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Computer vision has been regarded as one of the most complex and computationally intensive 

-problems. An integrated vision system (lVS) is a system that uses vision algorithms from all levels 

of processing to perform for a high level application (e.g, object recognition). An IVS normally 

involves algorithms from low level. intermediate level and high level vision. Designing parallel 

architectures for vision systems has been of a tremendous interest to researchers. This thesis 

addresses several issues in parallel architectures and parallel algorithms for integrated vision systems. 

First, a model of computation for IVSs is presented. The model captures computational require-

ments, defines spatial and temporal data dependencies between tasks, and shows what types of 

interactions may occur between tasks from different levels of processing. The model is used to 

develop features and capabilities of a parallel architecture suitable for IVSs. It is concluded that an 

architecture for IVS must be reconfigurable into different modes, be partitionable, allow dynamic 

resource allocation and task scheduling, provide flexible and fast communication between processing 

elements, provide efficient I/O and be fault-tolerant. 

A multiprocessor architecture for IVSs (called NETRA) is presented. NETRA is highly flexible 

without the use of complex interconnection schemes. NETRA is recursively defined hierarchical 

architecture whose leaf nodes consist of clusters processors connected with a programmable crossbar 

with a selective broadcast capability. Hence, it is easily scalable from small to large systems. Homo-

geneity of NETRA permits fault tolerance and graceful degradation under faults. Several refinements 

in the architecture over the original design are also proposed. 



Performance of several vision algorithms when they are mapped on one cluster is presented. It 

is shown that SIMD, MIMD and systolic algorithms can be easily mapped onto processor clusters, 

and almost linear speedups are possible. For some algorithms, analytical performance results are 

compared with those obtained using an implementation. It is observed that the analysis is very accu­

rate. 

An extensive analysis of inter-cluster communication strategies in NETRA is presented. A 

methodology to evaluate performance of algorithms on NETRA is described. Performance analysis 

of parallel algorithms when mapped across clusters is presented. The parameters are derived from the 

characteristics of the parallel algorithms, which are then, used to evaluate the alternative communica­

tion strategies in NETRA. The effects of communication interference on the performance of algo­

rithms are studied. It is observed that if communication speeds are matched with the computation 

speeds, almost linear speedups are possible when algorithms are mapped across clusters. 

Finally, several techniques to perform data decomposition, and static and dynamic load balanc­

ing for IVS afgorithms are described. These techniques can be used to perform load balancing for 

intermediate and high level, data dependent vision algorithms. These techniques are novel because 

they use knowledge about the data when it is produced and use knowledge about the computation in 

the next task to perform load balancing in an integrated environment. They are shown to perform 

well, using them on an implementation of a motion estimation system on a hypercube mUltiprocessor. 

Index Terms - Multiprocessor Architectures, Parallel Algorithms, Parallel Processing, Computer 

Vision, Image Processing 
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CHAPTER 1. 

INTRODUCTION 

1.1. Motivation and Scope 

One of the most imponant, difficult and computationally intensive problems in the 

field of artificial intelligence is computer vision. There is no consensus today on the 

definition and scope of computer vision. The problem of artificial vision is as old as the 

field of computer science and engineering. Researchers have devoted much time in 

attempting to define and solve pans of the problems for many years. However, to say that 

computer vision is in its infancy today is a correct judgment of the state of the an in 

artificial vision. Furthermore, nobody knows the answer to the question of whether it is 

possible to make artificial vision as powerful and general as human vision. One of the 

many reasons for not knowing the answer is that little is understood about human vision 

itself. 

There are several approaches to tackling the computational problems in computer 

vision. One of the approaches, which is also the oldest, is to use the computational 

powers of computers and their development in various fields of computer science and 

engineering, such as signal processing, mathematical and scientific algorithms, and graph 

theory. The other approach, which is relatively recent, is to somehow mimic the compu­

tations performed in the human brain. This approach is termed as the neural network 
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approach. However, tremendous computational power in one form or another is needed 

in both the approaches. 

Computer vision and image understanding algorithms employ a very broad spec­

trum of techniques from several areas such as signal processing, advanced mathematics, 

graph theory, and artificial intelligence. The computational requirements to perform algo­

rithms from these fields are tremendous when executed individually, and when they need 

to be integrated in a meaningful way to perform a broader function in a reasonable 

amount of time, the computation becomes almost intractable. For example, consider 

interpretation of a changing scene at 30 frames per second. The amount of data to be han­

dled per second itself is almost 25 Mbytes (million bytes) assuming a moderate resolution 

of 512><512 pixels per frame with each pixel of three bytes (one byte for each color and 

256 grey level). The amount of computation required for simple image transformations, 

labeling, grouping, surface reconstruction or motion analysis is very difficult to estimate; 

however, for many applications it can be in the range of 100 -10,000 billion instructions 

per second [1]. This is raw processing power and does not include the complexities 

involved in a system such as interactions among various algorithms, input-output of data, 

managing system resources, and fault-tolerance. Therefore, the vision problem is of 

tremendous interest to computer architects and it presents them with great challenges. 

Having discussed that the need to provide tremendous processing power in an archi­

tecture for computer vision, the next question is how can that processing power capabil­

ity be provided? Parallel processing, which has progressed tremendously in the past 

decade, seems to be the consensus approach to providing the necessary computational 

power. Fortunately, most algorithms that are part of a vision system are in general, 

-

-
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characterized by massive parallelism. For low level processing, spatial decomposition of 

an image provides a natural way of generating parallel tasks. For higher level analysis 

operations, parallelization may also be based on other image characteristics and may be 

data dependent. In fact, parallel processing has been suggested as the approach to pro­

vide computational power needed for most computational intensive problems such as 

scientific, vision or any other because technological limits are being reached in how fast 

a serial processor can perform. But the next question is what form of parallel processing, 

and what type of multiprocessor architectures are suitable for vision application? It may 

be easier to provide raw processing power by parallel processing, but the more important 

and difficult question is how to design multiprocessors so that the available processing 

power can be used efficiently. Since there is no consensus as to what a vision system con­

sists of, another problem is how to evaluate or compare one architecture with another. 

Recently, efforts have been made to provide a framework and benchmark to evaluate 

multiprocessor architectures for vision which not only attempt to measure the processing 

power of an architecture but also test other architectural issues such as I/O, ability to per­

form algorithms with varying characteristics, and effect on the performance due to 

interactions between tasks [1]. 

This thesis attempts to identify various issues in multiprocessor architectures and 

parallel algorithms for computer vision. The approach is to consider the computational 

requirements for vision in an integrated environment rather than to propose architectural 

solutions to perform one or more algorithms efficiently and fast. We attempt to define the 

computational requirements for an Integrated Vision System (IVS), for which there is no 

general definition. However, an application dependent definition of an IVS is possible. 
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For example, object recognition, a system that takes an image (or a set of images) as 

input and produces an output that describes the object can be considered an IVS. How-

ever, a system (or an algorithm) that takes an image input and produces its Discrete 

Fourier Transform (OFT) is not considered an Integrated Vision System, though comput-

ing DFf itself may be a step or a part of an IVS. In fact, it is important to distinguish 

between image processing and computer vision (or IVS). Image processing involves 

transforming images by applying one or more algorithms to the input in order to make it -
more useful for interpretation by humans. For example, image enhancement, noise reduc-

tion, scaling, and thresholding constitute image processing operations. Integrated Vision 

System, on the other hand, involves interpretation and recognition by the system itself 

using input data, parameters and knowledge base without any interference from humans. 

That is, the system is completely an automated vision system in the ideal case. There-

fore, IVS can be defined as a system which employs a subset of vision algorithms in a 

systematic way to produce a meaningful output. The computational requirements for 

such an integrated vision system are tremendous [2]. 

Vision algorithms are normally divided into three levels: low level, intermediate 

level and high level. Low level algorithms are mostly image processing algorithms. 

These algorithms, in general, are very regular in structure, involve data independent and 

local computations, and involve pixel data. Available parallelism is normally on the 

pixel level. Intermediate level algorithms perform computations on the output produced 

by low level algorithms and involve more complex data structures, data dependent algo-

rithms, symbolic processing, and involve varying degree of parallelism which itself 

depends on the data and the nature of the computation. Finally, high level algorithms not 
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only exhibit most of the properties of intermediate level algorithms but also involve top­

down processing in which knowledge based interpretation is performed. Therefore, the 

algorithms may involve accessing databases, performing enormous searches and include 

other artificial intelligence algorithms. 

An Integrated Vision System will normally consist of algorithms from all levels of 

processing. Therefore, in addition to providing tremendous raw processing power an 

architecture must be capable of the following. It must have the ability to transform pixel 

data into a set of meaningful symbols that describe it, to process pixels, symbol data and 

other complex data structures in parallel, and the ability to simultaneously perform low, 

intermediate, and high level algorithms, and fast I/O. These requirements and others 

mean that an architecture must be reconfigurable, provide flexible and fast communica­

tion structures between processing elements, provide different types of processing (such 

as SIMD, MIMD) to most efficiently execute algorithms from different levels of process­

ing, be efficient in performing dynamic resource allocation and task scheduling, be parti­

tionable into independent subsystems which can work on different computations simul­

taneously, be fault-tolerant and provide fast I/O bandwidth to keep up with a tremendous 

amount of data flow. 

Design of multiprocessor architectures for IVSs, therefore, must address the require­

ments posed by the above discussed characteristics of algorithms that are part of an IVS. 

In this thesis, we present a model of computation for IVSs for parallel processing. The 

model attempts to capture the properties of IVS algorithms, data flow and interactions 

between various tasks. Our model not only captures the computation requirements 

presented in the Image Understanding Benchmark presented in [1] but it also provides for 
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another dimension (time) of computation which is absent in the benchmark. Then we 

present an architecture for integrated vision systems called "NETRA." NETRA, in its ori­

ginal form, was first proposed by Sharma, Patel and Ahuja in [3]. We propose ~everal 

refinements to the architecture based on our understanding of computational require­

ments for IVSs. An elaborate discussion is presented that giv~s the rationale behind the 

design. Several common vision algorithms are used to evaluate the performance of the 

architecture and alternative communication strategies. The algorithms are mapped using 

the multidimensional divide-and-conquer paradigm [4] which is an attractive mechanism 

for providing parallelism in all levels of processing. 

1.2. Review of Multiprocessor Architectures 

The advent of VLSI technology has enabled architects to produce high performance 

chips to perform specific applications. But these special purpose chips can only be used 

in an IVS as accelerators of specific algorithms. Another use of VLSI technology has 

been to create massively parallel Single Instruction Multiple Data (SIMD) processors for 

vision and other applications. There are also Multiple Instruction Multiple Data (MIMD) 

processors in which the number of processors are normally a few orders of magnitude 

less than that in SIMD (massively parallel) machines', however, each processor is a 

powerful general purpose processor with its own program and data memory. Normally, 

MIMD machines fall into two categories: shared memory and distributed memory 

machines, though many architectures exhibit both paradigms. Within these 

classifications, multiprocessors are distinguished according to the interconnection topol­

ogy between processors or processor-memories. Finally, there are systolic arrays, 

-
-
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hierarchical, partitionable multiprocessor architectures that have been proposed and stu­

died for vision applications. Many of the architectures have been proposed just for vision 

application but almost all mUltiprocessors have been studied for vision applications. In 

the following discussion, we examine many of the architectures, describe the topology, 

salient features and limitations, and discuss their advantages and disadvantages with 

respect to solving vision problems. We use the topology as the main classification of the 

architectures in describing them; however, within a topology, if machines exist that can 

be further classified, then we will present a discussion on them. 

1.2.1. Mesh connected computers 

Mesh connected multiprocessors have been one of the first multiprocessors pro­

posed for computer vision and image processing applications. For image processing 

applications, meshes seem to be an obvious choice because the images map quite natur­

ally onto its structure. Figure 1. i shows the topology of a mesh-connected computer. A 

typical machine consists of a large number of processing elements (PEs) arranged in a 

square array. Most typical is a 4-connected mesh in which each processor is connected to 

its four nearest neighbors. However, 6 (hexagonal) and 8 connected meshes have also 

been proposed. Most machines built on this topology are SIMD type of machines. Each 

PE has its local memory, and it responds in SIMD mode to the instructions broadcast by 

a controller. The PEs can be selectively masked using mask registers. 

The advantage of this architecture is that images map quite naturally onto its struc­

ture. When the image size matches the size of the multiprocessor (e.g., NxN mesh for 

NxN image), maximum parallelism can be obtained for those operations that require 
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computations on individual pixels or a very small neighborhood of pixels. However, this 

type of architecture has several limitations. There are many low and intermediate level 

vision algorithms that involve grouping or matching of image structures which are spa­

tially distant in an image. But in meshes, communication across large distances is expen­

sive and inefficient. Therefore, unless the computation is regular and local, meshes do not 

perform well. Furthermore, meshes have been proposed only as SIMD machines, and that 

means lack of MIMD processing capability that is necessary to support high level vision. 

In order to cost-effectively build a multiprocessor with thousands of processors, indivi­

dual processors must be small, given the technological limitations. Normally, a typical 

machine will have PEs with I-bit ALUs and a small memory, which may be sufficient for 

small pixel based operations but definitely lacks the power that is needed for intermediate 

.... 

-

-

-
-
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and high level operations. Finally, to most efficiently use a mesh, it is required that the 

data size exactly match the processor size, which is a severe limitation. 

Several mesh-connected multiprocessors have been built. Examples of mesh­

connected computers include CLIP-4 [5,6,7], GRID [8], GAPP [9], and the MPP 

[10,11,12]. Each of-these machines has its own special features, but all of them have the 

same general form. One major drawback of these machines has been the inefficiency of 

collecting results and rapid evaluation of the results due to communication bottlenecks. 

This reflects the fact that they were designed and built as stand-alone image processors 

used primarily for image enhancements in which the results of processing are intended 

for interpretation by humans rather than forming the first stage of an autonomous vision 

system. Several enhancements to a mesh have been proposed to alleviate the global com­

munication problems. Wrapped around connections of the boundary PEs is one of them 

in which top row PEs are connected to the bottom row PEs and the first column PEs are 

connected to the last column PEs. This arrangement is called Torus. This reduces the 

long distance communication time, but the order still remains the same. Other enhance­

ments include connecting PEs in rows and columns by busses to broadcast common data, 

but these enhancements do not alter the basic structure, advantages and limitations of a 

mesh-connected computer. 

1.2.2. Pyramid computers 

The concept of pyramid computers is essentially an extension of meshes in the third 

dimension. This structure has been proposed in various forms, but the main idea is that an 

image sized mesh-connected array is augmented by layers of successively lower resolu-
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tion mesh-connected arrays as shown in Figure 1.2. Each array in a pyramid is typically 

one fourth as large as the array below it. Except for the bottom array, each PE in a 

pyramid is connected to f<;lur processors in the level below it, in addition to the neighbor 

connections in the same level. Formally, a pyramid consists of (l/2)log N + 1 levels, 

where the i-th level, 0Si S(1I2)10g N, is a mesh with N/4i PEs. Each level has connections 

to the level above and below, giving each internal PE 9 connections: 4 to its children in 

the level below, 4 to its nearest neighbors at the same level, and 1 to its parent in the 

level above. All the PEs operate in SIMD mode under the directions of a single con­

troller. Several pyramids have been proposed and built and examples include P APIA 

[13], SPHINX [14], MPP Pyramid [15], HCL Pyramid [16,17], and others 

[18,19,20,21]. 

Pyramid multiprocessor architecture provides straightforward implementation of the 

divide-and-conquer based approach. Such pyramids are natural candidates for executing 

divide-and-conquer algorithms, as they most closely mirror the flow of information in 

these algorithms. The pyramid processor provides the capability for quickly changing 

the resolution of an image, which can significandy improve the execution speed of some 

low level algorithms, especially for those that depend upon communication between cells 

that are spatially distant in an image. However, pyramid processors are more difficult to 

build than meshes because of the more complex arrangement for communication links 

and require twice the number of processing elements for the same image resolution. 

Hence, no pyramid multiprocessor has been built commercially. 

Despite the fact that a pyramid machine has multiple levels of processing elements, 

it should not be concluded that a pyramid is suitable for implementing the multiple levels 

-

-
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Figure 1.2 : A Pyramid Multiprocessor 

of processing required in an integrated vision system. The pyramid only implements an 

image resolution hierarchy, whereas vision requires an architecture that implements a 

hierarchy of abstraction levels. In a pyramid machine, all the processors are identical and 

execute in SIMD fashion. A vision machine, on the other hand, requires a different type 

of processing at different levels and in a variety of modes of parallelism including both 

SIMD and MIMD. Furthermore, from a purely architectural point of view, utilization of 

pyramid processors, in general, tends to be very low because at each level the slowest 

processor(s) is (are) the bottleneck, and the pipeline of computation (bottom-up) is lim­

ited by the slowest processor, thereby limiting the utilization at all the levels. Therefore, 
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the pyramid machines, like meshes, are mostly suitable for early low level vision algo­

rithm only and lack the flexibility for and processing capabilities needed for complex 

vision applications. 

The effectiveness and performance of architectures such as pyramid, array proces­

sors, and meshes are limited as architectures for integrated vision systems due to several 

reasons. First, they are mostly suitable for SIMD types of algorithms which only consti­

tute low level vision operations. Second, the architectures are inflexible due to the rigid 

interconnections. Third, the number of processors needed to solve a problem of reason­

able size is thousands. Such a large number of processors is not only cost prohibitive, 

but the processors thems.elves cannot be very powerful and can have only limited 

features due to technological limitations. Fourth, it is normally assumed that the problem 

size exactly matches the number of processors available. Most of the time it is not clear 

how to adapt algorithms so that problems of different sizes can be solved on the same 

number of processors. Finally, the problem of input-output of data and fault-tolerance is 

rarely addressed in any of these architectures. It is imponant to note that no matter how 

fast or powerful a particular architecture is, its utilization can be limited by the 

bandwidth of the I/O. Furthermore, due to rigidity of most architectures, a failure nor­

mally either results in the failure of the entire system, or the performance degrades 

tremendously. It is imponant that any architecture for such a complex problem should 

provide for graceful degradation which can be achieved by flexibility of the interconnect 

and capabilities to efficiently reconfigure and partition the architecture. 

-

-

-
-
-

-

-
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1.2.3. Hypercube multiprocessors 

Hypercube multiprocessors provide more efficient long distance communication 

that is absent in meshes or pyramids. Machines in this class consist of processors con­

nected by communication links whose arrangement is topologically equivalent to an n­

dimensional cube. A hypercube consists of N =2" PEs for an n dimensional cube. Each PE 

is connected to n other PEs such that their binary representations differ in exactly one bit 

position. Therefore, any PE can communicate with any other PE using at most n com­

munication links. Figure 1.3 illustrates the organization of a hypercube multiprocessor. 

Several commercially available machines have been built that use the hypercube 

topology. Both SIMD and MIMD types of machines have been built. The Connection 

machine is an SIMD hypercube multiprocessor [22]. However, in a connection machine, 

two communication networks are provided. Each PE is connected to its four NEWS 

neighbors through a NEWS network, and groups of processors are connected in a hyper-

Figure 1.3 : A Hypercube Multiprocessor 
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cube fashion that provides efficient long distance communication. Such a machine can be 

used for most low level vision algorithms and some intermediate vision algorithms. How­

ever, like in other SIMD machines, lack of MIMD processing capability precludes its use 

for high level vision. Furthermore, low and intermediate processing cannot occur simul­

taneously, which is a necessity for complex, real-time vision systems. 

MIMD hypercube multiprocessors are also commercially available. In fact, several 

companies have built MIMD hypercubes of large sizes (up to 1024 processors). Exam­

ples include Intel Hypercube [23], NCube [24], and Cosmic cube [25]. A typical proces­

sor node in a machine consists of a general purpose microprocessor (e.g., 80386 and 

coprocessor 80387 in Intel iPSC/2), local memory and routing hardware. Each multipro­

cessor is controlled by a host processor. The advantage of the hypercubes is that they 

provide efficient long distance communication between processors. Although hypercube 

machines with large dimensionality have been built, current systems are not very 

efficient due to slow communication bandwidths and tremendous overheads of running 

an application. However, a hypercube machine can be used for some intermediate level 

and high level vision applications. One major disadvantage with hypercubes is that in 

order to efficiently utilize the machine, the algorithms running should somehow use the 

underlying topology. Nevertheless, of most existing machines, hypercubes (especially 

MIMD) have proved to be the most cost effective machines for research and develop­

ment of scientific as well as vision applications and have helped tremendously in learning 

issues in parallel processing in general. But we think that due to rigidity of the architec­

ture, lack of global control and inefficient communication (especially in large machines) 

will prohibit hypercubes from being multiprocessors for complex vision applications. 

-

-
-
-
-
-
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1.2.4. Shared memory machines 

Shared memory multiprocessors proposed and built are nonnally MIMD machines. 

Each PE is a general purpose processor with a small local memory. Each PE has access 

to a large global memory through an interconnection structure that connects the PEs and 

the global memory. The design of an interconnection network itself has been a huge area 

of research. Almost all the machines built today have variations of two common inter­

connection networks: bus-based and multistage interconnection networks. All the inter­

connections (in the machines built) are a variation of the two approaches. Bus-based sys­

tems have a limitation on the number of processors, due to the bus access bottlenecks, 

and therefore, are not easily scalable. However, design is relatively simple and cost­

effective. Machines have been built using up to 32 processors in such a system. Sequent 

Balance [26] and Encore Multimax [27] are two good examples of bus-based, shared 

memory multiprocessors that are commercially available. 

Another class of shared memory multiprocessors use multistage interconnection 

networks for processor-processor or processor-memory interconnections. Some 

bottlenecks of bus based systems are alleviated in such a system; however, the intercon­

nection networks are complex to build. Scalability in such architectures is much better 

than that in bus-based systems, and machines with up to 128 processors have been built. 

Most machines built or being built have been for research purposes. Examples of these 

machines include BBN Butterfly (Commercially available) [28], IDM RP-3 [29], and 

Cedar, which is being developed at University of Illinois [30]. The main advantage of 

shared memory architecture is the ease of programming and unifonn view of the system. 

In other words, control of infonnation and synchronization is much easier compared to 
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that in distributed memory systems. Therefore, this class of machine is best suited for 

high level vision tasks. However, since communication between processor and all the 

interaction between cooperative tasks is done through the global memory there are 

bottlenecks, and hot spots occur. Furthermore, accessing global memory is at least an 

order of magnitude higher than accessing local memories, and therefore, communication 

speed is very slow compared to computation speed. Hence, such machines are efficient 

for only large grain parallelism tasks which have little interactions and exhibit regular 

memory access patterns. Since processes interact with each other using global memory 

shared variables, the comparative overhead of synchronization is very high and also 

results in hot spots. Because the actual image processing operations execute relatively 

quickly when they are divided among multiple processors, the process start-up and syn­

chronization overhead rapidly grows to dominate the processing time. Therefore, scala­

bility is definitely a problem in any shared memory multiprocessors. It is possible to 

build big machines, but the return of using larger sized shared memory multiprocessors 

to solve a problem becomes negative beyond a certain size. 

