
September 1989 UILU-ENG-89-2231
d/&/-- b.3 CS G-108

COORDINATED SCIENCE LABORATORY
~~9 fi- :Y <; .LC College of Engineering N ~ ~)

.*v /, :.&/22

/</
>& </7 * ,>zTf pz.

PARALLEL
ARCHITECTURES
AND PARALLEL
ALGORITHMS
FOR INTEGRATED
VISION SYSTEMS

Alok Nidhi Choudhary

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distributiot~ Unlimited.

PARALLEL ARCHITECTURES AND PARALLEL ALGORITHMS

FOR INTEGRATED VISION SYSTEMS

BY

ALOK NIDHI CHOUDHARY

B.E.(Hons.), Birla Institute of Technology and Science, 1982

M.S., University of Massachusetts, 1986

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the

University of TIlinois at Urbana-Champaign, 1989

Urbana, TIlinois

PARALLEL ARCHITEcruRES AND PARALLEL ALGORITHMS
FOR INTEGRA TED VISION SYSTEMS

Alok Nidhi Choudhary, Ph.D.

Department of Electrical and Computer Engineering

University of lllinois, Urbana-Champaign, 1989

Computer vision has been regarded as one of the most complex and computationally intensive

-problems. An integrated vision system (lVS) is a system that uses vision algorithms from all levels

of processing to perform for a high level application (e.g, object recognition). An IVS normally

involves algorithms from low level. intermediate level and high level vision. Designing parallel

architectures for vision systems has been of a tremendous interest to researchers. This thesis

addresses several issues in parallel architectures and parallel algorithms for integrated vision systems.

First, a model of computation for IVSs is presented. The model captures computational require-

ments, defines spatial and temporal data dependencies between tasks, and shows what types of

interactions may occur between tasks from different levels of processing. The model is used to

develop features and capabilities of a parallel architecture suitable for IVSs. It is concluded that an

architecture for IVS must be reconfigurable into different modes, be partitionable, allow dynamic

resource allocation and task scheduling, provide flexible and fast communication between processing

elements, provide efficient I/O and be fault-tolerant.

A multiprocessor architecture for IVSs (called NETRA) is presented. NETRA is highly flexible

without the use of complex interconnection schemes. NETRA is recursively defined hierarchical

architecture whose leaf nodes consist of clusters processors connected with a programmable crossbar

with a selective broadcast capability. Hence, it is easily scalable from small to large systems. Homo-

geneity of NETRA permits fault tolerance and graceful degradation under faults. Several refinements

in the architecture over the original design are also proposed.

Performance of several vision algorithms when they are mapped on one cluster is presented. It

is shown that SIMD, MIMD and systolic algorithms can be easily mapped onto processor clusters,

and almost linear speedups are possible. For some algorithms, analytical performance results are

compared with those obtained using an implementation. It is observed that the analysis is very accu­

rate.

An extensive analysis of inter-cluster communication strategies in NETRA is presented. A

methodology to evaluate performance of algorithms on NETRA is described. Performance analysis

of parallel algorithms when mapped across clusters is presented. The parameters are derived from the

characteristics of the parallel algorithms, which are then, used to evaluate the alternative communica­

tion strategies in NETRA. The effects of communication interference on the performance of algo­

rithms are studied. It is observed that if communication speeds are matched with the computation

speeds, almost linear speedups are possible when algorithms are mapped across clusters.

Finally, several techniques to perform data decomposition, and static and dynamic load balanc­

ing for IVS afgorithms are described. These techniques can be used to perform load balancing for

intermediate and high level, data dependent vision algorithms. These techniques are novel because

they use knowledge about the data when it is produced and use knowledge about the computation in

the next task to perform load balancing in an integrated environment. They are shown to perform

well, using them on an implementation of a motion estimation system on a hypercube mUltiprocessor.

Index Terms - Multiprocessor Architectures, Parallel Algorithms, Parallel Processing, Computer

Vision, Image Processing

ACKNOWLEDGMENTS

I would like to express my sincere appreciation and gratitude to my thesis advisor,

Professor Janak Patel, for PLOviding me with an opportunity to work under his supervi­

sion. His guidance, support and suggestions were invaluable contributions to this work. I

would like to thank Professors Narendra Ahuja, Prithviraj Banerjee and Thomas Huang

for their comments, suggestions and constant encouragement. I am particularly thankful

to Subhodev Das and Mun Leung for providing their helpful suggestions and sharing

their knowledge, which have helped me expand the scope of this work.

I would like to thank my friends and colleagues in the Computers Systems Group as

well as in the Vision Group of the Coordinated Science Laboratory for their assistance

and suggestions. It has been a pleasant experience to have spent time with all of them

both at work and otherwise. Finally, I would like to extend my appreciation to all the

secretaries in our group for their help.

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCfION ... 1
1.1. Motivation and Scope ... 1
1.2. Review of Multiprocessor Architectures 6

1.2.1. Mesh connected computers 7
1.2.2. Pynunid computers 9
1.2.3. Hypercube multiprocessors .. 13
1.2.4. Shared memory machines .. 15
1.2.5. Systolic arrays .. 16
1.2.6. Partitionable and hierarchical architectures 18

1.3. Organization of the Thesis .. 23

2. MODEL OF COMPUTATION FOR INTEGRATED VISION SYSTEM 26
2.1. Parallelism in IVSs 27
2.2. Data Dependencies 29
2.3. Features and Capabilities of Parallel Architectures for IVSs 32
2.4. Examples of Integrated Vision Systems 35

2.4.1. Image understanding benchmark 35
2.4.2. Motion estimation and object recognition 36

3. ARCHrI'EcruRE OF NETRA ... 39
3.1. Processor Clusters ... 39

3.1.1. Crossbar design ... '" 41
3.1.2. Scalability of crossbar .. 43

3.2. The DSP Hierarchy ... 45
3.3. Global Memory ... 46
3.4. Global Interconnection ... 47

3.4.1. Interconnection network: .. 47
3.4.2. Global bus .. 47

3.5. IVS Computation Requirements and NETRA .. 48
3.6. Comparison ofNETRA with Other Architectures .. 57

4. PARALLEL ALGORITHMS ON A CLUSTER ... 62
4.1. Classification of Common Vision Algorithms ... 63
4.2. Issues in Mapping an Algorithm ... 66

4.3. Perfonnance Evaluation of Parallel Algorithms .. .
4.3.1. 2-D convolution .. .

4.3.2. Separable convolution :

4.3.3. Two-dimensional FFr (2D-FFf)

4.3.4. Hough transfonn

4.4. Parallel Implementation Results .. .
4.4.1. 2-DFFr .. .

4.4.2. Separable convolution
4.4.3. Benchmark Algorithms

4.4.3.1. Sobel

4.4.3.2. Median filtering

4.5. Summary .. .

5. INTER-CLUSTER COMMUNICATION IN NETRA .. .

5.1. Alternatives for Inter-cluster Communication

5.1.1. Multistage interconnection network and global memory

5.1.2. DSP tree links
5.1.3. Global bus

5.2. Analysis of Inter-cluster Communication .. .
5.3. Approach to Perfonnance Evaluation of Algorithms

5.4. Perfonnance of Parallel Algorithms on Multiple Clusters

5.4.1. Two-dimensional Fast Fourier Transfonn (2-D FFT)

5.4.2. 2-D separable convolution .. .

5.4.3. Hough transfonn
5.5. Summary .. .

6. DATA DECOMPOSmON AND LOAD BALANCING TECHNIQUES

6.1. Some Algorithms from Motion Estimation System

6.1.1. Feature points .. .
6.1.2. Matching

6.1.2.1. Stereo matching
6.1.2.2. Time matching

6.1.2.3. Elimination of multiple matches

6.2. Data Decomposition and Load Balancing Techniques
6.2.1. Unifonn partitioning

6.2.2. Static
6.2.3. Weighted static
6.2.4. Dynamic .. .

6.3. Parallel Implementation and Perfonnance Evaluation

67
68
74

76
80

88
90
92
93

93

94

94

96
97

97
97
98
99

105

106

107
117

123
129

130

132
132
135

136
138

139

145
147

147

149

150

151

6.3.1. Hypercube multiprocessor ... 151
6.3.2. Feature extraction .. 152
6.3.3. Matching features ... 154
6.3.4. Time match .. 159
6.3.5. Second stereo match .. ~........... 161
6.3.6. Summary .. 164

7. CONCLUSIONS .. 166
7.1. Summary and Discussion ;.. 166
7.2. Future Work 169

REFERENCES .. 171

VITA .. 175

LIST OF FIGURES

AGURE PAGE

1.1: A 4-Connected Mesh Computer 8
1.2: A Pyl'3lllid Multiprocessor 11
1.3: A Hypercube Multiprocessor-... 13
1.4: Warp System Overview .. 18
2.1: Model of Computation for an Integrated Vision System ... 30
2.2: Computation Flow for Motion Estimation 37
3.1: Organization of NETRA ... 40
3.2: Organization of Processor Ouster .. 42
3.3: Scalability of Crossbar .. 44
3.4: An Alternative Strategy for Inter-Ouster Communication 48
3.5: An Example of SIMD and Systolic Modes of Computation in a Ouster 52
4.1: Oassification of Common Vision Algorithms ... 65
4.2: Mapping Algorithms on One Ouster ... 67
4.3: Mapping on the Cluster for Convolution .. 70
4.4: 2-0 Convolution .. 72
4.5: Performance of 20 Convolution on a Processor Cluster .. 73
4.6: Performance of Separable Convolution on a Processor Ouster 75
4.7: 20-FFr ... 77
4.8: An Example of Mapping 20-FFr onto Four Processors .. 78
4.9: Performance of 20 FFr on a Processor Cluster ... 79
4.10: Communication Time for 20 FFr on a Processor Cluster ... 80
4.11: Accumulator array for Hough Transform ... 82
4.12: Algorithm to Compute Votes in Hough Transform .. 82
4.13: Algorithm to Accumulate the Vote Count .. 83
4.14: Performance of Hough Transform (Data Partitioning) ... 85
4.15: Performance of Hough Transform (parameter Partitioning) 89
4.16: Comparison of Performance ofPP and OP for Hough Transform 90
4.17: Performance of2-0 FFr on a cluster (Analysis and Implementation) 91
4.18: Communication Time for 2-0 FFr .. 92
5.1: Inter-Cluster Communication Using Global Memory .. 98
5.2: Inter-Ouster Communication Using the Global Bus ... 99
5.3: Equivalent Model for Global Communication ... 101
5.4: Computation and Communication Activities of a Processor 101
5.5: An Example of Mapping 2-0 FFr on Three Clusters .. 108

5.6: Speedup for 2-D FFf (Multistage Network) .. 109
5.7: Computation and Communication Times for 2-D FFf (Multistage Network) 110
5.8: Communication Times for 2-D FFf (Multistage Network) III
5.9: Degradation in Speedup Due to Conflicts for 2-D FFf (Multistage Network) 112
5.10: Speedup vs. Network Speed ,.. 113
5.11: Speedup for 2-D FFf (Global Bus) .. 115
5.12: Computation and Communication Times for 2-D FFf (Global Bus) 116
5.13: Degradation in Speedup Due to Conflicts 2-D FFf (Global Bus) 116
5.14: Speedup vs. Network Speed (Global Bus) .. 117
5.15: An Example of Mapping 2-D Separable Convolution on Three Clusters 118
5.16: Speedup for 2-D Convolution (Multistage Network) ... 119
5.17: 2-D Convolution (Multistage Network) ... 120
5.18: Figure 5.18: Overlapped Computation vs. Communication Trade-off 121
5.19: Speedup for 2-D Convolution (Global Bus) ... 122
5.20: Computation and Communication Times for 2-D Convolution (Global Bus) 122
5.21: Speedup for Hough Transform (Multistage Network) ... 125
5.22: Computation and Communication Times for Hough Transform 126
5.23: Communication Times for Hough Transform .. 127
5.24: Speedup for Hough Transform (Global Bus) ... 128
5.25: Computation and Communication Times Hough Transform (Global Bus) 128
6.1: Stereo Image Pairs at t7 and t8 133
6.2: Zero Crossings of the Images in Figure 6.1 .. 134
6.3: Unambiguous Matched Points of the t7 Stereo Image ... 142
6.4: Unambiguous Time Matched Points between the left t7 and t8 Images 143
6.5: Unambiguous Matched Points of the Images in Figure 6.1 144
6.6: Load Balancing Strategies .. 152
6.7: Distribution of Computation Times for Stereo Match (p=8) 156
6.8: Speedups for Stereo Match Computation ... 158
6.9: Speedup for Time Match 161
6.10: Distribution of Computation Times for Second Stereo Match (P=8) 162
6.11: Speedups for Second Stereo Match .. 163

LIST OF TABLES

TABLE PAGE

4.1: Parameters for Performance Evaluation .. '" 68
4.2: Separable Convolution Implementation Results ,... 93
4.3: Sobel Edge Detection 94
4.4: Median Filtering ... 95
5.1: Parameters for Performance Evaluation ... 106
6.1: Performance for feature Extraction (Zero Crossings) ... 154
6.2: Distribution of Computation Times for Stereo Match .. 157
6.3: Distribution of Computation Time for Time Match ... 160

1

CHAPTER 1.

INTRODUCTION

1.1. Motivation and Scope

One of the most imponant, difficult and computationally intensive problems in the

field of artificial intelligence is computer vision. There is no consensus today on the

definition and scope of computer vision. The problem of artificial vision is as old as the

field of computer science and engineering. Researchers have devoted much time in

attempting to define and solve pans of the problems for many years. However, to say that

computer vision is in its infancy today is a correct judgment of the state of the an in

artificial vision. Furthermore, nobody knows the answer to the question of whether it is

possible to make artificial vision as powerful and general as human vision. One of the

many reasons for not knowing the answer is that little is understood about human vision

itself.

There are several approaches to tackling the computational problems in computer

vision. One of the approaches, which is also the oldest, is to use the computational

powers of computers and their development in various fields of computer science and

engineering, such as signal processing, mathematical and scientific algorithms, and graph

theory. The other approach, which is relatively recent, is to somehow mimic the compu­

tations performed in the human brain. This approach is termed as the neural network

2

approach. However, tremendous computational power in one form or another is needed

in both the approaches.

Computer vision and image understanding algorithms employ a very broad spec­

trum of techniques from several areas such as signal processing, advanced mathematics,

graph theory, and artificial intelligence. The computational requirements to perform algo­

rithms from these fields are tremendous when executed individually, and when they need

to be integrated in a meaningful way to perform a broader function in a reasonable

amount of time, the computation becomes almost intractable. For example, consider

interpretation of a changing scene at 30 frames per second. The amount of data to be han­

dled per second itself is almost 25 Mbytes (million bytes) assuming a moderate resolution

of 512><512 pixels per frame with each pixel of three bytes (one byte for each color and

256 grey level). The amount of computation required for simple image transformations,

labeling, grouping, surface reconstruction or motion analysis is very difficult to estimate;

however, for many applications it can be in the range of 100 -10,000 billion instructions

per second [1]. This is raw processing power and does not include the complexities

involved in a system such as interactions among various algorithms, input-output of data,

managing system resources, and fault-tolerance. Therefore, the vision problem is of

tremendous interest to computer architects and it presents them with great challenges.

Having discussed that the need to provide tremendous processing power in an archi­

tecture for computer vision, the next question is how can that processing power capabil­

ity be provided? Parallel processing, which has progressed tremendously in the past

decade, seems to be the consensus approach to providing the necessary computational

power. Fortunately, most algorithms that are part of a vision system are in general,

-

-

3

characterized by massive parallelism. For low level processing, spatial decomposition of

an image provides a natural way of generating parallel tasks. For higher level analysis

operations, parallelization may also be based on other image characteristics and may be

data dependent. In fact, parallel processing has been suggested as the approach to pro­

vide computational power needed for most computational intensive problems such as

scientific, vision or any other because technological limits are being reached in how fast

a serial processor can perform. But the next question is what form of parallel processing,

and what type of multiprocessor architectures are suitable for vision application? It may

be easier to provide raw processing power by parallel processing, but the more important

and difficult question is how to design multiprocessors so that the available processing

power can be used efficiently. Since there is no consensus as to what a vision system con­

sists of, another problem is how to evaluate or compare one architecture with another.

Recently, efforts have been made to provide a framework and benchmark to evaluate

multiprocessor architectures for vision which not only attempt to measure the processing

power of an architecture but also test other architectural issues such as I/O, ability to per­

form algorithms with varying characteristics, and effect on the performance due to

interactions between tasks [1].

This thesis attempts to identify various issues in multiprocessor architectures and

parallel algorithms for computer vision. The approach is to consider the computational

requirements for vision in an integrated environment rather than to propose architectural

solutions to perform one or more algorithms efficiently and fast. We attempt to define the

computational requirements for an Integrated Vision System (IVS), for which there is no

general definition. However, an application dependent definition of an IVS is possible.

4

For example, object recognition, a system that takes an image (or a set of images) as

input and produces an output that describes the object can be considered an IVS. How-

ever, a system (or an algorithm) that takes an image input and produces its Discrete

Fourier Transform (OFT) is not considered an Integrated Vision System, though comput-

ing DFf itself may be a step or a part of an IVS. In fact, it is important to distinguish

between image processing and computer vision (or IVS). Image processing involves

transforming images by applying one or more algorithms to the input in order to make it -
more useful for interpretation by humans. For example, image enhancement, noise reduc-

tion, scaling, and thresholding constitute image processing operations. Integrated Vision

System, on the other hand, involves interpretation and recognition by the system itself

using input data, parameters and knowledge base without any interference from humans.

That is, the system is completely an automated vision system in the ideal case. There-

fore, IVS can be defined as a system which employs a subset of vision algorithms in a

systematic way to produce a meaningful output. The computational requirements for

such an integrated vision system are tremendous [2].

Vision algorithms are normally divided into three levels: low level, intermediate

level and high level. Low level algorithms are mostly image processing algorithms.

These algorithms, in general, are very regular in structure, involve data independent and

local computations, and involve pixel data. Available parallelism is normally on the

pixel level. Intermediate level algorithms perform computations on the output produced

by low level algorithms and involve more complex data structures, data dependent algo-

rithms, symbolic processing, and involve varying degree of parallelism which itself

depends on the data and the nature of the computation. Finally, high level algorithms not

5

only exhibit most of the properties of intermediate level algorithms but also involve top­

down processing in which knowledge based interpretation is performed. Therefore, the

algorithms may involve accessing databases, performing enormous searches and include

other artificial intelligence algorithms.

An Integrated Vision System will normally consist of algorithms from all levels of

processing. Therefore, in addition to providing tremendous raw processing power an

architecture must be capable of the following. It must have the ability to transform pixel

data into a set of meaningful symbols that describe it, to process pixels, symbol data and

other complex data structures in parallel, and the ability to simultaneously perform low,

intermediate, and high level algorithms, and fast I/O. These requirements and others

mean that an architecture must be reconfigurable, provide flexible and fast communica­

tion structures between processing elements, provide different types of processing (such

as SIMD, MIMD) to most efficiently execute algorithms from different levels of process­

ing, be efficient in performing dynamic resource allocation and task scheduling, be parti­

tionable into independent subsystems which can work on different computations simul­

taneously, be fault-tolerant and provide fast I/O bandwidth to keep up with a tremendous

amount of data flow.

Design of multiprocessor architectures for IVSs, therefore, must address the require­

ments posed by the above discussed characteristics of algorithms that are part of an IVS.

In this thesis, we present a model of computation for IVSs for parallel processing. The

model attempts to capture the properties of IVS algorithms, data flow and interactions

between various tasks. Our model not only captures the computation requirements

presented in the Image Understanding Benchmark presented in [1] but it also provides for

6

another dimension (time) of computation which is absent in the benchmark. Then we

present an architecture for integrated vision systems called "NETRA." NETRA, in its ori­

ginal form, was first proposed by Sharma, Patel and Ahuja in [3]. We propose ~everal

refinements to the architecture based on our understanding of computational require­

ments for IVSs. An elaborate discussion is presented that giv~s the rationale behind the

design. Several common vision algorithms are used to evaluate the performance of the

architecture and alternative communication strategies. The algorithms are mapped using

the multidimensional divide-and-conquer paradigm [4] which is an attractive mechanism

for providing parallelism in all levels of processing.

1.2. Review of Multiprocessor Architectures

The advent of VLSI technology has enabled architects to produce high performance

chips to perform specific applications. But these special purpose chips can only be used

in an IVS as accelerators of specific algorithms. Another use of VLSI technology has

been to create massively parallel Single Instruction Multiple Data (SIMD) processors for

vision and other applications. There are also Multiple Instruction Multiple Data (MIMD)

processors in which the number of processors are normally a few orders of magnitude

less than that in SIMD (massively parallel) machines', however, each processor is a

powerful general purpose processor with its own program and data memory. Normally,

MIMD machines fall into two categories: shared memory and distributed memory

machines, though many architectures exhibit both paradigms. Within these

classifications, multiprocessors are distinguished according to the interconnection topol­

ogy between processors or processor-memories. Finally, there are systolic arrays,

-
-

7

hierarchical, partitionable multiprocessor architectures that have been proposed and stu­

died for vision applications. Many of the architectures have been proposed just for vision

application but almost all mUltiprocessors have been studied for vision applications. In

the following discussion, we examine many of the architectures, describe the topology,

salient features and limitations, and discuss their advantages and disadvantages with

respect to solving vision problems. We use the topology as the main classification of the

architectures in describing them; however, within a topology, if machines exist that can

be further classified, then we will present a discussion on them.

1.2.1. Mesh connected computers

Mesh connected multiprocessors have been one of the first multiprocessors pro­

posed for computer vision and image processing applications. For image processing

applications, meshes seem to be an obvious choice because the images map quite natur­

ally onto its structure. Figure 1. i shows the topology of a mesh-connected computer. A

typical machine consists of a large number of processing elements (PEs) arranged in a

square array. Most typical is a 4-connected mesh in which each processor is connected to

its four nearest neighbors. However, 6 (hexagonal) and 8 connected meshes have also

been proposed. Most machines built on this topology are SIMD type of machines. Each

PE has its local memory, and it responds in SIMD mode to the instructions broadcast by

a controller. The PEs can be selectively masked using mask registers.

The advantage of this architecture is that images map quite naturally onto its struc­

ture. When the image size matches the size of the multiprocessor (e.g., NxN mesh for

NxN image), maximum parallelism can be obtained for those operations that require

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0
0 0 0

0 0 0

0 0 0 0

o 0 0

Figure 1.1 : A 4-Connected Mesh Computer

o
o

o

8

computations on individual pixels or a very small neighborhood of pixels. However, this

type of architecture has several limitations. There are many low and intermediate level

vision algorithms that involve grouping or matching of image structures which are spa­

tially distant in an image. But in meshes, communication across large distances is expen­

sive and inefficient. Therefore, unless the computation is regular and local, meshes do not

perform well. Furthermore, meshes have been proposed only as SIMD machines, and that

means lack of MIMD processing capability that is necessary to support high level vision.

In order to cost-effectively build a multiprocessor with thousands of processors, indivi­

dual processors must be small, given the technological limitations. Normally, a typical

machine will have PEs with I-bit ALUs and a small memory, which may be sufficient for

small pixel based operations but definitely lacks the power that is needed for intermediate

....

-

-

-
-

9

and high level operations. Finally, to most efficiently use a mesh, it is required that the

data size exactly match the processor size, which is a severe limitation.

Several mesh-connected multiprocessors have been built. Examples of mesh­

connected computers include CLIP-4 [5,6,7], GRID [8], GAPP [9], and the MPP

[10,11,12]. Each of-these machines has its own special features, but all of them have the

same general form. One major drawback of these machines has been the inefficiency of

collecting results and rapid evaluation of the results due to communication bottlenecks.

This reflects the fact that they were designed and built as stand-alone image processors

used primarily for image enhancements in which the results of processing are intended

for interpretation by humans rather than forming the first stage of an autonomous vision

system. Several enhancements to a mesh have been proposed to alleviate the global com­

munication problems. Wrapped around connections of the boundary PEs is one of them

in which top row PEs are connected to the bottom row PEs and the first column PEs are

connected to the last column PEs. This arrangement is called Torus. This reduces the

long distance communication time, but the order still remains the same. Other enhance­

ments include connecting PEs in rows and columns by busses to broadcast common data,

but these enhancements do not alter the basic structure, advantages and limitations of a

mesh-connected computer.

1.2.2. Pyramid computers

The concept of pyramid computers is essentially an extension of meshes in the third

dimension. This structure has been proposed in various forms, but the main idea is that an

image sized mesh-connected array is augmented by layers of successively lower resolu-

10

tion mesh-connected arrays as shown in Figure 1.2. Each array in a pyramid is typically

one fourth as large as the array below it. Except for the bottom array, each PE in a

pyramid is connected to f<;lur processors in the level below it, in addition to the neighbor

connections in the same level. Formally, a pyramid consists of (l/2)log N + 1 levels,

where the i-th level, 0Si S(1I2)10g N, is a mesh with N/4i PEs. Each level has connections

to the level above and below, giving each internal PE 9 connections: 4 to its children in

the level below, 4 to its nearest neighbors at the same level, and 1 to its parent in the

level above. All the PEs operate in SIMD mode under the directions of a single con­

troller. Several pyramids have been proposed and built and examples include P APIA

[13], SPHINX [14], MPP Pyramid [15], HCL Pyramid [16,17], and others

[18,19,20,21].

Pyramid multiprocessor architecture provides straightforward implementation of the

divide-and-conquer based approach. Such pyramids are natural candidates for executing

divide-and-conquer algorithms, as they most closely mirror the flow of information in

these algorithms. The pyramid processor provides the capability for quickly changing

the resolution of an image, which can significandy improve the execution speed of some

low level algorithms, especially for those that depend upon communication between cells

that are spatially distant in an image. However, pyramid processors are more difficult to

build than meshes because of the more complex arrangement for communication links

and require twice the number of processing elements for the same image resolution.

Hence, no pyramid multiprocessor has been built commercially.

Despite the fact that a pyramid machine has multiple levels of processing elements,

it should not be concluded that a pyramid is suitable for implementing the multiple levels

-

-

11

Figure 1.2 : A Pyramid Multiprocessor

of processing required in an integrated vision system. The pyramid only implements an

image resolution hierarchy, whereas vision requires an architecture that implements a

hierarchy of abstraction levels. In a pyramid machine, all the processors are identical and

execute in SIMD fashion. A vision machine, on the other hand, requires a different type

of processing at different levels and in a variety of modes of parallelism including both

SIMD and MIMD. Furthermore, from a purely architectural point of view, utilization of

pyramid processors, in general, tends to be very low because at each level the slowest

processor(s) is (are) the bottleneck, and the pipeline of computation (bottom-up) is lim­

ited by the slowest processor, thereby limiting the utilization at all the levels. Therefore,

12

the pyramid machines, like meshes, are mostly suitable for early low level vision algo­

rithm only and lack the flexibility for and processing capabilities needed for complex

vision applications.

