous output FMEA.

REPORT DATE 02/22/88 C-9
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-205
NASA FMEA #: 05-5-B30-1-2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
BACKUP FLIGHT SYSTEM
MDAC ID:
205
ITEM:
ENGAGE / DISENGAGE LOGIC
LEAD ANALYST:
L.W. HINSDALE / E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[F]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA [1 /1]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)

[] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
THE IOA IDENTIFIED COMPONENT FAILURES WITHIN A BFC. THE FMEA TREATED THE BFC AS A BLACK BOX. THE IOA AGREES THAT FAILURE OF THE ENGAGE/DISENGAGE LOGIC IS COVERED BY THE BFC LOSS OF OUTPUT/ERRONEOUS OUTPUT FMEA.

REPORT DATE 02/22/88 C-10
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-206
NASA FMEA #: []

NASA DATA:
BASELINE []
NEW []

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 206
ITEM: CRT SELECT LOGIC

LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

NASA [] / []
IOA [] / []
COMPARE [] / []

RECOMMENDATIONS: (If different from NASA)

[] / [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:

REPORT DATE 02/22/88 C-11
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-207
NASA FMEA #: 05-5-B30-1-2

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 207
ITEM: BFC POWER SUPPLY (5 VDC)

LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /1R]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA</td>
<td>[1 /1]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

THE IOA IDENTIFIED COMPONENT FAILURES WITHIN A BFC. THE FMEA TREATED THE BFC AS A BLACK BOX. THE IOA AGREES THAT FAILURE OF THE 5 VDC BFC POWER SUPPLY IS COVERED BY THE BFC LOSS OF OUTPUT/ERRONEOUS OUTPUT FMEA.

REPORT DATE 02/22/88 C-12
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-208
NASA FMEA #: 05-5-B30-1-2

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 208
ITEM: POWER UP/DOWN MONITOR LOGIC

LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /1R]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA</td>
<td>[1 /1]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

THE IOA IDENTIFIED COMPONENT FAILURES WITHIN A BFC. THE FMEA TREATED THE BFC AS A BLACK BOX. THE IOA AGREES THAT INADVERTENT OPERATION OF THE POWER UP/DOWN MONITOR LOGIC IS COVERED BY THE BFC LOSS OF OUTPUT/ERRONEOUS OUTPUT FMEA.

REPORT DATE 02/22/88 C-13
**APPENDIX C
ASSESSMENT WORKSHEET**

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-209
NASA FMEA #: 05-5-B30-1-2
NASA DATA:

<table>
<thead>
<tr>
<th>BASELINE</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 209
ITEM: POWER UP/DOWN MONITOR LOGIC
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST
ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS A</th>
<th>B</th>
<th>C</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>[2 /IR]</td>
<td>[F]</td>
<td>[F]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[1 /I]</td>
<td>[P]</td>
<td>[F]</td>
<td>[NA]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
<td>[]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
THE IOA IDENTIFIED COMPONENT FAILURES WITHIN A BFC. THE FMEA TREATED THE BFC AS A BLACK BOX. THE IOA AGREES THAT LOSS OF OUTPUT FROM THE POWER UP/DOWN MONITOR LOGIC IS COVERED BY THE BFC LOSS OF OUTPUT/ERRONEOUS OUTPUT FMEA.

REPORT DATE 02/22/88 C-14
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 12/01/87
ASSESSMENT ID: BFS-210X
NASA FMEA #: 05-5-B30-1-3
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 210
ITEM: BACKUP FLIGHT CONTROLLER - BFC 2
LEAD ANALYST: L.W. HINSDALE

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA [3 /1R]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
</tbody>
</table>

COMPARE

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

RECOMMENDATIONS: (If different from NASA)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

ADEQUATE [X]
INADEQUATE []

REMARKS:
THE IOA AGREES WITH THE NASA ASSESSMENT OF THIS FAILURE MODE.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-301
NASA FMEA #: 05-5-B01-1-1

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 301
ITEM: BACKUP GPC (USUALLY GPC 5)
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [1 /1]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

REPORT DATE 02/22/88 C-16
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-301A
NASA FMEA #: 05-5-B02-1-1
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 301
ITEM: BACKUP GPC (USUALLY GPC 5)
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST
NASA DATA:
BASELINE []
NEW [x]
ASSESSMENT:
CRITICALITY REDUNDANCY SCREENS CIL ITEM
<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>[2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
<td>[x]*</td>
</tr>
<tr>
<td>IOA</td>
<td>[1 /1]</td>
<td>[P]</td>
<td>[F]</td>
<td>[F]</td>
<td>[x]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
<td>[N]</td>
<td>[N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)
[] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [x]
INADEQUATE []

REMARKS:
NASA PREPARED SEPARATE FMEAs FOR THE CPU AND IOP. THE IOA TREATED THE GPC AS ONE BLACK BOX.
THE FMEA COUNTED PASS FAILURES IN ADDITION TO THE BFS GPC FAILURE WHEN ASSIGNING CRITICALITY. THE IOA ASSIGNED CRITICALITY BASED ON THE ASSUMPTION THE BFS WAS OR WOULD BE ENGAGED.
SINCE BOTH ANALYSIS METHODS CONCLUDE THAT GPC (CPU AND OR IOP) LOSS OF OUTPUT IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITIES BE RETAINED.

REPORT DATE 02/22/88
C-17
APPENDIX C
ASSESSMENT WORKSHEET

<table>
<thead>
<tr>
<th>ASSESSMENT DATE:</th>
<th>11/24/87</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT ID:</td>
<td>BFS-302</td>
</tr>
<tr>
<td>NASA FMEA #:</td>
<td>05-5-B01-1-2</td>
</tr>
<tr>
<td>SUBSYSTEM:</td>
<td>BACKUP FLIGHT SYSTEM</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>302</td>
</tr>
<tr>
<td>ITEM:</td>
<td>BACKUP GPC (USUALLY GPC 5)</td>
</tr>
<tr>
<td>LEAD ANALYST:</td>
<td>L.W.HINSDALE/E.E.PRUST</td>
</tr>
</tbody>
</table>

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

NASA DATA:

<table>
<thead>
<tr>
<th>BASELINE []</th>
<th>NEW [X]</th>
</tr>
</thead>
</table>

ITEM

- NASA: [1/1] [] [] [] [X] *
- IOA: [1/1] [P] [F] [F] [X]

COMPARE [] [N] [N] [N] []

RECOMMENDATIONS:

(If different from NASA)

[] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]

Inadequate []

REMARKS:

NASA PREPARED SEPARATE FMEAS FOR THE CPU AND IOP. THE IOA TREATED THE GPC AS ONE BLACK BOX.

