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(ABSTRACT)

A study has been performed focusing on the calculation of sensitivities of dis-
placements, velocities, accelerations, and stresses in linear, structural, transient
response problems. One significant goal of the study was to develop and evaluate
sensitivity calculation techniques suitable for large-order finite element analyses.
Accordingly, approximation vectors such as vibration mode shapes are used to re-
duce the dimensionality of the finite element model. Much of the research focused
on the accuracy of both response quantities and sensitivities as a function of number

of vectors used.

Two types of sensitivity calculation techniques were developed and evaluated.
The first type of technique is an overall finite difference method where the analysis
is repeated for perturbed designs. The second type of technique is termed semi-
analytical because it involves direct, analytical differentiation of the equations of
motion with finite difference approximation of the coefficient matrices. To be com-
putationally practical in large-order problems, the overall finite difference methods
must use the approximation vectors from the original design in the analyses of the
perturbed models. In several cases this fixed mode approach resulted in very poor
approximations of the stress sensitivities. Almost all of the original modes were
required for an accurate sensitivity and for small numbers of modes, the accuracy

was extremely poor. To overcome this poor accuracy, two semi-analytical techniques



were developed. The first technique accounts for the change in eigenvectors through
approximate eigenvector derivatives. The second technique applies the mode accel-
eration method of transient analysis to the sensitivity calculations. Both result in
accurate values of the stress sensitivities with a small number of modes. In both
techniques the computational cost is much less than would result if the vibration

modes were recalculated and then used in an overall finite difference method.
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Chapter 1

Introduction

1.1. Overview

In the past ten years there has been increasing interest in calculating the deriva-
tives of structural behavior with respect to problem parameters or design variables
(i.e., sensitivities). One of the main uses of these sensitivities is in automated design
procedures where a numerical algorithm is used to improve a structure by modify-
ing the design parameters while satisfying prescribed constraints on the structural
behavior. Most of the numerical algorithms used in these procedures require both
an initial design and a set of sensitivities in order to decide how to improve the
structure. Many references address this sensitivity calculation question within the
context of automated structural design while others, such as this study, focus specifi-
cally on issues related to the calculation of sensitivities. Other uses of sensitivities in
structures problems include the system identification problem in structural dynam-
ics and statistical structural analysis. References [1] and [2] provide a comprehensive

review of work on calculating sensitivities in structural systems.

It is clear from many references (e.g., ref. {1]) that most of the emphasis in
structural optimization and the associated sensitivity calculation methods has been
on static problems. This is not surprising since the majority of structural analyses
themselves are static. The objective of the static analysis and sensitivity calculation
problem, for linear systems, is to calculate the responses (e.g., displacements and
stresses) and their derivatives with respect to structural parameters (e.g., member
areas and thicknesses) which are assumed to be constant for all time. Techniques for
both the analysis and sensitivity calculations have reached considerable maturity in

the past ten to twenty years.



In many problems, however, the loading on the structure varies with time which
causes the response of the structure also to vary as a function of time. Examples of
such problems are a gust on an aircraft wing, an unbalanced engine in an automobile,
or a building during an earthquake. In these cases it is important to predict stresses
accurately as well as displacements (and possibly velocities and accelerations) as a
function of time. Often it is sufficient to predict the maximum and minimum values
of these response quantities. Similarly, the goal of the sensitivity analysis is the
calculation of derivatives of these response quantities with respect to the structural
parameters as a function of time or at the time points where the maximum or

minimum responses occur.

The introduction of the time parameter complicates the analysis in several
ways. First, it changes the system of equations from a set of coupled algebraic
equations to a set of coupled differential equations whose accurate solution may be
difficult and computationally costly. Second, the amount of information that must
be considered and evaluated to understand the response of the structure is increased

by orders of magnitude.

Most practical static and dynamic analyses are currently performed using the
finite element method. Since this technique replaces a continuum (infinite dimen-
sional space) with a finite degree-of-freedom approximation, the question of required
mesh refinement is a natural one. This is not an easy question to answer because the
convergence of the approximation as the mesh is refined depends on the quantity
being considered. Usually, the fundamental unknowns are the displacements and
rotations at the finite element nodes. In theses cases, the convergence of derivatives
of displacements with respect to a spatial parameter (stresses), with respect to time
(velocities, accelerations), or with respect to a structural parameter (sensitivities)

will be worse than the convergence of the displacements themselves.



After the structure has been discretized using the finite element method, yet
another approximation is usually introduced in linear dynamics problems. The be-
havior of the structure is represented by a reduced set of basis functions (frequently
natural vibration modes) in order to simplify the solution of the transient response
problem. This approximation introduces another set of concerns over accuracy of

the response quantities and their sensitivities.

Other errors in transient analysis or sensitivity calculations, which rarely occur
in static analyses, are due to the truncation error of finite difference operators.
This problem occurs with the use of numerical integration techniques in solving the
coupled differential equations in the transient problem. This problem also occurs
when difference approximations are used in the calculation of sensitivities. Roundoff
errors, due to the finite precision arithmetic on digital computers, are also more of

a concern in transient or sensitivity analyses than in simple, static analyses.

All of the above discussed complexities in transient analysis coupled with the
problems of sensitivity analysis have slowed the progress in the development of sensi-
tivity calculation techniques for transient response problems. However, substantial
progress has been made. Some of the important, previous work in optimization of
structures under transient loads and calculation of sensitivities in transient response

problems is discussed below.

1.2. Review of Previous Pertinent Work

Reference [3] is one of the earliest papers dealing with optimization of struc-
tures under transient loads. In this work Fox and Kapoor consider the minimum
mass design of frame structures under an applied base motion subject to constraints
on deflections and stresses. The equations of motion are uncoupled using vibration

modes and solved for the maximum value of the modal response using a shock



spectrum approach. A considerable simplification is introduced by directly sum-
ming the maximum modal responses, thereby removing time as a parameter in the

calculations.

In references [4] and [5] Cassis and Schmit present procedures for the automated
design of plane frames under general transient loading. The dynamic analysis is
performed using modal superposition and only modal damping is allowed. Integral
forms of the time dependent constraints are used. Sensitivities are calculated using
an explicit differentiation of the dynamic equations along with exact calculation
of the required eigenvalue and eigenvector derivatives. Effects of finite element
discretization and modal truncation on the sensitivities or final, optimized designs

were not considered.

In the past 10 years, other researchers have considered the application of gen-
eral sensitivity theory to the problem of dynamic mechanical systems. Reference
[1] summarizes this work and describes three basic approaches which have been
employed. In the first method, called the direct method, the equations of motion
are directly differentiated and solved. A second method offers the advantage of
reduced computational cost when there are more design variables than constraints
on response quantities. In this method, called the adjoint method, the sensitivity
equations are rewritten in terms of a newly defined adjoint vector. After solving
this new system for the adjoint vector, the calculation of the sensitivities of the re-
sponse constraints with respect to each of the design variables is straightforward. In
the third method, called the Green’s function method, the derivatives are obtained
in terms of the Green’s function of the equations of motion. Although the results
from all three methods are theoretically identical, their relative computational efhi-
ciency depends on the relative numbers of design variables, degrees of freedom, and

constraints.



Haug, Arora and their co-workers have made considerable progress in address-
ing many of the problems in the optimal design of mechanical systems under dy-
namic loadings. Much of their early work was spent studying a “state-space” or
adjoint variable approach to calculating sensitivities. References [6], [7], {8], and [9]
should be noted. These references consider application to both elastic structural
design and machine design problems that often have the additional complexity of
nonlinear equations of motion. However, most of these examples have involved few
degrees-of-freedom or design variables. A more recent paper by Haug ([10]) ex-
tended the sensitivity analyses of previous papers to include additional, algebraic
constraint equations that are often present in machine design problems. Also, sen-

sitivity equations for second derivatives are presented.

The adjoint method is particularly attractive when a transient constraint is
integrated over time to produce a single constraint because the total number of
constraints is often small. However, the loss of information in this integral formu-
lation and its disadvantages are noted in reference [11]. Given the danger of having
only a single “worst-case” value of the constraint function in time, reference [11]
proposed including all local maximum points of the constraint function in the con-
straint set. A significant disadvantage of this approach is that for “jagged” response
functions, there can be a large number of redundant, local maxima. This important
problem of constraint definition was also considered in reference [8], where several
methods for obtaining a few, important constraints at discrete points in time were

proposed.

Both direct and adjoint sensitivity methods for a nonlinear, hysteretic structure
are presented in reference [12]. Because of the nonlinearities, numerical integration

of the full coupled system is required.

A recent approach in sensitivity analysis has been to write sensitivity expres-

sions for the solid continuum prior to discretizing the system. This approach is



especially attractive when shape-type design variables are being considered because
the design variable itself often represents a continuous region on the surface of the
body. Reference [13] uses the concept of the material derivative to calculate shape
derivatives of a continuum under dynamic loads. In reference [14] expressions for
shape sensitivities of a continuum considering material nonlinearities and dynamic

effects are written using a variational approach.

1.3. Objectives and Scope

The purpose of the study reported herein is to investigate methods for calcu-
lating sensitivities in linear transient structural response problems. Very general
forms of external loading on the structure and damping are permitted. In any nu-
merical algorithm, both accuracy and computational efficiency are concerns. Errors
in the sensitivities due to factors such as the finite element mesh, truncation of the
basis vector set in the transient analysis, and finite difference approximations in
the sensitivity and numerical integration procedures are considered. An objective
of the study is to identify approaches to sensitivity analysis that are appropriate
for large-scale structural analysis. This is emphasized in the selection of the algo-
rithms and in a study of the relative computational efficiency of several competing

methods.

Three transient response problems are considered in detail- a five-span, simply
supported beam, a composite aircraft wing, and a cantilever beam with a cross
section that varies along its length. None of these three problems is large. However,
each problem includes ingredients which make the sensitivity analysis computation-

ally difficult.



Chapter 2

Equations of Motion and Solution

2.1. Governing Equations

The equations of motion for a damped, linear structural system can be written

Mi + Cu + Ku = p(t) (2.1)

which is a set of ny, coupled differential equations. M, C, and K are the system
mass, damping, and stiffness matrices, respectively. Frequently it is possible to
separate the loading vector, p, into a product of a vector describing the spatial

distribution of the loading, f, and a scalar function of time g(t) as

p(t) = g(O)f (2.2)

Often equations (2.1) are the result of a large finite element model and are
therefore of large order. One way to characterize the behavior of this system is by

examining the eigenvalues of the undamped system

K¢ -wiMep=0, j=1,...,n, (2.3)
For most large, structural systems Eqs. (2.1) are “stiff”; the condition number,
wf,’ Jw?, is many orders of magnitude.

The external loading also has a major effect on the dynamic response of the sys-

tem. Impulsive loads where g(t) changes rapidly relative to the periods associated



with the smallest w; tend to produce a response history with significant high fre-
quency components. Loads that are applied slowly relative to the vibration periods

of the w; produce a predominantly low frequency response history.

Two basic approaches are available for the solution of equations (2.1). The
first is to numerically integrate the equations in a step-by-step manner. In implicit
integration techniques, the time step must be a fraction of the period associated
with the largest w; significantly excited by the loading in order to obtain an accurate
solution. The well-known Newmark method (see for example ref. [15]) is an example
of such an integration technique. In explicit integration techniques the time step
must be a fraction of the period associated with w,, in order for the solution process
to be numerically stable. Using either technique, the computational work is large

because equations (2.1) are of large order.

An alternative to directly solving equations (2.1) is to solve an approximate,
reduced order problem instead. This is the preferred approach for most linear
structural dynamics problems. The details of the techniques used to reduce the

order of the dynamic system are discussed below.

2.2. Reduction Techniques

The first step in applying a reduction technique to the solution of equations

(2.1) is to approximate the solution by n, basis functions
u==%q (2.4)

where n, is usually much less than n,. Then a reduced set of equations can be

written

M4 + Cq + Kq = g(t)f (2.5)



where

M =3TM& (2.6)
C=9Tc® (2.7)
K = 3TK® (2.8)

f=87Tf (2.9)

If the number of vectors in ® is equal to the size of the original system, ngy, and the
vectors in P are linearly independent, the transformation of equation (2.4) is exact.
Usually, though, n, << n, and the solution to the full system (equations (2.1)) is
only approximated by the solution to the reduced system (equations (2.5)). The
quality of this approximation as the number of vectors in ® is increased is a key

concern in evaluating the effectiveness of a particular reduction technique.

In all of the reduction methods considered herein, the first n, vectors of the
set are taken as the reduced basis. Alternate approaches are available for assessing
the importance of a given vector prior to solution of the reduced system and then
discarding the vector if its contribution is insignificant. These approaches are not
considered here because the cost of generating the set of vectors ® is often high and

the cost of solving equations 2.5 is often fairly low.

2.2.1. Mode Displacement Method

The most widely used reduction technique is the traditional mode displacement
method. In this method, equations (2.3) are solved for the set of vibration modes
with lowest n, frequencies and modes. This set of vibration modes is used as the set
of basis functions ®. When the system is undamped (C = 0 in equations (2.1)) or

C can be expressed as a linear combination of M and K, equations (2.5) represent



a set of uncoupled differential equations which can be solved independently. If the

eigenvectors are scaled so that ¢TM¢; = 1, the uncoupled equations can be written

G + 2biwidi + Wi = g()fi,  i=1,...,n, (2.10)

where &; is the modal damping ratio. For certain forms of external loading, such as

g(t) represented as a piecewise linear function of time, an exact, explicit solution is

available. This approach is described in [16] and is used in NASTRAN [17].

Equations (2.1) are the result of a given finite element approximation designed
to model the behavior of the dynamic system. The goal of the reduction methods
discussed in this section is to achieve an accurate approximation to the solution
to equations (2.1) using a small number of basis vectors. As discussed above, the
vibration modes are the most commonly used basis functions in linear structural
dynamics. There are two cases, however, where a large number of modes are re-
quired for an accurate solution of equations (2.1) and therefore the performance of
the mode displacement method is poor. In the first case, if the structure is loaded
in an impulsive manner, many high frequency modes tend to be excited. These
high frequency modes must be included in the analysis since their contribution to
the total response is significant. In the second case, if the response of the structure
contains a large static component, the linear combination of vibration modes can
do a poor job of approximating the static deflection shape. The reduction methods
discussed below alleviate this second accuracy problem with the mode displacement

method.

10



2.2.2. Mode Acceleration Method

To alleviate the poor accuracy of the mode displacement method due to its poor
representation of the static component in the response, a method was proposed by
Williams (ref. [18]) called the mode acceleration method which is described in its
modern computational forms in refs. [16] and [19]. The mode acceleration method

can be derived by rewriting equations (2.1) as

u(t) = g(t)K'f - K~1Cu - K 'Mi (2.11)

The first term in equations (2.11) is the quasi-static solution with load amplitude

determined by g¢(t). This term is calculated by solving the equations
Ku,=f (2.12)

This solution is carried out in the standard way by first factoring K into a product
of upper and lower triangular matrices and then performing a forward and backward
substitution operation to obtain u,. The other two terms are calculated using the
solution w1 and ii from the mode displacement solution. In these terms K7 is

calculated as follows. Equations (2.3) can be rewritten in matrix form as
K®N 2 =M® (2.13)

where here ® is the full set of n, eigenvectors and 272 is

1/wi
1/w?
2= ' (2.14)
1/w,
With the eigenvectors scaled so that
$TM® =1 (2.15)

11



equation (2.13) can be written as

dTKIN 2 =1 (2.16)
Premultiplying by (#7)~! and postmultiplying by &7 yields

KN 28T =1 (2.17)

or

K!=#0"287 (2.18)

When @ contains less than the full n, eigenvectors, this expression for K~ is only
approximate. However, since i1 is obtained from the mode displacement solution
based on n, modes (£§), K~'Mii is exactly equal to 072§ and no approxima-
tion results from introducing equations (2.18). For the damping term, introducing
equations (2.18) with n, vectors in ® is not exact. However, this is a convenient
approximation especially when modal damping is used. Consistent with these con-

siderations, equations (2.11) can be rewritten as

u(t) = g)K'f - 20 2Cq- 802§ (2.19)

The key to the effectiveness of this method is that the static solution is included
explicitly in the solution. It is also simple to apply since it essentially just super-
imposes the static and mode displacement solutions. Since q and § are obtained
from the mode displacement solution, 11 and i are identical to the values obtained

in the mode displacement method.

12



2.2.3. Static Mode Method

An alternative approach to the mode acceleration method that accounts for
the static solution slightly differently is termed the static mode method herein. In
this method, the static solution is included as an additional “mode” in forming
the reduced equations (2.5). The procedure begins by calculating a set of n, — 1

eigenvectors ® using equations (2.3). Then the static solution is calculated as
K¢, =f (2.20)

To improve the orthogonality of the basis vectors, the components of the vibration

modes are removed from the static solution using the Gram-Schmidt process
&, = ‘?’1 — ®c (2.21)

where

c=3TM¢, (2.22)

The vector ¢, is then concatenated with & to yield a new @ which is the complete
basis. Equations (2.5) now become coupled and can be solved directly or reduced
to an uncoupled form using the following procedure. First the reduced eigenvalue

problem

MZA +KZ =0 (2.23)

is solved for the n, x n, diagonal matrix of eigenvalues, A, and the n, x n, matrix

of eigenvectors Z. Now a new set of basis vectors can be written

&=z (2.24)

13



When # is substituted for ® in equations, (2.6), (2.7), (2.8), and (2.9), an uncoupled

system results when C is of the special form described in section 2.2.1.

The static mode method is similar to the mode acceleration method in that
the static displacement vector is explicitly included in the solution. However, in
the mode acceleration method the amplitude of the static displacement vector is
not an unknown but is determined by g(¢) while in the static mode method the
amplitude varies to possibly improve the solution. Also, this static displacement

vector participates in the calculation of i1 and i to possibly improve them as well.

2.2.4. Ritz-Wilson-Lanczos Method

A fourth method, which has become popular in the past few years is termed the
Ritz-Wilson-Lanczos (RWL) method and is described in refs. [20], [21], and [22].
Instead of using eigenvectors of the structure, this method uses a set of Lanczos
vectors to form the reduced equations. The algorithm used here follows that in
reference [20]. The first vector is obtained by solving the static equations (2.20)
and then scaling so that

. S
¢1 = ¢:/(6y M)/ (2.25)

The vectors 1 = 2,...,m are obtained as follows. First,
K&i =M¢,_, (2.26)

is solved for (2),-. Then ;b,- is made M-orthogonal with respect to all previously

generated vectors using a Gram-Schmidt process

14



i—1

¢ = — Z cij@; (2.27)
j=1
where
Cij = ¢fM$,- (2.28)
scaling gives
¢: = bi/(d; M) /? (2.29)

It has been pointed out in many references (e.g., [21]) that the M-orthogonalization
(eq. (2.27)) is theoretically required only with respect to the two previously com-
puted vectors. However, it is also well known that roundoff errors cause the Lanczos
vectors to become less and less orthogonal. Performing the Gram-Schmidt operation
with respect to all previously generated vectors will not insure the M-orthogonality

of the vectors. However, it can improve the orthogonality in some cases.

Following reference [20], a final step is performed in generating the basis vectors
to produce an uncoupled dynamic system. Of course this is useful only when the
system is undamped or C is assumed to be diagonal. As in the static mode method
a reduced-order eigenvalue problem is solved (eq. (2.23)) and a new set of basis
vectors produced. The process of explicitly computing the reduced stiffness and
mass matrices required in equations (2.23) helps alleviate the problems caused by
the lack of orthogonality of the Lanczos vectors. The matrices M and K in (2.23)
are assumed to be full. That is, no assumptions are made that particular terms in

M and K are zero based on the properties of the vectors.
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2.3. Transient Response Solution Method

When the above reduction methods are used and general damping is included
in the model, equations (2.5) are coupled. In principle any of the implicit or explicit
numerical integration methods used for solving equations (2.1) could be used to solve
equations (2.5). In contrast to equations (2.1), however, equations (2.5) are low
order, not stiff, and the primary concern is accurately integrating every equation in
the system. Therefore an integration method which reduces truncation errors in the
solution is highly desirable. Accuracy is especially important in sensitivity analyses
because errors in the solution process are usually magnified in the calculation of

derivatives.

An approach that allows the use of moderately large time steps and makes the
truncation error very small is called the matrix series expansion method in [23] and
the transfer matrix method in [24] and [25] when applied to structural dynamics
problems, and is often referred to as a Taylor series method in numerical analysis
texts (e.g., ref. [26]). This method expands the solution in a Taylor series where the
number of terms determines the accuracy of the approximation. Using this series
an expression can be written for the solution at time ¢ + At in terms of the solution

and load at time £.

(e and =W W {a) o [N Nl {go) oo

It has been assumed here that the time variation of the load g(t) is approximated
as a piecewise linear function of time and therefore the second and higher order
derivatives equal zero. Expressions for W;; and N;; are fairly complex and can be
found in references (23] and [24]. The values of the coefficients W;; and N;; depend

on the number of terms taken in the series.
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The convergence properties of the W;; series for an undamped, single degree-

of-freedom case can be studied by considering the following Taylor series expansion

(0At) | (wAY!  (WAY® (@AY

coswAt=1--"—3 4! 6! 8!

(2.31)

It is well known that roundoff errors due to finite precision arithmetic will cause
large errors in this series for “large” values of wAt. Thus if w is taken as wy,,
an upper bound on At can be estimated based on roundoff error. In practice At
will usually need to be much smaller than this upper bound value for two reasons.
The first reason is that the input load history may be a complicated function of
time and A¢ must be small enough to accurately sample this loading. The second,
more important reason, is that the A¢ must be small enough to accurately sample
the history of the output quantities. If At is larger than the smallest significant
period of response, peak values of the response quantities will likely be missed.
Accordingly, in the studies reported herein At was taken to be approximately 1/8
of the smallest period. Since the number of terms in the series has only a very small
effect on the computational cost of the method, 50 terms were used in this study

to make the truncations errors negligible.
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Chapter 3

Critical Point Constraint

3.1. Constraint Formulation

The general form of the constraint equation is

gi(x,t) <0 (3.1)

where x is a vector of design variables and ¢ is time. An effective approach for
insuring that this constraint is satisfied for all values of ¢ is the “critical point
constraint” approach described in ref. [27] pages 168-169. In this approach a set of
peak values of the function g; (denoted critical points) is selected. An obvious point
to include is the time with the “worst” value of g;. However, if only this point is
included, an optimization process modifying a structure based on this information
might unknowingly produce a design where the constraint is violated at another time
point. To guard against this possibility, a number of important peaks are selected.
References [28] and [29] consider in detail the efficient location of critical points
in large-scale structures problems with many constraints. This chapter presents a

method for selecting the most important peaks as critical points.

In the work reported herein, constraints are assumed to be placed on the dis-
placements, velocities, accelerations, and stresses in the structure. All of these
constraints are treated similarly. Thus the critical point constraint formulation will
be illustrated for the case of displacements. Constraints are placed on selected

displacements such that

|'U,,'(X,t)l < Uallow (32)
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where u; are the displacements at specific points in the structure and ugow is
the absolute maximum allowable value of the displacement. The critical values of
this constraint occur at points in time where u; has the largest magnitude. These
are identified by examining every value of u along the response history. In the
implementation here, each constraint is assumed to have a specified number of
critical points; five critical points for each u; are selected. Values of v where du/dt =
0 or values of u at the end points of the time interval are local maxima of g; and

are termed candidate critical points.

3.2. Selection of Critical Points

The procedure for selecting the critical points from these candidates can best be
explained by referring to an example displacement time history shown in figure 3.1.
The critical points are labeled with circled numbers and a few of the many candidate
critical points are labeled with circled letters. The selection criteria applied to every
candidate critical point will be explained by considering these few candidate points.
Candidate critical points a and ¢ were discarded because the absolute values of
the displacements at these points were smaller than those at the five other critical
points. The criterion for discarding candidate points b, d, and e is slightly more
complicated. From figure 3.1 it can be seen that all three candidate points have
larger displacement magnitudes than that of critical point 1, for example. However,
candidate points b, d, and e are all part of “major” peaks where a critical point
is selected. A second criterion applied to the selection process is a requirement
that only one critical point from each major peak be selected. This insures that
the critical points represent the total dynamic response rather than just the high

frequency undulations on, at worst, a single major peak.

A major peak is identified with the following procedure. Whenever a critical

point is selected after comparing its magnitude with that at other critical points, a
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Figure 3.1. Example displacement time history illustrating the critical point con-

straint selection process.
special screening process is activated. This screening process tests the displacement
at every subsequent time point to determine if it differs from that at this last selected
critical point by at least a specified percentage (25% for the studies reported herein ).
If so, all subsequent time points are no longer considered part of the current major
peak. Any candidate critical points identified while this special screening process is

in effect are compared only against the last selected critical point.

An example is the major peak in figure 3.1 which contains points d and 4. In
the selection process, point d is initially selected as a critical point and the screening
process is activated. The three points where du/dt = 0 between point d and point
4 are recognized to be part of the same major peak as d, but since the magnitude
of the displacements at these points is smaller than at point d, they are discarded.
Point 4 is also part of the same major peak as point d but since the displacement
magnitude there is larger than at point d, it replaces point d as a critical point.
Before the next candidate critical point is considered, the displacement has changed
from that at point 4 by more than 25% and so is considered to be on a new major

peak.
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3.3. Derivatives of Critical Point Constraints

Once the critical points have been identified for the nominal design, these can
used in calculating sensitivities. Reference [27] demonstrates that the change in
time location of critical points can be neglected in calculating derivatives of peak
values with respect to design variables by examining the expression for the total
derivative of g; with respect to a design variable z. Considering a constraint g(z,t)

at a critical time i,

dg(z,t.) g . dgdt.

dz Oz Ot dz (3.3)

The last term in equation (3.3) is always zero because at interior critical points
8g/0t = 0 and on the boundary di./dz = 0. Accordingly, the sensitivity calcu-
lations need to be performed only at the specific times where the critical points
have been identified. This can result in a considerable savings in computational
time, especially when there are many constraints, many time points, or many basis
functions used to represent the response. The details of each sensitivity calculation

method are discussed in the next chapter.
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Chapter 4

Methods For Calculating Sensitivities

4.1, Finite Difference Methods

Both the forward difference and central difference methods have been used in

this study to calculate sensitivities. The well known forward difference approxima-

tion to du/dz,

Au _ u(z + Az) — u(z)

Az Az

and central difference approximation

Au  u(z + Az) —u(z — Az)
Az 2Az

are used. The truncation error for the forward difference approximation is

Az d*u
CT(A3)= TE;(Z‘I"CAZ!) OSCS 1
and is
(Az)? dPu

for the central difference approximation.

(4.1)

(4.2)

(4.3)

(4.4)

In applying equations (4.1) and (4.2), the selection of difference step size Az

is a concern. Selection of a large step size results in errors in the derivative due
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to truncation of the operator (eqs. (4.3) and (4.4)). Selection of a small step size
can lead to errors in the derivative due to the limited floating point precision of
the computer or algorithmic inaccuracies in calculating v (condition errors). It is
not uncommon with the forward difference method (eq. (4.1)) that no acceptable
value exists for Az to produce an accurate value of du/dz considering the conflicting
requirements of minimizing truncation and condition errors. Because the truncation
error associated with the operator of equation (4.2) is typically less than that of
equation (4.1), it is possible to use a larger finite difference step size. The larger
Az reduces the condition error from the function evaluations and results in a more
accurate value of du/dz. However, the necessity of two function evaluations needed

for equation (4.2) makes the procedure computationally more costly.

4.1.1. Using Vibration Modes as Basis Functions

For many of the studies herein the natural vibration mode shapes are used as
basis functions to represent the transient response. In calculating the response of
the perturbed design in equation (4.1) and the two perturbed designs in equation
(4.2) some computational savings are possible relative to the computations for the

initial design.

