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Abstract

This paper reviews the wide-field shadowgraph technique and its application to the
visualization of rotor wakes. In particular, it discusses current experimental methods and

data-reduction requirements. Sample shadowgraphs are presented. These include shadow-
graphs of model-scale helicopter main rotors and tilt rotors, and full-scale tail rotors, both in

hover and in forward flight.

Notation

CT = rotor thrust coefficient
h = rotor distance from ground plane, m
Mt = tip Mach number
R = rotor radius, m
r = radial distance, m

z = axial distance, m

kt = advance ratio
= rotor solidity

1. Introduction

The ability to accurately measure the tip vortex geometry of rotors in hover and for-
ward flight has been and will continue to be extremely valuable. For example, instantaneous
vortex trajectories have helped to provide physical insight into the flow phenomena causing

rotor wake distortion (Ref. 1). Averaged tip vortex coordinates have helped in the develop-
ment of empirical prescribed-wake models used to predict rotor hover performance
(Refs. 1,2). In addition, both the instantaneous and the averaged wake data have been used to

validate new rotor wake models, such as those found in free-wake analyses (Ref. 3).

A number of flow-visualization methods have been used to provide qualitative and/or
quantitative information about the tip vortex geometry of rotor systems. One relatively

simple method involves injecting smoke at or near the rotor-blade tip (Ref. 1). This method
provides the ability to measure tip vortex geometry coordinates at a single location. Unfortu-

nately, smoke diffusion and the intrusive nature of the smoke injection hardware can limit the
method's usefulness. Another flow-visualization method uses the schlieren technique

(Ref. 1,2) to visualize the entire tip vortex trajectory. Although the results using this method
are quite good, the optical complexity and the required alignment precision make this method

difficult to implement and practical only for very small model rotors.

A third method with which rotor tip vortices can be visualized is the wide-field shad-

owgraph technique (Refs. 4,5). This technique provides tip vortex trajectories comparable in
detail to the schlieren method, but without the optical complexity. In addition, the



shadowgraphtechniquedoesnothaveanyfundamentallimitationonthesizeof theviewing
area;thuswakescanbevisualizedfor rotorsrangingfrommodel-to full-scale.

Theobjectiveof thispaperis to reviewthis wide-fieldshadowgraphtechniqueasit
appliesto rotor wakevisualization.In particular,thecapabilitiesandlimitationsof boththe
experimentaltechniqueanddata-reductionmethodarediscussed.In addition,a summaryof
recentlycompletedshadowgraphexperimentsis presented,includingsampleshadowgraphs
andsamplesof reduceddata.

2. Exverimental Techniaue

2.1 Test Setup

In order to visualize rotor tip vortices with the wide-field shadowgraph technique, the
following components are required: 1) an imaging device (still or video camera); 2) a short-

duration, high-intensity, point-source light (usually a strobe); and 3) a retroreflective screen.
An example of how these components may be configured is shown in Figure 1. With this

setup, light passes through the rotor wake, casting shadows on the screen. These shadows are

the result of changes in the refractive index of the air caused by naturally occurring density
gradients in the tip vortex cores (Ref. 6). A permanent record of these shadow patterns can

then be acquired with an imaging device focused on the retroreflective screen. The tip vor-
tices are visible as thin dark spirals emanating from the rotor blade tips.

Figure 1 shews one possible experimental arrangement, with shadowgraphs acquired
from the side of the rotor. With the strobe, camera, and screen at the approximate rotor-plane
height, this setup allows both radial and axial tip vortex coordinates to be determined. Fig-
ure 2 shows an alternate arrangement, with shadowgraphs acquired from above the rotor.

This setup provides a good method for looking at wake contraction or determining the
location of blade/vortex interaction.

2.2 Data Acquisitioq

The majority of shadowgraph data acquired to date has been with a still camera as the
imaging device. Shadowgraphs are acquired by opening the camera shutter and electronically

triggering the light source to fire at a specified rotor azimuth position. For a given rotor con-
dition (thrust, tip Mach number, etc.), shadowgraphs are acquired over a range of azimuth

positions, with at least three or four acquired at each azimuth. This is necessary to map out
the average radial and axial movements of the tip vortices as a function of wake age.

