INDEPENDENT ORBITER ASSESSMENT

ASSESSMENT OF THE
COMMUNICATION
AND TRACKING
SUBSYSTEM
VOLUME 2 OF 3

18 MARCH 1988
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002F
NASA FMEA #: 1.2.3

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-601
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002G
NASA FMEA #: 1.2.4
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /IR]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-602
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002H
NASA FMEA #: 1.2.5

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
</tbody>
</table>

NASA [3 /3]	[]	[]	[]	[]	[] *
IOA [2 /1R]	[P]	[P]	[P]	[X]	
COMPARE [N /N]	[N]	[N]	[N]	[N]	

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-603
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002I
NASA FMEA #: 1.2.6

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
FLIGHT HDW/FUNC

NASA [3 /3]
IOA [2 /1R]
COMPARE [N /N]

REDUNDANCY SCREENS
A B C

[] [] [] [] []
[P] [P] [P] [X]
[N] [N] [N] [N]

CIL ITEM

ITEM

[] *

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-604
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002J
NASA FMEA #: 1.2.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC A B C</td>
<td>ITEM</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[] [] []</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [N/N]</td>
<td>[N] [N] [N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-605
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002K
NASA FMEA #: 1.2.8
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

NASA DATA:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-606
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002L
NASA FMEA #: 1.2.9

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICLITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-607
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002M
NASA FMEA #: 1.2.10

NASA DATA: BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002N
NASA FMEA #: 1.2.11

DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002N
NASA FMEA #: 1.2.11

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-609
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80020
NASA FMEA #: 1.2.12

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-610
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002P
NASA FMEA #: 1.2.13

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-611
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002Q
NASA FMEA #: 1.2.14
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-612
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002R
NASA FMEA #: 1.2.15
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-613
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002S
NASA FMEA #: 1.2.16

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002T
NASA FMEA #: 1.2.17

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY

FLIGHT
HDW/FUNC

NASA [3 /3]
IOA [2 /1R]
COMPARE [N /N]

CIL RETENTION RATIONALE: (If applicable)

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-615
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002U
NASA FMEA #: 1.2.19
SUBSYSTEM: COMM AND TRACK
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-616
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8002V
NASA FMEA #: 1.2.20

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8002
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILS TO SWITCH RESULTS IN LOSS OF OUTPUT. LOSS OF OUTPUT COVERS ALL VSU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-617
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003
NASA FMEA #: 1.2.2
NASA ID:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [2 /2] | [] | [] | [] | [X] | *
| IOA [2 /1R] | [P] | [p] | [p] | [X] |
| COMPARE [/N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-618
APPENDIX C
ASSESSMENT WORKSHEET

DATE: ASSESSMENT 3/05/88
ASSESSMENT ID: COMTRK-8003A
NASA FMEA #: 1.2.18
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-619
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003B
NASA FMEA #: 1.2.21
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-620
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003C
NASA FMEA #: 1.2.22

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2/1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003D
NASA FMEA #: 1.2.23
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[p]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF
ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW
AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF
VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW
WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS
JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-622
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003E
NASA FMEA #: 1.2.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003F
NASA FMEA #: 1.2.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N/N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-624
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003G
NASA FMEA #: 1.2.4
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-625
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003H
NASA FMEA #: 1.2.5
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3 /2R]</td>
<td>[P] [P] [P]</td>
<td>[]</td>
</tr>
<tr>
<td>[2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>[N /N]</td>
<td>[] [] []</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003I
NASA FMEA #: 1.2.6

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC A B C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [3 /2R] [P] [P] [P]</td>
<td>[]</td>
<td>*</td>
</tr>
<tr>
<td>IOA [2 /1R] [P] [P] [P]</td>
<td>[X]</td>
<td></td>
</tr>
<tr>
<td>COMPARE [N /N] [] [] [] []</td>
<td>[N]</td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-627
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8003J
BASELINE []
NASA FMEA #: 1.2.7
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /2R]</td>
<td>[P] [P] [P]</td>
<td>[] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[] [] [] []</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88
C-628
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003K
NASA FMEA #: 1.2.8

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA [3/2R] [P] [P] [P] [] [*]
IOA [2/1R] [P] [P] [P] [] [X]
COMPARE [N/N] [] [] [] [] [N]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-629
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003L
NASA FMEA #: 1.2.9

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>NASA [3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td></td>
<td>IOA [2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-630
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003M
NASA FMEA #: 1.2.10

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-631
APPENDIX C

ASSESSMENT WORKSHEET

<table>
<thead>
<tr>
<th>ASSESSMENT DATE:</th>
<th>3/05/88</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT ID:</td>
<td>COMTRK-8003N</td>
</tr>
<tr>
<td>NASA FMEA #:</td>
<td>1.2.11</td>
</tr>
<tr>
<td>NASA DATA:</td>
<td>BASELINE [] NEW [X]</td>
</tr>
<tr>
<td>SUBSYSTEM:</td>
<td>COMM AND TRACK</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>8003</td>
</tr>
<tr>
<td>ITEM:</td>
<td>VIDEO SWITCHING UNIT</td>
</tr>
<tr>
<td>LEAD ANALYST:</td>
<td>W.C. LONG</td>
</tr>
<tr>
<td>ASSESSMENT:</td>
<td>CRITICALITY REDUNDANCY SCREENS CIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.

LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-632
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80030
NASA FMEA #: 1.2.12

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003P
NASA FMEA #: 1.2.13

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [3/2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N/N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-634
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003Q
NASA PMEA #: 1.2.14

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /2R]</td>
<td>[P] [P] [P]</td>
<td>[] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[] [] []</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-635
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003R
NASA FMEA #: 1.2.15
NASA DATA: BASELINE []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[p]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003S
NASA FMEA #: 1.2.16

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /2R]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8003T
NASA FMEA #: 1.2.17
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[p]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-638
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003U
NASA FMEA #: 1.2.19
NASA DATA:

BASELINE []
NEW [X]

ASSESSMENT ID: COMTRK-8003U
NASA FMEA #: 1.2.19

ASSESSMENT:

CRITICALITY
FLIGHT
HDW/FUNC

REDUNDANCY SCREENS
A B C

CIL
ITEM

NASA [3 /2R] [P] [P] [P] [] *

IOA [2 /1R] [P] [P] [P] [X]

COMPARE [N /N] [] [] [] [N]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88
C-639
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8003V
NASA FMEA #: 1.2.20
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8003
ITEM: VIDEO SWITCHING UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA</td>
<td>[3/2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N/N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT.
LOSS OF VCU COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-640
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004
NASA FMEA #: 1.1.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>2 /1R</td>
<td>P</td>
</tr>
<tr>
<td>IOA</td>
<td>2 /1R</td>
<td>P</td>
</tr>
<tr>
<td>COMPARE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [.] [] [] []

(ADD/DELETE)

CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT ANALYSES AGREE.

REPORT DATE 03/18/88 C-641
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004A
NASA FMEA #: 1.1.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT ANALYSES AGREE.

REPORT DATE 03/18/88 C-642
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004B
NASA FMEA #: 1.1.5

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT ANALYSES AGREE.

REPORT DATE 03/18/88 C-643
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004C
NASA FMEA #: 1.1.11.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT ANALYSES AGREE.

REPORT DATE 03/18/88 C-644
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004D
NASA FMEA #: 1.1.15

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NASA [2/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td></td>
<td>IOA [2/1R]</td>
<td>[P]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT ANALYSES AGREE.

REPORT DATE 03/18/88 C-645
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004E
NASA FMEA #: 1.1.19
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT ANALYSES AGREE.

REPORT DATE 03/18/88 C-646
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004F
NASA FMEA #: 1.1.8

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[p]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-647
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004G
NASA FMEA #: 1.1.9
NASA DATA: BASELINE [] NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG
ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

* CIL RETENTION RATIONALE: (If applicable)

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-648
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004H
NASA FMEA #: 1.1.10

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W. C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /IR]</td>
<td>[P]</td>
<td>[p]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-649
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004I
NASA FMEA #: 1.11.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004J
NASA FMEA #: 1.1.12.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-651
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004K
NASA FMEA #: 1.1.12.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:

(If different from NASA)

| [] | [] | [] | [] | [] | [] |

(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004L
NASA FMEA #: 1.1.16

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-653
APPENDIX C
ASSESSMENT WORKSHEET

<table>
<thead>
<tr>
<th>ASSESSMENT DATE:</th>
<th>3/05/88</th>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT ID:</td>
<td>COMTRK-8004M</td>
<td>BASELINE []</td>
</tr>
<tr>
<td>NASA FMEA #:</td>
<td>1.1.17</td>
<td>NEW [X]</td>
</tr>
</tbody>
</table>

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88
C-654
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004N
NASA FMEA #: 1.1.18

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>FLIGHT</td>
<td></td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P] [P] [P]</td>
<td>[] *</td>
</tr>
<tr>
<td>I0A [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[] [] [] []</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80040
NASA FMEA #: 1.1.21.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
FLIGHT
HDW/FUNC

REDUNDANCY SCREENS
A
B
C

NASA [3 /1R] [P] [P] [P] [] *
IOA [2 /1R] [P] [P] [P] [X]
COMPARE [N /] [] [] [] [N]

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-656
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004P
NASA FMEA #: 1.1.23.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [3/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-657
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004Q
NASA FMEA #: 1.1.23.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]
Inadequate []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004R
NASA FMEA #: 1.1.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N/N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-659
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004S
NASA FMEA #: 1.1.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-660
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004T
NASA FMEA #: 1.1.4

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-661
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004U
NASA FMEA #: 1.1.6

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-662
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004V
NASA FMEA #: 1.1.13

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS A</th>
<th>REDUNDANCY SCREENS B</th>
<th>REDUNDANCY SCREENS C</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-663
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004W
NASA FMEA #: 1.1.14

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

NASA DATA:
- BASELINE []
- NEW [X]

ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:

(If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* **CIL RETENTION RATIONALE:**

(If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88

C-664
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004Y
NASA FMEA #: 1.1.20

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /IR]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-665
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004Z
NASA FMEA #: 1.1.21.2
NASA DATA:
<table>
<thead>
<tr>
<th>BASELINE</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[X]</td>
</tr>
</tbody>
</table>

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NASA</th>
<th>IOA</th>
<th>COMPARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3 /3]</td>
<td>[2 /1R]</td>
<td>[N /N]</td>
</tr>
<tr>
<td>[P]</td>
<td>[P]</td>
<td>[N]</td>
</tr>
<tr>
<td>[P]</td>
<td>[P]</td>
<td>[N]</td>
</tr>
<tr>
<td>[X]</td>
<td>[X]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [] | [] | [] | [] | [] |

(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)

<table>
<thead>
<tr>
<th>ADEQUATE</th>
<th>INADEQUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]</td>
<td>[]</td>
</tr>
</tbody>
</table>

REMARKS:

LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004AA
NASA FMEA #: 1.1.22.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td></td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>P</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>N</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-667
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8004BB
NASA FMEA #: 1.1.22.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8004
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG
ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLYT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[] / [] / [] / [] / [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYZED.

REPORT DATE 03/18/88 C-668
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005
NASA FMEA #: 1.1.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] [] []

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE.

REPORT DATE 03/18/88 C-669
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005A
NASA FMEA #: 1.1.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[] [] []</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005B
NASA FMEA #: 1.1.5

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE.
APPENDIX C
ASSESSMENT WORKSHEET

<table>
<thead>
<tr>
<th>ASSESSMENT DATE: 3/05/88</th>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT ID: COMTRK-8005C</td>
<td>BASELINE []</td>
</tr>
<tr>
<td>NASA FMEA #: 1.1.11.2</td>
<td>NEW [X]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBSYSTEM:</th>
<th>COMM AND TRACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDAC ID:</td>
<td>8005</td>
</tr>
<tr>
<td>ITEM:</td>
<td>REMOTE CONTROL UNIT</td>
</tr>
<tr>
<td>LEAD ANALYST:</td>
<td>W.C. LONG</td>
</tr>
</tbody>
</table>

ASSESSMENT:

CRITICALITY REDUNDANCY SCREENS

<table>
<thead>
<tr>
<th>FLIGHT HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:

INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE.

REPORT DATE 03/18/88 C-672
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005D
NASA FMEA #: 1.1.15

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] | [] | (ADD/DELETE) |

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE.

REPORT DATE 03/18/88 C-673
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005E
NASA FMEA #: 1.1.19

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE.

REPORT DATE 03/18/88 C-674
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005F
NASA FMEA #: 1.1.8
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [2 /2] | [] | [] | [] | [X] | *
| IOA [2 /1R] | [P] | [P] | [P] | [X] |
| COMPARE [/N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

<table>
<thead>
<tr>
<th>ASSESSMENT DATE:</th>
<th>3/05/88</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT ID:</td>
<td>COMTRK-8005G</td>
</tr>
<tr>
<td>NASA FMEA #:</td>
<td>1.1.9</td>
</tr>
<tr>
<td>SUBSYSTEM:</td>
<td>COMM AND TRACK</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>8005</td>
</tr>
<tr>
<td>ITEM:</td>
<td>REMOTE CONTROL UNIT</td>
</tr>
<tr>
<td>LEAD ANALYST:</td>
<td>W.C. LONG</td>
</tr>
<tr>
<td>NASA DATA:</td>
<td></td>
</tr>
<tr>
<td>BASELINE []</td>
<td>NEW [X]</td>
</tr>
<tr>
<td>CRITICALITY</td>
<td>REDUNDANCY SCREENS</td>
</tr>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [] | [] | [] | [] | [] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:

INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005H
NASA FMEA #: 1.1.10
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF
OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU
FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-677
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005I
NASA FMEA #: 1.1.11.1
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[p]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-678
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005J
NASA FMEA #: 1.1.12.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-679
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005K
NASA FMEA #: 1.1.12.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[p]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALysED.

REPORT DATE 03/18/88 C-680
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005L
NASA FMEA #: 1.1.16

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /IR]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /IR]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-681
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005M
NASA FMEA #: 1.1.17

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-682
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8005N
NASA FMEA #: 1.1.18
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-683
ASSESSMENT DATE: 3/05/88
ASSessment ID: COMTRK-80050
NASA FMEA #: 1.1.21.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005P
NASA FMEA #: 1.1.23.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-685
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8005Q
NASA FMEA #: 1.1.23.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
</tbody>
</table>

COMPARE [N /]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88
C-686
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8005R
NASA FMEA #: 1.1.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG
ASSESSMENT: CRITICALITY REDUNDANCY SCREENS CIL ITEM

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE: 03/18/88
C-687
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005S
NASA FMEA #: 1.1.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-688
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005T
NASA FMEA #: 1.1.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-689
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: COMTRK-8005U BASELINE []
NASA FMEA #: 1.1.6 NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005V
NASA FMEA #: 1.1.13
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[]

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-691
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005W
NASA FMEA #: 1.1.14
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005Y
NASA FMEA #: 1.1.20

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS A</th>
<th>B</th>
<th>C</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /IR]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-693
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005Z
NASA FMEA #: 1.1.21.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY REDUNDANCY SCREENS CIL
FLIGHT HDW/FUNC A B C ITEM

NASA [3 /3] [] [] [] []
IOA [2 /1R] [P] [P] [P] [X]
COMPARE [N /N] [N] [N] [N] [N]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]
Inadequate []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF
OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU
FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-694
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005AA
NASA FMEA #: 1.1.22.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE [

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-695
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8005BB
NASA FMEA #: 1.1.22.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8005
ITEM: REMOTE CONTROL UNIT

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[p]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
INTERNAL ELECTRICAL OPEN/SHORT CIRCUIT COULD RESULT IN LOSS OF OUTPUT. ANALYSES AGREE. LOSS OF OUTPUT COVERS ALL RCU FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-696
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006
NASA FMEA #: 3.1.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-697
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006A
NASA FMEA #: 3.1.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-698
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006B
NASA FMEA #: 3.1.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REDUNDACY SCREENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC A B C</td>
</tr>
<tr>
<td>NASA [] [] [] []</td>
</tr>
<tr>
<td>IOA [] [] [] []</td>
</tr>
<tr>
<td>COMPARE [] [] [] []</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item []</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]

INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006C
NASA FMEA #: 3.1.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88
C-700
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006D
NASA FMEA #: 3.1.4
NASA DATA:
- BASELINE []
- NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] | [] | (ADD/DELETE) |

* **CIL RETENTION RATIONALE:** (If applicable)
 - ADEQUATE [X]
 - INADEQUATE []

REMARKS:

LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88
C-701
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006E
NASA FMEA #: 3.1.5

NASA DATA:
BASELINE []
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE []</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE []
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006F
NASA FMEA #: 3.2.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-703
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006G
NASA FMEA #: 3.2.2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-704
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006H
NASA FMEA #: 3.2.2.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA [3 /3] [] [] [] [] [] *
IOA [3 /3] [] [] [] [] []
COMPAR [/] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-705
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006I
NASA FMEA #: 3.2.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-706
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: COMTRK-8006J BASELINE []
NASA FMEA #: 3.2.4 NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC A B C</td>
<td>ITEM</td>
</tr>
</tbody>
</table>

NASA [3/3] [] [] [] [] [] [] [X] *
IOA [3/3] [] [] [] [] [] []
COMPARE [/] [] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-707
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006K
NASA FMEA #: 3.2.5
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS. CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006L
NASA FMEA #: 3.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-709
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006M
NASA FMEA #: 3.3.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK).
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>NASA [3/3]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>IOA [3/3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-710
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006N
NASA FMEA #: 3.2.3.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-711
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006O
NASA FMEA #: 3.2.3.2
NASA DATA: BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-712
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88

ASSESSMENT ID: COMTRK-8006P

NASA FMEA #: 3.2.4

NASA DATA:

| BASELINE [] | NEW [X] |

SUBSYSTEM: COMM AND TRACK

MDAC ID: 8006

ITEM: TV CAMERA (FLT DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:

LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.

CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88

C-713
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8006Q
NASA FMEA #: 3.2.5
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8006
ITEM: TV CAMERA (FLT DECK)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88
C-714
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007
NASA FMEA #: 3.1.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] [] [] [] [] (ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMMTRK-8007A
NASA FMEA #: 3.1.2
NASA DATA:
BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID. DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC A B C</td>
<td>ITEM</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3] [] [] [] [] []</td>
<td>[] *</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3] [] [] [] [] []</td>
<td>[]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-716
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007B
NASA FMEA #: 3.1.3.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS A</th>
<th>B</th>
<th>C</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[] [] [] [] []</td>
<td></td>
<td></td>
<td>[] *</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[] [] [] [] []</td>
<td></td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[] [] [] [] []</td>
<td></td>
<td></td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-717
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007C
NASA FMEA #: 3.1.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[] [] [] [] []</td>
<td>[] *</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[] [] [] [] []</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[] [] [] [] []</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-718
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007D
NASA FMEA #: 3.1.4

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS A</th>
<th>REDUNDANCY SCREENS B</th>
<th>REDUNDANCY SCREENS C</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[]

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-719
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007E
NASA FMEA #: 3.1.5

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/ .] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007F
NASA FMEA #: 3.2.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)
LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

ASSESSMENT:
CRITICALITY
FLIGHT
HDW/FUNC
NASA [3 /3]
IOA [3 /3]
COMPARE [/]

RECONCILIATION SCREENS
A B C
[] [] []
[] [] []
[] [] []

CIL ITEM
ITEM
[] [] *
[] []
[] []

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-721
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007G
NASA FMEA #: 3.2.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-722
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007H
NASA FMEA #: 3.2.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-723
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007I
NASA FMEA #: 3.2.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[] [] [] [] []</td>
<td>[] *</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[] [] [] [] []</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[] [] [] [] []</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-724
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007J
NASA FMEA #: 3.2.4
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)
LEAD ANALYST: W.C. LONG

NASA DATA:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] | (ADD/DELETE) |

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007K
NASA FMEA #: 3.2.5

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY LIKELY TO COMPROMISE FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE:
(If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-726
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007L
NASA FMEA #: 3.3.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY OF FLIGHT ITEM</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-727
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007M
NASA FMEA #: 3.3.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-728
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007N
NASA FMEA #: 3.3.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-729
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80070
NASA FMEA #: 3.3.3.2
NASA DATA:
BASELINE []
NEW [x]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [x]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-730
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007P
NASA FMEA #: 3.3.4
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
FLIGHT HDW/FUNC

REDUNDANCY SCREENS
A B C

NASA [3 /3] [] [] [] [] [] *
IOA [3 /3] [] [] [] [] []

COMPARE [/] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-731
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8007Q
NASA FMEA #: 3.3.5

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8007
ITEM: TV CAMERA (MID DECK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE []</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-732
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008
NASA FMEA #: 2.1.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NASA [2/2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOA [2/1R]</td>
</tr>
<tr>
<td>COMPARE</td>
<td></td>
<td>[/N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-733
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008A
NASA FMEA #: 2.1.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)
LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-734
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008B
NASA FMEA #: 2.1.3.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

<table>
<thead>
<tr>
<th>ADEQUATE</th>
<th>INADEQUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]</td>
<td>[]</td>
</tr>
</tbody>
</table>

REMARKS:

LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-735
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008C
NASA FMEA #: 2.1.5
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-736
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008D
NASA FMEA #: 2.2.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

NASA [2 /2]	[]	[]	[]	[X]
IOA [2 /1R]	[P]	[P]	[P]	[X]
COMPARE [/N]	[N]	[N]	[N]	[]

RECOMMENDATIONS: (If different from NASA)

| NASA [2 /1R] | [P] | [P] | [P] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-737
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008E
NASA FMEA #: 2.2.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-738
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008F
NASA FMEA #: 2.2.3.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [x]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-739
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008G
NASA FMEA #: 2.2.5
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA [2 /2] [] [] [] [] [X] *
IOA [2 /1R] [P] [P] [P] [X]
COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-740
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008H
NASA FMEA #: 2.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING,
EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008I
NASA FMEA #: 2.3.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-742
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008J
NASA FMEA #: 2.3.3.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING,
EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-743
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008K
NASA FMEA #: 2.3.5

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA A (FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

| NASA [2 /2] | [] | [] | [] | [X] | * |
| IOA [2 /1R] | [P] | [P] | [P] | [X] |

| COMPARE [/N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

| ADEQUATE [X] |
| INADEQUATE [] |

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-744
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008L
NASA FMEA #: 2.1.4

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA B (KEEL/EVA)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008M
NASA FMEA #: 2.2.4

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA B (KEEL/EVA)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /1R]</td>
<td>[P] [P] [P]</td>
<td>[] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[] [] [] []</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-746
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008N
NASA FMEA #: 2.3.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA B (KEEL/EVA)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-747
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80080
NASA FMEA #: 2.1.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA B (KEEL/EVA)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE:
(If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALysed.

REPORT DATE 03/18/88
C-748
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008P
NASA FMEA #: 2.2.3.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA B (KEEL/EVA)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE [

REMARKS:

LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88
C-749
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8008Q
NASA FMEA #: 2.3.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8008
ITEM: TV CAMERA B (KEEL/EVA)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009
NASA FMEA #: 2.1.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING,
EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-751
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009A
NASA FMEA #: 2.1.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-752
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009B
NASA FMEA #: 2.1.3.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

<table>
<thead>
<tr>
<th>ADEQUATE</th>
<th>INADEQUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]</td>
<td>[]</td>
</tr>
</tbody>
</table>

REMARKS:

LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009C
NASA FMEA #: 2.1.5

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
COMM AND TRACK

MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)

[2 /1R] [P] [P] [P]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88
C-754
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009D
NASA FMEA #: 2.2.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC A B C</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2] [] [] []</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R] [P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N] [N] [N] [N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-755
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009E
NASA FMEA #: 2.2.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)
LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
</tbody>
</table>

COMPARE [/N] [N] [N] [N] [] []

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL
CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND
MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF
VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW
VIEWING,
EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW
P/L BAY DOOR CLOSURE.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009F
NASA FMEA #: 2.2.3.1

ASSESSMENT ID: COMTRK-8009F
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-757
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009G
NASA FMEA #: 2.2.5

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

<table>
<thead>
<tr>
<th>ADEQUATE</th>
<th>INADEQUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]</td>
<td>[]</td>
</tr>
</tbody>
</table>

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-758
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA: BASELINE []
NASA FMEA #: 2.3.1 NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
</tbody>
</table>

COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL
CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND
MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS Of
VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW
VIEWING,
EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW
P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-759
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8009I
BASELINE []
NASA FMEA #: 2.3.2
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL
CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND
MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF
VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW
VIEWING,
EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW
P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-760
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009J
NASA FMEA #: 2.3.3.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECITON AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-761
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009K
NASA FMEA #: 2.3.5

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-762
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009L
NASA FMEA #: 2.1.4
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)
LEAD ANALYST: W.C. LONG

ASSIGNMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:

LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88
C-763
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009M
NASA FMEA #: 2.2.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
INADEQUATE [X]

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS, ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: COMTRK-8009N BASELINE []
NASA FMEA #: 2.3.4 NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] []

(ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-765
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80090
NASA FMEA #: 2.1.3.2
NASA DATA: BASELINE [] NEW [x]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [x]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009P
NASA FMEA #: 2.2.3.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
FLIGHT
HDW/FUNC

REduNDANCY SCREENS
A B C

Nasa [2 /2] [] [] [] [X] *
Ioa [2 /1R] [P] [P] [P] [X]
Compare [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FUNCTIONS OF OUTPUT COVERS ALL TVC
ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-767
ASSESSMENT WORKSHEET

ASSSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8009Q
NASA FMEA #: 2.3.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8009
ITEM: TV CAMERA C (AFT P/L BAY)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY	REDUNDANCY SCREENS	CIL			
HDW/FUNC	A	B	C	ITEM	
NASA	[]	[]	[]	[]	[X] *
IOA	[]	[]	[]	[]	[X] *
COMPARE	[]	[]	[]	[]	[]

RECOMMENDATIONS: (If different from NASA)

[]

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-768
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010
NASA FMEA #: 2.1.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88
C-769
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010A
NASA FMEA #: 2.1.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

from RECOMMENDATIONS: (If different NASA)

[2 /1R] [P] [P] [P]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-770
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010B
NASA FMEA #: 2.1.3.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)
LEAD ANALYST: W.C. LONG

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>X</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>X</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>[N]</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>[N]</td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2/1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-771
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010C
NASA FMEA #: 2.1.5
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<p>| CRITICALITY | REDUNDANCY SCREENS | CIL |</p>
<table>
<thead>
<tr>
<th>HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-772
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010D
NASA FMEA #: 2.2.1

ASSESSMENT ID: COMTRK-8010D
NASA FMEA #: 2.2.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td>[X]</td>
<td></td>
</tr>
</tbody>
</table>

NASA [2 /2] [] [] [] [X] *
IOA [2 /1R] [P] [P] [P] [X]
COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL
CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND
MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF
VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW
VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTON AND RMS JETTISON TO ALLOW
P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-773
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010E
NASA FMEA #: 2.2.2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P]

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-774
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010F
NASA FMEA #: 2.2.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL
CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND
MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF
VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW
VIEWING,
EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW
P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-775
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010G
NASA FMEA #: 2.2.5
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTON AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-776
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010H
NASA FMEA #: 2.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [2 /2] | [] | [] | [] | [X] *
| IOA [2 /1R] | [P] | [P] | [P] | [X] |
| COMPARE [/N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL
CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND
MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF
VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW
VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW
P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-777
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: COMTRK-8010I BASELINE []
NASA FMEA #: 2.3.2 NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC A</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>NASA 2/2</td>
</tr>
<tr>
<td>IOA 2/1R</td>
</tr>
<tr>
<td>COMPARE /N</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [2/1R] | [P] | [P] | [P] |

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-778
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010J
NASA FMEA #: 2.3.3.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>NASA</td>
</tr>
<tr>
<td></td>
<td>[2 /2]</td>
</tr>
<tr>
<td></td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM</th>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BASELINE []</td>
</tr>
<tr>
<td></td>
<td>NEW [X]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM</th>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BASELINE []</td>
</tr>
<tr>
<td></td>
<td>NEW [X]</td>
</tr>
</tbody>
</table>

* CIL RETENTION RATIONALE: (If applicable)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADEQUATE</td>
<td>[X]</td>
</tr>
<tr>
<td>INADEQUATE</td>
<td>[]</td>
</tr>
</tbody>
</table>

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88
C-779
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010K
NASA FMEA #: 2.3.5
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)
LEAD ANALYST: W.C. LONG

NASA DATA:
- **BASELINE:** []
- **NEW:** [X]

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)

<table>
<thead>
<tr>
<th>FLIGHT HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2/1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
</tbody>
</table>

(ADD/DELETE)

* CIL RETENTION RATIONALE:
(If applicable)
- ADEQUATE [X]
- INADEQUATE []

REMARKS:
- **LOSS OF TVC COULD RESULT IN LOSS OF MISSION.** LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88
C-780
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010L
NASA FMEA #: 2.1.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] / [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010M
NASA FMEA #: 2.2.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-782
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010N
NASA FMEA #: 2.3.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT HDW/FUNC A B C ITEM</td>
<td></td>
</tr>
<tr>
<td>NASA [3 /1R] [P] [P] [P] [] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOA [2 /1R] [P] [P] [P] [X]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE [N /] [] [] [] [N]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80100
NASA FMEA #: 2.1.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[]

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]
Inadequate []

REMARKS:

LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-784
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010P
NASA FMEA #: 2.2.3.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3/3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-785
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8010Q
NASA FMEA #: 2.3.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8010
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. Long

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
Loss of output covers all TVC functions. Only the worst case function was analysed.

REPORT DATE 03/18/88 C-786
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011
NASA FMEA #: 2.1.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2/2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSEPTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88
C-787
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011A
NASA FMEA #: 2.1.2

SUBSYSTEM: MDAC
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL
CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND
MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF
VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW
VIEWING,
EVA AND COAS FOR CREW VISUAL INSEPCTION AND RMS JETTISON TO ALLOW
P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-788
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011B
NASA FMEA #: 2.1.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSEPCTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-789
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011C
NASA FMEA #: 2.1.5

SUBSYSTEM: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td>ITEM</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA	2 /2	[]	[]	[]	[]	[X]	*
ICA	2 /1R	[P]	[P]	[P]	[X]		
COMPARE	/N	[N]	[N]	[N]	[]		

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

| NASA DATA: |
| BASELINE | NEW | [X] |

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSEPCTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-790
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011D
NASA FMEA #: 2.2.1
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: MDAC ID:
ITEM: TV CAMERA D (RMS STBD POSITION FWD)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC A B C</td>
<td></td>
</tr>
<tr>
<td>NASA [2 /2] [] [] [] [] [X] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOA [2 /1R] [P] [P] [P] [X]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE [/N] [N] [N] [N] []</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSEPCTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011E
NASA FMEA #: 2.2.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>AB</td>
<td>C</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[X]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSEPCTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011F
NASA FMEA #: 2.2.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[X]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSEPCTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-793
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011G
NASA FMEA #: 2.2.5

SUBSYSTEM: MDAC
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

INADEQUATE []

REMARKS:

LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSEPTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011H
NASA FMEA #: 2.3.1

SUBSYSTEM:
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALLY REDUNDANCY SCREENS CIL

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>NASA</th>
<th>IOA</th>
<th>COMPARE</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>[2 2]</td>
<td>[P]</td>
<td>[N]</td>
<td>[X] *</td>
</tr>
<tr>
<td>A</td>
<td>[]</td>
<td>[P]</td>
<td>[N]</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>[]</td>
<td>[P]</td>
<td>[N]</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>[]</td>
<td>[P]</td>
<td>[N]</td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:

LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSEPCTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-795
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011I
NASA FMEA #: 2.3.2

SUBSYSTEM: MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-796
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011J
NASA FMEA #: 2.3.3.1

SUBSYSTEM: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN INADMISSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSEPTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011K
NASA FMEA #: 2.3.5
NASA DATA:

<table>
<thead>
<tr>
<th>SUBSYSTEM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV CAMERA D (RMS STBD POSITION FWD)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEAD ANALYST:</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.C. LONG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE []</td>
</tr>
<tr>
<td>NEW [X]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRITICALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
</tr>
<tr>
<td>HDW/FUNC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REDUNDANCY SCREENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

| NASA [2 /2] |
| [] |
| [] |
| [] |
| [X] * |

| IOA [2 /1R] |
| [P] |
| [P] |
| [P] |
| [X] |

| COMPARE [/N] |
| [N] |
| [N] |
| [N] |
| [] |

<table>
<thead>
<tr>
<th>RECOMMENDATIONS: (If different from NASA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2 /1R]</td>
</tr>
<tr>
<td>[P]</td>
</tr>
<tr>
<td>[P]</td>
</tr>
<tr>
<td>[P]</td>
</tr>
<tr>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CIL ITEM</th>
</tr>
</thead>
</table>