THE FMEA COUNTED PASS FAILURES IN ADDITION TO THE BFS GPC FAILURE WHEN ASSIGNING CRITICALITY. THE IOA ASSIGNED CRITICALITY BASED ON THE ASSUMPTION THE BFS WAS OR WOULD BE ENGAGED.

SINCE BOTH ANALYSIS METHODS CONCLUDE THAT GPC (CPU AND OR IOP) ERRONEOUS OUTPUT IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITIES BE RETAINED.

REPORT DATE 02/22/88 C-18
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-302A
NASA FMEA #: 05-5-B02-1-2

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 302
ITEM: BACKUP GPC (USUALLY GPC 5)
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [1/1]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [1/1]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
NASA PREPARED SEPARATE FMEAs FOR THE CPU AND IOP. THE IOA TREATED THE GPC AS ONE BLACK BOX.
The FMEA COUNTED PASS FAILURES IN ADDITION TO THE BFS GPC FAILURE WHEN ASSIGNING CRITICALITY. THE IOA ASSIGNED CRITICALITY BASED ON THE ASSUMPTION THE BFS WAS OR WOULD BE ENGAGED.
SINCE BOTH ANALYSIS METHODS CONCLUDE THAT GPC (CPU AND OR IOP) ERRONEOUS OUTPUT IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITIES BE RETAINED.

REPORT DATE 02/22/88 C-19
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-401
NASA FMEA #: 05-5-B32-1-1

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 401
ITEM: BFS ENGAGE PUSHBUTTON

LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [/] [/] [/] [/]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

THE FMEA COUNTED PASS FAILURES IN ADDITION TO BFS ENGAGE SWITCH FAILURES WHEN ASSIGNING CRITICALITY. THE IOA ASSIGNED CRITICALITY BASED ON THE ASSUMPTION THE BFS WOULD BE ENGAGED. SINCE BOTH ANALYSIS METHODS CONCLUDE THAT OPEN CONTACT FAILURE OF THE ENGAGE SWITCH IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITY BE RETAINED.

REPORT DATE 02/22/88 C-20
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-402
NASA FMEA #:

NASA DATA:
BASELINE []
NEW []

ASSESSMENT ID:
NASA FMEA #:

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 402
ITEM: BFS ENGAGE PUSHDOWN

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| NASA | [] | [] | [] | [] |
| IOA | [3 /3] | [P] | [P] | [NA] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
THE FAIL CLOSED MODE FOR THE ENGAGE PUSHDOWN CONTACTS WOULD CAUSE INADVERTENT BFS ENGAGEMENT. THIS ALONE IS NOT JUSTIFICATION FOR INCLUSION ON THE CIL. HOWEVER, THE IOA CONSIDERS THIS TO BE A HIGHLY UNDESIRABLE FAILURE AND RECOMMENDS IT BE COVERED IN THE UPDATED FMEAS FOR NON-CIL ITEMS.

REPORT DATE 02/22/88 C-21
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-403
NASA FMEA #: NASA DATA:

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 403
ITEM: BFC DISENGAGE SWITCH
LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[3 /2R] [P] [P] [NA] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:

AS A RESULT OF FURTHER REVIEW, THE IOA CONCLUDES THAT THE B SCREEN FAILURE SHOULD BE CHANGED TO PASS. THE IOA RECOMMENDS THE FAIL OPEN MODE FOR THE BFC DISENGAGE SWITCH BE COVERED IN THE UPDATED FMEA FOR NON-CIL ITEMS.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-404
NASA FMEA #: 05-5-B31-1-1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 404
ITEM: BFC DISENGAGE SWITCH
ITEM:
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P] [F] [P]</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA [1 /1]</td>
<td>[P] [F] [NA]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[] [] [N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

THE FMEA COUNTED PASS FAILURES IN ADDITION TO BFC DISENGAGE SWITCH CONTACTS BEING FAILED CLOSED WHEN ASSIGNING CRITICALITY. THE IOA ASSIGNED CRITICALITY BASED ON THE ASSUMPTION THE BFS WOULD BE ENGAGED.

SINCE BOTH ANALYSIS METHODS CONCLUDE THAT THE SWITCH FAILURE MODE IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITY BE RETAINED.

REPORT DATE 02/22/88 C-23
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-405
NASA FMEA #:

NASA DATA: BASELINE []
NEW []

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 405
ITEM: BFC CRT DISPLAY SWITCH

LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

NASA [] / [] [] [] [] [] [] [] [] [] *

IOA [3 /3] [P] [P] [NA] []

COMPARE [N /N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)

[3 /3] [P] [P] [NA] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
The fail open mode for the BFC CRT DISPLAY SWITCH is insufficient for inclusion on the CIL. The IOA recommends it be covered in the updated FMEAs for non-CIL items.

REPORT DATE 02/22/88 C-24
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-406
NASA FMEA #:

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 406
ITEM: BFC CRT SELECT SWITCH

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[] / []</td>
<td>[] [] []</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 / 3]</td>
<td>[P] [P] [NA]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N / N]</td>
<td>[N] [N] [N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [3 / 3] | [P] [P] [NA] | [] |

(ADD/DELETE)

CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
THE FAIL OPEN, FAIL TO SWITCH, AND ERRONEOUS OUTPUT MODES FOR THE BFC CRT SELECT SWITCH ARE INSUFFICIENT FOR INCLUSION ON THE CIL. THE IOA RECOMMENDS THEY BE COVERED IN THE UPDATED FMEAs FOR NON-CIL ITEMS.

3/3.

REPORT DATE 02/22/88
C-25
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/24/87
ASSESSMENT ID: BFS-407
NASA FMEA #: 05-6S-BSW7-1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 407
ITEM: BFS GPC (USUALLY GPC 5) POWER SWITCH

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NASA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOA</td>
</tr>
<tr>
<td>COMPARE</td>
<td></td>
<td>[N /N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
The FMEA COUNTED A GENERIC PASS FAILURE IN ADDITION TO BFS GPC SWITCH FAILURE WHEN ASSIGNING CRITICALITY. THE IOA ASSIGNED CRITICALITY BASED ON THE ASSUMPTION BFS WAS OR WOULD BE ENGAGED. SINCE BOTH ANALYSIS METHODS CONCLUDE THAT GPC POWER SWITCH FAIL OPEN CONTACTS IS SUFFICIENT JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITY BE RETAINED.