With the use of a still camera, high-quality, high-resolution shadowgraphs can be
acquired. There are a number of drawbacks to this method, however. The biggest problem is

the lack of real-time feedback on the shadowgraphs. Problems with the camera, the experi-
mental setup, or the run conditions cannot be detected until the film is developed, well after
the run is completed. This may cause significant delays in the test schedule, with entire runs

needing to be repeated.

In order to address these concerns, NASA has begun using a video camera as the
imaging device. The us,; of video has a number of advantages: 1) immediate feedback on

shadowgraphs (can find setup errors and determine best conditions), 2) very fast data acquisi-
tion (every frame is one shadowgraph), and 3) highly flexible test setup (camera can be
panned, tilted, or zoomed to focus on area of interest). The major drawback to this technique



is the lowerresolutionassociatedwith video.Work iscurrentlyunderway to determinethe
severityof thisproblem.

Dependingon theresearchobjectives,additionaldataarenormallyrequiredto com-
plementtheshadowgraphdata.This additionaldatamay bedivided into two categories:
1)datarequiredfor reducingtheshadowgraphs(suchastestsetupgeometry),and2) data
requiredfor correlatingtheshadowgraphdatawith predictions.Examplesof thesecondcate-
goryincludetip MachNumber,thrustcoefficient,powercoefficient,advanceratio,andblade
azimuthposition.

3. Shadgwgraoh Tests Conducted

Several tests have been conducted to develop the wide-field shadowgraph method for

use in visualizing rotorcraft tip vortices (summarized in Table 1). These tests have covered
many helicopter flight regimes including hover, hover in-ground-effect, and forward flight. A
short summary of each of these tests is presented below, with more complete descriptions
available in the references.

Initial shadowgraph development work was performed by the Jet Propulsion Labora-
tory under a NASA contract (Ref. 4). This effort was the first to apply the shadowgraph pro-

cess to the visualization of rotor tip vortices. The rotor system used for this work was a
Hughes Model 300 tail rotor (characteristics supplied in Table 2). A sample of the shadow-
graphs obtained in this test is shown in Figure 3. Tip vortex trajectories are visible in this fig-

ure as thin spirals above the rotor. The main objective of this work was to examine the effect
of test setup (camera-to-rotor and rotor-to-screen distances) and rotor operating parameters

on the visibility of the tip vortices. Of note in Figure 3 (and all subsequent shadowgraphs) are
the "double images" of the rotor blades and test hardware. These are caused by the camera

and light source being separated by a finite distance. The resultant shadowgraphs thus contain
both the image of an object and the image of the object's shadow. Note that since the camera
is focused on the screen, the shadows are the sharper of these images.

The first test conducted by NASA to further develop the shadowgraph method was a
hover test of a 0.16-scale model of the Sikorsky S-76 rotor (Ref. 5). The blades were dynam-

ically and geometrically similar to S-76 blades, except the model blades had rectangular tips

instead of swept-tapered tips (Table 2). The rotor system was tested in two configurations.
The first was a conventional thrust-up, wake-down configuration with the rotor plane located

5.71 rotor radii above the ground. In order to eliminate any test stand or ground interference,
a second configuration was tested. This was a thrust-down, wake-up configuration with the

rotor plane located 2.86 rotor radii above the ground. A sample shadowgraph from the wake-
down configuration is shown in Figure 4. The contraction of the wake and the descent of sub-
sequent turns of wake are clearly evident in this photo. This test demonstrated the ability of

the shadowgraph technique to provide the necessary data to define the geometry of the tip
vortices of a hovering rotor.