The effectiveness and performance of architectures such as pyramid, array proces­

sors, and meshes are limited as architectures for integrated vision systems due to several

reasons. First, they are mostly suitable for SIMD types of algorithms which only consti­

tute low level vision operations. Second, the architectures are inflexible due to the rigid

interconnections. Third, the number of processors needed to solve a problem of reason­

able size is thousands. Such a large number of processors is not only cost prohibitive,

but the processors thems.elves cannot be very powerful and can have only limited

features due to technological limitations. Fourth, it is normally assumed that the problem

size exactly matches the number of processors available. Most of the time it is not clear

how to adapt algorithms so that problems of different sizes can be solved on the same

number of processors. Finally, the problem of input-output of data and fault-tolerance is

rarely addressed in any of these architectures. It is imponant to note that no matter how

fast or powerful a particular architecture is, its utilization can be limited by the

bandwidth of the I/O. Furthermore, due to rigidity of most architectures, a failure nor­

mally either results in the failure of the entire system, or the performance degrades

tremendously. It is imponant that any architecture for such a complex problem should

provide for graceful degradation which can be achieved by flexibility of the interconnect

and capabilities to efficiently reconfigure and partition the architecture.

-

-

-
-
-

-

-

13

1.2.3. Hypercube multiprocessors

Hypercube multiprocessors provide more efficient long distance communication

that is absent in meshes or pyramids. Machines in this class consist of processors con­

nected by communication links whose arrangement is topologically equivalent to an n­

dimensional cube. A hypercube consists of N =2" PEs for an n dimensional cube. Each PE

is connected to n other PEs such that their binary representations differ in exactly one bit

position. Therefore, any PE can communicate with any other PE using at most n com­

munication links. Figure 1.3 illustrates the organization of a hypercube multiprocessor.

Several commercially available machines have been built that use the hypercube

topology. Both SIMD and MIMD types of machines have been built. The Connection

machine is an SIMD hypercube multiprocessor [22]. However, in a connection machine,

two communication networks are provided. Each PE is connected to its four NEWS

neighbors through a NEWS network, and groups of processors are connected in a hyper-

Figure 1.3 : A Hypercube Multiprocessor

14

cube fashion that provides efficient long distance communication. Such a machine can be

used for most low level vision algorithms and some intermediate vision algorithms. How­

ever, like in other SIMD machines, lack of MIMD processing capability precludes its use

for high level vision. Furthermore, low and intermediate processing cannot occur simul­

taneously, which is a necessity for complex, real-time vision systems.

MIMD hypercube multiprocessors are also commercially available. In fact, several

companies have built MIMD hypercubes of large sizes (up to 1024 processors). Exam­

ples include Intel Hypercube [23], NCube [24], and Cosmic cube [25]. A typical proces­

sor node in a machine consists of a general purpose microprocessor (e.g., 80386 and

coprocessor 80387 in Intel iPSC/2), local memory and routing hardware. Each multipro­

cessor is controlled by a host processor. The advantage of the hypercubes is that they

provide efficient long distance communication between processors. Although hypercube

machines with large dimensionality have been built, current systems are not very

efficient due to slow communication bandwidths and tremendous overheads of running

an application. However, a hypercube machine can be used for some intermediate level

and high level vision applications. One major disadvantage with hypercubes is that in

order to efficiently utilize the machine, the algorithms running should somehow use the

underlying topology. Nevertheless, of most existing machines, hypercubes (especially

MIMD) have proved to be the most cost effective machines for research and develop­

ment of scientific as well as vision applications and have helped tremendously in learning

issues in parallel processing in general. But we think that due to rigidity of the architec­

ture, lack of global control and inefficient communication (especially in large machines)

will prohibit hypercubes from being multiprocessors for complex vision applications.

-

-
-
-
-
-

15

1.2.4. Shared memory machines

Shared memory multiprocessors proposed and built are nonnally MIMD machines.

Each PE is a general purpose processor with a small local memory. Each PE has access

to a large global memory through an interconnection structure that connects the PEs and

the global memory. The design of an interconnection network itself has been a huge area

of research. Almost all the machines built today have variations of two common inter­

connection networks: bus-based and multistage interconnection networks. All the inter­

connections (in the machines built) are a variation of the two approaches. Bus-based sys­

tems have a limitation on the number of processors, due to the bus access bottlenecks,

and therefore, are not easily scalable. However, design is relatively simple and cost­

effective. Machines have been built using up to 32 processors in such a system. Sequent

Balance [26] and Encore Multimax [27] are two good examples of bus-based, shared

memory multiprocessors that are commercially available.

Another class of shared memory multiprocessors use multistage interconnection

networks for processor-processor or processor-memory interconnections. Some

bottlenecks of bus based systems are alleviated in such a system; however, the intercon­

nection networks are complex to build. Scalability in such architectures is much better

than that in bus-based systems, and machines with up to 128 processors have been built.

Most machines built or being built have been for research purposes. Examples of these

machines include BBN Butterfly (Commercially available) [28], IDM RP-3 [29], and

Cedar, which is being developed at University of Illinois [30]. The main advantage of

shared memory architecture is the ease of programming and unifonn view of the system.

In other words, control of infonnation and synchronization is much easier compared to

16

that in distributed memory systems. Therefore, this class of machine is best suited for

high level vision tasks. However, since communication between processor and all the

interaction between cooperative tasks is done through the global memory there are

bottlenecks, and hot spots occur. Furthermore, accessing global memory is at least an

order of magnitude higher than accessing local memories, and therefore, communication

speed is very slow compared to computation speed. Hence, such machines are efficient

for only large grain parallelism tasks which have little interactions and exhibit regular

memory access patterns. Since processes interact with each other using global memory

shared variables, the comparative overhead of synchronization is very high and also

results in hot spots. Because the actual image processing operations execute relatively

quickly when they are divided among multiple processors, the process start-up and syn­

chronization overhead rapidly grows to dominate the processing time. Therefore, scala­

bility is definitely a problem in any shared memory multiprocessors. It is possible to

build big machines, but the return of using larger sized shared memory multiprocessors

to solve a problem becomes negative beyond a certain size.

1.2.5. Systolic arrays

Originally systolic arrays were proposed for special purpose computations. A sys­

tolic array multiprocessor consists of processors connected in a certain fashion in which

on each machine cycle each processor takes values from its input ports, performs the

required computation, and passes the results and data onto its output ports. A systolic

array can be perceived as a pipeline of a series of processing stations. Once the pipe is

filled with data, all of the processing stations operate on values in parallel. Systolic array

-

-

-
-
-
-

17

elements can be either general purpose programmable function units or special purpose

fixed function units. The latter are not useful for vision applications because of their

inflexibility. The primary advantage provided by a programmable systolic array is high

performance for low cost. They are, however, best suited for image processing tasks, but

can work well with any application that involves large arrays of data and regular compu­

tation. The main disadvantage of a systolic array is that any evaluation of processing

results must wait until all the data has passed through the array. If a systolic array

processes an image in one frame time, then this restriction has the effect of allowing the

controlling process to make the decision and change the array's programmed functions

once each frame time. In a systolic array, it is thus much more difficult for a vision sys­

tem to quickly and flexibly adapt its processing strategy to the actual characteristics of an

image.

eMU Warp systolic processor is an example of a programmable systolic array

designed and built for scientific and image processing applications [31,32,33,34,35].

The Warp machine is a systolic array computer of linearly connected cells, each of which

is a programmable processor capable of performing 10 MFLOPS. Figure 1.4 shows the

organization of the Warp computer (taken from [35]). A typical Warp array includes 10

cells, though it is claimed that it can be extended if more cells are needed [35]. The

Warp array consists of identical cells called Warp cells, as shown in Figure 1.4 Data flow

through the array on two communication channels (X and Y). Those addresses for cells'

local memories and control signals that are generated by the Interface Unit propagate

down the Adr channel. The direction of Y is statically reconfigurable. For more details

the reader is referred to [35]. The Warp array can be used for both fine-grain and large-

Host

Adr

Interface Unit

r - -- ,
I I
I

: Cell
o 0

I Y 0

: 1 0 0 n

I
I
I

I I
I Warp Processor Array I L __ ~

Figure 1.4: Warp System Overview

18

grain parallelism. It is efficient for fine-grained parallelism because of its high inter-cell

bandwidth. It is also claimed to be efficient for large-grain parallelism because it is com-

posed of powerful cells. Each cell is capable of operating independently; it has its own

program sequencer and program memory. Even though Warp can perform in many

modes, it is mostly suitable for low and intermediate level vision and does not have the

desired flexibility, due to its organization, for efficiently performing high level vision

algorithms.

1.2.6. Partitionable and hierarchical architectures

There have been numerous architectures designed and developed for vision that

cannot be put in any of the classes discussed above. Some of the architectures include

PM4 [36], PASM [37], REPLICA [38], INSPECTOR [39], and IVA [40]. Design of

these architectures has addressed the issues of flexibility, partitionability, and

reconfigurability which are needed in an architecture for an IVS. The following is a brief

-

-

-

19

discussion on some of these architectures, their merits and limitations. An important and

common characteristic of these architectures is that they are capable of being partitioned

into one or more independent SIMD and MIMD subsystem.

PM4 : A Reconfigurable Multiprocessor:

The PM4 represents one of the first proposals for a reconfigurable multiprocessor

capable of executing several MIMD and SIMD processes concurrently [36]. It includes a

large number of processing units constituting a pool. This pool of processing units can be

partitioned into groups, each one of which can operate independently in either SIMD or

MIMD mode. Reconfiguration of system resources is dynamic and is primarily software

controlled. The components of the system include 1) N identical Processor-Memory

Units (PMUs), 2) K identical Vector Control Units (VCUs), and 3) A three-level

hierarchical memory connected by a set of interconnection networks and memory

managements units.

The PMUs are the basic processing units and they include a microprocessor, a local

memory and a Local Memory Management Unit (LMMU). The local memory is com­

posed of interleaved memory modules and serves as a local cache for the microprocessor.

The VCUs control groups of processors operating in an SIMD mode. The Inter-Processor

Communication Network (IPCN) implements permutation functions during the execution

of an SIMD process. Management of the shared memory is accomplished by a Shared

Memory Management Unit (SMMU), which communicates with the LMMUs and with

the File Management Control Unit. The Processor-Memory Interconnection Network

transfers bursts of data or instructions between the shared memory and the PMU s.

20

PASM:

The PASM, a Partitionable SIMD MnvID Multiprocessor, is also a dynamically

reconfigurable into one or more independent SIMD and/or MIMD machines [37]. The

system is composed of Parallel Computation Unit (PCU) which includes N microproces­

sors, N memory modules and an Interconnection Network (IN) connecting them. There is

a set of Q Microcontrollers (MC), each controlling N IQ processors. Memory management

tasks are distributed over a set of processors constituting the Memory Management Sys­

tem (MMS). The system is to operate under control of a uniprocessor System Control

Unit or SCU which would be responsible for job scheduling and for coordinating loading

memory modules within the PCU. Only higher levels of these tasks need to be executed

on the SCU; the details can be distributed over the MCs and MMS.

Two processor-memory configurations are being examined for the PCU. In the PE­

to-PE configuration, each processor has a local memory and the composite processor­

memory units (PEs) communicate via the IN. When data is to be obtained from the

memory of another PE, the two PEs involved cooperate to effect the transfer. Two pro­

cessors are, therefore, involved for any non-local reference. In the P-to-M configuration,

processors are connected on one side of the Interconnection Network and memory

modules on the other. The processors do not have a local memory and can access any of

the modules on the other side of the network. As a result, no explicit data transfers from

one processor to another are required However, all references now have to go via the

Interconnection Network. The system can be partitioned into one or more partitions, each

with RN/Q processors, where R = 2'. Each partition can operate in either an SIMD or an

MIMDmode.

-
-
-
-
-
-

21

The code required to be transferred to more than one MCs (for execution on correspond­

ing sets of N/Q processors) is broadcast to the selected MCs over a bus.

The REPLICA:

The REPLICA was designed as a special purpose computer for multi-sensory per­

ception of 3-D objects [38]. Its main features include support for clean and flexible parti­

tionability with minimal fragmentation and modularity. The machine consists of the fol­

lowing components: 1) A pool of N processing elements, each with a local memory, 2) A

two-level control hierarchy. At level-1 are the controllers and at level-2 are monitors.

The monitor layer is responsible for scheduling tasks and reconfiguring and partitioning

the system. The set of M controllers is uniformly distributed over the system- one for

each group of N 1M processors, 3) A memory management system controlling a large

shared memory and a secondary memory and 4) Four interconnection networks. One net­

work handles communication between monitors and controllers. A second one, a capabil­

ity enhanced crossbar, connects the controller to the PEs. Shift-register rings are used for

communication between PEs within a partition. Finally, a high bandwidth bus is sug­

gested for communication between the PEs, controllers, sensors and memory. This bus is

to support I/O and the transfers of data and programs between main memory and the

local memories of the PEs.

The clean partitionability is attributed to the capabilities of controller-processor and

processor-processor interconnection networks. It is claimed that these networks allow

variable size partitions composed of arbitrary subsets of processors. Partitions can be set

up rapidly and are totally isolated from each other (Le., the partitions are clean).

22

The Image Understanding Architecture:

The Image Understanding Architecture (IUA) integrates parallel processors operat­

ing simultaneously at three levels of computational granularity in a tightly-coupled archi­

tecture [40]. Each level of the IUA is a parallel processor that is distinctly different from

the other two levels, in order to best meet the processing needs for different levels of

algorithms in a computer vision application. Communication between levels takes place

via parallel data and control paths.

The bottom level of the architecture contains an associative processor called the

Content Addressable Array Parallel Processor (CAAPP). The CAAPP is a 512><512 array

of I-bit serial processors designed to operate on arrays of pixels and to construct

intermediate-level tokens from events in an image. At the intermediate level, an array of

64x64 16-bit processors, called the Intermediate Communications and Associative Pro­

cessor (ICAP), are used for the intermediate level of processing. Specifically, the proces­

sors are used for retrieving, comparing and matching tokens, computing geometric rela­

tionships between tokens, and constructing new tokens that describe more abstract enti­

ties. At the top level (called high level) is the Symbolic Processing Array (SPA) which is

a set of 64 processors capable of executing LISP programs. Their function is to support

computation involving inference, hypothesis generation and verification, analysis of

uncertainty, model-based processing and control of processing at the lower levels.

Currently, a l/64th of the IUA is currently being constructed by the University of Mas­

sachusetts and Hughes Research Laboratories.

-

-
-
-
-

-
-

23

1.3. Organization of the Thesis

This thesis contains 7 chapters. The following is an overview of the contents of each

chapter and the organization of this thesis.

Chapter 2 presents a model of computation for IVSs. The model is presented from

parallel processing perspective. An attempt is made to capture the computation require­

ments, to recognize data dependencies between tasks, and capture the temporal flow of

computation. The model is used to develop architectural requirements for multiproces­

sors for IVSs applications. These requirements broadly describe features that should be

present in a multiprocessor design in order for it to be efficient for IVSs.

Architecture of NETRA is presented in Chapter 3. NETRA is a recursively defined

tree-type hierarchical architecture whose leaf nodes consist of a cluster of processors

connected with a programmable crossbar with selective broadcast capability to provide

for desired flexibility. The internal nodes are scheduling processors and their function is

task scheduling, load balancing, and global memory management. All the scheduling

processors and the cluster processor are connected to a global memory through a multis­

tage circuit switched network. The processors in clusters can operate in SI:MD, MIMD or

systolic mode, and therefore, suitable for both low level as well as high level vision algo­

rithms. A discussion is presented that critically examines the features of NETRA in the

light of architectural requirements developed in Chapter 2.

Chapter 4 presents how to map an algorithm on a processor cluster in NETRA in

various modes such as SIMD and MIMD. Then performance evaluation of algorithms

when mapped on one cluster is presented The algorithms are chosen so that they exhibit

24

different communication requirements when mapped in parallel. Performance of some

algorithms on a simulated cluster is also presented. It is concluded that good speedups

and performance can be obtained on a cluster because of the availability of a programm­

able crossbar which provides the necessary flexibility in mapping algorithms with vary­

ing characteristics.

Inter-cluster communication is discussed in Chapter 5. A general method of analysis

of inter-cluster communication is presented. Two alternative inter-cluster communication

networks, namely, bus and multistage, are evaluated. The analysis of inter-cluster com­

munication is used to evaluate performance of various algorithms when mapped across

multiple clusters. When algorithms are mapped onto multiple clusters, the performance is

affected by conflicts and interference in the global interconnection networks. These

effects are incorporated in the analysis, and it is concluded that if interconnection

bandwidth is fast enough then good performance results can be obtained even in the pres­

ence of high conflicts.

Chapter 6 presents data decomposition, load balancing and task scheduling tech­

niques for data dependent algorithms. The techniques exploit the knowledge about the

data gathered from the current task and use the knowledge about involved computations

in the next task in order to partition the data onto the available processors so that load

balancing and high utilization are achieved. In an IVS, in most cases, such information

can be available because the flow of tasks and their dependencies are known in advance.

In order to evaluate the performance, implementation results for a few algorithms that are

part of a motion estimation system are presented when implemented on a hypercube mul­

tiprocessor system. The reason for choosing a hypercube multiprocessor is that using an

-
-
-
-

25

existing machine helps capture the overheads associated with such techniques.

Summary, conclusions and directions for future work are presented in Chapter 7.

26

CHAPTER 2.

MODEL OF COMPUTATION FOR INTEGRATED VISION SYSTEM

Computer vision transcends a wide range of representations and forms of process­

ing. Despite advances in many sub-areas of computer vision, there is no consensus on a

unified approach to vision. However, one can define certain general characteristics of an

Integrated Vision System (IVS) from computational perspective. For example, it is

known that a "vision system" must be able to perform diverse sets of complex operations

on a massive amount of data at high speeds. Motion sequences at moderate resolution

(512x512 pixels) and typical frame rate (30 frames/sec) in color (3 bytes) involve more

than 20 Mbytes of data per second. The amount of computation required for dynamic

scene interpretation including labeling objects, surface reconstruction and motion

analysis is difficult to estimate; however, for many applications computational power in

the range of 1012- 14 instructions per second is required [40]. Not only are the raw pro­

cessing needs tremendous, but varying the type of processing capabilities (such as

number crunching, symbol manipulation, and data processing) are required.

Parallel processing in some form has been accepted as the approach to providing the

necessary computational power to solve complex vision problems. But several questions

remain. What type of parallel processing is best suited? What architectural features are

needed? How is the performance of a multiprocessor architecture measured and how is

its effectiveness as an architecture for IVSs evaluated? Several attempts have been made

-
-
-

-

27

to define benchmarks that capture processing needs for vision tasks [41,42,43].

Recently Weems et al. designed a benchmark for integrated vision systems that attempts

to capture different forms of processing, and includes algorithms with different charac­

teristics and their interactions [1]. However, the benchmark does not include "time"

dimension in the sense that motion and time varying information are omitted from the

benchmark.

In this chapter, we attempt to define a model of computation for integrated vision

systems (IVS) from parallel processing perspective. The model also includes the time

dimension and is more general. It can be used to critically examine a multiprocessor

architecture proposed for IVSs. However, it is not a benchmark that can be used to evalu­

ate architectures. Using the model we attempt to identify the architecture requirements

for IVSs as well as provide a framework to design new benchmarks to evaluate architec­

tures.

2.1. Parallelism in IVSs

Available parallelism in integrated vision systems can be placed in two broad

categories: namely, Spatial and Temporal Parallelism. Within the categories, the avail­

able parallelism can be further sub-divided into different classes. The classes depend on

the type of tasks (or algorithms) constituting the system, the type of architectures on

which the tasks are to be implemented, the methodology used to implement tasks,

interactions between the tasks, and control and data flow between the tasks. For exam­

ple, a task may exhibit suitability for data parallelism at the lowest level and can be

implemented on a massively parallel SIMD architecture; or a task may exhibit data

28

dependent, non-uniform computation, and therefore, be suitable for implementation on

an MIMD architecture in a sub-tasks parallelism mode in which sub-tasks cooperate to

produce results.

Spatial Parallelism is one in which similar operations are applied in all parts of the

image data. That is, the data can be divided into many granules and distributed to sub­

tasks which may execute on different processors in parallel. Most vision algorithms

exhibit this type of parallelism. In an IVS, each task operates on the output data of the

previous task in the system. Therefore, the type of data, and data structures may be dif­

ferent for each task in the system but each form of data can be partitioned into several

granules to be processed in parallel. For example. consider an IVS that performs object

recognition. The input image is smoothed using some filtering operation, then on the

smoothed image an operator is applied for feature extraction, features with similar

characteristics are groupe~ then matching with the models is performed. Each of these

tasks takes the output of the previous tasks as its input and produces an output which

becomes the input for the next task. Note that within spatial parallelism, depending on

the computation involve~ an algorithm implementation may be suitable for data parallel­

ism or task parallelism or both.

Temporal Parallelism is available when these tasks are repeated on a time sequence

of images or on different resolutions of images. For example, the system in which motion

of a moving object is estimated takes a sequence of images of the moving object and per­

forms the same set of computation on all image frame(s). The processing of each frame

or a set of frames can be done in parallel with the processing of frames of other time

instances.

.....

....

29

Figure 2.1 shows the computational model for IVS which illustrates the above men­

tioned characteristics of an IVS. Each pipeline shows a number of tasks applied to a set

of inputs. The input to the first task in a pipeline is the image, and the input to the rest of

the tasks is the output of the previous task. The set of pipelines illustrates that the entire

pipeline of tasks is repeated on different images in time andlor resolution. Each block in

the pipeline represents one task. Each task is decomposed into subtasks to be performed

in parallel. For example, T 1 is one task, and T 1 (d I) is a subtask of T 1 operating on data

granule d I. The figure shows m tasks in the pipeline. The number of sub tasks depends on

the amount of data in a granule and number of available processors. Di,i+1 represents data

transfer from task Tj to task Ti+1 in the pipeline. The model does not make any assump­

tions about a particular implementation of a task.

2.2. Data Dependencies

Existence of spatial and temporal parallelism may also result in two types of data

dependencies, namely, spatial data dependency and temporal data dependency. Spatial

data dependency can be classified into intratask data dependency and intertask data

dependency. Intratask data dependencies arise when a set of subtasks needs to exchange

data in order to execute a task in parallel. The exchange of data may be needed during

the execution of the algorithm, or to combine the partial results, or both. Therefore, each

task itself is a collection of subtasks which may be represented as a graph with nodes

representing the subtasks and edges representing communication between subtasks. Inter­

task data dependency denotes the transfer and reorganization of data to be passed onto

the next task in the pipeline. The mode of communication may be sub tasks of the current

30

Data Dependencies (Spatial) Data Dependencies (Spatial)
-> -->

In put

D 1

Input
Image

ram es

In put

Ii +1

D' 1

..

ut Inp

D" 1

T 1 (d 1)

T1(d1)

•
•
•

T 1(d,.1)

T 1(d1)

T1(d1)

.,
•
•
•

T 1 (d. 1)

T 1(dt>

T 1(d2)

.,
•
•
•

T 1(d.t)

- --->

T1(dt>

D1,l
T1(d1)

•
•
•

T1(dd)

- -

Dl.3

••• •
•
•

Output

! Data Dependencies ! (Temporal.--) __ ---.

T1(d1)

D'l,l
T1(d1)

•
•
•

T1(dd)

D'1,3

•••

T .. (d 1)

•
•
•

Output

! Data Dependencies ! (Temporalr-) __ --,

T 2(d1)

T1(d1)

D"1,l

•
•
•

T 1(d.1)

•
•
•

T .. (d1)

T .. (d 2)

D"l Output

• •• •
•
•

T .. (d_)

Figure 2.1 : Model of Computation for an Integrated Vision System

tasks to the subtasks of the next task, or collection and reorganization of the output data

of the current task and then redistribution of the data for the next task. The choice and

method depend on the underlying parallel architecture and mapping of algorithms. Tem-

-
-
-

-
-
-
-

31

poral data dependency is similar to spatial data dependency except that some form of

output generated by tasks executed on the previous image frames may be needed by one

or more tasks executing on the current image frames. A simple example of such a depen-

dency is the IVS of motion estimation in which features from the previous image frames

are needed in the processing of the current image frames so that features can be matched

to establish correspondence between features of different time frames.

The total computation to execute one pipeline includes time to input data, time to

output data and results, ,sum of the times to execute all tasks in the pipeline (which

includes computation time of subtasks and communication time between sub tasks) and,

data transfer and reorganization time between two successive tasks. Let's denote tep as

computation time for a sub task, tco""" as total communication time for a task, till as data

input time, toul as data output time, and td as data transfer and reorganization time. The,n

time to complete task i, denoted as 'ti is given by

'ti = MAX tep(Ti(d:J')) + tcomm(Ti)
lSjSiai (2.1)

Total time to execute one pipeline including the input and output of data is given by

i_ i_-l

ttot = L 'ti + L td(Di,i+l) + till + toul
isl isl

(2.2)

Let us now consider some characteristics of the algorithms involved in IVS, and

using the above model determine desired features and capabilities of a multiprocessor

architecture suitable for IVS. First, an IVS involves algorithms from all levels of pro-

cessing, i.e., an IVS normally includes low, medium and high level vision algorithms.

Typically, the first few tasks of the pipeline are low level algorithms and the last few are

high level algorithms. The low level algorithms are well understood and well defined.

32

They are nonnally data independent, have regular structure, and spatial parallelism is

mostly available at pixel level. They are well suited for both SIMD and MIMD type of

processing. If communication between processors is fast enough, almost linear speedups

are possible. Therefore, an architecture for IVS should be capable of efficiently executing

low level algorithms and algorithms suited for SIMD type of processing. Also, data I/O

should not be a bottleneck because otherwise, speedups through parallelism can be

nullified. Examples of low level algorithms include most transforms, filtering algorithms,

and convolution algorithms.

High level algorithms are not well understood.. They are nonnally global data

dependent, involve more complex data structures (compared to pixel representation), and

need varying communication for parallel processing. These type of algorithms are more

suited for MIMD type of processing. Hence, the architecture should be capable of execut­

ing MIMD algorithms efficiently.

2.3. Features and Capabilities of Parallel Architectures for IVSs

The following are the architecture requirements for a multiprocessor architecture to

be suitable for integrated vision systems. First, the ability to transfonn image data (pixel

data) into a set of meaningful symbols that describe it. Second, the ability to process

pixel and symbol data in parallel as well as concurrently. Third, the ability to simultane­

ously maintain low, intermediate and high level representations, and the ability to per­

fonn low, intermediate and high level algorithms simultaneously on inter-related or

independent data. Fourth, fast I/O and processing rates for huge amounts of data at all

levels of computations. Fifth, the ability to select particular subsets of data for varying

-

33

types of processing. Finally, the ability to perfonn top-down as well as bottom-up pro­

cessing efficiently, and the ability to report the results efficiently. These are some of the

broad requirements for an architecture for integrated vision systems. From the above dis­

cussion we can transfonn the requirements into specific architecture requirements as

presented below.

(1) Reconfigurability: From the model and the precediAg discussion it is clear that mul­

tiple levels of representations and stages of processing are essential and require very

different types of processing. Hence, the architecture should be capable of executing

both SIMD and MIMD type computations efficiently. That is, it should be possible

to reconfigure the architecture such that each algorithm can be implemented

efficiently using the most suited mode of computation.

(2) Flexible Communication: Fine grained and high speed communication is required

both among the processes at each level and between the different processing levels.

The communication requirements vary for different algorithms. The communication

pattern between processors executing subtasks of a larger task depends on the algo­

rithm involved in the task. If the connectivity between processors is too rigid then

the communication overhead of intratask and intertask communication may become

prohibitive. Therefore, it is desirable that the communication be flexible in order to

provide the most efficient communication with low overhead.