REPORT DATE 02/22/88 C-26
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/30/87
ASSESSMENT ID: BFS-408
NASA FMEA #: 05-5-B15-1-1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 408
ITEM: BFS GPC (USUALLY GPC 5) OUTPUT SWITCH
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA [1/1]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
The FMEA COUNTED PASS GENERIC FAILURE IN ADDITION TO BFS GPC OUTPUT SWITCH FAILURE WHEN ASSIGNING CRITICALITY. THE IOA ASSIGNED CRITICALITY BASED ON THE ASSUMPTION THE BFS WOULD BE ENGAGED.
SINCE BOTH ANALYSIS METHODS CONCLUDE THAT ERRONEOUS OPERATION OF THE GPC OUTPUT SWITCH IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITY BE RETAINED.

REPORT DATE 02/22/88 C-27
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/30/87
ASSESSMENT ID: BFS-409
NASA FMEA #: 05-5-B17-1-1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 409
ITEM: BFS GPC (USUALLY GPC 5) MODE SWITCH

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA [1 /1]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
THE FMEA COUNTED PASS GENERIC FAILURE IN ADDITION TO BFS GPC MODE SWITCH FAILURE WHEN ASSIGNING CRITICALITY. THE IOA ASSIGNED CRITICALITY BASED ON THE ASSUMPTION THE BFS WOULD BE ENGAGED. SINCE BOTH ANALYSIS METHODS CONCLUDE THAT ERRONEOUS OPERATION OF THE GPC MODE SWITCH IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITY BE RETAINED.

REPORT DATE 02/22/88 C-28
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/30/87
ASSESSMENT ID: BFS-501
NASA FMEA #: 05-6Q-2103A-1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 501
ITEM: CIRCUIT BREAKER, 7.5 AMP. - MAIN A (B,C) SUPPLY TO L(R) DDU

LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

CRITICALITY	REDUNDANCY SCREENS	CIL		
FLIGHT HDW/FUNC	A	B	C	ITEM
NASA [3 /1R]	[P]	[F]	[P]	[X] *
IOA [3 /1R]	[P]	[P]	[P]	[X]
COMPARE [/]	[]	[N]	[]	[]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
The IOA BFS ANALYSIS AGREES WITH THE BASELINE FMEA (EPD&C-D&C SUBSYSTEM).

REPORT DATE 02/22/88 C-29
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/30/87
ASSESSMENT ID: BFS-501A
NASA FMEA #: 05-6Q-2103B-1
NASA DATA:

<table>
<thead>
<tr>
<th>BASELINE</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 501
ITEM: CIRCUIT BREAKER, 7.5 AMP. - MAIN A (B,C) SUPPLY TO L(R) DDU
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

<table>
<thead>
<tr>
<th>ADEQUATE</th>
<th>INADEQUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]</td>
<td>[]</td>
</tr>
</tbody>
</table>

REMARKS:

THE IOA BFS ANALYSIS AGREES WITH THE BASELINE FMEA (EPD&C-D&C SUBSYSTEM).

REPORT DATE 02/22/88 C-30
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/30/87
ASSESSMENT ID: BFS-502
NASA FMEA #: 05-6S-BFUS4-1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 502
ITEM: FUSE F9, 1 AMP. - CNTL BUS AB3 SUPPLY TO DISENGAGE SWITCH AND BFC MODULES 1A & 1B (HCED & ENGAGE LOGIC)

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA [1 /1]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ONE FMEA COVERS FUSES F9, F10, AND F11. THE IOA PREPARED SEPARATE ANALYSIS WORKSHEETS FOR EACH FUSE BECAUSE THE FAILURE EFFECTS ARE DIFFERENT. THE IOA AGREES THAT FAIL OPEN OF FUSE F11 (CIRCUIT PROTECTION FOR CONTROL BUS CA1) RESULTS IN LOSS OF ABILITY TO ENGAGE BFS. IF EITHER F9 OR F10 (CIRCUIT PROTECTION FOR CONTROL BUS AB3) FAILS OPEN, THE ABILITY TO ENGAGE BFS EXISTS BUT THE AUTOMATIC DISENGAGE OF GPCs THAT INTERFACE WITH MODULES A AND B IN BFC 1 (NORMALLY GPCs 1 AND 4) AND MODULE A IN BFC 2 (NORMALLY GPC 2) IS LOST, I.E., A FORCE FIGHT BETWEEN THE BFS GPC AND THREE PASS GPCs COULD DEVELOP.

SINCE BOTH ANALYSIS METHODS CONCLUDE THAT OPEN FAILURE OF THE FUSES IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITY BE RETAINED.

REPORT DATE 02/22/88 C-31
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/30/87
ASSESSMENT ID: BFS-503
NASA FMEA #: 05-6S-BFUS4-1
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 503
ITEM: FUSE F10, 1 AMP. - CNTL BUS AB3 SUPPLY TO DISENGAGE SWITCH AND BFC MODULE 2A - HCED & ENGAGE LOGIC
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS A</th>
<th>REDUNDANCY SCREENS B</th>
<th>REDUNDANCY SCREENS C</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[F]</td>
<td>[P]</td>
<td>[X]</td>
</tr>
<tr>
<td>IOA [1 /1]</td>
<td>[P]</td>
<td>[F]</td>
<td>[F]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
<td>[N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] / [] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ONE FMEA COVERS FUSES F9, F10, AND F11. THE IOA PREPARED SEPARATE ANALYSIS WORKSHEETS FOR EACH FUSE BECAUSE THE FAILURE EFFECTS ARE DIFFERENT. THE IOA AGREES THAT FAIL OPEN OF FUSE F11 (CIRCUIT PROTECTION FOR CONTROL BUS CA1) RESULTS IN LOSS OF ABILITY TO ENGAGE BFS. IF EITHER F9 OR F10 (CIRCUIT PROTECTION FOR CONTROL BUS AB3) FAILS OPEN, THE ABILITY TO ENGAGE BFS EXISTS BUT THE AUTOMATIC DISENGAGE OF GPCS THAT INTERFACE WITH MODULES A AND B IN BFC 1 (NORMALLY GPCS 1 AND 4) AND MODULE A IN BFC 2 (NORMALLY GPC 2) IS LOST, I.E., A FORCE FIGHT BETWEEN THE BFS GPC AND THREE PASS GPCS COULD DEVELOP.
SINCE BOTH ANALYSIS METHODS CONCLUDE THAT OPEN FAILURE OF THE FUSES IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITY BE RETAINED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/30/87
ASSESSMENT ID: BFS-504
NASA FMEA #: 05-6S-BFUS4-1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 504
ITEM: FUSE F11, 1 AMP. - CNTL BUS CA1 SUPPLY TO
DISENGAGE SWITCH AND BFC MODULES 2B, 3A, 3B - HCED & ENGAGE LOGIC