The second shadowgraph test performed by NASA (with U.S. Army cooperation) was
of a model tilt rotor in hover. This model, tested in the settling chamber of the Ames

Research Center 7- by 10-Foot Wind Tunnel, consisted of a rotor, a nacelle, and a wing spar.
The characteristics of this rotor are summarized in Table 2. The shadowgraphs acquired dur-

ing this program provided very high-quality photos of the tip vortex geometry. Up to four
blade passages were visible in some photos (Fig. 5). Other important phenomena found in

these shadowgraphs included instabilities in the rotor wake and interactions between the tip
vortex and the wing spar. Results from this test are also documented in Reference 5.
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Thenextmajorshadowgraphtestprogramwasperformedwitha full-scaleLynx tail
rotor.Characteristicsof thisrotorareprovidedin Table2. Themainobjectiveof thispro-
gramwasto examinetheeffectof agroundplaneon thetip vortexgeometryof ahovering
helicopterrotor (Ref. 7). To accomplishthis, a circular groundplane(6.62rotor radii in
diameter)wasmountedin the outflow of the Lynx tail rotor. The distancebetweenthe
groundplaneandtherotorwasvariedbymovingtherotor towardor awayfrom theground
plane.Shadowgraphswereacquiredat anumberof rotorconditionsandrotor/groundplane
separations.Figure6 is anexampleof onesuchshadowgraphata smallseparationdistance.
Significantexpansionof therotor wakeanda decreasein thetip vortexdescentrateare
visible in this figure.During this test,veryhigh-qualityshadowgraphswereobtained,with
somephotosshowingup tofive bladepassages(Fig.7).

Theapplicabilityof thewide-fieldshadowgraphmethodto forwardflight wasfirst
examinedduringajoint Army/NASA/Boeingtestprogramat theDuitsNederlandseWind-
tunnel (DNW) usinga 1/5-scaleBoeingModel360 rotor.Generalcharacteristicsof this
rotorareprovidedin Table2 with additionalinformationavailablein Reference8. Shadow-
graphswereacquiredfrombelowtheadvancingsideof therotor (Fig. 8)with atestconfigu-
rationsimilar to thatshownin Figure2. At low advanceratios(_t< 0.08)thevorticeswere
clearlyvisibleastheyweresweptbehindtherotor (Fig.9). At higherforwardspeeds,thetip
vorticeswerenotvisible.Thecauseof this lossof visibility hasnotyetbeendetermined.

A secondwind tunneltestwasrecentlyconductedby NASA Amesresearchersto
examinetip vortexgeometryin forwardflight. This testwasconductedat theUniversityof
Maryland'sGlennL. MartinWindTunnelusing a small-scalefour-bladedrotor.Duringthis
test,shadowgraphswereacquiredbothfromaboveandfrom thesideof therotorsystemfor a
widerangeof operatingconditionsin forwardflight (upto _t= 0.175).In particular,separate
shadowgraphswereacquiredshowingthefront andrearportionsof therotor system.Fig-
ure10is a sampleshadowgraphshowingthefront halfof therotorsystemata low forward
speed(air flow fromright to left). Thisshadowgraphprovidesinformationon tip vortextra-
jectoriesin forwardflight andblade/vortexinteractions(seesecondbladepassage).Figure11
is asampleshowingtherearhalf of therotorsystem.Thisshadowgraphalsoprovidesinfor-
mationon thetip vortextrajectoriesandonwake/fuselageinteractionsin forwardflight. In
additionto still-photoshadowgraphssuchasthese,this testalsoprovidedthefirst known
videosof tip vorticesusingthewide-fieldshadowgraphtechnique.

4. Limitations of Experimental Techniaue

Despite its excellent capabilities, the wide-field shadowgraph technique does have
some limitations. In particular, the tip vortex strength plays a major role in whether the vor-

tices are visible. Previous work attempting to quantify the vortex visibility (Ref. 5)
demonstrated that a minimum strength is necessary for adequate visibility. For those rotor

systems tested so far, this corresponds to full-scale tip Mach numbers (M t > 0.5) and
moderate thrust values (CT/O > 0.06).

It has also been noted that vortex visibility is greatly reduced when the rotor blades

reach stall. At this condition, the strength of the tip vortices decreases significantly. Thus, the
shadowgraph technique is applicable to a limited envelope of operating conditions. Fortu-

nately, a significant amou-., of interesting flight conditions are included in this envelope.