(3) Resource Allocation and Partitionability: As we discussed earlier, there are several

tasks with vastly different characteristics and computational requirements in an IVS.

These tasks need to exist simultaneously in the system. Therefore, the system

34

should be partitionable into many independently controlled subsystems to execute

each task. Since the high level algorithms exhibit varying level of parallelism and

data dependent perfonnance, it should be possible to allocate resources (such as

processors, memory) dynamically to meet the performance requirements.

(4) Load Balancing and Task Scheduling: Load balancing and task scheduling are very

important, especially for high level .Yision algorithms, which are data dependent,

and therefore, in order to obtain better utilization of resources and better speedups,

dividing the computation equally among the processor is critical [44]. The underly­

ing architecture on which load balancing is done and the type of algorithm(s)

involved contribute significantly to how well load balancing can be achieved. In low

level algorithms since the computations are data independent, partitioning data

equally among the processors normally balances the load among them. However,

for high level algorithms, more sophisticated load balancing and scheduling stra­

tegies are needed The architecture should include features such that it is easy to

perfonn load balancing and task scheduling and that the overhead of doing so is

minimal.

(5) Topology and Data Size Independent Mapping: For a system as complex as an IVS,

if the underlying architecture and its interconnect is rigid such that the problem size

that can be solved on it or how it can be mapped is tied to the interconnection, the

effectiveness of the architecture will diminish as an architecture for an IVS.

(6) Fault-Tolerance: Fault-tolerance is an important part of a system of such complex­

ity. A failure in a processor or communication structure should not affect the per-

-

-

-

-
-

3S

formance drastically, which is normally the case when rigid interconnections are

present between processors. The architecture should provide for graceful degrada­

tion in case of failures.

(7) Input-Output: It is most often the case that an architecture is able to perform very

well on some algorithms, and high speedups are obtained, but input-output (I/O) of

data is inefficient I/O is an integral part of a system and if it is a bottleneck then

performance of the system will be limited.

2.4. Examples of Integrated Vision Systems

2.4.1. Image understanding benchmark

Recently, a DARPA sponsored effort has been directed towards developing bench­

marks to evaluate architectures for integrated vision systems, and the benchmarks and

rationale behind it appeared in [1]. We will briefly present a discussion on the bench­

mark as it partly represents an integrated vision systems. The following are some of its

features. The benchmark involves a simple image domain with well-defined, well­

behaved objects. It requires both bottom-up (data-directed) and top-down (knowledge or

model-directed) processing. The top-down processing can involve processing of low and

intermediate level data to extract additional features from the data, or can involve control

of low and intermediate level processes to reduce the total amount of computation

required. It tests low level operations such as convolution, thresholding, connected com­

ponent labeling, edge tracking, median filter, hough transform, convex hull, and corner

detection. It requires utilization of information from two sensors in order to complete the

interpretation process. It tests grouping operations and graph matching, as representative

36

examples of intermediate level and high level processing. respectively. It requires use of

both integer and floating point representations. Finally. it tests the communication chan­

nels between symbolic and numeric levels of processing. The reader is referred to [1] for

more details.

The benchmark includes most characteristics of a typical integrated vision system.

or at least is a good representation of what type of processing may be needed in such a

system. However. it does not span the entire spectrum. Most important. the benchmark

does not include motion information. That is. it does not capture the real-time image

input or time-varying information processing. Our model. presented earlier in this

chapter. tries to capture the time varying characteristics of an integrated system and cap­

tures most characteristics of the integrated benchmark presented in [1]. Furthermore. it

provides a framework to develop benchmarks in the future even though several

refinements in the model need to be performed and a more detailed view has to be pro­

vided.

2.4.2. Motion estimation and object recognition

In this system. sequence of images of a scene containing moving object(s) is used to

compute the motion of the object(s) in the scene, and using the motion parameters and

features from the images, object recognition is performed [45]. The computation

involves extracting zero crossings (convolution, template matching and thresholding),

stereo matching (graph matching and grouping) of features, hough transform, and model

directed object recognition in which features obtained from the image data are correlated

with the features of the set of model objects in order to obtain the best match. Therefore,

-

-
-

-

37

this system also involves both bottom-up and top-down processing. Figure 2.2 shows the

computational flow for the motion estimation system in which stereo images (Um,Rim) at

each time frame are used as the input to the system. Briefly, the involved tasks in this

system are as follows. The first algorithm in the system is computation of zero crossings

in the images (edge detection (Lzc and Rzc)). The zero crossings are used to perform

s!ereo match between the two images of the same time frame. The stereo match algo-

rithm provides points to compute 3-D information about the object in the scene. Using

these matched points (um and Rsm), the corresponding points in the image in the next

time frame (Ltm) are located, and this task is performed by time match algorithm. Again,

stereo match is used to obtain the corresponding 3-D points in the next image frame.

These two sets of points provide information to compute the motion parameters. Using

ZC SM

ZC

ZC: Convolution and Zero Crossings

TM

1)
TM

r'-----':
•

SM

TM: Time Match MP: Motion Parameter Computation

RM: Recognition Module

MP

SM : Stereo Match

Figure 2.2 : Computation Flow for Motion Estimation

Model Inp t

Output

RM

Model In ut

Output

RM

38

the motion parameters and the information from the models, object recognition module

performs the task of picking the best match between models and the information from

image data. The above process is repeated for each new set of input image frames.

Hence, such a system, in addition to exhibiting many of the properties included in

the image understanding benchmark, also captures motion information. Therefore,

several architecture features pertaining to real-time processing, and fast I/O processing

can be evaluated using such a system.

-
-

-

-

-

39

CHAPTER 3.

ARCHITECTURE OF NETRA

This chapter contains a detailed description of the architecture of NE1RA. The first

four sections describe the components of NETRA, their functions, capabilities and

features. The last section critically examines the architecture in view of the computa­

tional requirements for IVS developed in the previous chapter.

Figure 3.1 shows the architecture of "NETRA," which is a recursively defined

hierarchical multiprocessor system and provides distributed as well as shared memory

environment. The architecture consists of the following components :

(1) A large number (1000 - 10000) of Processing Elements (PEs), organized into clus­

ters of 16 to 64 PEs each.

(2) A tree of Distriburing-and-Scheduling-Processors (DSPs) that make up the task dis­

tribution and control structure of the multiprocessor.

(3) A parallel pipelined shared Global Memory and a Global Interconnection that links

the PEs and DSPs to the Global Memory.

3.1. Processor Clusters

The clusters consist of 16 to 64 PEs, each with its own program and data memory.

Each PE is a general purpose processor with a high speed floating point capability. They

40

I DSP

I DSP I DSP I

/ I~ / ~ -I DSP I DSP r DSP I I DSP I

/ 1\ 7 1\ / 1\ / 1\
C C C C C C C C

-
GLOBAL INTERCONNEcrION

~ ~ k3 ~ ~ ~ ~ ~ -
~ t-G2 ~ ~ ~ k3 k3 k3 -

SECONDARY STORAGE AND I/O DEVICES

DSP : Distributing and Scheduling Processor

C : Processor Cluster M: Memory Module

Figure 3.1 : Organization of NE1RA

fonn a layer below the nSP-tree, with a leaf nsp associated with each cluster. PEs

within a cluster also share a common data memory. The PEs, the nsp associated with the

cluster, and the shared memory are connected together with a crossbar switch. The

crossbar switch permits point-to-point communications as well as selective broadcast by

-

41

the nsp or any of the PEs. Figure 3.2 shows the cluster organization. A 4x4 crossbar is

shown as an example of the implementation of the crossbar switch. The crossbar design

consists of pass transistors connecting the input and output data lines. The switches are

controlled by control bits indicating the connection pattern. If a processor or nsp needs

to broadcast, then all the control bits in its row are made one. In order to connect proces­

sor Pi to processor Pi' control bit (ij) is set to one, and the rest of the control bits in row i

and column j are off.

Clusters can operate in SIMD mode, systolic mode, or MIMD mode. In an SIMD

mode, PEs in a cluster execute identical instruction streams from private memories in a

lock-step fashion. In systolic mode, PEs repetitively execute an instruction or set of

instructions on data streams from one or more PEs. In both cases, communication

between PEs is synchronous. In MIMD mode, PEs asynchronously execute instruction

streams resident in their private memories. The streams may not be identical. In order to

synchronize the processors in a cluster, a synchronization bus is provided which is use~

by processors to indicate to the DSP that a processor(s) has finished its computation or a

processor wants to change the communication pattern. The nsp can either poll the pro­

cessors or the processors can interrupt the nsp using the synchronization bus.

3.1.1. Crossbar design

There is no arbitration in the crossbar switch. That is, the interconnection between

processors has to be programmed before processors can communicate with each other.

Programming a crossbar requires writing a communication pattern into the control

memory of the crossbar. A processor can alter the communication pattern by updating

TO
GLOBAL

MEMORY

TO

GLOBAL
MEMORY

SYNCHRONIZATION BUS

UNIDIRECTIONAL

CROSSBAR

PE: PROCESSOR M : LOCAL MEMORY

CDM: COMMON DATA MEMORY

Figure 3.2 : Organization of Processor Cluster

42

the control memory as long as it does not conflict with the existing communication pat-

tern. The nsp associated with a cluster can write into the control memory to alter the

communication pattern. The most common communication patterns, such as linear

arrays, trees, meshes, pyramids, shuffle-exchanges, cubes, broadcast, can be stored in the

43

memory of the crossbar. These patterns need not be supplied externally. Therefore,

switching to a different pattern in the crossbar can be fast because switching only

requires writing the patterns into the control bits of the crossbar switches from its con)rol

memory.

The advantages of such a crossbar design are the following: -First, since there is no

arbitration, the crossbar is relatively faster than one which provides arbitration because

switching and arbitration delays are avoided. Second, it is easier to design and implement

the crossbar because arbitration is absent, and therefore, switches are simple. Further­

more, it is possible to implement systolic algorithms using the crossbar because it can

transfer data at the same or greater speed than required by the systolic computation. Such

a crossbar is easily scalable. Unlike other interconnections, such as cubes and shuffle­

exchanges, the scalability need not be in power of 2. A unit scalability is possible. Furth­

ermore, for the same reason, it is easy to provide fault-tolerance because one spare pro­

cessor can replace any failed processor, and one extra crossbar link can replace any failed

link. This is possible because there is no inherent structure that connects the processor

and each processor, (link) is topologically equivalent to any other processor Oink).

3.1.2. Scalability of crossbar

Figure 3.3a) depicts a 1 bit 4x4 crossbar switch. In order to obtain byte or word

parallel crossbar, the crossbar switches can be stacked together as shown in Figure 3.3b).

The control, address and communication pattern information is exactly the same in all

the stacked switches. Figures 3.3c), d) and e) illustrate the size scalability. Figure 3.3c)

shows how a 4x8 crossbar can be obtained from two 4x4 crossbars. Similarly, Figures

44

3.3d) and e) illustrate how 8x4 and 8x8 crossbars can be obtained. respectively. Note that

the smallest switch need not be a bit crossbar. Depending on the technology and availa­

bility of the I/O pins. it can be of any size (such as 4 bit or a byte). F~ennore, depend­

ing on the available pins, it can be a 16x16 or 32x32 bit crossbar. Finally, sizes of the

crossbar need not be a multiple of two but can be any' arbitrary.

4X4 4X4

a)4x4 c) 4X8

0

4X4

4X4
b) Stacking

4X4

d) 8X4 e) 8X 8

Figure 3.3: Scalability of Crossbar

-
-
-

-
-
-
-
-
-

45

3.2. The DSP Hierarchy

The OSP-tree is an n-ary tree with nodes corresponding to OSPs and edges to bi­

directional communication links. Each OSP node is composed of a processor, a buffer

memory, and a corresponding controller.

The tree structure has two primary functions. First, it represents the control hierar­

chy for the multiprocessor. A OSP serves as a controller for the subtree structure under it.

Each task starts at a node on an appropriate level in the tree, and is recursively distributed

at each level of the subtree under the node. At the bottom of the tree, the subtasks are

executed on a processor cluster in the desired mode (SIMD or MIMD) and under the

supervision of the leaf OSP.

The second function is that of distributing the programs to leaf OSPs and the PEs.

Vision algorithms are characterized by a large number of identical parallel processes that

exploit the spatial parallelism and operate on different data sets. It would be highly

wasteful if each PE issued a separate request for its copy of the program block to the

global memory because it would result in unnecessary traffic through the interconnection

network. Under the OSP-hierarchy approach, one copy of the program is fetched by the

controlling DSP (the OSP at the root of the task subtree) and then broadcast down the

subtree to the selected PEs. Also, OSP hierarchy provides communication paths between

clusters to transfer control information or data from one cluster to others. Finally, the

OSP-tree is responsible for Global Memory management

46

3.3. Global Memory

The multiport global memory is a parallel-pipelined structure as introduced in [46].

Given a memory(chip)-access-time of T processor-cycles, each line has T memory

modules. It accepts a request in each cycle and responds after a delay of T cycles. Since

an L-port memory has L lines, the memory can support a bandwidth of L words per cycle.

Data and programs are organized in memory in blocks. Blocks correspond to "units"

of data and programs. The size of a block is variable and is determined by the underlying

tasks and their data structures and data requirements. A large number of blocks may

together constitute an entire program or an entire image. Memory requests are made for

blocks. The PEs and DSPs are connected to the global memory with a global intercon­

nection network.

The global memory is capable of queuing requests made for blocks that have not yet

been written into. Each line (or port) has a Memory-line Controller (MLC) which main­

tains a list of read requests to the line and services them when the block arrives. It main­

tains a table of tokens corresponding to blocks on the line, together with their length, vir­

tual address and full/empty status. The MLC is also responsible for virtual memory

management functions.

Two main functions of the global memory are input-output of data and program to

and from the DSPs and processor clusters, and to provide inter-cluster communication

between various tasks as well as within a task if a task is mapped onto more than one

cluster.

-

-
-
-
-
-
-

-
-
-

47

3.4. Global Interconnection

Currently, two alternative global interconnection schemes are being evaluated. First

is a high speed bus which is .connected to one port from each cluster and to the global

memory. The second is a multistage interconnection network connecting the global

memory and cluster processors.

3.4.1. Interconnection network

The PEs and the DSPs are connected to the Global Memory using a multistage

circuit-switching interconnection network. Data is transferred through the network in

pages. A page is transferred from the global memory to the processors which is given in

the header as a destination port address and the header also contains the starting address

of the page in the global memory. When the data is written into the global memory, only

the starting address needs to be stated. In each case, end-of-page may be indicated using

an extra flag bit appended to each word.

3.4.2. Global bus

We are evaluating an alternative strategy to connect DSPs, clusters and the globa~

memory using a high speed bus. In this organization one port of each cluster will be con­

nected to the high speed bus. Also, each DSP will be connected to the bus. Processors

that need to communicate with processors in other clusters use explicit messages to send

and receive data from the other processors. Figure 3.4 illustrates this method. A proces­

sor Pi in cluster Cj can send data to a processor Pj in cluster Cj as shown in the Figure. P j

sends the data to the DSP j , which sends the data to DSPj in a burst mode. DSPj then sends

48

the data to the processor Pj. We are evaluating both alternatives for intercluster commun- -
ication.

-
3.S. IVS Computation Requirements and NETRA

In the following discussion we examine the architecture in the light of requirements

for an IVS discussed in Chapter 2. -
Reconfigurability (Computation Modes)

The clusters in NETRA provide SIMD, MIMD and systolic capabilities. As we dis-

cussed earlier, it is desirable to have these modes of operations in a multiprocessor sys-

tem for IVS so that all levels of algorithms can be executed efficiently. For example,

consider matrix multiplication operation. We will show how it can be performed in

GLOBAL BUS

..
M

DSPj
... DSPj E

M

0

R Pi Pj

Y
...

Cj C· J

Figure 3.4 : An Alternative Strategy for Inter-Cluster Communication

49

SIMD and systolic modes. Assume that the computation requires obtaining matrix

C =AxB. For simplicity, also assume that the cluster size is P and the matrix dimensions

are PxP. Note that this assumption is made to simplify the example description. In gen­

eral, any arbitrary size computation can be performed independent of the data or cluster

size.

SIMDMode

The algorithm can be mapped as follows. Each processor is assigned a column of

the B matrix, i.e., processor Pi is assigned column Bi• Then the nsp broadcasts each row

to the cluster processor, which computes the inner products of the rows with their

corresponding columns in lock-step fashion. Note that the elements of the A matrix can

be continuously broadcast by DSP, row by row without any interruptions, and therefore,

efficient pipelining of data input, multiply, and accumulate operations can be achieved.

Figure 3.5a) illustrates a SIMD configuration of a cluster. The following pseudo code

describes the nsp and processor (Pic'S program, O$tSP-l) program.

SIMD Computation

DSP

1. FOR i=O to i=P-1 DO 1.
2. connect(DSP}'j) 2. -
3. out(column Bj) 3. in(column Bj)
4. END FOR 4. -
5. connect(DSP, all) 5. -
6. FOR i=O to i=P-1 DO 6. Cjk =0
7. FORj=O toj=P-1 DO 7. FOR j=O to j=P-1 DO
8. out(aij)
9. END FOR
10. END FOR

8. in(aij)
9. Cjk = Cjk + ajj*bjlc
10. END FOR

50

In the above code, the computation proceeds as follows. In the first three lines, the

DSP connects with each processor through the crossbar and writes the column on the out-

put port. That column is input by the corresponding processor. In statement 5, the DSP

connects with all the processors in a broadcast mode. Then, from statement 6 onward. the

DSP broadcasts the data from matrix A in row major order, and each processor computes

the inner product with each row. Finally, each processor has a column of the output

matrix. It should be mentioned that the above code describes the operation in principle

and does not exactly depict the timing of operations.

-

-
-
-
-
-
-
-
-

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

Systolic Computation

DSP

FOR i=O to i=P-1 DO
connect(DSP 'pi)
out(column Bi)
out(row Ai)

END FOR
connect(Pi to Pi+1 mod P)

1.
2.
3. in(column Bi)
4. in(column Ai)
5.
6. eii=O
7. FORj=O toj=P-1 DO
8. eji = eli + ajj*bji
9. out(aij), in(ai-lj)
10. END FOR
11. repeat 7-10 for each new row

51

Systolic Mode

The same computation can be performed in a systolic mode. The DSP can

reconfigure the cluster in a circular linear array after distributing columns of matrix B to

processors as before. Then DSP assigns row Ai of matrix A to processor Pi' Each proces-

sor computes the inner product of its row with its column and at the same time writes the

element of the row on the outout port. This element of the row is input to the next proces-

sor. Therefore, each processor receives the rows of matrix A in a systolic fashion, and

the computation is performed in the systolic fashion. Note that the computation and com-

munication can be efficiently pipe lined In the code, it is depicted by statements 7-10 .

• Each element of the row is used by a processor and immediately written onto the output

port, and at the same time, the processor receives an element of the row of the previous

----~ --~ ---~-

52

processor. Therefore. every P cycles a processor computes new element of the C matrix

from the new rows it receives every P cycles. Again. note that the code describes only the

logic of the computation and does not include the timing information. Figure 3.5b) illus­

trates a systolic configuration of a cluster.

Partitioning and Resource Allocation

There are several tasks with vastly different characteristics in an IVS. and therefore,

the number of processors needed for each task may be different and may be needed in

different computational modes. Hence, partitionability and dynamic resource allocations

are keys to high performance. Much effort has been devoted towards investigating the

partitionability of interconnection networks [47,48]. Approaches such as in [37,48] are,

however, required only when processes are tightly coupled. In the above case physical

DSP

I I
Po 0 0 0 Pj

0 0 0 Pp - 1

a) SIMD Mode

b) Systolic Mode

Figure 3.5 : An Example of SIMD and Systolic Modes of Computation in a Cluster

-

-
-
-
-

-
-
-

S3

partitions are established. In other words, links are reserved for specific point-to-point

communication while a process executes. Whenever a new process is to be instantiated,

required resources should be free and linked together in a specified manner. The parti­

tioning is, in effect, isolated from the rest of the system.

Partitioning in NETRA is achieved as follows. When a task is to be allocated, the

set of subtrees of nsps is identified such that the required number of PEs is available at

their leaves. One of the subtrees is chosen on the basis of characteristics of the task,

locality constraints and load balancing considerations. The chosen nsp represents the

root of the control hierarchy for the task. Together with the nsps in its subtree, it

manages the execution of the task. Note that partitioning is only virtual. The PEs are not

required to be physically isolated from the rest of the system. Once the subtree is chosen,

the processes may execute in SllvID, MIMD or systolic mode. The following are some of

the advantages of such a scheme. First, only one copy of the programs needs to be

fetche<L thereby reducing the traffic through the global interconnection network. Second,

simple load balancing techniques may be employed while allocating tasks. The tasks of

global memory management can be distributed over the nsp tree by assigning it to the

nsp at the root of the subtree executing the subtask. Finally, locality is maintained

within the control hierarchy, which limits the intratask communication to within the sub­

tree.

Load Balancing and Task Scheduling

Two levels of load balancing need to be employed, namely, global load balancing

and local load balancing. Global load balancing aids in partitioning and allocating the

S4

resources for tasks as discussed earlier. Local load balancing is used to distribute compu­

tations (data) to processors executing subtasks of a larger task. Local load balancing can

be either static or dynamic or a combination of both. With static load balancing, given a

task, its associated data and the number of processors allocated for the task, the data is

partitioned in such a way that each processor gets an equal or a comparable amount of

computation [44]. In dynamic load balancing, the sub tasks are dynamically assigned to

the processors as and when they finish the previously assigned tasks. In NE1RA, when a

task is assigned to a subtree, the DSPs involved perform the local load balancing func­

tions.

Using the information from local load balancing and other measures of computa­

tion, global load balancing can be achieved hierarchically by using the DSP hierarchy. In

this scheme, each controller DSP sends its measure of load to its parent DSP and the root

DSP receives the load information for the entire system. The root DSP then broadcasts

the measure of load of the entire system to the DPSs. When a task is to be allocated,

these measures can be used to select a subtree for its execution as follows: If any subtree

corresponding to the child of the current DSP has an adequate number of processors then

the task is transferred to a child DSP with the lowest load; else if the current subtree has

enough resources and the load is not significantly greater than the average system load

then the task is allocated to the current subtree; else the current DSP transfers the task to

the parent DSP.

-
-
-

-

-

-
-

ss

Flexible Communication

A vailability of flexible communication is critical to achieving high performance.

For example, when a partition operates in SIMD mode there is a need to broadcast the

programs. When a partition operates in MIMD mode, where processors in the partition

cooperate in the execution of a task, one or more programs need to be transferred to the

local memories of the processors. Performing the above justifies a need for selective

broadcast capability. In order to take advantage of spatial parallelism in vision tasks, pro­

cessors worl9ng on neighboring data need to communicate fast among themselves for

high performance. The programmability and flexibility of the crossbar provide fast local

communication. Most common vision algorithms, such as FFfs, filtering, convolution,

counting, and transforms need a broad range of processor connectivities for efficient exe­

cution. These connectivities include arrays, pipelines, several systolic configurations,

shuffle-exchanges, cubes, meshes, and pyramids. Each of these connectivities may per­

fonn well for some tasks and badly for others. Therefore, using a crossbar with a selec­

tive broadcast capability, any of the above configurations can be achieved, and conse­

quently, optimal performance can be achieved at the clusters.

Several techniques for implementing reconfigurability between a set of PEs were

studied [47,49]. It was discovered that using a crossbar switch to connect all PEs was

simpler than any other schemes. The popular argument that crossbar switches are expen­

sive was easily thwarted. When designing communication networks in VLSI, the primary

constraint is the number of pins and not the chip area. The number of pins is governed by

the number of ports on the network and is independent of the type of network. Further­

more, it was realized that a crossbar with a selective broadcast capability was not only a

56

very powerful and flexible structure, but was also simpler, scalable, and less expensive.

The need for global communication is relatively low and infrequent. Global com­

munication is needed for intertask communication, i.e., from one task to another in the

IVS pipeline. It is also needed to input and output data, to transfer data within a subsys­

tem when a task is executed on more than one cluster, and finally, it is needed to load the

programs. The most important issue in global communication is that the network speed

should be matched with the crossbar speed as well as with the processors speed. The glo­

bal communication is performed through the global memory using the interconnection

network, or using the DSP hierarchy. Another alternative we consider is connecting all

the clusters and DSPs to a global bus. Since the DSPs perfo~ most control functions and

loading of programs and data, the responsibility of intertask communication does not lie

with the DSP hierarchy.

I/O and Global Memory Access

The global memory is equally accessible from all the processors and DSPs in the

system. Input-Output of data from (to) sensors and other I/O devices is performed

through the global memory. Since the global memory lies in the address space of each

processor and provides a uniform view across the architecture, I/O is uniformly distri­

buted. Therefore, there are no I/O bottlenecks in the system. Furthermore, the global

memory provides a uniform access to the shared database, which may contain models

and other system data.

A large system such as NETRA implies a large memory and a large interconnection

network. Therefore, the response times to memory requests can be large and variable in a

-
-
-
-
-
-
-
-
-

-

57

nondeterministic manner, due to conflicts in accessing global memory and interconnec­

tion network. Hence, there is a need for the PEs to be able to issue multiple requests in

advance and accept out-of-order requests.

NETRA is a multiprogrammed system with a large number of processes active at

any time. A process becomes active when a token corresponding to the process is entered

into the Active Queue of a PE (for an MIMD process) or a cluster (for a SIMD process).

Data requests for the required input data blocks are immediately issued. When all input

data blocks for a process are available, it is transferred to the Ready Queue. However,

while these requests are serviced, the PEs continue to execute process already in their

Ready Queue. Access to memory for one process is thus overlapped with execution of

another. Multitasking at the PE level, therefore, permits each PE to tolerate large and

undeterministic memory access latencies. Since the assumption is that such a system will

be executing an integrated vision system, as we observed in Chapter 2, there will be

enough processes available and active all the time. Furthermore, the future tasks will be

somewhat predictable because order of the tasks is known from the model of computa­

tion and control flow of the system.

3.6. Comparison of NETRA with Other Architectures

The following discussion presents a comparison of NETRA with other architecture

proposals. Some parts of the discussion in this section have been presented in [3].

Partitionability

PM4 and PASM support partitions that contain one or more of a group of proces­

sors. Each group has a fixed size. These systems are, therefore, likely to suffer from

58

"internal fragmentation," that is, when the number of PEs to be used is not a multiple of

the number present within each group, some processors within one or more groups will

remain idle, and processor utilization will suffer. REPLICA supports partitions of any

size by allowing each group to execute more than one SIMD and MIMD processes. This

capability is by virtue of a capability-enhanced crossbar switch used to connect the PEs.

NETRA, too, provides a similar crossbar at the cluster level and is, hence able to support

independent partitions within the cluster. This features eliminates internal fragmentation

and improves processor utilization.