If the mode shapes for the initial design are used to represent the perturbed
design, the cost of re-solving the eigenvalue problem is eliminated. However, the
reduced set of equations for the perturbed system must still be formed and M, C, K
are now full. This coupled system is then solved using the matrix series expansion

method described in section 2.3.

If the updated mode shapes for the perturbed design are used in the analysis,
many eigensolution procedures, such as the subspace iteration used here, can begin
with the mode shapes from the initial design as approximations. Since the pertur-

bation in the design is small, the subspace iteration procedure converges rapidly.
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However, at least one factorization of K is required. For large finite element models
this can be the largest part of the computational cost. For most of the studies in
this paper, the forward difference method used the initial mode shapes to represent
the perturbed design. Because the central difference method was used for reference
values of derivatives, updated mode shapes were calculated for the two required per-
turbed designs. In both cases, because of the critical point constraint formulation,
the transformation from modal coordinates to physical coordinates (displacements,

stresses, etc.) is performed only at the critical times instead of at all time points.

4.2. Semi-Analytical Methods

The direct method for sensitivity calculation is derived by differentiating equa-
tion (2.1). The derivation presented here follows that on pages 169-171 in ref. [27].
After differentiating equations (2.1) with respect to the design variable, z, the result

18

da _da _du df dM_. dC. dK
MZ-+C +K = Zg(t) - S-i - Z2a - S (4.5)

This system of differential equations of order n, could be solved directly for the
sensitivities, du/dz, di/dz, and dii/dz. However, just as for the response equations,
it is more efficient to consider a reduced form of the sensitivity equations which can

be obtained by differentiating equations (2.5) with respect to z yielding

L gda dM, d4dC. dR

%ol gla_ Ay MMy 90, &K

4.
dz dz (4.6)

The first step in forming this equation is the calculation of the derivatives of f, M,
C, and K (equations (2.9),(2.6),(2.7),(2.8)) with respect to z. Using equations (2.9)

the derivative of T with respect to z can be written as

di _ d®T . grdf

dz ~ dz dz (4.7)
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The force f is frequently not a function of the design variables which simplifies
equation (4.7). Also using equation (2.6) the derivative of M with respect to z can

be written as

dM _,dM_ d®T re o d®

Similar expressions can be written for the derivatives of € and K.

The derivative dM/dz in equation (4.8) (similarly for dC/dz and dK/dz) is
in general difficult to calculate because the finite element model may be composed
of diverse element types whose properties are complicated functions of the design
variables z. For this reason, these derivatives are often replaced with finite differ-
ence approximations. This combination of analytical differentiation of the response
equations with finite difference matrix derivatives is known as a semi-analytical
approach. The semi-analytical methods presented herein for calculating transient
response quantities all use the forward difference operator to approximate dM/dz,
dC/dz, dK/dz, and df/dz. For several important classes of design variables, how-
ever, M, C, and K are linear functions of z. For example, M and K in a finite
element model composed of truss members are linear functions of member cross
sectional area. In these cases there are no truncation errors and large finite dif-
ference step sizes can be used to reduce the condition error and produce accurate

derivatives.

Calculation of the first term in equation (4.7) and the second and third terms in
equation (4.8) depends on the particular choice of basis functions . Considerable
reduction in computational cost results if the vectors ® are taken to be independent
of z, that is fixed. Methods are also available to approximate d®/dz which are less
costly than exact methods. Two semi-analytical procedures which address these

concerns are discussed below.
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4.2.1. Fixed Mode Semi-Analytical Formulation

If the basis vectors are assumed not be functions of the design variables z,
d®/dx = 0. This significantly simplifies equations (4.7) and (4.8). After forming
the derivatives of f, M, C, and K, the right-hand side of equations (4.6) can be
formed using § , q, and q from the solution of equations (2.5). The matrix series
expansion method insures that accurate values of q, q, and q are available for this
step. Equations (4.6) can then be integrated to yield dg/dz, dq/dz, and dq/dz.
This fixed mode, semi-analytical implementation of the direct method will be called

just the semi-analytical method herein.
4.2.2. Variable Mode Semi-Analytical Formulation

If the basis functions are assumed to be functions of z, the calculation of
d® /dz either exactly or approximately is required to form equations (4.7) and (4.8).
Vibration modes are the most popular basis functions and the calculation of their
derivatives has been studied extensively. Reference [30], for example, surveys several
methods for calculating derivatives of vibration modes shapes from a computational
point of view. One of the most popular methods, Nelson’s method (ref. [31]),
requires a factorization of the system equations for each eigenvector comnsidered.
This can be a considerable computational burden for large systems. Since the
overall objective here is the accurate calculation of transient response sensitivities,
not eigenvector sensitivities, it seems desirable to investigate cheaper, approximate

methods for calculating d®/dz.

One approximate method for calculating the eigenvector derivatives is similar
to the modal approach for transient analysis. This modal method approximates
each eigenvector derivative as a linear combination of the modes themselves. In

many cases, however, a very large number of eigenvectors are required for accurate
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derivatives. Furthermore, the eigenvector derivative approximation produced by
this method can’t improve the transient response sensitivities because they are

contained entirely within the span of the modes themselves.

A method proposed by Wang (ref. [32]) to alleviate the poor performance of
the modal method also improves the transient sensitivities. This modified modal

method is derived by first differentiating equations (2.3) to yield

d®; dw? dK dM

This equation can not be solved directly since the left-hand-side is singular. Wang’s
approach, however, was to calculate a pseudo-static solution to this equation by
neglecting w?M on the left-hand-side of equations (4.9). The solution to this pseudo-
static equation introduces the change in basis associated with changes in the design
variables and is significant in improving the transient response sensitivities. The

mode shape derivative can then be written as

d®; (d¥; s
Tiz— = (Tiz_)’ + kzz:lAJka (4'10)

where (d®;/dz), is the pseudo-static contribution. The coefficients, Aj; are ob-
tained by substituting equation (4.10) into equation (4.9), multiplying by §j‘ir, and

simplifying as
pryime w?QT(Q_w?d_M)Q.
17k J

Aip = dz J _dz k#j 4.11
: Wi (W= w}) (1)
or
1 _rdM .
Ajp=—-8]—8; k=] (4.12)

Given these approximate values of eigenvector derivatives, equations (4.7) and (4.8)
can be formed. Then equation (4.6) can be solved for d§/dz, dq/dz, and dq/dz
just as in the fixed mode semi-analytical method.
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4.2.3. Recovery of Physical Sensitivities

Given dq/dz, the derivative of the physical displacement vector du/dz can be

written as

du dq d®

with similar expressions for du/dz and dii/dz. The calculation of stresses begins
with
o =S8Su (4.14)

where S is the stress transformation matrix. Substituting eq. (2.4) yields
o =S¥q (4.15)

Differentiating eq. (4.15), the stress sensitivities can be written as

do dq dS d®

The matrix dS/dz is approximated using the forward difference operator. Because
of the critical point constraint formulation, the transformation from these modal
quantities to physical displacements, velocities, accelerations, and stresses is per-

formed only at the critical times.

4.2.4. Mode Acceleration Method

The mode acceleration method was presented in Chapter 2 as a technique for
improving the dynamic displacements and stresses when the static component is
significant. It is also possible that it can improve the sensitivities of displacements
and stresses. An expression for the sensitivities using the mode acceleration method

is obtained by first rearranging equations (4.5) to yield
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da _dC. % _dM. (4.17)

du(t) . _,[df dK
=K |9t - pu-C - dz  dz

dz

If a reduced basis approximation is applied uniformly to every term in equations
(4.17), the resulting du/dz would agree with that obtained from the solution of
equation (4.6). The objective of a mode acceleration solution is to selectively apply
the modal approximation to equation (4.17) with the goal of improving the values
of du/dz. In applying the mode acceleration method to the transient response
problem (eq. (2.11)) @ and i are obtained from the mode displacement method.
Here, in applying the mode acceleration method to the sensitivity equations, u is
obtained from the solution to equations (2.19) and du/dz and dii/dz are obtained
from the solution to the mode displacement, semi-analytical equation ((4.6)). In
the derivation here, the modes ® are assumed to be fixed. Substituting equations
(2.19) and 0 = 84, &t = 8§, du/dz = #dq/dz, and dit/dz = 8d§/dz into (4.17)
yields

du(t) _ _,[df
= K |90~

dK

= [9()K7'f - 802Cq - 202§ - wis)
dq dC_, )
dq dM _ .

MQE— — E—Q

The modal approximation for K~! (equation (2.18)) is introduced into all terms
in equation (4.18) that involve damping just as in the mode acceleration solution
described in Chapter 2. It was also pointed out in Chapter 2 that K-M@& in
equation (4.18) is exactly #2172, Based on these considerations, equation (4.18)

can be simplified to yield the mode acceleration solution of the sensitivity equations
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du t) [— - —K-lf] g(t)+
#n-2 [d—lj(- n-2C- E] - 0" ’C (4.19)
dz dz
dK___, dM_]. _a dii

The key to the effectiveness of this mode acceleration sensitivity method is the usage
of the exact K~! in the calculation of the K~dK/dz®f01~2 and K~'dM/dz®
terms. The explicit calculation of these terms expands the basis beyond the span
of the modes in a manner similar to the pseudo-static term in the modified modal

method described in the previous section.

Using equation (4.19) the stress sensitivities can be calculated as

da’ du dS

where u is obtained from equation (2.11).

It is worthwhile to contrast the sensitivity approach of equations (4.19) with
an alternate approach of a fixed mode, overall forward difference method with the
response quantities calculated using a mode acceleration method. This overall for-
ward difference approach has one obvious drawback. The mode acceleration method
requires the costly factorization of K for the perturbed design. So, much of the cost
savings achieved by keeping the modes fixed is lost. A second defect of the overall
forward difference method is that it is not as effective as the method of equations
(4.19). The mode acceleration method in the overall finite difference procedure
provides a good approximation to the first term (pseudo-static term) in equations

(4.19). However, the key effects of the K~1dK/dz®0Q~2 and the K-1dM/dz®

terms are completely neglected.
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Chapter 5

Numerical Studies

The different transient response methods described in Chapter 2 and the sen-
sitivity calculation methods described in Chapter 4 are applied to three example
problems in this chapter. The three example problems are small but they all have
certain characteristics which complicate the dynamics and sensitivity calculations.
The first example, the five-span beam has relatively closely spaced frequencies and
is loaded with a moment applied at a single point. As a result, many modes partic-
ipate in the dynamic response. The second example, the delta wing, is loaded with
a uniform pressure load. Although the higher frequency modes are not significantly
excited by this loading, the analysis is complicated by the laminated plate elements
in the model and the sensitivity analysis is complicated by the lamina thickness
design variables considered. The third example is a cantilever beam with a stepped
cross section loaded with an applied rotation at the root. This loading is inertial,
depends on the mass, and therefore also depends on the values of the design vari-
ables. The first two examples consider point mass and standard thickness design
variables. The cantilever beam example also includes so-called “shape” design vari-
ables (section lengths) that are known to cause difficulties in the sensitivity analysis

1n some cases.

One of the key questions addressed in this chapter is how well a particular set
of basis vectors represents the full system of order ngy. This full system, however,
is the result of a particular finite element discretization. Thus the accuracy of
the response or sensitivities as a function of the finite element mesh is also an
appropriate question. This question is especially important when a large number
of basis vectors (n, close to ny) are required for an accurate solution in a problem

with a given finite element mesh. Either the basis vectors are doing a very poor
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job of spanning the solution space or the loading is legitimately exciting this high

frequency behavior.

In this chapter two terms will be used to describe these studies which consider
the dynamic response as a function of the number of basis vectors or the number
of finite elements in the model. The effect of the number of basis vectors on the
accuracy of the response or sensitivities for a given finite element mesh is called
a “modal convergence” study. In this case, the goal is for the n, basis vectors to
provide an accurate solution to the approximate equations of order n,. The question
of whether the finite element model associated with this system is an accurate
representation of the continuum is addressed in a “mesh convergence” study. In
some cases it will be shown that the modal convergence is strongly related to the
mesh convergence. That is, when a large number of basis vectors are required for an
accurate solution for a given finite element mesh, the finite element mesh is doing
a poor job of representing the continuum. In other cases, even though the finite
element mesh is providing an accurate representation of the continuum, some sets
of basis vectors are doing a poor job of representing the response or sensitivities for

this ngth order system.

Several additional comments on the concept of a “modal convergence” study are
in order. Clearly the use of the term convergence is imprecise because the accuracy
of the approximate solution with different numbers of modes is compared only
against the finite degree-of-freedom solution rather than the continuum solution.
However, it is assumed that an “acceptable” finite element model must do a good job
of representing the low frequency modes of the structure. Therefore, the accuracy
of the dynamic solution with a small number of modes from the finite degree-of-
freedom model is a very reasonable approximation to the accuracy of the dynamic
solution with a small number of modes calculated from a continuum model. Thus

the convergence of the solution as a function of the number of modes calculated
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from the finite element model is a reasonable approximation to the true modal
convergence obtained when the modes are calculated from the continuum model as
long as the number of modes considered is small. Furthermore, if the number of
modes required for an accurate calculation of either the response or sensitivities is

not small, the basis vectors or the method will be considered poor.

5.1. Five-span beam Example

The first example considered is a five-span, planar beam example taken from
reference [33] and shown in figure 5.1. An initial investigation of the displacement
transient response of this problem was also considered in {34]. In most of the stud-
ies, the beam is modeled with three beam finite elements per span resulting in 26
unconstrained degrees-of-freedom. The effect of finite element discretization is con-
sidered by developing alternate models with 6, 9, 12, etc. elements per span. As
shown in figure 5.1, translational and rotational viscous dampers were also added
to the beam. These devices are representative of velocity feedback controllers which
might be added to flexible structures. Cases with and without dampers were con-
sidered. The numerical values of the damping coefficients from ref. [33] of ¢; = .008
sec-1bf/in and ¢; = 1.2 sec-1bf were used. In one example, modal damping with
§; = .005, which is intended represent typical structural damping, was used instead
of the discrete dampers. A case was also considered where a 1.0 lb mass (approx-
imately 20% of the beam’s mass) was added to the beam at the location of the
translational damper. The eigenvalues for three cases using the three element per
span model are shown in table 5.1. The additional point mass has a significant
effect on the frequencies while the dampers have little effect. The effect on frequen-
cies of increasing the number of elements per span in the finite element model is
shown in table 5.2. It can be seen that the lowest ten frequencies are fairly well
converged even for the model with 3 elements per span. In the transient analysis,

the applied loading for all problems consisted of a point moment of .04405 in-lbs
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applied at the right end of the beam. Two different time functions for this load, a

step and a ramp, (shown in figure 5.1) were considered.

Beam cross section

m j+—2.0 In.—> j_
h =.0625 in.
T
I-eo VS

Ramp load Step load

M .004405 M 004405 ———
in.-lbs in.-ibs
2
t, secs t, secs

E =10 x 10°Ib/in?

p = .28 Ib/ind
€, =.008 sec - Ib/in.
c, =1.2sec-1Ib

Figure 5.1. Five-span beam with applied end moment.

Table 5.1. Eigenvalues For Three Five-span beam Cases

Undamped Damped With Point Dampers Undamped
Mode With Point Mass
Frequency, Hz. | Frequency, Hz. | Damping Ratio Frequency, Hz.
1 1.1707 1.2210 .0851 .9401
2 1.2991 1.2926 .0352 1.2594
3 1.6254 1.6298 .0690 1.5445
4 2.0491 2.0910 0590 1.8005
5 2.4628 2.5497 .0958 2.3729
6 4.7343 4.8426 .0044 4.2327
7 5.0105 4.9785 .0413 4.8858
8 5.6472 5.7703 .0126 5.6400
9 6.4153 6.4178 .0407 5.9261
10 7.1274 7.2229 0193 6.8762
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Table 5.2. Beam Frequencies With Different Numbers of Finite Elements Per Span

Frequency, Hz
Mode 3-Elements 6—Elements 9-Elements 12-Elements
1 1.1707 1.1698 1.1698 1.1698
2 1.2991 1.2979 1.2978 1.2978
3 1.6254 1.6230 1.6229 1.6229
4 2.0491 2.0445 2.0442 2.0442
5 2.4628 2.4547 2.4542 2.4542
6 4.7343 4.6828 4.6798 4.6792
7 5.0105 4.9504 4.9469 4.9462
8 5.6472 5.5652 5.5601 5.5593
9 6.4153 6.3053 6.2980 6.2967
10 7.1274 6.9974 6.9874 6.9857

5.1.1. Beam Dynamic Response

The first part of this study focused on the transient response of the beam using
the mode displacement, mode acceleration, static mode, and Ritz-Wilson-Lanczos
(RWL) methods. Displacement, velocity, acceleration, and stress resultant response
quantities are considered. For this beam example all of these response quantities
are taken at a location 10.0 inches from the left end of each span. This point is the
end of the first element in each span when three elements per span are used in the

model.

5.1.1.1. Character of the response

In the first case the ramp loading was applied to the undamped beam modeled
with three elements per span. All 26 modes were used in the analysis. Time histories
of selected displacement, velocity, acceleration, and bending moment components

are shown in figures 5.2, 5.3, 5.4, and 5.5, respectively. The displacement history
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(fig. 5.2) is relatively smooth indicating that only the low frequency modes of the
beam are contributing to the response. The velocity and bending moment response
histories are more jagged indicating participation by higher frequency modes. The
acceleration history (fig. 5.4) is extremely jagged with contributions from the high-

est frequency modes represented by the finite element model.

.02,
O1}
U2 0.0
in.
-01F
-.02 L L L . Y —
.00 .50 1.00 150 200 250 3.00
Time, secs

Figure 5.2. Time history of displacement u; for five-span beam subjected to tran-
sient end moment (Ramp load, undamped beam).

The impulsive nature of the step load makes the higher frequency modes much
more important. This can be seen in figure 5.6 where the time history of velocity
in the second span (see fig. 5.1), iz is shown. By comparing this velocity history
with that in fig. 5.3 the increased importance of the high frequency modes becomes

obvious.

The addition of the point dampers shown in fig. 5.1, on the other hand, tends
to reduce the importance of the high frequency modes. This is shown in fig. 5.7
where again 1, is shown. Comparing this to fig. 5.3 it can be seen that the velocity

history for the damped case is significantly smoother than for the undamped case.
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Figure 5.3. Time history of velocity u; for five-span beam subjected to transient
end moment (Ramp load, undamped beam).
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Figure 5.4. Time history of acceleration i, for five-span beam subjected to tran-
sient end moment (Ramp load, undamped beam).
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Figure 5.5. Time history of bending moment in span five for five-span beam sub-
jected to transient end moment (Ramp load, undamped beam).
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Figure 5.6. Time history of velocity u, for five-span beam subjected to transient
end moment (Step load, undamped beam).
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This changing character of the time histories with temporal or spatial differ-
entiation of the response function or the addition of dampers is expected. The
implications of this phenomenon on calculating the sensitivities of these response

quantities will be discussed below.

A0

05F

u
2
in./sec 00

-.05F

-10 — - - . .
00 50 1.00 150 200 250 3.00

Time, secs

Figure 5.7. Time history of velocity 1, for five-span beam subjected to transient
end moment (Ramp load, damped beam).

39



5.1.1.2. Modal convergence

When vibration modes or other functions are used to reduce the basis in a
transient response problem (eq. (2.4)), the key question is how many modes are
required for an accurate solution. This section addresses that question for the
five-span beam example with the response calculated using mode displacement,
mode acceleration, static mode, and RWL methods. Unless otherwise stated, all of
the response quantities are considered at critical times selected using the methods

discussed in Chapter 3.

The baseline case of ramp loading applied to the undamped beam modeled
with three elements per span is considered first. Figure 5.8 shows the convergence
of selected displacements at critical points as a function of number of modes. The
displacement/critical point combinations were selected to be representative of both
the largest and smallest critical values. In figure 5.8 and in all the other figures
showing convergence of response quantities or sensitivities, the figure key indicates
the quantity followed by the time of occurrence in seconds. In all cases the con-
vergence is very good with approximately ten modes yielding a converged solution.
Figure 5.9 show a similar plot for velocities. Again the convergence is good. The
modal convergence for accelerations, however, is poor as shown in fig. 5.10. Figures
5.11 and 5.12 show the modal convergence of selected bending moments and shear

forces respectively. Again the convergence is poor.

To possibly alleviate this poor convergence, the alternate reduction methods
discussed in Chapter 2 were applied to this problem. The modal convergence for
displacements calculated using the mode acceleration method (fig. 5.13) is even
better than that found using the mode displacement method. The convergence
of bending moments and shear forces has improved dramatically from the mode

displacement results as can be seen in figs. 5.14 and 5.15. As mentioned in chapter
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Figure 5.8. Modal convergence of selected displacements for the five-span beam
(Ramp load, undamped beam, mode displacement method).
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Figure 5.9. Modal convergence of selected velocities for the five-span beam (Ramp
load, undamped beam, mode displacement method).
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Figure 5.10. Modal convergence of selected accelerations for the five-span beam
(Ramp load, undamped beam, mode displacement method).
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Figure 5.11. Modal convergence of selected bending moments for the five-span
beam (Ramp load, undamped beam, mode displacement method).
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Figure 5.12. Modal convergence of selected shear forces for the five-span beam

(Ramp load, undamped beam, mode displacement method).
2, the mode acceleration method does not apply to the calculation of velocities and

accelerations.

A similar improvement was noted using the static mode method. As an example
consider the excellent convergence of shear forces shown in fig. 5.16. However,
the addition of the static solution provides no improvement in the convergence of

acceleration as shown in fig. 5.17.

The RWL method is attractive because of the significantly reduced cost of
calculating the vectors compared with solving the eigenproblem. In this five-span
beam example the modal convergence is also as good as the mode acceleration or
static mode methods. The good convergence of the shear forces is shown in fig.

5.18. Like the other reduction methods, however, the convergence of accelerations

is poor (fig. 5.19).
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The modal convergence of the response quantities for the step loaded case is
generally much poorer than for the ramp loaded case. The convergence of the
displacements is reasonably good. Convergence of velocities, accelerations, and
stresses, however, is poor. This poor convergence is not surprising considering the
“jaggedness” of the velocity time history shown in figure 5.6. As an example, two
figures plotting the convergence of bending moments as a function of the number
of modes are shown. The first, figure 5.20, shows the bending moments calculated
using the mode displacement method. Convergence is poor but this is not surprising
since the convergence was poor with the mode displacement method for the ramp
loaded case (figure 5.11). For this ramp loaded case, the convergence of the bending
moments improved dramatically when the mode acceleration method was used as
can be seen in figure 5.14. Although convergence is improved for the step loaded

case by using the mode acceleration method (figure 5.21), the convergence is still

fairly poor.
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Figure 5.13. Modal convergence of selected displacements for the five-span beam
(Ramp load, undamped beam, mode acceleration method).
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Figure 5.14. Modal convergence of selected bending moments for the five-span
beam (Ramp load, undamped beam, mode acceleration method).
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Figure 5.15. Modal convergence of selected shear forces for the five-span beam
(Ramp load, undamped beam, mode acceleration method).
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Figure 5.16. Modal convergence of selected shear forces for the five-span beam
(Ramp load, undamped beam, static mode method).
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Figure 5.17. Modal convergence of selected accelerations for the five-span beam
(Ramp load, undamped beam, static mode method).
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Figure 5.18. Modal convergence of selected shear forces for the five-span beam
(Ramp load, undamped beam, Ritz-Wilson-Lanczos method).
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Figure 5.19. Modal convergence of selected accelerations for the five-span beam
(Ramp load, undamped beam, Ritz-Wilson-Lanczos method).
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Figure 5.20. Modal convergence of selected bending moments for the five-span
beam (Step load, undamped beam, mode displacement method).
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Figure 5.21. Modal convergence of selected bending moments for the five-span
beam (Step load, undamped beam, mode acceleration method).
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Judging from the velocity time history in figure 5.7, it might be expected that
including damping would improve the modal convergence of the response quanti-
ties. For the ramp loaded, undamped case, the poorest convergence was for the
accelerations (figure 5.10). For the ramp loaded case with discrete dampers there is
an improvement in modal convergence as seen in figure 5.22. For the case with .5%
modal damping there is also a slight improvement in modal convergence. However,

in neither case does the damping completely alleviate the poor convergence.
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Figure 5.22. Modal convergence of selected accelerations for the five-span beam
(Ramp load, discretely damped beam, mode displacement method).

All of the above convergence results are at critical points located by the method
described in Chapter 3. When a different number of modes is used in the analysis,
the critical time for a particular critical point usually shifts slightly. Consequently,
the results for a given response quantity/critical point combination occur at different
times depending on the number of modes used in the analysis (the values shown
in parenthesis in the figures are for the most refined solution). It is natural to ask

whether response quantities at fixed times plotted as a function of number of modes
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would show similar convergence. Figures 5.23 and 5.24 show the modal convergence
of selected velocities and bending moments, respectively, at fixed times. The mode
displacement method was used in the analyses. The particular response quantities
and times were selected to span the range between largest positive and negative
values. As can be seen in fig. 5.23, the convergence of velocities is good. From
fig. 5.24 it can be seen that the convergence of the bending moments is poor and
remarkably similar to the critical point convergence results (fig. 5.11). Thus it
would appear that the critical point constraint formulation does not significantly

affect the modal convergence of the response.
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Figure 5.23. Modal convergence of selected velocities for the five-span beam at

fixed time points (Ramp load, undamped beam, mode displacement
method).
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Figure 5.24. Modal convergence of selected bending moments for the five-span
beam at fixed time points (Ramp load, undamped beam, mode dis-
placement method).

5.1.1.3. Mesh convergence

Table 5.2 shows the convergence of the lowest ten frequencies as a function of
the number of elements used to model each span of the beam. The convergence of
these lower frequencies is rapid. The convergence of various response quantities as

a function of the mesh is also a concern.

The modal convergence can not be uncoupled from the mesh convergence.
This was discussed in ref. [33] for the derivatives of damping ratios calculated
using undamped vibration modes. For several cases, the modal convergence of the
derivatives was poor. As the mesh was refined, convergence was achieved only when
almost all of the available modes were used in calculating the damping ratio. Clearly,
this is an example where the modal basis provides a very poor approximation to

the actual solution.
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Figure 5.25 shows the modal convergence of shear force for the five-span beam
modeled with six elements per span and the transient analysis performed using the
mode displacement method. The convergence for this case is just as poor as for the
three-element-per-span case shown in fig. 5.12. However, a plot of convergence of
this shear forces as a function of number of elements per span, when all modes are
used in each analysis, (fig. 5.26) shows good convergence. Clearly, the convergence
of shear forces for the ramp-loaded five-span beam is similar to that reported for
derivatives of damping ratios in ref. [33]; the vibration modes are simply doing a

poor job of representing the solution.
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Figure 5.25. Modal convergence of selected shear forces for the five-span beam
modeled with six elements per span (Ramp load, undamped beam,
mode displacement method).

Figure 5.27 which shows the convergence of accelerations for the step loaded
beam as a function of elements per span indicates a different behavior, however.

Here, the very poor convergence is due to the higher frequency modes being excited
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Figure 5.26. Convergence of selected shear forces as a function of number of finite

elements per span for the five-span beam (Ramp load, undamped
beam, mode displacement method).

by the step loading. As the mesh is refined the number of high frequency modes

increases and these continue to have a significant contribution to the acceleration.

In evaluating the accuracy of the sensitivity calculation procedures in the next
section, particular attention must be paid to the convergence characteristics. Some
convergence problems such as those caused by the use of vibration mode shapes can
be improved by the use of alternate basis functions. However, other convergence

problems, such as for the accelerations in the step-loaded case are inherent in the

problem definition.
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Figure 5.27. Convergence of selected accelerations as a function of number of finite
elements per span for the five-span beam (Step load, undamped beam,
mode displacement method).

5.1.2. Sensitivities of Beam Dynamic Response

In the previous section the transient response of the five-span beam was con-
sidered in detail. In this section the calculation of sensitivities of displacements,
velocities, accelerations, and stresses with respect to various design variables is

considered.