* CIL RETENTION RATIONALE: (If applicable)

<table>
<thead>
<tr>
<th>ADEQUATE [X]</th>
</tr>
</thead>
<tbody>
<tr>
<td>INADEQUATE []</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOSS OF TVC COULD RESULT IN LOSS OF MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING OF P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSEPTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.</td>
</tr>
</tbody>
</table>

REPORT DATE 03/18/88 C-798
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011L
NASA FMEA #: 2.1.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-799
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011M
NASA FMEA #: 2.2.4
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: 8011
MDAC ID: ITEM: TV CAMERA D (RMS STBD POSITION FWD)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011N
NASA FMEA #: 2.3.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY

FLIGHT

HDW/FUNC

REUNDANCY SCREENS

CIL

ITEM

NASA [3 /1R] [P] [P] [P] [] *

IOA [2 /1R] [P] [P] [P] [X]

COMPARE [N /] [] [] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:

LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-801
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80110
NASA FMEA #: 2.1.3.2

SUBSYSTEM:
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA				
IOA				
COMPARE				

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-802
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011P
NASA FMEA #: 2.2.3.2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] { }

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-803
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8011Q
NASA FMEA #: 2.3.3.2

SUBSYSTEM:
MDAC ID: 8011
ITEM: TV CAMERA D (RMS STBD POSITION FWD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3/3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-804
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012
NASA FMEA #: 5.1.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-805
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012A
NASA FMEA #: 5.1.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC
PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE
REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW
VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD
RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-806
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012B
NASA FMEA #: 5.1.3.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICABILITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

. [/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-807
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012C
NASA FMEA #: 5.1.5
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC
PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE
REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW
VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD
RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-808
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012D
NASA FMEA #: 5.2.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS A</th>
<th>B</th>
<th>C</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)

| [/] | [] | [] | [.] | [] | (ADD/DELETE) |

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS. WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88

C-809
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012E
NASA FMEA #: 5.2.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012F
NASA FMEA #: 5.2.3.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST
LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

CRITICALITY REDUNDANCY SCREENS CIL ITEM
FLIGHT HDW/FUNC A B C ITEM

NASA [2 /2] [] [] [] [X] *
IOA [3 /2R] [P] [P] [P] []
COMPARE [N /N] [N] [N] [N] [N]

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC
PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE
REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW
VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD
RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-811
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012G
NASA FMEA #: 5.2.5
NASA DATA:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2/2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3/2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC
PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE
REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW
VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD
RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-812
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012H
NASA FMEA #: 5.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALLY	REDUNDANCY SCREENS	CIL			
FLIGHT HDW/FUNC	A	B	C	ITEM	
NASA [2 /2]	[]	[]	[]	[]	[X]*
IOA [3 /2R]	[P]	[P]	[P]	[]	
COMPARE [N /N]	[N]	[N]	[N]	[N]	

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC
PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE
REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW
VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD
RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-813
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA: BASELINE [] NEW [X]
ASSESSMENT ID: COMTRK-8012I
NASA FMEA #: 5.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NASA</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[X]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IOA</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPARE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[N /N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC
PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE
REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW
VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD
RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-814
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012J
NASA FMEA #: 5.3.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC
PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE
REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW
VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD
RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-815
APPENDIX C
ASSESSMENT WORKSHEET

ASSSESSMENT DATE: 3/05/88
ASSSESSMENT ID: COMTRK-8012K
NASA FMEA #: 5.3.5
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS.
WRIST TVC NOT USED TO MONITOR CRITICAL Functions AND ELBOW TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-816
APPENDIX C
ASSessment WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012L
NASA FMEA #: 5.1.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]
Inadequate []

REMARKS:
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-817
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012M
NASA FMEA #: 5.2.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3/2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3/2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-818
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012N
NASA FMEA #: 5.3.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ITEM</td>
</tr>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-819
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: CONTRK-80120
NASA FMEA #: 5.1.3.2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY WORST CASE FUNCTION ANALYSED.

REPORT DATE 03/18/88 C-820
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012P
NASA FMEA #: 5.2.3.2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY WORST CASE FUNCTION ANALYSED.

REPORT DATE 03/18/88 C-821
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8012Q
NASA FMEA #: 5.3.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8012
ITEM: TV CAMERA RMS WRIST

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] (ADD/DELETE) |

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY WORST CASE FUNCTION ANALYSED.

REPORT DATE 03/18/88 C-822
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013
NASA FMEA #: 4.1.1

ASSESSMENT ID: COMTRK-8013
NASA FMEA #: 4.1.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
</tbody>
</table>

COMPARE [N /N] [N] [N] [N] [N]

RECOMMENDATIONS: (If different from NASA)

[] / [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-823
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013A
NASA FMEA #: 4.1.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTOUT COULD RESULT IN REduced MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-824
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013B
NASA FMEA #: 4.1.3.1
SUBSYSTEM: COMM AND TRACK
ITEM: TV CAMERA RMS ELBOW

ASSESSMENT ID: COMTRK-8013B
NASA FMEA #: 4.1.3.1
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] | (ADD/DELETE) |

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS.
ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88
C-825
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013C
NASA FMEA #: 4.2.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV Camera RMS Elbow
LEAD ANALYST: W.C. Long

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTLET COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-826
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013D
NASA FMEA #: 4.2.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTOUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS.
ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPOORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-827
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013E
NASA FMEA #: 4.2.3.1
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013E
NASA FMEA #: 4.2.3.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW
LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTOUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS.
ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC
PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE
REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW
VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION
COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-828
APPENDIX C
ASSESSMENT WORKSHEET

ASSessment Date: 3/05/88
Assessment ID: COMTRK-8013F
NASA FMEA #: 4.3.1

Subsystem: Comm and Track
MDAC ID: 8013
Item: TV Camera RMS Elbow

Lead Analyst: W.C. Long

Assessment:

<table>
<thead>
<tr>
<th>Criticality</th>
<th>Redundancy Screens</th>
<th>CIL Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight HDW/Func</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>Compare [N/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

Recommendations: (If different from NASA)

| [] | [] | [] | [] | [] | |

* CIL Retention Rationale: (If applicable)

Adequate [X] |
Inadequate []

Remarks:
Loss of TVC output could result in reduced mission effectiveness. Elbow TVC not used to monitor critical functions and wrist TVC provides partial redundancy for mission support. Unlike redundancy exists via crew window viewing, EVA and COAS for crew visual inspection. All capability to perform elbow TVC function could result in loss of mission.

Report Date 03/18/88 C-829
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013G
NASA FMEA #: 4.3.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-830
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88

ASSESSMENT ID: COMTRK-8013H

NASA FMEA #: 4.3.3.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK

MDAC ID: 8013

ITEM: TV CAMERA RMS ELBOW

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-831
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013I
NASA FMEA #: 4.1.5
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF TVC OUTOUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT CONSIDERED A FACTOR DURING RMS STOW.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013J
NASA FMEA #: 4.2.5
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2 /1R] [P] [P] [P] [X]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOA [3 /2R] [P] [P] [P] []</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE [N /N] [] [] [] [N]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
Loss of TVC output could result in reduced mission effectiveness. Elbow TVC not used to monitor critical functions and wrist TVC provides partial redundancy for mission support. Unlike redundancy exists via crew window viewing, EVA and COAS for crew visual inspection. All capability to perform elbow TVC function could result in loss of mission. Mechanical interference was not considered a factor during RMS stow.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013K
NASA FMEA #: 4.3.5
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT CONSIDERED A FACTOR DURING RMS STOW.

REPORT DATE 03/18/88 C-834
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013L
NASA FMEA #: 4.1.4

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3/2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE FACTOR DURING RMS STOW. PTU STILL FUNCTIONING TO MOVE TVC INTO STOW POSITION.

REPORT DATE 03/18/88 C-835
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013M
NASA FMEA #: 4.2.4

NASA DATA:
BASELINE []
NEW [X]

NASA FMEA #: 4.2.4

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>NASA [3/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td></td>
<td>IOA [3/2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]
Inadequate []

REMARKS:
MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE FACTOR DURING RMS STOW. PTU STILL FUNCTIONING TO MOVE TVC INTO STOW POSITION.

REPORT DATE 03/18/88 C-836
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013N
NASA FMEA #: 4.3.4

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW

LEAD ANALYST: W.C. LONG

NASA DATA:
- BASELINE []
- NEW [X]

ASSESSMENT: CRITICALITY REDUNDANCY SCREENS CIL ITEM

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

- [] [] [] [] [] [] (ADD/DELETE)

CIL RETENTION RATIONALE: (If applicable)

- ADEQUATE [X]
- INADEQUATE []

REMARKS:

MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE FACTOR DURING RMS STOW. PTU STILL FUNCTIONING TO MOVE TVC INTO STOW POSITION.

REPORT DATE 03/18/88
C-837
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80130
NASA FMEA #: 4.1.3.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3/3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3/2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88
C-838
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013P
NASA FMEA #: 4.2.3.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW
LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [3 /3] | [] | [] | [] | [] *
| IOA [3 /2R] | [P] | [P] | [P] |
| COMPARE [/N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-839
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8013Q
NASA FMEA #: 4.3.3.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8013
ITEM: TV CAMERA RMS ELBOW
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY THE WORST CASE FUNCTION WAS ANALYSED.

REPORT DATE 03/18/88 C-840
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8014
NASA FMEA #: 2.1.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8014
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[X]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X] INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-841
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8014A
NASA FMEA #: 2.2.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8014
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>HDW/FUNC</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8014B
NASA FMEA #: 2.3.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8014
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-843
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8014C
NASA FMEA #: 2.4.1.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8014
ITEM: PAN AND TILT UNIT (TVC A POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>2 /2</td>
<td></td>
</tr>
<tr>
<td>IOA</td>
<td>2 /1R</td>
<td>P</td>
</tr>
<tr>
<td>COMPARE</td>
<td>/N</td>
<td>N</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R]. [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8014D
NASA FMEA #: 2.4.1.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8014
ITEM: PAN AND TILT UNIT (TVC A POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2/2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[x/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-845
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8014E
NASA FMEA #: 2.4.2.1
NASA DATA:

<table>
<thead>
<tr>
<th>BASELINE</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[X]</td>
</tr>
</tbody>
</table>

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8014
ITEM: PAN AND TILT UNIT (TVC A POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88
C-846
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8014F
NASA FMEA #: 2.4.2.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8014
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-847
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8014G
NASA FMEA #: 2.4.3

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8014
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-848
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8015
NASA FMEA #: 2.1.7
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8015
ITEM: PAN AND TILT UNIT (TVC A POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA | [2 /2] | [] | [] | [] | [X] | *
| IOA | [2 /1R] | [P] | [P] | [P] | [X] |
| COMPARE | [/N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)

[2 /1R] . [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8015A
NASA FMEA #: 2.2.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8015
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]
Inadequate []

REMARKS:

FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-850
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8015B
NASA FMEA #: 2.3.7
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8015
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
FLIGHT HDW/FUNC

REDUNDANCY SCREENS
A B C

NASA [2 /2] [] [] [X] *
IOA [2 /1R] [P] [P] [P] [X]
COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-851
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8015C
NASA FMEA #: 2.4.1.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8015
ITEM: PAN AND TILT UNIT (TVC A POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSER. WORST
CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8015D
NASA FMEA #: 2.4.1.2
NASA DATA: BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8015
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2/1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-853
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8015E
NASA FMEA #: 2.4.2.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8015
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-854
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8015F
NASA FMEA #: 2.4.2.2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8015
ITEM: PAN AND TILT UNIT (TVC A POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALLY	REDUNDANCY SCREENS	CIL			
FLIGHT	HDW/FUNC	A	B	C	ITEM
NASA	[2 /2]	[]	[]	[]	[X] *
IOA	[2 /1R]	[P]	[P]	[P]	[X]
COMPARE	[/N]	[N]	[N]	[N]	[]

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
 ADEQUATE [X]
 INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-855
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8015G
NASA FMEA #: 2.4.3
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8015
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/ FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [2 /2] | [] | [] | [] | [X] *
| IOA [2 /1R] | [P] | [P] | [P] | [X]
| COMPARE [/N] | [N] | [N] | [N] | []

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-856
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8015H
NASA FMEA #: 2.4.4.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8015
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

| CRITICALLY REDUNDANCY SCREENS CIL |
| --- | --- | --- | --- |
| FLIGHT HDW/FUNC | A | B | C | ITEM |
| NASA | [2/2] | [] | [] | [] | [X] * |
| IOA | [2/1R] | [P] | [P] | [P] | [X] |
| COMPARE | [N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-857
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8015I
NASA FMEA #: 2.4.4.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8015
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[] [/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-858
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8016
NASA FMEA #: 2.1.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8016
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA [2 /2] [] [] [] [] [X] *

IOA [2 /1R] [P] [P] [P] [X]

COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-859
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8016A
NASA FMEA #: 2.2.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8016
ITEM: PAN AND TILT UNIT (TVC A POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: COMTRK-8016B BASELINE []
NASA FMEA #: 2.3.7 NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8016
ITEM: PAN AND TILT UNIT (TVC A POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

RRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-861
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8016C
NASA FMEA #: 2.4.1.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8016
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-862
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8016D
NASA FMEA #: 2.4.1.2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8016
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<p>| CRITICALITY | REDUNDANCY SCREENS | CIL ITEM |</p>
<table>
<thead>
<tr>
<th>HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-863
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8016E
NASA FMEA #: 2.4.2.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8016
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-864
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8016F
NASA FMEA #: 2.4.2.2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8016
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-865
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8016G
NASA FMEA #: 2.4.3

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8016
ITEM: PAN AND TILT UNIT (TVC A POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-866
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8017
NASA FMEA #: 2.1.7
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8017
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-867
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: CONTRK-8017A
NASA FMEA #: 2.2.7
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8017
ITEM: PAN AND TILT UNIT (TVC B POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-868
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8017B
NASA FMEA #: 2.3.7

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8017
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT HDW/FUNC A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-869
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8017C
NASA FMEA #: 2.4.1.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8017
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-870
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8017D
NASA FMEA #: 2.4.1.2

ASSESSMENT ID: COMTRK-8017D
NASA FMEA #: 2.4.1.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8017
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W. C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC A B C</td>
<td>ITEM</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2] [] [] []</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R] [P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N] [N] [N] [N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-871
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8017E
NASA FMEA #: 2.4.2.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8017
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
FLIGHT
HDW/FUNC

REduDANCY SCREENS
A
B
C

ITEM

NASA [2 /2] [] [] [] [X] *
IOA [2 /1R] [P] [P] [P] [X]

COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS
OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND
MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF
VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST
VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION
AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION.

REPORT DATE 03/18/88 C-872
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8017F
NASA FMEA #: 2.4.2.2

NASA DATA:
BASELINE []
NEW [x]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8017
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[] [] [] [x] [x]</td>
<td></td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[x]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N] [N] [N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [x]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-873
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8017G
NASA FMEA #: 2.4.3

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8017
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[] [] [] []</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N] [N] [N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8018
NASA FMEA #: 2.1.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8018
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-875
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8018A
NASA FMEA #: 2.2.7

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8018
ITEM: PAN AND TILT UNIT (TVC B POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST
VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION
AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION.

REPORT DATE 03/18/88 C-876
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8018B
NASA FMEA #: 2.3.7
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8018
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
FLIGHT
HDW/FUNC

CRITICALITY
FLIGHT
HDW/FUNC

REDUNDANCY SCREENS
A
B
C

NASA [2 /2]
[]
[]
[]

[X] *

IOA [2 /1R]
[P]
[P]
[P]

[X]

COMPARE [/N]
[N]
[N]
[N]

[]

RECOMMENDATIONS: (If different from NASA)

[2 /1R]
[P]
[P]
[P]

(ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE 4392H[

REMARKS:

FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-877
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8018C
NASA FMEA #: 4.2.1.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8018
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST
VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION
AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION.

REPORT DATE 03/18/88 C-878
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8018D
NASA FMEA #: 4.2.1.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8018
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8018E
NASA FMEA #: 4.2.2.1

NASA ID: []
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8018
ITEM: PAN AND TILT UNIT (TVC B POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-880
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8018F
NASA FMEA #: 4.2.2.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8018
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST
VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION
AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION.