Setup of Partitions

The second aspect of partitionability is that while NETRA establishes virtual parti­

tions, physical partitions are established in the other cases. NETRA does not partition the

pool of processors into isolated subsystems. Instead, it merely allocates processes to sub­

sets of processors. The process of partitioning involves only placing the token for a pro­

cess in the appropriate queue. In the case of SIMD process, the tokens are placed on the

active queues of DSPs controlling the selected clusters. For MIMD processes, the tokens

are placed in the active queues of the selected PEs. SIMD processes are initiated by the

controlling DSP. MIMD processes are, however, started when the token reaches the head

of the ready queue within the PE. If the MIMD processes need to synchronize in any

way, they must be staned and synchronized by the cluster-DSP.

Multiprogramming

NETRA is a multiprogrammed system and is most efficient if a large number of

tasks are active at all times. Multitasking at the PE level has been used as a tool to

-
-
....

-

-

-

S9

decouple system performance from large memory access latencies. As explained earlier,

long delays for memory access are inherent in a large system, and the system has to be

able to tolerate such delays without loss of performance.

An intelligent memory system has been employed to support multitasking. This

feature essentially permits the PEs to execute queued tasks without having to associate

with the data-fetching operation. The above scheme is unique to NETRA, and its

absence in any other proposals makes them far less suitable for large systems.

Virtual Versus Physical Partitions

In the case of PASM, PM4 and REPLICA, communication links are dedicated to

partitions; consequently, all subsystems are isolated from each other. MIMD processes,

especially executing intermediate and high level algorithms, exhibit widely varying exe­

cution times since the amount of processing is data dependent Therefore, when rigid par­

titions are used, processors would have to wait until all complete processing before they

start executing another process. If the deviation in the processing times is great, such a

waiting will reduce the processor utilization tremendously.

A second factor in favor of virtual partitioning is that it allows for easy allocation of

tasks that are dynamically created. An arbitrary number of such processes may be gen­

erated, and their scheduling would be a difficult problem in all of the above proposals but

NETRA. On NETRA these processes can be allocated as they are generated on the basis

of load balancing and locality considerations alone. How the other systems would handle

dynamically created tasks is not clear, but it would certainly require several global con­

siderations. Since tasks would already have been scheduled to execute on specific

60

partitions, where the dynamically created processes would fit in would have to be deter­

mined. The network would be able to support only selected partitions, and scheduling on

the fly would be difficult.

Scheduling and Load Balancing

Fragmentation can be minimized in PM4, PASM and REPLICA only if scheduling

is static or done considerably in advance of execution. This is because scheduling would

involve global considerations such as partitionability of the interconnection network and

availability of resources. A closer look, however, reveals a major difficulty.

For efficient scheduling and preloading, the scheduler should know in advance what

resources will be available at a given time. In other words, it should know when each

process is to end. Clearly, this requires a considerable amount of determinism in the

behavior of a process. While such information is easily available for SIMD tasks, it may

be impossible to obtain it for most MIMD tasks.

An essential implication is that processes cannot always be pre scheduled. This in

turns implies that data and programs for these processes cannot be prefetched. Conse­

quently, processor utilization suffers drastically.

The scheduling scheme on NETRA is clearly simple and superior. The scheduling

process (executing on a nSP) is not confronted with a large volume of information. It

needs to consider only the average load on the subtree below it and the overall average

load of the system. As soon as a process is placed in an active queue, a request for the

input data blocks required is issued. Prescheduling and data prefetching are thus easily

-

-

-
-
-

-

-

....

61

accomplished. A hierarchical control-structure (the nSP-tree) and simple scheduling and

load balancing heuristic are, therefore, able to provide for high performance.

62

CHAPTER 4.

PARALLEL ALGORITHMS ON A CLUSTER

There are two main considerations in the mapping of parallel algorithtnS onto a

cluster. First is selection of a computation mode such as SIMD, MIMD or systolic, and

the second is the number of available processors on a cluster and selection of the best

way to map the algorithm. For a data dependent algorithm, there may be need for nonuni­

form data partitioning and local load balancing. The load balancing scheme may be static

or dynamic. In the static scheme, the DSP in a cluster allocates tasks to the processors

using some a priori knowledge about the computation such that each processor receives

an average amount of computation. Under the dynamic load balancing scheme the DSP

maintains a queue of ready tasks and assigns the tasks to the available processors as they

become free to execute the next task.

The methodology we use for mapping parallel algorithms is multidimensional,

divide-and-conquer with medium to large grain parallelism. An individual task (in the

following discussion task and algorithm are used interchangeably) can be efficiently

mapped using spatial parallelism, because most of the vision algorithms are performed

on two dimensional data. However, integration of tasks involves exploiting both spatial

as well as temporal parallelism can be exploited by recognizing intertask data dependen­

cies.

-

63

The pwpose of this chapter is to evaluate perfonnance of several common vision

algorithms when mapped onto a processor cluster. The discussion identifies the computa­

tion modes suitable for an algorithm, and suggests alternatives to map an algorithm.

Furthennore, performance evaluation of each algorithm is presented using accurate

analysis, and the analytical results of some of the algorithms are compared with the

implementation results. It is shown that analytical results are very close to the implemen­

tation results. The analysis provides the flexibility to vary several parameters, and there­

fore, it is easier to study the effects of alternative approaches.

This chapter is organized as follows. Section 4.1 presents a classification of some

common vision algorithms based on their computation and communication requirements.

Section 4.2 briefly outlines alternative mapping strategies on a processor cluster. Section

4.3 contains mappings and analytical perfonnance results for one algorithm from each

class and discusses alternative mappings for some algorithms. Parallel implementation of

some of the algorithms is presented in Section 4.4 and the results are compared with

analytical results. Performance of two algorithms from Image Understanding Benchmark

developed by Weems et al. [1] is also presented.

4.1. Classification of Common Vision Algorithms

We can classify some of the common vision algorithms according to their commun­

ication requirements when mapped onto parallel processors. The classification provides

an insight into the performance of an algorithm depending on its communication require­

ments.

64

(1) Local Fixed - In these algorithms, the output depends on a small neighborhood of

input data in which the neighborhood size is normally fixed. Sobel edge detection,

image scaling, and thresholding are examples of such algorithms. Figure 4.1a) illus­

trates that the output at point (x,y) depends on fixed size neighborhood values.

(2) Local Varying - Like the local fixed algorithms, the output at each point depends on

a small neighborhood of input data. However, the neighborhood size is an input

parameter and is independent of the input image size. Convolutions, edge detection

and most other filtering and smoothing operations are examples of such algorithms.

Local varying is depicted by Figure 4.1b) in which it is shown that the output at

point (x,y) depends on a varying size neighborhood which is normally an input

parameter.

(3) Global Fixed - In such algorithms each output point depends on the entire input

image. However, the computation is normally input data independent (Le., computa­

tion does not vary with the type of image and only depends on the size of the

image). Two Dimensional Discrete Fourier Transform and Histogram computation

are examples of such algorithms. Figure 4.1c) illustrates that output at a point (x,y)

is dependent on all the input data points.

(4) Global Varying - Unlike global fixed algorithms, in these algorithms the amount of

computation and communication depends on the image input as well as its size.

That is, the output may depend on the entire image or may depend on a part of the

image. In other words, the computation is data dependent. Hough Transform, Con­

nected and Component Labeling are examples of such algorithms. For example, in

-

-

-

6S

an image, a connected component may span only a small region, or in the worst

case the entire image may be one connected component (a spiral). Similarly, in

N

N

case of hough transform, assuming that we are looking for lines, a line may span

across the image (meaning its votes must come from distant pixels or edges) or it

may be localized. Figure 4.1d) shows that the output of an algorithm may depend

on global data, and the computation is input data dependent.

N

(x,y~

a) Local Fixed

N

c) Global Fixed

N

N

N

(x,y) ~

b) Local Varying

N

d) Global Varying

Figure 4.1 : Classification of Common Vision Algorithms

66

4.2. Issues in Mapping an Algorithm

Mapping a task on one cluster implies that intratask communication will only

involve communication between processors of the same clusters. Figure 4.2 shows how

a parallel algorithm is mapped on a cluster. Assume that there are P processors in a clus-

ter. As shown in Figure 4.2, first program and data are loaded onto the processor cluster.

Both in the case of SIMp or MIMD mode, the program is broadcast onto the cluster pro-

cessors. The data division depends on the particular algorithm. If an algorithm is mapped

in SThID or systolic mode,~ then the compute and communication cycles will be inter-

mixed If an algorithm is mapped in MIMD mode, then each processor computes its par-

tial results and then communicates with others to exchange or merge data.

The total processing time in such a mapping consists of the following components.

Program load time onto the cluster processors (tpl), data load and partitioning time (tdI),

computation time of the divided subtasks on the processors (tep) which is th.e sum of the

maximum processing time on a processor Pi and intra-cluster communication time

(tCOlMl), and the result report time (trr). tdI consist of three components: 1) data read time

from the global memory (tr) by the cluster DSP, 2) crossbar switch setup time (tsw), and

3) the data broadcast and distribution time onto the cluster processors (tbr)' The total pro-

cessing time 't(P) of the parallel algorithm is given by

't(P) = tpl + tdI + tcp + trr
where,

tdI = tr + ts.tup + tbr

and if the computation and communication do not overlap, then

(4.1)

(4.2)

-

-

-

-

--

I Program
Load

Data
Load

Result Err
Ou ut

Communi

! NextTask

Figure 4.2 : Mapping Algorithms on One Cluster

67

tep = MAX (tPi) + teomm (4.3)
ISiSI'

else if computation and communication can be completely overlapped, then

tep = MAX (MAX (tPi) , teomm) (4.4)
ISiSI'

In the above equations, tr depends on the effective bandwidth of the global interconnec-

tion network.

4.3. Performance Evaluation of Parallel Algorithms

In the following we illustrate how algorithms can be mapped in SIMD, systolic, and

MIMD modes onto a cluster, and show how algorithms from different classes can be

68

mapped onto the cluster. In the evaluation we discuss the computation, communication

and storage requirements for the algorithms.

Table 4.1 shows the parameters used for performance evaluation. These parameters

are used for all the analysis and implementation unless specified otherwise.

4.3.1. 2-D convolution -
2-D Convolution is a local varying type of algorithm. A 2-D convolution of an NxN -

image I(ij), O<=i,j<=N, with a kernel W(ij), O<=ij<=w, can be expressed as follows:

m-j+wl2 1I-i+w12
G(i,j) = ~ ~ I (n,m)*W«i+w/2-n) mod w,(j+w/2-n) mod w)

m-j_12 1I-i-... /2

In other words, each point in the output is replaced by a weighted sum of a window wxw

around it. -
The approach is to reduce 2-D convolution to a 1-0 convolution with efficiency 1,

i.e., without incurring additional steps. This mapping will illustrate how to map algo-

rithms in SIMD and systolic modes on a processor cluster when the number of processors -
is much smaller than the problem size. Figure 4.3 shows a cluster of 64 processors. The

Table 4.1 : Parameters for Performance Evaluation

Total No. of Processors ND 512
Cluster Size Pc 8-128
No. of ProcessorslPort P lJ 4
Image Size NxN 512 X 512
Memory Modules M 128
Processor Speed 5 MIPS, 5 MFLOPS
Network Speed (Block Transfer) 20 Mbytes/Sec.

-

-

69

interconnection between processors shows an abstract representation of all the connec­

tions required to perfonn the convolution operation. However, all the connections are not

needed at the same time. We shall observe that only one input and one output connection

is sufficient at any time, and that the flexibility of the crossbar can be used to obtain all

the desired interconnections efficiently.

Each pixel is logically mapped onto a separate processor (as if there were as many

processors available as there are pixels). Actually the image is folded and multiple pixels

are mapped onto one processor. The image is folded in two dimensions in a wrap around

fashion, both left to right, and top to bottom. For a cluster size P, (assume P = pxp), each

processor has M = N 2/P pixels in its local memory. In general, pixel (i,j) ;

~iSN-l, ~jSN-l is mapped to processor «i mod p), G mod p». Therefore, this map­

ping preserves the adjacency of any two pixels even though the image is folded.

Figure 4.3 shows the flow of. the distribution of data for window size 5><5. A small

window is embedded in a larger one, and therefore, the same connections can be used for

a larger window size with the addition of new connections for extra steps. The algorithm

perfonns the convolution by each processor distributing its pixel values to the neighbor­

hood in a pipe lined manner.

In the following algorithm, North, South, East and West neighbors are defined in

wrapped around fashion. At any step all the processors have the same neighbor connec­

tion. Figure 4.3 shows how processor (3,3),s values will be distributed. All the processors

follow the same pattern. For a processor P(i,j), N,S,E,W neighbors are defined as fol­

lows. Note that the following definition is only a logical definition, and it represents the

70

-

-

-
-

-

5><5 window

Figure 4.3 : Mapping on the Cluster for Convolution

-

-

71

pixel adjacency. The following definition does not imply any physical connections

between processors.

N = «i-l)j), if (i-j) < 0, then N = «i-l + p), j)

S = «i+l) mod p, j)

E = (i, (j+l) mod p)

W = (i, (j-l), if (j-l) <0, then W = (i, (j-l+p))

The algorithm works as follows (Figure 4.4): The nsp broadcasts the convolution

weights to all the processors. Each processor multiplies its M pixels with the central

weight value. In Figure 4.4 the data values at each processor are stored in a linear array

and subscript (ij) means the data value i in the connection number j. The intermediate

values are stored in the running variable for each of the M pixels. The image is then

shifted in a spiral manner (as shown in Figure 4.3). If the image is shifted North then the

processors now multiply the pixel values with the South weight. This process is repeated

w 2-1 time, i.e., for each weight. We make the following observations. First, the map­

ping is independent of problem or cluster size. That is, this mapping will work for all

problem sizes. Second, the number of times the interconnection needs to be changed only

depends on the convolution kernel size. Furthermore, at any time only one input and one

output connection is required. By storing the connection patterns in the crossbar memory

the switching time is negligible. Third, it is possible to overlap the computation and com­

munication by writing the pixel to the output port as soon as it is multiplied by the

appropriate weight in the current processor. The above algorithm illustrates that SIMD

algorithms can be mapped efficiently onto the processor clusters using the flexibility and

programmability of the interconnection.

ALGORITHM CONVOLUTION
All the processors work in SIMD lock-step fashion.

DSP broadcasts the" convolution kernel.
Set up Connection_array of size wxw in the crossbar memory by choosing.
first wxw connections from the set .
. {N ,E,S,S,W

r

~f'N,N,E,E,E,S'S'S'W' W,W,W,N ,N,N,N,E, .. },

M'-.- P

For i = 1 to M do (in parallel)
Result(i) := Wi.i • data (0

End For

For j = 1 to wxw do (in parallel)
Set up appropriate connections on the crossbar as follows.

connection(j) := connection_array(j)
For i = 1 to M do (in parallel)

Send data (pixels) on the output port to the connected
neighbor.

At the same time receive data from its input port.
Result(i) := Result (i) + Wi,j • data (i,j)

End For
End For

END CONVOLUTION

Figure 4.4: 2-D Convolution

72

The computation time decreases as the number of processors increases. The com-

munication time per pixel only depends on the kernel size. The following formulae

present the computation and communication times in terms of multiplication and addition

operations. The factor tjt denotes the floating point speed of a processors in terms of its

normal instruction execution speed.

t", = 2xtftXr ~ 1 xw'

-

-
-

-

-

73

Figure 4.5 shows the perfonnance of the 2D convolution on a processor cluster.

The processing time has been computed assuming a 2 MFLOP processor. The Figure

shows two speedup graphs, one with communication overlap and the other with additive

communication. The computation time decreases linearly as the number of processors

increases. The total communication time per processor also decreases linearly but the

communication time per pixel computation remains constant. The important observation

one can make is that it is essential that the communication and computation overlap in

order to obtain linear speedups. However, if the interconnection speed is not matched

12 128
20 Convolution (Window = 10xIO)

Computation Time

9

" " " ,
" " Processing

6 ",," Speedup 64 Speedup
Time(ln Sees.) <,.Wcomm overlap)

" " " " " "" " ,
" 3

" " 32
" " " "" (....) Communication time 16

8
0 ~

148 16 32 64 128

Number of Processors

Figure 4.5 : Perfonnance of 2D Convolution on a Processor Cluster

74

with the computation speed, then overlap will not be possible. Having a fast crossbar

without arbitration delays provides the necessary communication speed to obtain linear

speedups. Note that since computation and communication can overlap, this mapping

also illustrates how systolic algorithms can be mapped.

4.3.2. Separable convolution

Separable Convolution is a two-dimensional convolution broken into two one

dimensional convolution. For applications such as computation of zero crossings, separ­

able convolution performs well [50]. The main advantage of separable convolution is

that the computation requirements per pixel are reduced from 2w2 to 4w. We show how it

can be mapped on a cluster. This example also illustrates how an algorithm can be

mapped in MIMD mode on a cluster.

The data is decomposed among the processors as follows. Each processor is

assigned NIP rows of the data. Processor Pi gets rows (i-l)xN /P to ixN /P -1. Each pro­

cessor computes convolution along the rows using a window of size w. Once processor Pi

finishes convolution along the rows, it needs rows (i-l)xNIP -w/2 to (i-l)xN/P -I,

from processor Pi-to and similarly, it needs the bottom w/2 rows from ixN/P to

i xN 1 P + w 12 -I from processor Pi +1. Therefore, a processor needs to communicate with

only two processors to obtain the desired intermediate data. The boundary processors Po

and Pp_I only need to communicate with one other processor. Note that if the granule

size with each processor is less than w 12 (Le .• N /P < w /2). then the processors need to

exchange data with number of processors given below by tsw. Now. each processor com­

putes convolution along the columns in its granule. The following are computational and

-

-
-

-

-

75

communication requirements of the algorithm.

tjlxN2x4x(w/2+1)
tcp= p

tcomm = 2xNxw

The amount of computation per pixel in separable convolution is a function of w for

a wxw kernel unlike in 2D convolution where it is a function of w 2• The amount of com-

munication in separable convolution is fixed as shown in Figure 4.6. Therefore, the

speedup is not as much as in the case of 2D convolution. There are two reasons for

smaller speedup. First, the communication is not decomposable as a function of number

r-------------------------------~128 r-----------------------~~128

Separable Convolution (Window = 10xlO)

1.2 Computation Tune(sec:.)

, ,
, , ,

0.9
T

,,'Speedup

m

e

0.4

, ,
/

, , , ,

,
, , ,

/

, , , ,

, ,
, , ,

(....) Communication time

S

P
e

64e

d

0.004-

Communication Time

/

, , ,

, ,

, ,
,

, , ,

,'Speedup ,

-64

u 0.002-:' ;/

P
32

16

: , ' Comm. time

, , ,
/

,
, ,

-32

/ -16 . ,
:/ ~8
/ ~4

148 16 32 64 128
O-nIITlIIr_~Ir_----Ir-----------~O

148 16 32 64 128
Nwnber of Processors

Nwnber of Processors

Figure 4.6 : Performance of Separable Convolution on a Processor Cluster

76

of processors because each processor needs to exchange w 12 rows of intermediate results

with two adjacent processors. Secondly, since the computation per pixel itself is small,

the communication overhead as a fraction of computation time is large. -
4.3.3. Two-dimensional FIT (2D-FIT)

20-FFf is a Global Fixed algorithm. For an image I(k,l), O<=k,l<=N, the

corresponding 20-FFf is given by

N-l N-l
F (m,n) = 1: 1: I (k,l) e-21cj(Irm+lIl)/N, O<=m,n<=N-l

AI:~ I~

where j = g. A nice property of the 20-FFf is that it can be performed in two

decomposable steps : a one dimensional N point FFf along the rows followed by a one

dimensional N point FFf of the intermediate results along the columns, or vice versa. We -
use this property to map 20-FFf on the cluster processors. The algorithm consists of

three phases: 10-FFT computation along rows, transposing the intermediate results and,

10-FFf along the columns. -
Figure 4.7 describes the algorithm. In the first phase each processors is assigned NIP

rows. Let's denote the sequence of rows with processor Pi as Granule (i). Also, let's

divide each granule into P equal blocks of size N 21P2 as shown in Figure 4.8. A block

B(iJ) denotes a block of size N21P2 with processor Pi , O<=j<=P-l. Each processors

computes the 10-FFf along the rows of its granule. Then in the second phase, the pro- -
cessors communicate with each other in the following manner to transpose the intennedi-

ate results. A processor Pi sends block B(i,j) to processor Pj for all O<=j<=P-l, IqtL Each

processor needs to communicate and exchange a block with every other processor in the

-

ALGORITHM 2D·FFT

Each processor Pi receives granule(i) of rows.

1* n:, ~:llr~ description is with respect to processor Pi *'
For k = 1 to M do

compute ID-FFf of row(k) of granule(i)

For j = 1 to M do (i;J!: j)
k=i+j modP
connect Pi to PA:
send Block(i,j) to PA:
receive BlockG,i) from PA:

For k = 1 to M do
compute ID-FFf of row(k) of granule(i)

END2D-FFT
Figure 4.7 : 2D-FFf

77

N

Image Size: N x N

I
I

N

-----,
Block
(2.0)

The figure shows data exchange

needed to cranspose intermediate data.

Po

Figure 4.8 : An Example of Mapping 2D-FFf onto Four Processors

78

cluster. However, by perfonning the communication systematically, the transpose can be

achieved without any conflicts as described in the algorithm. Finally, each processor

computes ID-FFf along the columns.

The ID-FFf for size N can be done in O(NlogN) time [51]. The constant of multi-

plication is 6, i.e., to perform N point ID-FFT it takes approximately 6NlogN floating

point operations. Therefore, the computation time for the above algorithm. is (for both

row and column)

The communication time to transpose the intermediate results is

and the number of switch settings are, tsw = P -1.

-

-
-

-

-

-

-
-

79

One important observation is that even though ~ is a Global Fixed algorithm, in

the above mapping both the computation and communication times reduce as the number

of processors increases. In other words, both computation and communication are

decomposable for parallel processing. Therefore, if the communication is achieved

without conflicts (as in our case), we can obtain linear speedups.

Figures 4.9 and 4.10 show the performance 2D FFf on a processor cluster. From

Figure 4.9 we can observe that almost linear speedup can be obtained. The variation of

the communication time as a function of the processor is shown in Figure 4.10. Note that

the communication time curve follows the computation time curve in its shape and the

communication is completely decomposable.

6-r-------------------------------.-l~

Processing

Time(In Sees.)

2DFFf
Computation Time

4-

2-

/

/
/ o I I I

148 16

,
, , ,

/

I

32

,
, ,
,

, , , ,

,
/ ,

, , , ,

, ,

, , , ,

(....) Communication time

I

64

Number of Processors

, ,
,

, , , ,

" speedup

-32

-16

-!
f-O

128

Figure 4.9 : Performance of 2D FFf on a Processor Cluster

Speedup

0.04 -.------------------r-I28

0.03

Communication u.02
Time (In Secs.)

0.01

, ,
2D FFr (Communication Overhead) , ,

, ,
, /

148 16 32

, ,
, ,
,

, , , ,

, ,
/

, , , , , ,

64

Nwnberof Proc:essors

, ,

, , ,
" Speedup ,

128

64

32

16

Speedup

Figure 4.10 : Communication Time for 2D FFT on a Processor Cluster

4.3.4. Hough transform

80

Hough transform is global varying algorithm. Also, the communication cannot be

decomposed Hough transform is a method to detect shapes such as straight lines,

curves, circles, and ellipses in an input image [52]. The method is to perform the compu-

tation in the parameter space of the curves. For detecting line segments, normally the

computation is done in the (r,6) parameter space. If there exists a line whose normal dis-

tance from the origin is r, the normal makes an angle 6 with the x-axis then, if the point

(X,y) lies on that line then the following equation is satisfied.

r = xcos6 + ysin6

First r, 6 are quantized. The quantization depends on how much accuracy is required in

-
-

-
-
-

-

-

-

81

the final result. Assume that the maximum value of , br 'max maximum value of 9 be

9max (generally 1t). Then if 'ru, 9ru are the resolutions used for quantization, the total

number of accumulator cells in the computation are 'max .9max/rru.9res, the number of

rows and columns in the accumulator array being 9c = 9max/9ru and Pc = ,max/rres, respec­

tively. The algorithm involves two major steps. The first step is to accumulate votes in

the accumulator array for various digitized, and 9 values. The second step is to compute

local maxima in the output of the first step. The first step is regular and suitable for SIMD

implementation. The second step is more suitable for MIMD implementation because the

output is global data dependent For example, an image containing many lines will result

in many more maxima than an image containing a few lines, and therefore, the required

computation will vary. Hence, Hough transform is a hybrid algorithm containing both

SIMD and MIMD algorithms.

We present two mappings of the Hough transform algorithm for parallel processing

on the processor cluster. The first mapping divides the input image into as many granules

as the number of available processors. The second mapping divides the tasks depending

on the parameters and desired quantization. The former is referred to as "data partition­

ing" and the latter as "parameter partitioning." We discuss advantages and disadvantages

of both the mappings and also compare the computation time, communication time and

memory requirements for both mappings.

Data Partitioning

Assume that the input image is NxN, and to simplify the discussion assume that the

number of available processors is P = P 2 . The image is partitioned into N 2/p 2 blocks.

82

Processor P(i,j) works on block i*p + j , where lSi,jSp. Each processor computes the vote

count for its part of the image for all quantizations of B values. Figure 4.11 shows the

accumulator array for a processor. Note that each processor has to maintain a complete

accumulator array of size Pexge and update the appropriate vote count computed from its

share of the image. The algorithm ACCUMULATE_COUNT in Figure 4.12 shows the

computation for this step. The computation time to compute the accumulator array is

time taken to perfonn:zx[;:1 xjx8, multiplications and half as many additions, where f

PI P2 Pc
BI

92

Be

Figure 4.11 : Accumulator Array for Hough Transform

ALGORITHM ACCUMULATE COUNT
Each processor Pi, lSiSp2 does-the following (in parallel)

For j = 1 to Be do
For each (x,y) in the subimage such that (x,y) is significant do

/*significant means black pixel or edge element*/
compute r(Bj) = x cos9j + y sinBj
Accum_array(Bj,r(Bj)/r'.$) = Accum_array(Bj,r(Bj)/r,u) + 1

End For
End For

END ACCUMULATE COUNT

Figure 4.12 : Algorithm to Compute Votes in Hough Transfonn

-
-
-

-
-
-
-
-

-

83

is the largest fraction of significant pixels in a block and 9c is the number of quantizations

for 9. The next step is to combine the partial results of all the processor to obtain a global

accumulator array so that maxima can be determined. For combining the partial results

we propose the tree sum method in which, at each step, twice as many processors com-

bine their partial results, therefore requiring 2><logp-l steps.

The algorithm ACCUMULATE_SUM in Figure 4.13 performs the merging of par-

tial results. The processors are numbered from 0 to p2_1. A processor with number k,

~Sp2_1 corresponds to a processor (ij) such that k=i*p+j.

1* Accum_array/c(i,j) denotes the accumulator cell (ij)
the Accumulator array of processor k. */

ALGORITHM ACCUMULATE_SUM

For i = 0 2xlog2P-l do
For all processors Pi do in parallel (OSjSp2-1)

If j mod 2;+1 = 2' then
Connect Pj --> Pj -21

For k = 1 to Oc do
Forl=ltopc do

Send Accum_a"ayj(k,/) Pj_2i

Accum _ arrayj_2i (k, l) := Accum _ arrayj_2i (k, I)
+ Accum_arrayj(k,l)

End For
End For

End If
End For

End For
END ACCUMULATE SUM

Figure 4.13 : Algorithm to Accumulate the Vote Count

84

Following this step, processor Po has the entire accumulator sum. The next step is to

distribute this global accumulator sum to all the processors so that computation for local

maxima can be performed in parallel. This step needs only one step. Processor Po broad-

casts the entire array to all the processors using the broadcast facility of the crossbar.