1.2.5. Systolic arrays 

Originally systolic arrays were proposed for special purpose computations. A sys­

tolic array multiprocessor consists of processors connected in a certain fashion in which 

on each machine cycle each processor takes values from its input ports, performs the 

required computation, and passes the results and data onto its output ports. A systolic 

array can be perceived as a pipeline of a series of processing stations. Once the pipe is 

filled with data, all of the processing stations operate on values in parallel. Systolic array 

-

-

-
-
-
-
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elements can be either general purpose programmable function units or special purpose 

fixed function units. The latter are not useful for vision applications because of their 

inflexibility. The primary advantage provided by a programmable systolic array is high 

performance for low cost. They are, however, best suited for image processing tasks, but 

can work well with any application that involves large arrays of data and regular compu­

tation. The main disadvantage of a systolic array is that any evaluation of processing 

results must wait until all the data has passed through the array. If a systolic array 

processes an image in one frame time, then this restriction has the effect of allowing the 

controlling process to make the decision and change the array's programmed functions 

once each frame time. In a systolic array, it is thus much more difficult for a vision sys­

tem to quickly and flexibly adapt its processing strategy to the actual characteristics of an 

image. 

eMU Warp systolic processor is an example of a programmable systolic array 

designed and built for scientific and image processing applications [31,32,33,34,35]. 

The Warp machine is a systolic array computer of linearly connected cells, each of which 

is a programmable processor capable of performing 10 MFLOPS. Figure 1.4 shows the 

organization of the Warp computer (taken from [35] ). A typical Warp array includes 10 

cells, though it is claimed that it can be extended if more cells are needed [35]. The 

Warp array consists of identical cells called Warp cells, as shown in Figure 1.4 Data flow 

through the array on two communication channels (X and Y). Those addresses for cells' 

local memories and control signals that are generated by the Interface Unit propagate 

down the Adr channel. The direction of Y is statically reconfigurable. For more details 

the reader is referred to [35]. The Warp array can be used for both fine-grain and large-
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grain parallelism. It is efficient for fine-grained parallelism because of its high inter-cell 

bandwidth. It is also claimed to be efficient for large-grain parallelism because it is com-

posed of powerful cells. Each cell is capable of operating independently; it has its own 

program sequencer and program memory. Even though Warp can perform in many 

modes, it is mostly suitable for low and intermediate level vision and does not have the 

desired flexibility, due to its organization, for efficiently performing high level vision 

algorithms. 

1.2.6. Partitionable and hierarchical architectures 

There have been numerous architectures designed and developed for vision that 

cannot be put in any of the classes discussed above. Some of the architectures include 

PM4 [36], PASM [37], REPLICA [38], INSPECTOR [39], and IVA [40]. Design of 

these architectures has addressed the issues of flexibility, partitionability, and 

reconfigurability which are needed in an architecture for an IVS. The following is a brief 

-

-

-
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discussion on some of these architectures, their merits and limitations. An important and 

common characteristic of these architectures is that they are capable of being partitioned 

into one or more independent SIMD and MIMD subsystem. 

PM4 : A Reconfigurable Multiprocessor: 

The PM4 represents one of the first proposals for a reconfigurable multiprocessor 

capable of executing several MIMD and SIMD processes concurrently [36]. It includes a 

large number of processing units constituting a pool. This pool of processing units can be 

partitioned into groups, each one of which can operate independently in either SIMD or 

MIMD mode. Reconfiguration of system resources is dynamic and is primarily software 

controlled. The components of the system include 1) N identical Processor-Memory 

Units (PMUs), 2) K identical Vector Control Units (VCUs), and 3) A three-level 

hierarchical memory connected by a set of interconnection networks and memory 

managements units. 

The PMUs are the basic processing units and they include a microprocessor, a local 

memory and a Local Memory Management Unit (LMMU). The local memory is com­

posed of interleaved memory modules and serves as a local cache for the microprocessor. 

The VCUs control groups of processors operating in an SIMD mode. The Inter-Processor 

Communication Network (IPCN) implements permutation functions during the execution 

of an SIMD process. Management of the shared memory is accomplished by a Shared 

Memory Management Unit (SMMU), which communicates with the LMMUs and with 

the File Management Control Unit. The Processor-Memory Interconnection Network 

transfers bursts of data or instructions between the shared memory and the PMU s. 
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PASM: 

The PASM, a Partitionable SIMD MnvID Multiprocessor, is also a dynamically 

reconfigurable into one or more independent SIMD and/or MIMD machines [37]. The 

system is composed of Parallel Computation Unit (PCU) which includes N microproces­

sors, N memory modules and an Interconnection Network (IN) connecting them. There is 

a set of Q Microcontrollers (MC), each controlling N IQ processors. Memory management 

tasks are distributed over a set of processors constituting the Memory Management Sys­

tem (MMS). The system is to operate under control of a uniprocessor System Control 

Unit or SCU which would be responsible for job scheduling and for coordinating loading 

memory modules within the PCU. Only higher levels of these tasks need to be executed 

on the SCU; the details can be distributed over the MCs and MMS. 

Two processor-memory configurations are being examined for the PCU. In the PE­

to-PE configuration, each processor has a local memory and the composite processor­

memory units (PEs) communicate via the IN. When data is to be obtained from the 

memory of another PE, the two PEs involved cooperate to effect the transfer. Two pro­

cessors are, therefore, involved for any non-local reference. In the P-to-M configuration, 

processors are connected on one side of the Interconnection Network and memory 

modules on the other. The processors do not have a local memory and can access any of 

the modules on the other side of the network. As a result, no explicit data transfers from 

one processor to another are required However, all references now have to go via the 

Interconnection Network. The system can be partitioned into one or more partitions, each 

with RN/Q processors, where R = 2'. Each partition can operate in either an SIMD or an 

MIMDmode. 

-
-
-
-
-
-
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The code required to be transferred to more than one MCs (for execution on correspond­

ing sets of N/Q processors) is broadcast to the selected MCs over a bus. 

The REPLICA: 

The REPLICA was designed as a special purpose computer for multi-sensory per­

ception of 3-D objects [38]. Its main features include support for clean and flexible parti­

tionability with minimal fragmentation and modularity. The machine consists of the fol­

lowing components: 1) A pool of N processing elements, each with a local memory, 2) A 

two-level control hierarchy. At level-1 are the controllers and at level-2 are monitors. 

The monitor layer is responsible for scheduling tasks and reconfiguring and partitioning 

the system. The set of M controllers is uniformly distributed over the system- one for 

each group of N 1M processors, 3) A memory management system controlling a large 

shared memory and a secondary memory and 4) Four interconnection networks. One net­

work handles communication between monitors and controllers. A second one, a capabil­

ity enhanced crossbar, connects the controller to the PEs. Shift-register rings are used for 

communication between PEs within a partition. Finally, a high bandwidth bus is sug­

gested for communication between the PEs, controllers, sensors and memory. This bus is 

to support I/O and the transfers of data and programs between main memory and the 

local memories of the PEs. 

The clean partitionability is attributed to the capabilities of controller-processor and 

processor-processor interconnection networks. It is claimed that these networks allow 

variable size partitions composed of arbitrary subsets of processors. Partitions can be set 

up rapidly and are totally isolated from each other (Le., the partitions are clean). 
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The Image Understanding Architecture: 

The Image Understanding Architecture (IUA) integrates parallel processors operat­

ing simultaneously at three levels of computational granularity in a tightly-coupled archi­

tecture [40]. Each level of the IUA is a parallel processor that is distinctly different from 

the other two levels, in order to best meet the processing needs for different levels of 

algorithms in a computer vision application. Communication between levels takes place 

via parallel data and control paths. 

The bottom level of the architecture contains an associative processor called the 

Content Addressable Array Parallel Processor (CAAPP). The CAAPP is a 512><512 array 

of I-bit serial processors designed to operate on arrays of pixels and to construct 

intermediate-level tokens from events in an image. At the intermediate level, an array of 

64x64 16-bit processors, called the Intermediate Communications and Associative Pro­

cessor (ICAP), are used for the intermediate level of processing. Specifically, the proces­

sors are used for retrieving, comparing and matching tokens, computing geometric rela­

tionships between tokens, and constructing new tokens that describe more abstract enti­

ties. At the top level (called high level) is the Symbolic Processing Array (SPA) which is 

a set of 64 processors capable of executing LISP programs. Their function is to support 

computation involving inference, hypothesis generation and verification, analysis of 

uncertainty, model-based processing and control of processing at the lower levels. 

Currently, a l/64th of the IUA is currently being constructed by the University of Mas­

sachusetts and Hughes Research Laboratories. 

-

-
-
-
-

-
-



23 

1.3. Organization of the Thesis 

This thesis contains 7 chapters. The following is an overview of the contents of each 

chapter and the organization of this thesis. 

Chapter 2 presents a model of computation for IVSs. The model is presented from 

parallel processing perspective. An attempt is made to capture the computation require­

ments, to recognize data dependencies between tasks, and capture the temporal flow of 

computation. The model is used to develop architectural requirements for multiproces­

sors for IVSs applications. These requirements broadly describe features that should be 

present in a multiprocessor design in order for it to be efficient for IVSs. 

Architecture of NETRA is presented in Chapter 3. NETRA is a recursively defined 

tree-type hierarchical architecture whose leaf nodes consist of a cluster of processors 

connected with a programmable crossbar with selective broadcast capability to provide 

for desired flexibility. The internal nodes are scheduling processors and their function is 

task scheduling, load balancing, and global memory management. All the scheduling 

processors and the cluster processor are connected to a global memory through a multis­

tage circuit switched network. The processors in clusters can operate in SI:MD, MIMD or 

systolic mode, and therefore, suitable for both low level as well as high level vision algo­

rithms. A discussion is presented that critically examines the features of NETRA in the 

light of architectural requirements developed in Chapter 2. 

Chapter 4 presents how to map an algorithm on a processor cluster in NETRA in 

various modes such as SIMD and MIMD. Then performance evaluation of algorithms 

when mapped on one cluster is presented The algorithms are chosen so that they exhibit 
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different communication requirements when mapped in parallel. Performance of some 

algorithms on a simulated cluster is also presented. It is concluded that good speedups 

and performance can be obtained on a cluster because of the availability of a programm­

able crossbar which provides the necessary flexibility in mapping algorithms with vary­

ing characteristics. 

Inter-cluster communication is discussed in Chapter 5. A general method of analysis 

of inter-cluster communication is presented. Two alternative inter-cluster communication 

networks, namely, bus and multistage, are evaluated. The analysis of inter-cluster com­

munication is used to evaluate performance of various algorithms when mapped across 

multiple clusters. When algorithms are mapped onto multiple clusters, the performance is 

affected by conflicts and interference in the global interconnection networks. These 

effects are incorporated in the analysis, and it is concluded that if interconnection 

bandwidth is fast enough then good performance results can be obtained even in the pres­

ence of high conflicts. 

Chapter 6 presents data decomposition, load balancing and task scheduling tech­

niques for data dependent algorithms. The techniques exploit the knowledge about the 

data gathered from the current task and use the knowledge about involved computations 

in the next task in order to partition the data onto the available processors so that load 

balancing and high utilization are achieved. In an IVS, in most cases, such information 

can be available because the flow of tasks and their dependencies are known in advance. 

In order to evaluate the performance, implementation results for a few algorithms that are 

part of a motion estimation system are presented when implemented on a hypercube mul­

tiprocessor system. The reason for choosing a hypercube multiprocessor is that using an 

-
-
-
-
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existing machine helps capture the overheads associated with such techniques. 

Summary, conclusions and directions for future work are presented in Chapter 7. 
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CHAPTER 2. 

MODEL OF COMPUTATION FOR INTEGRATED VISION SYSTEM 

Computer vision transcends a wide range of representations and forms of process­

ing. Despite advances in many sub-areas of computer vision, there is no consensus on a 

unified approach to vision. However, one can define certain general characteristics of an 

Integrated Vision System (IVS) from computational perspective. For example, it is 

known that a "vision system" must be able to perform diverse sets of complex operations 

on a massive amount of data at high speeds. Motion sequences at moderate resolution 

(512x512 pixels) and typical frame rate (30 frames/sec) in color (3 bytes) involve more 

than 20 Mbytes of data per second. The amount of computation required for dynamic 

scene interpretation including labeling objects, surface reconstruction and motion 

analysis is difficult to estimate; however, for many applications computational power in 

the range of 1012- 14 instructions per second is required [40]. Not only are the raw pro­

cessing needs tremendous, but varying the type of processing capabilities (such as 

number crunching, symbol manipulation, and data processing) are required. 

Parallel processing in some form has been accepted as the approach to providing the 

necessary computational power to solve complex vision problems. But several questions 

remain. What type of parallel processing is best suited? What architectural features are 

needed? How is the performance of a multiprocessor architecture measured and how is 

its effectiveness as an architecture for IVSs evaluated? Several attempts have been made 

-
-
-

-
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to define benchmarks that capture processing needs for vision tasks [41,42,43]. 

Recently Weems et al. designed a benchmark for integrated vision systems that attempts 

to capture different forms of processing, and includes algorithms with different charac­

teristics and their interactions [1]. However, the benchmark does not include "time" 

dimension in the sense that motion and time varying information are omitted from the 

benchmark. 

In this chapter, we attempt to define a model of computation for integrated vision 

systems (IVS) from parallel processing perspective. The model also includes the time 

dimension and is more general. It can be used to critically examine a multiprocessor 

architecture proposed for IVSs. However, it is not a benchmark that can be used to evalu­

ate architectures. Using the model we attempt to identify the architecture requirements 

for IVSs as well as provide a framework to design new benchmarks to evaluate architec­

tures. 

2.1. Parallelism in IVSs 

Available parallelism in integrated vision systems can be placed in two broad 

categories: namely, Spatial and Temporal Parallelism. Within the categories, the avail­

able parallelism can be further sub-divided into different classes. The classes depend on 

the type of tasks (or algorithms) constituting the system, the type of architectures on 

which the tasks are to be implemented, the methodology used to implement tasks, 

interactions between the tasks, and control and data flow between the tasks. For exam­

ple, a task may exhibit suitability for data parallelism at the lowest level and can be 

implemented on a massively parallel SIMD architecture; or a task may exhibit data 
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dependent, non-uniform computation, and therefore, be suitable for implementation on 

an MIMD architecture in a sub-tasks parallelism mode in which sub-tasks cooperate to 

produce results. 

Spatial Parallelism is one in which similar operations are applied in all parts of the 

image data. That is, the data can be divided into many granules and distributed to sub­

tasks which may execute on different processors in parallel. Most vision algorithms 

exhibit this type of parallelism. In an IVS, each task operates on the output data of the 

previous task in the system. Therefore, the type of data, and data structures may be dif­

ferent for each task in the system but each form of data can be partitioned into several 

granules to be processed in parallel. For example. consider an IVS that performs object 

recognition. The input image is smoothed using some filtering operation, then on the 

smoothed image an operator is applied for feature extraction, features with similar 

characteristics are groupe~ then matching with the models is performed. Each of these 

tasks takes the output of the previous tasks as its input and produces an output which 

becomes the input for the next task. Note that within spatial parallelism, depending on 

the computation involve~ an algorithm implementation may be suitable for data parallel­

ism or task parallelism or both. 

Temporal Parallelism is available when these tasks are repeated on a time sequence 

of images or on different resolutions of images. For example, the system in which motion 

of a moving object is estimated takes a sequence of images of the moving object and per­

forms the same set of computation on all image frame(s). The processing of each frame 

or a set of frames can be done in parallel with the processing of frames of other time 

instances. 

..... 

.... 
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Figure 2.1 shows the computational model for IVS which illustrates the above men­

tioned characteristics of an IVS. Each pipeline shows a number of tasks applied to a set 

of inputs. The input to the first task in a pipeline is the image, and the input to the rest of 

the tasks is the output of the previous task. The set of pipelines illustrates that the entire 

pipeline of tasks is repeated on different images in time andlor resolution. Each block in 

the pipeline represents one task. Each task is decomposed into subtasks to be performed 

in parallel. For example, T 1 is one task, and T 1 (d I) is a subtask of T 1 operating on data 

granule d I. The figure shows m tasks in the pipeline. The number of sub tasks depends on 

the amount of data in a granule and number of available processors. Di,i+1 represents data 

transfer from task Tj to task Ti+1 in the pipeline. The model does not make any assump­

tions about a particular implementation of a task. 

2.2. Data Dependencies 

Existence of spatial and temporal parallelism may also result in two types of data 

dependencies, namely, spatial data dependency and temporal data dependency. Spatial 

data dependency can be classified into intratask data dependency and intertask data 

dependency. Intratask data dependencies arise when a set of subtasks needs to exchange 

data in order to execute a task in parallel. The exchange of data may be needed during 

the execution of the algorithm, or to combine the partial results, or both. Therefore, each 

task itself is a collection of subtasks which may be represented as a graph with nodes 

representing the subtasks and edges representing communication between subtasks. Inter­

task data dependency denotes the transfer and reorganization of data to be passed onto 

the next task in the pipeline. The mode of communication may be sub tasks of the current 



30 

Data Dependencies (Spatial) Data Dependencies (Spatial) 
-> --> 

In put 

D 1 

Input 
Image 

ram es 

In put 

Ii +1 

D' 1 

.. 

ut Inp 

D" 1 

T 1 (d 1) 

T1(d1) 

• 
• 
• 

T 1(d,.1) 

T 1(d1) 

T1(d1) 

., 
• 
• 
• 

T 1 (d. 1) 

T 1(dt> 

T 1(d2) 

., 
• 
• 
• 

T 1(d.t) 

- ---> 

T1(dt> 

D1,l 
T1(d1) 

• 
• 
• 

T1(dd) 

- -

Dl.3 

••• • 
• 
• 

Output 

! Data Dependencies ! (Temporal.--) __ ---. 

T1(d1) 

D'l,l 
T1(d1) 

• 
• 
• 

T1(dd) 

D'1,3 

••• 

T .. (d 1) 

• 
• 
• 

Output 

! Data Dependencies ! (Temporalr-) __ --, 

T 2(d1) 

T1(d1) 

D"1,l 

• 
• 
• 

T 1(d.1) 

• 
• 
• 

T .. (d1) 

T .. (d 2) 

D"l Output 

• •• • 
• 
• 

T .. (d_) 

Figure 2.1 : Model of Computation for an Integrated Vision System 

tasks to the subtasks of the next task, or collection and reorganization of the output data 

of the current task and then redistribution of the data for the next task. The choice and 

method depend on the underlying parallel architecture and mapping of algorithms. Tem-

-
-
-

-
-
-
-
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poral data dependency is similar to spatial data dependency except that some form of 

output generated by tasks executed on the previous image frames may be needed by one 

or more tasks executing on the current image frames. A simple example of such a depen-

dency is the IVS of motion estimation in which features from the previous image frames 

are needed in the processing of the current image frames so that features can be matched 

to establish correspondence between features of different time frames. 

The total computation to execute one pipeline includes time to input data, time to 

output data and results, ,sum of the times to execute all tasks in the pipeline (which 

includes computation time of subtasks and communication time between sub tasks) and, 

data transfer and reorganization time between two successive tasks. Let's denote tep as 

computation time for a sub task, tco""" as total communication time for a task, till as data 

input time, toul as data output time, and td as data transfer and reorganization time. The,n 

time to complete task i, denoted as 'ti is given by 

'ti = MAX tep(Ti(d:J')) + tcomm(Ti) 
lSjSiai (2.1) 

Total time to execute one pipeline including the input and output of data is given by 

i_ i_-l 

ttot = L 'ti + L td(Di,i+l) + till + toul 
isl isl 

(2.2) 

Let us now consider some characteristics of the algorithms involved in IVS, and 

using the above model determine desired features and capabilities of a multiprocessor 

architecture suitable for IVS. First, an IVS involves algorithms from all levels of pro-

cessing, i.e., an IVS normally includes low, medium and high level vision algorithms. 

Typically, the first few tasks of the pipeline are low level algorithms and the last few are 

high level algorithms. The low level algorithms are well understood and well defined. 
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They are nonnally data independent, have regular structure, and spatial parallelism is 

mostly available at pixel level. They are well suited for both SIMD and MIMD type of 

processing. If communication between processors is fast enough, almost linear speedups 

are possible. Therefore, an architecture for IVS should be capable of efficiently executing 

low level algorithms and algorithms suited for SIMD type of processing. Also, data I/O 

should not be a bottleneck because otherwise, speedups through parallelism can be 

nullified. Examples of low level algorithms include most transforms, filtering algorithms, 

and convolution algorithms. 

High level algorithms are not well understood.. They are nonnally global data 

dependent, involve more complex data structures (compared to pixel representation), and 

need varying communication for parallel processing. These type of algorithms are more 

suited for MIMD type of processing. Hence, the architecture should be capable of execut­

ing MIMD algorithms efficiently. 

2.3. Features and Capabilities of Parallel Architectures for IVSs 

The following are the architecture requirements for a multiprocessor architecture to 

be suitable for integrated vision systems. First, the ability to transfonn image data (pixel 

data) into a set of meaningful symbols that describe it. Second, the ability to process 

pixel and symbol data in parallel as well as concurrently. Third, the ability to simultane­

ously maintain low, intermediate and high level representations, and the ability to per­

fonn low, intermediate and high level algorithms simultaneously on inter-related or 

independent data. Fourth, fast I/O and processing rates for huge amounts of data at all 

levels of computations. Fifth, the ability to select particular subsets of data for varying 

-
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types of processing. Finally, the ability to perfonn top-down as well as bottom-up pro­

cessing efficiently, and the ability to report the results efficiently. These are some of the 

broad requirements for an architecture for integrated vision systems. From the above dis­

cussion we can transfonn the requirements into specific architecture requirements as 

presented below. 

(1) Reconfigurability: From the model and the precediAg discussion it is clear that mul­

tiple levels of representations and stages of processing are essential and require very 

different types of processing. Hence, the architecture should be capable of executing 

both SIMD and MIMD type computations efficiently. That is, it should be possible 

to reconfigure the architecture such that each algorithm can be implemented 

efficiently using the most suited mode of computation. 

(2) Flexible Communication: Fine grained and high speed communication is required 

both among the processes at each level and between the different processing levels. 

The communication requirements vary for different algorithms. The communication 

pattern between processors executing subtasks of a larger task depends on the algo­

rithm involved in the task. If the connectivity between processors is too rigid then 

the communication overhead of intratask and intertask communication may become 

prohibitive. Therefore, it is desirable that the communication be flexible in order to 

provide the most efficient communication with low overhead. 