REPORT DATE 03/18/88 C-881
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8018G
NASA FMEA #: 4.2.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8018
ITEM: PAN AND TILT UNIT (TVC B POSITION)
LEAD ANALYST: W.C. LONG

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT HDW/FUNC A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARISON</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

<table>
<thead>
<tr>
<th>ADEQUATE</th>
<th>INADEQUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]</td>
<td>[]</td>
</tr>
</tbody>
</table>

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST
VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION
AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION.

REPORT DATE 03/18/88 C-882
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8018H
NASA FMEA #: 2.4.4.2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8018
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXIST
VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION
AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION.

REPORT DATE 03/18/88 C-883
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8018I
NASA FMEA #: 2.4.4.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
COMM AND TRACK
MDAC ID: 8018
ITEM:
PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST:
W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION ANALYSED.

REPORT DATE 03/18/88 C-884
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8019
NASA FMEA #: 2.1.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8019
ITEM: PAN AND TILT UNIT (TVC B POSITION)
LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-885
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8019A
NASA FMEA #: 2.2.7

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8019
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-886
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8019B
NASA FMEA #: 2.3.7
NASA DATA:
BASELINE []
NEW [x]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8019
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

NASA [2 /2] [] [] [] [] [x] *
IOA [2 /1R] [P] [P] [P] []
COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [x]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-887
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8019C
NASA FMEA #: 2.4.1.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8019
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-888
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8019D
NASA FMEA #: 2.4.1.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8019
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2	NASA [/2]	[]	[]	[]	[X]*
	IOA [2/1R]	[P]	[P]	[P]	[X]
	COMPARE [/N]	[N]	[N]	[N]	[]

RECOMMENDATIONS: (If different from NASA)

| 2 | [/1R] | [P]| [P]| [P]| (ADD/DELETE) |

* CIL RETENTION RATIONALE: (If applicable)

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-889
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8019E
NASA FMEA #: 2.4.2.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8019
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-890
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8019F
NASA FMEA #: 2.4.2.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8019
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

NASI DATA:
BASELINE []
NEW [X]

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: CONTRK-8019G
NASA FMEA #: 2.4.3
NASA DATA: Baseline [] New [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8019
ITEM: PAN AND TILT UNIT (TVC B POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-892
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8020
NASA FMEA #: 2.1.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8020
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [2 /1R] | [P] | [P] | [P] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-893
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8020A
NASA FMEA #: 2.2.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8020
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2/2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-894
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8020B
NASA FMEA #: 2.3.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8020
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-895
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8020C
NASA FMEA #: 2.4.1.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8020
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-896
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8020D
NASA FMEA #: 2.4.1.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8020
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] (ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8020E
NASA FMEA #: 2.4.2.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8020
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-898
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8020F
NASA FMEA #: 2.4.2.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8020
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

<table>
<thead>
<tr>
<th></th>
<th>[P]</th>
<th>[P]</th>
<th>[P]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(ADD/DELETE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* CIL RETENTION RATIONALE: (If applicable)

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-899
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8020G
NASA FMEA #: 2.4.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8020
ITEM: PAN AND TILT UNIT (TVC C Position)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8021
NASA FMEA #: 2.1.7
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8021
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-901
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8021A
NASA FMEA #: 2.2.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8021
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOST OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-902
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8021B
NASA FMEA #: 2.3.7
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8021
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>HDW/FUNC</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]*</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-903
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8021C
NASA FMEA #: 2.4.1.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8021
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-904
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
BASELINE []
NEW [X]

ASSESSMENT ID: COMTRK-8021D

NASA FMEA #: 2.4.1.2

SUBSYSTEM: COMM AND TRACK

MDAC ID: 8021

ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY

FLIGHT HDW/FUNC A B C

NASA [2 /2] [] [] [] [] [X] *

IOA [2 /1R] [P] [P] [P] [X]

COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXIST VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-905
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8021E
NASA FMEA #: 2.4.2.1
NASA DATA: BASELINE []
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8021
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-906
APPENDIX C
ASSESSMENT WORKSHEET

ASESSMENT DATE: 3/05/88
ASESSMENT ID: COMTRK-8021F
NASA FMEA #: 2.4.2.2
NASA DATA: BASELINE [] NEW []
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8021
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY REDUNDANCY SCREENS

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>[2/2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>/N</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] [] (ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-907
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMMTRK-8021G
NASA FMEA #: 2.4.3
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8021
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-908
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8021H
NASA FMEA #: 2.4.4.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8021
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

CRITICALITY REDUNDANCY SCREENS CIL ITEM

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8021I
NASA FMEA #: 2.4.4.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8021
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<p>| CRITICALITY | REDUNDANCY SCREENS | CIL |</p>
<table>
<thead>
<tr>
<th>HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE []
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION ANALYSED.

REPORT DATE 03/18/88 C-910
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8022
NASA FMEA #: 2.1.7
NASA ID: COMTRK-8022
MDAC ID: 8022
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-911
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8022A
NASA FMEA #: 2.2.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8022
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-912
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8022B
NASA FMEA #: 2.3.7

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8022
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>[A] [B] [C]</td>
<td>ITEM</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA [2/2] [] [X] []
IOA [2/1R] [P] [P] [P] [X]

COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)
[2/1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-913
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8022C
NASA FMEA #: 2.4.1.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8022
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-914
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8022D
NASA FMEA #: 2.4.1.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8022
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8022E
NASA FMEA #: 2.4.2.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8022
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-916
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8022F
NASA FMEA #: 2.4.2.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8022
ITEM: PAN AND TILT UNIT (TVC C POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [2 /1R] | [P] | [P] | [P] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-917
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8022G
NASA FMEA #: 2.4.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8022
ITEM: PAN AND TILT UNIT (TVC C POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] | [P] | [P] | [P] | []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSSESSMENT DATE: 3/05/88
ASSSESSMENT ID: COMTRK-8023
NASA FMEA #: 2.1.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8023
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight HDW/Func</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-919
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8023A
NASA FMEA #: 2.2.7

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8023
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
REDUNDANCY SCREENS
CIL
FLIGHT
HDW/FUNC
A
B
C
ITEM

NASA [2 /2] [] [] [] [] [X] *
IOA [2 /1R] [P] [P] [P] [X]
COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-920
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8023B
NASA FMEA #: 2.3.7

NASA DATA: BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8023
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8023C
NASA FMEA #: 2.4.1.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8023
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P]

(ADD/DELETE)

CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW.... UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-922
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8023D
NASA FMEA #: 2.4.1.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8023
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG
ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [2 /1R] | [P] | [P] | [P] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-923
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8023E
NASA FMEA #: 2.4.2.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8023
ITEM: PAN AND TILT UNIT (TVC D POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-924
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
NASA FMEA #: 2.4.2.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8023
ITEM: PAN AND TILT UNIT (TVC D POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-925
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8023G
NASA FMEA #: 2.4.3
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8023
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-926
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8024
NASA FMEA #: 2.1.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8024
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]
Inadequate []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-927
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8024A
NASA FMEA #: 2.2.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8024
ITEM: PAN AND TILT UNIT (TVC D POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-928
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8024B
NASA FMEA #: 2.3.7

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8024
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)
Adequate [X]
Inadequate []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8024C
NASA FMEA #: 2.1.1.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8024
ITEM: PAN AND TILT UNIT (TVC D POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARISON</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] (ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88
C-930
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8024D
NASA FMEA #: 2.4.1.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8024
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY REDUNDANCY SCREENS CIL
FLIGHT HDW/FUNC A B C ITEM

NASA [2 /2] [] [] [] [] [X] *
IOA [2 /1R] [P] [P] [P] [X]
COMPARE [/N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-931
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8024E
NASA FMEA #: 2.4.2.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8024
ITEM: PAN AND TILT UNIT (TVC D POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2/1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-932
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8024F
NASA FMEA #: 2.4.2.2
ASSESSMENT ID: COMTRK-8024F
NASA FMEA #: 2.4.2.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8024
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-933
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8024G
NASA FMEA #: 2.4.3

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8024
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2/2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.

REPORT DATE 03/18/88 C-934
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8024H
NASA FMEA #: 2.4.4.2

NASA DATA: BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8024
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /IR]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /IR] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO START/STOP COULD RESULT IN LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST
CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8024I
NASA FMEA #:

NASA DATA: BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8024
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-936
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8025
NASA FMEA #: 2.1.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8025
ITEM: PAN AND TILT UNIT (TVC D POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8025A
NASA FMEA #: 2.2.7
NASA ID: COMTRK
MDAC ID: 8025
ITEM: PAN AND TILT UNIT (TVC D POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2/2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8025B
NASA FMEA #: 2.3.7

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8025
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>2 /2</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>2 /1R</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>/N</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-939
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8025C
NASA FMEA #: 2.4.1.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8025
ITEM: PAN AND TILT UNIT (TVC D POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-940
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8025D
NASA FMEA #: 2.4.1.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8025
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-941
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8025E
NASA FMEA #: 2.4.2.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8025
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-942
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8025F
NASA FMEA #: 2.4.2.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8025
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
</tbody>
</table>
| NASA | [2 /2] | [] | [] | [] | [X] | *
| IOA | [2 /1R] | [P] | [P] | [P] | [X] |
| COMPARE | [/N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)

[2 /1R] | [P] | [P] | [P] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-943
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8025G
NASA FMEA #: 2.4.3

NASA DATA: BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8025
ITEM: PAN AND TILT UNIT (TVC D POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88
C-944
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8026
NASA FMEA #: 4.4.1.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8026
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight</td>
<td>Screens</td>
<td>Item</td>
</tr>
<tr>
<td>HDW/Func</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>I/OA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>Compare [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING/JAMMING RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-945
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8026A
NASA FMEA #: 4.4.1.2
NASA DATA: BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8026
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8026B
NASA FMEA #: 4.4.2.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8026
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING/JAMMING RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-947
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8026C
NASA FMEA #: 4.4.2.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8026
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-948
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: COMTRK-8026D BASELINE []
NASA FMEA #: 4.4.3 NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8026
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NASA</th>
<th>2 /1R</th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOA</td>
<td>3 /2R</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>COMPARE</td>
<td>N/N</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-949
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8027
NASA FMEA #: 4.1.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8027
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PTU FAILURE TO MOVE RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-950
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8027A
NASA FMEA #: 4.2.7

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8027
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| NASA [2 /1R] | P | P | P | X] *
| IOA [3 /2R] | P | P | P | [] |
| COMPARE [N /N] | [] | [] | [] | [N] |

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PTU FAILURE TO MOVE RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-951
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8027B
NASA FMEA #: 4.3.7
NASA DATA: BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8027
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [2 /1R] | [P] | [P] | [P] | [X] *
| IOA [3 /2R] | [P] | [P] | [P] | [] |
| COMPARE [N /N] | [] | [] | [] | [N] |

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PTU FAILURE TO MOVE RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-952
APPENDIX C
ASSESSMENT WORKSHEET

<table>
<thead>
<tr>
<th>ASSESSMENT DATE: 3/05/88</th>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT ID: COMTRK-8027C</td>
<td>BASELINE []</td>
</tr>
<tr>
<td>NASA FMEA #: 4.4.4.2</td>
<td>NEW [X]</td>
</tr>
<tr>
<td>SUBSYSTEM: COMM AND TRACK</td>
<td></td>
</tr>
<tr>
<td>MDAC ID: 8027</td>
<td></td>
</tr>
<tr>
<td>ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)</td>
<td></td>
</tr>
<tr>
<td>LEAD ANALYST: W.C. LONG</td>
<td></td>
</tr>
</tbody>
</table>

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PTU FAILURE TO MOVE RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-953
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8027D
NASA FMEA #:

ASSESSMENT ID: COMTRK-8027D
NASA FMEA #:

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8027
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [2 /1R] | [P] | [P] | [P] | [X] *
| IOA [3 /2R] | [P] | [P] | [P] | [] |
| COMPARE [N /N] | [] | [] | [] | [N] |

RECOMMENDATIONS: (If different from NASA)
[] / [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PTU FAILURE TO MOVE RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8027E
NASA FMEA #: 4.4.4.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8027
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION WAS ANALYSED.
REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-955
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8028
NASA FMEA #: 4.4.1.1
NASA DATA:
BASELINE []
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8028
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION RESULTS IN LOSS OF TVC OUTPUT.
LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS.
ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC
PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE
REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW
VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION
COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT
DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-956
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8028A
NASA FMEA #: 4.4.1.2

ASSESSMENT ID: COMTRK-8028A
NASA FMEA #: 4.4.1.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8028
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [

* CIL RETENTION RATIONALE: (If applicable)

[] (ADD/DELETE)

REMARKS:
ERRATIC/INTERMITTANT OPERATION RESULTS IN LOSS OF TVC OUTPUT.
LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS.
ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-957
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8028B
NASA FMEA #: 4.4.2.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8028
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [/] [/] [/]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ERRATIC/INTERMITTANT OPERATION RESULTS IN LOSS OF TVC OUTPUT.
LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS.
ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8028C
NASA FMEA #: 4.4.2.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8028
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

ERRATIC/INTERMITTANT OPERATION RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-959
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8028D
NASA FMEA #: 4.4.3

NASA DATA:
BASELINE []
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8028
ITEM: PAN AND TILT UNIT (RMS ELBOW TVC POSITION)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA | 2 /1R | [] | [] | [] | [X] *

IOA | 3 /2R | [P] | [P] | [P] | []

COMPARE | N /N | [N] | [N] | [N] | [N]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:

ERRATIC/INTERMITTANT OPERATION RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. MECHANICAL INTERFERENCE WAS NOT DETERMINED TO BE A FACTOR IN RMS STOW.

REPORT DATE 03/18/88 C-960
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8029
NASA FMEA #: 3.1.6.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8029
ITEM: MONOCROME LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-961
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8029A
NASA FMEA #: 3.1.6.3

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8029
ITEM: MONOCHROME LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REASSURANCE SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

*(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-962
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: COMTRK-8029B BASELINE []
NASA FMEA #: 3.1.6.4 NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8029
ITEM: MONOCHROME LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA [3 /3] [] [] [] [] []
IOA [3 /3] [] [] [] [] []
COMPARE [/] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-963
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8030
NASA FMEA #: 3.1.6.2

NASA DATA:
BASELINE []
NEW []

NASA FMEA #: 3.1.6.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8030
ITEM: MONOCHROME LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN WORST CASE LOSS OF CCTV FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-964
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8031
NASA FMEA #: 3.1.6.1

NASA DATA:
BASELINE []
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8031
ITEM: MONOCHROME LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[/]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-965
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8031A
NASA FMEA #: 3.1.6.3

NASA DATA:
BASELINE []
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8031
ITEM: MONOCHROME LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W. C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE []
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-966
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8031B
NASA FMEA #: 3.1.6.4

NASA DATA:
BASELINE []
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8031
ITEM: MONOCROME LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3/3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N/N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] []

(Criticality Redundancy Screen A, B, C)

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-967
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8032
NASA FMEA #: 3.6.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8032
ITEM: MONOCHROME LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| (ADD/DELETE) |

* CIL RETENTION RATIONALE: (If applicable)

| ADEQUATE [X] |

INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN WORST CASE LOSS OF CCTV FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-968
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8033
NASA FMEA #: 2.1.6.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8033
ITEM: MONOCHROME LENS ASSEMBLY (TVC A FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-969
APPENDIX C
ASSESSMENT WORKSHEET

<table>
<thead>
<tr>
<th>ASSESSMENT DATE: 3/05/88</th>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT ID: COMTRK-8033A</td>
<td>BASELINE []</td>
</tr>
<tr>
<td>NASA FMEA #: 2.1.6.4</td>
<td>NEW [X]</td>
</tr>
<tr>
<td>SUBSYSTEM: COMM AND TRACK</td>
<td></td>
</tr>
<tr>
<td>MDAC ID: 8033</td>
<td></td>
</tr>
<tr>
<td>ITEM: MONOCHROME LENS ASSEMBLY (TVC A FWD P/L BAY)</td>
<td></td>
</tr>
<tr>
<td>LEAD ANALYST: W.C. LONG</td>
<td></td>
</tr>
</tbody>
</table>

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)

| [2 /1R] | [P] | [P] | [P] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-970
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8033B
NASA FMEA #: 2.1.6.3

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8033
ITEM: MONOCHROME LENS ASSEMBLY (TVC A FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [3 /3] | [] | [] | [] | [] | [] *
| IOA [2 /1R] | [P] | [P] | [P] | [X] |
| COMPARE [N /N] | [N] | [N] | [N] | [N] |

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION WAS ANALYSSED.