LEAD ANALYST: L.W.HINSDALE/E.E.PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>P</td>
<td>F</td>
</tr>
</tbody>
</table>

NASA [2 /1R] [] [] [] []
IOA [1 /1] [] [] [] []

COMPARE [N /N] [] [] [N] []

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ONE FMEA COVERS FUSES F9, F10, AND F11. THE IOA PREPARED
SEPARATE ANALYSIS WORKSHEETS FOR EACH FUSE BECAUSE THE FAILURE
EFFECTS ARE DIFFERENT. THE IOA AGREES THAT FAIL OPEN OF FUSE F11
(CIRCUIT PROTECTION FOR CONTROL BUS CA1) RESULTS IN LOSS OF
ABILITY TO ENGAGE BFS. IF EITHER F9 OR F10 (CIRCUIT PROTECTION
FOR CONTROL BUS AB3) FAILS OPEN, THE ABILITY TO ENGAGE BFS EXISTS
BUT THE AUTOMATIC DISENGAGE OF GPCs THAT INTERFACE WITH MODULES A
AND B IN BFC 1 (NORMALLY GPCs 1 AND 4) AND MODULE A
IN BFC 2 (NORMALLY GPC 2) IS LOST, I.E., A FORCE FIGHT BETWEEN
THE BFS GPC AND THREE PASS GPCs COULD DEVELOP.
SINCE BOTH ANALYSIS METHODS CONCLUDE THAT OPEN FAILURE OF THE
FUSES IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA
RECOMMENDS THE FMEA CRITICALITY BE RETAINED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 11/30/87
ASSESSMENT ID: BFS-505
NASA FMEA #: 05-6S-BFUS3-1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 505
ITEM: FUSE F49, 3 AMP. - ESS BUS 3AB SUPPLY TO GPC OUTPUT SWITCHES (BACKUP & NORMAL DISCRETES)

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[F]</td>
</tr>
<tr>
<td>IOA [1 /1]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

THE FMEA COUNTED PASS GENERIC FAILURE IN ADDITION TO THE FUSE FAILURE WHEN ASSIGNING CRITICALITY. THE IOA ASSIGNED CRITICALITY BASED ON THE ASSUMPTION THE BFS WAS OR WOULD BE ENGAGED.

SINCE BOTH ANALYSIS METHODS CONCLUDE THAT FUSE F49 FAILED OPEN MODE IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITY BE RETAINED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 12/18/86
ASSESSMENT ID: BFS-506
NASA FMEA #:

NASA DATA:
BASELINE []
NEW []

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 506
ITEM: FUSE, 3 AMP. - ESS BUS SUPPLY TO BFS GPC (USUALLY GPC 5) POWER SWITCH

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [] / []</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[3 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:

THE IOA RECOMMENDS A FUNCTIONAL DESCRIPTION OF THE REDUNDANT FUSES AND AN EXPLANATION OF THE FAIL OPEN CONSEQUENCES BE INCLUDED FOR COMPLETENESS IN THE UPDATED FMEAs FOR NON-CIL ITEMS. THE IOA RECOMMENDS THAT A FMEA BE CREATED FOR THIS FAILURE MODE.

REPORT DATE 02/22/88 C-35
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 12/01/87
ASSESSMENT ID: BFS-507X
NASA FMEA #: 05-6S-BD102-1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 507
ITEM: DIODE, MAIN BUS ISOLATION TO BFS GPC AND BFC
LEAD ANALYST: L.W. HINSDALE

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P] [F] [P]</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA [3 /1R]</td>
<td>[P] [F] [P]</td>
<td>[X]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
The IOA AGREES WITH THE NASA ASSESSMENT OF THIS FAILURE MODE.

REPORT DATE 02/22/88 C-36
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 12/01/87
ASSESSMENT ID: BFS-508X
NASA FMEA #: 05-6S-BD102-3
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 508
ITEM: DIODE, MAIN BUS ISOLATION TO BFS GPC AND BFC
LEAD ANALYST: L.W. HINSDALE

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
THE IOA AGREES WITH THE NASA ASSESSMENT OF THIS FAILURE MODE.

REPORT DATE 02/22/88 C-37
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 12/01/87
ASSESSMENT ID: BFS-509X
NASA FMEA #: 05-6S-BFUS5-1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 509
ITEM: FUSE F28, 5 AMP - MAIN BUS SUPPLY TO BFS BFC POWER MONITOR LOGIC

LEAD ANALYST: L.W. HINSDALE

ASSESSMENT:

CRITICALITY
FLIGHT HDW/FUNC
A B C ITEM

NASA [2 /1R] [P] [P] [P] [X] *
IOA [1 /1] [P] [P] [P] [X]
COMPARE [N /N] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)
[] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
The FMEA COUNTED PASS GENERIC FAILURE IN ADDITION TO THE FUSE FAILED OPEN MODE WHEN ASSIGNING CRITICALITY. THE IOA ASSIGNED CRITICALITY BASED ON THE ASSUMPTION THE BFS HAS BEEN OR WILL BE ENGAGED.

SINCE BOTH ANALYSIS METHODS CONCLUDE THAT OPEN FAILURE OF THE FUSE IS JUSTIFICATION FOR INCLUSION ON THE CIL, THE IOA RECOMMENDS THE FMEA CRITICALITY BE RETAINED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 12/18/86
ASSESSMENT ID: BFS-601
NASA FMEA #: 05-8-BFS010-0001

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 601
ITEM: BFC ENGAGE LIGHT

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:

THE NASA ANALYSIS AND THE IOA AGREE COMPLETELY.

REPORT DATE 02/22/88 C-39
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 12/18/86
ASSESSMENT ID: BFS-602
NASA FMEA #: 05-8-BFS010-0002

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 602
ITEM: BFC ENGAGE LIGHT
LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)

ADEQUATE []

INADEQUATE []

REMARKS:

THE NASA ANALYSIS AND THE IOA AGREE COMPLETELY.