(3) Resource Allocation and Partitionability: As we discussed earlier, there are several 

tasks with vastly different characteristics and computational requirements in an IVS. 

These tasks need to exist simultaneously in the system. Therefore, the system 
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should be partitionable into many independently controlled subsystems to execute 

each task. Since the high level algorithms exhibit varying level of parallelism and 

data dependent perfonnance, it should be possible to allocate resources (such as 

processors, memory) dynamically to meet the performance requirements. 

(4) Load Balancing and Task Scheduling: Load balancing and task scheduling are very 

important, especially for high level .Yision algorithms, which are data dependent, 

and therefore, in order to obtain better utilization of resources and better speedups, 

dividing the computation equally among the processor is critical [44]. The underly­

ing architecture on which load balancing is done and the type of algorithm(s) 

involved contribute significantly to how well load balancing can be achieved. In low 

level algorithms since the computations are data independent, partitioning data 

equally among the processors normally balances the load among them. However, 

for high level algorithms, more sophisticated load balancing and scheduling stra­

tegies are needed The architecture should include features such that it is easy to 

perfonn load balancing and task scheduling and that the overhead of doing so is 

minimal. 

(5) Topology and Data Size Independent Mapping: For a system as complex as an IVS, 

if the underlying architecture and its interconnect is rigid such that the problem size 

that can be solved on it or how it can be mapped is tied to the interconnection, the 

effectiveness of the architecture will diminish as an architecture for an IVS. 

(6) Fault-Tolerance: Fault-tolerance is an important part of a system of such complex­

ity. A failure in a processor or communication structure should not affect the per-

-

-

-

-
-
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formance drastically, which is normally the case when rigid interconnections are 

present between processors. The architecture should provide for graceful degrada­

tion in case of failures. 

(7) Input-Output: It is most often the case that an architecture is able to perform very 

well on some algorithms, and high speedups are obtained, but input-output (I/O) of 

data is inefficient I/O is an integral part of a system and if it is a bottleneck then 

performance of the system will be limited. 

2.4. Examples of Integrated Vision Systems 

2.4.1. Image understanding benchmark 

Recently, a DARPA sponsored effort has been directed towards developing bench­

marks to evaluate architectures for integrated vision systems, and the benchmarks and 

rationale behind it appeared in [1]. We will briefly present a discussion on the bench­

mark as it partly represents an integrated vision systems. The following are some of its 

features. The benchmark involves a simple image domain with well-defined, well­

behaved objects. It requires both bottom-up (data-directed) and top-down (knowledge or 

model-directed) processing. The top-down processing can involve processing of low and 

intermediate level data to extract additional features from the data, or can involve control 

of low and intermediate level processes to reduce the total amount of computation 

required. It tests low level operations such as convolution, thresholding, connected com­

ponent labeling, edge tracking, median filter, hough transform, convex hull, and corner 

detection. It requires utilization of information from two sensors in order to complete the 

interpretation process. It tests grouping operations and graph matching, as representative 
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examples of intermediate level and high level processing. respectively. It requires use of 

both integer and floating point representations. Finally. it tests the communication chan­

nels between symbolic and numeric levels of processing. The reader is referred to [1] for 

more details. 

The benchmark includes most characteristics of a typical integrated vision system. 

or at least is a good representation of what type of processing may be needed in such a 

system. However. it does not span the entire spectrum. Most important. the benchmark 

does not include motion information. That is. it does not capture the real-time image 

input or time-varying information processing. Our model. presented earlier in this 

chapter. tries to capture the time varying characteristics of an integrated system and cap­

tures most characteristics of the integrated benchmark presented in [1]. Furthermore. it 

provides a framework to develop benchmarks in the future even though several 

refinements in the model need to be performed and a more detailed view has to be pro­

vided. 

2.4.2. Motion estimation and object recognition 

In this system. sequence of images of a scene containing moving object(s) is used to 

compute the motion of the object(s) in the scene, and using the motion parameters and 

features from the images, object recognition is performed [45]. The computation 

involves extracting zero crossings (convolution, template matching and thresholding), 

stereo matching (graph matching and grouping) of features, hough transform, and model 

directed object recognition in which features obtained from the image data are correlated 

with the features of the set of model objects in order to obtain the best match. Therefore, 

-

-
-

-
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this system also involves both bottom-up and top-down processing. Figure 2.2 shows the 

computational flow for the motion estimation system in which stereo images (Um,Rim) at 

each time frame are used as the input to the system. Briefly, the involved tasks in this 

system are as follows. The first algorithm in the system is computation of zero crossings 

in the images (edge detection (Lzc and Rzc)). The zero crossings are used to perform 

s!ereo match between the two images of the same time frame. The stereo match algo-

rithm provides points to compute 3-D information about the object in the scene. Using 

these matched points (um and Rsm), the corresponding points in the image in the next 

time frame (Ltm) are located, and this task is performed by time match algorithm. Again, 

stereo match is used to obtain the corresponding 3-D points in the next image frame. 

These two sets of points provide information to compute the motion parameters. Using 
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the motion parameters and the information from the models, object recognition module 

performs the task of picking the best match between models and the information from 

image data. The above process is repeated for each new set of input image frames. 

Hence, such a system, in addition to exhibiting many of the properties included in 

the image understanding benchmark, also captures motion information. Therefore, 

several architecture features pertaining to real-time processing, and fast I/O processing 

can be evaluated using such a system. 

-
-

-

-

-
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CHAPTER 3. 

ARCHITECTURE OF NETRA 

This chapter contains a detailed description of the architecture of NE1RA. The first 

four sections describe the components of NETRA, their functions, capabilities and 

features. The last section critically examines the architecture in view of the computa­

tional requirements for IVS developed in the previous chapter. 

Figure 3.1 shows the architecture of "NETRA," which is a recursively defined 

hierarchical multiprocessor system and provides distributed as well as shared memory 

environment. The architecture consists of the following components : 

(1) A large number (1000 - 10000) of Processing Elements (PEs), organized into clus­

ters of 16 to 64 PEs each. 

(2) A tree of Distriburing-and-Scheduling-Processors (DSPs) that make up the task dis­

tribution and control structure of the multiprocessor. 

(3) A parallel pipelined shared Global Memory and a Global Interconnection that links 

the PEs and DSPs to the Global Memory. 

3.1. Processor Clusters 

The clusters consist of 16 to 64 PEs, each with its own program and data memory. 

Each PE is a general purpose processor with a high speed floating point capability. They 



40 

I DSP 

I DSP I DSP I 

/ I~ / ~ -I DSP I DSP r DSP I I DSP I 

/ 1\ 7 1\ / 1\ / 1\ 
C C C C C C C C 

-
GLOBAL INTERCONNEcrION 

~ ~ k3 ~ ~ ~ ~ ~ -
~ t-G2 ~ ~ ~ k3 k3 k3 -

SECONDARY STORAGE AND I/O DEVICES 

DSP : Distributing and Scheduling Processor 

C : Processor Cluster M: Memory Module 

Figure 3.1 : Organization of NE1RA 

fonn a layer below the nSP-tree, with a leaf nsp associated with each cluster. PEs 

within a cluster also share a common data memory. The PEs, the nsp associated with the 

cluster, and the shared memory are connected together with a crossbar switch. The 

crossbar switch permits point-to-point communications as well as selective broadcast by 

-
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the nsp or any of the PEs. Figure 3.2 shows the cluster organization. A 4x4 crossbar is 

shown as an example of the implementation of the crossbar switch. The crossbar design 

consists of pass transistors connecting the input and output data lines. The switches are 

controlled by control bits indicating the connection pattern. If a processor or nsp needs 

to broadcast, then all the control bits in its row are made one. In order to connect proces­

sor Pi to processor Pi' control bit (ij) is set to one, and the rest of the control bits in row i 

and column j are off. 

Clusters can operate in SIMD mode, systolic mode, or MIMD mode. In an SIMD 

mode, PEs in a cluster execute identical instruction streams from private memories in a 

lock-step fashion. In systolic mode, PEs repetitively execute an instruction or set of 

instructions on data streams from one or more PEs. In both cases, communication 

between PEs is synchronous. In MIMD mode, PEs asynchronously execute instruction 

streams resident in their private memories. The streams may not be identical. In order to 

synchronize the processors in a cluster, a synchronization bus is provided which is use~ 

by processors to indicate to the DSP that a processor(s) has finished its computation or a 

processor wants to change the communication pattern. The nsp can either poll the pro­

cessors or the processors can interrupt the nsp using the synchronization bus. 

3.1.1. Crossbar design 

There is no arbitration in the crossbar switch. That is, the interconnection between 

processors has to be programmed before processors can communicate with each other. 

Programming a crossbar requires writing a communication pattern into the control 

memory of the crossbar. A processor can alter the communication pattern by updating 
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the control memory as long as it does not conflict with the existing communication pat-

tern. The nsp associated with a cluster can write into the control memory to alter the 

communication pattern. The most common communication patterns, such as linear 

arrays, trees, meshes, pyramids, shuffle-exchanges, cubes, broadcast, can be stored in the 
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memory of the crossbar. These patterns need not be supplied externally. Therefore, 

switching to a different pattern in the crossbar can be fast because switching only 

requires writing the patterns into the control bits of the crossbar switches from its con)rol 

memory. 

The advantages of such a crossbar design are the following: -First, since there is no 

arbitration, the crossbar is relatively faster than one which provides arbitration because 

switching and arbitration delays are avoided. Second, it is easier to design and implement 

the crossbar because arbitration is absent, and therefore, switches are simple. Further­

more, it is possible to implement systolic algorithms using the crossbar because it can 

transfer data at the same or greater speed than required by the systolic computation. Such 

a crossbar is easily scalable. Unlike other interconnections, such as cubes and shuffle­

exchanges, the scalability need not be in power of 2. A unit scalability is possible. Furth­

ermore, for the same reason, it is easy to provide fault-tolerance because one spare pro­

cessor can replace any failed processor, and one extra crossbar link can replace any failed 

link. This is possible because there is no inherent structure that connects the processor 

and each processor, (link) is topologically equivalent to any other processor Oink). 

3.1.2. Scalability of crossbar 

Figure 3.3a) depicts a 1 bit 4x4 crossbar switch. In order to obtain byte or word 

parallel crossbar, the crossbar switches can be stacked together as shown in Figure 3.3b). 

The control, address and communication pattern information is exactly the same in all 

the stacked switches. Figures 3.3c), d) and e) illustrate the size scalability. Figure 3.3c) 

shows how a 4x8 crossbar can be obtained from two 4x4 crossbars. Similarly, Figures 
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3.3d) and e) illustrate how 8x4 and 8x8 crossbars can be obtained. respectively. Note that 

the smallest switch need not be a bit crossbar. Depending on the technology and availa­

bility of the I/O pins. it can be of any size (such as 4 bit or a byte). F~ennore, depend­

ing on the available pins, it can be a 16x16 or 32x32 bit crossbar. Finally, sizes of the 

crossbar need not be a multiple of two but can be any' arbitrary. 

4X4 4X4 

a)4x4 c) 4X8 

0 

4X4 

4X4 
b) Stacking 

4X4 

d) 8X4 e) 8X 8 

Figure 3.3: Scalability of Crossbar 
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3.2. The DSP Hierarchy 

The OSP-tree is an n-ary tree with nodes corresponding to OSPs and edges to bi­

directional communication links. Each OSP node is composed of a processor, a buffer 

memory, and a corresponding controller. 

The tree structure has two primary functions. First, it represents the control hierar­

chy for the multiprocessor. A OSP serves as a controller for the subtree structure under it. 

Each task starts at a node on an appropriate level in the tree, and is recursively distributed 

at each level of the subtree under the node. At the bottom of the tree, the subtasks are 

executed on a processor cluster in the desired mode (SIMD or MIMD) and under the 

supervision of the leaf OSP. 

The second function is that of distributing the programs to leaf OSPs and the PEs. 

Vision algorithms are characterized by a large number of identical parallel processes that 

exploit the spatial parallelism and operate on different data sets. It would be highly 

wasteful if each PE issued a separate request for its copy of the program block to the 

global memory because it would result in unnecessary traffic through the interconnection 

network. Under the OSP-hierarchy approach, one copy of the program is fetched by the 

controlling DSP (the OSP at the root of the task subtree) and then broadcast down the 

subtree to the selected PEs. Also, OSP hierarchy provides communication paths between 

clusters to transfer control information or data from one cluster to others. Finally, the 

OSP-tree is responsible for Global Memory management 
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3.3. Global Memory 

The multiport global memory is a parallel-pipelined structure as introduced in [46]. 

Given a memory(chip)-access-time of T processor-cycles, each line has T memory 

modules. It accepts a request in each cycle and responds after a delay of T cycles. Since 

an L-port memory has L lines, the memory can support a bandwidth of L words per cycle. 

Data and programs are organized in memory in blocks. Blocks correspond to "units" 

of data and programs. The size of a block is variable and is determined by the underlying 

tasks and their data structures and data requirements. A large number of blocks may 

together constitute an entire program or an entire image. Memory requests are made for 

blocks. The PEs and DSPs are connected to the global memory with a global intercon­

nection network. 

The global memory is capable of queuing requests made for blocks that have not yet 

been written into. Each line (or port) has a Memory-line Controller (MLC) which main­

tains a list of read requests to the line and services them when the block arrives. It main­

tains a table of tokens corresponding to blocks on the line, together with their length, vir­

tual address and full/empty status. The MLC is also responsible for virtual memory 

management functions. 

Two main functions of the global memory are input-output of data and program to 

and from the DSPs and processor clusters, and to provide inter-cluster communication 

between various tasks as well as within a task if a task is mapped onto more than one 

cluster. 

-

-
-
-
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3.4. Global Interconnection 

Currently, two alternative global interconnection schemes are being evaluated. First 

is a high speed bus which is .connected to one port from each cluster and to the global 

memory. The second is a multistage interconnection network connecting the global 

memory and cluster processors. 

3.4.1. Interconnection network 

The PEs and the DSPs are connected to the Global Memory using a multistage 

circuit-switching interconnection network. Data is transferred through the network in 

pages. A page is transferred from the global memory to the processors which is given in 

the header as a destination port address and the header also contains the starting address 

of the page in the global memory. When the data is written into the global memory, only 

the starting address needs to be stated. In each case, end-of-page may be indicated using 

an extra flag bit appended to each word. 

3.4.2. Global bus 

We are evaluating an alternative strategy to connect DSPs, clusters and the globa~ 

memory using a high speed bus. In this organization one port of each cluster will be con­

nected to the high speed bus. Also, each DSP will be connected to the bus. Processors 

that need to communicate with processors in other clusters use explicit messages to send 

and receive data from the other processors. Figure 3.4 illustrates this method. A proces­

sor Pi in cluster Cj can send data to a processor Pj in cluster Cj as shown in the Figure. P j 

sends the data to the DSP j , which sends the data to DSPj in a burst mode. DSPj then sends 
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the data to the processor Pj. We are evaluating both alternatives for intercluster commun- -
ication. 

-
3.S. IVS Computation Requirements and NETRA 

In the following discussion we examine the architecture in the light of requirements 

for an IVS discussed in Chapter 2. -
Reconfigurability (Computation Modes) 

The clusters in NETRA provide SIMD, MIMD and systolic capabilities. As we dis-

cussed earlier, it is desirable to have these modes of operations in a multiprocessor sys-

tem for IVS so that all levels of algorithms can be executed efficiently. For example, 

consider matrix multiplication operation. We will show how it can be performed in 
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Figure 3.4 : An Alternative Strategy for Inter-Cluster Communication 
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SIMD and systolic modes. Assume that the computation requires obtaining matrix 

C =AxB. For simplicity, also assume that the cluster size is P and the matrix dimensions 

are PxP. Note that this assumption is made to simplify the example description. In gen­

eral, any arbitrary size computation can be performed independent of the data or cluster 

size. 

SIMDMode 

The algorithm can be mapped as follows. Each processor is assigned a column of 

the B matrix, i.e., processor Pi is assigned column Bi• Then the nsp broadcasts each row 

to the cluster processor, which computes the inner products of the rows with their 

corresponding columns in lock-step fashion. Note that the elements of the A matrix can 

be continuously broadcast by DSP, row by row without any interruptions, and therefore, 

efficient pipelining of data input, multiply, and accumulate operations can be achieved. 

Figure 3.5a) illustrates a SIMD configuration of a cluster. The following pseudo code 

describes the nsp and processor (Pic'S program, O$tSP-l) program. 



SIMD Computation 

DSP 

1. FOR i=O to i=P-1 DO 1. 
2. connect(DSP}'j) 2. -
3. out(column Bj) 3. in(column Bj) 
4. END FOR 4. -
5. connect(DSP, all) 5. -
6. FOR i=O to i=P-1 DO 6. Cjk =0 
7. FORj=O toj=P-1 DO 7. FOR j=O to j=P-1 DO 
8. out(aij) 
9. END FOR 
10. END FOR 

8. in(aij) 
9. Cjk = Cjk + ajj*bjlc 
10. END FOR 
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In the above code, the computation proceeds as follows. In the first three lines, the 

DSP connects with each processor through the crossbar and writes the column on the out-

put port. That column is input by the corresponding processor. In statement 5, the DSP 

connects with all the processors in a broadcast mode. Then, from statement 6 onward. the 

DSP broadcasts the data from matrix A in row major order, and each processor computes 

the inner product with each row. Finally, each processor has a column of the output 

matrix. It should be mentioned that the above code describes the operation in principle 

and does not exactly depict the timing of operations. 

-

-
-
-
-
-
-
-
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11. 

Systolic Computation 

DSP 

FOR i=O to i=P-1 DO 
connect(DSP 'pi) 
out( column Bi) 
out(row Ai) 

END FOR 
connect(Pi to Pi+1 mod P) 

1. 
2. 
3. in(column Bi) 
4. in(column Ai) 
5. 
6. eii=O 
7. FORj=O toj=P-1 DO 
8. eji = eli + ajj*bji 
9. out(aij), in(ai-lj) 
10. END FOR 
11. repeat 7-10 for each new row 
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Systolic Mode 

The same computation can be performed in a systolic mode. The DSP can 

reconfigure the cluster in a circular linear array after distributing columns of matrix B to 

processors as before. Then DSP assigns row Ai of matrix A to processor Pi' Each proces-

sor computes the inner product of its row with its column and at the same time writes the 

element of the row on the outout port. This element of the row is input to the next proces-

sor. Therefore, each processor receives the rows of matrix A in a systolic fashion, and 

the computation is performed in the systolic fashion. Note that the computation and com-

munication can be efficiently pipe lined In the code, it is depicted by statements 7-10 . 

• Each element of the row is used by a processor and immediately written onto the output 

port, and at the same time, the processor receives an element of the row of the previous 
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processor. Therefore. every P cycles a processor computes new element of the C matrix 

from the new rows it receives every P cycles. Again. note that the code describes only the 

logic of the computation and does not include the timing information. Figure 3.5b) illus­

trates a systolic configuration of a cluster. 

Partitioning and Resource Allocation 

There are several tasks with vastly different characteristics in an IVS. and therefore, 

the number of processors needed for each task may be different and may be needed in 

different computational modes. Hence, partitionability and dynamic resource allocations 

are keys to high performance. Much effort has been devoted towards investigating the 

partitionability of interconnection networks [47,48]. Approaches such as in [37,48] are, 

however, required only when processes are tightly coupled. In the above case physical 
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Figure 3.5 : An Example of SIMD and Systolic Modes of Computation in a Cluster 
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partitions are established. In other words, links are reserved for specific point-to-point 

communication while a process executes. Whenever a new process is to be instantiated, 

required resources should be free and linked together in a specified manner. The parti­

tioning is, in effect, isolated from the rest of the system. 

Partitioning in NETRA is achieved as follows. When a task is to be allocated, the 

set of subtrees of nsps is identified such that the required number of PEs is available at 

their leaves. One of the subtrees is chosen on the basis of characteristics of the task, 

locality constraints and load balancing considerations. The chosen nsp represents the 

root of the control hierarchy for the task. Together with the nsps in its subtree, it 

manages the execution of the task. Note that partitioning is only virtual. The PEs are not 

required to be physically isolated from the rest of the system. Once the subtree is chosen, 

the processes may execute in SllvID, MIMD or systolic mode. The following are some of 

the advantages of such a scheme. First, only one copy of the programs needs to be 

fetche<L thereby reducing the traffic through the global interconnection network. Second, 

simple load balancing techniques may be employed while allocating tasks. The tasks of 

global memory management can be distributed over the nsp tree by assigning it to the 

nsp at the root of the subtree executing the subtask. Finally, locality is maintained 

within the control hierarchy, which limits the intratask communication to within the sub­

tree. 

Load Balancing and Task Scheduling 

Two levels of load balancing need to be employed, namely, global load balancing 

and local load balancing. Global load balancing aids in partitioning and allocating the 
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resources for tasks as discussed earlier. Local load balancing is used to distribute compu­

tations (data) to processors executing subtasks of a larger task. Local load balancing can 

be either static or dynamic or a combination of both. With static load balancing, given a 

task, its associated data and the number of processors allocated for the task, the data is 

partitioned in such a way that each processor gets an equal or a comparable amount of 

computation [44]. In dynamic load balancing, the sub tasks are dynamically assigned to 

the processors as and when they finish the previously assigned tasks. In NE1RA, when a 

task is assigned to a subtree, the DSPs involved perform the local load balancing func­

tions. 

Using the information from local load balancing and other measures of computa­

tion, global load balancing can be achieved hierarchically by using the DSP hierarchy. In 

this scheme, each controller DSP sends its measure of load to its parent DSP and the root 

DSP receives the load information for the entire system. The root DSP then broadcasts 

the measure of load of the entire system to the DPSs. When a task is to be allocated, 

these measures can be used to select a subtree for its execution as follows: If any subtree 

corresponding to the child of the current DSP has an adequate number of processors then 

the task is transferred to a child DSP with the lowest load; else if the current subtree has 

enough resources and the load is not significantly greater than the average system load 

then the task is allocated to the current subtree; else the current DSP transfers the task to 

the parent DSP. 

-
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Flexible Communication 

A vailability of flexible communication is critical to achieving high performance. 

For example, when a partition operates in SIMD mode there is a need to broadcast the 

programs. When a partition operates in MIMD mode, where processors in the partition 

cooperate in the execution of a task, one or more programs need to be transferred to the 

local memories of the processors. Performing the above justifies a need for selective 

broadcast capability. In order to take advantage of spatial parallelism in vision tasks, pro­

cessors worl9ng on neighboring data need to communicate fast among themselves for 

high performance. The programmability and flexibility of the crossbar provide fast local 

communication. Most common vision algorithms, such as FFfs, filtering, convolution, 

counting, and transforms need a broad range of processor connectivities for efficient exe­

cution. These connectivities include arrays, pipelines, several systolic configurations, 

shuffle-exchanges, cubes, meshes, and pyramids. Each of these connectivities may per­

fonn well for some tasks and badly for others. Therefore, using a crossbar with a selec­

tive broadcast capability, any of the above configurations can be achieved, and conse­

quently, optimal performance can be achieved at the clusters. 