5.1.2.1. Design variables

Two different classes of design variables were considered. The first design vari-
able is a concentrated mass, m (initially zero) at the location of the translational
damper. This design variable was also considered in [33]. The derivatives of the
system mass and stiffness matrices with respect to this design variable are constant
and zero, respectively. As a consequence, the derivatives of the system matrices re-

quired in the semi-analytical methods can be calculated exactly by a simple forward
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difference operator. The beam thicknesses in each of the five spans were also design
variables. Derivatives with respect to the five thickness design variables showed
similar characteristics. Herein, results for derivatives with respect to the thickness
in the rightmost span, ks, along with derivatives with respect to the point mass,

m, are presented.

5.1.2.2. Effect of finite difference step size

The methods described in Chapter 4 for calculating sensitivities all rely on
finite difference operators at some stage in the algorithm. The forward and central
difference methods rely on the operators in equations (4.1) and (4.2) to calculate
derivatives of response quantities. In the semi-analytical methods the derivatives of
the system matrices are calculated using the forward difference operator in equation
(4.1). In all cases the finite difference step size must be selected so that the operator
provides a reasonable approximation to the derivative. If the step size is too large,
the error due to truncating the series approximation of the derivative is large. If
the step size is too small, the numerical condition error in performing the function

evaluations (dynamic analyses) becomes large.

To assess the effect of step size on the calculation of sensitivities for the five-
span beam, derivatives were calculated using the three methods with various step
sizes. In this study the beam was undamped and the ramp loading was applied.
All 26 vibration modes were included in the analysis. Figure 5.28 shows the esti-
mated derivative of displacement u; at critical point number 5 with respect to the
point mass design variable, m, as a function of step size. As mentioned above, the
derivatives of the system matrices with respect to this design variable can be calcu-
lated exactly in the semi-analytical method. As a result, the derivative estimated
using the semi-analytical method is approximately constant for the six-order-of-

magnitude change in step size shown in the figure. The central difference method
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uses the higher order operator and provides good accuracy over most of the step size
range shown in the figure. The forward difference operator provides good accuracy
with the smaller step sizes but begins to diverge earlier for the larger step sizes than

the central difference method.
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Figure 5.28. Effect of finite difference step size on the accuracy of a displacement
derivative approximation with respect to the point mass design vari-
able (Ramp load, undamped beam).

Figure 5.29 shows the estimated derivative of displacement u; at critical point
number 5 with respect to the right-most span thickness, hs, as a function of step size.
In this case the system mass matrix is a linear function of this design variable and
its derivative can be represented exactly by the forward difference operator. The
system stiffness matrix is a cubic function of this design variable and its derivative
can only be approximated by the forward difference operator. Still, the derivative
approximation computed by the semi-analytical method is very accurate except for

the largest step size and is no worse for this case than the much more costly central
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Figure 5.29. Effect of finite difference step size on the accuracy of a displacement
derivative approximation with respect to the thickness design variable
(Ramp load, undamped beam).

difference method. Again, the forward difference operator results in substantial

errors for the larger step sizes.

Because this example has a relatively small number of degrees of freedom there
is little condition error when small step sizes are used. To assess the effects of
condition error which would occur for larger problems, the derivative approxima-
tions for the five-span beam problem were also calculated using 32-bit floating point
precision compared with the 60-bit precision used in the studies described above.
The estimated derivative of displacement u; at critical point number 5 with respect
to the point mass is plotted as a function of finite difference step size in figure
5.30. Derivative approximations are calculated using the semi-analytical method,
the central difference method, and the forward difference method. For the larger
step sizes, the results from all three methods agree well with those calculated using

60-bit precision. For step sizes smaller than 10~* there is considerable error in the
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Figure 5.30. Effect of finite difference step size on the accuracy of a displacement

derivative with respect to the point mass design variable. Calcu-
lations performed using 32 bit precision. (Ramp load, undamped
beam).

derivative approximations calculated using the forward and central difference meth-

ods. The derivative approximations calculated using the semi-analytical method,

however, are highly accurate over the entire range of step sizes shown in the figure.

5.1.2.3. Modal convergence of sensitivities

The first case considered is the undamped beam with the ramp load. Figure
5.31 shows the convergence of selected estimated derivatives of displacements with
respect to m at various critical points. The mode displacement method was used and
the derivative approximations were calculated using the central difference operator
with updated modes. The convergence is good although slightly poorer than the

convergence of the displacements themselves (fig. 5.8). The convergence of the
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Figure 5.31. Modal convergence of derivatives of selected displacements with re-
spect to the mass design variable (Ramp load, undamped beam, mode
displacement method, central difference operator).

estimated displacement derivatives with respect to the thickness design variable is

similar.

Although the modal convergence of the velocities for this case is good (fig. 5.9),
the convergence of selected estimated derivatives of velocity with respect to m is
generally poor (fig. 5.32). Considering the poor convergence of the accelerations
shown in fig. 5.10 it is not surprising that the convergence of the sensitivities of
the accelerations is also very poor. From fig. 5.33 it can be seen that the derivative
approximations of the four selected critical point accelerations with respect to the
thickness design variable are essentially not converging with increasing number of
modes. It should be pointed out again that these derivative approximations of
velocity and acceleration are calculated using the central difference method and
updated mode shapes thus minimizing the numerical errors. The poor convergence
exhibited in figs. 5.32 and 5.33 is due to the poor approximation of the sensitivities

by the mode shapes.
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Figure 5.32. Modal convergence of derivative approximations of selected veloci-
ties with respect to the mass design variable (Ramp load, undamped
beam, mode displacement method, central difference operator).

Similar modal convergence behavior is observed for sensitivities of the stress
resultants. This is consistent with the poor convergence of the stress resultants
calculated using the mode displacement method (figs. 5.11 and 5.12). Figure 5.34
shows the poor convergence of derivative approximations of selected bending mo-
ments with respect to the thickness design variable. It can be seen that the conver-
gence of the bending moment derivative approximation in the rightmost span with

respect to the thickness in the rightmost span (dMs/dh;) is especially poor.

It was shown in the previous section that several approaches are available for
overcoming the poor convergence of bending moments and shear forces in this beam
example. The mode acceleration, static mode, and RWL methods all produced good
modal convergence of bending moments and shears as shown in figures 5.14, 5.15,
5.16, and 5.18. Unfortunately this type of dramatic improvement does not occur
for the sensitivities of the stress resultants. Figure 5.35 shows the convergence
of the bending moment derivative approximations with respect to the thickness

design variable where the analysis was done using the RWL method. As in the
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Figure 5.33. Modal convergence of derivative approximations of selected accelera-

tions with respect to the thickness design variable (Ramp load, un-

damped beam, mode displacement method, central difference opera-

tor).
studies discussed above using the mode displacement method, the sensitivities were
calculated using the central difference operator with the basis vectors updated for
the perturbed design. Convergence of dMs/dhs is somewhat improved compared
to the mode displacement case. Other quantities show convergence similar to the
mode displacement case; none of these convergence histories can be described as
good. Convergence of the shear force derivative approximations using the RWL

method is considerably worse than for the bending moments.

The semi-analytical methods have also been used for calculating sensitivities of
stress resultants. Figure 5.36 shows the convergence of bending moment derivative
approximations with respect to the mass design variable calculated using the fixed-
mode, semi-analytical method and RWL vectors. The convergence is very similar,
especially for larger numbers of modes, to that of the central difference method.
The mode acceleration, semi-analytical method and the semi-analytical method
with approximate d®/dz were also tried. Again, the modal convergence curves had

the same “jaggedness” as for previous cases.
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Figure 5.34. Modal convergence of derivative approximations of selected bend-
ing moments with respect to the thickness design variable (Ramp
load, undamped beam, mode displacement method, central difference
operator).
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Figure 5.35. Modal convergence of derivative approximations of selected bending
moments with respect to the thickness design variable (Ramp load,
undamped beam, RWL method, central difference operator).
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Figure 5.36. Modal convergence of derivative approximations of selected bending
moments with respect to the mass design variable (Ramp load, un-
damped beam, RWL method, semi-analytical formulation).

Considering the above difficulties with modal convergence for the ramp loaded
cases, especially poor convergence would be expected for the step loaded case. For
the ramp loaded case the convergence of displacement derivative approximations
with respect to the mass design variable was reasonably good (figure 5.31). For
the step loaded case the modal convergence of the same displacement sensitivities
is poor as shown in figure 5.37. The modal convergence of higher order sensitivities

(velocities, accelerations, and stresses) is extremely poor.

Adding damping slightly improved the modal convergence of the response quan-
tities but did not completely alleviate the convergence problem. The result for
sensitivities is similar. Figure 5.38 shows the convergence of velocity sensitivities
for the discretely damped case. The convergence is slightly improved over the un-
damped case shown in figure 5.32 but the curves are still fairly jagged. Convergence
of sensitivities for the case with modal damping is also very similar to that in the

undamped case.
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Figure 5.37. Modal convergence of derivative approximations of selected displace-
ments with respect to the mass design variable (Step load, undamped
beam, mode acceleration method, semi-analytical method).
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Figure 5.38. Modal convergence of derivative approximations of selected veloci-
ties with respect to the mass design variable (Ramp load, discretely
damped beam, mode acceleration method, semi-analytical method).
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5.1.2.4. Mesh convergence of sensitivities

‘Just as for the response quantities, additional insight can be obtained by con-

sidering the convergence of their sensitivities with increasing number of elements

per bay. The case of the stress resultants will be considered since they were shown

to converge well with mesh refinement (fig. 5.26) but poorly as a function of num-

ber of vibration modes used in the analysis. Figure 5.39 shows the convergence of

shear force derivative approximations with respect to the mass design variable as a

function of number of elements per bay. Surprisingly, the convergence is extremely

—, 0.001

poor.
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Figure 5.39.
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Convergence of derivative approximations of selected shear forces
with respect to the mass design variable as a function of number of
elements per span (Ramp load, undamped beam, mode displacement
method, central difference operator).

65



5.1.2.5. Fixed versus updated modes in sensitivity calculations

As mentioned above, the computational cost of updating the vibration modes
for the perturbed analyses is substantial. The question of whether the modes from
an initial design can be used in a finite-difference-based procedure to calculate sensi-
tivities of the transient behavior has received considerable attention in the literature.
In ref. [35] it was shown that there is a substantial difference in the derivatives of
aircraft flutter speeds when fixed modes are used rather than the updated modes.
In ref. [33], however, there was little difference in the derivatives of damping ratios
for the five-span beam when either fixed or updated modes were used. This was
investigated here using the same five-span, undamped beam under the step load. As
shown in figure 5.37 where the derivative approximations were calculated using the
semi-analytical, mode acceleration method, convergence with respect to the number
of modes is very slow. Figure 5.40 shows the modal convergence of derivative ap-
proximations of selected displacements with respect to hs calculated using forward
difference procedures. Results with both fixed and updated vibration modes are
shown. Again, the convergence as a function of number of modes is poor. However,
for all three derivative approximations, the results are nearly the same for both the

fixed mode and updated mode cases.
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5.2. Composite Delta wing Example

The second example considered is an aircraft delta wing with laminated com-
posite cover skins taken from ref. [36] and described in detail in ref. [37]. The finite
element model of this structure is shown in fig. 5.41. Since the wing is geometrically
symmetric about the midplane through its thickness (X-Y plane), only the upper
half of the wing is modeled and boundary conditions enforcing anti-symmetric mo-
tion are imposed on the joints lying in the X-Y plane. The wing is also cantilevered
at the root. The model contains a total of 88 joints with a total of 140 unconstrained
degrees-of-freedom. The webs in the wing are made of titanium and are modeled
with 70 shear panel finite elements along with rod elements through the thickness
of the wing. The cover skins are made of a moderate-modulus (E; = 21 x 10® psi)
graphite-epoxy material with 0°, £45°, and 90° lamina where the 0° material runs
spanwise along the wing. These cover skins are modeled with membrane finite ele-
ments so only the total thicknesses (and not the stacking sequence of plies) of each
lamina are important. The structural mass is 6003 lbs but most of the wing mass is
due to a fuel mass of 93650 1bs distributed over the joints. The spatial distribution
of the load is the same as the static load from ref. [37] and is roughly equivalent to
a 144 psf pressure load on the wing skin. A step loading function was used as the
time function for all cases. The lowest ten vibration frequencies for the wing are
shown in table 5.3. Damping is accounted for by assuming .5% of critical damping

for all modes.
5.2.1. Wing Dynamic Response

The character of the dynamic response of the delta wing is considerably dif-
ferent than that of the five-span beam. Shown in figure 5.42 is a time history of
acceleration at the wing tip. Although 64 modes were included in the analysis, it is

evident from figure 5.42 that only the low frequency modes are being excited. The
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Figure 5.41. Finite element model of composite delta wing.

Table 5.3. Lowest 10 Vibration Frequencies For the Delta Wing

Mode Frequency, Hz

2.055
2.765
4.104
4.913
5.920
6.944
7.451
8.421
9.583
9.880
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same is true for stresses as shown in the time history of figure 5.43. Shown in fig.
5.43 is 78 which is a typical shear stress in a web. As can be seen, there is a small
amount of higher frequency response superimposed on the predominant response
frequency. However, the time history exhibits none of the high-frequency response

present in the five-span beam.
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Figure 5.42. Time history of tip acceleration for the delta wing.
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Figure 5.43. Time history of shear stress in a web in region 6 for the delta wing.
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5.2.1.1. Modal convergence

In contrast to the five-span beam example, the modal convergence of all re-
sponse quantities considered for the delta wing is quite good. Shown in figures
5.44 and 5.45 are modal convergence plots for selected accelerations and stresses
at critical points calculated using the mode displacement method. A converged
solution is reached with approximately twenty or less modes for all of the response
quantities shown. Convergence is also good for response quantities when the mode
acceleration or RWL methods are used instead of the mode displacement method.
Shown in figure 5.46 is a convergence plot for the same stresses shown in figure 5.45

but calculated using RWL vectors.
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Figure 5.44. Modal convergence of tip accelerations for the delta wing.
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Modal convergence of selected stresses for the delta wing calculated
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5.2.2. Sensitivities of Wing Dynamic Response

5.2.2.1. Design variables

The design variable definitions are the same as those in ref. [37] and are shown
in figure 5.47. As can be seen in figure 5.47 the skin is broken up into 16 regions.
In each region there are three design variables— the thickness of the 0° lamina, the
thickness of the 90° lamina, and the thickness of the +:45° lamina. These design
variables will be denoted ti where i denotes the region of the wing skin, and 6 is
either 0, 90, or 45 depending on the lamina orientation. Also shown in figure 5.47
are the 12 design variables controlling the thickness of the webs. These will be

denoted ¢, where i denotes the particular web region.
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Figure 5.47. Design variable definitions for the delta wing example.
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In calculating sensitivities of various response quantities, only a small subset
of these design variables were considered. Specifically, derivatives of selected dis-
placement, velocity, acceleration, and stress quantities were calculated with respect

2 ;13 ;18 416 ;6 10
to 2, 13, 118 416 48  and 19,

5.2.2.2. Effect of finite difference step size

Compared to the five-span beam example, the system matrices for the delta
wing are larger and have a more complicated connectivity. Since many of the signifi-
cant operations in the transient response analysis operate directly on these matrices,
there is considerable potential for accumulating roundoff error. This roundoff error
along with the truncation error in the finite difference expressions is a concern in

selecting a step size for a finite difference approximation to a derivative.

A study was performed to consider the effect of step size in the forward differ-
ence and central difference methods for the delta wing. Figure 5.48 shows derivative
approximations of the wing tip acceleration at critical points with respect to selected
thickness design variables as a function of the finite difference step size used. As
seen in the figure the step size was varied by factors of ten from 10~7 to 10~2. The
central difference method was not used with the 10~2 step size because the backward
perturbation from the nominal design would result in negative member thickness.
One significant observation is that the acceptable step size range for the forward
difference method is small— approximately two decades. A second observation is
that the behavior of the central difference method as a function of step size is sur-
prisingly good. It is expected that, for larger step sizes (1073), the central difference
method results in less error than the forward difference method. The unexpected,
superior performance of the central difference method for the smaller step sizes is

probably due to the symmetry of the difference operator. The roundoff errors that
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Figure 5.48. Effect of finite difference step size on the accuracy of tip displacement
derivative approximations calculated using the forward and central
difference methods with fixed modes (Delta wing example).

occur with the positive and negative perturbations tend to cancel each other and

thus produce the better-than-expected, accurate values for the sensitivities.

The situation is similar for selected stress sensitivities shown in figure 5.49.
Most of the curves for the forward difference case have a small acceptable step
size range. This is especially obvious for the derivative dolf/dt}$ where 1075 is
the apparent choice for step size. It should also be mentioned here that these
calculations were performed using 64 bit arithmetic. In the five-span beam example,
the effect of step size on displacement derivatives was not as severe even though,

for one case, these were calculated with predominantly 32 bit arithmetic (fig. 5.30).

The simple approach of selecting a single step size for use with all response
quantities and all design variables was used here. This approach has the obvious
advantage of simplicity but very questionable validity for the forward difference
method and this delta wing example. From figure 5.49 there is significant error in
do}f /dt38 if greater than 10~* is used as the step size. However, if less than 1073

is used instead, diisip/dt!6y is in error.
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Figure 5.49. Effect of finite difference step size on the accuracy of stress derivative
approximations calculated using the forward and central difference
methods with fixed modes (Delta wing example).

As noted above, the central difference method improves the range of accept-
able step sizes but at the cost of an additional analysis for each design variable.
Alternatively, the semi-analytical method is particularly attractive for this delta
wing example. The stiffness matrices of the membrane and shear panel finite ele-
ments are linear functions of the thickness design variables. Thus large values of
the step size can be used to effectively eliminate the roundoff errors in generating
the derivative approximations of the stiffness and mass matrices required for the

semi-analytical method.

5.2.2.3. Modal convergence of sensitivities

Unlike the five-span beam example, the modal convergence of the displacement,
velocity, and acceleration derivatives for the delta wing example is good. As an
example consider the reference case of acceleration sensitivities calculated using
the central difference method with updated modes shown in figure 5.50. For all
derivative approximations, convergence is achieved with 32 or less modes. Modal
convergence for acceleration sensitivities is equally good using the simple forward

difference method with fixed modes as shown in figure 5.51. Figure 5.52 shows
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the convergence of acceleration sensitivities calculated using the semi-analytical
method with RWL vectors instead of vibration modes. Convergence is also good
although slightly poorer than when modes are used. For example, approximately
40 RWL vectors are required for a converged value of diisip/dt;® compared with

approximately 32 vibration mode shapes.
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Figure 5.50. Modal convergence of tip acceleration sensitivities for the delta wing
calculated using the central difference method.

The modal convergence of stress derivatives, however, depends dramatically
on whether fixed or updated modes are used in the calculation. The reference case
with the central difference operator uses updated modes and as shown in figure 5.53
the modal convergence for all stress sensitivities is very good. Also the convergence
of the stress sensitivities using the forward difference operator with updated modes
as shown in figure 5.54 is very good with 24 or less modes a yielding a converged
solution. However, when the forward difference operator with fixed modes is used
the modal convergence of the stress sensitivities is very poor as shown in figure 5.55.
For one derivative approximation, do}é/dt®, the convergence is fairly good with

approximately 24 modes yielding a converged solution. Especially poor convergence
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Modal convergence of tip acceleration sensitivities for the delta wing
calculated using the forward difference method with fixed modes.
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Modal convergence of tip acceleration sensitivities for the delta wing
calculated using the semi-analytical method with RWL vectors.
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is observed for dol®/dtl® (derivative of stress in the lamina with respect to its own

thickness) where approximately 100 modes are required for convergence.
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Figure 5.53. Modal convergence of selected stress sensitivities for the delta wing
calculated using the central difference method.

Using the semi-analytical method with fixed modes doesn’t improve the modal
convergence of the stress sensitivities. Figure 5.56 shows the modal convergence of
the same stress sensitivities as in the previous figures but calculated using the semi-
analytical method with RWL vectors. The convergence behavior for each derivative
approximation here is very similar to that for the forward difference method with

fixed modes.

However, when the basis vectors are assumed to vary with the design variables
and the modified modal method (see section 4.2.2) is used to approximate d®/dz,
the results are significantly improved. Figure 5.57 shows the modal convergence
of the same stress derivative approximations as shown on previous figures. Here,
the convergence is good with only around 24 modes required for convergence of the

stress sensitivities.
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Figure 5.54. Modal convergence of selected stress sensitivities for the delta wing
calculated using the forward difference method with updated modes.
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Figure 5.55. Modal convergence of selected stress sensitivities for the delta wing
calculated using the forward difference method with fixed modes.
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Figure 5.56. Modal convergence of selected stress sensitivities for the delta wing
calculated using the semi-analytical method with RWL vectors.
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Figure 5.57. Modal convergence of selected stress sensitivities for the delta wing
calculated using the semi-analytical method with d®/dz approxi-
mated using the modified modal method.
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It was mentioned in Chapter 4 that the modal method for approximating d® /dz
produces no improvement in the values of transient response sensitivities. This
implies that including the modes in the modified modal method (see eq. (4.10) may
also not significantly improve the transient response sensitivities. This implication
was tested by studying the modal convergence of the stress sensitivities using the
modified modal method but approximating d®/dz with only the pseudo-static term
in equation (4.10). These results are shown in figure 5.58. Comparing this figure
with figure 5.57 it can be seen that for more than 8 modes the results are nearly
identical. It appears that a cheap, effective approximation to d®/dz in the semi-
analytical formulation can be obtained using only the pseudo-static term from the

modified modal method.
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Figure 5.58. Modal convergence of selected stress sensitivities for the delta wing
calculated using the semi-analytical method with d®/dz approxi-
mated using only the pseudo-static solution.

For the five-span beam example, the convergence of the stresses was substan-

tially improved by including the static solution via either the mode acceleration
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method, the static mode method, or the RWL method. The RWL method is at-
tractive because it is cheaper to calculate n, RWL vectors than n, vibration mode
shapes. However, incorporating the modified modal method in the sensitivity cal-
culations with RWL vectors would seem to be impossible because it is derived to
calculate the derivatives of vibration eigenvectors (see eq. (4.10)). Regardless, it
seems like a worthwhile numerical experiment to try using RWL vectors along with
the pseudo-static correction term from the modified modal method in the variable
mode, semi-analytical formulation. One legitimate argument for doing this is the
well-known observation that the basis spanned by the RWL vectors is an excel-
lent approximation to the basis spanned by the eigenvectors. The results of this
experiment for the modal convergence of the stresses in the delta wing are shown
in figure 5.59. The convergence here is quite good also. For small numbers of
modes the convergence is a bit erratic but in all cases the results are good for more
than 32 modes. The benefit of combining the RWL vectors with the pseudo-static
approximation to d®/dz is that the RWL vectors add the often important static
displacement component to the basis while the pseudo-static term adds components

reflecting the change in the design variable to the basis.

As mentioned above, the benefit of the mode acceleration method is that it also
includes this pseudo-static term. The semi-analytical, mode acceleration, sensitivity
method described in Chapter 4 was also applied to this delta wing example. Again,
the modal convergence of the stress sensitivities shown in the previous figures is
considered. Figure 5.60 shows the excellent convergence of the stress sensitivities.
Clearly, the mode acceleration method provides the same improvement in stress

sensitivities as the semi-analytical method with a modified modal approximation to

d®/dz.
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Figure 5.59. Modal convergence of selected stress sensitivities for the delta wing
calculated using the semi-analytical method with RWL vectors and
the pseudo-static approximation to d®/dz.
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Figure 5.60. Modal convergence of selected stress sensitivities for the delta wing
calculated using the semi-analytical, mode acceleration method.
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5.3. Stepped Cantilever Beam Example

The third example considered is a cantilever beam with five, different rectan-
gular cross sections along the length (see figure 5.61). This example is taken from
ref. [38] where its minimum mass design under a static tip load was considered.
The height and width of the beam cross section in each of the five sections are given
in the table insert on figure 5.61 and represents an optimized design from ref. [38].
The beam is 200 inches long and, in the nominal case, each of the five sections has

the same length. The material properties for the beam are also shown in fig. 5.61.

In most of the analyses, the beam is modeled with three finite elements per
section. The transverse displacement and rotation are the nodal unknowns resulting
in a total of 30 degrees-of-freedom for this case. The effect of different numbers of
elements per section on the the lowest 10 beam natural frequencies (with the beam
clamped at the root) is shown in table 5.4. In the transient response analyses .5%
of critical damping is included for each mode.

Table 5.4. Lowest Frequencies for the Stepped Cantilever Beam

Frequency, Hz
Mode 3-Elements 4-Elements 5-Elements 6—Elements
1 22.67 22.67 22.67 22.67
2 102.67 102.66 102.66 102.65
3 249.72 249.62 249.80 249.55
4 440.57 440.04 439.80 439.67
5 652.50 650.82 650.04 649.62
6 878.48 874.48 872.58 871.54
7 1093.36 1086.15 1082.61 1080.64
8 1296.61 1285.63 1279.94 1276.72
9 1479.81 1465.74 1457.74 1453.09
10 1641.44 1625.75 1615.41 1609.19
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Figure 5.61. Stepped cantilever beam with an applied rotational acceleration at

the root.

5.3.1. Loading

The loading for this stepped beam example is significantly different than for
the first two examples. First, the load results from prescribing the acceleration
at the beam root rather than by applying a force to the beam. Second, the time
history as shown in figure 5.61 is more complicated than the simple step and ramp
histories in the previous examples. The objective of this particular loading condition
is to simulate the rotation of an appendage attached to a relatively large mass
(e.g., robotic arm). The acceleration history in figure 5.61 rotates the root of
the beam through 10 degrees in .18 seconds. After .18 seconds the beam root is
motionless while other points in the beam are undergoing dynamic motion. Beam
displacements, velocities, and accelerations in the following sections are with respect

to the rotating coordinate system.
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This type of applied acceleration can be handled as an equivalent external force

given as

P = —Mrg(?) (5.1)

where r is a vector describing the linear rigid body rotation of the beam about its
root and g(t) is the prescribed acceleration history given in figure 5.61. It should
be noted that the applied force in this case depends on the system mass matrix,

and this must be considered in the sensitivity calculations.

5.3.2. Stepped Beam Dynamic Response

The transient behavior of the beam is strongly affected by the period of the
loading. From table 5.4, the period of the lowest vibration mode is .044 secs while
the period of the square-wave loading is .18 secs. From figure 5.62 it can be seen
that in the time history of the beam tip displacement, this first mode predominates
and almost exactly four cycles occur during the period of the loading. After the load
is removed, the displacement response at the tip is relatively small. The bending
stress at the root has a time history similar to that of the tip displacement as can
be seen in figure 5.63 but with slightly more participation from higher frequency
modes. As expected, the acceleration time history for the tip as shown in figure 5.64
is considerably more jagged indicating the participation of many higher frequency
modes. This behavior is largely due to the abrupt changes in loading in the square-

wave input. Significant accelerations exist at the tip after the loading is removed.
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Figure 5.62. Time history of tip displacement for the stepped cantilever beam.
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Figure 5.63. Time history of root stress for the stepped cantilever beam.
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Figure 5.64. Time history of tip acceleration for the stepped cantilever beam.

5.3.2.1. Modal convergence

The first convergence study considered the effect of number of finite elements
per section on the convergence of the critical point displacements, velocities, and
accelerations at the beam tip and stresses at the root. For all these quantities the
convergence is excellent. For example, the peak acceleration changes by less than
one percent when the number of finite elements per section is varied from 3 to 8.
Then, for the beam modeled with three elements per section, the effect of number
of modes used in the analysis was considered. Generally the convergence was better
than expected. Figure 5.65 shows the modal convergence of the tip acceleration at
two different critical time points calculated using the mode displacement method.

The values are essentially converged with five modes.

