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BOUNDARY-LAYERRECEPTIVITY

Boundary-layer receptivity examines the processes by which unsteady dis-
turbances in the free-stream flow enter the boundary layer. In contrast, clas-
sical stability theory examines the evolution of disturbances that are already
present in the boundary layer. Unsteady environmental disturbances of impor-
tance include free-stream turbulence, sound waves, and body vibration. Experi-
mental evidence suggests that the receptivity process and the initial growth of
the instability waves are well described by linear equations. Hencewe consider
linear, time-harmonic disturbances tn the steady boundary-layer flow. The
mathematical description of the receptivity process has the form of a boundary
value problem, since the free-stream disturbances are specified. In contrast,
classical stability theory leads to an eigenvalue problem in which the growth
or decay rate of the disturbance is found, but in which the actual amplitude of
the instability wave cannot be determined.

RECEPTIVITY

Examines the mechanisms by which external distur-

bances enter the boundary layer.

Boundary value problem

////////

As Conlrasted To

STAI:LILITY TII EORY

Examines lhe evolution of disturbances lhat are alread_

present in the boundary, layer.

Eigenvalue problem

////////
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IMPORTANCEOF RECEPTIVITYIN TRANSITIONPREDICTION

Conceptually, the phenomenonof boundary-layer transition can be separated
into three stages. These stages are the receptivity process, the linear growth
of the instability wave, and the nonlinear breakdown into turbulence. The non-
linear breakdown is a violent process which occurs over a fairly short stream-
wise distance. Most of the distance between the airfoil leading edge and the
transition point is covered by the receptivity and linear growth stages of the
transition process. Hence, the details of the first two stages are most criti-
cal for prediction of the transition point.

Current transition prediction methods are based on linear stability theory,
and hence consider only the second stage of the transition process. Linear sta-
bility theory cannot determine the amplitude of the instability waves, and hence
the eN criterion examines the ratio of the instability wave amplitude to its
(unknown) amplitude at the neutral stability point. The amplitude ratio expo-
nent N must be determined empirically by comparison with experiments and is
found to be a strong function of the disturbance environment. A modified tran-
sition prediction method which combines receptivity with linear stability theory
would have several advantages. The amplitude ratio criterion could be replaced
by a critical amplitude criterion, the environmental disturbances would be
directly accounted for, and the influence of the boundary-layer characteristics
upstream of the neutral stability point would be included.

• Transition Involves Three Stages

(I) Receptivity

(2) Linear growth of instability

(3) Nonlinear breakdown

• First Two Stages Most Critical for Transition Prediction

• Current e N Methods Consider Only Stage (2)

e N = Atr= amplitude ratio

Ansp

N = empirical function of disturbance en,,ironment

• Method Combining Receptivity and I+inear Growlh

utilitizes amplitude criterion (Atr)

directly accounts for disturbance environment

includes influence of boundary layer characteristics

upstream of the neutral stability point

mns.

recepti "+ e Iine;ir stabilily Atr
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FUNDAMENTALCONCEPTSOF RECEPTIVITYTHEORY

While the importance of free-stream disturbances for the transition pro-
cess has been recognized for manyyears, an appropriate mathematical descrip-
tion has been developed only recently (refs. I, 2, 3 and 4). The fundamental
ideas of this receptivity theory can be described as follows. The evolution of
instability waves is governed by the Orr-Sommerfeld equation of linear stability
theory. This equation assumes that, compared to the instability wave, the
steady boundary-layer flow changes slowly in the streamwise direction. Boun-
dary conditions representing free-stream disturbances may be imposed on the
Orr-Sommerfeld equation, but these generate only particular solutions that are
unrelated to the instability wave eigensolutinns. This leads to the conclusion
that the generation of the instability waves, or equivalently the receptivity
process, must occur in regions where the boundary layer changes so rapidly that
the Orr-Sommerfeld equation is invalid. The instability wave amplitude is then
found by asymptotic matching of the receptivity region with the evolution
region.