Several techniques for implementing reconfigurability between a set of PEs were 

studied [47,49]. It was discovered that using a crossbar switch to connect all PEs was 

simpler than any other schemes. The popular argument that crossbar switches are expen­

sive was easily thwarted. When designing communication networks in VLSI, the primary 

constraint is the number of pins and not the chip area. The number of pins is governed by 

the number of ports on the network and is independent of the type of network. Further­

more, it was realized that a crossbar with a selective broadcast capability was not only a 
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very powerful and flexible structure, but was also simpler, scalable, and less expensive. 

The need for global communication is relatively low and infrequent. Global com­

munication is needed for intertask communication, i.e., from one task to another in the 

IVS pipeline. It is also needed to input and output data, to transfer data within a subsys­

tem when a task is executed on more than one cluster, and finally, it is needed to load the 

programs. The most important issue in global communication is that the network speed 

should be matched with the crossbar speed as well as with the processors speed. The glo­

bal communication is performed through the global memory using the interconnection 

network, or using the DSP hierarchy. Another alternative we consider is connecting all 

the clusters and DSPs to a global bus. Since the DSPs perfo~ most control functions and 

loading of programs and data, the responsibility of intertask communication does not lie 

with the DSP hierarchy. 

I/O and Global Memory Access 

The global memory is equally accessible from all the processors and DSPs in the 

system. Input-Output of data from (to) sensors and other I/O devices is performed 

through the global memory. Since the global memory lies in the address space of each 

processor and provides a uniform view across the architecture, I/O is uniformly distri­

buted. Therefore, there are no I/O bottlenecks in the system. Furthermore, the global 

memory provides a uniform access to the shared database, which may contain models 

and other system data. 

A large system such as NETRA implies a large memory and a large interconnection 

network. Therefore, the response times to memory requests can be large and variable in a 

-
-
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nondeterministic manner, due to conflicts in accessing global memory and interconnec­

tion network. Hence, there is a need for the PEs to be able to issue multiple requests in 

advance and accept out-of-order requests. 

NETRA is a multiprogrammed system with a large number of processes active at 

any time. A process becomes active when a token corresponding to the process is entered 

into the Active Queue of a PE (for an MIMD process) or a cluster (for a SIMD process). 

Data requests for the required input data blocks are immediately issued. When all input 

data blocks for a process are available, it is transferred to the Ready Queue. However, 

while these requests are serviced, the PEs continue to execute process already in their 

Ready Queue. Access to memory for one process is thus overlapped with execution of 

another. Multitasking at the PE level, therefore, permits each PE to tolerate large and 

undeterministic memory access latencies. Since the assumption is that such a system will 

be executing an integrated vision system, as we observed in Chapter 2, there will be 

enough processes available and active all the time. Furthermore, the future tasks will be 

somewhat predictable because order of the tasks is known from the model of computa­

tion and control flow of the system. 

3.6. Comparison of NETRA with Other Architectures 

The following discussion presents a comparison of NETRA with other architecture 

proposals. Some parts of the discussion in this section have been presented in [3]. 

Partitionability 

PM4 and PASM support partitions that contain one or more of a group of proces­

sors. Each group has a fixed size. These systems are, therefore, likely to suffer from 
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"internal fragmentation," that is, when the number of PEs to be used is not a multiple of 

the number present within each group, some processors within one or more groups will 

remain idle, and processor utilization will suffer. REPLICA supports partitions of any 

size by allowing each group to execute more than one SIMD and MIMD processes. This 

capability is by virtue of a capability-enhanced crossbar switch used to connect the PEs. 

NETRA, too, provides a similar crossbar at the cluster level and is, hence able to support 

independent partitions within the cluster. This features eliminates internal fragmentation 

and improves processor utilization. 

Setup of Partitions 

The second aspect of partitionability is that while NETRA establishes virtual parti­

tions, physical partitions are established in the other cases. NETRA does not partition the 

pool of processors into isolated subsystems. Instead, it merely allocates processes to sub­

sets of processors. The process of partitioning involves only placing the token for a pro­

cess in the appropriate queue. In the case of SIMD process, the tokens are placed on the 

active queues of DSPs controlling the selected clusters. For MIMD processes, the tokens 

are placed in the active queues of the selected PEs. SIMD processes are initiated by the 

controlling DSP. MIMD processes are, however, started when the token reaches the head 

of the ready queue within the PE. If the MIMD processes need to synchronize in any 

way, they must be staned and synchronized by the cluster-DSP. 

Multiprogramming 

NETRA is a multiprogrammed system and is most efficient if a large number of 

tasks are active at all times. Multitasking at the PE level has been used as a tool to 

-
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decouple system performance from large memory access latencies. As explained earlier, 

long delays for memory access are inherent in a large system, and the system has to be 

able to tolerate such delays without loss of performance. 

An intelligent memory system has been employed to support multitasking. This 

feature essentially permits the PEs to execute queued tasks without having to associate 

with the data-fetching operation. The above scheme is unique to NETRA, and its 

absence in any other proposals makes them far less suitable for large systems. 

Virtual Versus Physical Partitions 

In the case of PASM, PM4 and REPLICA, communication links are dedicated to 

partitions; consequently, all subsystems are isolated from each other. MIMD processes, 

especially executing intermediate and high level algorithms, exhibit widely varying exe­

cution times since the amount of processing is data dependent Therefore, when rigid par­

titions are used, processors would have to wait until all complete processing before they 

start executing another process. If the deviation in the processing times is great, such a 

waiting will reduce the processor utilization tremendously. 

A second factor in favor of virtual partitioning is that it allows for easy allocation of 

tasks that are dynamically created. An arbitrary number of such processes may be gen­

erated, and their scheduling would be a difficult problem in all of the above proposals but 

NETRA. On NETRA these processes can be allocated as they are generated on the basis 

of load balancing and locality considerations alone. How the other systems would handle 

dynamically created tasks is not clear, but it would certainly require several global con­

siderations. Since tasks would already have been scheduled to execute on specific 
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partitions, where the dynamically created processes would fit in would have to be deter­

mined. The network would be able to support only selected partitions, and scheduling on 

the fly would be difficult. 

Scheduling and Load Balancing 

Fragmentation can be minimized in PM4, PASM and REPLICA only if scheduling 

is static or done considerably in advance of execution. This is because scheduling would 

involve global considerations such as partitionability of the interconnection network and 

availability of resources. A closer look, however, reveals a major difficulty. 

For efficient scheduling and preloading, the scheduler should know in advance what 

resources will be available at a given time. In other words, it should know when each 

process is to end. Clearly, this requires a considerable amount of determinism in the 

behavior of a process. While such information is easily available for SIMD tasks, it may 

be impossible to obtain it for most MIMD tasks. 

An essential implication is that processes cannot always be pre scheduled. This in 

turns implies that data and programs for these processes cannot be prefetched. Conse­

quently, processor utilization suffers drastically. 

The scheduling scheme on NETRA is clearly simple and superior. The scheduling 

process (executing on a nSP) is not confronted with a large volume of information. It 

needs to consider only the average load on the subtree below it and the overall average 

load of the system. As soon as a process is placed in an active queue, a request for the 

input data blocks required is issued. Prescheduling and data prefetching are thus easily 

-
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accomplished. A hierarchical control-structure (the nSP-tree) and simple scheduling and 

load balancing heuristic are, therefore, able to provide for high performance. 
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CHAPTER 4. 

PARALLEL ALGORITHMS ON A CLUSTER 

There are two main considerations in the mapping of parallel algorithtnS onto a 

cluster. First is selection of a computation mode such as SIMD, MIMD or systolic, and 

the second is the number of available processors on a cluster and selection of the best 

way to map the algorithm. For a data dependent algorithm, there may be need for nonuni­

form data partitioning and local load balancing. The load balancing scheme may be static 

or dynamic. In the static scheme, the DSP in a cluster allocates tasks to the processors 

using some a priori knowledge about the computation such that each processor receives 

an average amount of computation. Under the dynamic load balancing scheme the DSP 

maintains a queue of ready tasks and assigns the tasks to the available processors as they 

become free to execute the next task. 

The methodology we use for mapping parallel algorithms is multidimensional, 

divide-and-conquer with medium to large grain parallelism. An individual task (in the 

following discussion task and algorithm are used interchangeably) can be efficiently 

mapped using spatial parallelism, because most of the vision algorithms are performed 

on two dimensional data. However, integration of tasks involves exploiting both spatial 

as well as temporal parallelism can be exploited by recognizing intertask data dependen­

cies. 

-
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The pwpose of this chapter is to evaluate perfonnance of several common vision 

algorithms when mapped onto a processor cluster. The discussion identifies the computa­

tion modes suitable for an algorithm, and suggests alternatives to map an algorithm. 

Furthennore, performance evaluation of each algorithm is presented using accurate 

analysis, and the analytical results of some of the algorithms are compared with the 

implementation results. It is shown that analytical results are very close to the implemen­

tation results. The analysis provides the flexibility to vary several parameters, and there­

fore, it is easier to study the effects of alternative approaches. 

This chapter is organized as follows. Section 4.1 presents a classification of some 

common vision algorithms based on their computation and communication requirements. 

Section 4.2 briefly outlines alternative mapping strategies on a processor cluster. Section 

4.3 contains mappings and analytical perfonnance results for one algorithm from each 

class and discusses alternative mappings for some algorithms. Parallel implementation of 

some of the algorithms is presented in Section 4.4 and the results are compared with 

analytical results. Performance of two algorithms from Image Understanding Benchmark 

developed by Weems et al. [1] is also presented. 

4.1. Classification of Common Vision Algorithms 

We can classify some of the common vision algorithms according to their commun­

ication requirements when mapped onto parallel processors. The classification provides 

an insight into the performance of an algorithm depending on its communication require­

ments. 
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(1) Local Fixed - In these algorithms, the output depends on a small neighborhood of 

input data in which the neighborhood size is normally fixed. Sobel edge detection, 

image scaling, and thresholding are examples of such algorithms. Figure 4.1a) illus­

trates that the output at point (x,y) depends on fixed size neighborhood values. 

(2) Local Varying - Like the local fixed algorithms, the output at each point depends on 

a small neighborhood of input data. However, the neighborhood size is an input 

parameter and is independent of the input image size. Convolutions, edge detection 

and most other filtering and smoothing operations are examples of such algorithms. 

Local varying is depicted by Figure 4.1b) in which it is shown that the output at 

point (x,y) depends on a varying size neighborhood which is normally an input 

parameter. 

(3) Global Fixed - In such algorithms each output point depends on the entire input 

image. However, the computation is normally input data independent (Le., computa­

tion does not vary with the type of image and only depends on the size of the 

image). Two Dimensional Discrete Fourier Transform and Histogram computation 

are examples of such algorithms. Figure 4.1c) illustrates that output at a point (x,y) 

is dependent on all the input data points. 

(4) Global Varying - Unlike global fixed algorithms, in these algorithms the amount of 

computation and communication depends on the image input as well as its size. 

That is, the output may depend on the entire image or may depend on a part of the 

image. In other words, the computation is data dependent. Hough Transform, Con­

nected and Component Labeling are examples of such algorithms. For example, in 

-

-
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an image, a connected component may span only a small region, or in the worst 

case the entire image may be one connected component (a spiral). Similarly, in 

N 

N 

case of hough transform, assuming that we are looking for lines, a line may span 

across the image (meaning its votes must come from distant pixels or edges) or it 

may be localized. Figure 4.1d) shows that the output of an algorithm may depend 

on global data, and the computation is input data dependent. 

N 

(x,y~ 

a) Local Fixed 

N 

c) Global Fixed 

N 

N 

N 

(x,y) ~ 

b) Local Varying 

N 

d) Global Varying 

Figure 4.1 : Classification of Common Vision Algorithms 
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4.2. Issues in Mapping an Algorithm 

Mapping a task on one cluster implies that intratask communication will only 

involve communication between processors of the same clusters. Figure 4.2 shows how 

a parallel algorithm is mapped on a cluster. Assume that there are P processors in a clus-

ter. As shown in Figure 4.2, first program and data are loaded onto the processor cluster. 

Both in the case of SIMp or MIMD mode, the program is broadcast onto the cluster pro-

cessors. The data division depends on the particular algorithm. If an algorithm is mapped 

in SThID or systolic mode,~ then the compute and communication cycles will be inter-

mixed If an algorithm is mapped in MIMD mode, then each processor computes its par-

tial results and then communicates with others to exchange or merge data. 

The total processing time in such a mapping consists of the following components. 

Program load time onto the cluster processors (tpl), data load and partitioning time (tdI), 

computation time of the divided subtasks on the processors (tep) which is th.e sum of the 

maximum processing time on a processor Pi and intra-cluster communication time 

(tCOlMl ), and the result report time (trr ). tdI consist of three components: 1) data read time 

from the global memory (tr ) by the cluster DSP, 2) crossbar switch setup time (tsw), and 

3) the data broadcast and distribution time onto the cluster processors (tbr)' The total pro-

cessing time 't(P) of the parallel algorithm is given by 

't(P) = tpl + tdI + tcp + trr 
where, 

tdI = tr + ts.tup + tbr 

and if the computation and communication do not overlap, then 

(4.1) 

(4.2) 

-
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Figure 4.2 : Mapping Algorithms on One Cluster 
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tep = MAX (tPi) + teomm (4.3) 
ISiSI' 

else if computation and communication can be completely overlapped, then 

tep = MAX (MAX (tPi) , teomm ) (4.4) 
ISiSI' 

In the above equations, tr depends on the effective bandwidth of the global interconnec-

tion network. 

4.3. Performance Evaluation of Parallel Algorithms 

In the following we illustrate how algorithms can be mapped in SIMD, systolic, and 

MIMD modes onto a cluster, and show how algorithms from different classes can be 
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mapped onto the cluster. In the evaluation we discuss the computation, communication 

and storage requirements for the algorithms. 

Table 4.1 shows the parameters used for performance evaluation. These parameters 

are used for all the analysis and implementation unless specified otherwise. 

4.3.1. 2-D convolution -
2-D Convolution is a local varying type of algorithm. A 2-D convolution of an NxN -

image I(ij), O<=i,j<=N, with a kernel W(ij), O<=ij<=w, can be expressed as follows: 

m-j+wl2 1I-i+w12 
G(i,j) = ~ ~ I (n,m)*W«i+w/2-n) mod w,(j+w/2-n) mod w) 

m-j_12 1I-i-... /2 

In other words, each point in the output is replaced by a weighted sum of a window wxw 

around it. -
The approach is to reduce 2-D convolution to a 1-0 convolution with efficiency 1, 

i.e., without incurring additional steps. This mapping will illustrate how to map algo-

rithms in SIMD and systolic modes on a processor cluster when the number of processors -
is much smaller than the problem size. Figure 4.3 shows a cluster of 64 processors. The 

Table 4.1 : Parameters for Performance Evaluation 

Total No. of Processors ND 512 
Cluster Size Pc 8-128 
No. of ProcessorslPort P lJ 4 
Image Size NxN 512 X 512 
Memory Modules M 128 
Processor Speed 5 MIPS, 5 MFLOPS 
Network Speed (Block Transfer) 20 Mbytes/Sec. 

-
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interconnection between processors shows an abstract representation of all the connec­

tions required to perfonn the convolution operation. However, all the connections are not 

needed at the same time. We shall observe that only one input and one output connection 

is sufficient at any time, and that the flexibility of the crossbar can be used to obtain all 

the desired interconnections efficiently. 

Each pixel is logically mapped onto a separate processor (as if there were as many 

processors available as there are pixels). Actually the image is folded and multiple pixels 

are mapped onto one processor. The image is folded in two dimensions in a wrap around 

fashion, both left to right, and top to bottom. For a cluster size P, (assume P = pxp), each 

processor has M = N 2/P pixels in its local memory. In general, pixel (i,j) ; 

~iSN-l, ~jSN-l is mapped to processor «i mod p), G mod p». Therefore, this map­

ping preserves the adjacency of any two pixels even though the image is folded. 

Figure 4.3 shows the flow of. the distribution of data for window size 5><5. A small 

window is embedded in a larger one, and therefore, the same connections can be used for 

a larger window size with the addition of new connections for extra steps. The algorithm 

perfonns the convolution by each processor distributing its pixel values to the neighbor­

hood in a pipe lined manner. 

In the following algorithm, North, South, East and West neighbors are defined in 

wrapped around fashion. At any step all the processors have the same neighbor connec­

tion. Figure 4.3 shows how processor (3,3),s values will be distributed. All the processors 

follow the same pattern. For a processor P(i,j), N,S,E,W neighbors are defined as fol­

lows. Note that the following definition is only a logical definition, and it represents the 
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Figure 4.3 : Mapping on the Cluster for Convolution 
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pixel adjacency. The following definition does not imply any physical connections 

between processors. 

N = «i-l)j), if (i-j) < 0, then N = «i-l + p), j) 

S = «i+l) mod p, j) 

E = (i, (j+l) mod p) 

W = (i, (j-l), if (j-l) <0, then W = (i, (j-l+p)) 

The algorithm works as follows (Figure 4.4): The nsp broadcasts the convolution 

weights to all the processors. Each processor multiplies its M pixels with the central 

weight value. In Figure 4.4 the data values at each processor are stored in a linear array 

and subscript (ij) means the data value i in the connection number j. The intermediate 

values are stored in the running variable for each of the M pixels. The image is then 

shifted in a spiral manner (as shown in Figure 4.3). If the image is shifted North then the 

processors now multiply the pixel values with the South weight. This process is repeated 

w 2-1 time, i.e., for each weight. We make the following observations. First, the map­

ping is independent of problem or cluster size. That is, this mapping will work for all 

problem sizes. Second, the number of times the interconnection needs to be changed only 

depends on the convolution kernel size. Furthermore, at any time only one input and one 

output connection is required. By storing the connection patterns in the crossbar memory 

the switching time is negligible. Third, it is possible to overlap the computation and com­

munication by writing the pixel to the output port as soon as it is multiplied by the 

appropriate weight in the current processor. The above algorithm illustrates that SIMD 

algorithms can be mapped efficiently onto the processor clusters using the flexibility and 

programmability of the interconnection. 



ALGORITHM CONVOLUTION 
All the processors work in SIMD lock-step fashion. 

DSP broadcasts the" convolution kernel. 
Set up Connection_array of size wxw in the crossbar memory by choosing. 
first wxw connections from the set . 
. {N ,E,S,S,W

r 

~f'N,N,E,E,E,S'S'S'W' W,W,W,N ,N,N,N,E, .. }, 

M'-.- P 

For i = 1 to M do (in parallel) 
Result(i) := Wi.i • data (0 

End For 

For j = 1 to wxw do (in parallel) 
Set up appropriate connections on the crossbar as follows. 

connection(j) := connection_array(j) 
For i = 1 to M do (in parallel) 

Send data (pixels) on the output port to the connected 
neighbor. 

At the same time receive data from its input port. 
Result(i) := Result (i) + Wi,j • data (i,j) 

End For 
End For 

END CONVOLUTION 

Figure 4.4: 2-D Convolution 
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The computation time decreases as the number of processors increases. The com-

munication time per pixel only depends on the kernel size. The following formulae 

present the computation and communication times in terms of multiplication and addition 

operations. The factor tjt denotes the floating point speed of a processors in terms of its 

normal instruction execution speed. 

t", = 2xtftXr ~ 1 xw' 

-

-
-

-

-
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Figure 4.5 shows the perfonnance of the 2D convolution on a processor cluster. 

The processing time has been computed assuming a 2 MFLOP processor. The Figure 

shows two speedup graphs, one with communication overlap and the other with additive 

communication. The computation time decreases linearly as the number of processors 

increases. The total communication time per processor also decreases linearly but the 

communication time per pixel computation remains constant. The important observation 

one can make is that it is essential that the communication and computation overlap in 

order to obtain linear speedups. However, if the interconnection speed is not matched 
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Figure 4.5 : Perfonnance of 2D Convolution on a Processor Cluster 
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with the computation speed, then overlap will not be possible. Having a fast crossbar 

without arbitration delays provides the necessary communication speed to obtain linear 

speedups. Note that since computation and communication can overlap, this mapping 

also illustrates how systolic algorithms can be mapped. 

4.3.2. Separable convolution 

Separable Convolution is a two-dimensional convolution broken into two one 

dimensional convolution. For applications such as computation of zero crossings, separ­

able convolution performs well [50]. The main advantage of separable convolution is 

that the computation requirements per pixel are reduced from 2w2 to 4w. We show how it 

can be mapped on a cluster. This example also illustrates how an algorithm can be 

mapped in MIMD mode on a cluster. 

The data is decomposed among the processors as follows. Each processor is 

assigned NIP rows of the data. Processor Pi gets rows (i-l)xN /P to ixN /P -1. Each pro­

cessor computes convolution along the rows using a window of size w. Once processor Pi 

finishes convolution along the rows, it needs rows (i-l)xNIP -w/2 to (i-l)xN/P -I, 

from processor Pi-to and similarly, it needs the bottom w/2 rows from ixN/P to 

i xN 1 P + w 12 -I from processor Pi +1. Therefore, a processor needs to communicate with 

only two processors to obtain the desired intermediate data. The boundary processors Po 

and Pp_I only need to communicate with one other processor. Note that if the granule 

size with each processor is less than w 12 (Le .• N /P < w /2). then the processors need to 

exchange data with number of processors given below by tsw. Now. each processor com­

putes convolution along the columns in its granule. The following are computational and 

-
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communication requirements of the algorithm. 

tjlxN2x4x(w/2+1) 
tcp= p 

tcomm = 2xNxw 

The amount of computation per pixel in separable convolution is a function of w for 

a wxw kernel unlike in 2D convolution where it is a function of w 2• The amount of com-

munication in separable convolution is fixed as shown in Figure 4.6. Therefore, the 

speedup is not as much as in the case of 2D convolution. There are two reasons for 

smaller speedup. First, the communication is not decomposable as a function of number 
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of processors because each processor needs to exchange w 12 rows of intermediate results 

with two adjacent processors. Secondly, since the computation per pixel itself is small, 

the communication overhead as a fraction of computation time is large. -
4.3.3. Two-dimensional FIT (2D-FIT) 

20-FFf is a Global Fixed algorithm. For an image I(k,l), O<=k,l<=N, the 

corresponding 20-FFf is given by 

N-l N-l 
F (m,n) = 1: 1: I (k,l) e-21cj(Irm+lIl)/N, O<=m,n<=N-l 

AI:~ I~ 

where j = g. A nice property of the 20-FFf is that it can be performed in two 

decomposable steps : a one dimensional N point FFf along the rows followed by a one 

dimensional N point FFf of the intermediate results along the columns, or vice versa. We -
use this property to map 20-FFf on the cluster processors. The algorithm consists of 

three phases: 10-FFT computation along rows, transposing the intermediate results and, 

10-FFf along the columns. -
Figure 4.7 describes the algorithm. In the first phase each processors is assigned NIP 

rows. Let's denote the sequence of rows with processor Pi as Granule (i). Also, let's 

divide each granule into P equal blocks of size N 21P2 as shown in Figure 4.8. A block 

B(iJ) denotes a block of size N21P2 with processor Pi , O<=j<=P-l. Each processors 

computes the 10-FFf along the rows of its granule. Then in the second phase, the pro- -
cessors communicate with each other in the following manner to transpose the intennedi-

ate results. A processor Pi sends block B(i,j) to processor Pj for all O<=j<=P-l, IqtL Each 

processor needs to communicate and exchange a block with every other processor in the 

-



ALGORITHM 2D·FFT 

Each processor Pi receives granule(i) of rows. 