REPORT DATE 02/22/88 C-40
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 12/18/86
ASSESSMENT ID: BFS-1001X
NASA FMEA #: 05-8-BFS003-0001

NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 1001
ITEM: INERTIAL MEASUREMENT UNIT (IMU)

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

NASA [1 /1] [NA] [NA] [NA] [X] *
IOA [1 /1] [NA] [F] [P] [X]

COMPARE [/] [] [N] [N] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
THE IOA AGREES WITH THE NASA ASSESSMENT OF THE EFFECT OF THIS FAILURE.
HOWEVER, THE FAILURE MODE ANALYZED IS A SOFTWARE FAILURE, AND IS OUTSIDE THE SCOPE OF A HARDWARE ANALYSIS.

REPORT DATE 02/22/88 C-41
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 12/18/86
ASSESSMENT ID: BFS-2001X
NASA FMEA #: 05-8-BFS012-1

ASSESSMENT ID: BFS-2001X
NASA FMEA #: 05-8-BFS012-1

NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 2001
ITEM:
AIR DATA TRANSDUCER ASSEMBLY (ADTA)

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
</tr>
</tbody>
</table>
| NASA | [2 /1R] | [NA] | [NA] | [NA] | [X] *
| IOA | [1 /1] | [P] | [F] | [P] | [X] |
| COMPARE | [N /N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(AADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

THE IOA AGREES WITH THE NASA ASSESSMENT OF THIS FAILURE.
THE DIFFERENCE IN CRITICALITY IS DUE TO A DIFFERENCE IN INTERPRETATION OF FMEA/CIL PREPARATION INSTRUCTIONS.
HOWEVER, THE IOA BELIEVES THAT THIS HARDWARE IS OUTSIDE THE SCOPE OF THE BACKUP FLIGHT SYSTEM, AND SHOULD INSTEAD BE DEALT WITH IN THE GN&C SUBSYSTEM FMEAs.

REPORT DATE 02/22/88 C-42
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 12/18/86
ASSESSMENT ID: BFS-2002X
NASA FMEA #: 05-8-BFS013-1

SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 2002
ITEM: PROBE (AIR DATA)
LEAD ANALYST: L.W. HINSDALE, E.E. PRUST

ASSESSMENT:

CRITICALITY

<table>
<thead>
<tr>
<th></th>
<th>FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA [2 /1R] [NA] [NA] [NA] [X] *
IOA [1 /1] [P] [F] [P] [X]

COMPARE [N /N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

THE IOA AGREES WITH THE NASA ASSESSMENT OF THIS FAILURE. THE DIFFERENCE IN CRITICALITY IS DUE TO A DIFFERENCE IN INTERPRETATION OF FMEA/CIL PREPARATION INSTRUCTIONS. HOWEVER, THE IOA BELIEVES THAT THIS HARDWARE IS OUTSIDE THE SCOPE OF THE BACKUP FLIGHT SYSTEM, AND SHOULD INSTEAD BE DEALT WITH IN THE GN&C SUBSYSTEM FMEAS.