• l".v.lution of Inslability \Vavcs (;o',crncd b,,, Orr

S_m merfeld Equation

a,,,', u Itl e s

1 d6 1
---- << __

6 dx ),rs

free-stream disturbances produce particular solulions

thai are unrelated to instability waves

,, Generation of Instability Waves ()c_.urs in Regions

_here O.S. Equation is Invalid

8 dx >'Js

• Ampliludes of Inslahili/y Waves Found by .Asymptotic

Ma[dling o1 Generation and I-':,,'olution Regions
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REGIONSWHERERECEPTIVITYOCCURS

There are two classes of regions where receptivity occurs. The first is
near leading edges, where the boundary layer is thin and growing rapidly. Since
the boundary layer is thin, the pressure may be assumedconstant across it and
the disturbances are governed by the linearized, unsteady boundary-layer equa-
tion rather than by the Orr-Sommerfeld equation. In contrast to the O-S equa-
tion, the mean flow divergence enters at leading order in the unsteady boundary-
layer equation. The interaction of the mean flow divergence with the unsteady
disturbances imposed on the boundary layer by the free stream results in the
generation of instability waves. The second class corresponds to regions
further downstream where the boundary layer is forced to adjust on a stream-
wise length scale which is short compared to the body length. Examples of this
class are wall suction - hardwall junctions, surface bumps and shock-boundary-
layer interactions. In these situations both the mean flow and the unsteady
flow exhibit triple deck structures (refs. 5 and 6). The unsteady flow
in the lower deck adjacent to the wall is again governed by the unsteady boun-
dary layer equation, and the instability wave is generated by interaction
between the unsteady motion and the mean flow divergence.

• Near Leading Edge,;

Boundary layer thin and growing rapidly

Disturbances governed by unsleady boundar_ la}er equation

0u' . r)u'+ du' '_)U 'aU I dp'+v0:U'--+U-- V--+ -- --
at 3x ay u 3x +v dy pax il>,e

terms not present in O.S. equation

• In Regions of Rapid Boundary Layer Adjustment

pl_lOUs SLIClioI1 suriao2 B.I_. separation or shock B.h.

sul [a_c / haldv_tl[ bum ps near separation nlleraclion

ju n ct io n ._...

!

+ - ,.!:L

Mean flow and disturbance flow exhibit triple-deck structure,,

Disturbance tlow in lower deck governed by unslead_

boundary layer equation
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LEADING-EDGERECEPTIVITY

In order to assess the relative importance of various leading-edge recep-

tivity mechanisms, we have examined the case of the Blasius boundary layer at

low Mach numbers. Three types of free-stream disturbances have been consi-

dered: convected gusts, which are the linear representation of turbulence, the
J /

von Karman vortex street which is produced by a vibrating ribbon, and oblique

acoustic waves. An oblique acoustic wave at 0 = 90' also represents plate

transverse vibration. For each of these free-stream disturbances, a closed

form solution for the inviscid interaction with the semi-infinite flat plate is

first determined. The slip velocity on the plate surface is then calculated.

This slip velocity has two distinct components: the slip velocity that would

occur for the interaction of the free-stream disturbance with an infinite plate

and a cylindrical acoustic wave generated by interaction with the leading edge.

The slip velocity then provides the boundary condition for the numerical solu-

tion of the unsteady boundary-layer equation, and the receptivity coefficient is

extracted from the large x behavior of the solution.

• Flat [:'late Geometry, M_<< 1

• Free Stream Disturbances

c_nvected gust (turbulence)
t4

Von Karman vortex street .3 .7 _" _

,z,

acoustic wave /2_ t')

0= 90°--> plate transverse vibration

• Inviscid Interaction with Semi Infinite |'late

analytical solutions

slip velocity on plate surface contains tw_ components

(1) infinite plate component

(2) diffracted acoustic wave from leading edge

• Slip Velocity Provides Boundary Condition for Numerical

Solution of Unsteady Boundary Layer Equation

• Receptivity Coefficient Extracted from Large x

Behavior of Unsteady Boundary Layer
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EXTRACTION OF RECEPTIVITY COEFFICIENT

The asymptotic structure of the unsteady boundary-layer equation for large

x consists of a particular solution plus an infinite set of asymptotic eigenso-

lutions. The eigensolutions are asymptotic in the sense that they do not

satisfy the unsteady boundary-layer equation for all x, but only for large x.