1* n:, ~:llr~ description is with respect to processor Pi *' 
For k = 1 to M do 

compute ID-FFf of row(k) of granule(i) 

For j = 1 to M do (i;J!: j) 
k=i+j modP 
connect Pi to PA: 
send Block(i,j) to PA: 
receive BlockG,i) from PA: 

For k = 1 to M do 
compute ID-FFf of row(k) of granule(i) 

END2D-FFT 
Figure 4.7 : 2D-FFf 
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Image Size: N x N 
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The figure shows data exchange 

needed to cranspose intermediate data. 

Po 

Figure 4.8 : An Example of Mapping 2D-FFf onto Four Processors 
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cluster. However, by perfonning the communication systematically, the transpose can be 

achieved without any conflicts as described in the algorithm. Finally, each processor 

computes ID-FFf along the columns. 

The ID-FFf for size N can be done in O(NlogN) time [51]. The constant of multi-

plication is 6, i.e., to perform N point ID-FFT it takes approximately 6NlogN floating 

point operations. Therefore, the computation time for the above algorithm. is (for both 

row and column) 

The communication time to transpose the intermediate results is 

and the number of switch settings are, tsw = P -1. 

-

-
-

-

-

-

-
-
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One important observation is that even though ~ is a Global Fixed algorithm, in 

the above mapping both the computation and communication times reduce as the number 

of processors increases. In other words, both computation and communication are 

decomposable for parallel processing. Therefore, if the communication is achieved 

without conflicts (as in our case), we can obtain linear speedups. 

Figures 4.9 and 4.10 show the performance 2D FFf on a processor cluster. From 

Figure 4.9 we can observe that almost linear speedup can be obtained. The variation of 

the communication time as a function of the processor is shown in Figure 4.10. Note that 

the communication time curve follows the computation time curve in its shape and the 

communication is completely decomposable. 
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Figure 4.9 : Performance of 2D FFf on a Processor Cluster 
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4.3.4. Hough transform 
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Hough transform is global varying algorithm. Also, the communication cannot be 

decomposed Hough transform is a method to detect shapes such as straight lines, 

curves, circles, and ellipses in an input image [52]. The method is to perform the compu-

tation in the parameter space of the curves. For detecting line segments, normally the 

computation is done in the (r,6) parameter space. If there exists a line whose normal dis-

tance from the origin is r, the normal makes an angle 6 with the x-axis then, if the point 

(X,y) lies on that line then the following equation is satisfied. 

r = xcos6 + ysin6 

First r, 6 are quantized. The quantization depends on how much accuracy is required in 

-
-

-
-
-

-

-

-
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the final result. Assume that the maximum value of , br 'max maximum value of 9 be 

9max (generally 1t). Then if 'ru, 9ru are the resolutions used for quantization, the total 

number of accumulator cells in the computation are 'max .9max/rru.9res, the number of 

rows and columns in the accumulator array being 9c = 9max/9ru and Pc = ,max/rres, respec­

tively. The algorithm involves two major steps. The first step is to accumulate votes in 

the accumulator array for various digitized, and 9 values. The second step is to compute 

local maxima in the output of the first step. The first step is regular and suitable for SIMD 

implementation. The second step is more suitable for MIMD implementation because the 

output is global data dependent For example, an image containing many lines will result 

in many more maxima than an image containing a few lines, and therefore, the required 

computation will vary. Hence, Hough transform is a hybrid algorithm containing both 

SIMD and MIMD algorithms. 

We present two mappings of the Hough transform algorithm for parallel processing 

on the processor cluster. The first mapping divides the input image into as many granules 

as the number of available processors. The second mapping divides the tasks depending 

on the parameters and desired quantization. The former is referred to as "data partition­

ing" and the latter as "parameter partitioning." We discuss advantages and disadvantages 

of both the mappings and also compare the computation time, communication time and 

memory requirements for both mappings. 

Data Partitioning 

Assume that the input image is NxN, and to simplify the discussion assume that the 

number of available processors is P = P 2 . The image is partitioned into N 2/p 2 blocks. 
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Processor P(i,j) works on block i*p + j , where lSi,jSp. Each processor computes the vote 

count for its part of the image for all quantizations of B values. Figure 4.11 shows the 

accumulator array for a processor. Note that each processor has to maintain a complete 

accumulator array of size Pexge and update the appropriate vote count computed from its 

share of the image. The algorithm ACCUMULATE_COUNT in Figure 4.12 shows the 

computation for this step. The computation time to compute the accumulator array is 

time taken to perfonn:zx[ ;:1 xjx8, multiplications and half as many additions, where f 

PI P2 Pc 
BI 

92 

Be 

Figure 4.11 : Accumulator Array for Hough Transform 

ALGORITHM ACCUMULATE COUNT 
Each processor Pi, lSiSp2 does-the following (in parallel) 

For j = 1 to Be do 
For each (x,y) in the subimage such that (x,y) is significant do 

/*significant means black pixel or edge element*/ 
compute r(Bj ) = x cos9j + y sinBj 
Accum_array(Bj,r(Bj )/r'.$) = Accum_array(Bj,r(Bj )/r,u) + 1 

End For 
End For 

END ACCUMULATE COUNT 

Figure 4.12 : Algorithm to Compute Votes in Hough Transfonn 

-
-
-

-
-
-
-
-

-
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is the largest fraction of significant pixels in a block and 9c is the number of quantizations 

for 9. The next step is to combine the partial results of all the processor to obtain a global 

accumulator array so that maxima can be determined. For combining the partial results 

we propose the tree sum method in which, at each step, twice as many processors com-

bine their partial results, therefore requiring 2><logp-l steps. 

The algorithm ACCUMULATE_SUM in Figure 4.13 performs the merging of par-

tial results. The processors are numbered from 0 to p2_1. A processor with number k, 

~Sp2_1 corresponds to a processor (ij) such that k=i*p+j. 

1* Accum_array/c(i,j) denotes the accumulator cell (ij) 
the Accumulator array of processor k. */ 

ALGORITHM ACCUMULATE_SUM 

For i = 0 2xlog2P-l do 
For all processors Pi do in parallel (OSjSp2-1) 

If j mod 2;+1 = 2' then 
Connect Pj --> Pj -21 

For k = 1 to Oc do 
Forl=ltopc do 

Send Accum_a"ayj(k,/) Pj_2i 

Accum _ arrayj_2i (k, l) := Accum _ arrayj_2i (k, I) 
+ Accum_arrayj(k,l) 

End For 
End For 

End If 
End For 

End For 
END ACCUMULATE SUM 

Figure 4.13 : Algorithm to Accumulate the Vote Count 
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Following this step, processor Po has the entire accumulator sum. The next step is to 

distribute this global accumulator sum to all the processors so that computation for local 

maxima can be performed in parallel. This step needs only one step. Processor Po broad-

casts the entire array to all the processors using the broadcast facility of the crossbar. 

After the broadcast step, each processor performs a search for local maxima on its share 

of the accumulator rows r ;;1· In this algorithm, for each entry in its block of the accu· 

mulator array, the processor determines whether the entry represents a local maxima in a 

neighborhood. 

In summary, the total computation and communication time requirements for the 

entire hough transform algorithm using the data partitioning are as follows. 

where, the first term is for computing the votes, the second term is to sum the accu-

mulator array and the third term is for looking for local maxima in a window of size w 2• 

The communication time for this algorithm is 

and the number of switch settings are tsw = logP+1. 

Unlike 2D-FFr, the communication is not decomposable. In other words, the com-

munication increases as the number of processors increases in a cluster. In the following 

mapping we will observe that it is possible to reduce the communication such that instead 

of it increasing as a function of number of processors in the cluster, the communication 

remains constant. 

-

-

-
-
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Figure 4.14 shows the computation and communication time along with the speedup 

for hough transform. Even though the computation time for hough transform decreases as 

the number of processors increases, the computation is not completely decomposable. 

The second term (to combine partial results) of lep increases as a log function of the 

number of processors. Furthermore, the communication overhead to combine accumula-

tor arrays also increases logarithmically with the number of processors. Consequently, 

for a large number of processors, the communication time becomes comparable to the 

computation time (as shown in Figure 4.14), and that results in degradation in speedup. 

We will observe in the following that it is possible to obtain almost linear speedups. 
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Parameter Partitioning 

In this mapping, instead of partitioning the data to the processors the parameters 

space is partitioned. Each processor works on the entire image but computes the vote 

count for only few 8 values. Each processor computes all r values for its share of 8 

values. If there are p2 processors, then each processor gets n = ac/p2 values of a to work 

on. Therefore, processor i gets to work on n values of a, where lSiSp2. There are several 

advantages to this mapping, both in terms of communication and implementation at each 

processor. First of all, when looking for peaks . later, a processor needs to communicate 

with only two other processors to obtain the upper and lower boundary rows of the Accu­

mulator array. Secondly, we introduce additional data .structures to make the search for 

local maxima efficient, where instead of searching for the local maxima in the entire 

accumulator array, only a fraction indicating possible local maxima need to be searched. 

Furthermore, the processor can store sina, cosa values for its allocated n values of a in its 

registers, since only few values need to be stored. This results in saving on local memory 

accesses delays which would occur if all quantized sina and cosa values are stored with 

each processor in its local memory. The algorithm to compute the accumulator array at 

each processor is similar to that in the case of data partitioning, except that each proces­

sor works on the entire image but only its own part of the parameters. 

A brief explanation of the algorithm is as follows. In the first step (computing 

votes), the algorithm computes value of p for each significant pixel for all a values. It 

then increments the appropriate count in the Accumulator array. If the count increases 

beyond a certain threshold value, there exists a possibility of this being a local maxima. 

Therefore, another array called the Link_array is updated marking this fact. This step 

-

..... 

-
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reduces the search space when looking for local maxima since normally a very small 

fraction of the image contributes to lines and entire Accumulator array need not be 

searched when looking for local maxima. Once the above computation is finished for the 

entire image, processor Pi communicates with P i +1 and P i - 1 to obtain the boundary rows 

of the Accumulator array. Then the local maxima are computed in the Accumulator 

array using the information available in Link_array. There is a need to search only those 

entries in the Accumulator array for a local maxima which are marked by the Link_array. 

The computation, communication and memory requirements for this mapping are as fol­

lows. 

Iq> = 3xtflX[ :: + ~ xjxfJ, + 9,xp,XW'lp' 

where the first term is for computing the votes and the second term is to for local 

maxima in a window of size w 2• The communication time for this algorithm is 

tcotNrl=2xpc 

and the number of switch settings are tsw = 2. 

The memory requirements of the two partitionings are comparable. For example, 

for a typical image size of 512x512, value of Pc will typically be 512x~, and C will be 

180. However, each pixel normally is a byte where as each accumulator cell is an integer. 

Assuming a 4 byte integer, in data partitioning a processor has to store the entire accumu­

lator array of size 521 Kbytes (approximately), and in the second mapping a processor 

has to store the entire image (256 K bytes) and its part of the accumulator array. 

There is another way in which the parameter partitioning mapping can be per­

formed. Instead of storing the image in all the processors, a controller processor, such as 
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a DSP, can store the image and broadcast each significant pixel value and its location 

while processors compute the votes in an SIMD lock-step fashion. This results in saving 

the memory, because now only one processor need store the image. We make the fol­

lowing observations. The communication requirement is fXN2, where f is the fraction of 

significant pixels. However, the communication can be overlapped with computation 

because while processors are computing the vote count for a location in the image, the 

next location can be broadcast. Therefore, the time to compute the Accumulatocarray in 

this case will be MAX(tcp , Broadcast time for fXN2 pixels locations). 

By using parameter partitioning the overhead of combining partial results is elim­

inated, and for each processor the communication is reduced to exchanging one row of 

the accumulator array with two other processors. Therefore, the communication remains 

constant as the number of processors increases. Figure 4.15 shows the speedup, computa­

tion time and communication time for hough transform using parameter partitioning. Fig­

ure 4.16 compares the communication overhead and the speedup for the two types of par­

titioning. Notice that using parameter partitioning it is possible to obtain almost linear 

speedup. 

4.4. Parallel Implementation Results 

This section contains implementation of some algorithms on a simulated processor 

cluster. A cluster was simulated on an intel iPSC/2 hypercube multiprocessor. The per­

formance results capture all the overheads associated with parallel programming, and 

therefore, the results are very accurate. Also, we show through the example of 2-D FFf 

algorithm that the analysis presented in the previous section is very close to the imple-

-

-
-
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Figure 4.15 : Performance of Hough Transform (Parameter Partitioning) 
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Figure 4.16 : Comparison of Perfonnance of PP and DP for Hough Transfonn 

mentation results. We present performance results for four algorithms in this section. -
Two algorithms are 2-D FFT and separable convolution. The other two algorithms are -parts of the Image Understanding Benchmark Algorithms developed by Weems et al [1]. 

The two algorithms are sobel edge detection and median filtering. The perfonnance of 

the algorithms has been evaluated using the test data provided with the benchmark algo-

rithms [1]. 

4.4.1. 2-D FIT 

A mapping of 2-D FFT has been described in Section 4.1. Figure 4.17 shows the 

perfonnance of 2-D FFT on a 16 processor cluster (image size 256x256). Other parame-

ters are the same as given in Table 4.1. Solid lines in the graph show the computation 
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times for analysis (symbol +) and implementation. We observe that the analytical results 

are very accurate. However, the implementation times are a little more than that given by 

analysis because implementation captures the overhead of index management, etc. which 

is not included in the analysis. The graph also shows the corresponding speedups for 

both cases. Note that speedups obtained through analysis and implementation are almost 

the same and are practically indistinguishable. Figure 4.18 shows graphs for the com-

munication time. Again, implementation and analytical results are very close to each 

other. 
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4.4.2. Separable convolution 
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Speedup 

Table 4.2 shows the performance for separable convolution implementation on a 

256x256 image with window size lOXlO. The table shows the major computation opera-

tions in the algorithm which include floating point operations as well as integer opera-

tions. The fifth column shows the number of times connection in the crossbar needs to be 

changed during the algorithm execution, and column 6 contains the rounded value of the 

amount of data communicated in KBytes. The table shows that the communication time 

is very small compared to the computation time, and therefore, good speedups are 

obtained. 

-

-
-

-
-
-
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Table 4.2 : Separable Convolution Implementation Results 

Separable Convolution 

Window 10xl0 

No. Fl. Point Other Compo Comm. Comm. Comm. 

Proc. K.Ops K.Ops Time (ms.) Setup K Bytes Tlme(ms.) 

1 3932 3932 2607 0 0 0 

2 1966 1966 1310 2 20 4.09 
4 983 983 658 3 20 4.09 

8 492 492 332 3 20 4.09 

16 246 246 169 3 20 4.09 

4.4.3. Benchmark Algorithms 

The Image Understanding Benchmark provided the serial version of the programs 

and the data [1]. We implemented sobel edge detection and median filtering algorithms. 

4.4.3.1. Sobel 

Sobel edge detection is a two-dimensional convolution operation with a 3x3 mask. 

The implementation was done using medium grain parallelism in an MIMD mode, and 

mapping was similar to that of separable convolution. Table 4.3 illustrates the perfor-

mance results for sobel edge detection algorithm. There were six data sets but here we 

present results using only one data set (test, size 256x256). The results obtained on other 

data sets were similar. The table includes all overheads, including program load time, 

data load time, data input time (from global memory), and time to gather results. If all the 

overhead is included, then the performance for larger cluster size is sub linear. There are 
f 

two main reasons for this performance. First, amount of computation per pixel is very 

small (3x3 convolution), and secondly, all the overhead is included in the computation of 
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the speedup. The parameters for communication bandwidth are conservative (20 -
MBytes/sec.) and if the bandwidth is assumed to be larger, then the performance is 

expected to be much better. 

-4.4.3.2. Median filtering 

Table 4.4 shows the performance results for the median filtering algorithm. The 

algorithm was evaluated on the same data set. Size of the median filter was 5x5. Data is 

partitioned along the rows. Each processor is allocated an equal number of rows and two 

boundary rows in each direction. There is no need for communication during the algo-

rithm execution. Median filtering does not involve any floating point multiplication or -
addition operations (only comparison operations are needed). Table 4.4 shows that we 

can obtain good speedups on a cluster for median filtering. 

4.5. Summary --
To evaluate parallel algorithms on a cluster, we explored alternative mapping stra- -

tegies and computation modes. Some of the algorithms have been implemented on a 

Table 4.3 : Sobel Edge Detection 

Sobel (Test) 

No.Proc. Proc. Data load Result Output Prog. Load Data Input Total Speed up 

Tlme(sec.) TIme(Sec.) Tlme(sec.) Tlme(sec.) Tlme(sec.) Tlme(sec.) 

1 4.04 0 0 0 0.008 4.05 1 

2 2.02 0.056 0.014 0.001 0.008 2.1 1.92 

4 1.01 0.056 0.014 0.001 0.008 1.09 3.70 

8 0.51 0.056 0.014 0.001 0.008 0.589 6.91 

16 0.26 0.056 0.014 0.001 0.008 0.33 12.13 

32 0.13 0.056 0.014 0.001 0.008 0.21 19.71 .... 
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Table 4.4 : Median Filtering 

Median Filtering (fest) 

No.Proc. Proc:. Data load Result Output Prog.Load Data Input Total Speed up 

Tlme(sec.) Tlme(Sec.) Tlme(sec:.) Tlme(sec:.) Tlme(sec.) Tlme(sec.) 

1 6036 0 0 0 0.008 60.37 1 

2 30.17 0.056 0.056 0.001 0.008 30.30 1.99 

4 15.19 0.056 0.056 0.001 0.008 15.31 3.94 
8 7.72 0.056 0.056 0.001 _0.008 7.85 7.70 

16 3.99 0.056 0.056 0.001 0.008 4.11 14.68 

32 1.90 0.056 0.056 0.001 0.008 2.02 29.93 

simulated cluster, and we show that the analysis provides very accurate results. The per-

formance results show that very good speedups can be obtained on a processor cluster in 

any computation mode. The parameters chosen for processor speed and communication 

speed were very conservative. We think that much faster processors and communication 

links are possible and available with today's technology, and therefore, the perfonnance 

results presented in this chapter are also conservative. 
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CHAPTER Sc 

INTER-CLUSTER COMMUNICATION IN NETRA 

The focus of this chapter is inter-clustOF communication in NETRA and perfor­

mance evaluation of parallel algorithms when mapped across multiple clusters. When an 

algorithm is mapped on multiple clusters, processors belonging to different clusters may 

need to communicate, and therefore, inter-cluster communication is needed. However, 

unlike intra-cluster communication between processors, there may be conflicts in access­

ing the global interconnection network, global memory or other common resources. 

These conflicts need to be taken into account when computing the inter-cluster communi­

cation, and consequently, performance of algorithms when mapped across multiple clus­

ters is affected by conflicts. In this chapter we present a method to evaluate inter-cluster 

communication time under the presence of conflicts. The method is based on the work by 

Patel [53,54]. 

This chapter is organized as follows. Section 5.1 presents alternative inter-cluster 

communication strategies in NETRA. Analysis of inter-cluster communication strategies 

is presented in Section 5.2. How the analysis can be incorporated into the performance 

evaluation of algorithms is the subject of Section 5.3. Section 5.4 contains the perfor­

mance evaluation of various algorithms whose performance on one cluster was presented 

in the preceding chapter. Finally, Section 5.5 summarizes the chapter. 

"-
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5.1. Alternatives for Inter-cluster Communication 

5.1.1. Multistage interconnection network and global memory 

In this method global memory is used for inter-cluster communication. The global 

memory is accessed through the multistage interconnection network by processors in a 

cluster or by a DSP. A processor(s) needing to send data to another processor in a dif­

ferent cluster writes the data into designated locations in the memory. This involves set­

ting the appropriate circuit through the global multistage interconnection network to the 

memory module followed by a data transfer. The data is transferred in block mode. The 

Memory Line Controller (MLC) updates the information about the destination port(s), 

length of the data block, and block's starting address, and sets a flag indicating the avai­

lability of data. Now the destination processor can read the data using this information. 

Note that this method permits out of order requests to be serviced. For example, if the 

destination processor tries to read the data before it has been written, the MLC informs 

the processor of this situation, and when the data is really written into the global memory 

then the MLC informs the destination processor. This is a block level data-flow approach. 

The main advantages of this approach are that asynchronous communication is possible, 

out of order messages can be handled, and efficient pipelining of data can be achieved. 

This method is depicted in Figure 5.1. The Figure shows how a processor Pi of cluster Ci 

will communicate with processor Pj of cluster Cj using the strategy. 

5.1.2. DSP tree links 

The second alternative to performing inter-cluster communication is to use the DSP 

tree links. However, for distant inter-cluster communications, the tree may not perform 
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Figure 5.1 : Inter-cluster Communication Using Global Memory 

well because of the root bottlenecks typical to any tree structure. The main function of 

the tree structure is to provide control hierarchy for the clusters. Its links are mainly used 

for program and data broadcast to subtrees, and DSPs use the tree links to send (receive) 

control information to (from) other DSPs. Therefore, the DSP tree is designated mainly 

for control function, and we do not envision it to be used for large data transfers between 

distant processors. 

5.1.3. Global bus 

The third alternative strategy to perfonn inter-cluster communication is to use a 

high speed global bus that connects all DSPs and one port from each cluster. The global 

memory is also connected to the bus and is accessible to all clusters via the bus. Note that 

the global bus is proposed to be an alternative global interconnection to the multistage 

interconnection network. If the bus can be designed fast enough (such as by using fiber 
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optics), and if inter-cluster communication is low, the global bus presents a viable alter-

native to the multistage interconnection network. In this scheme, the communication is 

done explicitly by messages, and it is synchronous. Figure 5.2 show this communication 

method. The Figure shows how a processor Pj of cluster Cj will communicate with pro-

cessor Pj of cluster Cj using the strategy. 