After the broadcast step, each processor performs a search for local maxima on its share

of the accumulator rows r ;;1· In this algorithm, for each entry in its block of the accu·

mulator array, the processor determines whether the entry represents a local maxima in a

neighborhood.

In summary, the total computation and communication time requirements for the

entire hough transform algorithm using the data partitioning are as follows.

where, the first term is for computing the votes, the second term is to sum the accu-

mulator array and the third term is for looking for local maxima in a window of size w 2•

The communication time for this algorithm is

and the number of switch settings are tsw = logP+1.

Unlike 2D-FFr, the communication is not decomposable. In other words, the com-

munication increases as the number of processors increases in a cluster. In the following

mapping we will observe that it is possible to reduce the communication such that instead

of it increasing as a function of number of processors in the cluster, the communication

remains constant.

-

-

-
-

8S

Figure 4.14 shows the computation and communication time along with the speedup

for hough transform. Even though the computation time for hough transform decreases as

the number of processors increases, the computation is not completely decomposable.

The second term (to combine partial results) of lep increases as a log function of the

number of processors. Furthermore, the communication overhead to combine accumula-

tor arrays also increases logarithmically with the number of processors. Consequently,

for a large number of processors, the communication time becomes comparable to the

computation time (as shown in Figure 4.14), and that results in degradation in speedup.

We will observe in the following that it is possible to obtain almost linear speedups.

Processing Time

(In Sees.)

30

Hough Transfonn (Data Partitioning)

Computation Time

". ,
20- (....) Communication ~

I
I

I
I

I

10- I
I

I
I

I
I

,
I

o /
I I I I

148 16 32

, ,

, , ,
,

I
64

Number of Processors

50

Speedup r- 4O

r-30

-20

,..10

. 0

128

Figure 4.14: Performance of Hough Transform (Data Partitioning)

Speedup

86

Parameter Partitioning

In this mapping, instead of partitioning the data to the processors the parameters

space is partitioned. Each processor works on the entire image but computes the vote

count for only few 8 values. Each processor computes all r values for its share of 8

values. If there are p2 processors, then each processor gets n = ac/p2 values of a to work

on. Therefore, processor i gets to work on n values of a, where lSiSp2. There are several

advantages to this mapping, both in terms of communication and implementation at each

processor. First of all, when looking for peaks . later, a processor needs to communicate

with only two other processors to obtain the upper and lower boundary rows of the Accu­

mulator array. Secondly, we introduce additional data .structures to make the search for

local maxima efficient, where instead of searching for the local maxima in the entire

accumulator array, only a fraction indicating possible local maxima need to be searched.

Furthermore, the processor can store sina, cosa values for its allocated n values of a in its

registers, since only few values need to be stored. This results in saving on local memory

accesses delays which would occur if all quantized sina and cosa values are stored with

each processor in its local memory. The algorithm to compute the accumulator array at

each processor is similar to that in the case of data partitioning, except that each proces­

sor works on the entire image but only its own part of the parameters.

A brief explanation of the algorithm is as follows. In the first step (computing

votes), the algorithm computes value of p for each significant pixel for all a values. It

then increments the appropriate count in the Accumulator array. If the count increases

beyond a certain threshold value, there exists a possibility of this being a local maxima.

Therefore, another array called the Link_array is updated marking this fact. This step

-

.....

-

87

reduces the search space when looking for local maxima since normally a very small

fraction of the image contributes to lines and entire Accumulator array need not be

searched when looking for local maxima. Once the above computation is finished for the

entire image, processor Pi communicates with P i +1 and P i - 1 to obtain the boundary rows

of the Accumulator array. Then the local maxima are computed in the Accumulator

array using the information available in Link_array. There is a need to search only those

entries in the Accumulator array for a local maxima which are marked by the Link_array.

The computation, communication and memory requirements for this mapping are as fol­

lows.

Iq> = 3xtflX[:: + ~ xjxfJ, + 9,xp,XW'lp'

where the first term is for computing the votes and the second term is to for local

maxima in a window of size w 2• The communication time for this algorithm is

tcotNrl=2xpc

and the number of switch settings are tsw = 2.

The memory requirements of the two partitionings are comparable. For example,

for a typical image size of 512x512, value of Pc will typically be 512x~, and C will be

180. However, each pixel normally is a byte where as each accumulator cell is an integer.

Assuming a 4 byte integer, in data partitioning a processor has to store the entire accumu­

lator array of size 521 Kbytes (approximately), and in the second mapping a processor

has to store the entire image (256 K bytes) and its part of the accumulator array.

There is another way in which the parameter partitioning mapping can be per­

formed. Instead of storing the image in all the processors, a controller processor, such as

88

a DSP, can store the image and broadcast each significant pixel value and its location

while processors compute the votes in an SIMD lock-step fashion. This results in saving

the memory, because now only one processor need store the image. We make the fol­

lowing observations. The communication requirement is fXN2, where f is the fraction of

significant pixels. However, the communication can be overlapped with computation

because while processors are computing the vote count for a location in the image, the

next location can be broadcast. Therefore, the time to compute the Accumulatocarray in

this case will be MAX(tcp , Broadcast time for fXN2 pixels locations).

By using parameter partitioning the overhead of combining partial results is elim­

inated, and for each processor the communication is reduced to exchanging one row of

the accumulator array with two other processors. Therefore, the communication remains

constant as the number of processors increases. Figure 4.15 shows the speedup, computa­

tion time and communication time for hough transform using parameter partitioning. Fig­

ure 4.16 compares the communication overhead and the speedup for the two types of par­

titioning. Notice that using parameter partitioning it is possible to obtain almost linear

speedup.

4.4. Parallel Implementation Results

This section contains implementation of some algorithms on a simulated processor

cluster. A cluster was simulated on an intel iPSC/2 hypercube multiprocessor. The per­

formance results capture all the overheads associated with parallel programming, and

therefore, the results are very accurate. Also, we show through the example of 2-D FFf

algorithm that the analysis presented in the previous section is very close to the imple-

-

-
-

Processing Time

(In Sees.)

30~------------------------------~128 ,
Hough Transform (Parameter Partitioning) ,," - 120

20-

10-

(....) Communication time

Computation Time

/

/

, , , ,
/

, , ,
, ,

, , , ,

,
/

,

, , , ,

,
, , ,
,

, , , ,
" Speedup r- 100

f- 80

-20

O I~/~~~====~=========-~O -t I I I I I

.148 16 32 64 128

Number of Processors

Speedup

Figure 4.15 : Performance of Hough Transform (Parameter Partitioning)

89

90

0.4 128
120

Hough Transform (PP and DP)

100

80 -
Communication

0.2 Speedup
Tune (In Sees.) 60

" , , , ,- 40 -
20

Comm. Time (PP)
0 0

148 16 32 64 128 -
Number of Processors

Figure 4.16 : Comparison of Perfonnance of PP and DP for Hough Transfonn

mentation results. We present performance results for four algorithms in this section. -
Two algorithms are 2-D FFT and separable convolution. The other two algorithms are -parts of the Image Understanding Benchmark Algorithms developed by Weems et al [1].

The two algorithms are sobel edge detection and median filtering. The perfonnance of

the algorithms has been evaluated using the test data provided with the benchmark algo-

rithms [1].

4.4.1. 2-D FIT

A mapping of 2-D FFT has been described in Section 4.1. Figure 4.17 shows the

perfonnance of 2-D FFT on a 16 processor cluster (image size 256x256). Other parame-

ters are the same as given in Table 4.1. Solid lines in the graph show the computation

91

times for analysis (symbol +) and implementation. We observe that the analytical results

are very accurate. However, the implementation times are a little more than that given by

analysis because implementation captures the overhead of index management, etc. which

is not included in the analysis. The graph also shows the corresponding speedups for

both cases. Note that speedups obtained through analysis and implementation are almost

the same and are practically indistinguishable. Figure 4.18 shows graphs for the com-

munication time. Again, implementation and analytical results are very close to each

other.

Processing Time

(In Sees.)

2-r--------------------------------~16

1..5

0..5

2-DFFf
(+) Analysis

Computation Time (solid)

, •••• f"

..............

.'

.'
.. ' .' .'

" "

.'
.' .' .' s:-

" Speedup

8

4

;t".

~=====J-21 .. Communication Time
.'

O-r-r-T--~--------r---------------~O
o 2 4 8 16

Number of Processors

Speedup

Figure 4.17 : Performance of 2-D FFT on a Cluster (Analysis and Implementation)

0.008,...-----------------r- 16

0.006-

Conun. Time
O
.
OO4

_
(In Sees.)

0.002-

2-DFFr
(+) Analysis

Communication Time

: .~.,
J,' .
I

-8

-4

-2

-1

O~-~IT-I-~I---~I~-------~O

01248 16

Nwnber of Processors

Figure 4.18: Communication Time for 2-D FFT

4.4.2. Separable convolution

92

Speedup

Table 4.2 shows the performance for separable convolution implementation on a

256x256 image with window size lOXlO. The table shows the major computation opera-

tions in the algorithm which include floating point operations as well as integer opera-

tions. The fifth column shows the number of times connection in the crossbar needs to be

changed during the algorithm execution, and column 6 contains the rounded value of the

amount of data communicated in KBytes. The table shows that the communication time

is very small compared to the computation time, and therefore, good speedups are

obtained.

-

-
-

-
-
-

93

Table 4.2 : Separable Convolution Implementation Results

Separable Convolution

Window 10xl0

No. Fl. Point Other Compo Comm. Comm. Comm.

Proc. K.Ops K.Ops Time (ms.) Setup K Bytes Tlme(ms.)

1 3932 3932 2607 0 0 0

2 1966 1966 1310 2 20 4.09
4 983 983 658 3 20 4.09

8 492 492 332 3 20 4.09

16 246 246 169 3 20 4.09

4.4.3. Benchmark Algorithms

The Image Understanding Benchmark provided the serial version of the programs

and the data [1]. We implemented sobel edge detection and median filtering algorithms.

4.4.3.1. Sobel

Sobel edge detection is a two-dimensional convolution operation with a 3x3 mask.

The implementation was done using medium grain parallelism in an MIMD mode, and

mapping was similar to that of separable convolution. Table 4.3 illustrates the perfor-

mance results for sobel edge detection algorithm. There were six data sets but here we

present results using only one data set (test, size 256x256). The results obtained on other

data sets were similar. The table includes all overheads, including program load time,

data load time, data input time (from global memory), and time to gather results. If all the

overhead is included, then the performance for larger cluster size is sub linear. There are
f

two main reasons for this performance. First, amount of computation per pixel is very

small (3x3 convolution), and secondly, all the overhead is included in the computation of

94

the speedup. The parameters for communication bandwidth are conservative (20 -
MBytes/sec.) and if the bandwidth is assumed to be larger, then the performance is

expected to be much better.

-4.4.3.2. Median filtering

Table 4.4 shows the performance results for the median filtering algorithm. The

algorithm was evaluated on the same data set. Size of the median filter was 5x5. Data is

partitioned along the rows. Each processor is allocated an equal number of rows and two

boundary rows in each direction. There is no need for communication during the algo-

rithm execution. Median filtering does not involve any floating point multiplication or -
addition operations (only comparison operations are needed). Table 4.4 shows that we

can obtain good speedups on a cluster for median filtering.

4.5. Summary --
To evaluate parallel algorithms on a cluster, we explored alternative mapping stra- -

tegies and computation modes. Some of the algorithms have been implemented on a

Table 4.3 : Sobel Edge Detection

Sobel (Test)

No.Proc. Proc. Data load Result Output Prog. Load Data Input Total Speed up

Tlme(sec.) TIme(Sec.) Tlme(sec.) Tlme(sec.) Tlme(sec.) Tlme(sec.)

1 4.04 0 0 0 0.008 4.05 1

2 2.02 0.056 0.014 0.001 0.008 2.1 1.92

4 1.01 0.056 0.014 0.001 0.008 1.09 3.70

8 0.51 0.056 0.014 0.001 0.008 0.589 6.91

16 0.26 0.056 0.014 0.001 0.008 0.33 12.13

32 0.13 0.056 0.014 0.001 0.008 0.21 19.71

9S

Table 4.4 : Median Filtering

Median Filtering (fest)

No.Proc. Proc:. Data load Result Output Prog.Load Data Input Total Speed up

Tlme(sec.) Tlme(Sec.) Tlme(sec:.) Tlme(sec:.) Tlme(sec.) Tlme(sec.)

1 6036 0 0 0 0.008 60.37 1

2 30.17 0.056 0.056 0.001 0.008 30.30 1.99

4 15.19 0.056 0.056 0.001 0.008 15.31 3.94
8 7.72 0.056 0.056 0.001 _0.008 7.85 7.70

16 3.99 0.056 0.056 0.001 0.008 4.11 14.68

32 1.90 0.056 0.056 0.001 0.008 2.02 29.93

simulated cluster, and we show that the analysis provides very accurate results. The per-

formance results show that very good speedups can be obtained on a processor cluster in

any computation mode. The parameters chosen for processor speed and communication

speed were very conservative. We think that much faster processors and communication

links are possible and available with today's technology, and therefore, the perfonnance

results presented in this chapter are also conservative.

96

CHAPTER Sc

INTER-CLUSTER COMMUNICATION IN NETRA

The focus of this chapter is inter-clustOF communication in NETRA and perfor­

mance evaluation of parallel algorithms when mapped across multiple clusters. When an

algorithm is mapped on multiple clusters, processors belonging to different clusters may

need to communicate, and therefore, inter-cluster communication is needed. However,

unlike intra-cluster communication between processors, there may be conflicts in access­

ing the global interconnection network, global memory or other common resources.

These conflicts need to be taken into account when computing the inter-cluster communi­

cation, and consequently, performance of algorithms when mapped across multiple clus­

ters is affected by conflicts. In this chapter we present a method to evaluate inter-cluster

communication time under the presence of conflicts. The method is based on the work by

Patel [53,54].

This chapter is organized as follows. Section 5.1 presents alternative inter-cluster

communication strategies in NETRA. Analysis of inter-cluster communication strategies

is presented in Section 5.2. How the analysis can be incorporated into the performance

evaluation of algorithms is the subject of Section 5.3. Section 5.4 contains the perfor­

mance evaluation of various algorithms whose performance on one cluster was presented

in the preceding chapter. Finally, Section 5.5 summarizes the chapter.

"-

97

5.1. Alternatives for Inter-cluster Communication

5.1.1. Multistage interconnection network and global memory

In this method global memory is used for inter-cluster communication. The global

memory is accessed through the multistage interconnection network by processors in a

cluster or by a DSP. A processor(s) needing to send data to another processor in a dif­

ferent cluster writes the data into designated locations in the memory. This involves set­

ting the appropriate circuit through the global multistage interconnection network to the

memory module followed by a data transfer. The data is transferred in block mode. The

Memory Line Controller (MLC) updates the information about the destination port(s),

length of the data block, and block's starting address, and sets a flag indicating the avai­

lability of data. Now the destination processor can read the data using this information.

Note that this method permits out of order requests to be serviced. For example, if the

destination processor tries to read the data before it has been written, the MLC informs

the processor of this situation, and when the data is really written into the global memory

then the MLC informs the destination processor. This is a block level data-flow approach.

The main advantages of this approach are that asynchronous communication is possible,

out of order messages can be handled, and efficient pipelining of data can be achieved.

This method is depicted in Figure 5.1. The Figure shows how a processor Pi of cluster Ci

will communicate with processor Pj of cluster Cj using the strategy.

5.1.2. DSP tree links

The second alternative to performing inter-cluster communication is to use the DSP

tree links. However, for distant inter-cluster communications, the tree may not perform

98

C Cj C C Cj C C C

Pi p.

~~ KAL INTERCONNECTION

~@ r-@ ~@ -@ -@

~
r@ ~@

k3 ~ ~ ~ ~ kY ~
Figure 5.1 : Inter-cluster Communication Using Global Memory

well because of the root bottlenecks typical to any tree structure. The main function of

the tree structure is to provide control hierarchy for the clusters. Its links are mainly used

for program and data broadcast to subtrees, and DSPs use the tree links to send (receive)

control information to (from) other DSPs. Therefore, the DSP tree is designated mainly

for control function, and we do not envision it to be used for large data transfers between

distant processors.

5.1.3. Global bus

The third alternative strategy to perfonn inter-cluster communication is to use a

high speed global bus that connects all DSPs and one port from each cluster. The global

memory is also connected to the bus and is accessible to all clusters via the bus. Note that

the global bus is proposed to be an alternative global interconnection to the multistage

interconnection network. If the bus can be designed fast enough (such as by using fiber

99

optics), and if inter-cluster communication is low, the global bus presents a viable alter-

native to the multistage interconnection network. In this scheme, the communication is

done explicitly by messages, and it is synchronous. Figure 5.2 show this communication

method. The Figure shows how a processor Pj of cluster Cj will communicate with pro-

cessor Pj of cluster Cj using the strategy.

S.2. Analysis of Inter-cluster Communication

Inter-cluster communication is needed in the following cases : i) An algorithm is

mapped in parallel on more than one cluster and the processors need to communicate to

exchange partial results or combine their results. ii) In an integrated vision system, output

data of a task produced at one or more clusters needs to be transferred to the next task

executing on different clusters. iii) It is needed to perform input and output of data and

GLOBAL BUS

~

M
DSPj

... DSP· E J

M

0

R
p.

I
p.

J

Y " .
Cj c· J

Figure 5.2 : Inter-Cluster Communication Using the Global Bus

100

results. The amount of inter-cluster communication depends on the type of algorithms,

how they are mapped in parallel, frequency of communication and amount of data to be

communicated.

There are several parameters that affect the inter-cluster communication time. The

architecture dependent parameters are the number of processors (Le., number of clusters

and number of processors in each cluster), number of memory modules, number of pro­

cessors per port connected to the global interconnection, and the type of interconnection

network. Some parameters depend both on the architecture as well as on the type of algo­

rithms, how they are mapped, and their communication requirements when mapped onto

multiple clusters. Fur$ermore. not only does the communication time depend on the

underlying algorithms but it also depends on the network traffic generated by other pro­

cessors in the system because there may be conflicts in accessing the network as well as

memory modules.

We consider an equivalent model of the architecture as shown in Figure 5.3. The

model shows N processors connected to M memory modules through a global intercon­

nection network. N is given by C xPt +Ndsp, where C is the number of clusters. Pt is the

number of ports in each cluster and Ndsp is the number of DSPs in the system. For simpli­

city, we assume that each cluster contains an equal number of processors. The number of

physical processors will be given by C xP, xPp , where Pp is the number of processors per

port.

The following analysis is based on the analysis presented by Patel in [53,54]. He

developed an analytical model for evaluating alternative processor memory interconnec-

-

101

P P P

Ports

Global Interconnection

Figure 5.3 : Equivalent Model for Global Communication

tion performance and showed that the analysis is reasonably accurate. Consider execu-

tion of a typical parallel algorithm on multiple clusters. The execution will consist of pro-

cessing, intra-cluster and inter-cluster communication. Figure 5.4 shows the computation

and communication phases of an algorithm. The computation time is given by tcp ' the

intra-cluster communication time is given by tclt and the inter-cluster communication

time is given by tiel in terms of equivalent processor cycles. However, due to conflicts in

IIIIIIIIII MXlIIIIIIIII m
No Interference

wXtiel

IIIIIIIIIINXMXMIIIII II
With Interference

Figure 5.4 : Computation and Communication Activities of a Processor

102

the network or conflicts in accessing memory modules. a processor may have to wait for

Wa cycles before being able to access the network and write to (or read from) the

memory. In effect. this can be seen as the communication time being elongated by a fac-

tor W for each reques~ and instead of communication time being tiel, it is now wxtiel as

shown in Figure 5.4. Therefore, if the probability of accessing the global network in each

processing cycle is m and for each access the communication time is tiel, then the useful

computation for t processor cycles takes t + mxtxwxtie/. where t = tep +tcl' The fraction of

useful work (utilization U) is given by

t u=-----
t + mxtxwxticl

(5.1)

The average number of busy memory modules (or fraction of time when the bus is busy

when the global interconnection is a bus) is

Nxmxtie/xt
B=-----

t + mxtie/xtXW
(5.2)

and in terms of utilization.

(5.3)

In [53], it is shown that the utilization primarily depends on the product mxtiel rather

than m and tiel individually. In other words, the processor utilization primarily depends on

the traffic intensity and to a lesser extent on the nature of the traffic.

For a particular algorithm. all the parameters are known except w. The probability

of accessing the global network is essentially given by the number of times communica­

tion is needed per processor cycle and is known when an algorithm is mapped in parallel.

The factor w depends on the algorithm parameters as well as the interference from other

-

-,

-,-

103

processors accessing the global network and the memory, number of processors, number

of memory modules, the type of interconnection network and the access rate m.

Consider the processor activities again. A processor needing to access the global

- memory or the bus submits requests again and again until accepted; on an average this

happens for (w-I)xtiel time units. After the request is granted, the processor has a path to

memory for tiel time units. In other words, the network sees an average of wxticl consecu-

tive requests for unit service time. Therefore, the request rate (for unit service) from a

processor as seen by the network is

mxwxticl m'=-----
I + mxwxtiel .

(5.4)

and in terms of utilization

m' = I-U.

For details, the reader is referred to [53].

The model that we analyze is a system of N sources and M destinations. Each

source generates a request with probability m' in each unit time. The request is indepen-

dent, random, and uniformly distributed over all destinations. Each request is for one unit

service time. The following is an analysis for a bus and for multistage delta network.

Bus: We know from earlier discussion (Equation 5.3) that

B = NxmxticlxU (5.5)

and also, assuming all sources have the same request rate, average amount of time the

bus is busy is given by

B = [I - (I - m' f]. (5.6)

104

Equations 5.4 and 5.5 result in a non-linear equation

NXlnxticiXU - [1 - (1 - m' f = o. (5.7)

In the above equation, value of m' can be substituted in terms of w, and hence, value

of w can be computed. If the request rate from sources is not uniform, i.e., if the request

rate from source Nj is mj then the above equation becomes -
j~ j~ ,
L (mjxticIU)XUj) - [1 - II (1 - m j)] = o. (5.8)
j-I j-I

When evaluating performance of a parallel algorithm mapped across clusters there

will be two request rates, one for the processors taking part in executing the algorithm

and the other for the rest of the processors in the system which will be an input parame-

ter.

Multistage-Interconnection (Delta) : A delta network is an n stage network constructed

from axb crossbar switches with a resulting size of atlxbtl • Therefore, N = atl and M = btl.

For a complete description refer to [54]. Functionally, a delta network is an interconnec-

tion network which allows any ofN sources (processors) to communicate with anyone of

the M destinations (memory modules). However, two requests may collide in the net-

work even if the requests are made to different memory modules. We use results

from[53,54] to obtain the average number of busy main memory modules B, which is

given by

B =MXlntl (5.9)

and the following equation in satisfied.

(5.10)

lOS

where,

mj a
mi+l = 1 - (1 -b) ,~i <n

and, ma = 1 - u.

For details, the reader is referred to [53,54].

These equations are solved numerically to obtain the interference delay factor w

which is used in the performance evaluation of algorithms mapped across multiple clus-

ters.

5.3. Approach to Performance Evaluation of Algorithms

Performance of an algorithm mapped on· multiple clusters is governed by various

factors. Table 5.1 summarizes the parameters affecting the performance of a parallel

algorithm. The approach to evaluating the performance of an algorithm is as follows.

Using the parameters and a particular mapping, computation (tep), intra-cluster communi-

cation (tel) and inter-cluster communication time (tid) are determined. The traffic inten-

sity for a processor(s) (or a cluster depending on how an algorithm is mapped) is given

t· I
by IC • Using the traffic intensity values, and using a range of traffic intensity values

tep+tcl

for interference, the effective bandwidth of the network is determined; that is, the factor

w is computed.

Consider a parallel execution of an algorithm across clusters. If the execution time

-- when the algorithm is executed on a single processor is ts1q , then the speedup in the best

case is given by

106

Table 5.1 : Parameters for Performance Evaluation

Total No. of Processors Np 512

Cluster Size Pe 8-128

No. of Processors/Port P p 4

Image Size NxN 512 X 512

Memory Modules M 128

Processor Speed 5 MIPS, 5 :MFLOPS

Network Speed (Block Transfer) 20 Mbytes/Sec.
Traffic Intensity for 0.1,0.4,0.8
Interference (mxt)

(5.11)

that is, assuming there is no interference while accessing the network or the global

memory. Under the conditions in which there are conflicts while accessing the network,

the inter-cluster communication time is given by wxticlt and therefore, the speedup is

given by

S ' tsllq
p=

tep + tel + wXticl
(5.12)

Hence, degradation in speedup with respect to the best case speedup will be

Sp -Sp' _ (W-1)Xticl

Sp - tep + tel + wxticl
(5.13)

5.4. Performance of Parallel Algorithms on Multiple Clusters

The extent of inter-cluster communication depends on the type of algorithms, how

they are mapped in parallel, frequency of communication, and amount of data to be com-

107

municated As discussed in the previous chapter, these requirements vary for algorithms

belonging to different classes.

We are mainly interested in the performance evaluation of parallel algorithms when

mapped across clusters. The performance of an algorithm will be affected by interference

from other processors in the system which are not executing the particular algorithm

under study.

This section discusses the performance of various algorithms when mapped across

clusters. The algorithms are selected according to their communication requirements. We

have chosen one algorithm from each of the following categories: Local Varying, Global

Fixed and Global Varying. Algorithms in each of these categories exhibit different com-

munication characteristics, and therefore, the analysis will provide the performance of

the architecture for a wide range of algorithms.

5.4.1. Two-dimensional Fast Fourier Transform (2·D FIT)

From Chapter 4 we know that a 2-D FFf can be performed in two steps: a one-

dimensional N point FFf along the rows followed by a one-dimensional N point FFf of

the intermediate results along the columns, or vice versa. We use this property to map the

algorithm across clusters. Hence, dividing the data along rows will not require commun-

ication when computing one-dimensional FFf. However, communication is needed to

obtain transpose of the intermediate results. Figure 5.5 shows an example of the two

steps and communication for three clusters.

Clusters are allocated rows in proportion to their size. A cluster Cj of size PeCi) (Le.,

. . I NxPeCi)
contammg PeCi) processors) is alocated j=ll ' where n is the total number of clusters

'LPe(i)
i-1

N/n

B21

B31

B12 B13

B23

B32

]cl ---..~
JC2 ---.. ..
JC3 --...

108

B12
B21 B31

B13

B21
B12 B32

B23

B31 .. B13 B23
B32

(a) Row FFr (b) Transpose
using global Memory

(c) Column FFr

The shaded area denotes data which remains within the cluster

Figure 5.5 : An Example of Mapping 2-D FFf on Three Clusters

executing the algorithm. Within a cluster rows are equally divided among processors. In

the first phase processors compute N point FFf of all the rows in their granule. In the

second phase, to obtain transpose of the intermediate 4at~ processors write the inter-

mediate results into the designated global memory locations, which is read by other pro-

cessors. Data remaining within a cluster is transposed using the cluster crossbar.