REPORT DATE 03/18/88 C-971
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8034
NASA FMEA #: 2.1.6.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8034
ITEM: MONOCROME LENS ASSEMBLY (TVC A FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA [2/2] [] [] [] [X] *

IOA [2/1R] [P] [P] [P] [X]

COMPARE [N] [N] [N] [N] []

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE.

REPORT DATE 03/18/88 C-972
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8035
NASA FMEA #: 2.1.6.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8035
ITEM: MONOCHROME LENS ASSEMBLY (TVC B KEEL/EVA AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-973
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8035A
NASA FMEA #: 2.1.6.4
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8035
ITEM: MONOCHROME LENS ASSEMBLY (TVC B KEEL/EVA AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-974
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8035B
NASA FMEA #: 2.1.6.3

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8035
ITEM: MONOCHROME LENS ASSEMBLY (TVC B KEEL/EVA AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-975
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: CONTRK-8036 BASELINE []
NASA FMEA #: 2.1.6.2 NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8036
ITEM: MONOCHROME LENS ASSEMBLY (TVC B KEEL/EVA AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/2] [1R] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAST FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-976
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8037
NASA FMEA #: 2.1.6.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8037
ITEM: MONOCROME LENS ASSEMBLY (TVC C AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8037A
NASA FMEA #: 2.1.6.4
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8037
ITEM: MONOCHROME LENS ASSEMBLY (TVC C AFT P/L BAY)
LEAD ANALYST: W.C. LONG

ASSSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-978
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8037B
BASELINE []
NASA FMEA #: 2.1.6.3
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8037
ITEM: MONOCHROME LENS ASSEMBLY (TVC C AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION ANALYSED.

REPORT DATE 03/18/88 C-979
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8038
NASA FMEA #: 2.1.6.2
NASA DATA: BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8038
ITEM: MONOCHROME LENS ASSEMBLY (TVC C AFT P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA
CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND
RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION.

REPORT DATE 03/18/88 C-980
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8039
NASA FMEA #: 2.1.6.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8039
ITEM: MONOCHROME LENS ASSEMBLY (TVC D FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-981
APPENDIX C
ASSESSMENT WORKSHEET

ASSSESSMENT DATE: 3/05/88
ASSSESSMENT ID: COMTRK-8039A
NASA FMEA #: 2.1.6.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8039
ITEM: MONOCHROME LENS ASSEMBLY (TVC D FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-982
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8039B
NASA FMEA #: 2.1.6.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8039
ITEM: MONOCHROME LENS ASSEMBLY (TVC D FWD P/L BAY)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td></td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>[N]</td>
<td>[N]</td>
</tr>
<tr>
<td></td>
<td>[N]</td>
<td>[N]</td>
</tr>
<tr>
<td></td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-983
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8040
NASA FMEA #: 2.1.6.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8040
ITEM: MONOCHROME LENS ASSEMBLY (TVC D FWD P/L BAY)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<p>| CRITICALITY | REDUNDANCY SCREENS | CIL |</p>
<table>
<thead>
<tr>
<th>HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA
CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND
RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION.

REPORT DATE 03/18/88 C-984
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8041
NASA FMEA #: 5.1.6.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8041
ITEM: MONOCHROME LENS ASSEMBLY (P/L BAY RMS WRIST TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF MLA WOULD CAUSE LOSS OF TVC OUTPUT RESULTING IN REDUCED MISSION EFFECTIVENESS. WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIS CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-985
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8041A
NASA FMEA #: 5.1.6.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8041
ITEM: MONOCHROME LENS ASSEMBLY (P/L BAY RMS WRIST TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
FLIGHT
HDW/FUNC

REDUNDANCY SCREENS
A B C

CIL
ITEM

NASA [2 /2] [] [] [] [] [] *

IOA [3 /2R] [P] [P] [P] [X]

COMPARE [N /N] [N] [N] [N] [N]

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF MLA WOULD CAUSE LOSS OF TVC OUTPUT RESULTING IN REDUCED MISSION EFFECTIVENESS. WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIS CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-986
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8041B
NASA FMEA #: 5.1.6.3
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8041
ITEM: MONOCHROME LENS ASSEMBLY (P/L BAY RMS WRIST TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8042
NASA FMEA #: 5.1.6.2

NASA DATA: BASELINE [] NEW []

SUBSYSTEM: COM and TRACK
MDAC ID: 8042
ITEM: MONOCHROME LENS ASSEMBLY (P/L BAY RMS WRIST TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

Physical binding/jamming results in loss of MLA output. Loss of MLA would cause loss of TVC output resulting in reduced mission effectiveness. Wrist TVC not used to monitor critical functions and elbow TVC provides partial redundancy for mission support. Unlike redundancy exists via crew window viewing, EVA and COAS for crew visual inspection. All capability to perform wrist TVC function could result in loss of mission. Only worst case condition was analysed.

REPORT DATE 03/18/88 C-988
APPENDIX C
ASSESSMENT WORKSHEET

<table>
<thead>
<tr>
<th>ASSESSMENT DATE: 3/05/88</th>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT ID: COMTRK-8043</td>
<td>BASELINE []</td>
</tr>
<tr>
<td>NASA FMEA #: 4.1.6.1</td>
<td>NEW [X]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBSYSTEM: COMM AND TRACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDAC ID: 8043</td>
</tr>
<tr>
<td>ITEM: MONOCHROME LENS ASSEMBLY (P/L BAY RMS ELBOW TVC)</td>
</tr>
</tbody>
</table>

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

<table>
<thead>
<tr>
<th>ADEQUATE</th>
<th>INADEQUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>[]</td>
</tr>
</tbody>
</table>

REMARKS:
LOSS OF MLA OPERATION RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. ONLY WORST CASE CONDITION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8043A
NASA FMEA #: 4.1.6.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8043
ITEM: MONOCHROME LENS ASSEMBLY (P/L.BAY RMS ELBOW TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
FLIGHT
HDW/FUNC

REDUNDANCY SCREENS
A B C

CIL
ITEM

NASA [2 /2] [] [] [] [X] *
IOA [3 /2R] [P] [P] [P] []
COMPARE [N /N] [N] [N] [N] [N]

RECOMMENDATIONS: (If different from NASA)
[/] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF MLA OPERATION RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-990
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8043B
NASA FMEA #: 4.1.6.3
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8043
ITEM: MONOCHROME LENS ASSEMBLY (P/L BAY RMS ELBOW TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-991
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8044
NASA FMEA #: 4.1.6.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8044
ITEM: MONOCROME LENS ASSEMBLY (P/L BAY RMS ELBOW TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADoquate [X]

INaDQUATE []

REMARKS:

PHYSICAL BINDING/JAMMING RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-992
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045
NASA FMEA #: 2.3.6.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-993
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045A
NASA FMEA #: 2.3.6.4
NASA DATA: BASELINE [] NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA) (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable) ADEQUATE [X] INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-994
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045B
NASA FMEA #: 2.3.6.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[3/3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3/3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPAIR</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT IN AGREEMENT.

REPORT DATE 03/18/88 C-995
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045C
NASA FMEA #: 2.3.8.2
NASA DATA: BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []
(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT IN AGREEMENT.

REPORT DATE 03/18/88 C-996
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045D
NASA FMEA #: 3.3.6.1
NASA DATA: BASELINE []
NEW [x]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [x]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045E
NASA FMEA #: 3.3.6.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALLY	REDUNDANCY SCREENS	CIL				
FLIGHT HDW/FUNC	A	B	C	ITEM		
NASA	[3 /3]	[]	[]	[]	[]	*
IOA	[3 /3]	[]	[]	[]	[]	[]
COMPARE	[/]	[]	[]	[]	[]	[]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-998
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045F
NASA FMEA #: 3.3.6.4
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC A B C</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>NASA [3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>IOA [3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] ['] [.] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA: BASELINE []
ASSESSMENT ID: COMTRK-8045G NEW [X]
NASA FMEA #: 3.3.8.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [.] [.] [.] [.] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1000
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045H
NASA FMEA #: 4.3.6.1

NASA DATA:
BASELINE []
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1001
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80451
NASA FMEA #: 4.3.6.4

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1002
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045J
NASA FMEA #: 4.3.6.3

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT IN AGREEMENT.

REPORT DATE 03/18/88 C-1003
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045K
NASA FMEA #: 4.3.8.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT IN AGREEMENT.

REPORT DATE 03/18/88 C-1004
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045L
NASA FMEA #: 5.3.6.1

BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1005
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045M
NASA FMEA #: 5.3.6.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1006
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8045N
NASA FMEA #: 5.3.6.3

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] []

(AADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT CRITICALITY IN AGREEMENT.

REPORT DATE 03/18/88 C-1007
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80450
NASA FMEA #: 5.3.6.3

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8045
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[] [] []</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[] [] []</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[] [] []</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT CRITICALITY IN AGREEMENT.

REPORT DATE 03/18/88 C-1008
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8046
NASA FMEA #: 2.3.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8046
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT CRITICALITY IN AGREEMENT.

REPORT DATE 03/18/88 C-1009
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8046A
NASA FMEA #: 2.3.8.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8046
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT CRITICALITY IN AGREEMENT.

REPORT DATE 03/18/88 C-1010
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8046B
NASA FMEA #: 3.3.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8046
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN WORST CASE LOSS OF CCTV FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1011
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8046C
NASA FMEA #: 3.3.8.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8046
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight HDW/Func</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN WORST CASE LOSS OF CCTV FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1012
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8046D
NASA FMEA #: 4.3.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8046
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC A B C</td>
<td>ITEM</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[] [] [] []</td>
<td>[] [X] *</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[] [] [] []</td>
<td>[] []</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[] [] [] []</td>
<td>[] [N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO
BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88
C-1013
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8046E
NASA FMEA #: 4.3.8.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8046
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1014
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8046F
NASA FMEA #: 5.3.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8046
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1015
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8046G
NASA FMEA #: 5.3.7.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8046
ITEM: WIDE ANGLE LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC A B C</td>
<td>ITEM</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2] [] [] [] []</td>
<td>[X] *</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3] [] [] [] []</td>
<td></td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N] [] [] [] []</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1016
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047
NASA FMEA #: 2.3.6.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY REDUNDANCY SCREENS CIL
FLIGHT HDW/FUNC A B C ITEM

NASA [2 /2] [] [] [] [] [X] *
IOA [3 /3] [] [] [] [] []
COMPARE [N /N] [] [] [] [] [N]

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1017
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047A
NASA FMEA #: 2.3.6.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1018
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047B
NASA FMEA #: 2.3.6.3
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
COMM AND TRACK
MDAC ID: 8047
ITEM:
WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST:
W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT AGREEMENT.

REPORT DATE 03/18/88 C-1019
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047C
NASA FMEA #: 2.3.8.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT AGREEMENT.

REPORT DATE 03/18/88 C-1020
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047D
NASA FMEA #: 3.3.6.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1021
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047E
NASA FMEA #: 3.3.6.3

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA [3 /3] [] [] [] [] [] []

IOA [3 /3] [] [] [] [] [] []

COMPARE [/] [] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1022
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047F
NASA FMEA #: 3.3.6.4
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC A B C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA [3 /3] [] [] [] []</td>
<td>[]</td>
<td>*</td>
</tr>
<tr>
<td>IOA [3 /3] [] [] [] []</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>COMPARE [/] [] [] [] []</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1023
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: COMTRK-8047G BASELINE []
NASA FMEA #: 3.3.8.2 NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1024
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047H
NASA FMEA #: 4.3.6.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1025
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047I
NASA FMEA #: 4.3.6.4

NASA DATA:
BASELINE []
NEW [x]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [x]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1026
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047J
NASA FMEA #: 4.3.6.3
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT IN AGREEMENT.

REPORT DATE 03/18/88 C-1027
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047K
NASA FMEA #: 4.3.8.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT IN AGREEMENT.

REPORT DATE 03/18/88 C-1028
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047L
NASA FMEA #: 5.3.6.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC).

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS A</th>
<th>B</th>
<th>C</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /2]</td>
<td>[] [] [] []</td>
<td></td>
<td></td>
<td>[X]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[] [] [] []</td>
<td></td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[] [] [] []</td>
<td></td>
<td></td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1029
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047M
NASA FMEA #: 5.3.6.4

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N/N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1030
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8047N
NASA FMEA #: 5.3.6.3

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[. /] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
Adequate [X]
Inadequate []

REMARKS:
LOSS OF OUTPUT CRITICALITY IN AGREEMENT.

REPORT DATE 03/18/88 C-1031
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80470
NASA FMEA #: 5.3.7.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8047
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>3 / 3</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>3 / 3</td>
<td>[]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT CRITICALITY IN AGREEMENT.

REPORT DATE 03/18/88
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8048
NASA FMEA #: 2.3.6.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8048
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2/2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3/3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N/N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] . []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8048A
NASA FMEA #: 2.3.8.1
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8048
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1034
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8048B
NASA FMEA #: 3.3.6.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8048
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN WORST CASE LOSS OF CCTV FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1035
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8048C
NASA FMEA #: 3.3.8.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8048
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING/JAMMING RESULTS IN WORST CASE LOSS OF CCTV FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1036
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8048D
NASA FMEA #: 4.3.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8048
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [2 /2] | [] | [] | [] | [] | [X] *
| IOA [3 /3] | [] | [] | [] | [] | []
| COMPARE [N /N] | [] | [] | [] | [] | [N]

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1037
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8048E
NASA FMEA #: 4.3.8.1
NASA ID:
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8048
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)
LEAD ANALYST: W.C. LONG

NASA DATA:
- BASELINE []
- NEW [X]

SUBSYSTEM ID:
ITEM: COMMAND TRACK 8048
WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

ASSESSMENT: CRITICALITY REDUNDANCY SCREENS CIL ITEM

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8048F
NASA FMEA #: 5.3.6.2
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8048
ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1039
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88

ASSESSMENT ID: COMTRK-8048G

NASA FMEA #: 5.3.6.2

NASA DATA:
- BASELINE []
- NEW [X]

SUBSYSTEM: COMM AND TRACK

MDAC ID: 8048

ITEM: WIDE ANGLE LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] / [] [] [] [] []

(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:

NORMALLY USED FOR INTERNAL SCENES WHICH IS NOT CRITICAL. CARGO BAY USE WOULD UPGRADE CRITICALITY TO COVER WORST CASE CONDITION.

REPORT DATE 03/18/88

C-1040
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8049
NASA FMEA #: 3.2.6.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8049
ITEM: COLOR LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS. CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8049A
NASA FMEA #: 3.2.6.3

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8049
ITEM: COLOR LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8049B
NASA FMEA #: 3.2.6.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8049
ITEM: COLOR LENS ASSEMBLY (FLT DECK TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8049C
NASA FMEA #: 3.2.8.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8049
ITEM: COLOR LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1044
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8050
NASA FMEA #: 2.2.6.2

NASA DATA:
BASELINE []
NEW [x]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8050
ITEM: COLOR LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [x]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN WORST CASE LOSS OF CCTV FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1045
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8050A
NASA FMEA #: 2.2.8.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8050
ITEM: COLOR LENS ASSEMBLY (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA	[3 /3]	[]	[]	[]	[] *
IOA	[3 /3]	[]	[]	[]	[]
COMPARE	[/]	[]	[]	[]	[]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN WORST CASE LOSS OF CCTV FUNCTIONS. CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8051
NASA FMEA #: 3.2.6.1

NASA DATA:
BASELINE
NEW

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8051
ITEM: COLOR LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA	[3 /3]	[]	[]	[]	[]	[]
I OA	[3 /3]	[]	[]	[]	[]	[]
COMPARE	[/]	[]	[]	[]	[]	[]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88

ASSESSMENT ID: COMTRK-8051A

NASA FMEA #: 3.2.6.3

SUBSYSTEM: COMM AND TRACK

MDAC ID: 8051

ITEM: COLOR LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>ASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]

Inadequate []

REMARKS:

LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS. CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8051B
NASA FMEA #: 3.2.6.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8051
ITEM: COLOR LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1049
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8051C
NASA FMEA #: 3.2.8.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8051
ITEM: COLOR LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT WORST CASE FAILURE MODE COVERS ALL FUNCTIONS.
CRITICALITIES IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8052
NASA FMEA #: 3.2.6.2

NASA DATA:
BASELINE []
NEW [X]

DATE: 3/05/88
ID: COMTRK-8052
NASA FMEA #: 3.2.6.2

BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8052
ITEM: COLOR LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN WORST CASE LOSS OF CCTV FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1051
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8052A
NASA FMEA #: 3.2.8.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8052
ITEM: COLOR LENS ASSEMBLY (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] []

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN WORST CASE LOSS OF CCTV FUNCTIONS. CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1052
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8053
NASA FMEA #: 2.2.6.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8053
ITEM: COLOR LENS ASSEMBLY (TVC A)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITIONS. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88
C-1053
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8053A
NASA FMEA #: 2.2.6.4
NASA DATA:
- BASELINE []
- NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8053
ITEM: COLOR LENS ASSEMBLY (TVC A)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>NASA [2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>IOA [2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)
 - ADEQUATE [X]
 - INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITIONS. ONLY WORST CASE CONDITION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8053B
NASA FMEA #: 2.2.6.3

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8053
ITEM: COLOR LENS ASSEMBLY (TVC A)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>
| IOA [2 /1R] | [P] | [P] | [P] | [X] *
| COMPARE [N /N] | [N] | [N] | [N] | [N] |

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PROVIDES WORST CASE CONDITION. LOSS OF SYNC NOT ANALYSED.
WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITIONS. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1055
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8053C
NASA FMEA #: 2.2.8.2
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8053
ITEM: COLOR LENS ASSEMBLY (TVC A)
LEAD ANALYST: W.C. LONG
ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PROVIDES WORST CASE CONDITION. LOSS OF SYNC NOT ANALYSED.
WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITIONS.
ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1056
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8054
NASA FMEA #: 2.2.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8054
ITEM: COLOR LENS ASSEMBLY (TVC A)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA
CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL Inspection AND
RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION.