S.2. Analysis of Inter-cluster Communication 

Inter-cluster communication is needed in the following cases : i) An algorithm is 

mapped in parallel on more than one cluster and the processors need to communicate to 

exchange partial results or combine their results. ii) In an integrated vision system, output 

data of a task produced at one or more clusters needs to be transferred to the next task 

executing on different clusters. iii) It is needed to perform input and output of data and 
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Figure 5.2 : Inter-Cluster Communication Using the Global Bus 
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results. The amount of inter-cluster communication depends on the type of algorithms, 

how they are mapped in parallel, frequency of communication and amount of data to be 

communicated. 

There are several parameters that affect the inter-cluster communication time. The 

architecture dependent parameters are the number of processors (Le., number of clusters 

and number of processors in each cluster), number of memory modules, number of pro­

cessors per port connected to the global interconnection, and the type of interconnection 

network. Some parameters depend both on the architecture as well as on the type of algo­

rithms, how they are mapped, and their communication requirements when mapped onto 

multiple clusters. Fur$ermore. not only does the communication time depend on the 

underlying algorithms but it also depends on the network traffic generated by other pro­

cessors in the system because there may be conflicts in accessing the network as well as 

memory modules. 

We consider an equivalent model of the architecture as shown in Figure 5.3. The 

model shows N processors connected to M memory modules through a global intercon­

nection network. N is given by C xPt +Ndsp, where C is the number of clusters. Pt is the 

number of ports in each cluster and Ndsp is the number of DSPs in the system. For simpli­

city, we assume that each cluster contains an equal number of processors. The number of 

physical processors will be given by C xP, xPp , where Pp is the number of processors per 

port. 

The following analysis is based on the analysis presented by Patel in [53,54]. He 

developed an analytical model for evaluating alternative processor memory interconnec-

-



101 

P P P 

Ports 
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Figure 5.3 : Equivalent Model for Global Communication 

tion performance and showed that the analysis is reasonably accurate. Consider execu-

tion of a typical parallel algorithm on multiple clusters. The execution will consist of pro-

cessing, intra-cluster and inter-cluster communication. Figure 5.4 shows the computation 

and communication phases of an algorithm. The computation time is given by tcp ' the 

intra-cluster communication time is given by tclt and the inter-cluster communication 

time is given by tiel in terms of equivalent processor cycles. However, due to conflicts in 

IIIIIIIIII MXlIIIIIIIII m 
No Interference 

wXtiel 

IIIIIIIIIINXMXMIIIII II 
With Interference 

Figure 5.4 : Computation and Communication Activities of a Processor 
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the network or conflicts in accessing memory modules. a processor may have to wait for 

Wa cycles before being able to access the network and write to (or read from) the 

memory. In effect. this can be seen as the communication time being elongated by a fac-

tor W for each reques~ and instead of communication time being tiel, it is now wxtiel as 

shown in Figure 5.4. Therefore, if the probability of accessing the global network in each 

processing cycle is m and for each access the communication time is tiel, then the useful 

computation for t processor cycles takes t + mxtxwxtie/. where t = tep +tcl' The fraction of 

useful work (utilization U) is given by 

t u=-----
t + mxtxwxticl 

(5.1) 

The average number of busy memory modules (or fraction of time when the bus is busy 

when the global interconnection is a bus) is 

Nxmxtie/xt 
B=-----

t + mxtie/xtXW 
(5.2) 

and in terms of utilization. 

(5.3) 

In [53], it is shown that the utilization primarily depends on the product mxtiel rather 

than m and tiel individually. In other words, the processor utilization primarily depends on 

the traffic intensity and to a lesser extent on the nature of the traffic. 

For a particular algorithm. all the parameters are known except w. The probability 

of accessing the global network is essentially given by the number of times communica­

tion is needed per processor cycle and is known when an algorithm is mapped in parallel. 

The factor w depends on the algorithm parameters as well as the interference from other 

-

-, 

-,-
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processors accessing the global network and the memory, number of processors, number 

of memory modules, the type of interconnection network and the access rate m. 

Consider the processor activities again. A processor needing to access the global 

- memory or the bus submits requests again and again until accepted; on an average this 

happens for (w-I)xtiel time units. After the request is granted, the processor has a path to 

memory for tiel time units. In other words, the network sees an average of wxticl consecu-

tive requests for unit service time. Therefore, the request rate (for unit service) from a 

processor as seen by the network is 

mxwxticl m'=-----
I + mxwxtiel . 

(5.4) 

and in terms of utilization 

m' = I-U. 

For details, the reader is referred to [53]. 

The model that we analyze is a system of N sources and M destinations. Each 

source generates a request with probability m' in each unit time. The request is indepen-

dent, random, and uniformly distributed over all destinations. Each request is for one unit 

service time. The following is an analysis for a bus and for multistage delta network. 

Bus: We know from earlier discussion (Equation 5.3) that 

B = NxmxticlxU (5.5) 

and also, assuming all sources have the same request rate, average amount of time the 

bus is busy is given by 

B = [ I - ( I - m' f ]. (5.6) 
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Equations 5.4 and 5.5 result in a non-linear equation 

NXlnxticiXU - [ 1 - ( 1 - m' f = o. (5.7) 

In the above equation, value of m' can be substituted in terms of w, and hence, value 

of w can be computed. If the request rate from sources is not uniform, i.e., if the request 

rate from source Nj is mj then the above equation becomes -
j~ j~ , 
L (mjxticIU)XUj) - [ 1 - II (1 - m j ) ] = o. (5.8) 
j-I j-I 

When evaluating performance of a parallel algorithm mapped across clusters there 

will be two request rates, one for the processors taking part in executing the algorithm 

and the other for the rest of the processors in the system which will be an input parame-

ter. 

Multistage-Interconnection (Delta) : A delta network is an n stage network constructed 

from axb crossbar switches with a resulting size of atlxbtl • Therefore, N = atl and M = btl. 

For a complete description refer to [54]. Functionally, a delta network is an interconnec-

tion network which allows any ofN sources (processors) to communicate with anyone of 

the M destinations (memory modules). However, two requests may collide in the net-

work even if the requests are made to different memory modules. We use results 

from[53,54] to obtain the average number of busy main memory modules B, which is 

given by 

B =MXlntl (5.9) 

and the following equation in satisfied. 

(5.10) 
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where, 

mj a 
mi+l = 1 - ( 1 -b) ,~i <n 

and, ma = 1 - u. 

For details, the reader is referred to [53,54]. 

These equations are solved numerically to obtain the interference delay factor w 

which is used in the performance evaluation of algorithms mapped across multiple clus-

ters. 

5.3. Approach to Performance Evaluation of Algorithms 

Performance of an algorithm mapped on· multiple clusters is governed by various 

factors. Table 5.1 summarizes the parameters affecting the performance of a parallel 

algorithm. The approach to evaluating the performance of an algorithm is as follows. 

Using the parameters and a particular mapping, computation (tep ), intra-cluster communi-

cation (tel) and inter-cluster communication time (tid) are determined. The traffic inten-

sity for a processor(s) (or a cluster depending on how an algorithm is mapped) is given 

t· I 
by IC • Using the traffic intensity values, and using a range of traffic intensity values 

tep+tcl 

for interference, the effective bandwidth of the network is determined; that is, the factor 

w is computed. 

Consider a parallel execution of an algorithm across clusters. If the execution time 

-- when the algorithm is executed on a single processor is ts1q , then the speedup in the best 

case is given by 
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Table 5.1 : Parameters for Performance Evaluation 

Total No. of Processors Np 512 

Cluster Size Pe 8-128 

No. of Processors/Port P p 4 

Image Size NxN 512 X 512 

Memory Modules M 128 

Processor Speed 5 MIPS, 5 :MFLOPS 

Network Speed (Block Transfer) 20 Mbytes/Sec. 
Traffic Intensity for 0.1,0.4,0.8 
Interference (mxt) 

(5.11) 

that is, assuming there is no interference while accessing the network or the global 

memory. Under the conditions in which there are conflicts while accessing the network, 

the inter-cluster communication time is given by wxticlt and therefore, the speedup is 

given by 

S ' tsllq 
p= 

tep + tel + wXticl 
(5.12) 

Hence, degradation in speedup with respect to the best case speedup will be 

Sp -Sp' _ (W-1)Xticl 

Sp - tep + tel + wxticl 
(5.13) 

5.4. Performance of Parallel Algorithms on Multiple Clusters 

The extent of inter-cluster communication depends on the type of algorithms, how 

they are mapped in parallel, frequency of communication, and amount of data to be com-
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municated As discussed in the previous chapter, these requirements vary for algorithms 

belonging to different classes. 

We are mainly interested in the performance evaluation of parallel algorithms when 

mapped across clusters. The performance of an algorithm will be affected by interference 

from other processors in the system which are not executing the particular algorithm 

under study. 

This section discusses the performance of various algorithms when mapped across 

clusters. The algorithms are selected according to their communication requirements. We 

have chosen one algorithm from each of the following categories: Local Varying, Global 

Fixed and Global Varying. Algorithms in each of these categories exhibit different com-

munication characteristics, and therefore, the analysis will provide the performance of 

the architecture for a wide range of algorithms. 

5.4.1. Two-dimensional Fast Fourier Transform (2·D FIT) 

From Chapter 4 we know that a 2-D FFf can be performed in two steps: a one-

dimensional N point FFf along the rows followed by a one-dimensional N point FFf of 

the intermediate results along the columns, or vice versa. We use this property to map the 

algorithm across clusters. Hence, dividing the data along rows will not require commun-

ication when computing one-dimensional FFf. However, communication is needed to 

obtain transpose of the intermediate results. Figure 5.5 shows an example of the two 

steps and communication for three clusters. 

Clusters are allocated rows in proportion to their size. A cluster Cj of size PeCi) (Le., 

. . I NxPeCi) 
contammg PeCi) processors) is alocated j=ll ' where n is the total number of clusters 

'LPe(i) 
i-1 
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(a) Row FFr (b) Transpose 
using global Memory 

(c) Column FFr 

The shaded area denotes data which remains within the cluster 

Figure 5.5 : An Example of Mapping 2-D FFf on Three Clusters 

executing the algorithm. Within a cluster rows are equally divided among processors. In 

the first phase processors compute N point FFf of all the rows in their granule. In the 

second phase, to obtain transpose of the intermediate 4at~ processors write the inter-

mediate results into the designated global memory locations, which is read by other pro-

cessors. Data remaining within a cluster is transposed using the cluster crossbar. 

The computation time in terms of number of instructions is given by the following. 

The total number of processors are given by P, and we assume all clusters have the same 

size (Pc ). 

(5.14) 

where, tft is the number of instructions per floating point operation. The intra-cluster 

communication time (tcl) and the inter-cluster communication time (tid) are given by 
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4xN 2x(n -1)xP pxR 
tOd = 
I nxp 
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(5.15) 

(5.16) 

where Pp is the number of processors per port and R is the communication speed of the 

network in tenns of number of instructions per word transfer. 

Using these parameters for 2-D FFf traffic intensity, computation times and param-

eters from Table 5.1, we evaluate the performance using the analysis presented earlier. 

Figure 5.6 shows the speedup obtained for the 2-D FFf algorithm. The X-axis shows the 

number of processors (cluster size is 16). For example, value 48 means that the algorithm 

is executed on 3 clusters, each containing 16 processors. The four different graphs in the 

Figure show speedups for no conflict (best case), low conflict, medium conflict and high 

128 
2-D FFr (Multistage Network) 

112 

96 

80 

Speedup 64 
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32 

16 

0 

16 32 48 64 80 96 112 128 
Number of Processors (Cluster Size 16) 

Figure 5.6 : Speedup for 2-D FFf (Multistage Network) 
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conflict cases through the global interconnection network (multistage interconnection). 

Similar results are presented later in this section showing when a bus is used as the global 

interconnection network. It is observed that speedup obtained under varying degrees of 

conflicts through the network is comparable to that obtained in the best case. However, 

the best case speedup itself is not linear because of the delays through the network and 

the global memory. 

Figure 5.7 shows the computation and communication time for 2-D FFI' as a func-

tion of number of processors. Figure 5.8 shows a blown-up graph for the communication 

times. As we observe, the communication time is much smaller than the computation 

time. Furthermore, the communication time also decreases as the number of processors 

(clusters) increases. Also note that the intra-cluster communication time is much smaller 
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than the inter-cluster communication time. Figure 5.9 shows percentage degradation in 

speedup, as defined in Equation (5.13), for different levels of conflict in the network. 

The degradation in the speedup levels off after increasing initially because the communi-

cation time decreases as the number of processors increases. 

Figure 5.10 shows the sensitivity of the speedup to the network bandwidth. The net-

work bandwidth is nonnalized to computation speed. For example, value 1 on the X-axis 

means that it takes the same amount of time (amortized or block in block transfer mode) 

to write/read a word to/from global memory as it takes to execute one instruction. The 

region on the left of 1 indicates faster communication network and to the right of 1 indi-

cates slower communication network. It is evident from the Figure that degradation in 

speedup occurs very fast as the communication becomes slower. Therefore, in order to 
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obtain any significant speedups from parallel computation, it is important to have 

matched computation and communication speeds; otherwise, increasing the number of 

processors or the processor speeds will not improve the performance as expected. The 

Figure also illustrates that the four graphs in the Figure diverge as the communication 

becomes slower meaning that slower performance under heavy traffic suffers more in the 

slower network than under light traffic. 

The following is a discussion of the performance of 2D-FFr when a bus is used as a 

global interconnection network. The algorithm is mapped as described above. Since glo-

bal bus can be accessed by only one processors at a time, the inter-cluster communication 

time becomes additive as the number of clusters is increased. Therefore, the performance 

is expected to be worse than that in the case of the multistage interconnection network. 



114 

The total computation time remains the same as in the previous case and is given by 

12xN21ogZ(N)xtjl 
tcp= p (5.17) 

However, the inter-cluster communication time becomes 

(5.18) 

In other words, each cluster needs to send (n-l) fraction of its data to transpose the 
n 

intermediate results. This is achieved by a designated processor in each cluster, which 

collects the data and broadcasts it on the bus to be read by other cluster processors. 

Hence, there is an additional overhead of collecting and distributing the intermediate 

data. The intra-cluster communication time in this case is given by 

tcl = tcll + telZ + tel3 

where, 

2x(Pc-l)xN2 

for within cluster transpose, tell = , and, 
P~xn 

& din . . d redi ·b· th· di da 2xN2
x(n-l) lor sen g, recelvmg an sm uttng e mterme ate ta, tel2 = tcl3 = 2 
n 

Using these parameters, we evaluate the performance of 2-D FFf under varying 

degrees of conflicts on the bus. Figure 5.11 shows the speedup for 2-D FFf as a function 

of the number of processors (cluster size 16). When there is no conflict on the bus, the 

speedup increases with the number of processors. However, under conflicts, the speedup 

first decreases and then increases slowly. In fact, for medium and high conflicts, the 

speedup obtained on one cluster is better than that obtained using multiple clusters. the 

reason for such poor performance is that even though the communication is decompos-
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able in 2-D FFT, the inter-cluster becomes communication time additive due to the bus 

and increases as the number of clusters executing the algorithm increases as shown in 

Figure 5.12. It is evident from the Figure that the computation time decreases but the 

communication time increases and becomes more than the computation time. 

Figure 5.13 shows the relative performance degradation in the speedup. The degra-

dation is very significant. However, the degradation itself decreases as the number of pro-

cessors (clusters) increases because more clusters execute the algorithm, and conse-

quently, less number of clusters interfere. Figure 5.14 shows the sensitivity of the 

speedup to the bus speed. Again, the Figure shows that performance degrades rapidly as 

the bus becomes slower. In order for a bus to be viable global interconnection network it 

is essential that the bus bandwidth be much greater than the processor speed. 
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5.4.2. 2-D separable convolution 
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This algorithm consists of two steps. First convolution along rows using two one-

dimensional masks and then convolution along columns of the intermediate results. Par-

titioning along rows in clusters, therefore, avoids communication in the first step. How-

ever, before the second step can be performed, boundary rows with each cluster need to 

be communicated to other clusters. Figure 5.15 shows the mapping on three clusters. 

Note that unlike in 2-D FFr, a cluster needs to communicate with at most two other dus-

ters to obtain the upper and lower boundary rows of the intermediate results. The number 

of rows to be exchanged depends on the kernel size. For a kernel size of w><w, the 

number of rows to be exchanged along each direction is ;. The amount of communica-

tion is fixed and is independent of the number of clusters on which the algorithm is 
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mapped. The same mapping will work for regular 2-D convolution except that the 

amount of computation per pixel will be larger. 

The computation time for the two steps is given by 

w 
2XtjlxNX( 2+1) 

tcpt = tcp2 = P 

the intra-cluster communication is given by 

tel =2xNxw, 

and the inter-cluster communication is given by 

tid = 2xwxNxR. 

(5.19) 

(5.20) 

(5.21) 

Figure 5.16 depicts the speedup obtained for the 2-D convolution algorithm as a 

function of the number of clusters (cluster size = 16). The speedup increases sublinearly 

as the number of clusters increases. The reason for not obtaining better speedup is that 

the computation per point of the input is small, the computation per processor decreases 

N/n t ____________ _ 
r--~ __ ~_~_7_~ __ ~_~_7_~ __ ~~----~ 

t 
-~--~-~--~-~-~--~-~--~-~~----~ w _____________ _ 

-------------

1--------------1--------------

CI 

C2 

----~.- C3 

(a) Initial Mapping 
along Rows 

(b) Boundary Rows (c) Column Convolution 

into Global Memory 

Clusters exchange top and bottom w/l rows after row convolution 

Figure 5.15 : An Example of Mapping 2-D Separable Convolution on Three Clusters 
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as the number of clusters increases, but the communication remains constant (as long as 

the granularity per processor is at least ; rows). Hence, the ratio of computation and 

communication decreases as the number of processors increases. The computation and 

communication times are shown in Figures 5.17 (a) and (b). Figure 5.16 compares the 

two times whereas Figure 5.17 shows only the communication time. 

Note that inter-cluster communication can be avoided completely if clusters are 

assigned overlapped rows to perfonn the first step. That is, if a cluster is responsible to 

compute 2-D convolution for R j rows, then its is assigned w + R j rows. Therefore, each 

cluster has to perfonn additional computation to obtain I-D convolution of w additional 

rows. If the extra computation time is less than the communication time then overlapped 

data partitioning is better. 
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Figure 5.16: Speedup for 2-D Convolution (Multistage Network) 
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Figure 5.18 shows a performance comparison of the two partitioning methods. 

When the number of processors executing an algorithm is small, the performance is 

almost the same. For smaller window sizes the difference is marginal and becomes 

apparent only when the number of processors becomes large. However, as the window 

size increases (40x40 in Figure 5.18 ), the perfonnance with overlapped computation 

becomes poor because the overhead of extra computation becomes larger than the com-

munication overhead. 

Figure 5.19 shows the performance of the algorithm when the bus is used as agio-

bal interconnection network. The speedup increases as the number of clusters increases 

but eventually levels off. Though inter-cluster communication time per cluster is con-

stant, total communication time increases as the number of clusters increases, because 
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only one cluster can send data on the bus at any time. This is illustrated in Figure 5.20 

where the communication time (with no interference) is a linear function of the number 

of clusters. Another reason for speedup to level off is that for a larger number of clusters 

the computation time becomes comparable or smaller than the communication time. 
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Figure 5.19: Speedup for 2-D Convolution (Global Bus) 
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Figure 5.20: Computation and Communication Times for 2-D Convolution (Global Bus) 
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5.4.3. Hough transform 

We have evaluated two mappings for hough transfonn, namely, Data Partitioning 

(OP) and Parameter Partitioning (PP). The difference between the two mappings is 

described in Chapter 4. Briefly, in DP, data is decomposed among clusters and, in PP, 

parameters are decomposed across clusters. 

Data Partitioning 

Data is allocated to clusters in proportion to their size. Within a cluster data is distri­

buted equally among the processors. The algorithm consists of three phases. In the first 

phase, each processor computes and accumulates the count contributed by its data for all 

the parameter values. Note that each processor maintains the entire accumulator array. In 

the second phase, partial results are combined within a cluster, i.e., all the accumulator 

arrays are added together, and then a designated processor from each cluster writes the 

accumulator array to designated memory locations. Arrays from all the clusters partici­

pating in the algorithm execution are then collected by one cluster. In the third phase, the 

cluster having the entire accumulator array computes the local maxima. 

Parameter Partitioning 

Under this scheme, each cluster is assigned the entire input data but is assigned only 

a part of the parameter space. The parameter space is partitioned in proportion to the 

cluster size. Each cluster receives two more parameters (boundary values) so that inter­

cluster communication is avoided. That is, each cluster perfonns a fixed amount of addi­

tional computation to avoid communication. Within a cluster, however, data is distri-
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buted equally among the processors, and all processors work on the entire allocated 

parameter space. Dividing the parameter space results in mutually exclusive accumulator 

arrays with processors, and therefore, to compute local maxima, there is no need for 

inter-cluster communication. 

For DP, the computation and communication times for various phases are as fol-

lows: tep t is for computing accumulator count, tep2 is for combining partial accumufator 

arrays within a cluster, tep3 is for computing the final accumulator array, and tep4 gives 

the time to compute the local maxima by one cluster. 

3xPex8e 
tep4 = Pc 

Intra-cluster and inter-cluster communication times are give by 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

Similarly, the corresponding computation and communication times for PP are given by 

2 8e 
3xtflxN x(- + 2) 

n 
tept =----~-­

Pc 
(5.28) 

(5.29) 



3xPexge 
tep 3 = nxPe 

ge 
tel = (log 2P e + 1 )x(- + 2)xPe· 

n 
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(5.30) 

(5.31) 

Figure 5.21 depicts the speedups for hough transform using the two partitioning 

methods. Due to the communication overhead through global memory, which increases 

linearly with the number of clusters, the speedup for DP levels off. Figure 5.22 shows 
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Figure 5.21 : Speedup for Hough Transform (Multistage Network) 
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the computation and communication times for hough transform, whereas Figure 5.23 

shows the communication overhead for hough transform in detail. Data partitioning does 

not perform as well as parameter partitioning. However, degradation with respect to best 

case speedup in DP is small. As we can observe, good speedup can be obtained for a glo-

bal data dependent algorithm like hough transform. Figure 5.22 and 5.23 illustrate the 

computation and communication times for the DP case. 

Figure 5.24 shows the speedup for hough transform (OP) and Figure 5.25 depicts 

the communication and computation times, respectively when the bus is used as a global 

interconnection network. Note that performance of the hough transform under PP will be 

the same in both cases because there is no global communication. 
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5.5. Summary 

In this chapter we presented inter-cluster communication strategies in NETRA. 