The modal convergence of the stress at the beam root is also rapid. Figure 5.66
shows the convergence of the root stress at two critical points calculated using the
mode displacement method. No more than five modes are required for convergence.
It was mentioned above that there is a strong static component in the beam response

during the period while the load is applied. Usually this requires the use of the mode
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Figure 5.65. Modal convergence of critical point tip accelerations for the stepped

cantilever beam (mode displacement method).
acceleration method or RWL vectors for acceptable convergence of the stresses.
Evidently the lowest vibration mode is close enough to the static displacement shape
for this cantilever beam that the mode displacement method gives good values for

the stresses.

5.3.2.2. Using RWL vectors in the analysis

In the stepped beam and delta wing examples the convergence with RWL
vectors in analysis and sensitivity calculations was generally as good or better than
with vibration modes. The modal convergence in the stepped cantilever beam
example when RWL vectors are used is very good also as seen in figure 5.67 for

accelerations.

As can be seen in figure 5.67, the largest number of RWL vectors used in
the analysis is 20. In the convergence studies considering vibration modes (e.g.,

fig. 5.65) the full set of 30 modes was used. A complete set of RWL vectors
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Figure 5.66. Modal convergence of critical point root bending stresses for the
stepped cantilever beam (mode displacement method).
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Figure 5.67. Modal convergence of critical point tip accelerations for the stepped
cantilever beam (RWL vectors).
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could not be generated for this example because of ill-conditioning inherent in the
numerical process (eqs. (2.26), (2.27), (2.28), (2.29)). As additional RWL vectors
are generated, roundoff errors cause the vectors to become less and less orthogonal.
Eventually, the vectors become linearly dependent resulting in a singular reduced
system. In most practical applications of this RWL method, this singularity problem
would not occur because the number of RWL vectors generated would be much

smaller than the total number of degrees of freedom.

5.3.3. Sensitivities of Stepped Beam Dynamic Response

5.3.3.1. Design variables

Two different classes of design variables are considered in this example. The
first class is the set of beam thicknesses in each of the five sections. They are
denoted h; where 2 is the section number from figure 5.61. These are similar to
thickness design variables considered in the five-span beam and delta wing examples.
Sensitivity results are presented in the next sections considering h; and hs from this

set.

The second class of design variables is the set of lengths of the five sections in
the beam. The beam length is fixed at 200 inches; thus only four design variables
determine the lengths of the five sections. The four design variables are denoted I;
where [; is the distance from the beam root to the end of the ith section. Sensitivity
results are presented in the next sections considering I; and Il from this set. In
the structural optimization field this type of design variable is often referred to
as a “shape” design variable and is studied separately from member thickness-
type design variables. A recent study (ref. [39]) considered the calculation of
static response sensitivities with respect to shape design variables using the semi-

analytical method. It was found that numerical difficulties in the semi-analytical
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method resulted in very large errors in sensitivities. This difficulty will be addressed

in the next sections for the transient case.

5.3.3.2. Effect of finite difference step size

It will be shown in this section that practically, the selection of finite difference
step size is not a concern for this stepped beam example. A series of studies was
performed to consider the effect of step size on both thickness and length sensitivities
calculated using finite difference and semi-analytical methods. The finite element
model with three elements per section was used and all 30 modes were included.
Figure 5.68 compares approximate derivatives of tip displacement with respect to
section thicknesses calculated using overall forward and central difference methods.
A key point to be made is that both methods give excellent results for approximately
an 8 decade step size range. For the large step size of .1 in., the central difference
operator generally gives better results than the forward difference operator as would
be expected. The results are nearly as good for sensitivities of the root stress with
respect to the section thicknesses as shown in figure 5.69. Compared to figure
5.68 there is slightly more error for the smallest and largest step sizes but the
sensitivities are still accurate over a very broad range of step sizes. If sensitivities
of stresses with respect to the length design variables are considered, the results
are also very good. Figure 5.70 shows sensitivities calculated using the forward
and central difference methods. Again there is a broad range of step sizes that
provide accurate sensitivities. For the smaller step sizes the results are generally

less accurate than in figure 5.69 but for the .01 step sizes they are more accurate.

It is mentioned above that severe numerical difficulties were uncovered in ref.
[39] when sensitivities of static response were calculated with respect to shape design
variables. The result of this numerical ill-conditioning could be seen by calculating

the sensitivities with different finite difference step sizes used for approximating
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Figure 5.68. Effect of finite difference step size on the accuracy of tip displacement
derivatives with respect to thickness design variables for the stepped
cantilever beam (forward and central difference operators).
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Figure 5.69. Effect of finite difference step size on the accuracy of root stress
derivatives with respect to thickness design variables for the stepped
cantilever beam (forward and central difference operators).
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Figure 5.70. Effect of finite difference step size on the accuracy of approximate

root stress derivatives with respect to length design variables for the

stepped cantilever beam (forward and central difference operators).
the derivatives of the stiffness matrix. For very small step sizes the error in the
sensitivities is due to roundoff. For the larger step sizes, however, the errors in
sensitivities were much larger than those due to truncation of the finite difference
operator and were found to be caused by basic ill-conditioning in solving the semi-

analytical equations.

This same phenomenon occurs when sensitivities are calculated using a semi-
analytical method for the transient case. Figure 5.71 shows approximate derivatives
of root stress with respect to the length design variables calculated using the for-
ward difference and semi-analytical methods. Again, all 30 modes are used in the
analyses. For the smaller step sizes, the accuracy is significantly better for the
semi-analytical method than for the overall forward difference method. For the
102 step size, however, the results from the forward difference method are excel-
lent while several of the sensitivities calculated using the semi-analytical method
exhibit extremely large errors. This result is completely consistent with that in
reference [39]. Although in this example there is a large range of step sizes where
accurate sensitivities can be obtained, in general this would not be the case. Es-

pecially as the problem becomes larger it is desirable to use larger step sizes in a
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semi-analytical method but this is severely restricted for shape design variables by

the type of error shown in figure 5.71.
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Figure 5.71. Effect of finite difference step size on the accuracy of approximate
root stress derivatives with respect to length design variables for
the stepped cantilever beam (overall forward difference and semi-
analytical methods).

5.3.3.3. Modal convergence of sensitivities

Most of the sensitivities exhibit the same, good modal convergence as the re-
sponse quantities. For example, the modal convergence of approximate derivatives
of tip displacement with respect to hy and hs at different critical points are shown
in figure 5.72. The sensitivities were calculated using the central difference method
with updated modes and, as can be seen, the convergence is excellent. The conver-
gence of tip acceleration derivative approximations is not as good as the displace-
ment derivative approximations but is still acceptable as seen in figure 5.73. Again,
these sensitivities are with respect to h; and hs and calculated using the central

difference method with updated modes.

Convergence is also good when sensitivities with respect to the length design

variables are considered. Figure 5.74 shows the modal convergence of approximate
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Figure 5.72. Modal convergence of approximate derivatives of tip displacement

with respect to thickness design variables for the stepped cantilever
beam (mode displacement method, central difference operator).
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Figure 5.73. Modal convergence of approximate derivatives of tip acceleration with

respect to thickness design variables for the stepped cantilever beam
(mode displacement method, central difference operator).
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derivatives of acceleration with respect to l; and l; calculated using the central
difference method. A step size of 10~° was used to avoid the problem shown in figure

5.71. As can be seen in figure 5.74 convergence is achieved with approximately 10

modes.
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Figure 5.74. Modal convergence of approximate derivatives of tip acceleration with
respect to length design variables for the stepped cantilever beam
(mode displacement method, central difference operator).

The modal convergence of stress sensitivities is similar to that for the delta wing
example. When updated modes are used with an overall finite difference method,
the convergence is excellent. An example of this is shown in figure 5.75 where
approximate derivatives of the root stress with respect to h; and hjs calculated using
the forward difference operator are shown. However, if fixed modes are used in a
finite difference procedure, the modal convergence is much worse. Figure 5.76 shows
an example of this for the same sensitivities as in figure 5.75. And if sensitivities
of the root stress with respect to the length design variables (I, l4) are considered,
the modal convergence is very poor. An example of this poor convergence is shown
in figure 5.77. The convergence is similarly bad if the fixed mode semi-analytical

method is used instead of a finite difference method. Figure 5.78 shows the poor
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modal convergence of the same sensitivities as figure 5.77 calculated using the fixed

mode, semi-analytical method.
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Figure 5.75. Modal convergence of approximate derivatives of root stress with re-
spect to thickness design variables for the stepped cantilever beam
(mode displacement method, forward difference operator, updated
modes).

For the delta wing example, remedies for the poor convergence of stress sensitiv-
ities in the semi-analytical method were based on approximating the mode shape
derivatives, d®/dz. These semi-analytical methods including approximations for
d®/dz were also applied to this stepped beam example. First d®/dz was approx-
imated using the modified modal method. The modal convergence of the stress
sensitivities is now excellent as can be seen in figure 5.79. The degree of improve-
ment can best be appreciated by comparing figures 5.78 and 5.79 and noting that
the range of the ordinate in figure 5.78 is much broader than in figure 5.79. Using
only the first, pseudo-static term from the modified modal method as an approxi-
mation to d®/dz was also tried. As can be seen in figure 5.80 the convergence is
adequate though not quite as good as when the complete modified modal method

is used.
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Figure 5.76. Modal convergence of approximate derivatives of root stress with re-
spect to thickness design variables for the stepped cantilever beam
example (mode displacement method, forward difference operator,
fixed modes).
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Figure 5.77. Modal convergence of approximate derivatives of root stress with re-
spect to length design variables for the stepped cantilever beam (mode
displacement method, forward difference operator, fixed modes).
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Figure 5.78. Modal convergence of approximate derivatives of root stress with re-
spect to length design variables for the stepped cantilever beam (mode
displacement method, semi-analytical method).
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Figure 5.79. Modal convergence of approximate derivatives of root stress with re-
spect to length design variables for the stepped cantilever beam (mode
displacement method, semi-analytical, modified modal method).
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Just as in the delta wing example, a case was also considered where RWL

vectors were used instead of vibration modes but their derivatives were computed

using the modified modal method (version with pseudo-static term plus modes).

Again, somewhat surprisingly, the modal convergence of the stress sensitivities is

good as seen in figure 5.81.
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Figure 5.80. Modal convergence of approximate derivatives of root stress with
respect to length design variables for the stepped cantilever beam
(mode displacement method, semi-analytical, one-term modified mo-

dal method).

The semi-analytical, mode acceleration method was also tried as a remedy for

the poor convergence of the stress sensitivities. Again, the very poor convergence

is eliminated as can be seen in figure 5.82.
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Figure 5.81. Modal convergence of approximate derivatives of root stress with re-
spect to length design variables for the stepped cantilever beam (RWL
vectors, semi-analytical, modified modal method).
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Figure 5.82. Modal convergence of approximate derivatives of root stress with re-
spect to length design variables for the stepped cantilever beam (mode
acceleration, semi-analytical method).
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5.4. Summary

A number of different methods for calculating sensitivities of transient response
quantities have been exercised on three example problems, a five-span beam, a com-
posite aircraft wing, and a variable cross section beam. Two of the methods are
overall finite difference methods where the analysis is repeated for perturbed de-
signs. The other methods are termed semi-analytical methods because they involve
direct, analytical differentiation of the equations of motion with finite difference
approximations of the coefficient matrices. All of the methods use basis vectors to
reduce the dimensionality of the problem. Accordingly, the convergence of both the
transient response quantities and their sensitivities as a function of number of basis

vectors was a key concern in this chapter.

In the delta wing and stepped cantilever beam examples the convergence of the
response quantities was consistently very good. However, this was not the case with
the five-span beam. With the five-span beam under a concentrated end moment and
ramp time history the convergence of displacements and velocities was adequate.
However, the convergence of accelerations was poor. The convergence of stress
resultants for this example depended on how they were calculated. When the mode
displacement method was used, the convergence was quite poor. However, when the
mode acceleration method, the Ritz-Wilson-Lanczos vector method, or the static
mode method was used, the convergence was good. In cases where convergence was
poor for the five-span beam, the addition of modal or discrete damping improved

the convergence somewhat. However, it did not eliminate the convergence problems.

The modal convergence of the sensitivities in the three examples is consistent
with the convergence of the response quantities themselves. For the delta wing and
stepped cantilever beam examples the convergence of sensitivities was generally

good. For the five-span beam example the convergence of displacement sensitivities
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was adequate but the convergence of velocities, accelerations, and stress resultants
was generally poor. This poor convergence was observed for all the sensitivity
calculation methods. Furthermore, it appears to be associated with the structure
and loading because no improvement was observed as the number of finite elements

per span was increased.

In certain cases poor convergence of sensitivities was also observed for the
delta wing and stepped cantilever beam examples. When sensitivities of stresses
were calculated using the fixed mode, overall finite difference methods or the semi-
analytical method assuming fixed modes, the convergence was very poor. In large
problems, however, updating the vibration modes in the overall finite difference
methods or rigorously calculating derivatives of the mode shapes is very expensive.
The mode acceleration version of the semi-analytical method and the semi-analytical
method with mode shapes approximated using the modified modal method were
devised to alleviate this poor convergence with lower computational cost. When
both methods are applied to delta wing and stepped cantilever beam examples the

modal convergence of sensitivities is excellent.

All of the sensitivity calculation methods considered herein rely on finite dif-
ference operators. Thus step size selection is an important concern. The system
stiffness and mass matrices are linear functions of many of the design variables in
the three example problems. This allowed large step sizes to be used in the semi-
analytical methods to minimize the roundoff errors and produce accurate derivatives
of the stiffness and mass matrices. Also there is less opportunity for roundoff error
in calculating finite difference derivatives of just the coefficient matrices compared
with finite difference derivatives of the overall response quantities. For these rea-
sons, the semi-analytical methods were consistently less sensitive to finite difference

step size than the overall finite difference methods.
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Chapter 6

Computational Costs

A consideration of the computational costs is essential for evaluating any nu-
merical method. This is especially difficult in large-scale, finite element-based pro-
cedures because there is often considerable “overhead” required in the practical
implementation of a given numerical method. For example, most finite element
codes require only a small portion of a system matrix to be resident in central
memory during factorization at any given time. The other portions of the matrix
are read from disk and the factored portions are written to disk as required. A
similar situation can exist on virtual memory machines where the disk operations
are transparent to the implementor. In these cases, the computer resources required

are very implementation dependent.

An approach that is common in the formal study of numerical methods is to
evaluate the computational cost by counting the number of floating point oper-
ations. There are some pitfalls to this approach. In some cases, even for large
problems, because of the required overhead it is impossible to achieve a practi-
cal implementation that will execute as fast as the predictions from the operation
count. In other cases, especially on vector machines, it is possible for a method
with a higher operation count to be faster than a method with a lower operation

count.

Nevertheless, this approach will used here, primarily to indicate the major
trends in the costs of the methods but not to make fine distinctions between them.
Following common practice, a floating point operation (or “flop”) is defined as the
combination of a floating point multiply, add, and associated array indexing. In the
remainder of this chapter a floating point operation is often referred to simply as

an operation.
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6.1. Costs of Basic Matrix Manipulations

Multiplication of full matrices occur in several places in the transient response
and sensitivity methods. The approximate number of floating point operations

required to multiply a full I X m matrix and a m X n matrix is given as

Solution of the reduced eigenproblem (eq. (2.23)) is important in solving the
system eigenproblem using subspace iteration (eq. (2.3)) and in uncoupling the
reduced system when basis vectors other than the eigenvectors are used. In both
cases it is necessary to solve a full, generalized eigenproblem for all n, eigenvalues
and eigenvectors. Since eigenvalue solution techniques are inherently iterative, the
number of operations required for a converged solution can only be estimated. Ref-
erence [15] estimates the number of operations for complete solution of a generalized

eigenproblem using the Jacobi method as

Creig = 18n2 + 36n2 (6.2)

Other techniques for solving this eigenproblem may have a significantly different
cost. However, it will be shown that the cost of this eigensolution is small relative

to other tasks in the sensitivity calculations.
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6.2. Costs of System Matrix Manipulations

For the purpose of considering the computational costs of operations on system
matrices (e.g., K, M), these matrices are considered to be stored in a banded form.
In a banded form, only matrix elements located near the diagonal are stored; the
matrix elements outside this “bandwidth” of the matrix are zero and are not stored
or considered in operations. Finite element problems yielding a stiffness matrix with
a constant bandwidth are rarely encountered in practice so most finite element
codes use more sophisticated and efficient schemes for storing system matrices.
However, having a single, easily-understood number to characterize the sparsity
of a system matrix (the bandwidth) is convenient in approximating computational
costs. Although few finite element problems have precisely a constant bandwidth,
this assumption is accurate enough in many cases to get reasonable estimates for

relative number of operations in a numerical procedure.

From ref. [40] the cost in number of operations of factoring a banded system

matrix of order n, is given as

ﬂ3

Ny (63)

beac = %ﬂ(ﬂ + 3)ng -

where 3 is half the bandwidth (excluding the diagonal) Also from ref. [40], the cost

of a single solution of a banded system, given the factored matrix, is given as

Cheot = 2(B +1)ny — B(B +1) (6.4)

The cost of multiplying a banded system matrix and a single vector is given as

Comut = (28 + 1)n, (6.5)
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6.3. Cost of Basis Reduction

The process of reducing the degrees of freedom from n, to n, requires the
matrix triple product operations shown in equations (2.6), (2.7), and (2.8). Since
this process is used in all the sensitivity methods, the cost will be considered sep-
arately here. In performing this operation, n, system vectors are multiplied by a
system matrix. Then n,(n, + 1)/2 inner products (for a symmetric system matrix)
between system vectors are performed. The total number of required floating point

operations is

Cred = rChmut + Ng nr(nr + 1)/2 (66)

6.4. Cost of System Eigensolution

The cost of solving the generalized vibration eigenvalue problem is even more
difficult to estimate than the cost of solving the reduced eigenproblem. The nu-
merical techniques vary widely among different analysis codes. Furthermore, a
technique used for one problem might be totally inappropriate when applied to
a different problem. Nevertheless, some assumptions will be made here that will
hopefully lead to a reasonable estimate of computational costs for a fairly broad

class of problems.

First, it will be assumed that the eigenvalue problem will be solved using a
subspace iteration technique with shifts (see for example ref. [15]). In recent years,
software based on this approach has become common. Also, the eigensolver, E4,
in the EAL software used in this study (ref. [23]) is based on this approach. It
is also necessary to make assumptions about the number of vectors used in the
subspace and the number of iterations at a given shift point required to converge
some subset of these vectors to eigenvectors. The following numbers were used

for these quantities with the realization that they may be optimum for only a few
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problems. Also, it is assumed that the eigensolution is being performed for a slightly
perturbed model and the eigenvectors from the initial model are available as the
initial subspace. At each shift point ns,, = 16 vectors are included in the subspace.

After n;; = 2 iterations, n.,, = 8 of these vectors have converged to eigenvectors.

The number of shifts or number of factorizations required will be approximately

+1 (6.7)

Nghift =

At each iteration, the inverse power operation requires a matrix product between
M and nq,, vectors followed by n,, solutions of the system equations based on
the current, factored K. The basis reduction operation for both K and M requires
Niss(ness + 1) system vector inner products. Next, the eigenproblem of reduced
order n¢,, must be solved. This cost is given in equation (6.2) with n, replaced
by ni,,. Finally, the updated set of approximate, system eigenvectors must be
formed as a linear combination of the current approximation. This requires n?,, n,
operations. The approximate cost of solving the system eigenproblem for n, modes

and frequencies can be written as
Ceig =NshiftChfact
nchiftnit(ntaacbmul + Nyas Cbaol + nt:c(ntaa + l)ng (6'8)

+ 18113'. + 36"’335 + nfaa ng)

6.5. Cost of Generating RWL Vectors

As has been demonstrated, RWL vectors are an attractive alternative to vi-
bration mode shapes for basis reduction in transient response analysis. It has been
mentioned previously that generation of the RWL vectors is considerably cheaper
than vibration modes. An estimate of this cost in number of floating point opera-

tions will be derived here.
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First a factorization of the system K is required. The system equations are
solved n, times based on the factored K. The generation of right-hand-side vectors
requires n, — 1 matrix products between M and a vector. Another key step in the
process is the Gram-Schmidt orthogonalization as indicated in equation (2.27). For
all vectors, this requires n, — 1 multiplications of a vector by M and n.(n, — 1)/2
vector inner products. The scaling of each vector requires n, vector inner products
and n, divisions of a system vector by a scalar. Writing the total number of floating

point operations in expanded form yields

ne(n, —1)

5 ng + 2n.ny (6.9)

Cruwi = beac + 1:Chy0t + 2(nr - 1)Cbmul +
6.86. Cost of Model Generation

The generation of the finite element model requires processing of the input,
forming elemental matrices, and forming global, system matrices. Most of the sen-
sitivity calculation methods require generation of a single perturbed model for each
design variable. The central difference method, however, requires the generation
of two perturbed models. Thus to compare the central difference method with the
other methods, an estimate of the model generation cost is required. This cost is
difficult to calculate in general. For the purposes herein this cost is estimated em-
pirically with EAL by observing the execution time for model generation relative
to matrix multiplication for a number of models. From these experiments it was
observed that the predominant element type in the model substantially affects the
cost. That is, forming the element matrices in a model composed of three dimen-
sional solid elements is much more costly than in a model composed of rod elements.

The estimate for model generation cost used here,
Cmodet = 10081, (6.10)

roughly approximates the cost for a model with 2-D, plate-type elements in EAL

but would be significantly in error for predominantly 1-D or 3-D models.
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6.7. Cost of Integration of Reduced System

The basic operation for integrating the reduced system is shown in equation
(2.30). The two matrix multiplications shown in equation (2.30) are performed at
every time step. If equations (2.5) are coupled, the W;; and N;; are full and the
explicit matrix multiplication must be performed. In this case, the total number of

floating point operations for integration of the system is given as

where n; is the number of time steps in the analysis. If equations (2.5) are not
coupled, the W;; and N;; are diagonal and this fact can be exploited to substantially
reduce the cost of integrating the system. The number of floating point operations

in this case is given as

Cinte = 8n,ny (6.12)

When the number of equations in the reduced system, n,, is large, the difference
between C;n:e in equations (6.11) and (6.12) is very large. For the comparisons of
sensitivity methods in this chapter, equation (6.12) is used to estimate the integra-
tion cost. When vectors other than vibration modes are used or vibration modes for
an initial model are used with a perturbed model, the equations are first uncoupled

by solving the reduced order eigenproblem.

6.8. Cost of Back Transformation for Physical Response Quantities

After the reduced equations have been solved, it is necessary to recover the
physical displacements, velocities, accelerations, and stresses (or stress resultants) of
interest. Usually the quantities of interest are only a subset of all possible quantities
available from the finite element model. In the critical point constraint formulation
described in Chapter 3 it is necessary to recover the physical response quantities

only at the critical times. That is, the back transformation is performed at only 5
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to 20 critical points rather than at thousands of time steps. The cost of the basic

back transformation operation is
Cback = Np Ny Ne (6.13)

where n, is the number of physical quantities being recovered from the modal values
and n. is the number of critical points. The costs of back transformation in the

specific sensitivity methods will be expressed as a multiple of this basic cost.

6.9. Cost of Sensitivity Calculation Methods

Because all of the sensitivity calculation methods require the dynamic analysis
of the initial model, this component of the cost can be neglected in comparing the
different methods. In addition, in all the methods the basic operations are repeated
for each design variable so the costs estimated below are per design variable. Also,
to simplify the cost analysis, the models are assumed to be undamped so that
any operations dealing with modal damping or system damping matrices are not

included.

6.9.1. Finite Difference Methods

Both forward and central difference methods for calculating sensitivities were
considered in Chapter 4. In the central difference method, the basic operations of
the forward difference method are performed twice, so the cost is approximately
twice that of the forward difference method. Costs will be derived here for the
forward difference method. In both finite difference methods, the basis vectors can
be the same as for the original model (fixed) or recalculated for the perturbed model
(updated). The cost with updated modes presented here is based on using natural

vibration modes. An alternative of using RWL vectors is considered separately.
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The first step in the forward difference method is evaluation of the perturbed
model. If the modes are being updated, the eigenproblem is solved. Otherwise, the
original modes are used to reduce the basis and the reduced order eigenproblem
solved to uncouple the transient equations. The uncoupled equations for the per-
turbed system are then integrated and the n, physical quantities calculated at the
n. critical time points. The cost of the actual difference operation is very small and

is therefore neglected. For the fixed mode case, the total cost is
C_fdfiz = Cmodel + 2Cred + Creig + n?-ng + Cintc + Cback (614)
For the updated mode case, the total cost is

Cfd“Pd = Cmodel + Ceig + Cintc + Cback (615)

6.9.2. Semi-Analytical Method With Fixed Modes

The semi-analytical method begins by evaluating the perturbed model. Then
dM/dz and dK/dz are formed using a forward difference operator. Each derivative
requires about n, operations. Then the basis reduction operation is applied to both
derivative matrices. Formation of the right-hand-side pseudo load (see equation
(4.6)) is a fairly costly operation and the two matrix products dM/dz q and dK /dz q
require about n? n, operations each. Finally the uncoupled equations are integrated
and the physical sensitivities recovered. For the purposes of cost estimation a single
quantity np is used as the total number of required physical sensitivities. In the semi-
analytical methods, however, the specific procedure for recovering the sensitivities
depends on whether the quantity is a displacement, velocity, acceleration, or stress
sensitivity. In estimating the costs of this back transformation operation these
differences are ignored. One justification for this approach is that the cost of back
transformation is usually small relative to other costs in the sensitivity calculation.

In this fixed mode, semi-analytical method, approximately the same number of
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operations are required for the recovery of physical sensitivities as in the finite
difference methods. The total number of floating point operations can be written

as

Caafiz — Cmodel + 2ﬂng + 2Cred + 2n,2-nt + Cinte + Cback (6'16)

6.9.3. Semi-Analytical Method With Approximate d®/dz

Just as in the fixed mode semi-analytical method, evaluating the perturbed
model and forming dM/dz and dK/dz is the first step. The next step is using the
modified modal method to approximate d®/dz.

The procedure for the modified modal method is given in equations (4.9),
(4.10), (4.11), and (4.12). The calculation of the n, pseudo-static contributions
requires the formation of n, right-hand-side vectors and n, solutions of the system
equations. The formation of the Aj; participation factors requires approximately
n, system matrix additions plus the equivalent of a triple product basis reduction
operation. Forming the linear combination of pseudo-static term and eigenvectors
requires n,n, operations. The total cost in number of floating point operations for

the modified modal method is

Cm.mod = 2nrng + anbaol + nr,Bng + Crcd + NrNg (6-17)

Given d®/dz, the derivatives of the reduced system matrices can be formed.
For both dM/dz and dK/dz two triple product, basis reductions plus n, vector
inner products (for the d®T/dzM® term since M® is already available) are re-
quired as shown in equation (4.8). The right-hand-side formation and integration
of the reduced sensitivity equations are identical to the fixed mode semi-analytical
method. Because of the non-zero d®/dz, recovery of the physical sensitivities is

more complicated than in the fixed mode case. Approximately twice the number of
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operations are required in the back transformation since both ® and d®/dz terms
must be considered as shown in equations (4.13). The total cost for the variable

mode semi-analytical method is

Caaupd = Cmodel + 2,Bng + Cmmod + 4Cred + 2nrng + 2n3nt + Cinte + 2Cback (6-18)

6.9.4. Semi-Analytical, Mode Acceleration Method

Since d§/dz and dq/dz are obtained from the fixed mode semi-analytical
method, the operations in equation (6.16) (except Cpqck) are required in applying
the mode acceleration method. The back transformation operations for displace-
ment and stress sensitivities are more complicated as seen in equations (4.19) and
(4.20). The cost of forming the coefficients in equation (4.19) is dominated by mul-
tiplying a vector by a system matrix, adding n, + 1 system vectors, and solving the
system equations for n, + 1 pseudo-static vectors. Again, the assumption is made
that the model is undamped so the C and the dC/dz terms in equation (4.19) are

Zero.