The computation time in terms of number of instructions is given by the following.

The total number of processors are given by P, and we assume all clusters have the same

size (Pc).

(5.14)

where, tft is the number of instructions per floating point operation. The intra-cluster

communication time (tcl) and the inter-cluster communication time (tid) are given by

p2

4xN 2x(n -1)xP pxR
tOd =
I nxp

109

(5.15)

(5.16)

where Pp is the number of processors per port and R is the communication speed of the

network in tenns of number of instructions per word transfer.

Using these parameters for 2-D FFf traffic intensity, computation times and param-

eters from Table 5.1, we evaluate the performance using the analysis presented earlier.

Figure 5.6 shows the speedup obtained for the 2-D FFf algorithm. The X-axis shows the

number of processors (cluster size is 16). For example, value 48 means that the algorithm

is executed on 3 clusters, each containing 16 processors. The four different graphs in the

Figure show speedups for no conflict (best case), low conflict, medium conflict and high

128
2-D FFr (Multistage Network)

112

96

80

Speedup 64

48

32

16

0

16 32 48 64 80 96 112 128
Number of Processors (Cluster Size 16)

Figure 5.6 : Speedup for 2-D FFf (Multistage Network)

110

conflict cases through the global interconnection network (multistage interconnection).

Similar results are presented later in this section showing when a bus is used as the global

interconnection network. It is observed that speedup obtained under varying degrees of

conflicts through the network is comparable to that obtained in the best case. However,

the best case speedup itself is not linear because of the delays through the network and

the global memory.

Figure 5.7 shows the computation and communication time for 2-D FFI' as a func-

tion of number of processors. Figure 5.8 shows a blown-up graph for the communication

times. As we observe, the communication time is much smaller than the computation

time. Furthermore, the communication time also decreases as the number of processors

(clusters) increases. Also note that the intra-cluster communication time is much smaller

0.4 -.-----------------,

0.3

TIme
0.2

(Sees.)

0.1

o

2-D FFT (Multistage Network)

(Computation and Communication Time)

Comm. Time (Cluster)
" Comm. Time (No. Int)

.>.~' '.~'~.:": '.!·~':':"'''' ••••• 04
... "'~ • .A, • .A w.:o.~. c.:z.:a::: 0 ::1:4:: i::i ::i:~

16 32 48 64 80 96 112 128
Number of Processors (Cluster Size 16)

Figure 5.7 : Computation and Communication Times for 2-D FFT (Multistage Network)

-

-

0.03

0.025

0.02
Time

(Secs·)0.015

0.01

0.005

2-D FFI' (Multistage Network)
(Communication Time)

" .'.
j•......

:1'- ..
:' ""
:' ".
:r "" -.",
:' .. " . . , ' ...

f: :~':": .Int. '. '" . '. '. ~igh Int
:, : "" ""
~ :~r-., ___
~ ., -

4~ :i _ ..:.'•• M~!lium iOt. "t 1'/' ---- --.......... .
No-InC

16 32 48 64 80 96 112 128

Number of Processors (Cluster Size 16)

Figure 5.8 : Communication Times for 2-D FFf (Multistage Network)

111

than the inter-cluster communication time. Figure 5.9 shows percentage degradation in

speedup, as defined in Equation (5.13), for different levels of conflict in the network.

The degradation in the speedup levels off after increasing initially because the communi-

cation time decreases as the number of processors increases.

Figure 5.10 shows the sensitivity of the speedup to the network bandwidth. The net-

work bandwidth is nonnalized to computation speed. For example, value 1 on the X-axis

means that it takes the same amount of time (amortized or block in block transfer mode)

to write/read a word to/from global memory as it takes to execute one instruction. The

region on the left of 1 indicates faster communication network and to the right of 1 indi-

cates slower communication network. It is evident from the Figure that degradation in

speedup occurs very fast as the communication becomes slower. Therefore, in order to

% Degradation
in Speedup

16~------------------------~
2-D FFI'

(Multistage Network)

12-

8-

........

: r
4- :,

: ,
:,
:,

V o I I

16 32 48

High Int.
...............................

Medium Int. .,-------------

I
64

LowlnL

I I I I
80 96 112 128

Number of Processors (Cluster Size 16)

112

Figure 5.9: Degradation in Speedup Due to Conflicts for 2-D FFf (Multistage Network)

-
-

-

-

64 -r----;;2;""';-D=F;:;F :;;"1 -r;(M ul;:"tis':':ta~g::e-;:N7:e::::tw:-::o::rlc;:;);-----,

56

Speedup 48

40

(Sensitivity to Network Speed)

..
, -..

',.... ---...
...... , ····· .. ~edium "tnt.
High 1

' nt
.....

.....

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

Data Transfer Time/Word
(In Tenns of No. of Instructions)

Figure 5.10: Speedup vs. Network Speed

113

obtain any significant speedups from parallel computation, it is important to have

matched computation and communication speeds; otherwise, increasing the number of

processors or the processor speeds will not improve the performance as expected. The

Figure also illustrates that the four graphs in the Figure diverge as the communication

becomes slower meaning that slower performance under heavy traffic suffers more in the

slower network than under light traffic.

The following is a discussion of the performance of 2D-FFr when a bus is used as a

global interconnection network. The algorithm is mapped as described above. Since glo-

bal bus can be accessed by only one processors at a time, the inter-cluster communication

time becomes additive as the number of clusters is increased. Therefore, the performance

is expected to be worse than that in the case of the multistage interconnection network.

114

The total computation time remains the same as in the previous case and is given by

12xN21ogZ(N)xtjl
tcp= p (5.17)

However, the inter-cluster communication time becomes

(5.18)

In other words, each cluster needs to send (n-l) fraction of its data to transpose the
n

intermediate results. This is achieved by a designated processor in each cluster, which

collects the data and broadcasts it on the bus to be read by other cluster processors.

Hence, there is an additional overhead of collecting and distributing the intermediate

data. The intra-cluster communication time in this case is given by

tcl = tcll + telZ + tel3

where,

2x(Pc-l)xN2

for within cluster transpose, tell = , and,
P~xn

& din . . d redi ·b· th· di da 2xN2
x(n-l) lor sen g, recelvmg an sm uttng e mterme ate ta, tel2 = tcl3 = 2
n

Using these parameters, we evaluate the performance of 2-D FFf under varying

degrees of conflicts on the bus. Figure 5.11 shows the speedup for 2-D FFf as a function

of the number of processors (cluster size 16). When there is no conflict on the bus, the

speedup increases with the number of processors. However, under conflicts, the speedup

first decreases and then increases slowly. In fact, for medium and high conflicts, the

speedup obtained on one cluster is better than that obtained using multiple clusters. the

reason for such poor performance is that even though the communication is decompos-

-

-

48

32

Speedup

16

2-D FFr (Global Bus)

Lowlnl
;I' ,

;1" Medium Int.. , .' , .. -, .'
" ;I' ••••• ~,'

~ -"" ::':"~' 'High In
6(),' "',~ .. "~' ,~ 'AL-:--""

~'~'J.."",

o 16 32 48 64 80 96 112 128
Nwnber of Processors (Cluster Size 16)

Figure 5.11 : Speedup for 2-D FFT (Global Bus)

115

able in 2-D FFT, the inter-cluster becomes communication time additive due to the bus

and increases as the number of clusters executing the algorithm increases as shown in

Figure 5.12. It is evident from the Figure that the computation time decreases but the

communication time increases and becomes more than the computation time.

Figure 5.13 shows the relative performance degradation in the speedup. The degra-

dation is very significant. However, the degradation itself decreases as the number of pro-

cessors (clusters) increases because more clusters execute the algorithm, and conse-

quently, less number of clusters interfere. Figure 5.14 shows the sensitivity of the

speedup to the bus speed. Again, the Figure shows that performance degrades rapidly as

the bus becomes slower. In order for a bus to be viable global interconnection network it

is essential that the bus bandwidth be much greater than the processor speed.

3

2.5-

2-

Time
1.5-

(Sees.)

1-

0.5-

0

0

2-D FFr (GB)

Computation and Communication Time

Comm(high Int) " ., ." ""
•••• ;.::.- -+- - - + - - + :.:: .

. .;::.. ~ Comm(Medium Int)
.,

.;
.;

"..:. ••••••••• -Comm(l..ow InL) f.······
I .. -
t •• '
t :'
t:
t:
t:
t:
t:
t:
t:

c
&

Compo Tune
Comm(No Int)

T I I I I I I
16 32 48 64 80 96 112 128
Number of Processors (Cluster Size 16)

Figure 5.12: Computation and Communication Times for 2-D FFr (Global Bus)

100
2-D FFr (Global Bus)

90

80

70

60
% Degradation

50
in Speedup

;-.~:::.:.. -....
i ~ ~ . .:.::........ High InL
t ~.... . •••••
f
r -....

Medium InC
40

30

20

10

0

0 16 32 48 64 80 96 112 128

Number of Processors (Cluster Size 16)

Figure 5.13 : Degradation in Speedup Due to Conflicts 2-D FFr (Global Bus)

-
116

-

-
-
-
-

Speedup

40~---------------------------,

32

24

16

8

2-D FFr (Global Bus)
(Sensitivity to Network Speed)

(64 processors)

No Wait

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

Data Transfer Tirne/Word
In Tenns of No. of Instructions

Figure 5.14 : Speedup vs. Network Speed (Global Bus)

5.4.2. 2-D separable convolution

117

This algorithm consists of two steps. First convolution along rows using two one-

dimensional masks and then convolution along columns of the intermediate results. Par-

titioning along rows in clusters, therefore, avoids communication in the first step. How-

ever, before the second step can be performed, boundary rows with each cluster need to

be communicated to other clusters. Figure 5.15 shows the mapping on three clusters.

Note that unlike in 2-D FFr, a cluster needs to communicate with at most two other dus-

ters to obtain the upper and lower boundary rows of the intermediate results. The number

of rows to be exchanged depends on the kernel size. For a kernel size of w><w, the

number of rows to be exchanged along each direction is ;. The amount of communica-

tion is fixed and is independent of the number of clusters on which the algorithm is

118

mapped. The same mapping will work for regular 2-D convolution except that the

amount of computation per pixel will be larger.

The computation time for the two steps is given by

w
2XtjlxNX(2+1)

tcpt = tcp2 = P

the intra-cluster communication is given by

tel =2xNxw,

and the inter-cluster communication is given by

tid = 2xwxNxR.

(5.19)

(5.20)

(5.21)

Figure 5.16 depicts the speedup obtained for the 2-D convolution algorithm as a

function of the number of clusters (cluster size = 16). The speedup increases sublinearly

as the number of clusters increases. The reason for not obtaining better speedup is that

the computation per point of the input is small, the computation per processor decreases

N/n t ____________ _
r--~ __ ~_~_7_~ __ ~_~_7_~ __ ~~----~

t
-~--~-~--~-~-~--~-~--~-~~----~ w _____________ _

1--------------1--------------

CI

C2

----~.- C3

(a) Initial Mapping
along Rows

(b) Boundary Rows (c) Column Convolution

into Global Memory

Clusters exchange top and bottom w/l rows after row convolution

Figure 5.15 : An Example of Mapping 2-D Separable Convolution on Three Clusters

-
-
-

119

as the number of clusters increases, but the communication remains constant (as long as

the granularity per processor is at least ; rows). Hence, the ratio of computation and

communication decreases as the number of processors increases. The computation and

communication times are shown in Figures 5.17 (a) and (b). Figure 5.16 compares the

two times whereas Figure 5.17 shows only the communication time.

Note that inter-cluster communication can be avoided completely if clusters are

assigned overlapped rows to perfonn the first step. That is, if a cluster is responsible to

compute 2-D convolution for R j rows, then its is assigned w + R j rows. Therefore, each

cluster has to perfonn additional computation to obtain I-D convolution of w additional

rows. If the extra computation time is less than the communication time then overlapped

data partitioning is better.

128 -,----------------,
2-D Separable Convolution

112 (Window Size IOXI0)

96
Low InL

80

Speedup 64

48

32

16

16 32 48 64 80 96 112 128
Number of Processors (Cluster Size 16)

Figure 5.16: Speedup for 2-D Convolution (Multistage Network)

0.1....,....---------------,

0.08

0.06
Time

(Sees.)
0.04

0.02

2-D Separable Convolution
Computation and Communication Times

Comm. Times

0.005

0.004

0.003

uo

Communication Times

...... A A... •
: High YriC .. • .. -·.
: \

:t---+--~--+--"' '. :, Medium Iril , ill

;' " ., ,
:, --
:, Low Inl :,

:, : " . . .
...... --

NoInl

16 32 48 64 80 96 112 128
16 32 48 64 80 96 112 128

Number of Processors (Cluster Size 16)
Number of Processors (Cluster Size 16)

Figure 5.17: (a) Computation and Communication Time (b) Communication Times
2-D Convolution (Multistage Network)

Figure 5.18 shows a performance comparison of the two partitioning methods.

When the number of processors executing an algorithm is small, the performance is

almost the same. For smaller window sizes the difference is marginal and becomes

apparent only when the number of processors becomes large. However, as the window

size increases (40x40 in Figure 5.18), the perfonnance with overlapped computation

becomes poor because the overhead of extra computation becomes larger than the com-

munication overhead.

Figure 5.19 shows the performance of the algorithm when the bus is used as agio-

bal interconnection network. The speedup increases as the number of clusters increases

but eventually levels off. Though inter-cluster communication time per cluster is con-

stant, total communication time increases as the number of clusters increases, because

-

-

-

-

121

128~-----------------------------, l00~----------1

-D Separable Convolution (Multistage Network)

112 (0) 20x20 window
(+) 40x40 window

96 solid with communication
S dotted with overlapped rows (no ICL)

p 80
e
e 64
d

.'
.'

S 92

p
e 84

e
d 76
u

P 68
u 48
p

32 6O~-------r-------r------~

80 96 112 128

16 Number of Processors (Cluster Size 16)

O~--~----~--~---r--~----r-~

16 32 48 64 80 96 112 128

Number of Processors (Cluster Size 16)

The box in the left graph has been blown up in the right graph

Figure 5.18: Overlapped Computation vs. Communication Trade-off
(2-D Separable Convolution)

only one cluster can send data on the bus at any time. This is illustrated in Figure 5.20

where the communication time (with no interference) is a linear function of the number

of clusters. Another reason for speedup to level off is that for a larger number of clusters

the computation time becomes comparable or smaller than the communication time.

so

40

30
---.,..

"" ..
.. Medium-Int.······

Speedup

.... .,.. .' ~.~ '- -~ ---
.. ~.: ... ~~.;-.;::~.---~--- High I t.

.:: ~
20

10

O~---~---~------~---~--,-----r---~

16 32 48 64 80 96 112 128
Number of Processors (Cluster Size 16)

Figure 5.19: Speedup for 2-D Convolution (Global Bus)

Times
(Sees.)

I
o

0.1....,..-----------------------------.,

0.08

0.06

0.04

0.02

Separable Convolution (Global Bus)
Computation and Communication Time

Comm. (High InL)
, ••••••• A ••••••• A A

... !':':':::" ___ ,J:pDl.ln+~Mi~!.n9 ...
"..:.0'

f • ,:
I •

l.:
l:

(.
4~

~~ omm. (N~Wt.

---- ----
('

O~~~~==~==~~~~==~
16 32 48 64 80 96 112 128

Number of Processors (Cluster Size 16)

122

Figure 5.20: Computation and Communication Times for 2-D Convolution (Global Bus)

-

-
-

-

123

5.4.3. Hough transform

We have evaluated two mappings for hough transfonn, namely, Data Partitioning

(OP) and Parameter Partitioning (PP). The difference between the two mappings is

described in Chapter 4. Briefly, in DP, data is decomposed among clusters and, in PP,

parameters are decomposed across clusters.

Data Partitioning

Data is allocated to clusters in proportion to their size. Within a cluster data is distri­

buted equally among the processors. The algorithm consists of three phases. In the first

phase, each processor computes and accumulates the count contributed by its data for all

the parameter values. Note that each processor maintains the entire accumulator array. In

the second phase, partial results are combined within a cluster, i.e., all the accumulator

arrays are added together, and then a designated processor from each cluster writes the

accumulator array to designated memory locations. Arrays from all the clusters partici­

pating in the algorithm execution are then collected by one cluster. In the third phase, the

cluster having the entire accumulator array computes the local maxima.

Parameter Partitioning

Under this scheme, each cluster is assigned the entire input data but is assigned only

a part of the parameter space. The parameter space is partitioned in proportion to the

cluster size. Each cluster receives two more parameters (boundary values) so that inter­

cluster communication is avoided. That is, each cluster perfonns a fixed amount of addi­

tional computation to avoid communication. Within a cluster, however, data is distri-

124

buted equally among the processors, and all processors work on the entire allocated

parameter space. Dividing the parameter space results in mutually exclusive accumulator

arrays with processors, and therefore, to compute local maxima, there is no need for

inter-cluster communication.

For DP, the computation and communication times for various phases are as fol-

lows: tep t is for computing accumulator count, tep2 is for combining partial accumufator

arrays within a cluster, tep3 is for computing the final accumulator array, and tep4 gives

the time to compute the local maxima by one cluster.

3xPex8e
tep4 = Pc

Intra-cluster and inter-cluster communication times are give by

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

Similarly, the corresponding computation and communication times for PP are given by

2 8e
3xtflxN x(- + 2)

n
tept =----~-­

Pc
(5.28)

(5.29)

3xPexge
tep 3 = nxPe

ge
tel = (log 2P e + 1)x(- + 2)xPe·

n

125

(5.30)

(5.31)

Figure 5.21 depicts the speedups for hough transform using the two partitioning

methods. Due to the communication overhead through global memory, which increases

linearly with the number of clusters, the speedup for DP levels off. Figure 5.22 shows

128
Hough Transfonn (Multistage Network)

112

96

80

Speedup

64

48

32

16~L---r---r----~---.----~--~--~

16 32 48 64 80 96 112 128
Number of Processors (Cluster Size 16)

Figure 5.21 : Speedup for Hough Transform (Multistage Network)

126

the computation and communication times for hough transform, whereas Figure 5.23

shows the communication overhead for hough transform in detail. Data partitioning does

not perform as well as parameter partitioning. However, degradation with respect to best

case speedup in DP is small. As we can observe, good speedup can be obtained for a glo-

bal data dependent algorithm like hough transform. Figure 5.22 and 5.23 illustrate the

computation and communication times for the DP case.

Figure 5.24 shows the speedup for hough transform (OP) and Figure 5.25 depicts

the communication and computation times, respectively when the bus is used as a global

interconnection network. Note that performance of the hough transform under PP will be

the same in both cases because there is no global communication.

Tune
(Sees.)

4-r-----------------------------,

3

2

1

Hough TransConn (Multistage Network)
Computation and Communication Time

Communication Times

16 32 48 64 80 96 112 128
Number oC Processors (Cluster Size 16)

Figure 5.22 : Computation and Communication Times for Hough Transfonn

-

0.2-.------------------.

0.15

Time 01
(Sees.) .

0.05

Hough Transform (Multistage Network)
Communication Time

Intracluster

High Int
medfum Int _." , ..

•• " ,Jt/f' ,.- .,"'"
.... ~ Low Int.

.. _ ,'JIt' ..•......
........ ~A"~ •••• ····-~T---•.• ~ ~• __ - - NO InL

....... "JtIi' ._ •••• :.. --

.. ;....-' ; . ..::.: -
.:' :.. ~ .;,;.--

";,:,,,;
O~~~--~----r---~--~---r--~

16 32 48 64 80 96 112 128
Number of Processors (Cluster Size 16)

Figure 5.23 : Communication Times for Hough Transform

127

50~--------------------------,

40

Hough Transfonn (Global Bus)
NoW t

---Lowl~-,..
Speedup 30

,........... Medium InL
,

20

"
,,~

....
/" ---

", :::;:..:·..::.~---~gh L
;I' •• ,,.. -­

" ' ... eJ.,-;'''''

".:,.,.'
~

I 10~--~--~--~--~--~~--r-~

o 16 32 48 64 80 96 112 128
Number of Processors (Cluster Size 16)

Figure 5.24: Speedup for Hough Transfonn (Global Bus)

Time
(Sees.)

20~---------------------------,
Hough Transfonn (GB)

18 Computation and Communication Time

16

14

12

10

8

6

4

Compo Time

Comm. (High InL)
...... A •• A •• A •• A •• A •• A •• A

............. + + + +
... ~:... Comm. (MeID.um nn. r:" Comm. (Low InL)

~
2 t!

r
r
O~~~~~~~~~~~

8 1624324048 5664 72 80 88 961041121.20128
Number of Processors (Cluster Size 8)

128

Figure 5.25: Computation and Communication Times Hough Transfonn (Global Bus)

-
-
-
-
-
-
-

-

/

129

5.5. Summary

In this chapter we presented inter-cluster communication strategies in NETRA.

Inter-cluster communication is needed when algorithms are mapped across clusters to

transfer data between tasks executing on different cluster processors, or to input and out­

put data. Several factors contribute to the performance of algorithms mapped across dus­

ters. Not only does an algorithm's computation and communication characteristics con­

tribute to its performance, but the system load, interference in accessing global intercon­

nection network and global memory, and network bandwidth also contribute to the per­

formance. We presented an analysis of how the effect of conflicts in global network and

memory can be incorporated into the performance evaluation of parallel algorithms

mapped across clusters. For each algorithm we presented one or more mapping stra­

tegies, its performance evaluation and a discussion of the results.

The performance results were used to compare alternative inter-cluster communica­

tion strategies, and they show that it is possible to obtain good performance for algo­

rithms with different characteristics under varying degrees of conflicts in a global inter­

connection network. In general, a multistage interconnection network as the global inter­

connection performs much better than a global bus, as expected. The parameters chosen

for processor speed and communication speed were very conservative. We think that

much faster processors and communication links are possible and available with today's

technology, and therefore, the performance results presented in this chapter are also con­

servative. However, we obtained insight into the sensitivity of the performance measures

as a function of various architecture parameters.

130

CHAPTER 6.

DATA DECOMPOSITION AND LOAD BALANCING TECHNIQUES

As discussed in Chapters 1 and 2. IVSs employ a sequence of image understanding

algorithms in which the output of an algorithm is the input of the next algorithm in the

sequence. Algorithms that constitute an integrated vision systems exhibit different

characteristics. and therefore, require different data decomposition techniques and

efficient load balancing techniques for parallel implementation. Since the input data of a

task is produced as the output data of the previous task. this information can be exploited

to perform knowledge based data decomposition and load balancing.

This chapter presents several techniques to perform static and dynamic load balanc­

ing schemes for IVSs. These techniques are novel in the sense that they capture the com­

putational requirements of a task by examining the data when it is produced and using

the knowledge of the computation in the next step. Furthermore, they can be applied to

many integrated vision systems because many algorithms in different systems are either

the same or have similar computational characteristics. These techniques are evaluated

by applying them to the algorithms in a motion estimation system. It is shown that the

performance gains when these techniques are used is significant, and the overhead of

using these techniques is minimal. The evaluation is performed by implementing the

algorithms on the hypercube multiprocessor system. The rationale behind using a com­

mercially available machine is to capture all the overheads in implementations.

-

131

Data decomposition and load balancing techniques presented in this chapter are for

medium to large grain parallelism. Two important characteristics of these techniques are

that they are general enough to apply to any integrated system, and that they use statistics

and knowledge from the execution of a task to perform load balancing and scheduling for

the next task in the system. For example, in the motion estimation system sufficient

knowledge can be obtained about the output data froni the zero crossing step to perform

efficient data decomposition and load balancing for the stereo match step. Knowledge

from each step is used to perform load balancing in the next step. The advantages of such

schemes are as follows. First, these techniques use characteristics of the tasks and the

data, and therefore, work well no matter how the data changes. Secondly, many

integrated vision systems consist of such tasks and exhibit the above described computa­

tion flow, and therefore, these techniques can be used in any system (e.g., object recogni­

tion, optical flow, etc.) .

This chapter is organized as follows. Section 6.1 presents the algorithms for each

step in the motion estimation system and most of the discussion in this section has been

taken from [45]. These algorithms will provide insight into the involved computations in

the above system, and any other such system, and provide a framework for the discussion

in the following sections. Section 6.2 describes the proposed load balancing and data

decomposition techniques. Section 6.4 presents a parallel implementation of these algo­

rithms in an integrated environment and discusses the performance results for each of

these algorithms, data decomposition and load balancing schemes. The underlying mul­

tiprocessor machine on which we have implemented these algorithms is intel iPSC/2

132

hypercube. Some of these techniques have been applied to other integrated vision sys­

tems and have been shown to work well [55].

6.1. Some Algorithms from Motion Estimation System

Chapter 2 contains a brief description of the motion estimation system, and its con­

trol flow is shown in Figure 2.2. This section describes the steps in the motion estimation

system. A detailed description of the involved computations is included in order to

understand the characteristics of such algorithms. The motion estimation algorithm con­

sists of two processes. The first process is feature points extraction. Since the feature

points used in our algorithm are edge points, we can extract them by locating the zero

crossings of an image. The second process is matching and has three subprocesses which

are i) stereo matching, ii) time matching and iii) elimination of multiple matches. The

basic evidences exploited in these subprocesses to obtain unambiguous matched point

pairs are the normalized correlation coefficient and the zero crossing patterns [56].

6.1.1. Feature points

The feature points used in this algorithm are zero crossing points of an image which

are computed using Laplacian-Gaussian masks [50]. In order to eliminate non-significant

zero crossing points and maintain enough details, we threshold the zero crossing image

based on the intensity gradient at each zero crossing point. Figure 6.2 depicts the thres­

holded zero crossing images of the pictures shown in Figure 6.1.

-

-
-
-
-
-

-

133

Figure 6.1 : Stereo Image Pairs at f7 and t8

ORIGINAL PAGE
BLACK AND WHITE PHOTOr,RAPH

,

. "
". "

.. 0

" "

".\..

.~

U 'n
:.

ORiGtNAL PAGE IS
OF .. OO~ QUALITY

' .. ,

. .,-, .
f:

)\ '.'
t(

.<

Figure 6.2 : Zero Crossings of the Images in Figure 6.1

-'
,. ~ .. ,

134

I

135

Each zero crossing point is associated with one of the sixteen possible zero crossing

patterns as suggested in [56]. The similarity between any two zero crossing points is

based on the directional difference of their zero crossing patterns. The directional differ-

ence between any two direction values (e.g., Dl andD 2) is calculated as follows:

DIFF = 1 D 1 - D2 1

if (DIFF > 4), DIFF = 1 8 - DIFF I.

In the matching process, the use of directional difference (or zero crossing pattern values)

in finding matched point pairs is through the expression of directional difference weight

as shown below:

1 (6.1)
Wddif= 1 + DIFF .

6.1.2. Matching

Once zero crossings are extracted in all the involved images, the matching process

is applied to find point correspondences among the images (two stereo image pairs at two

consecutive time instants, i. e., ti-l and ti)' The evidences used in this process to obtain

matched point pairs are the nonnalized correlation coefficient and the directional differ-

ence weight as mentioned above; furthennore, in order to limit the search space, the

heuristic of limited displacement or disparity between frames is exploited. The matching

processes in motion estimation consist of six steps described below.

1) Perfonn stereo (from left to right) matching in the ti-l stereo image pair.