Inter-cluster communication is needed when algorithms are mapped across clusters to 

transfer data between tasks executing on different cluster processors, or to input and out­

put data. Several factors contribute to the performance of algorithms mapped across dus­

ters. Not only does an algorithm's computation and communication characteristics con­

tribute to its performance, but the system load, interference in accessing global intercon­

nection network and global memory, and network bandwidth also contribute to the per­

formance. We presented an analysis of how the effect of conflicts in global network and 

memory can be incorporated into the performance evaluation of parallel algorithms 

mapped across clusters. For each algorithm we presented one or more mapping stra­

tegies, its performance evaluation and a discussion of the results. 

The performance results were used to compare alternative inter-cluster communica­

tion strategies, and they show that it is possible to obtain good performance for algo­

rithms with different characteristics under varying degrees of conflicts in a global inter­

connection network. In general, a multistage interconnection network as the global inter­

connection performs much better than a global bus, as expected. The parameters chosen 

for processor speed and communication speed were very conservative. We think that 

much faster processors and communication links are possible and available with today's 

technology, and therefore, the performance results presented in this chapter are also con­

servative. However, we obtained insight into the sensitivity of the performance measures 

as a function of various architecture parameters. 
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CHAPTER 6. 

DATA DECOMPOSITION AND LOAD BALANCING TECHNIQUES 

As discussed in Chapters 1 and 2. IVSs employ a sequence of image understanding 

algorithms in which the output of an algorithm is the input of the next algorithm in the 

sequence. Algorithms that constitute an integrated vision systems exhibit different 

characteristics. and therefore, require different data decomposition techniques and 

efficient load balancing techniques for parallel implementation. Since the input data of a 

task is produced as the output data of the previous task. this information can be exploited 

to perform knowledge based data decomposition and load balancing. 

This chapter presents several techniques to perform static and dynamic load balanc­

ing schemes for IVSs. These techniques are novel in the sense that they capture the com­

putational requirements of a task by examining the data when it is produced and using 

the knowledge of the computation in the next step. Furthermore, they can be applied to 

many integrated vision systems because many algorithms in different systems are either 

the same or have similar computational characteristics. These techniques are evaluated 

by applying them to the algorithms in a motion estimation system. It is shown that the 

performance gains when these techniques are used is significant, and the overhead of 

using these techniques is minimal. The evaluation is performed by implementing the 

algorithms on the hypercube multiprocessor system. The rationale behind using a com­

mercially available machine is to capture all the overheads in implementations. 

-
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Data decomposition and load balancing techniques presented in this chapter are for 

medium to large grain parallelism. Two important characteristics of these techniques are 

that they are general enough to apply to any integrated system, and that they use statistics 

and knowledge from the execution of a task to perform load balancing and scheduling for 

the next task in the system. For example, in the motion estimation system sufficient 

knowledge can be obtained about the output data froni the zero crossing step to perform 

efficient data decomposition and load balancing for the stereo match step. Knowledge 

from each step is used to perform load balancing in the next step. The advantages of such 

schemes are as follows. First, these techniques use characteristics of the tasks and the 

data, and therefore, work well no matter how the data changes. Secondly, many 

integrated vision systems consist of such tasks and exhibit the above described computa­

tion flow, and therefore, these techniques can be used in any system (e.g., object recogni­

tion, optical flow, etc.) . 

This chapter is organized as follows. Section 6.1 presents the algorithms for each 

step in the motion estimation system and most of the discussion in this section has been 

taken from [45]. These algorithms will provide insight into the involved computations in 

the above system, and any other such system, and provide a framework for the discussion 

in the following sections. Section 6.2 describes the proposed load balancing and data 

decomposition techniques. Section 6.4 presents a parallel implementation of these algo­

rithms in an integrated environment and discusses the performance results for each of 

these algorithms, data decomposition and load balancing schemes. The underlying mul­

tiprocessor machine on which we have implemented these algorithms is intel iPSC/2 
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hypercube. Some of these techniques have been applied to other integrated vision sys­

tems and have been shown to work well [55]. 

6.1. Some Algorithms from Motion Estimation System 

Chapter 2 contains a brief description of the motion estimation system, and its con­

trol flow is shown in Figure 2.2. This section describes the steps in the motion estimation 

system. A detailed description of the involved computations is included in order to 

understand the characteristics of such algorithms. The motion estimation algorithm con­

sists of two processes. The first process is feature points extraction. Since the feature 

points used in our algorithm are edge points, we can extract them by locating the zero 

crossings of an image. The second process is matching and has three subprocesses which 

are i) stereo matching, ii) time matching and iii) elimination of multiple matches. The 

basic evidences exploited in these subprocesses to obtain unambiguous matched point 

pairs are the normalized correlation coefficient and the zero crossing patterns [56]. 

6.1.1. Feature points 

The feature points used in this algorithm are zero crossing points of an image which 

are computed using Laplacian-Gaussian masks [50]. In order to eliminate non-significant 

zero crossing points and maintain enough details, we threshold the zero crossing image 

based on the intensity gradient at each zero crossing point. Figure 6.2 depicts the thres­

holded zero crossing images of the pictures shown in Figure 6.1. 

-

-
-
-
-
-

-
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Figure 6.1 : Stereo Image Pairs at f7 and t8 
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Each zero crossing point is associated with one of the sixteen possible zero crossing 

patterns as suggested in [56]. The similarity between any two zero crossing points is 

based on the directional difference of their zero crossing patterns. The directional differ-

ence between any two direction values (e.g., Dl andD 2 ) is calculated as follows: 

DIFF = 1 D 1 - D2 1 

if (DIFF > 4), DIFF = 1 8 - DIFF I. 

In the matching process, the use of directional difference (or zero crossing pattern values) 

in finding matched point pairs is through the expression of directional difference weight 

as shown below: 

1 (6.1) 
Wddif= 1 + DIFF . 

6.1.2. Matching 

Once zero crossings are extracted in all the involved images, the matching process 

is applied to find point correspondences among the images (two stereo image pairs at two 

consecutive time instants, i. e., ti-l and ti)' The evidences used in this process to obtain 

matched point pairs are the nonnalized correlation coefficient and the directional differ-

ence weight as mentioned above; furthennore, in order to limit the search space, the 

heuristic of limited displacement or disparity between frames is exploited. The matching 

processes in motion estimation consist of six steps described below. 

1) Perfonn stereo (from left to right) matching in the ti-l stereo image pair. 

2) Obtain unambiguous matched point pairs by eliminating multiple matches. 
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3) Perform time matching between the unambiguous matched points in the left Ii-I 

image and the feature points of the left Ii image. 

4) Obtain unambiguous matched point pairs from the time matched points by eliminat­

ing multiple time matches. 

5) Perform stereo matching between the unambiguous matched points (obtained in 

step (4) in the left Ii image and the feature points of the right Ii image. 

6) Obtain unambiguous matched point pairs from the results of Ii stereo matching by 

eliminating multiple matches. 

The results of the above steps are two sets of unambiguous stereo matched point 

pairs at time instant ti-l and Ii. These two sets are related through Steps (3) and (4), the 

matching over time; therefore, all the unambiguous matched points that correspond to 

each other among the two stereo image pairs at time instants Ii-I and Ii can be selected. 

6.1.2.1. Stereo matching 

This is the subprocess to obtain the matched point in the right image for each 

matchable zero crossing point in the corresponding left image of the same stereo pair. 

Since the imaging setup is the parallel axis method. the epipolar line constraint is 

exploited in solving the stereo matching problem. As a result, we have a one­

dimensional search space instead of a two-dimensional search space in the stereo match­

ing process. A typical search space in the right image for a matchable zero crossing 

point in the left image is on the left side of the transferred location of that particular left 

image zero crossing point; however, by using the heuristic of limited disparity between 

frames, the search space is limited to dmax (the maximum possible disparity). 

-

-
-
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Let Sri be the set of all non-horizontal zero crossing points in the right image within 

the search space of a zero crossing point in the left image. The stereo matching process 

is as follows : 

For each point in Sri, 

i) Calculate the normalized correlation coefficient with a template size of sxs between 

the grey level images of left and right at the corresponding locations. The normal-

ized correlation coefficient is calculated by using the following expression: 

(6.2) 

where 

[xij : value at point (i,j) in the left image. 

rxij : value at point (i,j) in the right image. 

LX : mean value of the template in the left image. 

rx : mean value of the template in the right image. 

ii) If the normalized correlation value Ps is less a threshold value thrshp,. we discarded 

that particular point in the search space in the remaining steps. 

iii) Calculate the directional difference weight (wddif(stcreo» between the left and the 

right zero crossing point (within the search space) according to Equation (6.1). 

iv) Obtain the total weight as the combination of the correlation coefficient and the 

directional difference weight. 
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W.r = a x P.r + b x Wddi/(.rlueo); a + b = 1. (6.3) 

v) Among all elements of SrI> the point with the maximum total weight Ws is con­

sidered as the matched point for the corresponding zero crossing point in the left 

Image. 

6.1.2.2. Time matching 

This is the subprocess to obtain the matched point in the left ti image for each candi­

date zero crossing point in the corresponding left ti-l image. Similar to the stereo match­

ing process, we exploit the heuristic of limited displacement (instead of disparity) 

between frames in solving the time matchirig problem. We assume that the total motion 

between the ti-l and tj frames is within fpixels in the vertical direction and h pixels (from 

right to left) in the horizontal direction. Hence, the search space for each candidate zero 

crossing point in the left tj-l image is a window of size fxh pixels on the left side of its 

transferred location in the left ti image. Any zero crossing point (except horizontal ones) 

inside this window is a potential match point for the corresponding candidate zero cross­

ing point in the left tj-l image. The time matching process is similar to the stereo match­

ing process and is listed as follows : 

For each non-horizontal zero crossing point in the left ti image within the search 

space of a zero crossing point in the left ti-l image, 

i) Calculate the normalized correlation coefficient with a template size of tXt between 

the grey level image of tj-l and ti at the corresponding locations. The normalized 

correlation coefficient is calculated by using the following expression : 

-
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(6.4) 

where 

Xij : value at point (i,j) in the ti-l image. 

Yij : value at point (i,j) in the ti image. 

:X: mean value of the template in the ti-l image. 

y : mean value of the template in the ti image. 

ii) If the nonnalized correlation coefficient P, is less than a threshold value thrshd pt , we 

discard that panicular point in the remaining steps. 

iii) Calculate the directional difference weight ( Wddi/(tiIM») between the left ti-l and the 

left ti zero crossing point (within the search space) according to Equation (6.2). 

iv) Obtain the total weight as the combination of the correlation coefficient and the 

directional difference weight. 

W, = c X P, + d X Wddi/(liIM); C + d = 1. (6.5) 

v) Within a search window in the left ti image, the zero crossing point with the max-

imum total weight W, value is considered as the match point for the corresponding 

zero crossing point in the left ti-l image. 

6.1.2.3. Elimination of multiple matches 

After the subprocess of either stereo matching or time matching, there may be mul-

tiple matches for some zero crossing points in either the left image or the left ti-l image. 
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We use the same procedure in eliminating both types (stereo or time) of multiple 

matches, except different sizes of the search window are exploited. For stereo matching, 

a I-D search window of size dmu. is used on the left side of a multiple matched point; on 

the other hand, for time matching, we use a search window of size 2fXh on the left side of 

a multiple matched point. The remaining steps of the procedure for determining unambi­

guous matched points are as follows : 

i) At the position of a multiple match in either the right image for stereo matching or 

the left ti image for time matching, open a search window either with a size of dmu. 

or with a size of 2fxh, respectively. 

ii) Within the search window, locate all the positions that have the same (multiple) 

match. 

iii) If all the positions are within the neighborhood region r",igh, calculate the total 

weight (w$ or w,) according to Equation (6.3) or (6.5) (depending on whether we try 

to eliminate stereo multiple matches or time multiple matches). The position with 

the highest value in its total weight is regarded as the correct match. 

iv) If one or more positions are outside the neighborhood region r",igh, we use the 

disambiguation procedure described in the following section to resolve the multiple 

matches. 

v) If multiple matches still exist after the application of the above steps, they all are 

discarded from the match set. 
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Disambiguation 

This procedure is used only if step (iv) in the above discussion is true. In this pro­

cedure, the neighboring unambiguous matched points around a multiple matched point 

are used as one of the supporting evidences in determining the correct match. The other 

evidences used are the normalized correlation coefficient and the directional difference 

weight. The steps are listed as follows: 

i) At each position, calculate the normalized correlation coefficient (Ps for stereo 

matching or P, for time matching) and the directional difference weight (Wddi/(slmo) 

for stereo matching or Wddi/(liIM) for time matching). 

ii) Assign a correlation coefficient rank, Rcc> and zero crossing pattern rank, Rzcp ' to 

each position according to its normalized correlation coefficient (Ps or P,) and direc­

tional difference weight (Wddi/(stmo) or Wddi/{tiIM»' The position with the highest 

value in normalized correlation coefficient or directional difference weight has the 

highest rank in Ra; or Rzcpo 

iii) At each position, check for unambiguous matched neighbors. If it has two attached 

unambiguous matched neighbors, a neighbor weight neighwl of 3 is assigned. On the 

other hand, if it has only one attached unambiguous matched neighbor, a neighbor 

weight neighwt of 2 is assigned. 

iv) At each position, open a check window of size 5><5 but exclude the center 3x3 region 

and count the number of unambiguous matched points, nwnsmp' 

v) At each position, calculate the total possibility as the sum of the ranks, the weight 

and the number. 



'.' 

142 

pOSStot = Rcc + R zpw + neighwt + numsmp (6.6) 

vi) The position with the highest POSStOl value is considered as the correct match. 

Figures 6.3, 6.4 and 6.5 show the results of the algorithm for various steps. Figure 

6.3 shows the unambiguous stereo matching results of the li-l (h) stereo image pair. 

Then, using these unambiguous matched points in the left ti-l (17) image as the candidate 

points, we match them with the feature points of left Ii (ts) image by using the time 

matching procedures. The unambiguous time matched points after the elimination of 

multiple matches are shown in Figure 6.4. Having the unambiguous matched points in 

the left ts image, we match them with the feature points of right Is image and obtain the 

, , 

"';. ':. ~ •• "' __ eo. 

• '" • I •• ~~;·it .. ( .. ' ... - ...... :'; ,. ,"'. e o • o •• " • 

, ." . I f' , " . ..' .:: 
• f .... \. I ':. • ,. " •••• :...... • "l. / . \t; ..... i>i·· ... ·. ". . '" ,,: "' ... °

0

" " •• eo"" , ..... ; 

" .. I,~;" ' ... ;'::.·l, .: ... ~ .. :. >'I.:~;} ::< G~~J'\' 
•• \" ,",'-I ,. .., ......... '/~ •• :~'{' 

0:;" •• ~. .." , 

: ' .. 
. '. 

\ 

.0: eo •• • ... 

I , •• ,'. , .("', " " •• , •• 

0·" "0" -:J .. ·.r.~ .0"." "0 • #"" 0° '.~. .. , ". . \ f" , ' . , ".:: ". ". ..., \ I ':.. ,. .,.. 0° """. " , / . ,.:.:r ." .... ,. .. , . ., , . '\, ... ,,,, ... ~#J". _,,0" .. , .... ,.: Y ••• ; 

\', ~'i ... .,!.:. 1,. ::" .~ .... ~,: I..',:\;:( (,.~)J)') 
" ., ,. .. '" ... ~ ~. .:O;~, . ~.I, .• '. . ......, : ,. . . . 

Figure 6.3: Unambiguous Matched Points of the h Stereo Image 

-
-



143 

~ ° 0 : •• 

...... 
:, i.:".' _ . "., ". 

• ' I .. : ...".. ,. •• 

o ( ·'I~"': °0 •• °0 ' ..... ' "... " .. '~ ° 0 '" : 

"',l~···.1 .,0, .1 • •• .t. , ...• , .. :).:((..'.:., .. : 
"t"'~"'.' .. 0' ..... ),1 •••• :~~., :\.:/.:~. 

••• 0.. '" .... "0 .. " • '" I 

.. '.. ... '" 

~'I' 

• 'l. 

: ..... ': ...... . 
.. ;. ! ....... . 

/" ~~~ .. : ".' '. '" •• ~ °0 .. ,'00 .. 
..... .. ' .. " • 'IL ... "'''II I 

'0 °0 (." .. '.' .'." 0° 0° • '0 I ... I" I Coo ... : .. ' 
; .... ~ .. t ••• "" °0 

... '.... '0 .... :'~/. "' .. "~/I' .. 
.. °

0 
.... ". ...... 0° ° 0 •• '0 • .. 

.. ' '0 o. .. .: 
• 0° 0. 

o .0° 

.. 

Figure 6.4 : Unambiguous Time Matched Points between the Left h and t8 Images 

unambiguous matched points after the elimination of multiple matches. With these two 

sets of unambiguous stereo matched points at h and tg, we can pick out all the unambi-

guous matched points that correspond to each other among the four images, and the 

results are depicted in Figure 6.5. 
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6.2. Data Decomposition and Load Balancing Techniques 

In a multiprocessor system an obvious and simple method to implement a task in 

parallel is to decompose the data and and the underlying algorithm(s) equally among the 

processors. In a completely detenninistic computation in which the computation is 

independent of the input data, such schemes perfonn well and nonnally the processing 

time is comparable on all the processors. That is, efficient utilization and load balancing 

can be obtained. For example, regular algorithms such as convolutions, filtering or FFf 

exhibit such properties. The amount of computation to obtain each output point is the 

same across all input data. Therefore, uniform decomposition of data results in load bal­

anced implementation. 

Most other algorithms do not exhibit the regular structure, and the computation is 

data dependent. Furthermore, the computation is not uniformly distributed across the 

input domain. In such cases, a simple decomposition does not provide efficient mapping 

and results in poor utilization and low speedups. Also, the performance cannot be 

predicted for a given number of processors and data size because the computation varies 

with the type of data and its distribution. For example, in the stereo match algorithm, the 

computation is more where the feature points are dense and is comparatively small where 

the number of features is small and sparsely distributed (Figure 6.1). Hence, uniformly 

partitioning the input data among processors is not expected to provide good speedups 

and utilization. 

In an integrated vision system, it is important to efficiently allocate resources and 

perform load balancing at each step to obtain any significant performance gains overall. 
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An important characteristic of such systems is that the input data of a task is the output of 

the previous task. Therefore, while computing the output in the previous task enough 

knowledge about the data can be obtained to perform efficient scheduling and load 

balancing. In the following we discuss such techniques and ~n the next section we present 

the performance results for these techniques using algorithms in the motion estimation 

system. 

Consider a parallel implementation of a task on an n processor parallel machine. Let 

Tj (1Si~) denote the computation time at processor node i. Then the overall computation 

time for the task is given by 

T max = max{T It ... ,T,,} (6.7) 

The total wasted time (or idle time) T..., is given by 

i_ 
T..., = L(T max - Tj) (6.8) 

1fT max = Tj for all i, lSiSn, then the task will be completely load balanced. Another meas-

ure of imbalance is given by the variation ratio v, 

Tmax 
V = --, T min =min{T1, ... ,T,J 

Tmin 
(6.9) 

The goal in performing load balancing is to minimize T..." or move V as close to 1 as pos-

sible. In the best case, T..., = 0 or VI = 1. If Ts«q is the time to execute the same task on a 

sequential machine, then the speedup is given by 

(6.lO) 

Therefore, by minimizing T..." the achievable speedup can be maximized. 

.... 

-

-

.:-. 

... 
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6.2.1. Uniform partitioning 

Data decomposition using unifonn partitioning perfonns well as a load balancing 

strategy for input data independent tasks because equally dividing the data distributes the 

computation equally. If the total input data size is D then the total computation time to 

execute the task is T = kxD, where k is a detennined by the computation at each input 

data point. For example, in convolution of a image with an mxm kernel, k = 2xm 2 floating 

point operations. Hence, for an n node multiprocessor the data decomposition methods to 

balance the computation is to make the granule size to 

(6.11) 

6.2.2. Static 

When the computation is not unifonnly distributed across the input domain and is 

data dependent then unifonn partitioning does not work well for load balancing. Nor-

mally, the computation depends on the significant data or the type of data in a partition. 

Many image processing and vision algorithms exhibit this behavior. For example, in 

stereo match, and hough transfonn the computation is proportional to the number of 

features (edges) or significant pixels in a granule rather than on the granule size. There-

fore, equal size granules do not guarantee load balanced partitioning because of the data 

dependent nature of the computation. In fact, the variation can be very significant as we 

shall observe in the next section when we discuss the performance. In many such algo-

rithms, the computation time for a granule (0, Ti , is proportional to a certain extent on the 

granule size (fixed overhead to process a granule) and to the number of significant data in 

the granule. That is, 
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(6.12) 

where, di is the granule size, Ii is a measure of significant data in a granule (i), and A and 

B are arbitrary constants which depend on the algorithm. Therefore, the objective is to 

divide the computation among the processors such that each processor receives an equal 

measure of computation to perfonn rather than an equal amount of data. One way to 

assign a granule to a processor will be to compute the total measure of computation and 

partition as follows: 

T
j 
= _i'""_" ___ _ 

n 

(6.13) 

where g is the total number of granules in the input domain (Note that the number of 

granules for the current task is n for an n processor system). 

For example, consider computing hough transfonn of an edge image. The algorithm 

involves computing the parameters for line segments in the images. If there exists a line 

whose nonnal distance from the origin is r, the normal makes an angle 9 with the x-axis; 

then if the point (x,y) lies on that line, the following Equation is satisfied. 

r =xcos9 +ysin9 

r and e are quantized for desired accuracy and then for each significant pixel (where 

there is an edge), and r is computed for all quantized 9 values. If two partitions of equal 

size contain a different number of edge pixels, then the amount of computation will be 

different for the two partitions despite their being equal in size. In fact, the computation 

is directly proportional to the number of edge pixels in the partition. A way to perform 

static load balancing will be to decompose the input data such that each partition contains 

an equal number of edge pixels. The computation to recognize this partioning can be 
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perfonned in the task in which edges are detected by keeping a count of the number of 

edges detected by a processor. Note that it is important to compute the statistics on the 

fly when edges are detected to guarantee low overhead. If the same statics are gathered 

by sequentially scanning the input data then the overhead can be significant. Once the 

task is completed, the data can be reorganized such that the number of edges with each 

z Z 
processor is in the interval (~- 5, ~ + 5), where Za is the total number of edges 

n n 

detected in the image and 5 is determined by the minimum granule size from fixed over-

head considerations. 