Hence the coefficients B n are not arbitrary, but rather are determined by the

full solution for all x. The asymptotic matching of the unsteady boundary

layer and Orr-Sommerfeld regions shows that the n = I asymptotic eigensolution

of the unsteady boundary-layer equation matches with the unstable Tollmien-

Schlichting wave. Hence the amplitude of the T-S wave is linearly proportional

to BI, and we call B I the receptivity coefficient. We determine B l by solving

the unsteady boundary-layer equation numerically, and then examining the solu-

tion for large x. The asymptotic eigenvalues X n are ordered such that the

n -- 1 eigensolution is exponentially small for large x, making direct extraction

of its coefficient difficult. In order to overcome this, the unsteady boundary-

layer equation is solved along a ray in the "complex x plane", where the n = 1

eigensolution grows exponentially with downstream distance.

The receptivity coefficient B 1 is found simply by examining the ratio of the

numerical solution tn the n = I asymptotic eigensolution.

• Analytical Structure of Unsteady Boundary l.ayer as x-4_

u = Up+ Y. Bng_(x,q)e
n I

(I il 2',,,x ¢:

n 1 eigensolution matches ,*ith T.R wave

B 1 = receptivity coefticient -4 Ans v

kl> )_2> k_ .. -4 e ct _i_'X_2exponentially small as x--4_,

Numerical integration performed in "complex x" plane

(x = -ip) where lirst eigensolution is exponentially large

B I = lim ( numerica[ solution i
,_2X_p_2

P_ gl e

Real x Plane

I /I
Re (u'(x)i

I
f

:J

Complex x Plane

1'
pm -- m-

/_" Im (BI)

/ _"_ R e (g_)

//
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RESULTSFORLEADING-EDGERECEPTIVITY

The leading-edge receptivity coefficients for various free-stream distur-
bances are compared in the figure below. The disturbance characteristics are
chosen such that the instability wave has the same frequency in all cases, and
the amplitude of the velocity fluctuations at the Incation of the plate, but in
its absence, is identical. Both the convected gust and acoustic wave receptlv-
ities have a strong dependenceon disturbance orientation 0. The null at 0 =
55' for the convected gust results from destructive interference between the
instability waves generated by the infinite plate and leading-edge slip velocity
components. The yon Karmanvortex street produces a receptivity value approxi-
mately 4 times the convected gust result. The parallel acoustic wave (0 = 0)
receptivity is on the sameorder as that for the convected gust, but as 0 incre-
ases the acoustic wave receptivity rises rapidly, by as much as two orders of
magnitude for M -- 0.01. The explanation for this behavior is in the strength of
the cylindrical acoustic wave generated by the interaction of the free-stream
disturbance with the leading edge. At low Machnumbers the strength of this

• --I 2
scattered wave varles as M / . However, it should be noted that this behavior

occurs only for the case of an isolated semi-infinite flat plate. We are pre-

sently investigating the influences of finite plate length and wind tunnel walls

on leading-edge receptivity to acoustic waves at low Mach numbers.

c,r, ,,: i._ • -_ : _<'.J_-

k%z

C,mvected Gust Re:eptivity Strl)ilg [:uric!ion _t C]L_ ,e \l;:[c

0 dependence due to relative pha_c _t dittracled and

infinite plate components

* Acoustic Wave Receptivity Very Strong at Lc_x_ 3I.

dominated by ditfracled ".*.ave, strength _).), : _ '_Z :

Virli:e Plale Length or Wind-Tunnel Wa]Is Sh _uld

hst mt all',' Decrease Acoustic Rccep_J'¢i_?,

l////t//zdA_

_'_ t "--'-=I H/2

"I t" il t'/I t
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RECEPTIVITY TO ACOUSTIC WAVES AT A

SUCTION SURFACE - HARD WALL JUNCTION

We are presently addressing one problem in the second class of receptivity

mechanisms, namely the receptivity to free-stream acoustic waves which occurs

at a junction between a suction surface and a hard wall. This particular prob-

lem is clearly relevant to hybrid laminar-flow design. In addition, since the

instability waves decay exponentially upstream of the neutral stability point,

even a weak receptivity mechanism close to the neutral stability point may be

more important than a much stronger mechanism which occurs near the leading

edge.

There are two receptivity mechanisms at the junction. The first is associ-

ated with the mean flow adjustment in the vicinity of the junction. This mean

flow adjustment occurs over the triple deck length scale L/Re s/8, where L is the

body length and Re the Reynolds number. The T-S wavelength near the lower

branch of the neutral stability curve is comparable, leading to efficient coup-

ling. In addition to the mean flow adjustment, the change in wall admittance

produces a diffracted acoustic wave whose short local length scale couples into

the T-S wave. This second mechanism does not require wall suction. Since the

phenomenon is linear, the two mechanisms can be linearly superposed.

• Motivations

relevant to hybrid laminar flow design

exponential decay upstream of neutral stability point

--_ receptivity mechanisms closest to nsp dominate

• Two Receptivity Mechanisms at Junction

(1) Mean Flow Adjustment : ,"

adjustment occurs over triple deck scale

(L/Re3/S) ..... .-

T.S. wavelength comparable

(2) Wall Admittance Change ,_ _/
produces diffracted acoustic ;"

wave with short local scale .... -_,--'_-- _---

wall suction not required ...... _\

• Mechanisms Can Be Linearly Superposed
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TRIPLE DECK STRUCTURE

Near the suction surface - hard wall junction, both the mean flow and the

unsteady flow exhibit a triple deck structure. An important characteristic of

the triple-deck theory is that the pressure field is not imposed on the boundary

layer, but is determined by an interactive relationship between the upper and

lower deck solutions. The basic physics of the triple deck is as follows. The

short streamwise length scale causes the original boundary layer or main deck

to respond inviscidly. A new, thinner boundary layer or lower deck is then nec-

essary to satisfy the no-slip wall boundary condition. Finally, the rapid vari-

ation in boundary-layer displacement thickness induces irrotational motion with

this same scale outside the boundary layer. This latter region is called the

upper deck. The streamwise length scale of L/Re 3/s is necessary for consistency

between the decks.

We consider wall suction velocities of the same order as the standard

boundary-layer scaling. The mean flow adjustment then satisfies a linear set

of equations, and the solution can be found in closed form by Fourier transform

techniques. The unsteady flow is found to be a small perturbation of a Stokes

shear wave. This perturbation satisfies an inhomogeneous equation with a source

term involving interaction between the mean flow adjustment and the Stokes

wave. The wall admittance variation enters as an inhomogeneous boundary condi-

tion. The solution for the unsteady flow adjustment (u_, vl) is found in terms

of a Fourier transform, and the amplitude of the T-S wave generated by the in-

teraction is given by the residue of the appropriate pole of the transform.

Inleracm'e Pres_;ure-Displacemenl Relahtm,_hq_

• Asymptotic I)escriplion of Mean Flow, [!ns_cad_, [%u T S ;L,a_.c_

I

u I. s
e {--_'- l

V_.II

V_afl

• i O[ It > mean flow adjtlstment ( L ! I \ I ,;II:M=_ x linear cqs
[I . I'a

U nsleady Flow

main and upper decks quasi _lead>

lower deck small perturbation Io _t_lkes _a_c _u u_ vul)

, , , ll){ ,}l] ,

|.(U1,',1_ I -777+ '

ur qcad? b I eq _'*' -- " tl/cLtl! ]h_ ldluMtllclll

_ _ _a][ adll/Jttarlc¢ chall.'2c

"I'S _ave pole _t Fourier ]lal_]_)lHI _,dulb,_n

Receptivit? Coclficicnt re silhle
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SUCTIONSURFACEJUNCTIONRECEPTIVITY

The general structure of the T-S wave generated by the unsteady interac-
tion at the junction is illustrated in the figure below. The amplitude of the
instability wave is linear with respect to the free-stream acoustic wave and
also with respect to the wall impedanceand suction velocity. The two factors
Am and A 2 are frequency dependent, while the junction geometry appears in the

multiplicative factor F(K). The frequency dependence in Ai and Az is fairly

mild, with a maximum amplitude generated by frequencies corresponding to posi-

tions quite far upstream of the neutral stability point. In terms of proposed

laminar-flow wall suction designs, the parameter Vwall/U=¢ _ is on the order of

0.I for distributed suction systems, and on the order of I for strip suction

systems. We have not yet explored the influence of wall admittance in detail,

but it is interesting to note that the wall admittance B is divided by c2, while

the wall suction parameter is multiplied by ¢. Thus, even small admittances

may be important in the receptivity process.

wall _a]] lU nchon

su_hon adm ilhtncc ec, n7clr_

uls = L [ c (_),'x](o)) + -0---A40) ) I FIk') till c '_ "_1:'

_rutlucrl_ J S _d_C

_ C_L'I,C rl dt'11 c L.
I

U I. xk 1 v
\

Io- "" .A2

Branch _ _ _ __

I Decay Normalized

I,ower

Neutral Point C.rowth ....

I 0.1 I I i FrequencyO I.O .b

• [.aminar FI.w Designs

Vx_all

dislributed suction eT = 0(0,1)

suction strips -- - O(1)
I..I c 4

• F.vdn Small Wall Admitlance May be Important

[:_ = O(_'3l corresponds It_ --\""au = Oil)

[i t ,4
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INFLUENCEOF SUCTIONSTRIPWIDTH

The figure below illustrates the influence of suction strip width on recep-
tivity to free-stream acoustic waves. The total mass flow through the strip is
held constant as strip width is varied, and hence the wall suction velocity is
inversely proportional to the strip width. The Blasius profile is used for the
undisturbed boundary layer. Results are shown for four strip locations. The
quantity plotted is the receptivity coefficient divided by its narrow slot limit.
It is seen that the maximumreceptivity generally occurs for very narrow slots.
For the slot located at the neutral stability point, a slot width equal to an
integer number of T-S wavelengths produces a zero receptivity coefficient.
Essentially, the instability wave generated at the front edge of the slot is
cancelled by that generated at the rear edge.

Almost identical results are found for the slot located at I/2 the dis-
tance from the leading edge to the neutral stability point and the slot located
at the point of maximuminstability growth rate. The general shape of these
curves is similar to that for the neutral wave, but the minima at integer
values of d/X are nonzero. Basically, the growth or decay of the instability
wave modifies the perfect cancellation between front and rear edges of the
slot. However it can be seen that, by choosing a slot width equal to the insta-
bility wavelength, the receptivity can be reduced to 12% of the narrow slot
limit. At the I/4 point location closer to the leading edge the receptivity is
not reduced as muchby choosing d/X = I. Note also that, for sufficiently wide
slots, the receptivity is actually higher than the narrow slot limit. This
behavior is caused by the downstream displacement of the slot rear edge with
increase in slot width.

Fd d )

F(d=O}

\
O, 5 iI \

f

!
.I

i"

///I'•

/"

Ln5 p

9. max growth rate .........

L/Ensp = 0.5 ....

i
0.2 _" . _ :--:x= f"/_" nsp = (1o25 .....

....
9 ' 2 3 _, 5

F:(d} Recepti,rit'_ CoelticJent _ I _'I_!

