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Abstract

Results are reported for an investigation into the methods

by which energy transfer is calculated in the Direct Simula-

tion Monte Carlo method. Description is made of a recently

developed energy exchange model that deals with the trans-

lational and rotational modes. A new model for simulating

the transfer of energy between the translational and vibra-

tional modes is also explained. This model allows the vi-

brational relaxation time to follow the temperature depen-

dence predicted by the Landau-Teller theory at moderate

temperatures. For temperatures in excess of about 8000K

the vibrational model is extended to include an empirical re-

sult for the relaxation time. The effect of introducing these

temperature dependent collision numbers into the DSMC

technique is assessed by making calculations representative

of the stagnation streamline of a hypersonic space vehicle.

Both thermal and chemical nonequilibrium effects are in-

cluded while the flow conditions have been chosen such that

ionization and radiation may be neglected. The introduc-

tion of these new models is found to significantly affect the

degree of thermal nonequilibrium observed in the flowfield.

Larger, and more widely ranging, differences in the results

obtained with the different energy exchange probabilities

are found when a significant amount of internal energy is

included in the calculation of chemical nonequilibrium.

Nomenclature

AOTV = Aero-assisted Orbital Transfer Vehicle

= average molecular velocity

Cn = heat-transfer coefficient

f(g) = relative velocity distribution function

g = relative velocity of collision

g* = characteristic velocity

mr = reduced mass of collision

n = number density

T = translational temperature

T* = characteristic temperature for ZR

T,,f = reference temperature for VHS model

VHS = Variable Hard Sphere
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= mass fraction for species i

= rotational collision number

= infinite temperature collision number

= translational collision number

= probability of rotational energy exchange

= probability of vibrational energy exchange

= molecular collision rate

= parameter in VHS model

= reference collision cross section for

VHS model

= effective excitation cross section

= Landau-Teller vibrational relaxation time

= Park's empirical correction for relaxation time

= total vibrational relaxation time

Introduction

The Direct Simulation Monte Carlo method (DSMC) de-

veloped by Bird I is an important numerical technique for

the calculation of low density flowfields. The method sim-

ulates the flow at the molecular level by calculating col-

lisions on a probabilistic basis. One of the most impor-

tant aspects of DSMC calculations is the ability to model

thermal nonequilibrium in which the temperatures asso-

ciated with the various energy modes of the gas (trans-

lational,rotational,vibrational,electronic) are unequal. In

order to reduce computational overheads, such phenom-

ena are usually modelled in a simplistic manner in which

the probability of energy exchange between these various

modes is a constant for each type of transfer mechanism. If

a particular collision is accepted for internal energy transfer,

then post collision values are sampled from the local equi-

librium distribution function in accordance with the Larsen-

Borgnakke phenomenological model z .

By employing this energy exchange scheme, significant

degrees of thermal nonequilibrium have been calculated

for expansions in plumes 3 .4 and for compressions in shock

waves 5,6. Recently, one of the most interesting applications

of the DSMC technique has been to the flowfield surround-

ing a hypersonic space vehicle such as the Space Shuttle or

an Aero-Assisted Orbital Transfer Vehicle (AOTV) as de-
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scribedinRefs.5and6.Thedegreeofthermalnonequilib-
riuminsuchenergeticflowscanhaveasignificantimpact
ontheshockstandofflocation,ontheamountof chemi-
calactivity,andontheconvectiveandradiativeheatload
tothevehicle.It is thereforeofgreatimportancethatthe
modelsemployedin thecalculationofenergytransferbe
physicallyrealistic.ForAOTVcalculationstheprobabili-
tiesassumedforrotationalandvibrationalenergyexchange
areusuallytakentobe 0.2 and 0.02 respectively. The value

for the transfer of rotational energy has been derived from

experimental studies for temperatures of about 1000K. In

the case of vibrational energy exchange, the probability of

0.02 is an estimate of the maximum possible. In reality,

the probability of energy transfer would be expected to be

much smaller except at very high temperatures. It is the

purpose of the present work to describe the procedures for

implementing energy transfer probabilities which are de-

pendent upon the local translational temperature. Rather

than calculating the translational temperature at each cell in

the simulation and then employing continuum expressions

to evaluate the relaxation time 7 , each probability of energy

exchange is obtained by integrating over all simulated col-

lisions. This procedure should ensure that any nonequilib-

rium attributes associated with the translational modes are

incorporated into the calculation. The effect of introduc-

ing such expressions into the DSMC technique is assessed

by making one-dimensional calculations along the stagna-

tion streamline of a hypersonic vehicle. First, the methods

for calculating the probability of internal energy transfer are

described.