The back transformation procedure for displacement and stress sensitivities
involves application of equations (4.19) and (4.20) for each quantity at the crit-
ical times. Velocity and acceleration terms are calculated as in the fixed mode,
semi-analytical method. Again, using only a single quantity for the number of
back transformed quantities n,, the cost can only be roughly estimated as 4Cpqck.
The total cost for the semi-analytical, mode acceleration method can then then be

written as

Caamacc =Cmodel T+ Zﬂng + 2C~r¢d + 2n3nt
(6.19)

+ Cbmul + (nr + 1)ng + (nr + 1)Cbaol + Cinte + 4Cback
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6.10. Analysis of Cost For Various Models

With the above expressions for computational cost it is now possible to evaluate
the use of the sensitivity calculation methods on various examples. The first three
examples are those considered in Chapter 5. These three examples, however, are
all rather small compared with the class of problems envisioned for the production
use of the sensitivity methods. Accordingly, two other hypothetical problems with

a larger number of degrees of freedom have been included.

The key parameters from the five problems required for the cost analysis are
shown in table 6.1. Several points should be made about these parameters. The
two beam problems have a small number of degrees-of-freedom and a very small
bandwidth and, as a result, a small cost for system matrix factorization. This is
unusual in finite element analysis. Medium model A and large model B represent a
typical medium size, linear dynamics problem and a rather large, ambitious problem
respectively. Medium model A also is complicated by the fact that 100 vectors are
assumed to be required in the transient analysis. In all five examples, a relatively

large number of time steps are used in the transient analysis.

Table 6.1. Parameters Governing Computational Costs

Models ng B ny Ny np n,
Five-span-beam 32 3 18 6000 25 10
Delta Wing 264 30 20 30000 13 5
Stepped Beam 32 3 20 30000 4 5
Medium Model A 3000 100 100 10000 50 10
Large Model B 12000 300 30 20000 200 10
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6.10.1. Cost of Computational Subtasks

Table 6.2 shows the number of floating point operations required for different
computational tasks for the five example problems. Examining the costs for these
subtasks gives some clues to the costs of different sensitivity calculation methods.
For the first three examples the cost of system matrix factorization is low. For the
two larger, hypothetical examples the factorization cost is much higher relative to
that of other tasks. In the first three examples, the cost of integrating the reduced
equations is substantial even though the equations are uncoupled. For the models
A and B, the integration cost is one to two orders of magnitude less than the other
subtask costs in table 6.2. Consistently, in all five examples, the cost of performing
the triple product, basis reduction is high. For the three small problems this cost is
significantly higher than the factorization cost. For medium model A this cost is also
much higher than the factorization cost but this is primarily due to the requirement
of 100 vectors in the reduced system. Even in model B, however, the basis reduction
cost is only a little less than half the factorization cost. One conclusion of this is
that the number of vectors in the reduced system substantially affects the cost of

the analysis even if the vectors are not updated for the current model.

The use of RWL vectors in the transient and sensitivity analyses was considered
in Chapter 5. Here, the cost of generating RWL vectors compared with vibration
modes will be considered. Table 6.2 shows the cost of system matrix eigensolution,
C.ig and RWL vector generation, C,, for the five example problems. In every
case the generation of RWL vectors is cheaper than the eigensolution. In the beam
examples C},, is more than an order of magnitude less than C.;y. This results from
the unusual situation in which the number of required eigenvectors is nearly the
same as the total number of degrees of freedom. In this case, the solution of the
reduced eigenproblem artificially raises the cost of the system eigensolution. The

other three examples show C,iy to be 3 or 4 times Cyy;. This is probably a much
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more accurate estimate of the cost savings obtained by using RWL vectors instead

of eigenvectors.

Table 6.2. Number of Operations for Selected Computational Subtasks

Models C fac Cred Cet'g Crwi Cinte

Five-span-beam 2.7 x 10* 9.5 x 10° 6.6 x 10° 1.8 x 10* 8.6 x 10°
Delta Wing 1.2 x 10° 3.8 x 10° 4.8 x 108 1.1 x 108 4.8 x 10°
Stepped Beam 2.7 x 10? 1.1 x 104 6.6 x 10° 2.1 x 104 4.8 x 10°
Medium Model A | 1.5x10" [ 7.5x10" [ 74x10° | 21x10® | 8.0x10°
Large Model B 5.4 x 108 2.2 x 108 4.0 x 10° 1.2 x 10° 4.8 x 10°

6.10.2. Comparison of Costs for Five Sensitivity Methods

The primary objective of this chapter is to compare the costs in number of

floating point operations of the sensitivity methods. This is summarized for five

sensitivity methods, for the five examples in table 6.3. It is believed that these

five sensitivity methods are all practical alternatives for large-order problems. This

belief is substantiated by the fact that for all five examples the difference among

the five costs is less than one order of magnitude.

Table 6.3. Overall Operation Costs for Five Sensitivity Methods

Models Cfdfiz Cfdufd Csafiz Ccaupd Ciramacc
Five-span-beam 1.0 x 108 1.5 x 10°% 4.8 x 108 4.8 x 10° 4.8 x 10°
Delta Wing 6.5 x 10° 1.0 x 107 3.0 x 107 3.2 x 107 3.1 x 107
Stepped Beam 5.0 x 108 5.5 x 10° 2.9 x 107 2.9 x 107 2.9 x 107
Medium Model A 2.4 x 108 7.8 x 10% 3.9 x 108 6.8 x 10® 4.5 x 10%
Large Model B 8.2 x 108 4.4 x 10° 8.5 x 108 1.7 x 10° 1.1 x 10°

The forward difference method with fixed modes is consistently the cheapest

method. However, this low computational cost must be weighted against the pitfalls

of the method discussed in Chapter 5. The cost of a fixed mode central difference

method which is approximately twice the forward difference cost would also be
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quite competitive with the other methods and would lessen the sensitivity to finite
difference step size. For the two larger problems, the forward difference method
with updated modes is relatively expensive and an updated mode central difference

method would be extremely expensive for larger problems.

In the three smaller problems the semi-analytical methods require significantly
more operations than the finite difference methods. This is primarily because the
larger number of time steps makes the calculation of the right-hand-side pseudo-
load relatively large. For the two larger problems, however, the fixed mode semi-
analytical method is quite competitive with the forward difference method. For
model A it is less than twice the cost of the finite difference method and for model

B it is essentially the same.

The number of basis vectors used is a key parameter in both the analysis
and sensitivity calculations. Table 6.1 shows the number of modes used in the
baseline cost analyses for the five examples. Here, the effect of number of modes
on the overall sensitivity costs is considered. First, the delta wing example, which
is representative of a typical small problem is considered. Shown in figure 6.1 is
the cost for the five methods plotted as a function of number of vectors used. The
number of modes ranges from 20 to 100. The values of the other parameters in the
problem are in table 6.1. The key result from figure 6.1 is that the semi-analytical
methods are much more costly than the finite difference methods for large numbers
of modes. There are two reasons for this. First, because the problem is small,
calculation of the vibration modes is relatively cheap. Second, because there are
a large number of time steps, formation of the right-hand-side in the sensitivity
equations for the semi-analytical methods is quite costly when the number of modes

used is large.

For the large model B example, the result of varying the number of modes is

very different. For this example the cost of the five sensitivity methods plotted as a
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function of number of modes is shown in figure 6.2. In this example, the calculation
of the modes is a very costly operation. Accordingly, the forward difference method
with updated modes is substantially more costly than the other methods for large
numbers of modes. The fixed mode forward difference and semi-analytical methods

show only moderate increases in cost as the number of modes is increased.

It was mentioned above that a relatively large number of time steps are used
in the five examples. The effect of number of time steps on the overall sensitivity
calculation costs is considered here. The delta wing example is considered as rep-
resentative of a small problem and the large model B example is representative of
a large problem. For the delta wing the computational costs for the five sensitivity
methods are plotted as a function of number of time steps in figure 6.3. The values
of the sensitivity calculation costs here are similar to those in figure 6.1; the for-
ward difference methods show only moderate cost increases for larger numbers of
time steps and the semi-analytical methods show substantial cost increases. Again,
the reason is that the right-hand-side formation in the semi-analytical methods is

a substantial part of the total cost in small problems.

The cost results from a large problem, the model B example, are very different,
however. The costs as functions of number of time steps are plotted in figure
6.4. Obviously, there is practically no change in cost for any of the methods as a
function of number of time steps. For this large problem both the cost of integrating
the uncoupled equations and the cost of forming the right-hand-side in the semi-

analytical methods are two to three orders of magnitude less than the total cost.
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Figure 6.1. Cost of the sensitivity calculation methods as a function of number of
modes for the delta wing example.

io

2.0 F_10
2
S
® N
g = Cqrix
S —O— Cidupd
§ —O— Cafix
o 1.0} —0— Casaupg
% —— Ceamace
o
©
2 N
E
=)
z

0.0 1 1 1

0 50 100 150

Number of modes

Figure 6.2. Cost of the sensitivity calculation methods as a function of number of
modes for the model B example.

122



2
Qo
® 30
g == C fix
s =~~~ Cidupd
_§ —O0— Caatix
o 20| —0~ Csaupd
= == Cgamace
L2
o
2 10}
E
=)
P-4 M’?—D’D

0.0 1 1 1 i

0 10000 20000 30000 40000

Number of time steps

Figure 6.3. Cost of the sensitivity calculation methods as a function of number of
time steps for the delta wing example.

5.0x 10°
[
OO OO
2
K<) 40 -
g c
] =0 Cafix
= 30 =~ Ciaupa
g . r- —o— Csaﬁx
o —Q— Cgaypd
] 20 =A— Coamace
9 0}
5 <
8 . S g 4 o4
E 10}
=2
0.0 1 1 1 j
) 10000 20000 30000 40000

Number of time steps

Figure 6.4. Cost of the sensitivity calculation methods as a function of number of
time steps for the model B example.

123



6.11. Summary

The main objective of this chapter is a comparison of the computational costs
in number of floating point operations of the sensitivity calculation methods. Five
example problems were considered— the three example problems from Chapter 5

which are all fairly small and two larger, hypothetical examples.

Many of the results depend significantly on whether the problem is one of the
three smaller examples or one of the two larger, hypothetical examples. In the three
smaller examples, the cost of system matrix factorization is low while in the larger
problems this cost is quite high. When the cost of factorization is high the system
eigenproblem is especially costly. In the smaller problems, operations repeated
for the reduced problem at each time step (such as integration of the uncoupled
equations) are a significant percentage of the total sensitivity calculation cost. For

large problems the relative cost of these operations is small.

For all five examples the forward difference method with fixed modes was the
cheapest. For the smaller problems the forward difference method with updated
modes had a relatively low cost but for the larger problems the cost was quite high.
For the larger problems the semi-analytical method with fixed modes and the semi-
analytical, mode acceleration method have costs that are relatively competitive with
the fixed mode forward difference method. In all cases, the semi-analytical method

with approximate eigenvector derivatives was one of the more costly methods.

It was shown in Chapter 5 that for two examples the accuracy of the stress sensi-
tivities for small numbers of basis vectors was extremely poor. It was demonstrated
that the semi-analytical, mode acceleration method was one means of dramati-
cally improving this accuracy. From the results of this chapter, the semi-analytical,
mode acceleration method is only slightly more costly than the fixed mode forward

difference and semi-analytical methods. Given the unacceptable accuracy of these
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fixed mode methods for two of the examples, the semi-analytical, mode acceleration

method appears to be the method of choice.
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Chapter 7

Concluding Remarks

Several methods have been developed and evaluated for calculating sensitivities
of displacements, velocities, accelerations, and stresses in linear, structural, tran-
sient response problems. Two of the methods are overall finite difference methods
where the analysis is repeated for perturbed designs. The other methods are termed
semi-analytical methods because they involve direct, analytical differentiation of the
equations of motion with finite difference approximations of the coeflicient matri-
ces. The different sensitivity methods were evaluated by applying them to three
example problems, a five-span, simply supported beam loaded with an end moment,
an aircraft wing loaded with a distributed pressure, and a cantilever beam with a

stepped cross section loaded with an applied root angular acceleration.

An important issue in calculating transient response sensitivities for use in
formal optimization procedures is how to define the constraints. Two common
approaches are to integrate the response quantity over time or to pick the maximum
(or minimum) value of the response quantity in time. Both of these approaches
have drawbacks. An alternative critical point constraint approach was implemented
which identifies the most important response points along the time history. A
method for identifying these critical points was devised that, based on the three
examples considered, appears to be very effective even for very jagged response

histories.

All of the analyses and sensitivity methods considered use approximation vec-
tors to reduce the number of degrees of freedom in the analysis. Vibration mode
shapes, Ritz-Wilson-Lanczos vectors, and static displacement shapes were used in

the analysis and sensitivity calculations. The key question when an approximate,
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reduced basis is used in an analysis is how many basis vectors are required for an
accurate approximation to the finite element solution. It was generally found that
if the accuracy of the response quantities was poor, the accuracy of the sensitivities
was extremely poor. In a number of cases, however, even though the accuracy of the
response quantities was adequate, the accuracy of sensitivities was poor. This will
be discussed further below. In all cases considered here, the accuracy as a function
of number of vectors for both the response quantities and sensitivities with Ritz-
Wilson-Lanczos vectors was as good or better than with vibration modes. Since the
generation of Ritz-Wilson-Lanczos vectors is cheaper than vibration modes, they

appear to provide a more cost effective alternative to modes in many cases.

A goal in considering sensitivity methods in this study is that they be suitable
for very large-order finite element analysis. In these types of problems a complete
vibration analysis for each perturbed model is impractical because of the high com-
putational cost. To reduce this cost, one approach which was studied herein is to
use the basis vectors from the initial model to approximate the response in the
perturbed model. This often provides an effective solution. In two of the three
examples problems considered, however, using the initial vectors in an overall finite
difference method or assuming fixed modes in a semi-analytical method resulted in
very poor modal convergence for stress sensitivities. Two methods were devised to

improve this poor performance.

The first method retains the derivatives of the basis vectors in the sensitivity
equations but approximates these derivatives rather than using a very costly exact
computation. One well-known method for approximating eigenvector derivatives,
the modal method, was found to be completely ineffective because it adds no new
information to the existing modal basis. Another technique, the modified modal

method, adds a pseudo-static contribution to the eigenvectors in approximating the
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eigenvector derivatives. This technique, along with the semi-analytical method, was

found to be very effective at improving the poor accuracy of the stress sensitivities.

A second method for improving the accuracy of the stress sensitivities as a
function of number of modes is to use a mode acceleration version of the semi-
analytical method. The key to the mode acceleration method in the transient
analysis is that it supplements the modal basis with a static contribution calculated
from the complete model. The key to the mode acceleration implementation of
the semi-analytical sensitivity method is that it supplements the modal basis with
pseudo-static sensitivity terms calculated from the complete model. This technique
produced the same dramatic improvement in the accuracy of stress sensitivities as

the semi-analytical, modified modal method.

As mentioned above, computational cost was an overriding concern in consid-
ering the sensitivity analysis methods. To estimate this cost, expressions for the
number of floating point operations in each of the methods were derived. Although
this approach doesn’t include important effects such as overhead operations or disk
I/0O that would be present in a practical implementation of these methods, it does
a provide a mechanism for an approximate, coarse ranking of the methods by com-
putational cost. The overall forward difference method with fixed basis vectors was
found to be the cheapest method for all cases considered. This technique, however,
suffers from the accuracy problems mentioned above. One approach to alleviat-
ing these accuracy problems is to recalculate the modes for the perturbed model
(updated modes) in the overall forward difference method. This forward difference
method with updated modes was found to be very costly for large, models, however.
The fixed mode, semi-analytical method is only slightly more costly than the over-
all forward difference method with fixed modes, but suffers from the same accuracy

problem as the fixed mode, overall forward difference method. Two techniques with
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reasonable costs that alleviate the accuracy problem are the mode acceleration im-
plementation of the semi-analytical method and the semi-analytical method with
approximate mode shape derivatives. Of these two methods, the semi-analytical,

mode acceleration method is slightly cheaper.

Given the high accuracy of the semi-analytical, mode acceleration method for
a relatively small number of modes and its reasonable computational cost, this
appears to be the method of choice. In the three examples considered herein, this
method consistently performed as well as the much more costly, updated mode, over-
all finite difference methods. Furthermore, the insensitivity of this and the other
semi-analytical methods makes this semi-analytical, mode acceleration method es-

pecially attractive.
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Appendix
Computer Implementation

The methods for calculating sensitivities and the example problems have been
implemented using the general purpose finite element code, EAL [23]. EAL includes
general language constructs for controlling execution flow as well as general and
specific utilities for manipulating data stored as named entities in a database. It also
allows procedures (called “runstreams”) to be defined and then explicitly executed.
Most of the implementation was done using EAL runstreams. However, some parts
of the implementation could not be conveniently done using runstreams and were
coded as Fortran additions to EAL. The Fortran additions are described below. The
runstreams for the algorithms and example problems are included and described

below.
Additions to EAL

The transient response module in EAL version 312 solves the uncoupled form
of equations (2.5) using the matrix series expansion method. A modification was
made to allow equations (2.5) to be fully coupled. In the semi-analytical method,
the right-hand side, pseudo loading of equations (4.6) can be easily formed using
EAL. However, a slight modification to the transient response module was required
to permit solution of equations (4.6) with this general form of loading. In addition,
a special purpose module was added to EAL to perform the task of identifying the

critical points on each response function.
Runstream for Stepped Beam Example Problem

The runstream for the stepped beam is included to illustrate how the sensi-
tivity calculation runstreams are used. At the beginning of the runstream, the

data set XFLG ADS indicates which subset of the possible design variables will be
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considered in the sensitivity analysis. The data sets X ADS and XNAME ADS contain
the initial values and the register names of all the design variables, respectively.
Various parameters controlling the analysis and sensitivity calculations are defined
in runstream data sets TR PARAMETERS, DXDV PARAMETERS, and BACK METHOD. The
runstream data set MODEL defines the model in terms of the design variables in X
ADS. It is called before the initial dynamic analysis and at least once for each design
variable considered in the sensitivity analysis. The runstream data set DYNAM SOLN
is called once to perform the dynamic analysis of the initial model. The runstream
data set PLOT RESP illustrates the interface to a useful utility runstream TR PLOT
for automatically generating plots of response quantities as a function of time. TR
PLOT is called once for each class (e.g. accelerations) of response quantity to be
plotted. The actual sensitivity analysis is performed by calling the runstream TR

DXDV n where the n is associated with the particular sensitivity calculation method.

*CM=120000

*XQT EXTE
! SYST = SSP(4,5) $ GET SYSTEM TYPE
*XQT U1
*INF=7
*CLIB=29
s(ALL) ALL
*XQT AUS
TABLE(NI=1,NJ=9,TYPE=0) : XFLG ADS
J=1 : 1
J=5 :
J=6 : 1
J=9 : 1
=XQT Ut
»TI(X ADS)
23.5
22,
20.
18.
16.

%Y

N o © o

40.0
80.0
120.0
160.0
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*TI(XNAME ADS)

H1 : H2 : H3 : H4 : HS
XL1 : XL2 : XL3 : XL4
»(TR,PARANETERS)

QLIB=1

MNAME=CEN

NMODES=5

DT=1.0E-5

T2 = .3

DRFORMAT=DIAG
METEOD=MODES

DIDV=0

EIGEN=1

PRINT=1

YLIB=1

NCRIT=5

CONV=1.E-10
BLKSIZE=2000

NTERNS=50
*«(DXDV,PARAMETERS)
FDCH=1.0E-5
FDMCH=1.0E-6
DXMD=FIXED
*TI(BACK METHOD)

2 § DISP

1 ¢ VELOCITIES

1 $ ACCELERATIONS

1 $ REACTIONS

2 $ STRESSES

«(MODEL) END
! LEN=200.

' NEPS = 3

! NEL = NEPS*5

! NNODE = NEL + 1
*XQT AUS
TABLE(NI=1,NJ=5) : XX1
I=1 : J=1,5 : 0. "XL1" “XL2" "IL3" "XL4"
TABLE(NI=1,NJ=5) : XX2
I=1 : J=1,56 : "XL1" "XL2" "XL3" "XIL4" "LEN"
D1 = SUM(XX2 -1.0 XX1)
! RNEP = 1.0/NEPS

DELX = UNION("RNEP" D1)

=XQT TAB

START "NNODE" 1 3 4 5

JLOC

$1 0. 0. 0. 200. 0. 0. "NNODE"
1J=1:"!'X=0.0

'I1 =1 : ' N1 =5
sLABEL &

! DELX = DS,1,"I1",1(1 DELX AUS 1 1)
! 12 =1 : ! N2 = NEPS
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=LABEL 8

"J" IIXII o.o o.o

' J=JJ+1: ¢t X=1X+DELX
*JGZ,-1(N2,8)

' 11 =711 + 1

*JGZ,-1(N1,5)

“NNOD*" "LEN" 0. O.

CON 1

ZERO 1,2,6 : 1
MATC

1 30.+6 .3 .3

BA

RECT 1 1.20 “H1"
RECT 2 1.10 "H2"
RECT 3 1.00 “H3"
RECT 4 .90 "H4"
RECT 6 .85 "H5"
RECT 6 1.0 20.0
MREF

11211.0
*XQT ELD

E21

' N=5

' I =1

'N1 =1
*LABEL 20

NSECT = "I"

! N2 = N1 + 1

"Ni" |IN2" 1 IINEPS“
! N1 = N1 + NEPS

1 IT=1+1
»JGZ,-1(N,20)

*XQT E

RESET G=386.

*«XQT EKS

*XQT TAN

*XQT K

*XQT M

RESET G=386.

*XQT AUS

R = RIGID(1)
DEFINE R6é = R AUS 1 1 6,6
APPL FORC = PROD(-1.0 CEM R6)
*END
+=(DYNAM,SOLN) END
*DCALL (TR, VECTORS)
*«XQT U1

*TI(SEL DISP)
“NNODE" 2

*TI(SEL VELO)
*NNODE" 2
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*TI(SEL ACCE)

“NNODE" 2

*TI(SEL STRE)

E21 1 152110

*«XQT AUS

$ DEFINE SOME MODAL DAMPING
TABLE(NI=1,NJ="NMODES") : DRAT

I=1 : J=1,"NNODES" : .005
*DCALL(SQUARE LOAD) RTIME=.18 RANG=10.0
*DCALL(TR,MAIN)

* END
»(SQUARE,LOAD) END

*XQT AUS

! RT2 = RTIME/2.0

! EPS = 0.0

! RT2M = RT2 - EPS

! RT2P = RT2 + EPS

! RTM = RTIME - EPS

! D2R = 3.1415926/180.

! RRAD = RANG*D2R

t AMP = 4.0*RRAD/RTIME/RTIME

! MAMP = -AMP

TABLE(NJ=6) : TIME

J=1,6 : 0. "RT2M" "RT2P" "RTM" "RTIME" 10000.0
TABLE(NJ=8) : Ci

J=1,8 : "AMP" "AMP" "MAMP" “MANP" 0.0 0.0
*END
«(PLOT RESP) END
*«XQT DCU

CHANGE 1 A AUS MASK MASK HIST CA 1 1
*XQT AUS

ALPHA : FTITLE

1’ HISTORY OF FORCE MULTIPLIER G(T)

ALPHA : DTITLE
1’ TIP DISPLACEMENT HISTORY FOR CANTILEVER BEAM
ALPHA : TVTITLE

1’ TIP VELOCITY HISTORY FOR CANTILEVER BEAM
ALPHA : TATITLE

1* TIP ACCELERATION HISTORY FOR CANTILEVER BEAM
ALPHA : STITLE

1> BENDING STRESS AT THE ROOT FOR THE CANTILEVER BEAM

! TLIB = 15

*IQT U1

=(TRPLOT OPTIONS)
t YNAME = °CA

! TITLE = ’FTITLE
¢t ID = 1
«DCALL(TR,PLOT)
*XQT U1

*«(TRPLOT OPTIONS)
! YNAME = ’DISP
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! IDJK = ’'DISP
! TITLE = 'DTITLE

! ID = "NMODES"
*DCALL(TR,PLOT)

*XQT U1

*(TRPLOT OPTIONS)

t YNAME = ’VELO

' IDJK = 'VELO

! TITLE = 'TVTITLE

* ID = "NMODES"
*«DCALL(TR,PLOT)

*XIQT U1

«(TRPLOT OPTIONS)

! YNAME = 'ACCE

! IDJK = ’*ACCE

' TITLE = *TATITLE

! ID = "NMODES"
*DCALL(TR,PLOT)

*XQT U1

«(TRPLOT OPTIONS)

! YNAME = ’STRE

* IDQ = ’STRE

! TITLE = ’STITLE

! ID = "NMODES"
*DCALL(TR,PLOT)

*END

*RGI

*DCALL(TR, PARAMETERS)
*DCALL(SENS,DVUP)
*DCALL(MODEL)
*«DCALL(DYNAM,SOLN)
$*DCALL(PLOT,RESP)

*«IF("DXDV" NE 0): *DCALL(TR,DXDYV,"DXDV")
*ALL

«IF("SYST" EQ CDC ): *PRT(ALL)
*IF("SYST" EQ CNVX): *PRT(ALL)
*DCALL(ALL)

*XQT EXIT

Runstreams for Sensitivity Methods

Runstream TR MAIN
This is the main runstream for performing the transient response analysis and
is based on a similar runstream produced by EISI. It is used only for the transient

analysis of the initial model and not in the sensitivity calculations.
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$ (TR MAIN) - MAIN DRIVER FOR TRANSIENT RESPONSE ANALYSIS

XQT U1
REGISTER STORE(29 TR REGISTERS 1 1)
REGISTER RETR (29 TR REGISTERS 1 1)
RGI
DEFAULT REGISTERS:
QLIB = 2 $ SOURCE FOR EXCITATION, DESTINATION LIB FOR RESPONSE

L IR JEE JER NN

VLIB =1 $ SOURCE LIB FOR VIBR MODE AND VIBR EVAL DATASETS
VSET =1 ¢ USE "VLIB" VIBE MODE "VSET" "VCON" FOR THE RITZ
VCON =1 $ FUNCTIONS

KNAME = X $§ STIFFNESS MATRIX

MNAME = DEM § MASS MATRIX

DAMP = DAMP § NAME OF SPAR FORMAT DAMPING MATRIX

FSET =1 $ EXCITATION SET NUMBER

NAME = AUS § 2ND WORD OF TIME "NAME" AND CA "NAME"

DT = 0. $ SET TIME INCREMENT

T2 = 0. $ FINAL INTEGRATION TIME

DRFORM= DIAG $ FORMAT FOR THE REDUCED MATRICES (DIAG,FULL,RITZ)
DRMETH= 0 $ TIME INTEGRATION METHOD (0=MSE)

NTER = 50 § SET NUMBER OF TERMS IN MATRIX SERIES EXPANSION
NMODES= 0 $ NUMBER OF MODES USED IN DYNAMIC ANALYSIS (DEFAULT=ALL)

BLKSIZ= 6000 $ BLOCK SIZE FOR OUTPUT DATA SETS
EIGEN = 0  $ EIGENALUE ANALYSIS OF DAMPED SYSTEM
PRINT = 0  $ PRINT FLAG FOR DTEX
OPT=0, PROC=MAIN, NERR=0
» DCALL,OPT (TR PARAMETERS)
! ZERO = SSP(0,10)
«IF("NMODES" EQ 0): ! NMODE=TOC,NBLOCK("VLIB" VIBR MODE "VSET" "VCON")

$
$ COMPUTE DATASETS REQUIRED FOR DR/DTEX, /TR1, AND /BACK:
$
* CALL (TR PREP)
$
$ COMPUTE THE MODAL RESPONSE:
$
* XQT DRX
»« JF("DT" GT 1.E-20): »GDTO 20
DTEX(INLI="QLIB",N2="NAME",0UTL="QLIB",EIGEN="EIGEN",>
PRINT="PRINT")
*GOTO 30
*LABEL 20
DTEX(INLI="QLIB",N2="NAME",0UTL="QLIB",DT="DT",>
NTER="NTER",EIGEN="EIGEN" ,PRINT="PRINT")
*LABEL 30
TR1 (INLIB="QLIB",N2="NAME",CASE="FSET",ALIB="QLIB">
QXLIB="QLIB",QX1LIB="QLIB",QX2LIB="QLIB",>
T2="T2",LB="BLKSIZ")
$
$ BACK TRANSFORMATION:
$
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*XQT AUS
! NBCK = §

TABLE(NI="NBCK", NJ=1, TYPE=4) : "QLIB" BACK LIST
J=1 : DISP VELO ACCE REAC STRE

$

EXIT

' I=1:"!N=NBCK

*LABEL 50

! BKMETH = DS,1,"I",1("QLIB" BACK METH 1 1)

! NX = DS,"I",1,1("QLIB" BACK LIST 1 1)

! IERR = TOC,IERR("QLIB" SEL "NM" MASK MASK)
»IF("IERR" EQ 0): #CALL (TR "NM" "BKMETH")

1 I =T +1

*JGZ,-1(N,50)

$

$ EXIT:

* XQT U1

* REGISTER RETRIEVE(29 TR REGISTERS 1 1)

*END
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Runstream TR PREP

This runstream is used to define the reduced equations for the transient analysis
and also prepare data for the back transformation phase. It is based on an EISI
runstream of the same name. It is used only for the transient analysis of the initial

model and not in the sensitivity calculations.