REPORT DATE 02/22/88 C-43
APPENDIX D

CRITICAL ITEMS
<table>
<thead>
<tr>
<th>NASA FMEA</th>
<th>MDAC-ID</th>
<th>FLIGHT</th>
<th>ITEM</th>
<th>FAILURE MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-3-12200A-1</td>
<td>101</td>
<td>2/1R</td>
<td>POWER SUPPLY A(B,C) TO L(R) RHC</td>
<td>LOSS OF OUTPUT, PARTIAL OUTPUT</td>
</tr>
<tr>
<td>05-3-12200A-2</td>
<td>101</td>
<td>2/1R</td>
<td>POWER SUPPLY A(B,C) TO L(R) RHC</td>
<td>LOSS OF OUTPUT, PARTIAL OUTPUT</td>
</tr>
<tr>
<td>05-3-12200B-1</td>
<td>101</td>
<td>2/1R</td>
<td>POWER SUPPLY A(B,C) TO L(R) RHC</td>
<td>LOSS OF OUTPUT, PARTIAL OUTPUT</td>
</tr>
<tr>
<td>05-3-12200B-2</td>
<td>101</td>
<td>2/1R</td>
<td>POWER SUPPLY A(B,C) TO L(R) RHC</td>
<td>LOSS OF OUTPUT, PARTIAL OUTPUT</td>
</tr>
<tr>
<td>05-5-B30-1-2</td>
<td>201</td>
<td>1/1</td>
<td>HALT RELAY</td>
<td>INADVERTENT OPERATION, FAILS TO REMAIN OPEN</td>
</tr>
<tr>
<td>05-5-B30-1-2</td>
<td>202</td>
<td>3/2R</td>
<td>HALT RELAY</td>
<td>Fails to close</td>
</tr>
<tr>
<td>05-5-B30-1-2</td>
<td>203</td>
<td>2/1R</td>
<td>HAND CONTROLLER ENGAGE DRIVER</td>
<td>LOSS OF DISCRETE OUTPUT</td>
</tr>
<tr>
<td>05-5-B30-1-2</td>
<td>204</td>
<td>1/1</td>
<td>HAND CONTROLLER ENGAGE DRIVER</td>
<td>LOSS OF 28 VDC OUTPUT</td>
</tr>
<tr>
<td>05-5-B30-1-2</td>
<td>205</td>
<td>1/1</td>
<td>ENGAGE / DISENGAGE LOGIC</td>
<td>LOSS OF OUTPUT, ERRONEOUS OUTPUT</td>
</tr>
<tr>
<td>05-5-B30-1-2</td>
<td>207</td>
<td>1/1</td>
<td>BFC POWER SUPPLY (5 VDC)</td>
<td>LOSS OF OUTPUT, PARTIAL OUTPUT, FAILS OUT OF TOLERANCE</td>
</tr>
<tr>
<td>05-5-B30-1-2</td>
<td>208</td>
<td>1/1</td>
<td>POWER UP/DOWN MONITOR LOGIC</td>
<td>INADVERTENT OPERATION</td>
</tr>
<tr>
<td>05-5-B30-1-2</td>
<td>209</td>
<td>1/1</td>
<td>POWER UP/DOWN MONITOR LOGIC</td>
<td>LOSS OF OUTPUT</td>
</tr>
<tr>
<td>05-5-B30-1-3</td>
<td>210</td>
<td>3/1R</td>
<td>BACKUP FLIGHT CNTL</td>
<td>INADVERTENT ENGAGE LOGIC</td>
</tr>
<tr>
<td>05-5-B01-1-1</td>
<td>301</td>
<td>1/1</td>
<td>BACKUP GPC (USUALLY GPC 5)</td>
<td>LOSS OF OUTPUT</td>
</tr>
<tr>
<td>05-5-B02-1-1</td>
<td>301</td>
<td>1/1</td>
<td>BACKUP GPC (USUALLY GPC 5)</td>
<td>LOSS OF OUTPUT</td>
</tr>
<tr>
<td>05-5-B01-1-2</td>
<td>302</td>
<td>1/1</td>
<td>BACKUP GPC (USUALLY GPC 5)</td>
<td>ERRONEOUS OUTPUT</td>
</tr>
<tr>
<td>05-5-B02-1-2</td>
<td>302</td>
<td>1/1</td>
<td>BACKUP GPC (USUALLY GPC 5)</td>
<td>ERRONEOUS OUTPUT</td>
</tr>
<tr>
<td>05-5-B32-1-1</td>
<td>401</td>
<td>2/1R</td>
<td>BFS ENGAGE PUSHBUTTON</td>
<td>FAILS TO CLOSE</td>
</tr>
<tr>
<td>05-5-B31-1-1</td>
<td>404</td>
<td>1/1</td>
<td>BFC DISENGAGE SW</td>
<td>FAILS TO REMAIN OPEN, FAILS TO RE-OPEN</td>
</tr>
<tr>
<td>05-6S-BSW7-1</td>
<td>407</td>
<td>1/1</td>
<td>BFS GPC (USUALLY GPC 5)</td>
<td>FAILS TO CLOSE, FAILS TO REMAIN CLOSED</td>
</tr>
<tr>
<td>05-5-B15-1-1</td>
<td>408</td>
<td>1/1</td>
<td>BFS GPC (USUALLY GPC 5) PWR SW</td>
<td>FAILS OUT OF "BACKUP"</td>
</tr>
<tr>
<td>NASA FMEA</td>
<td>MDAC-ID</td>
<td>FLIGHT</td>
<td>ITEM</td>
<td>FAILURE MODE</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>05-5-B17-1-1</td>
<td>409</td>
<td>1/1</td>
<td>BFS GPC (USUALLY GPC 5) MODE SW CIRCUIT BREAKER, 7.5 AMP</td>
<td>INADVERTENTLY IN "HALT" OPEN CIRCUIT</td>
</tr>
<tr>
<td>05-6Q-2103A-1</td>
<td>501</td>
<td>3/1R</td>
<td>CIRCUIT BREAKER, 7.5 AMP</td>
<td>OPEN CIRCUIT</td>
</tr>
<tr>
<td>05-6Q-2103B-1</td>
<td>501</td>
<td>3/1R</td>
<td>FUSE F9, 1 AMP. - CNTL BUS AB3</td>
<td>OPEN CIRCUIT</td>
</tr>
<tr>
<td>05-6S-BFUS4-1</td>
<td>502</td>
<td>1/1</td>
<td>FUSE F10, 1 AMP. - CNTL BUS AB3</td>
<td>OPEN CIRCUIT</td>
</tr>
<tr>
<td>05-6S-BFUS4-1</td>
<td>503</td>
<td>1/1</td>
<td>FUSE F11, 1 AMP. - CNTL BUS AB3</td>
<td>OPEN CIRCUIT</td>
</tr>
<tr>
<td>05-6S-BFUS4-1</td>
<td>504</td>
<td>1/1</td>
<td>FUSE F49, 3 AMP. - ESS BUS 3AB</td>
<td>OPEN CIRCUIT</td>
</tr>
<tr>
<td>05-6S-BD102-1</td>
<td>507</td>
<td>3/1R</td>
<td>DIODE, MAIN BUS ISOLATION TO BFS GPC AND BFC</td>
<td>FAILS TO CONDUCT, OPEN, HIGH RESISTANCE SHORTS, CONDUCTS IN REVERSE DIRECTION OPEN</td>
</tr>
<tr>
<td>05-6S-BD102-3</td>
<td>508</td>
<td>3/1R</td>
<td>DIODE, MAIN BUS ISOLATION TO BFS GPC AND BFC</td>
<td></td>
</tr>
<tr>
<td>05-6S-BFUS5-1</td>
<td>509</td>
<td>1/1</td>
<td>FUSE F28, 5 AMP - MAIN BUS SUPPLY TO BFS BFC POWER</td>
<td></td>
</tr>
<tr>
<td>05-8-BFS003-000</td>
<td>1001</td>
<td>1/1</td>
<td>INERTIAL MEASUREMENT UNIT</td>
<td>ERRONEOUS OUTPUT</td>
</tr>
<tr>
<td>05-8-BFS012-1</td>
<td>2001</td>
<td>1/1</td>
<td>AIR DATA TRANSDUCER</td>
<td>ERRONEOUS OUTPUT</td>
</tr>
<tr>
<td>05-8-BFS013-1</td>
<td>2002</td>
<td>1/1</td>
<td>PROBE (AIR DATA)</td>
<td>ERRONEOUS OUTPUT</td>
</tr>
</tbody>
</table>
APPENDIX E
ANALYSIS WORKSHEETS

This appendix contains the IOA analysis worksheets supplementing previous results reported in STSEOS Working Paper 1.0-WP-VA86001-18, Analysis of the Backup Flight System, (15 December 1986). Prior results were obtained independently and documented before starting the FMEA/CIL assessment activity. Supplemental analysis was performed to address failure modes not previously considered by the IOA. Each sheet identifies the hardware item being analyzed, parent assembly, and function performed. For each failure mode, possible causes are identified, and hardware and functional criticality for each mission phase are determined as described in the Instructions for Preparation of FMEA and CIL, NSTS 22206, 10 October 1986. Finally, effects are entered at the bottom of each sheet, and the worst case criticality is entered at the top.

LEGEND FOR IOA ANALYSIS WORKSHEETS

Hardware Criticalities:
1 = Loss of life or vehicle
2 = Loss of mission
3 = Non loss of life or vehicle or mission

Functional Criticalities:
1R = Redundant identical hardware components or redundant functional paths all of which, if failed, could cause loss of life or vehicle.
2R = Redundant identical hardware components or redundant functional paths all of which, if failed, could cause loss of mission.