I:ld=U_ Nalrov.' ,'qlot I+imil . + _ "+'

• '.la',inlum Recepti,.it} lot Narro_ StlJp _,

d
• P,.cccpt!,.iQ. \linilnized l't_t -- = I

I'CdllL'_[Oll rl_l]M _i_TliiiC_iI/[ hit noLIr IICLItT_ii _l_t'x
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INFLUENCEOFJUNCTIONSMOOTHING

For hybrid laminar-flow designs with distributed suction surfaces, the
receptivity coefficient depends on the details of the transition from the suc-
tion surface to the downstream hard wall. To examine this dependence, we have
compared the receptivity for a number of suction transition profiles. The case
of a step discontinuity has been taken as the baseline. The additional profiles
considered are a double step discontinuity, a linear variation and a cosine vari-
ation, as shown in the figure below. Three junction locations are considered:
at the neutral stability point, at I/2 the distance from the leading edge to the
neutral stability point, and at the point of maximumgrowth rate. In all cases
the ordinate is the receptivity coefficient normalized by the receptivity coeffi-
cient for the baseline case of the step discontinuity, and the abscissa is the
transition length normalized by the instability wavelength.

The double step discontinuity generally has the largest receptivity coeffi-
cient and the cosine variation generally has the smallest. The results for the
linear profile are surprisingly close to those for the cosine profile. A choice
of transition profile length approximately equal to two instability wavelengths
appears near optimum in most cases. Profile smoothing is less effective in
reducing the receptivity coefficient for growing waves as compared to the neu-
tral wave or decaying wave cases. In fact, for the maximally growing wave the
double step discontinuity generally increases the receptivity coefficient as
compared to the single step baseline case. Essentially, the double step junc-
tion has a discontinuity farther upstream, and the additional growth of this
upstream generated wave negates the beneficial effects of spreading out the
discontinuity in wall suction.

I)ISTRIIIIITI':I) SII(:TIIIN-IIAIII) II'Al,I, ,II[NI{:'I'I()N

• Receptivity N¢*rmalized b} Single Slep .lunclion

Neutral V_'ave

1.O-

L/,Vr_

_- L --_

V_.
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SUMMARY

In summary, receptivity examines the way in which external disturbances
generate instability waves in boundary layers. Receptivity theory is complemen-
tary to stability theory, which studies the evolution of disturbances that are
already present in the boundary layer. A transition prediction method which
combines receptivity with linear stability theory would directly account for the
influence of free-stream disturbances and also consider the characteristics of
the boundary layer upstream of the neutral stability point. The current eN
transition prediction methods require empirical correlations for the influence
of environmental disturbances, and totally ignore the boundary layer charac-
teristics upstream of the neutral stability point.

The regions where boundary-layer receptivity occurs can be separated into
two classes, one near leading edges and the other at downstream points where
the boundary layer undergoes rapid streamwise adjustments. Analyses have been
developed for both types of regions, and parametric studies which examine the
relative importance of different mechanismshave been carried out. The work
presented here has focused on the low Mach number case. Extensions to high

subsonic and supersonic conditions are presently under way.

• Instability Waves Generated

in leading edge region

in regions of rapid btlnndary la>cr a,.liu'._mcnt

• [ eading Edge Recepti;ity

strongly dependent on dislurhatlce l_,pe

oblique ac,.mstic waves dominant at h_:,. \1.

• .Itlnctic, n Recepli',it', Dependent Hn Get,melt',,

• Suction Slot Receptivity

nl axim u Ill l'or narro'_.' slot'.

d
Ill[nilllLlIll for 7 = 1

tLls

• [}i,,tuibuled Suction fiard Wall .l_ln_.tiot_ R,'_:pl,,,_I',

i_linimized by transition lengtt>, grcalcl than >.:,

_,rlla]leF ['OF '_tl1_Ot[1 IrallMth+tlv

• Theories Currenfl._ Being t'xtended I. Su[-.'l',_,r_,,.

Conditions
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