REPORT DATE 03/18/88 C-1057
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8054A
NASA FMEA #: 2.2.8.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8054
ITEM: COLOR LENS ASSEMBLY (TVC A)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALLY REDUNDANCY SCREENS CIL

<table>
<thead>
<tr>
<th>FLIGHT HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /2]</td>
<td></td>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td></td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1058
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8055
NASA FMEA #: 2.2.6.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8055
ITEM: COLOR LENS ASSEMBLY (TVC B)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2/2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [2/1R] | [P] | [P] | [P] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

<table>
<thead>
<tr>
<th>ADEQUATE</th>
<th>INADEQUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]</td>
<td>[]</td>
</tr>
</tbody>
</table>

REMARKS:

LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88

C-1059
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8055A
NASA FMEA #: 2.2.6.4
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8055
ITEM: COLOR LENS ASSEMBLY (TVC B)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] A [] B [] C</td>
<td></td>
<td>[X] *</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [] A [] B [] C | | |
| [] A [] B [] C | | [X] |

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1060
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8055B
NASA FMEA #: 2.2.6.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8055
ITEM: COLOR LENS ASSEMBLY (TVC B)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1061
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8055C
NASA FMEA #: 2.2.8.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8055
ITEM: COLOR LENS ASSEMBLY (TVC B)

LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
MDAC ID:
ITEM:

LEAD ANALYST:

ASSESSMENT:

<p>| CRITICALLY | REDUNDANCY SCREENS | CIL |</p>
<table>
<thead>
<tr>
<th>FLIGHT HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1062
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8056
NASA FMEA #: 2.2.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8056
ITEM: COLOR LENS ASSEMBLY (TVC C)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA	[2 /2]	[]	[]	[]	[X]
IOA	[2 /1R]	[P]	[P]	[P]	[X]
COMpare	[/N]	[N]	[N]	[N]	[]

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]

* ADD/DELETE

CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1063
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8056A
NASA FMEA #: 2.2.8.1
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8056
ITEM: COLOR LENS ASSEMBLY (TVC C)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>
| NASA [2 /2] | [] | [] | [] | [X] | *
| IOA [2 /1R] | [P] | [P] | [P] | [X] |
| COMPARE [/N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)
[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION.

REPORT DATE 03/18/88 C-1064
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8057
NASA FMEA #: 2.2.6.3
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8057
ITEM: COLOR LENS ASSEMBLY (TVC C)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1065
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8057A
NASA FMEA #: 2.2.8.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8057
ITEM: COLOR LENS ASSEMBLY (TVC C)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[] [] [] []</td>
<td>[] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P] [P] [P]</td>
<td>[X]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N] [N] [N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [ADD/DELETE]

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1066
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8058
NASA FMEA #: 2.2.6.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8058
ITEM: COLOR LENS ASSEMBLY (TVC D)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1067
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8058A
NASA FMEA #: 2.2.8.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8058
ITEM: COLOR LENS ASSEMBLY (TVC D)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2/2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2/1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[2/1R] [P] [P] [P] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA
CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND
RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1068
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8059
NASA FMEA #: 2.2.6.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8059
ITEM: COLOR LENS ASSEMBLY (TVC D)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [2 /2] | [] | [] | [] | [X] | *
| IOA [2 /1R] | [P] | [P] | [P] | [X] |
| COMPARE [/N] | [N] | [N] | [N] | [] |

RECOMMENDATIONS: (If different from NASA)
[2 /1R] | [P] | [P] | [P] | []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1069
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8059A
NASA FMEA #: 2.2.6.4
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8059
ITEM: COLOR LENS ASSEMBLY (TVC D)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8059B
NASA FMEA #: 2.2.6.3
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8059
ITEM: COLOR LENS ASSEMBLY (TVC D)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]
Inadequate []

REMARKS:

LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1071
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8059C
NASA FMEA #: 2.2.8.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8059
ITEM: COLOR LENS ASSEMBLY (TVC D)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[] *</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COULD CAUSE LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1072
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8060
NASA FMEA #: 2.2.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8060
ITEM: COLOR LENS ASSEMBLY (TVC D)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS
STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE
LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA
CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND
RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE
CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88 C-1073
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8060A
NASA FMEA #: 2.2.8.1
NASA DATA:
- BASELINE []
- NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8060
ITEM: COLOR LENS ASSEMBLY (TVC D)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)

[2 /1R] [P] [P] [P] [] (ADD/DELETE)

* CIL RETENTION RATIONALE:
(If applicable)

- ADEQUATE [X]
- INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING COULD CAUSE LOSS OF CCTV AND MISSION.
LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD PREVENT RMS STOW AND MONITORING P/L BAY DOOR LATCHES RESULTING IN POSSIBLE LOSS OF VEHICLE AND CREW. UNLIKE CCTV REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION AND RMS JETTISON TO ALLOW P/L BAY DOOR CLOSURE. WORST CASE CONDITION. ONLY WORST CASE CONDITION WAS ANALYSED.

REPORT DATE 03/18/88
C-1074
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8061
NASA FMEA #: 5.2.6.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8061
ITEM: COLOR Lens ASSEMBLY (RMS WRIST TVC)

LEAD ANALYST: W.C. Long

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NASA</th>
<th>IOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2 /2]</td>
<td>[3 /2R]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REDUNDANCY SCREENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A [] B [] C []</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM</th>
</tr>
</thead>
</table>
| [X] *

<table>
<thead>
<tr>
<th>COMPARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[N /N]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOSS OF CLA COULD RESULT IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS. WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECOMMENDATIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(If different from NASA)</td>
</tr>
</tbody>
</table>

| [] [] [] [] |

<table>
<thead>
<tr>
<th>RETENTION RATIONALE: (If applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADEQUATE [X]</td>
</tr>
<tr>
<td>INADEQUATE []</td>
</tr>
</tbody>
</table>

REPORT DATE 03/18/88 C-1075
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8061A
NASA FMEA #: 5.2.6.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8061
ITEM: COLOR LENS ASSEMBLY (RMS WRIST TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF CLA COULD RESULT IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT RESULTS IN REDUCED MISSION EFFECTIVENESS. WRIST TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND ELBOW TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1076
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8061B
NASA FMEA #: 5.2.6.3
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8061
ITEM: COLOR LENS ASSEMBLY (RMS WRIST TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY WORST CASE FUNCTION ANALYZED.
CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION.
ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1077
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8061C
NASA FMEA #: 5.2.7.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8061
ITEM: COLOR LENS ASSEMBLY (RMS WRIST TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
 ADEQUATE [X]
 INADEQUATE []

REMARKS:
LOSS OF OUTPUT COVERS ALL TVC FUNCTIONS. ONLY WORST CASE FUNCTION ANALYSED.
CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION.
ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1078
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8062
NASA FMEA #: 5.2.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8062
ITEM: COLOR LENS ASSEMBLY (RMS WRIST TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE [P]

REMARKS:
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8062A
NASA FMEA #: 5.2.7.1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8062
ITEM: COLOR LENS ASSEMBLY (RMS WRIST TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE [P]

REMARKS:
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM WRIST TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1080
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8063
NASA FMEA #: 4.2.6.1

NASA DATA:
BASELINE []
NEW [x]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8063
ITEM: COLOR LENS ASSEMBLY (RMS ELBOW TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA [2 /2] [] [] [] [] [] []
IOA [3 /2R] [P] [P] [P] [x]

COMPARE [N /N] [N] [N] [N] [N] [N]

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [x]
INADEQUATE []

REMARKS:
LOSS OF CLA OPERATION RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1081
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8063A
NASA FMEA #: 4.2.6.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8063
ITEM: COLOR LENS ASSEMBLY (RMS ELBOW TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[N]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF CLA OPERATION RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1082
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8063B
NASA FMEA #: 4.2.6.3

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8063
ITEM: COLOR LENS ASSEMBLY (RMS ELBOW TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PROVIDES WORST CASE CONDITION. LOSS OF SYNC NOT ANALYZED.
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1083
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8063C
NASA FMEA #: 4.2.6.3
NASA DATA:
<table>
<thead>
<tr>
<th>BASELINE</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8063
ITEM: COLOR LENS ASSEMBLY (RMS ELBOW TVC)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:
(If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* **CIL RETENTION RATIONALE:**
(If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PROVIDES WORST CASE CONDITION. LOSS OF SYNC NOT ANALYSED.
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88
C-1084

\[C - \phi \]
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8064
NASA FMEA #: 4.2.6.2

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8064
ITEM: COLOR LENS ASSEMBLY (RMS ELBOW TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2/2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3/2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
PHYSICAL BINDING/JAMMING RESULTS IN LOSS OF TVC OUTPUT. LOSS OF TVC OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW TVC NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1085
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8064A
NASA FMEA #: 4.2.8.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8064
ITEM: COLOR LENS ASSEMBLY (RMS ELBOW TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:

PHYSICAL BINDING/JAMMING RESULTS IN LOSS OF TVC OUTPUT. LOSS OF
TV C OUTPUT COULD RESULT IN REDUCED MISSION EFFECTIVENESS. ELBOW
TV C NOT USED TO MONITOR CRITICAL FUNCTIONS AND WRIST TVC PROVIDES
PARTIAL REDUNDANCY FOR MISSION SUPPORT. UNL I KE REDUNDANCY
EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL
INSPECTION. ALL CAPABILITY TO PERFORM ELBOW TVC FUNCTION COULD
RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1086
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065
NASA FMEA #: 3.1.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARISON</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1087
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065A
NASA FMEA #: 3.1.8

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1088
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065B
NASA FMEA #: 3.2.7

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLIT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1089
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065C
NASA FMEA #: 3.2.9

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1090
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065D
NASA FMEA #: 3.3.7
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3] [] [] [] [] [] [] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOA [3 /3] [] [] [] [] [] []</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE [/] [] [] [] [] []</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065E
NASA FMEA #: 3.3.9

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1092
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88

ASSESSMENT ID: COMTRK-8065F

NASA FMEA #: 3.5.1

SUBSYSTEM: COMM AND TRACK

MDAC ID: 8065

ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:

LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88

C-1093
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065G
NASA FMEA #: 3.5.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>HDW/FUNC</th>
<th>NASA</th>
<th>IOA</th>
<th>COMPARE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[3 /3]</td>
<td>[3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>*</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:

(If different from NASA)

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88
C-1094
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065H
NASA FMEA #: 3.5.3

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 / 3]</td>
<td>[] [] []</td>
<td>[] [] [] *</td>
</tr>
<tr>
<td>IOA [3 / 3]</td>
<td>[] [] []</td>
<td>[] []</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[] [] []</td>
<td>[] []</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1095
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065I
NASA FMEA #: 3.5.4
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3] [] [] [] [] []</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOA [3 /3] [] [] [] [] []</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE [/] [] [] [] [] []</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1096
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065J
NASA FMEA #: 3.5.5

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1097
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065K
NASA FMEA #: 3.5.6

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3 /3]</td>
<td>[] [] [] []</td>
<td>[] [*]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[] [] [] []</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[] [] [] []</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1098
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065L
NASA FMEA #: 3.5.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1099
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 03/05/88
ASSESSMENT ID: COMTRK-8065M
NASA FMEA #: 3.5.8
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

Adequate [X]
Inadequate []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1100
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8065N
NASA FMEA #: 3.5.9

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [3/3] | [] | [] | [] | [] | [] *
| IOA [3/3] | [] | [] | [] | [] | [] |
| COMPARE [/] | [] | [] | [] | [] | [] |

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1101
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80650
NASA FMEA #: 3.5.10

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8065
ITEM: FLT DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1102
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066
NASA FMEA #: 3.1.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA	[3 /3]	[]	[]	[]	[]	[]	*
IOA	[3 /3]	[]	[]	[]	[]	[]	
COMPARE	/	[]	[]	[]	[]	[]	[]

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] | [] | (ADD/DELETE) |

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066A
NASA FMEA #: 3.1.8

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] | [] | (ADD/DELETE) |

* CIL RETENTION RATIONALE: (If applicable)

| [] | ADEQUATE [X] |
| INADEQUATE [] |

REMARKS:
LOSS-OF-OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1104
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066B
NASA FMEA #: 3.2.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG
ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1105
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066C
NASA FMEA #: 3.2.9
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<p>| CRITICALLY | REDUNDANCY SCREENS | CIL |</p>
<table>
<thead>
<tr>
<th>FLIGHT HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

COMPARE [/] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1106
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066D
NASA FMEA #: 3.3.7
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88
C-1107
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066E
NASA FMEA #: 3.3.9
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1108
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066F
NASA FMEA #: 3.5.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] ADEQUATE [X] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1109
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066G
NASA FMEA #: 3.5.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[] [] [] []</td>
<td>[] []</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[] [] [] []</td>
<td>[] []</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[] [] [] []</td>
<td>[] []</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8066H
NASA FMEA #: 3.5.3
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] | [] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

- ADEQUATE [X]
- INADEQUATE []

REMARKS:

LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88
C-1111
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066I
NASA FMEA #: 3.5.4

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]

INADEQUATE []

REMARKS:

LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88
C-1112
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066J
NASA FMEA #: 3.5.5

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONAL: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1113
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066K
NASA FMEA #: 3.5.6

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT HDW/FUNC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1114
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066L
NASA FMEA #: 3.5.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG
ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE []</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1115
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066M
NASA FMEA #: 3.5.8

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8066N
NASA FMEA #: 3.5.9
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.

REPORT DATE 03/18/88 C-1117
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-80660
NASA FMEA #: 3.5.10

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8066
ITEM: MID DECK VIEWFINDER MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT PRESENTS WORST CASE CONDITION. CRITICALITIES ARE IN AGREEMENT.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067
NASA FMEA #: 7.1.1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY	REDUNDANCY SCREENS	CIL	
	FLIGHT HDW/FUNC	ITEM	
	A	B	C

NASA [3 /1R] [P] [P] [P] [] *
IOA [2 /1R] [P] [P] [P] [X]
COMPARE [N /] [] [] [] [N]

RECOMMENDATIONS: (If different from NASA)
[] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1119
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067A
NASA FMEA #: 7.1.2
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| NASA | [3 /1R] | [P] | [P] | [P] | [] | *
| IOA | [2 /1R] | [P] | [P] | [P] | [X] |
| COMPARE | [N /] | [] | [] | [] | [N] |

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1120
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067B
NASA FMEA #: 7.1.3

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1121
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067C
NASA FMEA #: 7.1.4
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1122
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067D
NASA FMEA #: 7.1.5
ASSESSMENT ID: COMTRK-8067D
NASA FMEA #: 7.1.5
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
</tbody>
</table>

NASA [] 3 /1R] [P] [P] [P] [X]
IOA [2 /1R] [P] [P] [P] [X]
COMPARE [N /] [] [] [] [N]

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE
ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE
LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE
CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE
MAINTAINED.

REPORT DATE 03/18/88 C-1123
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067E
NASA FMEA #: 7.1.6
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1124
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067F
NASA FMEA #: 7.1.7
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1125
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067G
NASA FMEA #: 7.1.8

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR

LEAD ANALYST: W.C. LONG

NASA DATA:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>[3 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>NASA</td>
<td></td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td></td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1126
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067H
NASA FMEA #: 7.1.9

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1127
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067I
NASA FMEA #: 7.1.10
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE
ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE
LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE
CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE
MAINTAINED.