2) Obtain unambiguous matched point pairs by eliminating multiple matches.

136

3) Perform time matching between the unambiguous matched points in the left Ii-I

image and the feature points of the left Ii image.

4) Obtain unambiguous matched point pairs from the time matched points by eliminat­

ing multiple time matches.

5) Perform stereo matching between the unambiguous matched points (obtained in

step (4) in the left Ii image and the feature points of the right Ii image.

6) Obtain unambiguous matched point pairs from the results of Ii stereo matching by

eliminating multiple matches.

The results of the above steps are two sets of unambiguous stereo matched point

pairs at time instant ti-l and Ii. These two sets are related through Steps (3) and (4), the

matching over time; therefore, all the unambiguous matched points that correspond to

each other among the two stereo image pairs at time instants Ii-I and Ii can be selected.

6.1.2.1. Stereo matching

This is the subprocess to obtain the matched point in the right image for each

matchable zero crossing point in the corresponding left image of the same stereo pair.

Since the imaging setup is the parallel axis method. the epipolar line constraint is

exploited in solving the stereo matching problem. As a result, we have a one­

dimensional search space instead of a two-dimensional search space in the stereo match­

ing process. A typical search space in the right image for a matchable zero crossing

point in the left image is on the left side of the transferred location of that particular left

image zero crossing point; however, by using the heuristic of limited disparity between

frames, the search space is limited to dmax (the maximum possible disparity).

-

-
-

137

Let Sri be the set of all non-horizontal zero crossing points in the right image within

the search space of a zero crossing point in the left image. The stereo matching process

is as follows :

For each point in Sri,

i) Calculate the normalized correlation coefficient with a template size of sxs between

the grey level images of left and right at the corresponding locations. The normal-

ized correlation coefficient is calculated by using the following expression:

(6.2)

where

[xij : value at point (i,j) in the left image.

rxij : value at point (i,j) in the right image.

LX : mean value of the template in the left image.

rx : mean value of the template in the right image.

ii) If the normalized correlation value Ps is less a threshold value thrshp,. we discarded

that particular point in the search space in the remaining steps.

iii) Calculate the directional difference weight (wddif(stcreo» between the left and the

right zero crossing point (within the search space) according to Equation (6.1).

iv) Obtain the total weight as the combination of the correlation coefficient and the

directional difference weight.

138

W.r = a x P.r + b x Wddi/(.rlueo); a + b = 1. (6.3)

v) Among all elements of SrI> the point with the maximum total weight Ws is con­

sidered as the matched point for the corresponding zero crossing point in the left

Image.

6.1.2.2. Time matching

This is the subprocess to obtain the matched point in the left ti image for each candi­

date zero crossing point in the corresponding left ti-l image. Similar to the stereo match­

ing process, we exploit the heuristic of limited displacement (instead of disparity)

between frames in solving the time matchirig problem. We assume that the total motion

between the ti-l and tj frames is within fpixels in the vertical direction and h pixels (from

right to left) in the horizontal direction. Hence, the search space for each candidate zero

crossing point in the left tj-l image is a window of size fxh pixels on the left side of its

transferred location in the left ti image. Any zero crossing point (except horizontal ones)

inside this window is a potential match point for the corresponding candidate zero cross­

ing point in the left tj-l image. The time matching process is similar to the stereo match­

ing process and is listed as follows :

For each non-horizontal zero crossing point in the left ti image within the search

space of a zero crossing point in the left ti-l image,

i) Calculate the normalized correlation coefficient with a template size of tXt between

the grey level image of tj-l and ti at the corresponding locations. The normalized

correlation coefficient is calculated by using the following expression :

-

139

(6.4)

where

Xij : value at point (i,j) in the ti-l image.

Yij : value at point (i,j) in the ti image.

:X: mean value of the template in the ti-l image.

y : mean value of the template in the ti image.

ii) If the nonnalized correlation coefficient P, is less than a threshold value thrshd pt , we

discard that panicular point in the remaining steps.

iii) Calculate the directional difference weight (Wddi/(tiIM») between the left ti-l and the

left ti zero crossing point (within the search space) according to Equation (6.2).

iv) Obtain the total weight as the combination of the correlation coefficient and the

directional difference weight.

W, = c X P, + d X Wddi/(liIM); C + d = 1. (6.5)

v) Within a search window in the left ti image, the zero crossing point with the max-

imum total weight W, value is considered as the match point for the corresponding

zero crossing point in the left ti-l image.

6.1.2.3. Elimination of multiple matches

After the subprocess of either stereo matching or time matching, there may be mul-

tiple matches for some zero crossing points in either the left image or the left ti-l image.

140

We use the same procedure in eliminating both types (stereo or time) of multiple

matches, except different sizes of the search window are exploited. For stereo matching,

a I-D search window of size dmu. is used on the left side of a multiple matched point; on

the other hand, for time matching, we use a search window of size 2fXh on the left side of

a multiple matched point. The remaining steps of the procedure for determining unambi­

guous matched points are as follows :

i) At the position of a multiple match in either the right image for stereo matching or

the left ti image for time matching, open a search window either with a size of dmu.

or with a size of 2fxh, respectively.

ii) Within the search window, locate all the positions that have the same (multiple)

match.

iii) If all the positions are within the neighborhood region r",igh, calculate the total

weight (w$ or w,) according to Equation (6.3) or (6.5) (depending on whether we try

to eliminate stereo multiple matches or time multiple matches). The position with

the highest value in its total weight is regarded as the correct match.

iv) If one or more positions are outside the neighborhood region r",igh, we use the

disambiguation procedure described in the following section to resolve the multiple

matches.

v) If multiple matches still exist after the application of the above steps, they all are

discarded from the match set.

141

Disambiguation

This procedure is used only if step (iv) in the above discussion is true. In this pro­

cedure, the neighboring unambiguous matched points around a multiple matched point

are used as one of the supporting evidences in determining the correct match. The other

evidences used are the normalized correlation coefficient and the directional difference

weight. The steps are listed as follows:

i) At each position, calculate the normalized correlation coefficient (Ps for stereo

matching or P, for time matching) and the directional difference weight (Wddi/(slmo)

for stereo matching or Wddi/(liIM) for time matching).

ii) Assign a correlation coefficient rank, Rcc> and zero crossing pattern rank, Rzcp ' to

each position according to its normalized correlation coefficient (Ps or P,) and direc­

tional difference weight (Wddi/(stmo) or Wddi/{tiIM»' The position with the highest

value in normalized correlation coefficient or directional difference weight has the

highest rank in Ra; or Rzcpo

iii) At each position, check for unambiguous matched neighbors. If it has two attached

unambiguous matched neighbors, a neighbor weight neighwl of 3 is assigned. On the

other hand, if it has only one attached unambiguous matched neighbor, a neighbor

weight neighwt of 2 is assigned.

iv) At each position, open a check window of size 5><5 but exclude the center 3x3 region

and count the number of unambiguous matched points, nwnsmp'

v) At each position, calculate the total possibility as the sum of the ranks, the weight

and the number.

'.'

142

pOSStot = Rcc + R zpw + neighwt + numsmp (6.6)

vi) The position with the highest POSStOl value is considered as the correct match.

Figures 6.3, 6.4 and 6.5 show the results of the algorithm for various steps. Figure

6.3 shows the unambiguous stereo matching results of the li-l (h) stereo image pair.

Then, using these unambiguous matched points in the left ti-l (17) image as the candidate

points, we match them with the feature points of left Ii (ts) image by using the time

matching procedures. The unambiguous time matched points after the elimination of

multiple matches are shown in Figure 6.4. Having the unambiguous matched points in

the left ts image, we match them with the feature points of right Is image and obtain the

, ,

"';. ':. ~ •• "' __ eo.

• '" • I •• ~~;·it .. (.. ' ... - :'; ,. ,"'. e o • o •• " •

, ." . I f' , " . ..' .::
• f \. I ':. • ,. " •••• :...... • "l. / . \t; i>i·· ... ·. ". . '" ,,: "' ... °

0

" " •• eo"" , ;

" .. I,~;" ' ... ;'::.·l, .: ... ~ .. :. >'I.:~;} ::< G~~J'\'
•• \" ,",'-I ,. .., '/~ •• :~'{'

0:;" •• ~. .." ,

: ' ..
. '.

\

.0: eo •• • ...

I , •• ,'. , .("', " " •• , ••

0·" "0" -:J .. ·.r.~ .0"." "0 • #"" 0° '.~. .. , ". . \ f" , ' . , ".:: ". ". ..., \ I ':.. ,. .,.. 0° """. " , / . ,.:.:r ." ,. .. , . ., , . '\, ... ,,,, ... ~#J". _,,0" .. , ,.: Y ••• ;

\', ~'i,!.:. 1,. ::" .~ ~,: I..',:\;:((,.~)J)')
" ., ,. .. '" ... ~ ~. .:O;~, . ~.I, .• '., : ,. . . .

Figure 6.3: Unambiguous Matched Points of the h Stereo Image

-
-

143

~ ° 0 : ••

......
:, i.:".' _ . "., ".

• ' I .. : ...".. ,. ••

o (·'I~"': °0 •• °0 ' ' "... " .. '~ ° 0 '" :

"',l~···.1 .,0, .1 • •• .t. , ...• , .. :).:((..'.:., .. :
"t"'~"'.' .. 0'),1 •••• :~~., :\.:/.:~.

••• 0.. '" "0 .. " • '" I

.. '.. ... '"

~'I'

• 'l.

: ':
.. ;. !

/" ~~~ .. : ".' '. '" •• ~ °0 .. ,'00 ..
..... .. ' .. " • 'IL ... "'''II I

'0 °0 (." .. '.' .'." 0° 0° • '0 I ... I" I Coo ... : .. '
; ~ .. t ••• "" °0

... '.... '0 :'~/. "' .. "~/I' ..
.. °

0
.... ". 0° ° 0 •• '0 • ..

.. ' '0 o. .. .:
• 0° 0.

o .0°

..

Figure 6.4 : Unambiguous Time Matched Points between the Left h and t8 Images

unambiguous matched points after the elimination of multiple matches. With these two

sets of unambiguous stereo matched points at h and tg, we can pick out all the unambi-

guous matched points that correspond to each other among the four images, and the

results are depicted in Figure 6.5.

"" ..

. '

"
" . '

" ,
," . , ',,:~

" . ;- .
':
:'

"
,.,,;' • I '.

,\' '0"'" •

• ~ • • 0° " °
0

°
0

:" ••

......

.' 0 0 , :

((,,',~ . .':
'.'~:/ .

" ,,'

, '~

::-}

,;;y

.. . , .,
" .

" , , ,,:\

, ' '
';
:'

"." I'i... ~ J .. 1.
\. ,0" \

. ::. .

'0 ••

:" ..
..... :~

0° • ° 0 \l, .
:./.:. ... ".

'"•
"

!
" ,

. ,.'
",

'.~. :'

. , , . \ ,
I ~ ,,: "

:~ ... (

Figure 6.5 Unambiguous Matched Points of the Images in Figure 6.1

144

.' "0 "".-

((""i . .':
" "'':1 .

0° ","

"',

','

- .. -

-

145

6.2. Data Decomposition and Load Balancing Techniques

In a multiprocessor system an obvious and simple method to implement a task in

parallel is to decompose the data and and the underlying algorithm(s) equally among the

processors. In a completely detenninistic computation in which the computation is

independent of the input data, such schemes perfonn well and nonnally the processing

time is comparable on all the processors. That is, efficient utilization and load balancing

can be obtained. For example, regular algorithms such as convolutions, filtering or FFf

exhibit such properties. The amount of computation to obtain each output point is the

same across all input data. Therefore, uniform decomposition of data results in load bal­

anced implementation.

Most other algorithms do not exhibit the regular structure, and the computation is

data dependent. Furthermore, the computation is not uniformly distributed across the

input domain. In such cases, a simple decomposition does not provide efficient mapping

and results in poor utilization and low speedups. Also, the performance cannot be

predicted for a given number of processors and data size because the computation varies

with the type of data and its distribution. For example, in the stereo match algorithm, the

computation is more where the feature points are dense and is comparatively small where

the number of features is small and sparsely distributed (Figure 6.1). Hence, uniformly

partitioning the input data among processors is not expected to provide good speedups

and utilization.

In an integrated vision system, it is important to efficiently allocate resources and

perform load balancing at each step to obtain any significant performance gains overall.

146

An important characteristic of such systems is that the input data of a task is the output of

the previous task. Therefore, while computing the output in the previous task enough

knowledge about the data can be obtained to perform efficient scheduling and load

balancing. In the following we discuss such techniques and ~n the next section we present

the performance results for these techniques using algorithms in the motion estimation

system.

Consider a parallel implementation of a task on an n processor parallel machine. Let

Tj (1Si~) denote the computation time at processor node i. Then the overall computation

time for the task is given by

T max = max{T It ... ,T,,} (6.7)

The total wasted time (or idle time) T..., is given by

i_
T..., = L(T max - Tj) (6.8)

1fT max = Tj for all i, lSiSn, then the task will be completely load balanced. Another meas-

ure of imbalance is given by the variation ratio v,

Tmax
V = --, T min =min{T1, ... ,T,J

Tmin
(6.9)

The goal in performing load balancing is to minimize T..." or move V as close to 1 as pos-

sible. In the best case, T..., = 0 or VI = 1. If Ts«q is the time to execute the same task on a

sequential machine, then the speedup is given by

(6.lO)

Therefore, by minimizing T..." the achievable speedup can be maximized.

....

-

-

.:-.

...

147

6.2.1. Uniform partitioning

Data decomposition using unifonn partitioning perfonns well as a load balancing

strategy for input data independent tasks because equally dividing the data distributes the

computation equally. If the total input data size is D then the total computation time to

execute the task is T = kxD, where k is a detennined by the computation at each input

data point. For example, in convolution of a image with an mxm kernel, k = 2xm 2 floating

point operations. Hence, for an n node multiprocessor the data decomposition methods to

balance the computation is to make the granule size to

(6.11)

6.2.2. Static

When the computation is not unifonnly distributed across the input domain and is

data dependent then unifonn partitioning does not work well for load balancing. Nor-

mally, the computation depends on the significant data or the type of data in a partition.

Many image processing and vision algorithms exhibit this behavior. For example, in

stereo match, and hough transfonn the computation is proportional to the number of

features (edges) or significant pixels in a granule rather than on the granule size. There-

fore, equal size granules do not guarantee load balanced partitioning because of the data

dependent nature of the computation. In fact, the variation can be very significant as we

shall observe in the next section when we discuss the performance. In many such algo-

rithms, the computation time for a granule (0, Ti , is proportional to a certain extent on the

granule size (fixed overhead to process a granule) and to the number of significant data in

the granule. That is,

148

(6.12)

where, di is the granule size, Ii is a measure of significant data in a granule (i), and A and

B are arbitrary constants which depend on the algorithm. Therefore, the objective is to

divide the computation among the processors such that each processor receives an equal

measure of computation to perfonn rather than an equal amount of data. One way to

assign a granule to a processor will be to compute the total measure of computation and

partition as follows:

T
j
= _i'""_" ___ _

n

(6.13)

where g is the total number of granules in the input domain (Note that the number of

granules for the current task is n for an n processor system).

For example, consider computing hough transfonn of an edge image. The algorithm

involves computing the parameters for line segments in the images. If there exists a line

whose nonnal distance from the origin is r, the normal makes an angle 9 with the x-axis;

then if the point (x,y) lies on that line, the following Equation is satisfied.

r =xcos9 +ysin9

r and e are quantized for desired accuracy and then for each significant pixel (where

there is an edge), and r is computed for all quantized 9 values. If two partitions of equal

size contain a different number of edge pixels, then the amount of computation will be

different for the two partitions despite their being equal in size. In fact, the computation

is directly proportional to the number of edge pixels in the partition. A way to perform

static load balancing will be to decompose the input data such that each partition contains

an equal number of edge pixels. The computation to recognize this partioning can be

149

perfonned in the task in which edges are detected by keeping a count of the number of

edges detected by a processor. Note that it is important to compute the statistics on the

fly when edges are detected to guarantee low overhead. If the same statics are gathered

by sequentially scanning the input data then the overhead can be significant. Once the

task is completed, the data can be reorganized such that the number of edges with each

z Z
processor is in the interval (~- 5, ~ + 5), where Za is the total number of edges

n n

detected in the image and 5 is determined by the minimum granule size from fixed over-

head considerations.

6.2.3. Weighted static

When the computation in a granule not only depends on the number of significant

data points in the input domain but also depends on their spatial relationships, then data

distribution also needs to be taken into account as a measure of load to perfonn load

balancing. For example, from the previous section it is evident that to perfonn stereo

match, not only does the computation depend on the number of zero crossings but also

depends on their spatial distribution. If the zero crossings are densely spaced then the

computation will be more than that if the same number of zero crossings is sparsely dis-

tributed (refer to Figure 6.2). The reason is that if the zero crossings are densely packed

then greater numbers of zero crossings need to be matched with each corresponding zero

crossing in the other image, whereas fewer numbers of zero crossings need to be matched

if they are sparsely distributed. Hence, the computation also depends on the spatial den-

sity (such as features/row if one-dimensional matching is perfonned). That is,

150 -
(6.14)

where Wi is the feature dependent spatial density. For example, if the minimum granule

size is a row of the input data then Wi = ,p, where 'i is the number of features in row i and

~ is a parameter, OS~S1. ~ =0 means that the computation is independent of how the

features are distributed within a row. Therefore, to divide the computation equally among

n processors, the following heuristic can be used.

i-R
1: Axdj + Bxwjxdj

Ti = ...;.,i-o....:...-_____ _

n

-
(6.15)

where, R is the number of rows in the image. Note that the above heuristics approximate

the load and do not exactly divide the computation among processors. However, in the

next section we will show that these schemes perform well.

As an example, consider the stereo match computation. While partitioning the data

among processors, a weight can be assigned to each row as a function of the number of

features in the row. This weight represents the feature density. Note that using a row as

the smallest granule avoids the communication overhead because search space for stereo

matching is one-dimensional, and therefore, if the granule boundary is one row then there

is no need for communication.

6.2.4. Dynamic

The above three methods use the knowledge about the data when it is produced to

perform load balancing for the next task. However, once decomposition is done then the

data is not reshuffled. Therefore, we consider the above methods as knowledged based

static load balancing schemes. In the dynamic scheme, the data is decomposed into finer

-

151

granules such that the number of tasks (that is, the number of independent granules) M is

much larger than the number of processors.

At the execution time, the processors are assigned these tasks dynamically by a

designated scheduler from a task queue which contains these tasks. Processors are

assigned new tasks as they finish their assigned tasks, if there are more tasks left to be

assigned. However, the knowledge obtained from the previous step again can be used to

anticipate the completion of a task to assign a new task to a processor. That is, the tasks

can be pipelined, and therefore, the overhead of the dynamic load balancing can be

reduced. The communication overhead of dynamically assigning tasks is not incurred in

the previous three schemes. Figure 6.6 shows the partitioning for the above described

strategies for the stereo match algorithm.

6.3. Parallel Implementation and Performance Evaluation

This section presents a parallel implementation of the algorithms that are part of the

motion estimation system and describes the performance of the algorithms and load

balancing strategies. The algorithms were implemented and evaluated on a hypercube

multiprocessor.

6.3.1. Hypercube multiprocessor

Chapter 1 contains a brief description of hypercube multiprocessor architecture. A

typical commercially available hypercube multiprocessor system consists of a host pro­

cessor and node processors. The host processor serves as the cube manager, provides

interface with the external environment and input-output of data and program. We used

Intel iPSC/2 hypercube multiprocessor consisting of 16 nodes. Each node consists of an

152

Unifonn Partitioning Static

No. of Tasks = P No. of Tasks = P

Weighted Static
1

Dynamic

1 •
• •

2 • • - i •
d • -"-

'"
• •

7
8 M

No. of Tasks = P No. of Tasks = M
M>P

Example for 8 Processors -
Figure 6.6 : Load Balancing Strategies

Intel 80386 processor, Intel 80387 co-processor, 4 megabyte memory and a communica-

tion module. ...,

6.3.2. Feature extraction

Features used for stereo match algorithms are the zero crossings of the convolution

of the image with Laplacian, as presented in Section 6.1. Zero crossing computation

involves 2-D convolution and extraction of zero crossings from the convolved image. -
Since convolution is a data independent algorithm, unifonn partitioning is sufficient to -

-

153

evenly distribute the computation. The mapping is a division of NxN image onto P pro­

cessors. Each processor computes the zero crossings of a share of N 2IP pixels (Equation

6.11). Data division onto the processors is done along the rows. This mapping reduces

communication to only one direction. The reason is as follows. 2-D convolution can be

broken into two 1-D convolutions [50]. This not only reduces the computation from W2

sum of products operations per pixel to 2xW sum of product operations per pixel (W is

the convolution mask window size) but also reduces the communication requirements in

a parallel implementation if the data partitioning is done along the rows. There is no need

for communication when convolution is performed along the rows.

Table 6.1 shows the performance results for the above implementation for an image

of size 256x256 and a convolution window of size 2000. The first column shows the

number of processors in the cube(P). The second column represents the total processing

time (tproc) for convolution. Column 3 shows the number of bytes communicated by a

processor to the neighboring processor, and column 4 shows the corresponding commun­

ication time which is small compared to the computation time. The second half of the

table shows computation time for extracting zero crossings from the convolved image.

The corresponding speedups are also shown.

It can be observed that almost linear speedup is obtained for convolution. The two

factors which contribute towards this result is that communication overhead is relatively

small and is constant as the number of processors increases. However, the speedup

obtained in the elapsed time (which includes the program and data load time also) is sub­

linear due to the following reason. The hypercube multiprocessor's host does not have a

broadcast capability, and therefore, the overhead of loading the program increases

154

Table 6.1 : Perfonnance for Feature Extraction (Zero Crossings)

-ComputatioD for CODvolutioD aDd Zero CrossiDgs

Convolution Window Size = 20x20

No. Proc. CODY. CODY. CODY. CODY. ZC
Compo Comm. Comm. Total CODY. Compo ZC
Time(sec.) Bytes Time(ms.) Time(sec.) Speed Up Time(sec.) Speed Up

1 109.0 0 0 109.0 1 6.47 1
2 54.76 2816 13 54.78 1.98 3.23 1.99
4 27.51 5632 36 27.55 3.95 1.66 3.89
8 13.88 5632 36 13.92 7.83 0.85 7.00

16 7.07 5632 36 7.11 15.33 0.42 15.25

Feature ExtraCtiOD PerformaDce (Elapsed Time)

No.Proc. Elapsed Speed up
Time(sec.)

1 116.2 1
2 58.8 1.97
4 30.1 3.86
8 16.1 7.22

16 9.6 12.1

linearly with the number of processors. However, data load time increment with the

increase in the number of processors is comparatively small because amount of data to be

loaded to one processor decreases as the number of processors increase. The only incre-

ment in data load time results from the number of communication setups from the host to

the node processors which increases linearly with the number of processors.

6.3.3. Matching features

This task involves matching features in stereo pairs of images. As discussed in Sec- -
tion 6.1, the epipolar constraint limits the search for a match in the corresponding image

-

ISS

to only in horizontal direction, i.e., along the rows in the zero crossings of the image.

Thus data partitioning along the rows for parallel implementation results in no communi­

cation between node processors as long as each partition contains an integral number of

rows.

The computation involved in the stereo matching algorithm is data dependent and

varies across the image because it depends on the number of zero crossings, distribution

of zero crossing across the image and distribution of zero crossings along the epipolar

lines. Therefore, partioning the data unifonnly among the processors (Le., assign each

processor an equal number of rows) may not yield expected speedups and processor utili­

zation. A processor which has very few zero crossings and sparsely distributed zero

crossings will be under utilized whereas a processor with a large number of zero cross­

ings and densely distributed zero crossings will become a bottleneck, and this imbalance

of load will result in a poor performance.

We used uniform partitioning, static load balancing, weighted static and dynamic

load balancing schemes to decompose computation on the multiprocessor. Static load

balancing can be achieved by keeping a count of the zero crossings with each processor

when the previous task (convolution and feature extraction) is executed. At the comple­

tion of the task, the data is reorganized, using this information and the techniques

described in the previous section.

Figure 6.7 shows the distribution of the computation times for an 8-processor case.

The X-axis shows the processor number and the Y-axis shows the computation time for

each scheme. As we can observe, uniform partitioning does not perform well because the

Time
(ms.)

7000-

6000-

5000-

4000-

n
3000- I n

I

2000-

n:
II:

1000- II:
II:
II:

In" : II:

0 n
I I I
0 1 2

n n

:
I
I
I
I

.
:

-r I
3 4

Processors

Unifonn (solid)
Static (dashed)
W. Static (dotted)
Dynamic (dark solid)

n ::
n

.. ..

..

n:
II:
II:
II:
II:

.. nil:
I I "1
5 6 7

Figure 6.7 : Distribution of Computation Times for Stereo Match (P=8)

156

variation in computation time is tremendous. and therefore. performance gains are

minimal. The static load balancing scheme (shown as dashed bars) performs much better

than uniform partitioning, but the variation in the computation times is still significant

because the computation also depends on the distribution of zero crossings. The

weighted static scheme does perform better than static and further reduces the variation

in computation times. Note that these schemes only measure the load approximately, and

therefore, will not divide the computation exactly uniformly. Furthermore, minimum

-
-

157

granularity is a row boundary in order to avoid communication between processors.

Finally, for an 8-processor case, the dynamic scheme performs very well. Table 6.2 sum-

marizes the distribution for the 8-processor case. The table shows the computation time

for each processor for all four methods. Speedup is computed as follows. If Ts is the

sequential processing time and T max is the maximum processing time of one processor

among n processors, then speedup is ~. Variation ratio is the ratio of the maximum
Tmax

processing time to the minimum processing time and it provides a measure of imbalance

in the computation. For example, in Table 6.2 the variation ratio is 44.25 for the case of

uniform partitioning, 2.71 for the case of static load balancing, 1.50 for weighted static

Table 6.2 : Distribution of Computation Times for Stereo Match

Com)utation Time Distribution for Stereo Match (P=8)
Proc. Uniform Static Static Dynamic
No. Partitioning Weighted

Time (ms.) Time (ms.) Time (ms.) Time (ms.)
0 364 1402 2439 2890
1 164 3333 2606 2786
2 878 3066 2219 2980
3 7258 3327 2277 2967
4 6827 3371 2798 2818
5 5207 3269 3328 2913
6 762 3063 2864 2803
7 312 1243 3223 3051

Max. 7258 3371 3328 3051
Min. 164 1243 2219 2786
Variation
ratio 44.25 2.71 1.50 1.09
Improvement
ratio 1 2.15 2.19 2.38

158

and 1.09 for dynamic load balancing. Improvement ratio is the ratio of speedup obtained

with load balancing to that of uniform partitioning. The computation times shown in

these tables include all the overhead of load balancing schemes. Figure 6.8 shows the

speedup graph for varying sizes of multiprocessors from 1 processor to 16. As we can

observe, uniform partitioning does not provide any significant gains in speedup as the

number of processors increases. Dynamic scheme performs the best among all the

schemes (at least for small processor size) but the two static schemes perform compar-

able to the dynamic scheme. We believe that as the number of processors is increased,

14~------------------------------~

12

10

Performance (Stereo Match) , , , ,

W. Static (...)

, , , .-, , .- , , .-, , .-, , . , , .-,
" .. -;' , .-, , .-, , .. , , .-,

Speed 8

, . .;' , .; , .;
Dynamic ,'.i)

, ->
., J->

, J

Static Up

6

4

2

, /
, J

,'.;'
, .r , ." , ." , ." , ." ,.v .,.;.,

,y;
'';

,/
"". ,-..