Probability of Rotational Energy Transfer

The following approximate expression for the rotational

collision number was obtained by Parker s

(Z n)oo
ZR = (1)

1+ .__(__) _- + (._ + _.) T'-f-

where T* is the characteristic temperature of the intermolec-

ular potential, and (Zn)_ is the limiting value. While

Parker's expression is derived from an analysis involving

a large number of assumptions, the temperature dependent

nature of Eq.(1) is in agreement with the more rigorous

treatment of Lordi and Mates 9 wh6 performed classical tra-

jectory calculations. In the current work the value of (Zn)o¢

is chosen so as to obtain the best correspondence between

Parker's results and those of Lordi and Mates. To incorpo-

rate Parker's continuum formula into the DSMC technique

an expression for the probability of energy transfer must

be developed as a function of the relative collision velocity.

This expression must reduce to Eq.(1) when integrated over

all possible collisions. Such a formulation has been derived

in Ref. 10 and is given as

ea(Za)_ r(2 -w) _'2kT"_ _ tr½
27 k --77 T

+ rC1 + (2)

where en is the probability of energy transfer between the

translational and rotational modes, Zt is the translational

collision number, m, is the reduced mass of collision, and g

is the relative collision velocity. In the derivation of Eq.(2)

the Variable Hard Sphere collision model of Bird u has been

employed in which the molecular collision rate is given by

!

= -- [(2-w)T,,s/T] _' (3)
\mr�

where n is the number density, cr_cf defines a collision cross

section at a temperature T, cf, and w defines the interaction

potential. In a separate set of calculations m, Eq.(2) was

employed in the calculation of a standing shock wave and

the results obtained were found to offer better correspon-

dence to the experimental data than those with ¢R--0.2. It

has been found by Belikov et a112 that Parker's formulation

appears to give the correct behavior up to about 4000K. In

addition, it has been shown by Lumpkin et a113 that Eq.(1)

gives good agreement with experimental shock wave thick-

ness for a range of Mach number. Indeed, in Ref. 13 it

is observed that Parker's simple formulation provides bet-

ter correspondence than the results obtained with calcula-

tions which employed a more sophisticated model based

on rotational transition rates. As shown in Fig. 1, even at

1000K the probability of rotational energy transfer for ni-

trogen is certainly different to 0.2 and the variation in Cn

will therefore have some impact on the calculated results.

When Eq.(2) is evaluated at each collision, it is found that

equipartition of the thermal modes is not achieved due to

the fact that the collision probability is biased towards those

collisions having smaller translational energies. The mean

collision probability for each cell in the computational do-

main is therefore employed, and is obtained by averaging

Eq.(2) over all collisions.

Probability of Vibrational Energy Transfer

In a pure gas of diatomic molecules, the mean proba-

bility of vibrational-translational energy exchange may be

expressed as

--1L _°r_v¢_ ¢_(g) f(g)dg (4)



where¢_is theprobabilityofenergyexchangeforthecol-
lisionwithrelativevelocityg,fig) is therelativevelocity
distributionfunction,andr_ is thevibrationalrelaxation
time.In thefollowing,wewishto chooseaformfor¢_
suchthatthevibrationalrelaxationtimeisgivenbytheex-
pressionobtainedbyMillikanandWhite14whocorrelated
anumberofexperimentalresults.Theprobabilityofenergy
exchangeisassumedtobeoftheform

Cl -o"

¢_ = _og exp(--:--)g
(5)

where c_and Zo are constants, and g* is a characteristic ve-

locity. The form of Eq.(5) is identical to that originally as-

sumed by Landau-Teller with c_ set equal to zero. The in-

tegral obtained by substituting Eq.(5) into Eq.(4) can only

be evaluated approximately using the method of steepest

descent 15. The result obtained with this method reveals that

the temperature dependent nature of the vibrational colli-

sion number is obtained when

c_ = 3 - 2to (6)

A detailed description of the preceding analysis together

with the expressions for the constant Zo in Eq.(5) and the

characteristic velocity g* are included in Ref. 15. For a

hard sphere interaction (to---0), the instantaneous probability

of vibrational-translational energy exchange for nitrogen is

Cv = 1.20 × lO-ng3exp(
43300

) (7)

Results obtained with the DSMC technique employing

Eq.(7) are plotted in Fig. 2 together with the continuum

result. Due to the approximation used in evaluating Eq.(4),

the results are not identical, with the DSMC results always

lying less than a factor of 2 above the exact solution.

The vibrational relaxation time of Millikan and White is

generally recognized to be valid up to temperatures of about

8000K. In the consideration of hypersonic flow surrounding

space vehicles, the translational temperature may be as high

as 40,000K. To better simulate the vibrational-translational

exchange process at such elevated temperatures Park 16 in-

troduced the following empirical correction

To= rLr + "rp (8)

where TLT is the Landau-Teller relaxation time,

1

rp = r_r_2
(9)

a_ is the effective excitation cross-section and _ is the av-

erage molecular velocity. This correction to the vibrational

collision number may be evaluated in a similar manner to

that employed for rotational-translational energy exchange.

If the excitation cross-section is taken to be constant, then

the following expression is obtained

cry 1

Cp= V,_crTefF(2_to)[T/(2- to)T,,f] '_ (10)

An expression which reduces to Eq.(10) when integrated

over all collisions is

- [ l (ll)
_P Vl20"ref 2(2 -- to) kTrey J

It should be noted that it is possible to include a tempera-

ture dependent form for cry if desired. From Eq.(ll) it is

seen that for hard spheres, the result is independent of the

collision velocity. Park's modification to the vibrational re-

laxation time is implemented in the DSMC method by av-

eraging Eq.(11) over all collisions. To ensure that the inte-

gration is being performed correctly, the results for to=0.25

and nitrogen molecules are shown in Fig. 3 for the modi-

fied vibrational relaxation time of Eq.(8). It is seen that the

DSMC and continuum results are in excellent agreement.

Calculations

Having derived expressions which allow both the rota-

tional and vibrational collision numbers to vary with tem-

perature, the effect of introducing these developments into

energetic DSMC calculations is now assessed. The prob-

lem chosen for consideration is the flow along the stagna-

tion streamline in front of a hypersonic space vehicle. The

solution procedure follows that of Bird 17 who has shown

that the stagnation streamline flow may be reduced to one

dimension. One end of the computational domain is open

through which enter molecules representative of the up-

stream conditions. At the opposite end is the surface of

the space vehicle, which is assumed to be a diffuse reflec-

tor with full energy accomodation. As the molecules are

reflected back from the wall a shock wave forms which

gradually moves away from the surface. A steady flow is

achieved by removing molecules from a downstream por-

tion of the flow with probability proportional to the square

of the normal velocity component. This procedure has

been shown to conserve energy and momentum when the

molecules are removed in the region lying between the

shock standoff location and the surface.

The conditions investigated represent the exit of the

space vehicle through the atmosphere rather than the reen-

try. The exit phase is significantly less energetic than reen-

try and allows us to neglect ionization and radiation effects



inthecalculations.An altitude of 90km has been selected

and the free stream flow conditions are listed in Table 1.

The wall surface is assumed to be constant at 1000K and is

non-catalytic. A five species gas mixture is employed (N2,

02, NO, N, O) with 19 different chemical reactions (see

Table 2(a), Ref. 18). Due to the low densities involved,

recombination reactions have been omitted from the anal-

ysis. Calculations have been completed for three different

cases. The first of these follows the previous work by set-

ting _bR=0.2 and _bv--0.02. Secondly, the temperature and

species dependent expression in Eq.(2) for rotational en-

ergy transfer is introduced. Finally, both the rotational and

the vibrational energy exchange probabilities are calculated

as a function of temperature and molecular species using

Eq.(2) and Eqs.(6,11). Details of the parameters used in the

energy exchange models are given in Table 2 for rotation,

and in Table 3 for vibration. The value for the translational

relaxation number _, required in Eq.(2), is that proposed

by Fritzsche and Cukrowski 19.

While the primary focus of the present work is the inves-

tigation of thermal nonequilibrium effects, the importance

of chemical nonequilibrium cannot be ignored. Initially, ro-

tational energy contributions to the energy available for re-

action are only included on a restricted basis, and where re-

quired by Bird's steric factor for the VHS model. The frac-

tions of rotational energy allowed to participate in the var-

ious reactions are those employed by Bird 2° in his general

purpose code. The effect of this assumption on the flow-

field is also analysed by allowing all of the rotational energy

available in each collision to be incorporated into the steric

factor. For the dissociation reactions it would of course be

more realistic to include contributions from the vibrational

modes. Unfortunately, the implementation of such a pro-

cedure is numerically expensive when Bird's steric factor

is employed. It is proposed that the use of the rotational

energy will at least give an indication of the importance of

including internal energy contributions in the calculation of

chemical nonequilibrium.

Results and Discussion

At an altitude of 90km, Ref. 16 shows that the shock

standoff distance, which is defined as the point at which the

local density is 6 times the free stream value, is located at

a distance of 0.11m from the vehicle surface. The present

calculations have been performed by forcing the standoff

distance to be 0.11m for the case where the exchange prob-

abilities are constant. The other cases are then run under

identical conditions such that the steady state is introduced

at the same point in the simulation. This allows investiga-

tion of any movement in the standoff distance in the various

calculations undertaken. In Fig. 4a, the temperature pro-

files along the stagnation streamline are plotted for the case

in which the probabilities of rotational and vibrational en-

ergy exchange are both kept constant. As expected, a signif-

icant degree of nonequilibrium exists, with the translational

mode reaching a peak temperature of about 25,000K. The

results shown offer excellent agreement with the profiles re-

ported in Refs. 5 and 6. The variation along the stagnation

streamline of the mass fraction of each of the five species is

shown in Fig. 4b for the same case. A significant amount

of chemical activity is observed in the flowfield.

Let us now consider the effect of introducing a tem-

perature and species dependent rotational energy exchange

probability into the calculations. In Fig. 5 the rotational

temperature profiles obtained with the two different mod-

elling methods are shown. It is found that the maximum

rotational temperature attained is significantly reduced for

the case of the variable exchange probability. This effect

may be explained by examination of Fig. 6 in which the ro-

tational probabilities obtained in the calculations are shown

for each of the three molecular species. It may be seen from

Fig. 4b that molecular nitrogen dominates the flow, so let us

concentrate on this data. At the relatively low free-stream

temperature, the probability of rotational energy transfer is

very close to the nominal value of 0.2 and gradually de-

creases as the translational temperature increases. It should

be noted that the energy exchange probability increases

again as the cooling effects of the vehicle surface become

important. The values of the exchange probabilities for

oxygen are observed to be everywhere greater than those for

nitrogen with a maximum of about 0.29 at the free-stream

boundary. For nitric oxide, a value for the exchange prob-

ability is not obtained until a distance of about 0.2 from

the vehicle. This is explained by the fact that, up to this

point, NO gas exists in insufficient quantities to produce any

collisions in the simulation. As the rotational energy ex-

change probability is quite large at the upstream boundary

for both the nitrogen and oxygen molecules then it might be

expected that the rotational temperature in Fig. 4a would lie

closer to the trarlslational result at this location. However,

Fig. 7 reveals that the various thermal modes are in fact in

equilibrium at the upstream location for nitrogen, and this

is also found to be the case for the oxygen molecules. Ex-

amination of the results obtained for each species revealed

that the large translational temperature obtained in Fig. 4a

at the upstream boundary is caused by a very small fraction

of highly energetic, backscattered atoms and nitric oxide

molecules.



InFig.8,thevibrationaltemperatureprofilesareshown
forthetwoenergyexchangeprobabilitymodels.Asinthe
caseofrotationalrelaxation,it isfoundthatthemaximum
vibrationaltemperatureis significantlyreduced.Thein-
dividualexchangeprobabilitiesforeachmolecularspecies
areplottedinFig.9. Carefulattentionshouldbegivento
thelabellingoftheaxes.Onlyaportionofthedomainmod-
elledalongthestangationstreamlineis included.Beyond
distancesofabout0.25mfromthevehicle,thecollisionrate
is toolowto allowanyvibrationalenergyexchangefor
thevariableprobabilitymodel.It istoberememberedthat
theDSMCtechniqueemploysadiscretenumberof simu-
latedmoleculesinthesimulationwhichundergoadiscrete
numberof collisions.Forcalculatedexhangeprobabili-
tieswhichareverysmall,e.g. 10-4, it is thereforediffi-
culttoaccuratelyresolvetheexchangephenomenon.Indi-
rectcontrasttotheresultsfoundfortherotationalexchange
probabilities,themaximumtranslationaltemperaturegives
risetothemaximumexchangeprobabilities.Forbothni-
trogenandoxygenthesemaximumvaluesfallwellbelow
0.02whichisthevaluepreviouslyassumed.It issatisfying
tonotethatthevaluesfornitricoxidelieweUabovethose
oftheothermolecules.Thisisthetrendexpectedfromex-
periment,andshowsthatsuchbehaviorcannowbeincor-
poratedintotheDSMCcalculationsthroughapplicationof
thevariableexchangeprobabilitymodel.

It isthereforefoundthattheintroductionofthevariable
exchangeprobabilitiesleadstoagreaterdegreeof thermal
nonequilibriumin theflowdueto thefactthatthecalcu-
latedprobabilitiesarealwaysmuchsmallerthanthevalues
of0.2and0.02normallyassumedforenergyexchangewith
therotationalandvibrationalmodesrespectively.However,
atthemacroscopiclevel,onlya smalleffectis observed
throughtheintroductionofthetemperaturedependentmod-
els.OneexampleisshowninFig.10wherethemassfrac-
tionof molecularandatomicnitrogeniscompared.It is
seenthatagreateramountof nitrogenatomsareproduced
in thecasewherevariableprobabilitiesareemployed.In
Table4variousresultsobtainedfromthesesimulationsare
shown.It isfoundthatboththeshockstandoffdistanceand
theheatcoefficientincreaseslightlywiththeintroductionof
firstthevariablerotationalexchangeprobability,andthen
additionallyforthecorrespondingmodelforvibration.

It isperhapssurprisingthattheintroductionofthenew
modelshashadsuchlittleeffectontheimportantflowquan-
tities.However,thisisalmostcertainlyduetothefactthat
theinternalenergymodesareonlyincludedin thechemi-
calnonequilibriumphenomenononarestrictedbasis.Ata
timewhenthesignificantroleofinternalenergyinchem-

icalnonequilbiriumhasbeenincorporatedintocontinuum
calculations21.22it isunsatisfactoryforthediscreteparticle
solutionmethodstolagbehindin thisarea.Thereisareal
requirementforimprovementinthemodellingofchemical
reactionsin theDSMCtechnique.Inanattemptto assess
theeffectof theparticularchemicalmodelemployed,the
sameflowconditionshavebeenrecalculatedwiththetotal
rotationalenergynowbeingavailableforreaction.

In Fig. 11,themassfractionof molecularnitrogenis
shownforthecaseswhereconstantexchangeprobabilities
wereemployedforbothrotationalandvibrationalenergy.
It isseenthatareducedamountofdissociationisfoundfor
theincreasedinternalenergycontribution.Thiswouldbe
expectedasBird'sstericfactorsassumeperfectequilibrium
forthevariousthermalmodes.Therefore,whentheinternal
temperaturesliebelowthetranslationalresult,whichisthe
casefortheflowalongmostofthestagnationstreamline,a
smallerrateofreactionwilloccur.

Thethermalnonequilibriumeffectsdiscussedabovefor
therestrictedrotationalenergycontributiontochemicalre-
actionswererepeatedin thenewsetofcalculations.How-
ever,largerdifferencesforotherflowquantitiesweredis-
cernible.InFig.12areshownthemassfractionsforatomic
andmolecularoxygenforthetwocaseswhereconstantand
variableexchangeprobabilitieswereemployed.Thereisa
smalleramountof molecularoxygenpresentinthemixture
whenthevariablemodelsareintroduced.Similarbehavior
isobservedfornitrogen,asshowninFig.13,buttoalesser
extent.Theexactexplanationfor thesetrendsiscompli-
catedbythepresenceofthenumberofcompetingreactions
whichareaccountedforinthecalculations.Thedifferences
betweenthesolutionsobtainedwiththevariableexchange
probabilitiesarenowlargeenoughtobenoticedin such
macroscopicquantitiesasdensityandvelocitywhichare
plottedinFigs.14and15respectively.It is foundthatthe
densityisgreaterforthevariableprobabilitycalculations
in theregionlyingbetweenthefreestreamandtheshock
standofflocation.Thereafter,thevariableresultisslightly
belowthatobtainedwiththeconstantprobability.In Fig.
15,it isseenthatthevelocitysolutionsobtainedwiththe
differentmethodsareclearlydifferentwiththevariablere-
sultlaggingbehind.Thesefindingsareof asimilarmag-
nitudeto thedifferencesnotedbyMossetal in Ref. 18
fordifferentsetsof chemicalreactionrateconstants.It is
thereforefoundthatfurtheruncertaintyinsuchcalculations
arisesfromthetechniquesemployedin thesimulationof
thermalandchemicalnonequilibriumeffects.