Forward flight is another condition which affects tip vortex strength and thus vortex
visibility. A simple analysis (Ref. 5) suggests that vortex visibility should decrease with for-

ward speed on the advancing side of the rotor and increase on the retreating side (caused by



changesin bladeangleof attack around the azimuth in forward flight). Preliminary results
seem to indicate that the vortex visibility decreases on both sides of the rotor. Additional

work must be performed to understand this effect.

5. Data-Reduction Method

Shadowgraph data-reduction methods are necessary in order to provide quantitative

information about rotor tip vortex trajectories. In general, separate methods are required for
each test configuration. For example, different methods are required if shadowgraphs are
acquired from the top rather than from the side of the rotor. Also, different methods are

required for reducing hover and forward flight data.

Currently, NASA has a complete data-reduction method for only one test configura-
tion: shadowgraphs acquired from the side of a hovering rotor. A review of this method is

provided in the following section, followed by sample results and future data-reduction plans.

5.1 Current Method - Hover

The current data-reduction method reduces shadowgraphs acquired from the side
view of a hovering rotor to provide axial and radial tip vortex coordinates as a function of
wake azimuth angle. The primary assumptions of the method are 1) the tip vortex trajectories

are nominally helical in nature, and 2) the trajectories are centered about the rotor centerline.

For the data reduction method to be successful, each shadowgraph must provide cer-
tain basic information. First, all blade tips must be visible on the shadowgraph. The blade tips

are used in conjunction with the known blade azimuth angles to define the tip path plane of
the rotor. Second, the rotor centerline must be visible in the shadowgraph. The tip path plane
and the rotor centerline are used as the baseline axes in the data processing. Lastly, two

points on the screen at a known distance apart must be visible on the shadowgraph. These are
used to scale the shadowgraph measurements to full-scale values.

Once this basic information has been provided, the tip vortex coordinates from a par-

ticular shadowgraph can be determined. The current method uses only the outermost points
of the tip vortex trajectories in the data-reduction process. Measurements are made between
these vortex points and the baseline axes (tip path plane and rotor centerline) projected on the

shadowgraph screen. These measurements are then converted, based on the geometry of the
test setup, to actual distances at the rotor. From these distances, radial and axial tip vortex

coordinates are then easily determined.

This data-reduction method is currently operational on a DEC VAX computer using
an x-y graphics tablet as the data input device. Inaccuracies of the calculated tip vortex coor-

dinates are estimated to be approximately 1-1.5% of the rotor radius. This error can be
mainly attributed to the method with which the tip path plane and rotor centerline are deter-

mined. Repeatability of the calculated tip vortex coordinates from one shadowgraph to the
next has generally been within 1% of the rotor radius for points in the near wake. In the far
wake, however, wake unsteadiness becomes apparent, with fluctuations ranging up to 15% of
the radius.

5.2 Sample Results

Typical results generated by this method are shown in Figures 12 and 13. These fig-

ures plot the axial and radial tip vortex coordinates for one operating condition
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(CT/_ = 0.091,out of groundeffect)from theLynx tail rotor test(Ref.7). Thedataplotted
hererequireddatareductionof 40differentshadowgraphphotos.Also plotted on these fig-
ures are theoretical and empirical predictions of the vortex coordinates. This demonstrates

how shadowgraph data may be used to validate performance analyses (and their assump-
tions). The unsteadiness in the far wake is also visible in these figures, seen as data scatter at
the high wake angles. The shadowgraph method provides one means of quantifying this
unsteadiness.

Reference 7 demonstrated how this data-reduction method could be used to study the
effects of rotor/ground separation on tip vortex geometry. Data were reduced for a number of

rotor conditions and rotor/ground separation distances. Figure 14 is an example of reduced
data at a small separation distance (h/R = 0.32); this shows the effect of the ground plane on

the radial tip vortex coordinate. Figure 15 demonstrates how, by combining data from several
conditions, the data reduction method can be utilized to quantify the effect of separation dis-
tance on tip vortex geometry.

Fig:_re 16 demonstrates how this method might be used to study rotor wake inter-

actions with solid bodies (i.e., wake/wing, wake/fuselage interaction). These data were
acquired with the model tilt rotor configuration of Reference 5 (Table 2, Fig. 5). For this par-

ticular experiment, the shadowgraph light source was positioned so that all tip vortex geom-
etry data from the right side of the rotor was acquired directly over the wingspan. Thus, the
difference in tip vortex geometry between the right and left sides of the rotor is caused by the
interference from the wingspan.