6.2.3. Weighted static 

When the computation in a granule not only depends on the number of significant 

data points in the input domain but also depends on their spatial relationships, then data 

distribution also needs to be taken into account as a measure of load to perfonn load 

balancing. For example, from the previous section it is evident that to perfonn stereo 

match, not only does the computation depend on the number of zero crossings but also 

depends on their spatial distribution. If the zero crossings are densely spaced then the 

computation will be more than that if the same number of zero crossings is sparsely dis-

tributed (refer to Figure 6.2). The reason is that if the zero crossings are densely packed 

then greater numbers of zero crossings need to be matched with each corresponding zero 

crossing in the other image, whereas fewer numbers of zero crossings need to be matched 

if they are sparsely distributed. Hence, the computation also depends on the spatial den-

sity (such as features/row if one-dimensional matching is perfonned). That is, 
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(6.14) 

where Wi is the feature dependent spatial density. For example, if the minimum granule 

size is a row of the input data then Wi = ,p, where 'i is the number of features in row i and 

~ is a parameter, OS~S1. ~ =0 means that the computation is independent of how the 

features are distributed within a row. Therefore, to divide the computation equally among 

n processors, the following heuristic can be used. 

i-R 
1: Axdj + Bxwjxdj 

Ti = ...;.,i-o....:...-_____ _ 

n 

-
(6.15) 

where, R is the number of rows in the image. Note that the above heuristics approximate 

the load and do not exactly divide the computation among processors. However, in the 

next section we will show that these schemes perform well. 

As an example, consider the stereo match computation. While partitioning the data 

among processors, a weight can be assigned to each row as a function of the number of 

features in the row. This weight represents the feature density. Note that using a row as 

the smallest granule avoids the communication overhead because search space for stereo 

matching is one-dimensional, and therefore, if the granule boundary is one row then there 

is no need for communication. 

6.2.4. Dynamic 

The above three methods use the knowledge about the data when it is produced to 

perform load balancing for the next task. However, once decomposition is done then the 

data is not reshuffled. Therefore, we consider the above methods as knowledged based 

static load balancing schemes. In the dynamic scheme, the data is decomposed into finer 
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granules such that the number of tasks (that is, the number of independent granules) M is 

much larger than the number of processors. 

At the execution time, the processors are assigned these tasks dynamically by a 

designated scheduler from a task queue which contains these tasks. Processors are 

assigned new tasks as they finish their assigned tasks, if there are more tasks left to be 

assigned. However, the knowledge obtained from the previous step again can be used to 

anticipate the completion of a task to assign a new task to a processor. That is, the tasks 

can be pipelined, and therefore, the overhead of the dynamic load balancing can be 

reduced. The communication overhead of dynamically assigning tasks is not incurred in 

the previous three schemes. Figure 6.6 shows the partitioning for the above described 

strategies for the stereo match algorithm. 

6.3. Parallel Implementation and Performance Evaluation 

This section presents a parallel implementation of the algorithms that are part of the 

motion estimation system and describes the performance of the algorithms and load 

balancing strategies. The algorithms were implemented and evaluated on a hypercube 

multiprocessor. 

6.3.1. Hypercube multiprocessor 

Chapter 1 contains a brief description of hypercube multiprocessor architecture. A 

typical commercially available hypercube multiprocessor system consists of a host pro­

cessor and node processors. The host processor serves as the cube manager, provides 

interface with the external environment and input-output of data and program. We used 

Intel iPSC/2 hypercube multiprocessor consisting of 16 nodes. Each node consists of an 
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Intel 80386 processor, Intel 80387 co-processor, 4 megabyte memory and a communica-

tion module. ..., 

6.3.2. Feature extraction 

Features used for stereo match algorithms are the zero crossings of the convolution 

of the image with Laplacian, as presented in Section 6.1. Zero crossing computation 

involves 2-D convolution and extraction of zero crossings from the convolved image. -
Since convolution is a data independent algorithm, unifonn partitioning is sufficient to -
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evenly distribute the computation. The mapping is a division of NxN image onto P pro­

cessors. Each processor computes the zero crossings of a share of N 2IP pixels (Equation 

6.11). Data division onto the processors is done along the rows. This mapping reduces 

communication to only one direction. The reason is as follows. 2-D convolution can be 

broken into two 1-D convolutions [50]. This not only reduces the computation from W2 

sum of products operations per pixel to 2xW sum of product operations per pixel (W is 

the convolution mask window size) but also reduces the communication requirements in 

a parallel implementation if the data partitioning is done along the rows. There is no need 

for communication when convolution is performed along the rows. 

Table 6.1 shows the performance results for the above implementation for an image 

of size 256x256 and a convolution window of size 2000. The first column shows the 

number of processors in the cube( P). The second column represents the total processing 

time (tproc) for convolution. Column 3 shows the number of bytes communicated by a 

processor to the neighboring processor, and column 4 shows the corresponding commun­

ication time which is small compared to the computation time. The second half of the 

table shows computation time for extracting zero crossings from the convolved image. 

The corresponding speedups are also shown. 

It can be observed that almost linear speedup is obtained for convolution. The two 

factors which contribute towards this result is that communication overhead is relatively 

small and is constant as the number of processors increases. However, the speedup 

obtained in the elapsed time (which includes the program and data load time also) is sub­

linear due to the following reason. The hypercube multiprocessor's host does not have a 

broadcast capability, and therefore, the overhead of loading the program increases 
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Table 6.1 : Perfonnance for Feature Extraction (Zero Crossings) 

-ComputatioD for CODvolutioD aDd Zero CrossiDgs 

Convolution Window Size = 20x20 

No. Proc. CODY. CODY. CODY. CODY. ZC 
Compo Comm. Comm. Total CODY. Compo ZC 
Time(sec.) Bytes Time(ms.) Time(sec.) Speed Up Time(sec.) Speed Up 

1 109.0 0 0 109.0 1 6.47 1 
2 54.76 2816 13 54.78 1.98 3.23 1.99 
4 27.51 5632 36 27.55 3.95 1.66 3.89 
8 13.88 5632 36 13.92 7.83 0.85 7.00 

16 7.07 5632 36 7.11 15.33 0.42 15.25 

Feature ExtraCtiOD PerformaDce (Elapsed Time) 

No.Proc. Elapsed Speed up 
Time(sec.) 

1 116.2 1 
2 58.8 1.97 
4 30.1 3.86 
8 16.1 7.22 

16 9.6 12.1 

linearly with the number of processors. However, data load time increment with the 

increase in the number of processors is comparatively small because amount of data to be 

loaded to one processor decreases as the number of processors increase. The only incre-

ment in data load time results from the number of communication setups from the host to 

the node processors which increases linearly with the number of processors. 

6.3.3. Matching features 

This task involves matching features in stereo pairs of images. As discussed in Sec- -
tion 6.1, the epipolar constraint limits the search for a match in the corresponding image 

-
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to only in horizontal direction, i.e., along the rows in the zero crossings of the image. 

Thus data partitioning along the rows for parallel implementation results in no communi­

cation between node processors as long as each partition contains an integral number of 

rows. 

The computation involved in the stereo matching algorithm is data dependent and 

varies across the image because it depends on the number of zero crossings, distribution 

of zero crossing across the image and distribution of zero crossings along the epipolar 

lines. Therefore, partioning the data unifonnly among the processors (Le., assign each 

processor an equal number of rows) may not yield expected speedups and processor utili­

zation. A processor which has very few zero crossings and sparsely distributed zero 

crossings will be under utilized whereas a processor with a large number of zero cross­

ings and densely distributed zero crossings will become a bottleneck, and this imbalance 

of load will result in a poor performance. 

We used uniform partitioning, static load balancing, weighted static and dynamic 

load balancing schemes to decompose computation on the multiprocessor. Static load 

balancing can be achieved by keeping a count of the zero crossings with each processor 

when the previous task (convolution and feature extraction) is executed. At the comple­

tion of the task, the data is reorganized, using this information and the techniques 

described in the previous section. 

Figure 6.7 shows the distribution of the computation times for an 8-processor case. 

The X-axis shows the processor number and the Y-axis shows the computation time for 

each scheme. As we can observe, uniform partitioning does not perform well because the 
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variation in computation time is tremendous. and therefore. performance gains are 

minimal. The static load balancing scheme (shown as dashed bars) performs much better 

than uniform partitioning, but the variation in the computation times is still significant 

because the computation also depends on the distribution of zero crossings. The 

weighted static scheme does perform better than static and further reduces the variation 

in computation times. Note that these schemes only measure the load approximately, and 

therefore, will not divide the computation exactly uniformly. Furthermore, minimum 

-
-
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granularity is a row boundary in order to avoid communication between processors. 

Finally, for an 8-processor case, the dynamic scheme performs very well. Table 6.2 sum-

marizes the distribution for the 8-processor case. The table shows the computation time 

for each processor for all four methods. Speedup is computed as follows. If Ts is the 

sequential processing time and T max is the maximum processing time of one processor 

among n processors, then speedup is ~. Variation ratio is the ratio of the maximum 
Tmax 

processing time to the minimum processing time and it provides a measure of imbalance 

in the computation. For example, in Table 6.2 the variation ratio is 44.25 for the case of 

uniform partitioning, 2.71 for the case of static load balancing, 1.50 for weighted static 

Table 6.2 : Distribution of Computation Times for Stereo Match 

Com )utation Time Distribution for Stereo Match (P=8) 
Proc. Uniform Static Static Dynamic 
No. Partitioning Weighted 

Time (ms.) Time (ms.) Time (ms.) Time (ms.) 
0 364 1402 2439 2890 
1 164 3333 2606 2786 
2 878 3066 2219 2980 
3 7258 3327 2277 2967 
4 6827 3371 2798 2818 
5 5207 3269 3328 2913 
6 762 3063 2864 2803 
7 312 1243 3223 3051 

Max. 7258 3371 3328 3051 
Min. 164 1243 2219 2786 
Variation 
ratio 44.25 2.71 1.50 1.09 
Improvement 
ratio 1 2.15 2.19 2.38 
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and 1.09 for dynamic load balancing. Improvement ratio is the ratio of speedup obtained 

with load balancing to that of uniform partitioning. The computation times shown in 

these tables include all the overhead of load balancing schemes. Figure 6.8 shows the 

speedup graph for varying sizes of multiprocessors from 1 processor to 16. As we can 

observe, uniform partitioning does not provide any significant gains in speedup as the 

number of processors increases. Dynamic scheme performs the best among all the 

schemes (at least for small processor size) but the two static schemes perform compar-

able to the dynamic scheme. We believe that as the number of processors is increased, 
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the two static schemes will move even closer to the dynamic scheme or even perform 
• 

better than the dynamic scheme because for larger multiprocessors, the overhead of the 

dynamic scheme will be larger. One important conclusion from the above observations 

is that such a knowledge based scheme performs very well to schedule parallel tasks in 

an integrated vision system in which very often similar bottom up computations are per-

formed in a sequence. 

6.3.4. Time match 

The computation in the time match algorithm is similar to that in stereo match 

except the search space is two-dimensional and the input to the algorithm is the stereo 

match output. Another difference is that the number of significant points in the input 

data is much smaller than that in stereo match because a great deal of input points get 

eliminated in stereo match. Table 6.3 shows the distribution of the computation times for 

the 16 processor case. We only present uniform partitioning and static load balancing 

cases. The most important observation is that uniform partitioning performs worse than 

that in the case of stereo match and static load balancing performs better. 

The table shows how the measure of computation (number of zero crossings left 

from stereo match step) gets divided among the processors in the two cases. It is clear 

that the number of zero crossings is very evenly distributed (within the minimum granule 

of one row constraint) in the static case whereas they are lumped with a few processors in 

the uniform partitioning case. Figure 6.9 shows the speedup graphs for the two schemes 

for a range of multiprocessor size. The speedup gains for the load balanced case is very 

significant over the uniform partitioning case. We computed the overhead of performing 
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Table 6.3 : Distribution of Computation Time for Time Match 

Computation ror Time Match ( Proc:. = 16) 

Proc:. Unifonn Partitioning With Load Balancing 

No. 

Matc:hlDg Total No. Matc:hlDg Total No. -(Sec.) (Sec.) Zcs (Sec.) (Sec.) Zcs 

0 0.14 0.22 3 935 10.00 47 

1 0.03 0.14 2 1238 12.55 50 

2 0.02 0.13 0 13.12 13.21 53 

3 0.02 0.13 0 14.23 14.27 43 

4 0.02 0.13 0 11.88 11.91 45 

5 3.61 3.72 21 10.93 10.95 44 

6 13.45 13.56 55 12.82 12.85 53 

7 5.09 5.20 20 12.16 12.19 51 

8 26.65 26.76 93 11.41 11.44 45 

9 45.85 45.97 182 10.63 10.65 40 

10 73.82 73.93 259 13.89 13.91 50 

11 27.20 2732 121 13.69 13.71 44 

12 031 0.42 3 15.07 15.09 43 

13 0.11 0.22 1 15.70 15.72 56 

14 0.42 0.53 4 1436 1439 56 

15 0.08 0.10 0 5.21 5.68 43 

Max. Min. Variation Speed Improvement 

tlme(sec.) tlme(sec:.) ratio up ratio 

Unlrorm 73.82 0.10 738 2.69 

Balanced 15.72 5.68 2.76 12.63 4.7 

knowledge based static load balancing and the overhead was 3 ms., which is negligible 

compared to the computation time, and the performance gains are significant. -
-
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6.3.5. Second stereo match 
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16 

This step involves stereo match compu~tion for features from images at time 

instant ti+l after time point correspondence is established between images at time ti and 

ti+l. The matching is similar to that in the first stereo match except that it needs to be 

done only at those points at which time correspondence has already been established. 

Consequently, the number of features to be matched is much less than that in the first 

computation, and hence, the importance of load balancing is further increased. Figure 

6.10 depicts the distribution of computation times for the second stereo match step. The 

three load balancing algorithms used in this case are Unifonn Partitioning, Static and 
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Dynamic. As it is observed from the Figure, the unifonn partitioning does not perfonn 

well at all compared to the other two schemes. The variation in computation time is 

-
significant. Furthennore, it is observed that static and dynamic schemes perform compar-

ably. -
Figure 6.11 presents the speedups for the same algorithm for various multiprocessor -

~izes. The Figure shows that the gains from these load balancing schemes are very 
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significant over simple uniform partitioning. One important observation can be made by 

comparing results in Figure 6.8 and 6.11. Note that the performance of uniform parti-

tioning in the second stereo match is much worse than that in the first stereo match. For 

example, for the 16 processor case, the speedup in the first case is 5.55, whereas for the 

same multiprocessor size speedup is only approximately 2.3. Therefore, as the computa-

tion progresses in an integrated environment, the gains of these load balancing schemes 

become increasingly significant. Hence, overall gains for the entire system are better than 

what may be expected. 
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6.3.6. Summary 

In summary, the following important observations can be made from all the results 

presented in the previous sections. First, the improvement in performance (such as utili­

zation and speedup) itself increases using the load balancing schemes as the number of 

processors increases. Therefore, performance gains are expected to be higher for larger 

mUltiprocessors. Secondly, in an integrated environment. the overheads of such methods 

are small because the measure of loads can be computed on the fly as a side result of the 

current task. Finally, though we showed the performance results of the implementation 

on the hypercube mUltiprocessor, these methods can be applied when algorithms are 

mapped on any medium to large grain multiprocessor system because these techniques 

are independent of the underlying multiprocessor architecture. 

Consider the overall performance gains for the entire system As the computation 

progresses from one step to the next, uniform partitioning performs worse because the 

data points reduce, but the computation at each point increases. Therefore, the gains of 

using parallel processing are minimal. However, the load balancing techniques recognize 

the data distribution at each step and data is decomposed using the distribution. There­

fore, perfonnance gains are expected to improve as the computation progresses in an 

integrated systems environment For example, consider zero crossing, stereo match and 

time match and second stereo match steps. In zero crossing computation, uniform parti­

tioning perfonns well and the load is balanced. Hence, the improvement ratio is 1. For 

stereo match the improvement of static over uniform partitioning is 2.15 for 8 processor 

case, and is 2.22 for the 16 processor case. Similarly, for the time match step, the 

improvement of static load balancing for 8 processor case is 3.38 and for the 16 

-



165 

processor case it is 4.2. Funhennore, for the second stereo match step, similar results are 

obtained. Therefore, it is observed that the improvement in perfonnance itself increases 

as the number of processors increases as well as when the computation progresses in an 

integrated vision system. In summary, the perfonnance gains are expected from these 

schemes for data decomposition and load balancing schemes as the number of processors 

increases, as the computation progresses in an integrated environment, and the overhead 

of these schemes is negligible compared to the performance gains. 
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CHAPTER 7. 

CONCLUSIONS 

7.1. Summary and Discussion 

This thesis has addressed several issues in multiprocessor architectures and parallel 

algorithms for Integrated Vision Systems. The approach has been to consider computa­

tional requirements for vision applications in an integrated environment in designing a 

multiprocessor architecture rather than to propose architecture solutions to perform indi­

vidual algorithms efficiently. An IVS involves algorithms from several levels of process­

ing and the characteristics of algorithms in each level differ tremendously from algo­

rithms in other levels. However, these algorithms need to exist in a system simultane­

ously and interact with each other. Therefore, a multiprocessor architecture suitable for 

IVS applications must be partitionable and reconfigurable. It must have the capability to 

allocate resources dynamically, provide for dynamic load balancing and task scheduling, 

provide fast and flexible communication, provide efficient I/O, and be fault-tolerant, in 

addition to providing raw processing power. 

Chapter 2 presented a model of computation for IVS. The model captures the com­

putation requirements in an IVS, spatial as well as temporal data dependencies, and sug­

gests what types of parallelism may be available in tasks of an IVS. Using the model 

desired features and capabilities of an architecture suitable for IVSs are identified. 

-

-
-

-
-
-

-

-
-
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Another important aspect of the model is that it incorporates temporal relationships 

between tasks which are absent in the Image Understanding Benchmarks presented in 

[1]. 

Architecture of NETRA has been presented in Chapter 3. The original fonn of 

NETRA was proposed by Shanna, Patel and Ahuja in [3]. Several refinements to the 

architecture have been presented in this thesis after careful and detailed considerations of 

the computational requirements of an IVS. The modifications include alternative inter­

cluster communication strategies and the synchronization bus in a cluster. The architec­

ture was critiqued in the light of computation requirements for IVSs developed in 

Chapter 2. It was argued that the architecture provides most of the features, such as 

reconfigurability, partitionability, flexible communication, and fast I/O, needed in a mul­

tiprocessor of IVS. Furthennore, a discussion on how to provide these capabilities was 

included. 

In Chapter 4 the perfonnance of various algorithms on a processor cluster was 

presented. The evaluation of a cluster using several algorithms indicates that the cluster 

provides flexibility of communication, ability to reconfigure in SIMD, MIMD and sys­

tolic modes, and shown that almost linear speedups are possible in most cases. The most 

important observation is that the programmable crossbar design reduces the overheads of 

mapping parallelism by providing selective broadcast capability and the ability to pro­

vide the best interconnection for a particular algorithm. Both analytical and implementa­

tion results were presented. Perfonnance evaluation of some algorithms from the Image 

Understanding Benchmark were also presented. 
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Chapter 5 presented alternative inter-cluster communication strategies in NETRA 

and evaluation of parallel algorithms when mapped across multiple clusters. When an 

algorithm is mapped on multiple clusters, processors between differen~ clusters need to 

communicate. This requires accessing the global interconnection network and global 

memory. However, conflicts may occur in accessing global interconnection and global 

memory, which in turn, affects the performance of an algorithm. Presented in the first 

part are two inter-cluster communication strategies, viz; using global memory via multis­

tage network and a high speed bus connecting the clusters together. An analysis was 

made to compute delays through the global network due to conflicts so that their effects 

can be incorporated into performance evaluation of algorithms. In the second part, per­

formance of several algorithms, when mapped across multiple clusters, is presented. The 

results indicate that even in the case of a large number of conflicts, good (almost linear 

speedups) performance can be obtained for several algorithms when a multistage net­

work is used. However, in order for the bus to be a viable global interconnection, the bus 

bandwidth and speed must be much greater than the processor speed. 

Data decomposition and load balancing techniques were presented in Chapter 6. In 

order to obtain any significant performance gains from parallel implementation of inter­

mediate and low level algorithms, efficient load balancing is important because the com­

putation is normally data dependent. The main contributions have been to present tech­

niques to perform data decomposition and load balancing schemes that exploit 

knowledge about the computation and the data in a task. Since in an IVS such knowledge 

for the next task is normally available while performing the current task, the overheads 

are minimal. Four techniques presented are uniform partitioning, which is shown to be 

-
-

-

-
-
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good enough for data independent algorithms: static and weighted static, which are 

shown to perform well when computation is dependent on the amount of significant data 

and its distribution; and the dynamic load balancing which is shown to work as well. 

However, in the dynamic load balancing scheme, the spatial relationships between data 

element are not maintained. Performances of all the techniques have been shown using 

algorithms from a motion estimation system, and it is concluded that these schemes per­

form well and provide tremendous improvements in utilization and speedups. 

7.2. Future Work 

Future work relating to this thesis can be put into three categories, namely, architec­

tural issues, parallel algorithms issues and systems issues. The following is a brief discus­

sion on each of these issues. 

Specification and more detailed design of the communication networks in NETRA 

are areas for an extension to the current w,?rk. This involves design of communication 

protocols for both intra-cluster and inter-cluster communications. For example, the 

design of communication protocols should address issues such as where does the respon­

sibility of programming the crossbar lie, or how the crossbar will be addressed. Once the 

specifications are provided, the crossbar can be designed in detail. Another task is to 

develop a versatile simulator for NETRA which incorporates clusters as well as other 

parts of NETRA in detail. The simulator can be used to evaluate algorithms in detail, and 

using the results of the evaluation, refinements in the architecture can be performed. 

The second avenue for future research is in the area of parallel algorithm issues, 

both specific to implementing them on NETRA as well as on other architectures. The 
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foremost task is to map a variety of algorithms to evaluate the architecture as well as to 

develop a general approach to mapping parallel algorithms. Study and evaluation of algo­

rithms, especially intermediate and high level, are necessary to obtain a better under­

standing of their characteristics from parallel implementation perspective. Furthermore, 

if the algorithms are evaluated using existing parallel machines, then a better understand­

ing obtained for architectural issues as well as knowledge can be gained about overheads 

associated with implementation of such algorithms. 

The third issue, termed systems issue, deals with the design of operating systems 

and development of a programming environment for NETRA. The design should specify 

tasks for various elements of the architecture, how the tasks interact with one another, 

how to specify and incorporate data and knowledge base about vision systems, design of 

protocols to use data, and knowledge base. Furthermore, the systems issues include 

designing protocols for load balancing. partitioning and allocating resources, memory 

management and task management. The most important and ultimate task is to integrate 

all of the above into one system. 

-
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