1 2 4 8

Number of Processors

Figure 6.8: Speedups for Stereo Match Computation

16

-
-
-
-
-
-
-

-

-

-
-
-

159

the two static schemes will move even closer to the dynamic scheme or even perform
•

better than the dynamic scheme because for larger multiprocessors, the overhead of the

dynamic scheme will be larger. One important conclusion from the above observations

is that such a knowledge based scheme performs very well to schedule parallel tasks in

an integrated vision system in which very often similar bottom up computations are per-

formed in a sequence.

6.3.4. Time match

The computation in the time match algorithm is similar to that in stereo match

except the search space is two-dimensional and the input to the algorithm is the stereo

match output. Another difference is that the number of significant points in the input

data is much smaller than that in stereo match because a great deal of input points get

eliminated in stereo match. Table 6.3 shows the distribution of the computation times for

the 16 processor case. We only present uniform partitioning and static load balancing

cases. The most important observation is that uniform partitioning performs worse than

that in the case of stereo match and static load balancing performs better.

The table shows how the measure of computation (number of zero crossings left

from stereo match step) gets divided among the processors in the two cases. It is clear

that the number of zero crossings is very evenly distributed (within the minimum granule

of one row constraint) in the static case whereas they are lumped with a few processors in

the uniform partitioning case. Figure 6.9 shows the speedup graphs for the two schemes

for a range of multiprocessor size. The speedup gains for the load balanced case is very

significant over the uniform partitioning case. We computed the overhead of performing

160

Table 6.3 : Distribution of Computation Time for Time Match

Computation ror Time Match (Proc:. = 16)

Proc:. Unifonn Partitioning With Load Balancing

No.

Matc:hlDg Total No. Matc:hlDg Total No. -(Sec.) (Sec.) Zcs (Sec.) (Sec.) Zcs

0 0.14 0.22 3 935 10.00 47

1 0.03 0.14 2 1238 12.55 50

2 0.02 0.13 0 13.12 13.21 53

3 0.02 0.13 0 14.23 14.27 43

4 0.02 0.13 0 11.88 11.91 45

5 3.61 3.72 21 10.93 10.95 44

6 13.45 13.56 55 12.82 12.85 53

7 5.09 5.20 20 12.16 12.19 51

8 26.65 26.76 93 11.41 11.44 45

9 45.85 45.97 182 10.63 10.65 40

10 73.82 73.93 259 13.89 13.91 50

11 27.20 2732 121 13.69 13.71 44

12 031 0.42 3 15.07 15.09 43

13 0.11 0.22 1 15.70 15.72 56

14 0.42 0.53 4 1436 1439 56

15 0.08 0.10 0 5.21 5.68 43

Max. Min. Variation Speed Improvement

tlme(sec.) tlme(sec:.) ratio up ratio

Unlrorm 73.82 0.10 738 2.69

Balanced 15.72 5.68 2.76 12.63 4.7

knowledge based static load balancing and the overhead was 3 ms., which is negligible

compared to the computation time, and the performance gains are significant. -
-

Speed
- Up

12

10

8

6

4

2 ,
"

1 2

Perfonnance (Time Match)
Load Balanced

, ,
/

4

"

,
" "

, " ,
, ,

" "

, ,
,/

8

, , , , , , , ,

Number of Processors

, ,
, , ,

, ,

, , ,

Unifo

Figure 6.9: Speedup for Time Match

6.3.5. Second stereo match

161

16

This step involves stereo match compu~tion for features from images at time

instant ti+l after time point correspondence is established between images at time ti and

ti+l. The matching is similar to that in the first stereo match except that it needs to be

done only at those points at which time correspondence has already been established.

Consequently, the number of features to be matched is much less than that in the first

computation, and hence, the importance of load balancing is further increased. Figure

6.10 depicts the distribution of computation times for the second stereo match step. The

three load balancing algorithms used in this case are Unifonn Partitioning, Static and

162

Dynamic. As it is observed from the Figure, the unifonn partitioning does not perfonn

well at all compared to the other two schemes. The variation in computation time is

-
significant. Furthennore, it is observed that static and dynamic schemes perform compar-

ably. -
Figure 6.11 presents the speedups for the same algorithm for various multiprocessor -

~izes. The Figure shows that the gains from these load balancing schemes are very

-
20- -

Unifonn (solid)

Static (dashed)

Dynamic (dotted)

15- -
Time
(sec.) 10-

-
5- -n n n n II II. H II

II: II: II
n : n: H

II: H: II:
II

II' H: H : n: H II n:
II: II: II: II:

II: II II II: -II·
II: II: II: II: II: II II II:
II: II: II: II: II: II II II:
II: II: n H: II: II: II II II:

0
I I I I I I I I
0 1 2 3 4 5 6 7

Processors

Figure 6.10 : Distribution of Computation Times for Second Stereo Match (P=8)

-
-

-

163

significant over simple uniform partitioning. One important observation can be made by

comparing results in Figure 6.8 and 6.11. Note that the performance of uniform parti-

tioning in the second stereo match is much worse than that in the first stereo match. For

example, for the 16 processor case, the speedup in the first case is 5.55, whereas for the

same multiprocessor size speedup is only approximately 2.3. Therefore, as the computa-

tion progresses in an integrated environment, the gains of these load balancing schemes

become increasingly significant. Hence, overall gains for the entire system are better than

what may be expected.

14-r----------------------------~

12

10

Speed 8
Up

6

4

2

1 2

Performance (Stereo Match)

"

4

, , ,

, ,

, , ,

Static

Uniform

......
.....................

................

8 16

Number of Processors

Figure 6.11 : Speedups for Second Stereo Match

164

6.3.6. Summary

In summary, the following important observations can be made from all the results

presented in the previous sections. First, the improvement in performance (such as utili­

zation and speedup) itself increases using the load balancing schemes as the number of

processors increases. Therefore, performance gains are expected to be higher for larger

mUltiprocessors. Secondly, in an integrated environment. the overheads of such methods

are small because the measure of loads can be computed on the fly as a side result of the

current task. Finally, though we showed the performance results of the implementation

on the hypercube mUltiprocessor, these methods can be applied when algorithms are

mapped on any medium to large grain multiprocessor system because these techniques

are independent of the underlying multiprocessor architecture.

Consider the overall performance gains for the entire system As the computation

progresses from one step to the next, uniform partitioning performs worse because the

data points reduce, but the computation at each point increases. Therefore, the gains of

using parallel processing are minimal. However, the load balancing techniques recognize

the data distribution at each step and data is decomposed using the distribution. There­

fore, perfonnance gains are expected to improve as the computation progresses in an

integrated systems environment For example, consider zero crossing, stereo match and

time match and second stereo match steps. In zero crossing computation, uniform parti­

tioning perfonns well and the load is balanced. Hence, the improvement ratio is 1. For

stereo match the improvement of static over uniform partitioning is 2.15 for 8 processor

case, and is 2.22 for the 16 processor case. Similarly, for the time match step, the

improvement of static load balancing for 8 processor case is 3.38 and for the 16

-

165

processor case it is 4.2. Funhennore, for the second stereo match step, similar results are

obtained. Therefore, it is observed that the improvement in perfonnance itself increases

as the number of processors increases as well as when the computation progresses in an

integrated vision system. In summary, the perfonnance gains are expected from these

schemes for data decomposition and load balancing schemes as the number of processors

increases, as the computation progresses in an integrated environment, and the overhead

of these schemes is negligible compared to the performance gains.

166

CHAPTER 7.

CONCLUSIONS

7.1. Summary and Discussion

This thesis has addressed several issues in multiprocessor architectures and parallel

algorithms for Integrated Vision Systems. The approach has been to consider computa­

tional requirements for vision applications in an integrated environment in designing a

multiprocessor architecture rather than to propose architecture solutions to perform indi­

vidual algorithms efficiently. An IVS involves algorithms from several levels of process­

ing and the characteristics of algorithms in each level differ tremendously from algo­

rithms in other levels. However, these algorithms need to exist in a system simultane­

ously and interact with each other. Therefore, a multiprocessor architecture suitable for

IVS applications must be partitionable and reconfigurable. It must have the capability to

allocate resources dynamically, provide for dynamic load balancing and task scheduling,

provide fast and flexible communication, provide efficient I/O, and be fault-tolerant, in

addition to providing raw processing power.

Chapter 2 presented a model of computation for IVS. The model captures the com­

putation requirements in an IVS, spatial as well as temporal data dependencies, and sug­

gests what types of parallelism may be available in tasks of an IVS. Using the model

desired features and capabilities of an architecture suitable for IVSs are identified.

-

-
-

-
-
-

-

-
-

167

Another important aspect of the model is that it incorporates temporal relationships

between tasks which are absent in the Image Understanding Benchmarks presented in

[1].

Architecture of NETRA has been presented in Chapter 3. The original fonn of

NETRA was proposed by Shanna, Patel and Ahuja in [3]. Several refinements to the

architecture have been presented in this thesis after careful and detailed considerations of

the computational requirements of an IVS. The modifications include alternative inter­

cluster communication strategies and the synchronization bus in a cluster. The architec­

ture was critiqued in the light of computation requirements for IVSs developed in

Chapter 2. It was argued that the architecture provides most of the features, such as

reconfigurability, partitionability, flexible communication, and fast I/O, needed in a mul­

tiprocessor of IVS. Furthennore, a discussion on how to provide these capabilities was

included.

In Chapter 4 the perfonnance of various algorithms on a processor cluster was

presented. The evaluation of a cluster using several algorithms indicates that the cluster

provides flexibility of communication, ability to reconfigure in SIMD, MIMD and sys­

tolic modes, and shown that almost linear speedups are possible in most cases. The most

important observation is that the programmable crossbar design reduces the overheads of

mapping parallelism by providing selective broadcast capability and the ability to pro­

vide the best interconnection for a particular algorithm. Both analytical and implementa­

tion results were presented. Perfonnance evaluation of some algorithms from the Image

Understanding Benchmark were also presented.

168

Chapter 5 presented alternative inter-cluster communication strategies in NETRA

and evaluation of parallel algorithms when mapped across multiple clusters. When an

algorithm is mapped on multiple clusters, processors between differen~ clusters need to

communicate. This requires accessing the global interconnection network and global

memory. However, conflicts may occur in accessing global interconnection and global

memory, which in turn, affects the performance of an algorithm. Presented in the first

part are two inter-cluster communication strategies, viz; using global memory via multis­

tage network and a high speed bus connecting the clusters together. An analysis was

made to compute delays through the global network due to conflicts so that their effects

can be incorporated into performance evaluation of algorithms. In the second part, per­

formance of several algorithms, when mapped across multiple clusters, is presented. The

results indicate that even in the case of a large number of conflicts, good (almost linear

speedups) performance can be obtained for several algorithms when a multistage net­

work is used. However, in order for the bus to be a viable global interconnection, the bus

bandwidth and speed must be much greater than the processor speed.

Data decomposition and load balancing techniques were presented in Chapter 6. In

order to obtain any significant performance gains from parallel implementation of inter­

mediate and low level algorithms, efficient load balancing is important because the com­

putation is normally data dependent. The main contributions have been to present tech­

niques to perform data decomposition and load balancing schemes that exploit

knowledge about the computation and the data in a task. Since in an IVS such knowledge

for the next task is normally available while performing the current task, the overheads

are minimal. Four techniques presented are uniform partitioning, which is shown to be

-
-

-

-
-

169

good enough for data independent algorithms: static and weighted static, which are

shown to perform well when computation is dependent on the amount of significant data

and its distribution; and the dynamic load balancing which is shown to work as well.

However, in the dynamic load balancing scheme, the spatial relationships between data

element are not maintained. Performances of all the techniques have been shown using

algorithms from a motion estimation system, and it is concluded that these schemes per­

form well and provide tremendous improvements in utilization and speedups.

7.2. Future Work

Future work relating to this thesis can be put into three categories, namely, architec­

tural issues, parallel algorithms issues and systems issues. The following is a brief discus­

sion on each of these issues.

Specification and more detailed design of the communication networks in NETRA

are areas for an extension to the current w,?rk. This involves design of communication

protocols for both intra-cluster and inter-cluster communications. For example, the

design of communication protocols should address issues such as where does the respon­

sibility of programming the crossbar lie, or how the crossbar will be addressed. Once the

specifications are provided, the crossbar can be designed in detail. Another task is to

develop a versatile simulator for NETRA which incorporates clusters as well as other

parts of NETRA in detail. The simulator can be used to evaluate algorithms in detail, and

using the results of the evaluation, refinements in the architecture can be performed.

The second avenue for future research is in the area of parallel algorithm issues,

both specific to implementing them on NETRA as well as on other architectures. The

170

foremost task is to map a variety of algorithms to evaluate the architecture as well as to

develop a general approach to mapping parallel algorithms. Study and evaluation of algo­

rithms, especially intermediate and high level, are necessary to obtain a better under­

standing of their characteristics from parallel implementation perspective. Furthermore,

if the algorithms are evaluated using existing parallel machines, then a better understand­

ing obtained for architectural issues as well as knowledge can be gained about overheads

associated with implementation of such algorithms.

The third issue, termed systems issue, deals with the design of operating systems

and development of a programming environment for NETRA. The design should specify

tasks for various elements of the architecture, how the tasks interact with one another,

how to specify and incorporate data and knowledge base about vision systems, design of

protocols to use data, and knowledge base. Furthermore, the systems issues include

designing protocols for load balancing. partitioning and allocating resources, memory

management and task management. The most important and ultimate task is to integrate

all of the above into one system.

-

171

REFERENCES

[1] C. Weems, A. Hanson, E. Riseman, and A. Rosenfeld, "An integrated image
understanding benchmark: recognition of a 2 1/2 D mobile," in International
Conference on Computer Vision and Pattern Recognition, Ann Arbor, MI, June
1988.

[2] Alok Choudhary and Janak Patel, "A parallel processing architecture for
integrated vision systems," in 17th Annual International Conference on Parallel
Processing, St. Charles, IL, pp. 383-388, August 1988.

[3] M. Sharma, J. H. Patel, and N. Ahuja, "NETRA: An architecture for a large scale
multiprocessor vision system," in Workshop on Computer Architecture for
Pattern Analysis ans Image Database Management, Miami Beach, FL, pp. 92-
98, November 1985.

[4] J. L. Bentley, "Multidimensional divide-and-conquer," Communications of the
ACM, vol. 23" pp. 214-229, April, 1980.

[5] M. J. B. Duff, "CLIP 4: a large scale integrated circuit array parallel processor,"
IEEE Inti. foint Con! on Pattern Recognition, pp. 728-733, November 1976.

[6] M. J. B. Duff, "Review of the CLIP image processing system," in National
Computer Conference, Anaheim, CA, 1978.

[7] L. CordelIa, M. J. B. Duff, S. Levialdi, "An analysis of computational cost in
image processing: a case study," IEEE Transactions on Computers, vol. c-27,
no. 10, pp. 904-910, 1978.

[8] Arvind, D. K. Robinson, and I. N. Parker, "A VLSI chip for real-time image
processing," IEEE International Symposium on Circuits and Systems, pp. 405-
408, 1983.

[9] R. Davis and D. Thomas, "Geometric arithmetic parallel processor-systolic array
chip meets the demands of heavy duty processing," Electronic Design, pp.207-
218, October 1984.

[10] K. Batcher, "Design of a massively parallel processor," IEEE Transactions on
Computers, vol. 29, pp. 836-840, 1980.

[11] T. Kushner, A. Y. Wu, and A. Rosenfeld, "Image processing on MPP:l,"
Pattern recognition, vol. 15" pp. 120-130, 1982.

[12] J. L. Potter, "Image processing on the massively parallel processor," IEEE
Computer, pp. 62-67, January 1983.

172

[13] V. Cantoni, S. Levialdi, M. Ferretti, and F. Maloberti, "A pyramid project using
integrated technology," in Integrated Technology for Parallel Image Processing,
London, pp. 121-132, 1985.

[14] A. Merigot, B. Zavidovique, and F. Devos, "SPHINX, A pyramidal approach to
parallel image processing," IEEE Workshop on Computer Architecture for
Pattern Analysis and Image Database Management, pp. 107-111, November
1985.

[15] D. H. Schaefner, D. H. Wilcox, and G. C. Harris, "A pyramid ofMPP processing
elements - xperience and plans," Hawaii Inti. Conf. on System Sciences, pp.
178-184, 1985.

[16] S. L. Tanimoto, "A hierarchical cellular logic for pyramid computers," J. of
Parallel and Distributed Processing, vol. 1, pp. 105-132, 1984.

[17] S. L. Tanimoto, T. J. Ligocki, and R. ling, "A prototype pyramid machine for
hierarchical cellular logic," in Parallel Hierarchical Computer Vision, L. Uhr
(Ed.), London, 1987.

[18] N. Ahuja and S. Swamy, "Multiprocessor pyramid architectures for bottom-up
image analysis," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-6, pp. 463-475, July 1984.

[19] A. Rosenfeld, "The prisom machine: an alternative to the pyramid," Journal of
Parallel and Distributed Computing, vol. 3, pp.404-411.

[20] L. Uhr, "Layered recognition cone networks that preprocess, classify and
describe," IEEE Transactions on Computers, vol. 21, pp. 758-768, 1972.

[21] S. Tanimoto, "A pyramidal approach to parallel processing," in 10th Annual
Symposium on Computer Architecture, Stockholm, Sweden, June 1983.

[22] D. Hillis, The connection machine. Cambridge: MIT Press, 1985.

[23] J. Rattner, "Concurrent processing: a new direction in scientific computing,"
National Computer Conference, 1985.

[24] NCube Corp., "Promotional literature," Beaverton, OR, 1985.

[25] C. Seitz, "The cosmic cube," Communication of the ACM, vol. 28, no. 1, pp.
22-33, 1985.

[26] Sequent Computer System, "Promotional literature," Beaverton, OR, 1986.

[27] Encore Computer Corp., "Promotional literature," Marlborough, MA, 1986.

[28] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, and T. Blackadar,
"Performance measurements on a 128-node Butterfly parallel processor,,"
International Conference on Parallel Processing, pp. 531-540, 1985.

[29] G. Pfister, W. Brantley, D. George, S. Harvey, W. Kleinfelder, K. McAuliffe, E.
Melton, V. Norton, and 1. Weiss, "The mM research parallel processor prototype
(RP3): introduction and architecture," International Conference on Parallel
Processing, pp. 764-771, 1985.

-
-
-
-

-

-

173

[30] D. Kuck, E. Davidson, D. Lawrie, and A. Sameh, "Parallel supercomputing today
and the Cedar approach," Science, vol. 231, pp. 967-974, 1986.

[31] H. T. Kung and J. A. Webb, "Global operations on the CMU WARP machine,"
Proceedings of 1985 AIAA Computers in Aerospace V Conference, October 1985.

[32] T. Gross, H. T. Kung, M. Lam, and J. Webb, "WARP as a machine for low-level
vision," in IEEE International Conference on Robotics and Automation, ST.
Louis, Missouri, pp. 790-800, March 1985.

[33] H. T. Kung, "Systolic algorithms for the CMU Warp processor," in Tech. Rep.
CMU-CS-84-158, Dept. ofComp. Sci., CMU, Pittsburgh, PA, September, 1984.

[34] F. H. Hsu, H. T. Kung, T. Nishizawa, and A. Sussman, "LINC: The link and
interconnection chip," in Tech. Rep., Dept. of Compo Sci., CMU, CMU-CS-84-
159, Pittsburgh, May 1984.

[35] M. Annaratone et. al., "The Warp computer : architecture, implementation, and
performance," IEEE transactions on Computers, December 1987.

[36] F. A. Briggs, K. S. Fu, J. H. Patel, and K. H. Huang, "PM4 - A reconfigurable
multiprocessor system for pattern recognition and image processing," 1979
National Computer Conference, pp. 255-266.

[37] H. 1. Siegel et al., "PASM - a partitionable SIMD/MIMD system for image
processing and pattern recognition," IEEE Transactions on Computers, vol. C-
30, pp. 934-947, December 1981.

[38] Y. W. Ma and R. Krishnamurti, "The architecture of REPLICA - a special­
purpose computer system for active multi-sensory perception of 3_dimensional
objects," Proceedings International Conference on Parallel Processing, pp. 30-
37,1984.

[39] W. A. Perkins, "INSPECfOR - A computer vision system that learns to inspect
parts," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-5, pp. 584-593, November, 1983.

[40] C. C. Weems, S. P. Levitan, A. R. Hanson, E. M. Riseman, J. G. Nash, and D. B.
Shu, "The image understanding architecture," COINS Tech. Rep. 87-76,.

[41] K. Preston Jr., "Benchmark results: the abingdon cross," in in Evaluation of
Multicomputers for Image Proccessing (Proceedings of the 1984 Multicomputer
Workshop, Tuscon, AZ), L. Uhr, K. Preston Jr., S. Levialdi, M. J. B. Duff editors,
Orlando, FL, pp. 23-54, 1986.

[42] L. Uhr, K. Preston Jr., S. Levialdi, M. J. B. Duff, "Preface in evaluation of
multicomputers for image processing," in Proceedings of the 1984
Multicomputer Workshop, Tuscon, AZ, Orlando, FL, 1986.

[43] A. R. Rosenfeld, "A report on the DARPA image understanding architectures
workshop," in Proceedings of the 1987 DARPA Image Understanding Workshop,
Los Angeles, CA, pp. 298-302, 1987.

174

[44] M. K. Leung, A. N. Choudhary, J. H. Patel, and T. S. Huang, "Point matching in
a time sequence of stereo image pairs and its parallel implementation on a
multiprocessor," in IEEE Workshop on Visual Motion, Irvine, CA, March 1989.

[45] Mun K. Leung and Thomas S. Huang, "Point matching in a time sequence of
stereo image pairs," in Tech. Rep., CSL, University of Illinois, Urbana­
Champaign, 1987.

[46] F. A. Briggs and E. S. Davidson, "Organization of semiconductor memories for
parallel-pipe lined processors," IEEE Transactions on Computers, pp. 162-169,
February 1977.

[47] H. J. Siegel, "Partitioning permutation networks : the underlying theory,"
Proceedings of the International Conference on Parallel Processing, pp. 175-
184, 1979.

[48] M. C. Sejnowski et al., "An overview of the Texas reconfigurable array
computer," AFIPS 1980 National Computer Conference, pp. 631-641, June
1980.

[49] D. Degroot, "Partitioning job structures for SW-banyan networks," Proceedings
of the International Conference on Parallel Processing, pp. 106-113 , 1979.

[50] A. Huertas and G. Medioni, "Detection of intensity' changes with subpixel
accuracy using Laplacian-Gaussian masks," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-8, pp. 651-664, September 1986.

[51] E. Horowitz and S. Sahni, Fundamentals of computer algorithms. Computer
Science Press, 1984.

[52] D. H. Ballard and C. M. Brown, Computer vision. Prentice-Hall, 1982.

[53] Janak H. Patel, "Analysis of multiprocessors with private cache memories,"
IEEE Transactions on Computers, vol. C-31, pp. 296-304, Apri11982.

[54] Janak H. Patel, "Performance of processor-memory interconnections for
mUltiprocessors," IEEE Transactions on Computers, vol. C-30, pp. 771-780,
October 1981.

[55] Alok N. Choudhary, Subhodev Das, Narendra Ahuja, and Janak H. Patel,
"Surface reconstruction from stereo images: an implementation on a hypercube
multiprocessor," in The Fourth Conference. on Hypercubes, Concurrent
Computers, and Applications, Monterey, CA, March 1989.

[56] Y. C. Kim and J. K. Aggarwal, "Positioning 3-D objects using stereo images,"
Computer and Vision Research Center, The University of Texas at Austin.

-
-
....

....

....

....

-
-

-

-
-
-

175

VITA

Alok Nidhi Choudhary was born in on He

received his B.E. (Hons.) degree in Electrical Engineering from Birla Institute of Tech­

nology and Science, Pilani, India, in 1982. He worked as a Systems Analyst and Designer

from 1982 to 1984 with Tata Consultancy Services, New Delhi, India. He obtained his

M.S. degree in Electrical and Computer Engineering from the University of Mas­

sachusetts, Amherst, Massachusetts, in 1986. At the University of Illinois, he was

employed as a research assistant with the Computer Systems Group at the Coordinated

Science Laboratory from 1986 to 1989. He was a visiting scholar at the IBM Thomas J.

Watson Research Center, Yorktown Heights, New York, during the summers of 1987

and 1988. After completing his doctoral degree, he will join the faculty of Syracuse

University in the Electrical and Computer Engineering Department.

UNCLASSIFIED
SECURI

REPORT DOCUMENTATION PAGE

1 •. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 1 DISTRIBUTION I AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING OlllGANIZATION REPORT NUMBER(S)

UILU-ENG-89-2231 (CSG-I08)

~. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Coordinated Science Lab (If .pplicabl.)

University of Illinois N/A NASA
6c. ADDRESS (City, Star.. and ZIP CcxJ.) 7b. ADDRESS (CIty, Star. • • nd ZI' C~)

1101 w. Springfield Avenue NASA Langley Research Center

Urbana, IL 61801 Hampton, VA 23665

Sa. NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If .ppI;c.ble)

NASA NASA NAG 1-613
8c. ADDRESS (City, Star.. and ZIPCat*) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
see 7b. elEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Inc/~ S«lIrlty a.JSification)

Parallel Architectures and Parallel Algorithms for Integrated Vision Systems

12. PERSONAL AUTHOR(S)
Alok Nidhi Choudhary

13 •. TYPE OF REPORT '13b. TIME COVERED ' 14. DATE OF REPORT (Y •• ', Montft. Day) ts. PAGE COUNT
Technical FROM TO September, 1989 185

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on ,. ". if ,..aJUty and KHtttify by block num"',)

FIELD GROUP SUB·GROUP Multiprocessor architectures, parallel algorithms,
parallel processing, computer vision, image processing

~9. ABSTRACT (Cottt/nw on ,.w"e if MC.JUty and icHntlfy by block nllmbe,)

Computer vision has been regarded as one of the most complex and computationally inten-

sive problems. An integrated vision system (I VS) is a system that uses vision algorithms

from a II levels of processing to perform for a high level appl ication (e. g, obJ ec t recogni-

t ion) . An IVS normally involves algorithms from low level, intermediate level and high level

vision. Designing parallel architectures for vision systems has been of a tremendous

interest to researchers. This thesis addresses several issues in parallel architectures and

para 11 e 1 algor i thms for integrated vision systems.

20. DISTRIBUTION' AVAlLA81L1TY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
~ UNCLASSIFIED/UNLIMITED o SAME AS RPT. o OTIC USERS Unclassified

22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (InclucH An. CcxJ.) 122C. OFFICE SYMBOL

00 FORM 1473,84 MAR 83 APR .dltlon may be us~ untll.xh.usted.
All other editions .re omelet •.

SECURITY CLASSIFICATION OF THIS PAGE

UUCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSI~ICATION O~ THIS ""Gil!:

