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APPENDIX - RESULTS OBTAINED TO DATE ;;ifﬂ ' )
Joanne L. Walsh, Aditi Chattopadhyay,
Jocelyn I. Pritchard, and Mark W. Nixon
To date, progress has been made in the areas of aerodynamic performance opti-
mization, dyna;ic optimization, optimum placement of tuning masses for vibration

reduction, and structural optimization. Selected results from these activities are

highlighted in this appendix.

Results - Aerodynamic Performance Optimization
This section of the paper describes the application of formal mathematical
programming to optimization of the aerodynamic performance of rotor blades. This

work is described in detail in reference 9.

A previous analytical procedure for designing rotor blades, referred to herein
as the conventional approach (ref. 46) served as the starting point for the develop-
ment of the method in reference 9. The method of reference 46 combined a momentum
strip theory analysis for hover (HOVT) based on reference 17 and the Rotorcraft
Flight Simulation computer program (C-81, ref. 47) for forward flight. The program
HOVT was used to compute hover horsepower. The program, C-81, (quasi-static trim
option) was used to define the trim condition, the horsepower required, and the air-
foil section drag coefficients for forward flight and maneuver conditions. Both
analyses used experimental two-dimensional airfoil data.

The mathematical optimization formulation in reference 9 can be stated in terms
of a design goal and a set of design requirements. The design goal is to reduce the ,
hover horsepower for a given helicopter with a specified design gross weight operat-
ing at a specified altitude and temperature. Satisfactory forward flight performance
is defined by the following three requirements. First, the required horsepower must
be less than the available horsepower. Second, airfoil section stall along the rotor

blade must be avoided, i.e., the airfoil sections distributed along the rotor blade
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must operate at section drag coefficients less than a specified value neglecting the
large drag coefficients in the reverse flow region. Third, the helicopter must be
able to sustain a simulated pull-up maneuver, i.e., the aircraft must operate trimmed
at a gross weight equal to a specified multiple (load factor) of the design gross
weight for a second specified horizontal velocity V,¢.

In reference 9, the airfoil selection and distribution were preassigned. The
design parameters point of taper initiation, root chord, taper ratio, and maximum
twist - are illustrated in figure 13. The point of taper initiation, r, is the
radial station where taper begins. The blade is rectangular up to this station and
then tapered linearly to the tip. The taper ratio, TR, is c¢,./c, where c,. 1is the
root chord and ¢, 1is the tip chord. The twist varies linearly from the root to the
tip where the maximum value r_ .. occurs. The approach uses the same rotor blade
performance analyses as reference 46, but couples a general-purpose optimization pro-
gram to the analyses. Using this approach, the user is less involved in manipulating
the design variables as he would be using the conventional approach. Instead, the
optimization program takes over the role of manipulating the design variables to
arrive at the best blade design.

In reference 9 the mathematical programming approach was used to obtain rotor
blade designs for three Army helicopters - the AH-64, the UH-1, and a conceptual
high-speed performance helicopter. In each case the goal was to find, for prese-
lected rotor speed, rotor blade radius, airfoil sections and distribution, the blade
configuration which has the lowest hover horsepower for a given design gross weight
and a selected pull-up maneuver. Results obtained in references 9 and 44 for the
AH-64 helicopter are presented here.

The final AH-64 rotor blade designs obtained using both the conventional and
mathematical programming approaches are shown in figure l4. Results include the
final design variable values, the main rotor horsepowers required for hover (the

objective function), for forward flight, and for the simulated pull-up maneuver
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conditions, for each approach. The mathematical programming approach produces a
design which had more twist, a point of taper initiation further outboard, and a
smaller blade root chord than the conventional approach. The mathematical program-
ming design requires 25 fewer horsepower in hover than the conventional design. Most
significantly, mathematical programming approach obtained results about 10 times

faster than the conventional approach (2 days vs. 5 weeks).

Results - Dynamic Optimization Through Frequency Placement

One important dynamics design technique is to separate the natural frequencies
of the blade from the harmonics of the airloads to avoid resonance. This can be done
by a proper tailoring of the blade stiffness and mass distributions. This section of
the paper describes a procedure developed in reference 7.

Minimum weight designs of helicoptef rotor blades with both rectangular and
tapered planforms have been obtained subject to the following constraints: (a) upper
and lower bounds ("windows") on the frequencies of the first three elastic lead-lag
dominated modes and the first two elastic flapping dominated modes, (b) minimum
prescribed value of blade autorotational inertia, and (c) upper limit on the blade
centrifugal stress. Side constraints have been imposed on the design variables to
avoid impractical solutions.

Design variables (fig. 15) include blade taper ratio, dimensions of the box beam
located inside the airfoil section, and magnitudes of the nonstructural masses. The
program CAMRAD has been used for the blade modal analysis and the program CONMIN has
been used for the optimization. In addition, a linear approximation involving Taylor
series expansion has been used to reduce the analysis effort. The procedure contains
a sensitivity analysis which produces analytical derivatives of the objective func-
tion, the autorotational inertia constraint, and the stress constraints. A central
finite difference scheme has been used for the derivatives of the frequency

constraints.
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The optimization process begins with an arbitrary set of design variable values.
The mathematical formulation of the optimization problem is presented in figure 16.
The blade weight W has two components W, (structural weight) and W, (nonstruc-
tural weight) and is expressed in the discretized form in figure 16, where N de-
notes the total number of segments and pj, Aj' Lj' and Woj denote the density,
the cross sectional area, the length, and the nonstructural weight of the jth seg-
ment, respectively. The subscripts L and U refer to the respective lower and
upper bounds, o, 1is the centrifugal stress in the kth segment, Mj is the total
mass of the jth segment, and Q 1is the blade rpm. The quantity FS denotes a factor
of safety and Opax 1S the maximum allowable blade stress.

The reference blade (refs. 5 and 7) shown in figure 15 is articulated and has a
rigid hub. The blade has a rectangular planform, a pretwist, and a root spring which
allows torsional motion. A box beam with unequal vertical wall thicknesses is lo-
cated inside the airfoil. As in reference 5, it is assumed that only the box beam
contributes to the blade stiffness, that is, contributions of the skin, honeycomb,
etc. to the blade stiffness are neglected. For the rectangular blade, the box beam
is modeled by ten segments and is uniform along the blade span. For the tapered
blade, the box beam is tapered and is modeled by ten segments. A linear variation of
the box beam height, h, in the spanwise direction has been assumed.

Table 5 presents a summary of the optimization results for the rectangular blade
with 30 design variables (three box beam dimensions at ten segments) and the tapered
blade with 42 design variables (30 box beam dimensions, 10 segment masses, taper
ratio, and root chord). The optimum rectangular blade is 2.67 percent lighter than
the reference blade and the optimum tapered blade is 6.21 percent lighter than the
reference blade. The optimum tapered blade has a taper ratio (A,) of 1.49. The
first lead-lag frequency (f;) is at its prescribed upper bound after optimization and

the autorotational inertia is at its lower bound for all cases. Additional results

along with optimum design variable distributions can be found in reference 7 which
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also discusses the effect of higher frequency constraints and stress constraints on

the optimum blade weight and design variable distributions.

Results - Optimum Locations of Vibration Tuning Masses

The objective of this work is to develop and demonstrate a method for optimally
locating, as well as sizing, tuning masses to reduce vibration using formal mathe-
matical optimization techniques. The design goal is to find the best combination of
tuning masses and their locations to minimize blade root vertical shear without a
large mass penalty. The method is to formulate and solve an optimization problem in
which the tuning masses and their locations are design variables that minimize a com-
bination of vertical shear and the added mass with constraints on frequencies to
avoid resonance. Figure 17 shows an arbitrary number of masses placed along the
blade span. Two alternate optimization strategies have been developed and demon-
strated. The first is based on minimizing the amplitudes of the harmonic shear cor-
responding to several blade modes. The second strategy reduces the total shear as a
function of time during a revolution of the blade. Results are shown in which the
above strategies are applied to a rotor blade considering multiple blade mode/
multiple harmonic airload cases.

The example problem is a beam representation of an articulated rotor blace. The
beam is 193 inches long with a hinged end condition and is modeled by 10 finite ele-
ments of equal length. The model contains both structural mass and lumped (non-
structural) masses. Three lumped masses are to be placed along the length of the
beam. The first strategy was applied to minimize the 4/rev blade root vertical shear
response S, of the first and second elastic flapping modes without using excessive
tuning mass. Figure 18 summarizes the initial and final designs. The initial shear
amplitude is 34.68 1bf which is reduced by the optimization process to 0.01 1ltf with
an accompanying decrease in the tuning mass. The second strategy was applied to a

test case of two modes responding to three harmonics of airload. Figure 19 shows for
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the initial and final designs, the shear s(t) plotted as a function of the time and
azimuth for a revolution of the blade. The peaks on the initial curve have been
reduced dramatically. For example, the maximum peak s for the initial design is

max

78.00 1bf, and for the final design, the maximum peak is 0.576 1bf.