L ]

1QTC Ut
RGI

*

PROC=PREP, NERR=0, MOTI=MOTI, FORC=FORC

CHECK FOR THE REQUIRED DATASETS AND DETERMINE THE TYPE OF EXCITATION:
!TYPE=0 FOR APPLIED FORCE. !TYPE=1 FOR APPLIED DISPLACEMENT.

®w % N »

‘TYPE=2
{ IERR=TOC,IERR("QLIB" APPL FORC "FSET" MASK)
= IF("IERR" NE 0): *GO TO 100
!TYPE=0: !FNAME=’FORC $$ APPLIED FORCE EXCITATION
*« LABEL 100
'TERR=TOC,IERR("QLIB" APPL MOTI "FSET" MASK)
« IF("IERR" NE 0): *GO TO 200
= IF("TYPE" EQ 0): !NERR=1 $$ FORCE & DISP SPECIFIED $ NERR=1
!TYPE=1: !FNAME=’MOTI  $$ APPLIED DISPLACEMENT EXCITATION
« LABEL 200
« IP("TYPE" EQ 2):!NERR=2 $$ NO EXCITATION SPECIFIED $ NERR-2
* IF("NERR" NE 0):#CALL (TR ERROR)
'IERR=TOC,IERR("VLIB" VIBR MODE "VSET" "VCON"): !NERR=3

» IF("IERR" NE 0):«CALL (TR ERROR) $ NERR=3
'TERR=TOC ,IERR("VLIB" VIBR EVAL "“VSET" "“VCON"): !NERR=4

* IF("IERR" NE 0):+=CALL (TR ERROR) $ NERR=4
' TERR=TOC ,IERR("QLIB" TIME "NAME" “FSET" MASK): !'NERR=§

* IP("IERR" NE 0):+CALL (TR ERROR) $NERR=H
‘TERR=TOC,IERR("QLIB" CA  "NAME" "FSET" MASK): !NERR=6

= IF("IERR" NE 0):»CALL (TR ERROR) $NERR=6

$

$ COMPUTE XTMX, XTKX, XTDX, & XTF FOR DR/DTEX & TR1:

$

{TERR=TOC,IERR(1 INV "KNAME" "VCON" MASK)
IF (“IERR" EQ 0):#GO TO 250
* XQT DRSI
RESET K="KNAME",CON="VCON"
» LABEL 250
$
*XQT AUS

»*

OUTLIB="QLIB": INLIB="QLIB"
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* IF("TYPE"
* LABEL 300
$

! IDMD = TO
*«IF("IDMD"

*LABEL 400

'TERR=TOC,IERR("QLIB" XTMX "NAME" MASK MASK)

* IF("IERR"
$

DEFINE X="VLIB" VIBR MODE “VSET"
DEFINE E="VLIB" VIBR EVAL “VSET"
DEFINE F="QLIB" APPL "FNAME" "FSET"
DEFINE K= 1 "KNAME"

DEFINE M= 1 "MNAME"

EQ 0): *GO TO 300
KS=PROD{“KNAME" -1. F): DEFINE F=KS

XTF "NAME" “FSET"= XTY(X,F)

C,IERR("VLIB" DRAT MASK MASK MASK)
NE 0): »GOTD 400

DEFINE D = "VLIB" DRAT

OMEG = SQRT(E)

DMPD = PROD(2.0 D OMEG)

EQ 0): =GO TO 500

*CALL(TR,REDM)

* LABEL 500
$
$ COMPUTE (
$

!TERR=TOC,IERR("QLIB" STAT DISP "FSET" "“VCON")

IF("IERR"
IQT SSoL

*

* LABEL 700
$

*LABEL 1000
*END

“QLIB" STAT DISP "FSET" "VCON"):

EQ 0): *G0 TO 700

"vcou"
"YCON"

RESET SET="FSET",CON="VCON",QLIB="QLIB"
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Runstream TR DISP

The two TR DISP runstreams do the back transformation for displacements.
TR DISP 1 performs the back transformation using the mode displacement method
and TR DISP 2 uses the mode acceleration method. This naming convention is
used for the other runstreams that perform the back transformation operation for
other response quantities. The TR DISP runstreams and companion runstreams for
velocities, accelerations, and stresses perform the back transformation at all time
steps. Accordingly they are used only in the dynamic analysis of the initial model

and not in the sensitivity analysis.

S - -
$ (TR DISP 1) - BACK TRANSFORMATION FOR DISPLACEMENTS
$ MODE DISPLACEMENT METHOD
‘ ..................................................................
*XQTC AUS

OUTLIB="QLIB": INLIB="QLIB"

DEFINE IDJK = "QLIB" SEL DISP

DEFINE X = "VLIB" VIBR MODE "VSET" "VCON"

TMAT VMOD=SVTRAN(IDJK,X)
*XQT DRX

BACK(LRZ="BLKSIZE")

T = +1.0 "QLIB" TMAT VMOD : Y = "QLIB" QX

= "QLIB" HIST DISP

EXT = "QLIB" EXT DISP "FSET"
*END
$ e m e ——————————————
$ (TR DISP 2) - BACK TRANSFORMATION FOR JOINT DISPLACEMENTS
$ USING MODE ACCELERATION METHOD
L e T T b TP -
$

$ TRANSIENT RESPONSE: BACK TRANSFORM FOR JOINT DISPLACEMENTS
$ APPLICABLE FOR APPLIED FORCE OR DISPLACEMENT EXCITATION
$
$ REGISTERS: QLIB, NAME, FSET, VCON
$
* XQT AUS
! ID = TOC,IERR("QLIB" XTDX MASK MASK MASK)
OUTLIB="QLIB": INLIB="QLIB"
DEFINE E = “VLIB" VIBR EVAL
ROMG = RECIP(E)
DEFINE IDJK "QLIB" SEL  DISP
DEFINE IS = "QLIB" STAT DISP “FSET" "VCON"
DEFINE X "YLIB* VIBR NODE 1 "VCON"
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DEFINE DACC = TMAT DACC
XOME = CBD(X,ROMG)
TMAT DACC = SVTRAN(IDJK,XOME)
TMAT DS = SVTRAN(IDJK,XS)
«INZ(ID,30)
$ DAMPING TERM
! NJ = TOC,NJ("QLIB” XTDX MASK MASK MASK)
! NINJ = TOC,NINJ("QLIB" XTDX MASK MASK MASK)
«IF("NJ" NE "NINJ"): *GOTO 10
$ MODAL DAMPING
XOMD = CBD(XOME,XTDX)
TMAT DVEL = SVTRAN(IDJK,XOMD)
*GOTO 30
*LABEL 10
$ GENERAL DAMPING
TMAT DVEL = RPROD(DACC,XTDX)
*LABEL 30
* XQT DRX
BACK (LRZ="BLKSIZE")
T = ¢1. "QLIB” THAT DS : Y = "QLIB" A “NAME" “FSET"
»IF("ID" EQ 0): T=-1. “QLIB" TMAT DVEL : Y="QLIB" QX1 "NAME" "FSET"
T = -1. "QLIB” TMAT DACC : Y = “QLIB" QX2 "NAME" “FSET"
z "QLIB" HIST DISP "FSET"
EXT "QLIB" EXT DISP "FSET"

=END

Runstream TR VELO

§- e —meem e ememee e e e m e e mmmmmm o m e
$ (TR VELO 1) - BACK TRANSFORMATION FOR VELOCITIES
s MODE DISPLACEMENT METHOD
$-——cmmm e e mmemm———m—— e emmmmmm—— e m
*XQTC AUS
OUTLIB="QLIB": INLIB="QLIB"
DEFINE IDJK = "QLIB" SEL  VELO
DEFINE X = "VLIB" VIBR MODE "VSET" "VCON"
TMAT VVEL=SVTRAN(IDJK,X)
*XQT DRX
BACK(LRZ="BLKSIZE")
T = +1.0 "QLIB" TMAT VVEL : Y = "QLIB" QX1
Z= “QLIB" HIST VELO
EXT = “QLIB" EXT VELO "FSET"
«END
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Runstream TR ACCE

$ (TR ACCE 1) - BACK TRANSFORMATION FOR ACCELERATIONS

s MODE DISPLACEMENT METHOD
$ -— — -
*XQTC AUS
OUTLIB="QLIB": INLIB="QLIB"
DEFINE IDJK = "QLIB" SEL  ACCE
DEFINE X = "VLIB" VIBR MODE "VSET" "VCON"
TMAT VACC=SVTRAN(IDJK,X)
*XQT DRX
BACK(LRZ="BLKSIZE")
T = +1.0 "QLIB" TMAT VACC : Y = "QLIB" QX2
Z= "QLIB" HIST ACCE
EXT = "QLIB" EXT ACCE "FSET"
»END

146



Runstream TR STRESS

$ (TR STRESS 1)

‘- — e = = - - —— -
$
$ MODE DISPLACEMENT STRESS BACK TRANSFORMATION
$
»XQT ES

RESET OPER=T

IDQ= "QLIB" SEL STRESS

U = "VLIB" VIBR MODE 1 "VCON" 1,"NMODE"

T = “QLIB* TMAT VSTRE "PSET"
*XQT DRX

BACK(LRZ="BLKSIZE")
T = +1. "QLIB" TMAT VSTRE "FSET" : Y = "QLIB" QX "NAME" "FSET"
Z= "QLIB" HIST STRESS "FSET"
EXT = "QLIB" EXT STRESS “"FSET"
sEND

$ TRANSIENT RESPONSE: BACK TRANSFORM FOR ELEMENT STRESSES
$ APPLICABLE FOR APPLIED FORCE OR DISPLACEMENT EXCITATION
$
$ REGISTERS: QLIB, NAME, FSET, VCON
$
* XQT AUS
! ID = TOC,IERR("QLIB"” XTDX MASK MASK MASK)
OUTLIB="QLIB": INLIB="QLIB"
DEFINE E = "VLIB" VIBR EVAL
ROMG = RECIP(E)
DEFINE IDJK

"QLIB" SEL  DISP

DEFINE XS = "QLIB* STAT DISP "PSET" "VCON"
DEFINE X = "YLIB" VIBR MODE 1 "VCON"
XOME = CBD(X,ROMG)

*JINZ(ID,30)

$ DANMPING TERM
! NJ = TOC,NJ("QLIB" XTDX MASK MASK MASK)
! NINJ = TOC,NINJ("QLIB" XTDX MASK MASK MASK)
*IF("NJ" NE "NINJ"): *GOTO 10
$ MODAL DAMPING
XOMD = CBD(XOME,XTDX)
*«GOTO 30
«LABEL 10
$ GENERAL DANPING
XOMD=CBR(XOME, XTDX)
»LABEL 30
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*XQT ES
RESET OPER=T
IDQ = "QLIB" SEL STRESS
= “"QLIB" STAT DISP "FSET" "VCON"
«IF("ID" EQ 0): U= "QLIB" XOMD :
U= "QLIB" XOME :

* XQT DRI
BACK(LRZ="BLKSIZE")
T=+1., "QLIB" TMAT SF : Y =
»IF("ID" EQ 0): T=-1. "QLIB" TMAT SD : Y =
T = -1. "QLIB" TMAT SP : Y =
Z = "QLIB" HIST STRE "FSET"
EXT =  "QLIB" EXT STRE "FSET"
*END

: T= “QLIB" TMAT SF

T
T

1] QLIB "
"QLIB ”"
”" QLIB "

“QLIB" TMAT SD
"QLIB" TMAT SP

A "NAME" "FSET"
QX1 "NAME" "FSET"
QX2 "NAME' "FSET"
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Runstream TR ERROR

‘ __________________________________________________________________

$ (TR ERROR)

‘ - e e e e s

$

$ THIS PROCEDURE PRINTS FATAL ERROR MESSAGES FOR THE TR PROCS.

$

* XQT U3
RP2: NUMBER OF FORMATS=10
FORM 1°(33H1#** TR FATAL ERROR: PROC, NERR= ,A4,1H,,Ia)
PRINT(1) "PROC" "NERR"

* GO TO "PROC"

$

* LABEL PREP

$
FORM 1°(10X,47H .BOTH (APPL FORC FSET ) AND (APPL MOTI FSET )/

’ 10X,46HARE SPECIFIED IN QLIB , ONLY ONE IS PERMITTED)
FORM 2’(10X,48ENEITHER (APPL FORC FSET ) NOR (APPL MOTI FSET )/
* 10X,20HIS PRESENT IN QLIB )

FORM 3°(10X,47HVIBR MODE VSET VCON IS NOT PRESENT IN VLIB )
FORM 4°(10X,47HVIBR EVAL VSET VCON IS NOT PRESENT IN VLIB )
FORM 6°(10X,43HTIME NAME FSET IS NOT PRESENT IN QLIB )
FORM 6°(10X,43HCA NAME FSET IS NOT PRESENT IN QLIB )
PRINT("NERR")

$

* GO TO FINIS

$

« LABEL FINIS

= XIQT U1

* SHOW

* IQT DCU
TOC 1: TOC "QLIB": TOC "VLIB"

* XQT EXIT

*«END
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Runstream TR RITZ

This runstream calculates RWL vectors following equations (2.25) through
(2.29). Then the reduced is system is optionally uncoupled by solving the reduced

order eigenproblem. This runstream is substantially based on one written at EISI.

$ (TR RITZ)
$ e memmmm— e emmeees— e ememmme-———————————
* XQT U1
$
$$¢ REGISTERS: MAXHZ, AFLIB, VLIB, MNAME, NMD, SCALE
$
* REGISTER STORE (29 REGISTER HOUSE 1 1)
* REGISTER RETR (29 REGISTER HOUSE 1 1)
'TERR=TOC IERR(1 INV K MASK MASK)

#ONLINE=0
« IF("IERR" EQ 0): *GO TO 109
XQT DRSI
LABEL 109
XQT SSOL

RESET QLIB="AFLIB"
XQT AUS

OUTLIB=10: INLIB=10

DEFINE M=1 "MNAME"

* ® &

*

SCALE THE FIRST VECTOR

DEFINE X="AFLIB" STAT DISP 1 MASK 1
MX=PROD(M,X)

XTHX=XTY(X,MX)

RECI=RECI(XTMX)

SCAL=SQRT(RECI)

11 RITZ VECT=CBD(X,SCAL)

DEFI RITZ=11 RITZ VECT

12 MXx=PROD(M,RITZ)

{NSET=TOC NBLOCKS("AFLIB" STAT DISP 1 MASK)
IN=NSET-1: !Ni=1 : !N2=0

IF ("N" EQ 0): *GO TO 104

M-ORTHONORMALIZE VECTORS 2 THROUGH NSET

* B N *

LABEL 105
IN1=N1+1: !N2=N2+1
DEFI U="AFLIB" STAT DISP 1 MASK "N1"
DEFI MX=12 MX MASK MASK MASK 1 "N2"
XTMU=XTY(MX,U)
DEFI X=11 RITZ VECT MASK MASK 1 "N2"
A=CBR(X,XTMU)
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-

JGZ -1

» LABEL 104
* XQT DCU

ERASE
NDO=NMD-NS

* IF ("NDO"

*

*® & O 0 6

XQT AUS
TABLE(
J=1: »

GENERATE REMAINING VECTORS ORTHONORMAL TO STATIC SOLUTION RITZ VECTORS

LABEL 1000
xqr

19T

IqQr

U1=SUN(U,-1. 1)
MU=PROD(M,U1)
UTHU=XTYD(U1,MU)
RECI=RECI(UTNU)
SCAL=SQRT(RECI)
VECT=CBD(U1,SCAL)
11 RITZ VECT=UNION,U(VECT)
TEMP=PROD (X, VECT)
12 MX =UNION,U(TENP)

(N 105)

10
ET: !SET=NSET+1: !SET1=NSET
LE 0): »GO TO 1002

NJ=1): 13 SCALE
SCALE"

AUS
OUTLIB=10: INLIB=10

DEFINE M=1 "MNAME"

DEFINE X=11 RITZ VECT MASK MASK "SET1"
TEMP=PROD (M, X)

NORM=NORM(TEMP)

DEFI SCALE=13 SCALE

APPL FORC=CBD(NORM,SCALE)

IF(”SET1" EQ "NSET"): GO TO 106

12 MX=UNION,U(TENP)

LABEL 106

SSOL

RESET QLIB=10

AUS

OUTLIB=10: INLIB=10

DEFI U=STAT DISP

DEFI MX=12 MX MASK MASK MASK 1 "SET1"
XTMU=XTY(MX,U)

DEFI X=11 RITZ VECT MASK MASK 1 "SET1"
A=CBR(X,XTMU)

U1=SUM(U,-1. A)

DEFI M=1 "MNAME"

MU=PROD(M,U1)

UTMU=XTYD(U1,MU)

RECI=RECI(UTMU)

SCAL=SQRT(RECI)

YECT=CBD(U1,SCAL)

11 RITZ VECT=UNION,U(VECT)

{SET1=SET: !SET=SET+1
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» XQT DCU
ERASE 10
* JGZ,-1(ND0,1000)
= LABEL 1002
*«IF("DRFORMAT" EQ DIAG): *GOTO 10020
*« XQT AUS
DEFI X=11 RITZ VECT
“YLIB" VIBR MODE 1 1=UNION(X)
TABLE(NI=1,NJ="NMD") : VIBR EVAL
sRETURN
sLABEL 10020
* XQT AUS
OUTLIB=10: INLIB=10
DEFINE K=1 K: DEFI M=1 "MNAME"
DEFINE X=11 RITZ VECT
1JCODE=10000
| NMODE=NMD
KX=PROD(K,X): SYN K 10000 "NMODE"
MX=PROD(M,X): SYN M 10000 "NMODE"
! ZERD=NMODE-1
» JZ (ZER0,1003)
*XQT DCU
T0C 10
* XQT STRP
RESET SOURCE=10, DEST=10, FRQ2="MAXHZ"
JGZ (ZERD,1004)
LABEL 1003
IQT AUS
OUTLIB=10: INLIB=10
1K=DS 2 1 1(10 SYN K MASK MASK)
'M=DS 2 1 1(10 SYN M MASK MASK)
'EVAL=K/M
TABLE(NI=1,NJ=1): SYS EVEC: J=1: 1.0
TABLE(NI=1,NJ=1): SYS EVAL: J=1: "EVAL"
LABEL 1004
XQT AUS
OUTLIB=10: INLIB=10
DEFINE E=SYS EVEC
DEFI X=11 RITZ VECT
X ORTH 1 1=CBR(X,E)
DEFINE X=X ORTH 1 1
“VYLIB" VIBR MODE 1 1=UNION(X)
DEFINE E=SYS EVAL
"YLIB" VIBR EVAL 1 1=UNION(E)
“YLIB" VIBR HZ 1 1=SQRT(.0253303 E)
*ONLINE=1

XTYS(X,KX)
XTYS(X,MX)

® # ®

*

* XQT DCU
PRINT "VLIB" VIBR HZ 1 1

* XQT U1

* REGISTER RETR (29 REGISTER HOUSE 1 1)

*END
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Runstream TR REDM

This is a utility runstream for generating the reduced equations given a set
of basis vectors. Depending on the input register DRFORMAT the equations can be
coupled or uncoupled. If the equations are uncoupled, it is assumed that #TM &
is the identity matrix and ®TK® is a diagonal matrix with the eigenvalues along
the diagonal.

$ (TR REDM) - FORM REDUCED K AND M MATRICES FOR TRANSIENT RESP.

‘ ______________________________________________________________
$

$ REGISTERS:

$ DRFO = 'FULL, ’RITZ, OR ’DIAG

$ NMODE = NUMBER OF MODES

$ MNAME = MASS MATRIX NAME

$ VLIB = LIBRARY FOR VIBRATIONAL MODES AND FREQS

$ QLIB = DESTINATION LIBRARY FOR MATRICES

$

*XQTC AUS

OUTLIB="QLIB"
DEFINE X = "VLIB" VIBR MODE 1 1 1,"NMODES"
DEFINE E = “VLIB* VIBR EVAL 1 1

DEFINE DAMP = 1 DAMP SPAR

DEFINE DMPD = 1 DNPD

! IDSP = TOC,IERR(1 DAMP SPAR MASK MASK)

! IDMD = TOC,IERR(1 DMPD MASK MASK MASK)

! DRFO

«IF("DRFO" NE FULL): *GOTO 100
$
$ FULL MATRICES, X IS A SET OF EIGENVECTORS
$

! N = NMODES

' I =1

TABLE(NI="NMODES" ,NJ="NMODES"”) : XTMX
»LABEL 10

I="I" : J="I" : 1.0

' I =1 +1
#JGZ,-1(N,10)

! N = NMODES

1T =1

TABLE(NI="NKODES",NJ="NNODES") : XTKX
»LABEL 20

! X = DS,"I",1,1("VLIB" VIBR EVAL 1 1)
I=||I" s J:"IN H IIKII

1T =1+1
*JGZ,-1(N,20)
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*IF("IDSP" NE 0): *GOTO 85

OUTL=22 : INLI=22

DX = PROD(DAKP,X)

"QLIB" XTDX = XTY(X,DX)

«LABEL 85

«IF("IDMD" NE 0): *RETURN

! N = NMODES : ' I = 1

*«IP("IDSP" NE 0): TABLE(NI="NMODES",NJ="NMODES") : "QLIB" XTDX
«IF("IDSP" EQ 0): TABLE,U : "QLIB" XTDX
*LABEL 90

' D = DS,"I",1,1("VLIB" DKPD MASK MASK MASK)
I=III" H J="IN H IIDII

1I1=1I4+1
+JGZ,-1(N,90)

*RETURN
*LABEL 100
$

$ FULL REDUCED MATRICES (X NOT EIGENVECTORS)
$

«IF("DRFO" NE RITZ): »GOTO 200
OUTLIB=22 : INLIB=22

DEFINE K = 1 K SPAR

DEFINE M = 1 "MNAME"

KX = PROD(K,X)

MX = PROD(M,X)

"QLIB" XTKX = XTY(X,KX)

"QLIB" XITMX = XTY(X,MX)

*«IF("IDSP" NE 0): *GOTO 130

OUTL=22 : INLI=22

DX = PROD(DAMP,X)

"QLIB" XTDX = XTY(X,DX)

»LABEL 130
»«IF("IDMD" NE 0): »RETURN
'! N= NMODES : ' I =1

*IF("IDSP" NE 0): TABLE(NI="NMODES",NJ="NMODES") : "QLIB" XTDX
*IF("IDSP" EQ 0): TABLE,U : "QLIB" XTDX

«LABEL 140

1D = DS,"I",1,1("VLIB" DMPD MASK MASK MASK)

I=IIIII : J=llIll : "D"

1 I =1+1

*JGZ,-1(N,140)
*RETURN

«LABEL 200

$

$ SIMPLE DIAGONAL CASE (X EIGENVECTORS)

$

TABLE(NI=1,NJ="NMODES") : XTKX
TABLE(NI=1,NJ="NMODES") : XTMX
«IF("IDSP" NE 0): *GOTO 210
DUTL=22 : INLI=22

DX = PROD(DAMP,X)

TRAN(SOUR=E)
J=1,"NMODES" : 1.0
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»QLIB" XTDX = XTYD(X,DX)

*LABEL 210

»IF("IDMD” NE 0): *RETURN

! N=NMODES : ! I = 1

*IF("IDSP" NE 0): TABLE(NI=1,NJ="NMODES") :
«IF("IDSP" EQ 0): TABLE,U : "QLIB" XTDX
*LABEL 220

*D = DS,”1",1,1("VLIB" DMPD MASK MASK MASK)
I=1 H ="I" : "D"

1T =1+1

*JGZ,-1(N,220)

*RETURN

*END

"QLIB" XTDX
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Runstream TR PLOT

This is a utility runstream for producing plots of response quantities as a func-

tion of time. Its use is demonstrated in the stepped beam example runstream.

$ (TR PLOT)

»XQT U1

$

$ PLOTS TRANSIENT, TIME HISTORY DATA PRODUCED BY DR/TR1
$

*REGISTER EXCEPTIONS TLIB

*REGISTER STORE (“TLIB" TR REG 1 1)

*REGISTER RETREIVE("TLIB" TR REG 1 1)

$ DEFAULT REGISTER ASSIGNMENTS
t INLIB=1

! IDJK = ’NONE

! IDQ = ’NONE

! YNAME = ’DISP

t N3 =1

! TITLE = 'TITLE

' ID = 1

! OPT=0

*DATA,OPT(TRPLOT OPTIONS)
$

! NS1 = TOC,NI("INLIB" HIST "YNAME"" N3" MASK)

! NW1 = TOC,NWDS("INLIB" HIST "YNAME" "N3" MASK)

! NBLK = TOC,NBLOCKS("INLIB" HIST "YNAME" "N3" MASK)
! NJBL = TOC,NJ("INLIB" HIST "YNAME" "N3" MASK)

' NS1 : ¥ NW1 : ! NBLK : ! NJBL

! NSTE=NW1/NS1i

! NPPT=NSTE

¢ DT=DS,1,1,1("INLIB" DT MASK MASK MASK) ¢ TIME STEP

! TIDQ = TOC,IERR("INLIB" SEL "IDQ" MASK MASK)
! TIDJ = TOC,IERR("INLIB" SEL "IDJK" MASK MASK)
! TTIT = TOC,IERR("INLIB" "TITLE" MASK MASK MASK)
*0NLINE=0
=XQT AUS
TABLE(NI=1,NJ="NPPT") : “TLIB" XTAB
DDATA="DT"
J=1,"NPPT" : 0.0
$
$ LOOP OVER ALL RESPONSE QUANTITIES
$
! NJLS = 1-NBLK#NJBL + NSTE $ NJ OF LAST BLOCK
! KBLK = NBLX - 1
! DBLS = KBLK*NJBL
! JBLK = KBLK
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¢ NSM1 = NS1 - 1
! SBASE = 0

! NJLS

1 I1=1 : ! N1=NS1
*«LABEL L1
DEFINE Y = "INLIB" HIST "YNAME" "N3" i 1,"JBLK"
TABLE(NJ="NSTE") : "TLIB" YTAB AUS "I1"
»JZ(KBLK,L2)
TRAN(SOUR=Y,SBAS="SBAS",SSKIP="NSM1",ILIM=1,JLIN="NJBL")
*LABEL L2

DEFINE Y = "INLIB" HIST "YNAME" "N3" 1 "“NBLK","NBLK"
TABLE,U : "TLIB" YTAB AUS "It"
TRAN(SOUR=Y,SBAS="SBAS",SSKIP="NSM1" , ILIN=1,JLIN="NJLS" ,DBAS="DBLS")
! SBASE = SBASE + 1

! T1=I1+1
»JGZ,-1(N1,L1)
$
$ GENERATE AN X,Y PLOT FOR EACH RESPONSE QUANTITY
$
*ONLINE=1
«XQT PXY

RESET DEVICE=META

RESET NDEV=4014

FONT XNUM=1 : FONT YNUM=1

FONT XLAB=1 : FONT YLAB=1

FONT TEIT=1

X = "TLIB" XTAB

XLABEL’> TIME (SECONDS)
=INZ(TIDJ,110)

YLFORMAT, 72>

'(4H J =,12,9H JOINT = ,I5,8H COMP = ,I2,8H HIST = ,A4,6H ID = ,I6)
*LABEL 110
*JNZ(TIDQ,120)

YLFORMAT,72>

»(4H J= ,12,1X,A4,6H GRP= ,12,6H IND= ,15,7H COMP= ,A4,5H ID= ,I6)
*LABEL 120

XAX1S=3,5,10

YAX1S=4,5,10

TP05=0,0

! I1=1 : ! N1=NSi
»JNZ(TTIT,L3)

TEXT = "TITLE"
*LABEL L3
ADVANCE

BOUNDARIES = .01 .99 .04 .1
«JNZ(TTIT,L4)

PLOT TEXT

sLABEL L4
BOUNDARIES=.01 .99 .16 .85

Y = "TLIB" YTAB AUS "I1*
*JNZ(TIDJ,210)
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¢t JOINT = DS,1,"I1*,1("INLIB* SEL “IDJK" MASK MASK)
! COMP DS,2,"I1",1("INLIB" SEL "IDJK" MASK MASK)
YLABEL "I1" *JOINT" "COMP" "YNAME" "ID"
*LABEL 210
«JNZ(TIDQ,220)
! ENAME = DS,1,"I1",1("INLIB" SEL "IDQ" MASK MASK)
¢ EGRP = DS,2,"I1",1("INLIB" SEL "IDQ" MASK MASK)
! EINDX = DS,3,"I1",1("INLIB" SEL "IDQ" MASK MASK)
! ECOMP = DS,4,"I1",1("INLIB" SEL “IDQ" MASK MASK)
YLABEL "Ii" “ENAME" "EGRP" "EINDX" “ECOMP" "ID"
sLABEL 220
INIT
PLOT CURV
! T1=I1+1
*JGZ,-1(N1,L3)
*XQT U1
*REGISTER RETRIEVE ("TLIB"” TR REG 1 1)
»FREE "TLIB"
*RETURN
*END
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Runstream TR VECTORS

This runstream generates basis vectors by calling the system eigensolver, or
calling runstream TR RITZ, or using the static mode method, or by other experi-

mental techniques.