REPORT DATE 03/18/88 C-1128
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067J
NASA FMEA #: 7.1.11
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>HDW/FUNC</td>
<td>NASA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOA</td>
</tr>
<tr>
<td>COMPARE</td>
<td></td>
<td>[N /]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE
ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE
LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE
CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE
MAINTAINED.

REPORT DATE 03/18/88 C-1129
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067K
NASA FMEA #: 7.1.12
NASA DATA: BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA	[3 /1R]	[P]	[P]	[P]	[]	*
I/OA	[2 /1R]	[P]	[P]	[P]	[X]	
COMPARE	[N /]	[]	[]	[]	[N]	

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE
ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE
LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE
CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE
MAINTAINED.

REPORT DATE 03/18/88 C-1130
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067L
NASA FMEA #: 7.1.13

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td>ITEM</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA	[3 /1R]	[P]	[P]	[P]	[]
IOA	[2 /1R]	[P]	[P]	[P]	[X]
COMPARE	[N /]	[]	[]	[]	[N]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1131
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067M
NASA FMEA #: 7.1.14
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<p>| CRITICALITY | REDUNDANCY SCREENS | CIL |</p>
<table>
<thead>
<tr>
<th>FLIGHT HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF CRT RESULTS IN LOSS OF CM AND PRESENTS WORST CASE CONDITION. NON CRITICAL FUNCTIONS WERE NOT ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8067N
NASA FMEA #: 7.1.15

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8067
ITEM: CONSOLE MONITOR

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

[] [] [] [] [X]

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF CRT RESULTS IN LOSS OF CM AND PRESENTS WORST CASE CONDITION. NON CRITICAL FUNCTIONS WERE NOT ANALYSED.

REPORT DATE 03/18/88 C-1133
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
ASSESSMENT ID: COMTRK-8068
BASELINE []
**NASA FMEA #: 7.1.1
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88
C-1134
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068A
NASA FMEA #: 7.1.2

ASSESSMENT ID: COMTRK-8068A
NASA FMEA #: 7.1.2

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /1R]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [/] | [] | [] | [] | [] |

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1135
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068B
NASA FMEA #: 7.1.3
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /1R]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE
ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE
LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE
CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE
MAINTAINED.

REPORT DATE 03/18/88 C-1136
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068C
NASA FMEA #: 7.1.4
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA [3 /1R]	[]	[]	[]	[]	[]	*
IOA [2 /1R]	[P]	[P]	[P]	[P]	[X]	
COMPARE [N /]	[N]	[N]	[N]	[N]	[N]	

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE
ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE
LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE
CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE
MAINTAINED.

REPORT DATE 03/18/88 C-1137
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068D
NASA FMEA #: 7.1.5

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3/1R]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE
ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE
LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE
CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE
MAINTAINED.

REPORT DATE 03/18/88 C-1138
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068E
NASA FMEA #: 7.1.6

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
| NASA [3 /1R] | [] | [] | [P] | [P] | [] *
| IOA [2 /1R] | [P] | [P] | [P] | [X] |
| COMPARE [N /] | [N] | [N] | [N] | [N] |

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE
ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE
LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE
CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE
MAINTAINED.

REPORT DATE 03/18/88 C-1139
APPENDIX C

ASSESSMENT WORKSHEET

<table>
<thead>
<tr>
<th>ASSESSMENT DATE: 3/05/88</th>
<th>NASA DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT ID: COMTRK-8068F</td>
<td>BASELINE []</td>
</tr>
<tr>
<td>NASA FMEA #: 7.1.7</td>
<td>NEW [X]</td>
</tr>
<tr>
<td>SUBSYSTEM: COMM AND TRACK</td>
<td></td>
</tr>
<tr>
<td>MDAC ID: 8068</td>
<td></td>
</tr>
<tr>
<td>ITEM: CONSOLE MONITOR (CRT)</td>
<td></td>
</tr>
<tr>
<td>LEAD ANALYST: W.C. LONG</td>
<td></td>
</tr>
</tbody>
</table>

ASSESSMENT:

- **CRITICALITY**
 - FLIGHT
 - HDW/FUNC

<table>
<thead>
<tr>
<th>NASA</th>
<th>IOA</th>
<th>COMPARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3 /1R]</td>
<td>[2 /1R]</td>
<td>[N /]</td>
</tr>
</tbody>
</table>

- **REDUNDANCY SCREENS**
 - A
 - B
 - C

<table>
<thead>
<tr>
<th>NASA</th>
<th>IOA</th>
<th>COMPARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>[P]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

- **CIL ITEM**
 - [] *
 - [X]

RECOMMENDATIONS:

(If different from NASA)

- [) [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

 - ADEQUATE [X]
 - INADEQUATE []

REMARKS:

- LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1140
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068G
NASA FMEA #: 7.1.8

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>ITEM</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

NASA	3 /1R	[]	[]	[]	[]
I/OA	2 /1R	[P]	[P]	[P]	[X]
COMPARE	N /	[N]	[N]	[N]	[N]

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE
ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE
LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE
CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE
MAINTAINED.

REPORT DATE 03/18/88 C-1141
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068H
NASA FMEA #: 7.1.9

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /1R]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE
ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE
LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE
CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE
MAINTAINED.

REPORT DATE 03/18/88 C-1142
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068I
NASA FMEA #: 7.1.10
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88 C-1143
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068J
NASA FMEA #: 7.1.11
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[] [] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88
C-1144
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068K
NASA FMEA #: 7.1.12

NASA DATA:
BASELINE []
NEW [x]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>3 /IR</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>2 /IR</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>N /</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [x]
INADEQUATE []

REMARKS:
LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW. GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.

REPORT DATE 03/18/88
C-1145
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068L
NASA FMEA #: 7.1.13

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /1R]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:

LOSS OF OUTPUT FROM BOTH CM WOULD MAKE TVC POINTING AND PICTURE ADJUSTMENTS DIFFICULT IF NOT IMPOSSIBLE RESULTING IN POSSIBLE LOSS OF TV COVERAGE AND POTENTIAL LOSS OF VEHICLE AND CREW.
GROUND MONITORS COULD POTENTIALLY PROVIDE ASSISTANCE TO DOWNGRADE CRITICALITY TO 3/1R CONSIDERING THAT RAPID CONTACT CAN BE MAINTAINED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068M
NASA FMEA #: 7.1.14
NASA DATA:
BASELINE []
NEW [X]
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF CRT RESULTS IN LOSS OF CM AND PRESENTS WORST CASE CONDITION. NON CRITICAL FUNCTIONS WERE NOT ANALYSED.

REPORT DATE 03/18/88 C-1147
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8068N
NASA FMEA #: 7.1.15
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8068
ITEM: CONSOLE MONITOR (CRT)
LEAD ANALYST: W.C. LONG

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
LOSS OF CRT RESULTS IN LOSS OF CM AND PRESENTS WORST CASE CONDITION. NON CRITICAL FUNCTIONS WERE NOT ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8069
ITEM: TV PWR CNTL UNIT SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| | [2 /1R] | [P] | [P] | [P] | [A] | (ADD/DELETE) |

CIL RETENTION RATIONALE: (If applicable)

- ADEQUATE []
- INADEQUATE [X]

REMARKS:

FAILURE TO SWITCH COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF MISSION. A SECOND GCIL REDUNDANCY FAILURE WOULD RESULT IN LOSS OF CCTV. LOSS OF CCTV AND ALL CAPABILITY TO PERFORM THIS FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8070
NASA FMEA #: 05-6PK-20402-1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8070
ITEM: TV PWR CNTL UNIT SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE [X]

REMARKS:
ELECTRICAL SHORT/OPEN COULD RESULT IN LOSS OF CCTV FUNCTION. A SECOND GCIL REDUNDANCY FAILURE WOULD CAUSE LOSS OF CCTV. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1150
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8071
NASA FMEA #: 05-6PK-20402-1

NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8071
ITEM: TV PWR CNTL SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[P]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[3 /3] [] [] [] [] [] (ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE [X]

REMARKS:
FAILURE TO SWITCH WOULD RESULT IN OPERATING IN PANEL OR CMD MODE WHICH PRESENTS ONLY OPERATIONAL LIMITATIONS

REPORT DATE 03/18/88 C-1151
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8072
NASA FMEA #: 05-6PK-20402-1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8072
ITEM: TV PWR CNTL SWITCH
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3/3]</td>
<td>[P]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/N]</td>
<td>[]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[-3/3] [] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE [X]

REMARKS:
AN OPEN SW WOULD REQUIRE THAT ALL CCTV FUNCTIONS BE SELECTED BY THE CREW.

REPORT DATE 03/18/88 C-1152
Appendix C
Assessment Worksheet

Assessment Date: 3/05/88
Assessment ID: COMTRK-8073
NASA FMEA #:

Subsystem: COMM AND TRACK
MDAC ID: 8073
Item: TV SYNC SWITCH

Lead Analyst: W.C. Long

Assessment:

<table>
<thead>
<tr>
<th>Criticality</th>
<th>Redundancy Screens</th>
<th>CIL Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>Compare</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

Recommendations:
(If different from NASA)

| [] | [] | [] | [] | [] | [] | [] | [] | (ADD/DELETE) |

* CIL Retention Rationale:
(If applicable)

<table>
<thead>
<tr>
<th>Adequate</th>
<th>Inadequate</th>
</tr>
</thead>
</table>

Remarks:

NO COUNTERPART NASA CCTV FMEA CREDIBLE FAILURE BUT NOT CRITICAL.

Report Date: 03/18/88
C-1153
ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8074
NASA FMEA #: COMTRK-8074
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8074
ITEM: TV SYNC SWITCH
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[/]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
NO COUNTERPART NASA CCTV FMEA. OPEN/SHORT PRESENTS A CREDIBLE FAILURE WHICH COULD RESULT IN LOSS OF CCTV AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8075
NASA FMEA #:

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8075
ITEM: TV DOWNLINK SWITCH

LEAD ANALYST: W.C. LONG

NASA DATA:
BASELINE []
NEW []

ITEM CRITICALITY REDUNDANCY SCREENS CIL
A B C ITEM

NASA [] [] [] [] [] [] [] *

IOA [3 /3] [] [] [] [] []

COMPARE [N /N] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []

INADEQUATE []

REMARKS:
NO COUNTERPART NASA CCTV FMEA CREDIBLE FAILURE BUT NOT CRITICAL.

REPORT DATE 03/18/88 C-1155
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8076
NASA FMEA #:

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8076
ITEM: TV DOWNLINK SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[/]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []

INADEQUATE []

REMARKS:

NO COUNTERPART NASA CCTV FMEA CREDIBLE FAILURE BUT NOT CRITICAL.

REPORT DATE 03/18/88 C-1156
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8077
NASA FMEA #: 05-6PK-20501-1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8077
ITEM: TV CAMERA POWER SWITCH (TVC A)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE [X]

REMARKS:
FAILURE TO SWITCH COULD RESULT IN LOSS OF TVC AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1157
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8078
NASA FMEA #: 05-6PK-20501-1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8078
ITEM: TV CAMERA POWER SWITCH (TVC A)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE []
INADEQUATE [X]

REMARKS:
OPEN/SHORT COULD RESULT IN LOSS OF TVC AND MISSION. SECONDS GCIL CMD FAILURE WOULD RESULT IN LOSS OF TVC. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8079
NASA FMEA #: 05-6PK-20501-1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8079
ITEM: TV CAMERA POWER SWITCH (TVC B)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>NASA [3 /3] []</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td>IOA [2 /1R] [P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N] [N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A]

(ADD/DELETE)

*CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE [X]

REMARKS:
FAILURE TO SWITCH COULD RESULT IN LOSS OF TVC AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1159
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8080
NASA FMEA #: 05-6PK-20501-1

NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8080
ITEM: TV CAMERA POWER SWITCH (TVC B)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE [X]

REMARKS:
OPEN/SHORT COULD RESULT IN LOSS OF TVC AND MISSION. SECOND GCIL CMD FAILURE WOULD RESULT IN LOSS OF TVC. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1160
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8081
NASA FMEA #: 05-6PK-20501-1

NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8081
ITEM: TV CAMERA POWER SWITCH (TVC C)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE []
INADEQUATE [X]

REMARKS:
FAILURE TO SWITCH COULD RESULT IN LOSS OF TVC AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C'-1161
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8082
NASA FMEA #: 05-6PK-20501-1

NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8082
ITEM: TV CAMERA POWER SWITCH (TVC C)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE [X]

REMARKS:
OPEN/SHORT COULD RESULT IN LOSS OF TVC AND MISSION SECOND GCIL CMD FAILURE WOULD RESULT IN LOSS OF TVC. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1162
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8083
NASA FMEA #: 05-6PK-20501-1
NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8083
ITEM: TV CAMERA POWER SWITCH (TVC D)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE [X]

REMARKS:
FAILURE TO SWITCH COULD RESULT IN LOSS OF TVC AND MISSION. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1163
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8084
NASA FMEA #: 05-6PK-20501-1
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8084
ITEM: TV CAMERA POWER SWITCH (TVC D)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[3/3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2/1]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N/N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1] [P] [P] [P] [A] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE [X]

REMARKS:
OPEN/SHORT COULD RESULT IN LOSS OF TVC AND MISSION. SECOND GCIL CMD FAILURE WOULD RESULT IN LOSS OF TVC. LOSS OF ALL CAPABILITY TO PERFORM CCTV FUNCTION COULD RESULT IN LOSS OF VEHICLE AND CREW.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8085
NASA FMEA #: NASA DATA:

BASELINE [] NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8085
ITEM: TV CAMERA POWER SWITCH (RMS TVCS)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDW/FUNC A B C</td>
<td>ITEM</td>
</tr>
<tr>
<td>NASA</td>
<td>[] / [] [] [] []</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R] [P] [P] [P]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N] [N] [N] [N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[3 /2R] [P] [P] [P] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
NO COUNTERPART NASA CCTV FMEA. CREDIBLE FAILURE BUT NOT A CIL. FAILURE TO SWITCH WOULD CAUSE LOSS OF EITHER RMS WRIST OR ELBOW TVC DEPENDING ON SWITCH POSITION. BOTH HAVE SAME CRITICALITY.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8086
NASA FMEA #: 05-6PK-20409-1

NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8086
ITEM: TV CAMERA POWER SWITCH (RMS TVCS)
LEAD ANALYST: W. C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[]</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPAR [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE []
INADEQUATE [X]

REMARKS:
ELECTRICAL OPEN/SHORT COULD RESULT IN REDUCED MISSION EFFECTIVENESS DUE TO LOSS OF RMS TVCS WHICH DO NOT MONITOR CRITICAL FUNCTIONS. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. LOSS OF RMS TVC'S COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1166
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8086A
NASA FMEA #: 05-6PK-20409-2

NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8086
ITEM: TV CAMERA POWER SWITCH (RMS TVCS)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE []
INADEQUATE [X]

REMARKS:
ELECTRICAL OPEN/SHORT COULD RESULT IN REDUCED MISSION EFFECTIVENESS DUE TO LOSS OF RMS TVCs WHICH DO NOT MONITOR CRITICAL FUNCTIONS. UNLIKE REDUNDANCY EXISTS VIA CREW WINDOW VIEWING, EVA AND COAS FOR CREW VISUAL INSPECTION. LOSS OF RMS TVC'S COULD RESULT IN LOSS OF MISSION.

REPORT DATE 03/18/88 C-1167
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8087
NASA FMEA #: 05-6PK-20501-1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8087
ITEM: TV PWR SWITCH (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1168
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8088
NASA FMEA #: 05-6PK-20501-1

NASA DATA:
BASELINE [X]
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8088
ITEM: TV PWR SWITCH (FLT DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY
FLIGHT HDW/FUNC

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>[3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
CRITICALITIES IN AGREEMENT.

REPORT DATE 03/18/88 C-1169
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8089
NASA FMEA #: 05-6PK-20501-1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8089
ITEM: TV PWR SWITCH (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [/]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
CRITICALITY IN AGREEMENT.

REPORT DATE 03/18/88 C-1170
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8090
NASA FMEA #: 05-6PK-20501-1

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8090
ITEM: TV PWR SWITCH (MID DECK TVC)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

CRITICALITY REDUNDANCY SCREENS CIL
FLIGHT HDW/FUNC A B C ITEM

NASA []/ [] [] [] [] [] [] []
IOA [3/3] [] [] [] [] [] []

COMPARE [N/N] [] [] [] [] [] []

RECOMMENDATIONS: (If different from NASA)

[]/ [] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
CRITICALITY IN AGREEMENT.