Redundancy Screen A:
1 = Is Checked Out PreFlight
2 = Is Capable of Check Out PreFlight
3 = Not Capable of Check Out PreFlight
NA = Not Applicable

Redundancy Screens B and C:
P = Passed Screen
F = Failed Screen
NA = Not Applicable
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/87
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 210

HIGHEST CRITICALITY
HDW/FUNC:
FLIGHT: 3/1R
ABORT: 3/1R

ITEM:
BACKUP FLIGHT CONTROLLER - BFC 2

FAILURE MODE:
INADVERTENT ENGAGE

LEAD ANALYST: L.W.HINSDALE
SUBSYS LEAD: J.J.EWELL

BREAKDOWN HIERARCHY:
1) BACKUP FLIGHT CONTROLLER

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: 3/2R RTLS: 3/1R
LIFTOFF: 3/1R TAL: 3/1R
ONORBIT: 3/1R AOA: 3/1R
DEORBIT: 3/1R ATO: 3/1R
LANDING/SAFING: 3/1R

REDUNDANCY SCREENS:
A [2]
B [F]
C [P]

LOCATION: FWD AVIONICS BAY
PART NUMBER: MC615-0023-0003

CAUSES:
PICE PART FAILURE, VIBRATION, CONTAMINATION

EFFECTS/RATIONALE:
PREMATURE BFS ENGAGE, POSSIBLE FORCE FIGHT IF SOME PASS GPC
OUTPUTS ARE NOT DISABLED, POSSIBLE LOSS OF CONTROL - LOSS OF
VEHICLE AND LOSS OF CREW.

REFERENCES:

REPORT DATE 02/22/88 E-2
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/87
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 507

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: DIODE, MAIN BUS ISOLATION TO BFS GPC AND BFC
FAILURE MODE: FAILS TO CONDUCT. OPEN, HIGH RESISTANCE

LEAD ANALYST: L.W. HINSDALE
SUBSYS LEAD: J.J. EWELL

BREAKDOWN HIERARCHY:
1) CIRCUIT PROTECTION
2)
3)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION:
PART NUMBER: JANTX 1N11884

CAUSES: CONTAMINATION, SHOCK, VIBRATION, PIECE PART FAILURE

EFFECTS/RATIONALE:
THE TRIPLE REDUNDANT MAIN BUS POWER PATHS TO EACH IOP, CPU AND BFC ARE ISOLATED BY DIODES. TWO DIODES CAN FAIL WITH NO EFFECT. THE THIRD FAILURE CAUSES LOSS OF THE INTERFACING GPC. THREE FAILURES COULD PREVENT THE BFS FROM BEING ENGAGED. WITH BFS ENGAGED, THREE FAILURES WOULD CAUSE LOSS OF CONTROL, LOSS OF VEHICLE, AND LOSS OF CREW.

REFERENCES:

REPORT DATE 02/22/88 E-3
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/87
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 508

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: DIODE, MAIN BUS ISOLATION TO BFS GPC AND BFC
FAILURE MODE: SHORTS, CONDUCTS IN REVERSE DIRECTION

LEAD ANALYST: L.W. HINSDALE
SUBSYS LEAD: J.J. EWELL

BREAKDOWN HIERARCHY:
1) CIRCUIT PROTECTION
2)
3)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION:
PART NUMBER: JANTX 1N11884

CAUSES: CONTAMINATION, SHOCK, VIBRATION, PIECE PART FAILURE

EFFECTS/RATIONALE:
THE TRIPLE REDUNDANT MAIN BUS POWER PATHS TO EACH IOP, CPU AND BFC ARE ISOLATED BY DIODES. TWO DIODES CAN FAIL WITH NO EFFECT. THE THIRD FAILURE CAUSES LOSS OF THE INTERFACING GPC. THREE FAILURES COULD PREVENT THE BFS FROM BEING ENGAGED. WITH BFS ENGAGED, THREE FAILURES WOULD CAUSE LOSS OF CONTROL, LOSS OF VEHICLE, AND LOSS OF CREW.

REFERENCES:

REPORT DATE 02/22/88 E-4
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/03/87
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 509

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: FUSE F28, 5 AMP - MAIN BUS SUPPLY TO BFS BFC POWER
MONITOR LOGIC
FAILURE MODE: OPEN

LEAD ANALYST: L.W.HINSDALE
SUBSYS LEAD: J.J.EWELL

BREAKDOWN HIERARCHY:
1) CIRCUIT PROTECTION
2)
3)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>1/1</td>
<td>RTLS: 1/1</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>1/1</td>
<td>TAL: 1/1</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA: 1/1</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td>ATO: 1/1</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION:
PART NUMBER: ME451-0018-0500

CAUSES: VIBRATION, SHOCK, STRUCTURAL FAILURE

EFFECTS/RATIONALE:
FAILURE PREVENTS BFS FROM BEING ENGAGED. WITH BFS ENGAGED, FAILURE CAUSES LOSS OF CONTROL, LOSS OF VEHICLE AND CREW.

REFERENCES:

REPORT DATE 02/22/88 E-5
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 1001

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 1/1
ABORT: 1/1

ITEM: INERTIAL MEASUREMENT UNIT (IMU)
FAILURE MODE: ERRONEOUS OUTPUT FROM PASS DUE TO GENERIC FAILURE OF PRIMARY SYSTEM SOFTWARE

LEAD ANALYST: L.W. HINDSALDE/E.E. PRUST
SUBSYS LEAD: J.J. EWELL

BREAKDOWN HIERARCHY:
1) IMU
2)
3)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS: 1/1</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>1/1</td>
<td>TAL: 1/1</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>1/1</td>
<td>AOA: 1/1</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td>ATO: 1/1</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION:
PART NUMBER: MC409-0004-0010

CAUSES: ERRONEOUS SOFTWARE TORQUING INPUT OR MODING COMMAND

EFFECTS/RATIONALE:
NAVIGATION ERRORS WILL ACCUMULATE CAUSING LOSS OF VEHICLE CONTROL. SUCCESSFUL BFS TAKEOVER IS PRECLUDED.

REFERENCES:

REPORT DATE 02/22/88 E-6
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 2001

ITEM: AIR DATA TRANSDUCER ASSEMBLY (ADTA)
FAILURE MODE: ERRONEOUS OUTPUT

LEAD ANALYST: L.W. HINSDALE/E.E. PRUST
SUBSYS LEAD: J.J. EWELL

BREAKDOWN HIERARCHY:
1) AIR DATA SYSTEM
2)
3)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>CRITICALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>HDW/FUNC</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>RTLS: 1/1</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/3</td>
<td>TAL: 1/1</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>1/1</td>
<td>AOA: 1/1</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>1/1</td>
<td>ATO: 3/3</td>
</tr>
</tbody>
</table>

LOCATION:
PART NUMBER: MC409-0011-0006

CAUSES: HIGH TEMPERATURE, VIBRATION, PIECE PART STRUCTURAL FAILURE

EFFECTS/RATIONALE:
ERRONEOUS OUTPUT FROM AN ADTA CAN AFFECT CALCULATIONS OF CRITICAL FIGHT CONTROL PARAMETERS. IF UNDETECTED, LOSS OF CONTROL, LOSS OF VEHICLE, AND LOSS OF CREW IS PROBABLE.