¢ (TR,VECTORS) - COMPUTE VECTORS FOR USE IN DYNAMIC ANALYSIS

*XQT AUS
R = RIGID(1)

CR = PROD("MNAME",R)

Z = NDDF,1(CR)

! NDDF = DS,1,1,1(1 Z AUS 1 1)

! NDDF

+IF("METHOD" NE MODE): *GOTD 100
*XQT E4

RESET NMODES="NMODES"

RESET N="MNAME"

RESET NDDF="NDDF"

RESET CONV="CONV"

*DCALL,O0PT(E4 PARAMETERS)

*GOTO 200

$

sLABEL 100

*«IF("METHOD" NE RITZ): »GOTO 105
! MAXHZ = 1.03E+10

! NMD = NMODES

! SCALE = 1.0

! AFLIB = 1

! VLIB = 1

»DCALL(TR RITZ )

*GOTO 200

$

sLABEL 105

«IF("METHOD" NE OLD): *GOTO 110

*XQT DCU

COPY 3 1 VIBR MODE

COPY 3 1 VIBR EVAL

*GOTO 200

sLABEL 110

*IF("METHOD" NE ONES): *GOTD 115
»DCALL(TEST NEB3)

*GOTO 200

+LABEL 115

«IF("METHOD" NE STAT): *GOTO 120
*XQT E4

RESET NMODES="NMODES"

RESET M="MNAME"
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RESET NDDF="NDDF"
RESET CONV="CONV"
*DCALL,O0PT(E4 PARAMETERS)

*XQT DRSI

*XQT SSOL

$ ORTHOGOGONALIZE STATIC SOLUTION AND APPEND TO SET OF MODE SHAPES
*DCALL(TR,GRAN)
$ MAKE THE VECTORS ORTHOGONAL WITH BRESPECT TO BOTH X AND M
*DCALL(TR DIAG)
*IQT VPRT

PRINT S1 AUS
*XQT DCU

TOC 1

PRINT 1 VIBR EVAL
sLABEL 120

«IF("METHOD" NE UMOT): *GO TO 200
*XQT AUS

Z = NDDF,1,2(CR)
*XQT DRSI

RESET CON=2

«XQT AUS

UDF = 1

SSPREP(K,2)

*IQT DCU

CHANGE 1 BNF MASK MASK MASK VIBR MODE 1 1
¢ UNCOUPLE THE SYSTEM
*DCALL(TR,DIAG)

$ END OF METHODS OPTIONS

*LABEL 200

*END
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Runstream TR GRAM

This is a utility runstream for performing a Gram-Schmidt orthogonalization

of a set of vectors.

$-—mcmmmmeemmec e - - -
¢ (TR,GRAM) - PERFORM GRAM-SCHMIDT PROCESS TO M-ORTHOGONALIZE

$ STAT DISP WITH RESPECT TO VIBR MODE AND THEN

$ REPLACE THE LAST VIBR MODE VITH THE NEW VECTOR
P, - e ———— S ——
*XQT AUS

! NMMi = NMODES - 1

DEFINE X = VIBR MODE 1 1 1,"NMMi"
DEFINE S = STAT DISP 1 1

DEFINE M = "MNANE"

INLIB=10 : OUTLIB=10

$ ORTHOGONALIZE THE STATIC SOLUTION WITH RESPECT TO THE MODE SHAPES
MX = PROD(M,X)

XTHS = XTY(MX,S)

A = CBR(X,XTMS)

S1 = SUK(S, -1.0 A)

$ NOW SCALE THE VECTOR

MS = PROD(M,S1)

STMS = XTY(S1,MS)

! STMS = DS,1,1,1(10 STMS AUS 1 1) : ! STMS = STMS**.5 : ! STMS = 1.0/STMS
TEMP MODE 1 1 = UNION("STHS" S1,X)
»XQT DCU

CHANGE 10 TEMP MODE 1 1 VIBR MODE 1 1
COPY 10 1 VIBR MODE 1 1

=DELETE 10
*END
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Runstream SENS DVUP

This is a utility runstream for updating the design variable registers based on
the data sets X ADS and XNAME ADS. It is always called immediately before calling

model so the current values of the design variables are available for use.

§ e mm e e — e ——————————
$ (SENS DVUP) - UPDATE DESIGN VARIABLE REGISTERS FROM DATASET

§ e — e ———————————————————————
*IQT U1

! N = TOC,NJ(1 XNAME ADS 1 1)

't I =1

*LABEL 10

! RNAME = DS,1,"I",1(1 XNAME ADS 1 1)

! RVAL = DS,1,"I",1(1 X ADS 1 1)

! “RNAME" = "RVAL"

1 "RNAME"

11 =1I+1

*3GZ,-1(N,10)

*END
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Runstream TR DXDV 1

The TR DXDV n runstreams implement the different sensitivity methods. The
structure of all these runstreams is similar. In each case there is a loop over the
designated design variables and sensitivities of the required response quantities at
the set of critical points are calculated. Within this loop there is at least one call
to runstream MODEL to form a perturbed design, a call to form a set of new reduced
equations, and a call to processor DRX to integrate the reduced equations in time.
Runstream TR DXDV 1 implements the forward difference method with either fixed

or updated basis vectors.

‘ _______________________________________________________________
$ (TR DXDV 1) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ USING THE FORWARD DIFFERENCE OPERATOR AND

$ EITHER FIXED OR UPDATED MODES

$ UPDATE HISTORY
$ 6/28/88 WHG - MODIFIED FOR VELO, ACCE, STRESSES

*XQT U1
*REGISTER STORE(1 DXDV REGISTERS 1 1)
*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)

*RGI
FDCH = .001
FDMCH = .0001
ILIB = 6
OPT =0
RLIB = 14
DRMETHOD=0

DXMD=UPDATED
*«DCALL,OPT(DXDV PARAMETERS)
*SHOW
*DCALL(TR,DPREP)
$
$ LOOP OVER ALL DESIGN VARIABLES
$
! NDV = TOC,NJ(1 X ADS 1 1)
t NCNT = NDV
1 IDV = 1
*LABEL 10
*XQT U1
! IFLG = DS,1,"IDV",1(1 XFLG ADS 1 1)
+JZ(IFLG,100)
*LIBS “XLIB" 2 34167 8 9 10 11 12 13 14 15 16 17 18 19 20
*XQT DCU
COPY "XLIB" 1 XNAME ADS 1 1
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»XQT U3
RP2

FORMAT 1°(1H1,20X,41HBEGINNING SENSITIVITY CALCULATION. DV NO.,I3)
PRINT(1) "IDV"

*XQT AUS

DEFINE X = “XLIB" X ADS 1 1

TABLE(NI=1,NJ="NDV") : X ADS 1 1

J=1,"NDV" : 1.0

J="IDV" : "FDCH"

TRAN(SOURCE=X, OPERATION=MULT)
$ CHECK FOR TOO SMALL A STEP

t X = DS,1,"IDV",1("XLIB" X ADS 1 1)

! DX = FDCHeX
«IF("DX" GT “FDCHM"): *GOTO 20
! DX = FDMCH

' X = X + FDMCH

TABLE,U : X ADS 1 1
OPER = XSUK

J:"IDVH . "x"
*LABEL 20
*CALL(SENS,DVUP)
$ FORM PERTURBED MODEL
*0ONLINE=0

#DCALL(MODEL)

*0ONLINE=1

*XQT DCU

COPY "XLIB" 1 TIME

COPY "XLIB" 1 CA

COPY "XLIB" 1 DMPD
«IFP("DXMD" NE FIXE): *GOTO 30
COPY "ILIB" 1 VIBR MODE

*DCALL(TR,DIAG)

*GO TO 40

sLABEL 30

»IF("DXMD"” NE UPDA): *GOTO 40
*DCALL(TR,VECTORS)

*LABEL 40

*XQT AUS

DEFINE X = VIBR MODE 1 1 1,"NMODES"
DEFINE F = APPL FORC 1

ITF = XTY(X,F)

*DCALL(TR,REDM) VLIB=1

*XQT DRX

DTEX(DT="DT",METHOD="DRMETHOD" ,NTERMS="NTERMS")
TR1(QXLIB=1,QX1L=1,QX2L=1,T2="T2" ,LB="BLKSIZE")
*DCALL(TR,DBACK 1)
$

$ COMPUTE DERIVATIVES USING FORWARD DIFFERENCE OPERATOR
$

' OVDX
! MOVD

1.0/DX
- 0VDX

164



' I=1:"!N= NBCK

#LIBS 1 2346 67 89 10 11 12 13 14 156 16 17 18 19 20
*LABEL 80

*IQT AUS

! NM = DS,"I",1,1(1 BACK LIST 1 1)

! IERR = TOC,IERR(1 SEL "NM" MASK MASK)
»JNZ(IERR,90)

DEFINE CP1 = "XLIB" CRPT “NNM"

DEPINE CPO = CRPT "NM"

DXDV "NM" "IDV" = SUM("OVDX" CP1 "MOVD" CPO)
*XQT DCU

PRINT 1 DXDV "NM" "IDV"

*LABEL 90

' I=1+1

*JGZ,-1(N,80)

ERASE "XLIB"

*LABEL 100

! IDV = IDV + 1

*JGZ,-1(NCNT,10)

$

*XQT U1

*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RETURN

+END
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Runstream TR DXDV 3

This runstream implements the fixed mode semi-analytical sensitivity method.
Depending on the call to runstreamm TR DBACK either the mode displacement or

mode acceleration method is used to recover the physical sensitivities.

$ommmm e em—mmme e mmmm—em————e———————————————————
$ (TR DXDV 3) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ SEMI-ANALYTICALLY

$- e e mmmmm—— e ———m e ——————
*XQT U1

*REGISTER STORE(1 DXDV REGISTERS 1 1)
*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RGI
FDCH = .001
FDMCH = .0001
XLIB = §
OPT =0
RLIB = 14
DRMETHOD=0
*DCALL,OPT(DXDV PARAMETERS)
*SHOW
$
$ INITIALIZATION FOR DERIVATIVE CALCULATIONS
$
sDCALL(TR,DPREP)
*XQT U1
$
$ LOOP OVER ALL DESIGN VARIABLES
$
! NDV = TOC,NJ(1 X ADS 1 1)
! NCNT = NDV
! IDV = 1
sLABEL 10
*«LIBS "XLIB" 2 34167 8 9 10 11 12 13 14 156 16 17 18 19 20
*I1QT U1
! IFLG = DS,1,"IDV",1("XLIB" XFLG ADS 1 1)
*JZ(IFLG,100)
*«XQT DCU
COPY "XLIB" 1 XNAME ADS 1 1
*XQT U3
RP2
FORMAT 1’(1H1,20X,41HBEGINNING SENSITIVITY CALCULATION. DV NO.,I3)
PRINT(1) "IDV"
*XQT AUS
DEFINE X = "XLIB"” X ADS 1 1
TABLE(NI=1,NJ="NDV") : X ADS 1 1
J=1,"NDV"* : 1.0
J="IDV* : “FDCH"
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TRAN(SOURCE=X, OPERATION=MULT)
$ CHECK FOR TOO SMALL A STEP
! X = DS,1,"IDV",1("XLIB" X ADS 1 1)

! DX = FDCH+X
*IF("DX" GT "FDCHM"): *GOTO 20
! DX = FDMCH

' X = X + FDMCH
TABLE,U : X ADS 1 1
OPER = XSUM

J=nIpyn . nxn

*LABEL 20
*CALL(SENS,DVOUP)

$ FORM PERTURBED MODEL

*ONLINE=0

»DCALL(MODEL)
*ONLINE=1

*XQT AUS

DEFINE I = "XLIB" VIBR MODE 1 1 1,"NMODES"
DEFINE KO = "XLIB" K SPAR

DEFINE K1 = K SPAR

DEFINE MO = "XLIB" "MNAME"

DEFINE M1 = "MNAME"

DEFINE DO = "XLIB" DAMP SPAR

DEFINE D1 = DANP SPAR

DEFINE FO = "XLIB" APPL FORC 1

DEFINE F1 = APPL FORC 1

! IDSP = TOC,IERR(1 DAMP SPAR MASK MASK)

! OVDX = 1.0/DX

! MOVD = -OVDX

DKDV = SUM("OVDX" K1 "MOVD" KO)
DMDV = SUM("OVDI" M1 "MOVD" MO)
DFDV = SUM("OVDX" F1 "MOVD" FO)
»IF(“IDSP" EQ 0): DDDV = SUM("OVDX" D1 "MOVD" DO)
DKX = PROD(DKDV,X)
PROD (DMDV,X)
*IF("IDSP" EQ 0): DDX = PROD(DDDV,X)
RDKX = XTY(X,DKX)

RDMX = XITY(X,DMX)

»IF("IDSP" EQ 0): RDDX = XTY(X,DDX)
XTF AUS = XTY(X,DFDV)

DMX =

*XQT DC

U

COPY "ILIB" 1 TIME

COPY "XLIB" 1 CA

COPY "XLIB"™ 1 DT AUS

COPY "XLIB" 1 DTEX AUS

COPY “XLIB" 1 DCON AUS § CONSTANTS FOR NEWMARK METHOD

$

$ FORM THE RIGHT-HAND-SIDE PSEUDO LOAD VECTOR

*I1QT DRX

BACK(LRZ="BLKSIZE" ,PRINT=0)
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T =-1.0 RDMX : Y = "XLIB" QX2 AUS

»IP("IDSP" EQ 0): T = -1.0 RDDX : Y = "ILIB" QX1 AUS

T =-1.0 RDKX : Y = "XLIB" QX AUS

Z = FH AUS

»XQT DRX
TR1(QXLIB=1,QX1LIB=1,QX2LIB=1,T2="T2",FHLIB=1,LB="BLKSIZE")
$

$ BACK TRANSFORM FOR NECESSARY SENSITIVITIES OF PHYSICAL
$ QUANTITIES

$

#DCALL(TR,DBACK,4)

*XQTC DCU

ERASE 1

»LABEL 100

' IDV = IDV + 1

»JGZ,-1(NCNT,10)

$

sLIBS 12 34656789 10 11 12 13 14 15 16 17 18 19 20
*XQT U1

*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RETURN
«END
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Runstream TR DXDV 6

This runstream implements the overall central difference method using either

fixed or updated basis vectors.

S e mmm—mcm—mememe—m—— e —————————
$ (TR DXDV 5) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ USING TWO POINT CENTRAL DIFFERENCE OPERATOR

$ WITH UPDATED OR FIXED MODES
Y e
*IQT U1

*REGISTER STORE(1 DXDV REGISTERS 1 1)
»REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)

*RGI
FDCH = .001
FDMCH = .0001
ILIB = 5
YLIB = 6
OPT =0
RLIB = 14
DRMETHOD=0

DXMD=UPDATED

*DCALL,OPT(DXDV PARAMETERS)
*SHOW
$

$ INITIALIZATION FOR DERIVATIVE CALCULATIONS
$

*DCALL(TR,DPREP)
$
$ LOOP OVER ALL DESIGN VARIABLES
$

! NDV = TOC,NJ(1 X ADS 1 1)

! NCNT = NDV

! IDV = 1
»LABEL 10

*XQT U1

! IFLG = DS,1,"IDV",1(1 XFLG ADS 1 1)

»JZ(IFLG,100)

*XQT U3

RP2

FORMAT 1°(1H1,20X,41HBEGINNING SENSITIVITY CALCULATION. DV NO.,I3)
PRINT(1) “IDV"

*LIBS "XLIB" 2 34167 8 9 10 11 12 13 14 15 16 17 18 19 20
*XQT AUS

1 IS = 1

! NST = 2

! SIGN = 1.0

$

$ DO ANALYSIS FOR BOTH POSITIVE AND NEGATIVE STEPS
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$
*LABEL 15
*XQT DCU
COPY "XLIB" 1 XNAME ADS 1 1
*XQT AUS
DEFINE X = "XLIB" X ADS 1 1
TABLE(NI=1,NJ="NDV") : X ADS 1 1
TRAN(SOURCE=X)
$ DIFFERENCE APPROPRIATE DESIGN VARIABLE
¢t X = DS,1,"IDV",1("XLIB" X ADS 1 1)
! DX = FDCHsX
«IF("DX" GT “FDCHM"): =GOTO 20
! DX = FDMCH
*LABEL 20
! X = DX#SIGN + X
TABLE,U : X ADS 1 1
OPER = XSUM
J=ll IDvll H llxll
*CALL(SENS,DVUP)
$ FORM PERTURBED MODEL
*0ONLINE=0
*DCALL(MODEL)
*ONLINE=1
*IQT DCU
COPY “XLIB" 1 TIME
COPY "ILIB" 1 Ci
COPY "XLIB" 1 DMPD
«IFP("DXMD" NE FIXE): *GOTO 30
COPY "XLIB" 1 VIBR MODE

*DCALL(TR,DIAG)
*GO TO 40
*LABEL 30
«IF("DXMD"” NE UPDA): *GOTO 40
*DCALL(TR,VECTORS)
»LABEL 40
*IQT AUS
DEFINE X = VIBR MODE 1 1 1,"NMODES"

DEFINE F = APPL PORC 1
XTF = XTY(X,F)
*DCALL(TR,REDN) VLIB=1
*IQT DRX
DTEX(DT="DT",METHOD="DRMETHOD" , NTERMS="NTERNS")
TR1(QXLIB=1,T2="T2",QX1LIB=1,QX2LIB=1,LB="BLKSIZE")
*DCALL(TR,DBACK 1)
! SIGN = -1.0
«LIBS "YLIB" 2 34157 8 9 10 11 12 13 14 156 16 17 18 19 20
+JGZ,-1(NST,15)
$
$ COMPUTE DERIVATIVES USING CENTRAL DIFFERENCE OPERATOR
$
! TWDX = 2.0eDX
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! OVDX = 1.0/TWDX

! MOVD = - OVDX

' I=1:"!N= NBCK
*LIBS 1 23456789 10 11 12 13 14 15 16 17 18 19 20
=LABEL 80
=XQT AUS

' NM = DS,"I",1,1(1 BACK LIST 1 1)

¢ IERR = TOC,IERR(1 SEL "NM" MASK MASK)
*JNZ(IERR,90)

DEFINE CP1 = "XLIB" CRPT "NM"

DEFINE CPO = "YLIB" CRPT "NN"

DXDV "NM" “IDV'" = SUM("OVDX" CP1 "MOVD" CPO)
*XQT DCU

PRINT 1 DXDV "NM" "IDV"

=LABEL 90

! I=1+1

+JGZ,-1(N,80)

ERASE "XILIB"

ERASE "YLIB"

»LABEL 100

' IDV = IDV + 1

»JGZ,-1(NCNT,10)

$

*IQT Ui

*REGISTER RETRIEVE(i DXDV REGISTERS 1 1)
*RETURN

«END
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Runstream TR DXDV 6

This runstream implements the semi-analytical method with non-zero d®/dz.
The called procedure TR DPHI determines how the basis vector derivatives are cal-

culated.

$——-- - - T
$ (TR DXDV 6) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

s SEMI-ANALYTICALLY BUT WITH THE EFFECT OF CHANGING
$ MODES INCLUDED

‘_ ________________________________
*XQT U1

+REGISTER STORE(1 DXDV REGISTERS 1 1)
*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RGI
FDCE = .001
FDMCH = .0001
XLIB = §
OPT =0
RLIB = 14
DRMETHOD=0
«DCALL,O0PT(DXDV PARAMETERS)
*SHOW
$
$ INITIALIZATION FOR DERIVATIVE CALCULATIONS
$
*DCALL(TR,DPREP)
*XQT U1
$
$ LOOP OVER ALL DESIGN VARIABLES
$
! NDV = TOC,NJ(1 X ADS 1 1)
! NCNT = NDV
! IDV = 1
*LABEL 10
#LIBS “XLIB" 2 34 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
*XQT U1
' IFLG = DS,1,"IDV",1("XLIB* XFLG ADS 1 1)
*JZ(IFLG,100)
*XQT DCU
COPY "XLIB" 1 XNAME ADS 1 1
*XQT U3
RP2
FORMAT 1°(1H1,20X,41HBEGINNING SENSITIVITY CALCULATION. DV NO.,I3)
PRINT(1) "IDV"
*XQT AUS
DEFINE X = “XLIB" X ADS 1 1
TABLE(NI=1,NJ="NDV") : X ADS 1 1
J=1,"NDV" : 1.0
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J="1DV" : "FDCH"

TRAN(SOURCE=X, OPERATION=NULT)

$ CHECK FOR TOO SMALL A STEP

! X = DS,1,"IDV",1("XLIB" X ADS 1 1)
! DX = FDCH*X

*IF("DX" GT "FDCHM"): *GOTO 20

t DX = FDMCH

! X =X + FDNCH

TABLE,U : X ADS 1 &

OPER = XSUM

J="ID'" : "x"

*LABEL 20

*CALL(SENS,DVUP)

¢ OVDX = 1.0/DX

! MOVD = -0VDIX
$ FORM PERTURBED MODEL
*0ONLINE=0

»DCALL(MODEL)
$ CALCULATE DERIVATIVES OF MODES SHAPES
*XQT AUS
DEFINE KO

"XLIB" K SPAR
DEFINE Ki K SPAR
DEFINE MO = “XLIB" “MNAME"
DEFINE M1 = "MNAME"
DKDV = SUM("OVDX" K1 "MOVD" KO)
DMDV = SUM("OVDI" M1 "MOVD" MO)

*DCALL(TR,DPHI,3)

*XQT DCU
COPY "XLIB" 1 DT AUS
COPY "XLIB" 1 DTEX AUS

COPY "XLIB” 1 DCON AUS $ CONSTANTS FOR NEWMARK METHOD

*XQT AUS

DEFINE X0 = "ILIB" VIBR MODE 1 1 1,"NMODES”

DEFINE KO = "XLIB" K SPAR

DEFINE K1 = K SPAR
DEFINE KO = "XLIB" "MNAME"
DEFINE K1 = "MNAME"
DEFINE DO = "XLIB" DAMP SPAR
DEFINE D1 = DAMP SPAR
DEFINE FO = "XLIB" APPL FORC 1 1
DEFINE F1 = APPL FORC 1 1
DEFINE DXDV = DXDV AUS "IDV"

$

$ CALCULATE DERIVATIVE TERMS INVOLVING THE STIFFNESS MATRIX

$

DKX1 = PROD{DKDV,X0)
DKX2 = PROD(K0,X0)
DKX3 = PROD(Ko0,DXDV)
XDK1 = XTY(X0,DKX1)
IDK2 = XTY(DXDV,DKX2)
XDK3 = XTY(X0,DKX3)
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XTNP
XDKX
$
¢ CALCULATE DERIVATIVE TERMS INVOLVING THE MASS MATRIX
$

DMX1 = PROD(DMDV,XO0)

DMX2 = PROD(MO,X0)

DMX3 = PROD(MO,DXDV)

XDM1 = XTY(XO0,DMX1)

XDM2 = XTY(DXDV,DMX2)

XDM3 = XTY(X0,DMX3)

XTMP = SUM(XDM1,XDN2)

XDMX = SUM(XTMP,XDNM3)

$

$ CALCULATE DERIVATIVE TERMS INVOLVING THE DAMPING MATRIX
$

! IDSP = TOC,IERR(1 DAMP SPAR MASK MASK)

«IF("IDSP" NE 0): =GOTO 30

DDDV = SUM("OVDX" D1 "MOVD" DO)

DDX1 = PROD{DDDV,X0)

DDX2 = PROD(DO,X0)

DDX3 = PROD(DO,DIDV)

IDD1 = XTY(X0,DDX1)

XDD2 = XITY(DXDV,DDX2)

XDD3 = XTY(X0,DDX3)

XTHP = SUM(XDD1,XDD2)

XDDX = SUM(XTMP,XDD3)
sLABEL 30
$
$ CALCULATE DERIVATIVE TERMS INVOLVING THE FORCE VECTOR
$

DFDV = SUM("OVDX" F1 "MOVD" FO)

XF1 = XTY(DXDV, FO)

XF2 = XTY(X0, DFDV)

ITF AUS = SUM(XF1, XF2)
*XQT DCU

PRINT 1 XTF AUS

COPY "XLIB" 1 TIME AUS

COPY "XLIB" 1 CA AUS
$
$ FORM THE RIGHT-HAND-SIDE PSEUDD LOAD VECTOR
$
*XQT DRX

SUM(XDK1,XDK2)
SUM(XTMP,XDK3)

BACK(LRZ="BLKSIZE",PRINT=0)
T =-1.0 XDMX : Y = "XLIB" QX2 AUS
*IF("IDSP" EQ 0): T = -1.0 XDDX : Y = "XLIB" QX1 AUS
T =-1.0 XDKX : Y = "XLIB" QX AUS
Z = FH AUS
*»XQT DRX
TR1(QXLIB=1,QX1LIB=1,QX2LIB=1,T2="T2" ,FHLIB=1,LB="BLKSIZE")
»IQT DCU
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TOC 1
$

$ BACK TRANSFORM FOR NECESSARY SENSITIVITIES OF PHYSICAL
$ QUANTITIES

$

*DCALL(TR,DBACK,3)

*XQTC DCU

ERASE 1

«LABEL 100

! IDY = IDV + 1

*JGZ,-1(NCNT, 10)

$

sLIBS 1 234567 89 10 11 12 13 14 15 16 17 18 19 20
*DNLINE=1

*XIQT U1

*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)

*RETURN

*END
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Runstream TR DPREP

This is a utility runstream used by all the sensitivity calculation runstreams.