REPORT DATE 03/18/88 C-1171
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8091
NASA FMEA #: 6.0.2
NASA DATA: BASELINE [] NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8091
ITEM: RMS TV CAMERA SELECT SW (STBD)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO SWITCH MAINTAINS ELBOW OR WRIST TVC OPERATION TO PROVIDE PARTIAL MISSION SUPPORT. MECHANICAL INTERFERENCE TO RMS STOW WAS NOT ANALYSED.

REPORT DATE 03/18/88 C-1172
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8091A
NASA FMEA #: 6.0.6
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8091
ITEM: RMS TV CAMERA SELECT SW (STBD)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO SWITCH MAINTAINS ELBOW OR WRIST TVC OPERATION TO PROVIDE PARTIAL MISSION SUPPORT. MECHANICAL INTERFERENCE TO RMS STOW WAS NOT ANALYSED.

REPORT DATE 03/18/88 C-1173
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8091B
NASA #: 6.0.3
MDAC ID: 8091
ITEM: RMS TV CAMERA SELECT SW (STBD)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NASA</td>
<td>IOA</td>
</tr>
<tr>
<td></td>
<td>[2 /2]</td>
<td>[3 /3]</td>
</tr>
<tr>
<td></td>
<td>[] [] [] []</td>
<td>[] [] []</td>
</tr>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>[X] *</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)
 ADEQUATE [X]
 INADEQUATE []

REMARKS:
FAILURE TO SWITCH MAINTAINS ELBOW OR WRIST TVC OPERATION TO PROVIDE PARTIAL MISSION SUPPORT. MECHANICAL INTERFERENCE TO RMS STOW WAS NOT ANALYZED.

REPORT DATE 03/18/88
C-1174
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8091C
NASA FMEA #: 6.0.7

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8091
ITEM: RMS TV CAMERA SELECT SW (STBD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO SWITCH MAINTAINS ELBOW OR WRIST TVC OPEATION TO PROVIDE PARTIAL MISSION SUPPORT. MECHANICAL INTERFERENCE TO RMS STOW WAS NOT ANALYSED.

REPORT DATE 03/18/88 C-1175
APPENDIX C

ASSESSMENT WORKSHEET

- **ASSESSMENT DATE:** 3/05/88
- **ASSESSMENT ID:** COMTRK-8092
- **NASA FMEA #:** 6.0.1
- **NASA DATA:** BASELINE [] NEW [X]
- **SUBSYSTEM:** COMM AND TRACK
- **MDAC ID:** 8092
- **ITEM:** RMS TV CAMERA SELECT SW (STBD)
- **LEAD ANALYST:** W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS:

(If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

REMARKS:

ELECTRICAL OPEN/SHORT RESULTS IN LOSS OF RMS TVC OUTPUT RESULTING IN LOSS OF MISSION. MECHANICAL INTERFERENCE DURING RMS STOW WAS NOT ANALYSED.

REPORT DATE 03/18/88

C-1176
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8092A
NASA FMEA #: 6.0.5

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8092
ITEM: RMS TV CAMERA SELECT SW (STBD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<p>| CRITICALLY | REDUNDANCY SCREENS | CIL |</p>
<table>
<thead>
<tr>
<th>FLIGHT HDW/FUNC</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADECquate [X]
INADequate []

REMARKS:

ELECTRICAL OPEN/SHORT RESULTS IN LOSS OF RMS TVC OUTPUT RESULTING
IN LOSS OF MISSION. MECHANICAL INTERFERENCE DURING RMS STOW WAS
NOT ANALYSED.

REPORT DATE 03/18/88 C-1177
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8092B
NASA FMEA #: 6.0.4
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8092
ITEM: RMS TV CAMERA SELECT SW (STBD)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY FLIGHT HDW/FUNC</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /2]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3 /2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ELECTRICAL OPEN/SHORT RESULTS IN LOSS OF RMS TVC OUTPUT RESULTING IN LOSS OF MISSION. MECHANICAL INTERFERENCE DURING RMS STOW WAS NOT ANALYSED.

REPORT DATE 03/18/88 C-1178
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8092C
NASA FMEA #: 6.0.8
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8092
ITEM: RMS TV CAMERA SELECT SW (STBD)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NASA	[3 /3]	[]	[]	[]	[]	[] *
IOA	[3 /2R]	[P]	[P]	[P]	[]	
COMPARE	[/N]	[N]	[N]	[N]	[]	

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ELECTRICAL OPEN/SHORT RESULTS IN LOSS OF RMS TVC OUTPUT RESULTING IN LOSS OF MISSION. MECHANICAL INTERFERENCE DURING RMS STOW WAS NOT ANALYSED. ONLY WORST CASE CONDITION WAS ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8093
NASA FMEA #: 6.0.2
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8093
ITEM: RMS TV CAMERA SELECT SW (PORT)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALLY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [3 /3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO SWITCH MAINTAINS ELBOW OR WRIST TVC OPERATION TO PROVIDE PARTIAL MISSION SUPPORT. MECHANICAL INTERFERENCE TO RMS STOW WAS NOT ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8093A
NASA FMEA #: 6.0.6
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8093
ITEM: RMS TV CAMERA SELECT SW (PORT)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO SWITCH MAINTAINS ELBOW OR WRIST TVC OPERATION TO PROVIDE PARTIAL MISSION SUPPORT. MECHANICAL INTERFERENCE TO RMS STOW WAS NOT ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8093B
NASA FMEA #: 6.0.3

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM:
COMM AND TRACK
MDAC ID:
8093
ITEM:
RMS TV CAMERA SELECT SW (PORT)
LEAD ANALYST:
W.C. LONG

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO SWITCH MAINTAINS ELBOW OR WRIST TVC OPERATION TO PROVIDE PARTIAL MISSION SUPPORT. MECHANICAL INTERFERENCE TO RMS STOW WAS NOT ANALYSED.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8093C
NASA FMEA #: 6.0.7

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8093
ITEM: RMS TV CAMERA SELECT SW (PORT)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLIGHT HDW/FUNC</td>
<td></td>
</tr>
</tbody>
</table>
| NASA [2 /2] | [] [] [] [] | [X] *
| IOA [3 /3] | [] [] [] [] | []
| COMPARE [N /N] | [] [] [] [] | [N] |

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
FAILURE TO SWITCH MAINTAINS ELBOW OR WRIST TVC OPERATION TO PROVIDE PARTIAL MISSION SUPPORT. MECHANICAL INTERFERENCE TO RMS STOW WAS NOT ANALYSED.

REPORT DATE 03/18/88 C-1183
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8094
NASA FMEA #: 6.0.1

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8094
ITEM: RMS TV CAMERA SELECT SW (PORT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>HDW/FUNC A B C</td>
<td></td>
</tr>
<tr>
<td>NASA [2 /1R] [P] [P] [P] [X] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOA [3 /2R] [P] [P] [P] []</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE [N /N] [] [] [] [N]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable) ADEQUATE [X] INADEQUATE []

REMARKS:
ELECTRICAL OPEN/SHORT RESULTS IN LOSS OF RMS TVC OUTPUT RESULTING IN LOSS OF MISSION. MECHANICAL INTERFERENCE DURING RMS STOW WAS NOT ANALYSED.

REPORT DATE 03/18/88 C-1184
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8094A
NASA FMEA #: 6.0.5

NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8094
ITEM: RMS TV CAMERA SELECT SW (PORT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td></td>
<td>ITEM</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA [2 /1R] [P] [P] [P] [X] *
IOA [3 /2R] [P] [P] [P] []
COMPARE [N /N] [] [] [] [] [N]

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] []
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ELECTRICAL OPEN/SHORT RESULTS IN LOSS OF RMS TVC OUTPUT RESULTING IN LOSS OF MISSION. MECHANICAL INTERFERENCE DURING RMS STOW WAS NOT ANALYSED.

REPORT DATE 03/18/88 C-1185
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8094B
NASA FMEA #: 6.0.4
NASA DATA:
BASELINE []
NEW [X]

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8094
ITEM: RMS TV CAMERA SELECT SW (PORT)
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[2 /2]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /2R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)
[]
[]
[]
[]
[] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE [X]
INADEQUATE []

REMARKS:
ELECTRICAL OPEN/SHORT RESULTS IN LOSS OF RMS TVC OUTPUT RESULTING IN LOSS OF MISSION. MECHANICAL INTERFERENCE DURING RMS STOW WAS NOT ANALYSED.

REPORT DATE 03/18/88 C-1186
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8094C
NASA FMEA #: 6.0.8

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8094
ITEM: RMS TV CAMERA SELECT SW (PORT)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [3/3]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [3/2R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] []

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X]
INADEQUATE []

REMARKS:
ELECTRICAL OPEN/SHORT RESULTS IN LOSS OF RMS TVC OUTPUT RESULTING IN LOSS OF MISSION. MECHANICAL INTERFERENCE DURING RMS STOW WAS NOT ANALYSED.

REPORT DATE 03/18/88 C-1187
APPENDIX C

ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8095
NASA DATA:
BASELINE []
NEW []
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8095
ITEM: TV CAMERA CMD FOCUS SWITCH
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>/</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>2/1R</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>N/N</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2/1R] [P] [P] [P] [A]
(ADD/DELETE)

* **CIL RETENTION RATIONALE:** (If applicable)
 ADEQUATE []
 INADEQUATE []

REMARKS:

NO COMPARABLE NASA CCTV FMEA. FAILURE TO PROVIDE THIS FUNCTION WOULD RESULT IN LOSS OF TVC. UP CMD PROVIDES UNLIKE REDUNDANCY. SECOND FAILURE COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88

C-1188
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8096
NASA FMEA #: NASA DATA:
ASCENDMENT WORKSHEET

NASA DATA: BASELINE [] NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8096
ITEM: TV CAMERA CMD FOCUS SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC A B C</td>
<td>ITEM</td>
<td></td>
</tr>
<tr>
<td>NASA [] [] [] [] [] [] [] []</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>IOA [2 /1R] [P] [P] [P] [X]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE [N /N] [N] [N] [N] [N]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
NO COMPARABLE NASA CCTV FMEA. FAILURE TO PROVIDE THIS FUNCTION
WOULD RESULT IN LOSS OF TVC. UP CMD PROVIDES UNLIKE REDUNDANCY.
SECOND FAILURE COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF
VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1189
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8097
NASA FMEA #:

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8097
ITEM: TV CAMERA CMD ZOOM SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| [2 /1R] | [P] | [P] | [P] | [A] |

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable) ADEQUATE [] INADEQUATE []

REMARKS:
NO COMPARABLE NASA CCTV FMEA. FAILURE TO PROVIDE THIS FUNCTION WOULD RESULT IN LOSS OF TVC. UP CMD PROVIDES UNLIKE REDUNDANCY. SECOND FAILURE COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1190
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8098
NASA FMEA #: COMTRK-8098
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8098
ITEM: TV CAMERA CMD ZOOM SWITCH
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA [</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
No comparable NASA CCTV FMEA. Failure to provide this function would result in loss of TVC. UP CMD provides unlike redundancy. Second failure could result in loss of CCTV function and loss of vehicle and crew.

REPORT DATE 03/18/88 C-1191
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8099
NASA FMEA #:

NASA DATA:
BASELINE []
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8099
ITEM: TV Camera CMD IRIS SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA []</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA []/1R</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE []/N</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[]/1R [P] [P] [P] [A]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:

NO COMPARABLE NASA CCTV FMEA. FAILURE TO PROVIDE THIS FUNCTION WOULD RESULT IN LOSS OF TVC. UP CMD PROVIDES UNLlke REDUNDANCY. SECOND FAILURE COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1192
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8100
NASA ID #: NASA FMEA #:
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8100
ITEM: TV CAMERA CMD IRIS SWITCH
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
NO COMPARABLE NASA CCTV FMEA. FAILURE TO PROVIDE THIS FUNCTION WOULD RESULT IN LOSS OF TVC. UP CMD PROVIDES UNLIKE REDUNDANCY. SECOND FAILURE COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF VEHICLE AND CREW.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8101
NASA FMEA #: NASA FMEA #:

NASA DATA: BASELINE []
NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8101
ITEM: TV CAMERA CMD TILT SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[/]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:

NO COMPARABLE NASA CCTV FMEA. FAILURE TO PROVIDE THIS FUNCTION WOULD RESULT IN LOSS OF TVC. UP CMD PROVIDES UNLIKE REDUNDANCY. SECOND FAILURE COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1194
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8102
NASA FMEA #:
SUBSYSTEM: COMM AND TRACK
MDAC ID: 8102
ITEM: TV CAMERA CMD TILT SWITCH
LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[2 /1R]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] [P] [P] [P] [A]

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE []
INADEQUATE []

REMARKS:
NO COMPARABLE NASA CCTV FMEA. FAILURE TO PROVIDE THIS FUNCTION WOULD RESULT IN LOSS OF TVC. UP CMD PROVIDES UNLIKE REDUNDANCY. SECOND FAILURE COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1195
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: COMTRK-8103 BASELINE []
NASA FMEA #: NEW []

SUBSYSTEM: COM AND TRACK
MDAC ID: 8103
ITEM: TV CAMERA CMD PAN SWITCH

LEAD ANALYST: W. C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA []</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA [2 /1R]</td>
<td>[P]</td>
<td>[P]</td>
</tr>
<tr>
<td>COMPARE [N /N]</td>
<td>[N]</td>
<td>[N]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[2 /1R] | [P] | [P] | [P] | [A]
(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)
ADEQUATE []
INADEQUATE []

REMARKS:
NO COMPARABLE NASA CCTV FMEA. FAILURE TO PROVIDE THIS FUNCTION
WOULD RESULT IN LOSS OF TVC. UP CMD PROVIDES UNLIKE REDUNDANCY.
SECOND FAILURE COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF
VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1196
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8104
NASA FMEA #:

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8104
ITEM: TV CAMERA CMD PAN SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[] [] [] [] [] [A] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
NO COMPARABLE NASA CCTV FMEA. FAILURE TO PROVIDE THIS FUNCTION WOULD RESULT IN LOSS OF TVC. UP CMD PROVIDES UNLIKE REDUNDANCY. SECOND FAILURE COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF VEHICLE AND CREW.

REPORT DATE 03/18/88 C-1197
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8105
NASA FMEA #:

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8105
ITEM: TV CAMERA PANTILT SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>NASA</td>
<td>[/]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] (ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
NO COMPARABLE NASA CCTV FMEA. NOT CRITICAL.

REPORT DATE 03/18/88 C-1198
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88
ASSESSMENT ID: COMTRK-8106
NASA FMEA #: BASELINE []
NASA DATA: NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8106
ITEM: TV CAMERA PANTILT SWITCH

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT HDW/FUNC</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

NASA [/] [] [] [] [] [] []
IOA [2 /1R] [P] [P] [P] [] []
COMPARE [N /N] [N] [N] [N] [] []

RECOMMENDATIONS: (If different from NASA)

[/] [] [] [] [] [] []

(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
NO COMPARABLE NASA CCTV FMEA. FAILURE TO PROVIDE THIS FUNCTION WOULD RESULT IN LOSS OF TVC. UP CMD PROVIDES UNLIKE REDUNDANCY. SECOND FAILURE COULD RESULT IN LOSS OF CCTV FUNCTION AND LOSS OF VEHICLE AND CREW.
APPENDIX C
ASSESSMENT WORKSHEET

ASSESSMENT DATE: 3/05/88 NASA DATA:
ASSESSMENT ID: COMTRK-8107 BASELINE []
NASA FMEA #: NEW []

SUBSYSTEM: COMM AND TRACK
MDAC ID: 8107
ITEM: TV CAMERA ALC CMD SWITCH (PEAK)

LEAD ANALYST: W.C. LONG

ASSESSMENT:

<table>
<thead>
<tr>
<th>CRITICALITY</th>
<th>REDUNDANCY SCREENS</th>
<th>CIL ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>HDW/FUNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>[/]</td>
<td>[]</td>
</tr>
<tr>
<td>IOA</td>
<td>[3 /3]</td>
<td>[]</td>
</tr>
<tr>
<td>COMPARE</td>
<td>[N /N]</td>
<td>[]</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS: (If different from NASA)

| | | | |
| | [/] | [] | [] | [] |

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE []
INADEQUATE []

REMARKS:
NO COMPARIBLE NASA CCTV FMEA. NOT CRITICAL.

REPORT DATE 03/18/88 C-1200