REFERENCES:

REPORT DATE 02/22/88 E-7
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 12/18/86
SUBSYSTEM: BACKUP FLIGHT SYSTEM
MDAC ID: 2002

ITEM: PROBE (AIR DATA)
FAILURE MODE: ERRONEOUS OUTPUT

LEAD ANALYST: L.W. HINSDALE, E.E. PRUST
SUBSYS LEAD: J.J. EWELL

BREAKDOWN HIERARCHY:
1) AIR DATA SYSTEM
2)
3)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>1/1</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>1/1</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>1/1</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>1/1</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION:
PART NUMBER: MC432-0206

CAUSES:

EFFECTS/RATIONALE:
FAILURE IN EITHER PROBE (IF UNDETECTED BY ADTA BITE PRIOR TO ENGAGING BFS) WILL CAUSE LOSS OF CONTROL, LOSS OF VEHICLE AND CREW.

REFERENCES:

REPORT DATE 02/22/88 E-8
APPENDIX F

NASA FMEA TO IOA WORKSHEET CROSS REFERENCE/RECOMMENDATIONS

This section provides a cross reference between the NASA FMEA and corresponding IOA analysis worksheet(s). The worksheets include those from the previous results reported in STSEOS Working Paper 1.0-WP-VA86001-18, Analysis of the Backup Flight System, (15 December 1986) and the supplementary worksheets contained in Appendix E of this report. The Appendix F identifies: NASA FMEA Number, IOA Assessment Number, NASA criticality and redundancy screen data, and IOA recommendations.

Appendix F Resolution/Issue/Rationale Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IOA and NASA criticalities differ. IOA does not consider PASS as a redundant capability to the BFS. NASA counts PASS failure as the first failure when assigning BFS failure mode criticalities.</td>
</tr>
<tr>
<td>2</td>
<td>IOA recommends generating a FMEA for the subject failure mode.</td>
</tr>
<tr>
<td>3</td>
<td>IOA identified failures within an LRU.</td>
</tr>
<tr>
<td>4</td>
<td>FMEA went one level deeper than the IOA.</td>
</tr>
<tr>
<td>5</td>
<td>IOA and FMEA document same failure mode differently.</td>
</tr>
<tr>
<td>6</td>
<td>NASA deleted failure mode impact on BFS from Nov. '87 baseline.</td>
</tr>
<tr>
<td>7</td>
<td>NASA moved CIL to GN&C subsystem in Nov. '87 baseline.</td>
</tr>
<tr>
<td>IDENTIFIERS</td>
<td>NASA FMEA NUMBER</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BFS-206</td>
</tr>
<tr>
<td></td>
<td>BFS-402</td>
</tr>
<tr>
<td></td>
<td>BFS-403</td>
</tr>
<tr>
<td></td>
<td>BFS-405</td>
</tr>
<tr>
<td></td>
<td>BFS-406</td>
</tr>
<tr>
<td></td>
<td>BFS-506</td>
</tr>
<tr>
<td>BS-3-12200A-1</td>
<td>BFS-101</td>
</tr>
<tr>
<td>BS-3-12200A-2</td>
<td>BFS-101A</td>
</tr>
<tr>
<td>BS-3-12200B-1</td>
<td>BFS-101B</td>
</tr>
<tr>
<td>BS-3-12200B-2</td>
<td>BFS-101C</td>
</tr>
<tr>
<td>BS-5-001-1-1</td>
<td>BFS-201</td>
</tr>
<tr>
<td>BS-5-001-1-2</td>
<td>BFS-202</td>
</tr>
<tr>
<td>BS-5-002-1-1</td>
<td>BFS-203</td>
</tr>
<tr>
<td>BS-5-002-1-2</td>
<td>BFS-204</td>
</tr>
<tr>
<td>BS-5-003-1-1</td>
<td>BFS-205</td>
</tr>
<tr>
<td>BS-5-003-1-2</td>
<td>BFS-206</td>
</tr>
<tr>
<td>BS-5-003-1-3</td>
<td>BFS-207</td>
</tr>
<tr>
<td>BS-5-003-1-4</td>
<td>BFS-208</td>
</tr>
<tr>
<td>BS-5-003-1-5</td>
<td>BFS-209</td>
</tr>
<tr>
<td>BS-5-004-1-1</td>
<td>BFS-210X</td>
</tr>
<tr>
<td>BS-5-004-1-2</td>
<td>BFS-204</td>
</tr>
<tr>
<td>BS-6-0104-1</td>
<td>BFS-401</td>
</tr>
<tr>
<td>BS-6-0103-1</td>
<td>BFS-501</td>
</tr>
<tr>
<td>BS-6-0102-1</td>
<td>BFS-501A</td>
</tr>
<tr>
<td>BS-6-0102-2</td>
<td>BFS-507X</td>
</tr>
<tr>
<td>BS-6-0102-3</td>
<td>BFS-508X</td>
</tr>
<tr>
<td>BS-6-0103-1</td>
<td>BFS-505</td>
</tr>
<tr>
<td>BS-6-0104-1</td>
<td>BFS-502</td>
</tr>
<tr>
<td>BS-6-0105-1</td>
<td>BFS-503</td>
</tr>
<tr>
<td>BS-6-0106-1</td>
<td>BFS-504</td>
</tr>
<tr>
<td>BS-6-0107-1</td>
<td>BFS-509X</td>
</tr>
<tr>
<td>BS-6-0108-1</td>
<td>BFS-407</td>
</tr>
<tr>
<td>BS-6-0109-1</td>
<td>BFS-1001X</td>
</tr>
<tr>
<td>BS-6-0110-1</td>
<td>BFS-601</td>
</tr>
<tr>
<td>BS-6-0111-1</td>
<td>BFS-602</td>
</tr>
<tr>
<td>BS-6-0112-1</td>
<td>BFS-2001X</td>
</tr>
<tr>
<td>BS-6-0113-1</td>
<td>BFS-2002X</td>
</tr>
</tbody>
</table>