Its main task is to locate the critical points for all required response quantities.

$om e e - _———
$ (TR,DPREP) - PREPARATION FOR SENSITIVITY CALCULATIONS
‘ - e e o e e e e = = = - =
$

¢ FORM CRITICAL POINT TABLES FOR RESPONSE QUANTITIES

$

! NBCK = TOC,NI("QLIB" BACK LIST 1 1)

*I=1:"!N= NBCK

*LABEL 10

! NM = DS,"I",1,1("QLIB” BACK LIST 1 1)

! IERR = TOC,IERR("QLIB" SEL “NM" MASK MASK)
*«JNZ(IERR,20)

*XQT U10

CRIT(Y="QLIB" HIST *“NM",DT="DT", NCRIT="NCRIT", &
CRPT="QLIB" CRPT "NM",CRTI="QLIB" CRTI "NM", &
PCH=.25)

*XQT DCU

PRINT “QLIB" CRTI "NM"

PRINT "QLIB" CRPT "NN"

*LABEL 20

1 I1=1+1

»JGZ,-1(N,10)

*=XQT U1

*(E4 PARAMETERS) EOFX

$RESET NFCT="NMODES", NLIM="NMODES"

RESET NIF="NMODES"

IFSOURCE= "XLIB" VIBR MODE 1 1

*EOFX

*END
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Runstream TR DBACK 1

The TR DBACK n runstreams implement the different procedures for recovering
the physical sensitivities. They all rely heavily on runstream TR CRPT which recovers
a specific physical quantity at the critical points. Runstream TR DBACK 1 recovers
the sensitivities using the mode displacement method and is used in the overall

finite difference procedures.

‘_ - = - =
$ (TR DBACK 1) - BACK TRANSFORMATION FOR DERIVATIVES USING MODE

$ DISPLACEMENT METHOD
PSP U USRS
t JIB =1 : ! NNB = NBCK

*LABEL 10

*XQT AUS

DEFINE X = VIBR MODE 1 1 1,"NMODES"
! NM = DS,"IIB",1,1("XLIB" BACK LIST 1 1)

! IERR = TOC,IERR("XLIB" SEL "NM" MASK MASK)
*«JINZ(IERR,200)

$

$ DISPLACEMENTS

$

*IF("NM" NE DISP): *GOTO 30

DEFINE IDJK = "XLIB* SEL DISP

TMAT VMOD = SYTRAN(IDJK,X)

*DCALL(TR,CRPT) LIBi="XLIB" LIB2=1 LIB3=1 TNAME=VMOD CNAME=DISP Q=QX
*GOTO 200

sLABEL 30

$

$ VELOCITIES

*IP("NM" NE VELO): *GOTO 60

DEFINE IDJK = "XLIB" SEL VELO

TMAT VVEL = SVTRAN(IDJK,X)

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3=1 TNAME=VVEL CNAME=VELO Q=QX1
*GOTO 200

*LABEL 50

$
$ ACCELERATIONS

$

«IF("NM" NE ACCE): *GOTO 70

DEFINE IDJK = "XLIB" SEL ACCE

TMAT VACC = SYTRAN(IDJK,X)

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3=1 TNAME=VACC CNAME=ACCE Q=QX2
*GOTO 200

«LABEL 70

$
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$ REACTIONS

$

«IF("NX" NE REAC): GOTD 90
*GOTO 200

*LABEL 90

$
$ STRESSES

$
*»IF("NM" NE STRE): *GOTO 110
*XQT ES

RESET OPER=T

IDQ = "XILIB" SEL STRESS

U = VIBR MODE 1 1 1,"NMODES"
T = TMAT VSTRE
#DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3=1 TNAME=VSTRE CNAME=STRE Q=QX
*GOTO 200

*LABEL 110
sLABEL 200

' TIB = IIB + 1
*JGZ,-1(NNB,10)

¢ IIB = FREE() : ! NNB = FREE() : ! LIB1 = FREE() : ! LIB2 = FREE()
! LIB3 = FREE() : ! TNAME = FREE() : ! CNAME = FREE()

! Q@ = FREE()

»END
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Runstream TR DBACK 2

This runstream recovers sensitivities in the fixed mode, mode displacement

version of the semi-analytical method.

O PO USROS
$ (TR DBACK 2) - BACK TRANSFORMATION FOR DERIVATIVES USING

$ SEMI-ANALYTICAL METHOD

$ UPDATE HISTORY

‘ ______________

$ 6/22/88 WHG - MODIFIED FOR SEMI-ANALYTICAL METHOD

¢ 6/21/88 WHG - CREATED FROM (TR,DBACK,1) FOR UPDATED MODES
O
t JIB =1 : ! NNB = NBCK

»LABEL 10

*XQT AUS

! NM = DS,"IIB",1,1("XLIB"” BACK LIST 1 1)

! IERR = TOC,IERR(“XILIB"™ SEL “NM" MASK MASK)

*INZ(IERR,300)

$

$ DISPLACEMENTS

$

*»IF("NM" NE DISP): »GOTO 30

*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VMOD CNAME=DISP Q=QX
*GOTO 200

*LABEL 30

$

$ VELOCITIES

$

*IF("NM" NE VELO): *GOTO 50

sDCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VVEL CNAME=VELO Q=QXi
*GOTO 200

*LABEL 50

$

$ ACCELERATIONS

$

*IF("NM" NE ACCE): *GOTO 70

*DCALL(TR,CRPT) LIB1i="XLIB" LIB2="XLIB" LIB3=1 TNAME=VACC CNAME=ACCE Q=QX2
*GOTO 200

*LABEL 70

$

$ REACTIONS

$

«IF("NM" NE REAC): *GOTO 90

*GOTO 200

sLABEL 90

$

$ STRESSES

$
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*IF("NM" NE STRE): »GOTO 110
$ FORM [Ss] [pq/pv]

*«DCALL(TR,CRPT) LIBi="XLIB" LIB2="XLIB" LIB3=1 TNAME=VSTRE CNAME=STRE Q=QX
*XQT DCU

CHANGE 1 CRPT STRE 1 1 CRPT STR1 1 1
¢ FORM [ps/pv] [q]

*XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = "XLIB" VIBR MODES 1 1 1,"NMODES"
T = TMAT VSTRE

*XQT AUS
DEFINE SO = “XLIB" TMAT VSTRESS
DEFINE S1 = TMAT VSTRESS

TMAT DSDY = SUM("OVDX" Si "MOVD" SO)
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DSDV CNAME=STRE Q=QX
*XQT AUS

DEFINE STR1 CRPT STR1

DEFINE STR2 CRPT STRE

CRPT STRE = SUM(STR1,STR2)

*GOTO 200
sLABEL 110
*GOTC 300
=LABEL 200
=XQT DCU

CHANGE 1 CRPT "NM" 1 1 DXDV "NM" "IDV" 1

COPY 1 "XILIB" DXDV "NM" *IDV" 1

PRINT "XLIB" DXDV "NM" "IDV" 1
=LABEL 300
! IIB = IIB + 1
*JGZ,-1(NNB,10)

! TIB = FREE() : ! NNB = FREE() : ! LIB1 = FREE() : ! LIB2 = FREE()
! LIB3 = FREE() : ! TNAME = FREE() : ! CNAME = FREE()

! q = FREE()

=END
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Runstream TR DBACK 3

This runstream recovers sensitivities in the semi-analytical method with non-

zero d® /dz.

$ (TR DBACK 3) - BACK TRANSFORMATION FOR DERIVATIVES USING
$ SEMI-ANALYTICAL METHOD WITH CHANGING MODES
$ UPDATE HISTORY

$ 6/22/88 WHG - MODIFIED FOR SEMI-ANALYTICAL METHOD

$ 6/21/88 WHG - CREATED FROM (TR,DBACK,1) FOR UPDATED MODES

‘.._ o 8 o = e 2 = = . = = = = = = = =

! IIB = 1 : ! NNB = NBCK

*LABEL 10

*XQT AUS

DEFINE DX = DXDV AUS “IDV" 1 1,"NMODES"

! NM = DS,"IIB",1,1("XLIB" BACK LIST 1 1)

! TERR = TOC,IERR("XLIB" SEL "NN" MASK MASK)

*JNZ(IERR,300)

$

$ DISPLACEMENTS

$

*IF("NM" NE DISP): *GOTO 30

DEFINE IDJK = "XLIB" SEL DISP

TMAT DVNX = SVTRAN(IDJK,DX)

*DCALL(TR,CAPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VMOD CNAME=DISP Q=QX
*XQT DCU

CHANGE 1 CRPT DISP 1 1 CRPT DSP1 1 1

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DVMX CNAME=DISP Q=QX
*XQT AUS
DEFINE D1
DEFINE D2
CRPT DISP
*GOTO 200
*LABEL 30
$
$ VELOCITIES

$

»IF("NM" NE VELO): *GOTO 60

DEFINE IDJK = "XLIB" SEL VELO

TMAT DVAX = SVTRAN(IDJK,DX)

*DCALL(TR,CRPT) LIB1="XLIB* LIB2="XLIB" LIB3=1 TNAME=VVEL CNAME=VELO Q=QX1
*XQT DCU

CHANGE 1 CRPT VELO 1 1 CRPT VEL1 1 1

»DCALL(TR,CRPT) LIBi="XLIB" LIB2=1 LIB3="XLIB" TNAME=DVMX CNAME=VELO Q=QX1i

CRPT DSP1
CRPT DISP
SUM(D1,D2)

=XQT AUS
DEFINE V1 = CRPT VEL1
DEFINE V2 = CRPT VELO
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CRPT VELD = SUM(Vi,V2)

*GOTO 200
sLABEL §0
$
$ ACCELERATIONS

$

«IF("NM" NE ACCE): »GOTO 70

DEFINE IDJK = “XLIB" SEL ACCE

TMAT DVMX = SVTRAN(IDJK,DX)
*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VACC CNAME=ACCE Q=QX2
*XQT DCU

CHANGE 1 CRPT ACCE 1 1 CRPT ACC1 1 1

*DCALL(TR,CRPT) LIB1="XILIB" LIB2=1 LIB3="ILIB" TNAME=DVMX CNAME=ACCE Q=QX2
*XIQT AUS
DEFINE A1
DEFINE A2
CRPT ACCE
*GOTO 200
sLABEL 70
$

$ REACTIONS
$

«IF("NM" NE REAC): »GOTO 90
*GOTO 200
*LABEL 90
$

$ STRESSES
$

«IF("NM" NE STRE): *GOTO 110
¢ FORM [s] [Dpq/DV]

*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VSTRE CNAME=STRE Q=QX
»XQT DCU

CHANGE 1 CRPT STRE 1 1 CRPT STR1 1 1
¢ FORM [DS/DV] [Q]

*XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = "XLIB" VIBR MODES 1 1 1,"NMODES"

T = THAT VSTRE

CRPT ACC1
CRPT ACCE
SUM(A1,A2)

=XQT AUS
DEFINE SO = "XLIB" TMAT VSTRESS
DEFINE S1 = TMAT VSTRESS

TMAT DSDV = SUM("OVDX" Si "MOVD" SO)
#DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="ILIB" TNAME=DSDV CNAME=STRE Q=QX
*XQT DCU

CHANGE 1 CRPT STRE 1 1 CRPT STR2 1 1
$ FORM S [D PHI / DV] [q]
*XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = DXDV AUS "IDV" 1 1,"NMODES"
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T = TMAT DSTRE
»DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DSTRE CNAME=STRE Q=QX

=XQT AUS
DEFINE STR1 = CRPT STRi
DEFINE STR2 = CRPT STR2

DEFINE STR3 = CRPT STRE
TMP = SUM(STR1,STR2)
CRPT STRE = SUM(TMP,STR3)
*GOTO 200
sLABEL 110
*GOTD 300
sLABEL 200
*XQT DCU
CHANGE 1 CRPT "NM" 1 1 DXDV "NM" “IDV" 1
COPY 1 "XILIB" DXDV "NM" "IDV" 1
PRINT "XLIB" DXDV "NM" "IDV" 1
*LABEL 300
! IIB = IIB + 1
*JGZ,-1(NNB,10)

! IIB = FREE() : ! NNB = FREE() : ! LIB1 = FREE() : ! LIB2 = FREE()
! LIB3 = FREE() : ! TNAME = FREE() : ! CNAME = FREE()

! Q = FREE()

*END
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Runstream TR DBACK 4

This runstream recovers sensitivities in the fixed mode semi-analytical method

using the mode acceleration method.

‘-_- ....................................

$ (TR DBACK 4) - BACK TRANSFORMATION FOR DERIVATIVES USING

$ SEMI-ANALYTICAL METHOD

$ WITH THE MODE ACCELERATION METHOD

‘ - e e e e e e e e e ke e e o
*XQT AUS

DEFINE X = "XLIB"™ VIBR MODE 1 1 1,"NMODES"
DEFINE E = "XILIB" VIBR EVAL 1 1

DEFINE DKX = DKX AUS

DEFINE DMI = DMX AUS

DEFINE ROMG "XLIB" ROMG AUS

DEFINE XTDX “ILIB" XTDX

DEFINE XOMD = "XLIB" XOMD

DEFINE XOME = "XILIB" XOME
*IF("IDSP" NE 0): TABLE(NI="NMODES",NJ="NMODES") : RDDX
$ CALCULATE VELOCITY TERM

X0M1 = CBR(XOME,RDKX)

XOMK = CBD(XOM1,ROMG)

! NIJDM = TOC,NJ("XLIB" XTDX MASK MASK MASK)

! NBDM = TOC,NINJ("XLIB” XTDX MASK MASK MASK)
*IF("NJDM" NE "NBDM"): XOKC = CBR(XOMK,XTDX)
«IF("NJDN" EQ "NBDM"): XOKC = CBD(XOMK,XTDX)
X0MC = CBR(XOME,RDDX)

XQD = SUM(XO0KC, -1.0 XOMC)

$ CALCULATE ACCELERATION TERM

DKX0 = CBD(DKX, ROMG)

APPL FORC 887 = SUM(DKX0, -1.0 DMX)
$ CALCULATE DERIVATIVE OF THE PSEUDO-STATIC TERM
DEFINE USTAT = "XILIB" STAT DISP 1 1

FSL1 = PROD(DKDV,USTAT)

APPL FORC 888 = SUM(DFDV,-1.0 PSL1)

*XQT SSOL

RESET SET=887, KLIB="XLIB", KILIB="XLIB", REAC=0
*XQT SSOL

RESET SET=888, KLIB="XLIB", KILIB="ILIB", REAC=0
$

$ LOOP OVER ALL RESPONSE QUANTITY TYPES

$

! IIB = 1 : ! NNB = NBCK

*LABEL 10

*XQT AUS

! N¥ = DS,"IIB",1,1("XLIB" BACK LIST 1 1)
! TERR = TOC,IERR("XLIB" SEL "NM" MASK MASK)
»INZ(IERR,300)

184



$
$ DISPLACEMENTS
$
*IF("NM" NE DISP): *GOTO 30
DEFINE IDJK = “XLIB" SEL DISP
DEFINE DAC1 = STAT DISP 887
DEFINE DUST = STAT DISP 888
DEFINE XTDX = "XLIB" ITDX
DEFINE DACC = “XLIB" TMAT DACC
TMAT DUST = SVTRAN(IDJK,DUST)
TMAT DAC1 = SVTRAN(IDJK,DAC1)
$ VELOCITY TERNS
TMAT DVLi = SVTRAN(IDJK,XQD)
$
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DUST CNAME=DISP Q=i
TOCC(1 CRPT DISP 1 1) : N2=DSP1i
«DCALL{TR,CRPT) LIBi="XLIB" LIB2=1 LIB3="XLIB" TNAME=DVL1 CNAME=DISP Q=QX1
ToCC(1 CRPT DISP 1 1) : N2=DSP2
*DCALL(TR,CRPT) LIB1="XLIB” LIB2="XLIB" LIB3=1 TNAME=DVEL CNAME=DISP Q=QX1
TOCC(1 CRPT DISP 1 1) : N2=DSP3
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DAC1 CNAME=DISP Q=QX2
TOCC(1 CRPT DISP 1 1) : N2=DSP4
*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=DACC CNAME=DISP Q=0QX2
TOCC(1 CRPT DISP 1 1) : N2=DSP5
*IQT U4
YU
DEFINE D1 = CRPT DSP1
DEFINE D2 = CRPT DSP2
DEFINE D3 = CRPT DSP3
DEFINE D4 = CRPT DSP4
DEFINE D5 = CRPT DSPS
CRPT DISP = SUM(D1i, D2, -1.0+D3, D4, -1.0#D5)
*GOTO 200
*LABEL 30
$
$ VELOCITIES
$
«IF("NM" NE VELO): »GOTO 60
#DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VVEL CNAME=VELO Q=QX1
*GOTO 200
«LABEL 50
$
$ ACCELERATIONS
$
*IF("NM" NE ACCE): *GOTO 70
*DCALL(TR,CRPT) LIB1="XLIB* LIB2="XLIB" LIB3=1 TNAME=VACC CNAME=ACCE Q=QX2
*GOTO 200
*LABEL 70
$
$ REACTIONS
$
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«IF("NN" NE REAC): *GOTO 90
*GOTO 200

sLABEL 90

$

$ STRESSES

$

«IF("NN" NE STRE): *GOTO 110
$

¢ FORM [S] [pu/Dv]

$

*LIBS 1 23456789 10 11 12 13 14 15 16 17 18 19 20

*XQT ES
RESET OPER=T
IDQ = SEL STRESS
="XLIB" STAT DISP 888 : T = "XLIB" TMAT DTM1
U="XLIB" IQD AUS : T = "XLIB" TMAT DTM2
U="XLIB" STAT DISP 887 : T = "XLIB" TMAT DTM4
«LIBS "XLIB"* 2 34 1 6 7 8 9 10 11 12 13 14 15
*XQT AUS
*«DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE 1 1) : N2=STR1
*DCALL(TR,CRPT) LIB1="ILIB" LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE 1 1) : N2=STR2
*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1
TOCC(1 CRPT STRE 1 1) : N2=STR3
#DCALL(TR,CAPT) LIB1="XLIB" LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE 1 1) : N2=STR4
*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1
TOCC(1 CRPT STRE 1 1) : N2=STRS
$
¢ FORM [ps/pv] [U]
$
*XQT ES
RESET OPER=T
IDQ = "XILIB" SEL STRESS

U = "XLIB" STAT DISP 1 1 : T = TMAT SF
U = "XLIB" XOMD AUS : T = TMAT SD

U = "XLIB" XOME AUS T = TMAT SP

*XIQT AUS

DEFINE SO = "XLIB" TMAT SF : DEFINE S1 = TMAT

TMAT DSF = SUM("OVDX" S1 "MOVD" S0)
DEFINE SO = "XLIB" TMAT SD : DEFINE S1
TMAT DSD = SUM("OVDX" S1 “NOVD" S0)
DEFINE SO = "XLIB" TMAT SP : DEFINE S1
TMAT DSP = SUM("OVDX" Si "MOVD" S0)
*DCALL(TR,CRPT) LIB1="XLIB* LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE) : N2=STR6
#DCALL(TR,CRPT) LIBi="XLIB" LIB2=1 LIB3="ILIB"
TOCC(1 CRPT STRE) : N2=STR7
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE) : N2=STRS

16 17 18 19 20

TNAME=DTM1 CNAME=STRE Q=4
TNAME=DTM2 CNAME=STRE Q=QIX1
TNAME=SD CNAME=STRE Q=QX1
TNAME=DTM4 CNAME=STRE Q=QX2

TNAME=SP CNAME=STRE Q=QX2

SF¥

TMAT SD

TMAT SP
TNAME=DSF CNAME=STRE Q=A
TNAME=DSD CNAME=STRE Q=QX1

TNAKE=DSP CNAME=STRE Q=QX2
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=XIQT U4
YU

DEFINE 81 =
DEFINE 52 =
DEFINE 83 =
DEFINE S84 =
DEFINE Sb =
DEFINE 56 =
DEFINE S7 =
DEFINE S8 =
CRPT STRE =

*GOTO 200
=LABEL 110
*GOTO 300
=LABEL 200
=XQT DCU

CHANGE 1 CRPT "NM" 1 1 DXDV "NM" "IDV"
COPY 1 "ILIB" DXDV "NM" "IDV" 1
PRINT “ILIB" DXDV “NM" "IDV" 1

*LABEL 300

CRPT
CRPT
CRPT
CRPT
CRPT
CRPT
CRPT
CRPT

SUM(S1, S2, -1.0#S3, S4, -1.0%85, S8, -1.0%S7, -1.0%S8)

' IIB = IIB + 1
»JGZ,-1(NNB,10)

! IIB = FREE() :
! LIB3 = FREE() :

' Q = FREE()
*END

STR1
STR2
STR3
STR4
STR5
STRS
STR7
STR8

¢ NNB = FREE() :
! TNAME = FREE()

¢ LIB1 = FREE() ! LIB2 = FREE()

! CNAME = FREE()
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Runstream TR DPHI 3

This runstream implements the modified modal method for calculating eigen-

vector derivatives and is called from sensitivity calculation runstream TR DXDV 6.

$-—— e — e ———————— S
$ (TR,DPHI,3) - CALCULATE EIGENVECTOR DERIVATIVES USING THE

s MODIFIED MODAL METHOD

' - e e e e e T = L = = = = " = = = = = =
*XQT AUS

INLIB=10 : OUTLIB=10

DEFINE MO = “XLIB" "MNAME"

DEFINE DK = 1 DKDV SPAR

DEFINE DX = 1 DMDV SPAR

DEFINE X0 = "XLIB" VIBR MODE 1 i 1,"NMODES"
DEFINE AJK = AJK

DEFINE EV = "XLIB" VIBR EVAL 1 1

MX = PROD(DM,XO)

AKK = XTYD(-.5 XO,HX)

TABLE(NI="NMODES",NJ="NKODES") : AJK
TABLE(NI=1,NJ="NMODES") : UNIT : J=1,"NMODES" : 1.0
1 J=1: 1 NJ = NMODES
*LABEL 10

! BJ = DS,"J",1,1("XLIB" VIBR EVAL 1 1)

' NEJ = -EJ

DEFINE XJ = "XLIB” VIBR MODE 1 1 "J» »J»

DKDX = SUM(DK,"MEJ" DNM)

MX = PROD(DKDM,XJ)

DLAM = XTY(XJ,MX)

! DLAN = DS,1,1,1(10 DLAM AUS 1 1)

AF1 = PROD("DLAN" MO, XJ)
AF2 = SUM(AF1 -1.0 MI)
*IF("J" EQ 1): 11 APPL FORC
*IF("J" KE 1): 11 APPL FORC
AL = XTY(X0,NX)

DEN1 = SUM(-1.0 EV, "EJ" UNIT)

DEN2 = PROD(EV,DEN1)

TABLE,U : DEN2 : I="J" : J=1 : 1.0

FACT = RECIP(DEN2)

AAB = PROD("EJ" FACT,AA)

DE1 : OPER=XSUM : DEST,U=AJK AUS

SOURCE=AAB : JS=1 : JD="J" : EX1
SOURCE=AKK : IS="J" : JS=1 : ID="J" : JD="J" : EX1

1 J =3+ 1

*JGZ,-1(NJ,10)

DXDV = CBR(XO0,AJK)

*XQT SSOL

RESET KLIB="XLIB", KILIB="XLIB", QLIB=11, REAC=0, EP=0
*XQT AUS

UNION(AF2)
UNION,U{AF2)
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DEFINE D1 = 10 DXDV AUS
DEFINE D2 = i1 STAT DISP
DIDV AUS "IDV" = SUM(D1,D2)
«DELETE 10

*DELETE 11

*RETURN

=END
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Runstream TR CRPT

This is a utility runstream which performs the transformation from modal to

physical basis for a single response quantity at a set of critical times. It is heavily

used by the TR DBACK runstreams.

! NCRIT = TOC,NI("LIB1" CRTI "CNAME" 1 1) $ NUMBER OF TIMES

"Q* AUS MASK MASK)

$

$ (TR,CRPT) - FORM CRITICAL POINT RESPONSE TABLE
‘____

*ONLINE=0

»XQT AUS

! ND = TOC,NI("LIB2"

' NQ =

! NJQ = TOC,NJ("LIB3"

! ISTP = 0

$ LOOP OVER ALL RESPONSE QUANTITIES
1 I =1

! N = ND

INLIB = 21 : OUTLIB = 21

«LABEL 20

DE1

SOURCE="LIB2" TMAT "TNAME"

ID =1

: IS="I"

DEST=TONE "TNAME" "I" 1

EX1i

TABLE(NI="NQ", NJ="NCRIT") : XBAR CRIT "I"
$ LOOP

11 =
NN =

*LABEL

!
'
!
'
!
'
'
'
!

DE1
TIME
ISTP
ISTP
IB =
IST =

OVER NUMBER OF
1

NCRIT

40

TIME/DT + .5
= ISTP + 1
ISTP/NIQ
IB*NJQ

*»IF("IST" NE "ISTP"):
J=1IB-1=*NJQ:

SQURCE = "LIB3" "Q" AUS MASK MASK *"IB" : JS="J" : DEST,U=XBAR CRIT "I"
Jp = "II" : EX1

II =

II + 1

*JGZ,-1(NN,40)
DEFINE T = TONE "“TNAME" "Iv

CRITICAL POINTS

DS,"II",1,"I"("LIB1* CRTI "CNAME" 1 1)

!'IB=1B + 1
' J = ISTP - J

DEFINE XBAR = XBAR CRIT "I"

CI AUS "I" = RPROD(T,XBAR)

TOCC(CI AUS "I") : NJ=1

DEFINE CI = CI AUS "I"

«IF("I" EQ 1): 1 CRPT "CNAME" = UNION(CI)

TMAT "TNAME" 1 1) § NUMBER OF RESP. QUANTITIES
TOC,NJ("LIB2" TMAT "TINAME" 1 1) $ NUMBER OF MODES
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*IP("I" GT 1): 1 CRPT "CNAME" = UNION,U(CI)
fI=I+1

*JGZ,-1(N,20)

*0ONLINE=1

! NCRIT = FREE() : ! ND = FREE() : ! NQ
! ISTP = FREE() : ! IB = FREE() : ! IST
*END

FREE() ' NJQ = FREE()
FREE()

Runstream TR DIAG

This is a utility runstream that solves the reduced order eigenproblem based

on a given set of basis vectors to uncouple a reduced system.

$-mmmmmemmmmmmmm e e m————— e —

* XQT AUS
OUTLIB=10: INLIB=10
DEFINE K=1 K: DEFI M=1 "MNAME"
DEFINE X = “VLIB" VIBR MODE
1JCODE=10000
KX=PROD(K,X): SYN K 10000 "NMODE"
MX=PROD(M,X): SYN M 10000 "NMODE"
ZERO=NNODE-1
* JZ (ZERD,1003)
* XQT STRP
RESET SOURCE=10, DEST=10
* JGZ (ZERO,1004)
* LABEL 1003
* XQT AUS
OUTLIB=10: INLIB=10
'K=DS 2 1 1(10 SYN K MASK MASK)
'M=DS 2 1 1(10 SYN M MASK MASK)
YEVAL=K/M
TABLE(NI=1,NJ=1): SYS EVEC: J=1: 1.0
TABLE(NI=1,NJ=1): SYS EVAL: J=1: "EVAL"
* LABEL 1004
* XQT AUS
OUTLIB=10: INLIB=10
DEFINE E=SYS EVEC
DEFI X = "VLIB" VIBR MODE
X ORTH 1 1=CBR(X,E)
DEFINE X=X ORTH 1 1
“VYLIB" VIBR MODE 1 1=UNION(X)
DEFINE E=SYS EVAL
“VLIB" VIBR EVAL 1 1=UNION(E)

XTYS(X,KX)
XTYS(X,MX)

*END
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