5.3 Future Plans

Although the current data-reduction method is capable of providing valuable infor-
mation, more work needs to be done. Currently, work is under way to generalize and docu-

ment the existing method. Also, since the use of video seems so promising, future plans
include applying this method to video-acquired shadowgraphs. Work may need to be done to
speed up the data-reduction process (image processing) in order to handle the larger amount
of data available with the video.

The next step will be to develop data-reduction methods for forward flight. Separate
methods will be required, depending on the phenomena of interest: wake geometry,

wake/body interaction, blade/vortex interaction. It is expected that the current hover method
will be adaptable to measuring wake geometry in forward flight.

6. Concludin_ Remarks

Through a number of recently conducted experiments, it has been shown that the
wide-field shadowgraph technique is an excellent method for visualizing rotor wakes. For

hovering rotors, in particular, detailed shadowgraphs showing complete tip vortex trajectories

are possible. Quantitative data, in the form of tip vortex coordinates, can be determined
using existing data-reduction methods.

The shadowgraph technique has also been shown to apply to low-speed forward
flight. Quantitative data _an be acquired, which detail tip vortex geometry in forward flight,
including wake/fuselage and blade/vortex interactions. At this time, it is unclear whether

high-speed forward flight data can be acquired. Additional testing is required to quantify the
effect of forward speed on vortex visibility.
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Table 1. Shadowgraph Tests Conducted

Rotor

Model 300 Tail Rotor

Sikorsky, S-76

Sikorsky S-76

Model Tilt Rotor

L_fnx Tail Rotor

Boein_ Model 360

Model Helicopter Rotor

No. of blades

2

Rotor radius (m)

0.650

4 1.067

4 1.067

0.610

1.105

1.540

0.826

Test configuration

Hover

Hover, wake traveling down

Hover, wake travelin_ up

Hover, tilt rotor

Hover, in ground effect

Forward flight

Forward flight, with fuselage

Table 2. Shadowgraph Rotor Parameters

Rotor

Model 300 Tail Rotor

Radius (m)

0.650

Chord (m)

0.120

Blades

2

Twist

0 °

Solidity

0.118

Planform

Rectangular

Sikorsky S-76 1.067 0.063 4 -10 ° 0.075 Rectangular

Model Tilt Rotor 0.610 0.057* 3 -45 °** 0.089

Lynx Tail Rotor 1.105 0.180 4 0 ° 0.208

0.134"1.540 4

40.826

-12 °

-12 °

Boeing Model 360

Model Helicopter Rotor

* Base chord for tapered blade

**Nonlinear twist

0.101

0.0980.064

Tapered

Rectangular

Tapered tip

Rectangular
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Figure 3. Shadowgraph of Hughes Model 300 Tail Rotor, Mt = 0.38, collective = 14 °.

Figure 4. Shadowgraph of S-76 rotor, wake down, CT/_ = 0.103, Mt = 0.55.
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Figure 5. Shadowgraph of model tilt rotor, CT/O = 0.083, Mt = 0.56.

Figure 6. Shadowgraph of Lynx tail rotor in ground effect, CT/O = 0.095, h/R = 0.32.
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Figure 7. Shadowgraph of Lynx tail rotor in ground effect, CT/t_ = 0.084, h/R = 0.96.
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Figure 8.
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Schematic showing shadowgraph field-of-view from floor-mounted camera for

Model 360 rotor in forward flight.

Figure 9. Shadowgraph of Model 360 rotor in forward flight, CT/O = 0.080, Mt = 0.637,

kt = 0.069.
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Figure 10. Shadowgraphof model rotor in forward flight, CT/a = 0.09, Mt = 0.47,
la = 0.05.

Figure 11.
Shadowgraph of model rotor in forward flight, CT/a = 0.09, Mt = 0.47,t.t -- 0.05.
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Figure 12.
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Figure 14.
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Figure 16.
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