Variousglobalresultsobtainedwiththesecalculations



arecomparedinTable5withthatpreviouslyobtainedfor
theconstantexchangeprobabilities.Theassumptionof a
fullrotationalenergycontributionforchemicalreactionsre-
suitsinanincreasedeffectthroughtheinclusionofthevari-
ableenergyexchangeprobabilitymodels.Theheat-transfer
coefficient,themassfractionof molecularnitrogenatthe
surface,andtheshockstandoffdistanceareallaffectedfor
thedifferentmodellingmethods.

Concluding Remarks

The calculations reported show that the introduction

of temperature and species dependent internal energy ex-

change probabilities into DSMC calculations can have sig-

nificant impact on the results obtained. The constant val-

ues normally employed for rotational and vibrational en-

ergy transfer are generally larger than the values calculated

in the simulation. The degree of thermal nonequilibrium

is therefore increased due to a reduction in the amount en-

ergy transfer performed. Indeed, the vibrational exchange

probabilities obtained for nitrogen are an order of magni-

tude smaller than the constant value previously assumed.

The differences observed in other flow quantities for the

different energy exchange models are found to be largest

when the internal modes are allowed to contribute a sig-

nificant amount of energy to that available for each chemi-

cal reaction. In the current investigation only the rotational

energy contribution has been considered, and is found to

be important. In the case where the total rotational energy

is included in the collision energy, the variable energy ex-

change models are found to have a pronounced effect on

such important quantities as the shock standoff distance and

the heat-transfer coefficient.

It is concluded that consideration should be given to

the implementation of the energy transfer probabilities de-

scribed in this paper. It is probable that the effects observed

in the present calculations will be more pronounced for the

more energetic flowfields associated with atmospheric re-

entry of an AOTV or Mars return vehicles. It is a require-

ment for the future to investigate such conditions and to

consider in detail the role of chemical nonequilibrium in

such flows. In addition, the role of the variable exchange

probabilities in expanding flows, such as that around the

aerobrake skirt of an AOTV, should be considered. In such

flow, the freezing of the vibrational temperature plays a sig-

nificant role in the determination of radiation effects.
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Table1.Freeslxeamconditions.

Altitude(km) Uoo(kin/s) Density(kg/m3) Too(K) Xo2 Xt¢_

90 7.5 3.418x10-6 188.0 0.23 0.77

Table2.ParametersforRotationalEnergyExchange.
Species (ZR)oo T"(K) Zt

Na 23.3 91.5 1.5

02 16.5 113.5 1.5

NO 19.5 100.0 1.5

Table 3. Parameters for Vibrational Energy Exchange.

Species Zo g* (m/s) cr_ (m 2)

N2 8.30x101° 43300 10 -20

02 1.50x10 tl 18200 10 -2°

NO 1.51x10 tl 6400 10 -2°

Table 4. Results For Restricted Rotational Contributions To Chemical Reactions.

q_R 4_ Shock Standoff (m) CH Surface Mass Fraction of N2

0.2 0.02 0.110 0.177 0.561

Eq.(2) 0.02 0.113 0.178 0.547

Eq.(2) Eq.(8) 0.115 0.180 0.540

Table 5. Results For Different Rotational Contributions To Chemical Reactions.

Rotational Contribution fir qS, Shock Standoff (m) Cn Surface Mass Fraction of N2

Restricted 0.2

Full 0.2

Full Eq.(2)

Full Eq.(2)

0.02 0.110 0.177 0.561

0.02 0.110 0.177 0.552

0.02 0.116 0.182 0.530

Eq.(8) 0.118 0.188 0.506
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