Results - Rotor Structural Optimization

A blade structural optimization procedure (fig. 20) applicable to metal and com-
posite blades has been developed in which the objective function is blade mass with
constraints on frequencies, stresses in the spars and in the skin, twist deformation,
and autorotational inertia. The design variables are the total spar thickness and
for the composite blade the percentage of +45° plies (the remaining plies assumed to
be at O°). This procedure is described in detail in reference 10, and additional
applications of the methods are also given in reference 10.

This section describes two example rotor blade designs which were developed
using the structural design methodology. Both designs are based on the UH-60 Black
Hawk titanium spar blade. The first design case is for a titanium single spar cross
section. This design was conducted to validate the present design methodology. The
second case has a graphite/epoxy spar in a single spar cross-section configuration.
The composite spar design is compared to the metal spar design to explore potential
weight savings obtained from use of the design methodology in conjunction with
composite materials.

Titanium cross section.- A titanium spar blade design was developed using the

previously described design methodology. The cross-section model was based on the
UH-60 rotor blade with identical skin, core, trailing edge tab, leading edge weight,
and spar coordinates. Only the spar thickness was used as a design variable. The
beam model representation of the blade used a rectangular planform similar to the
UH-60 planform, but without any tip sweep. A maximum twist of deformation of 3.1° is

based on an aerodynamic performance constraint (ref. 10). The structural constraint
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requires that the calculated stresses do not exceed the allowable material strength.
The material strength is assessed by use of a Tsai-Hill failure criterion based on
the associated margins of safety. The margins of safety must be greater than zero to
satisfy the material strength constraint. The autorotation capability is assumed to
be the same for this design as it is for the UH-60. Autorotation is satisfied by
requiring the mass moment of inertia to be identical to that of the UH-60 rotor sys-
tem which is 19000 in-lbs-s per blade. Before a comparison to the UH-60 blade can be
made, the design must be dynmamically tuned. The modes considered in this design are
first elastic flapwise and edgewise bending, first torsion, and second and third
flapwise bending. The frequencies of these modes are required to be removed from
integer multiples of the forcing frequency by 0.2 per rev.

As shown in figure 21, the minimum spar thickness needed to satisfy all the
constraints is 0.130 inch which corresponds to a blade weight of 207 pounds. The
actual UH-60 titanium spar is 0.135 inch thick, producing a 210 pound blade. The
titanium spar design is only 3 pounds different from the actual UH-60 blade, demon-
strating that the mechanics of the design methodology can produce blade designs
similar to conventional design processes. The only significant difference in modal
frequencies between the actual UH-60 blade and the titanium spar design is the fre-
quency of the torsional mode. The difference is attributed to the chordwise distri-
bution of the nonstructural tip weight which, in the present titanium spar design,
was lumped at the chordwise c.g.

Composite cross section.- A second design was developed using a single T300-5208

graphite/epoxy D-spar. The blade models and associated design assumptions used in
the composite design were the same as those used for the metal spar except for the
spar material. Here, thickness and ply orientation of the composite spar were used
as design variables. The plies of the spar were assumed to consist only of 0° and
+45° angles symmetrically built up. Thus, the ply orientation design variable was

the percentage of *45° plies in the laminate. The remaining plies of the laminate
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are understood to be oriented at 0°. Constraints on twist deformation, material
strength, mass moment of inertia, and dynamic tuning are the same as those used for
the metal design.

Results shown in figure 21 show that the composite design satisfied the required
constraints. Further, the minimum weight design had a 0.105 inch thick spar with
20 percent of the plies oriented at *45° degrees which resulted in blade weight sav-
ings of 21.5 percent. These results demonstrate that this design methodology, used

in conjunction with composite materials, can result in significant weight savings.
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TABLE 1.- SUMMARY OF DESIGN VARIABLES

Description Symbol
Tuning mass at location i m;
Spanwise location of i-th mass X4
Wing box dimensions t1, to, T3
Ply thicknesses tys5s to
Depth of blade at root h,
Ratio of blade depths at tip and root | Ay = h /hg
Maximum pre-twist of blade Tmax
Percent blade span where taper begins r
Blade root chord c,
Airfoil distribution -
Hinge offset e
Blade angular velocity Q
Number of blades on rotor N
Blade radius R

Ratio of root chord to tip chord

Ac = cp/ct

53




TABLE 2.- SUMMARY OF CONSTRAINTS

Constraint Description

Form of Constraint

Comments

Main rotor horsepower

HPi < HP avail for

i-th condition

For 5 flight
conditions
Enforced at
12 azimuthal

locations
Airfoil section stall Cp = Chmax
Blade frequencies £i95 £5 = £5
Blade vertical load Vik < Vmax
Blade inplane load Hipe s Hpou
Transmitted in-plane X = Xpax
hub shears Y = Ymax
Hub pitching moment P < Pray
Hub rolling moment R < Rp o
Blade response amp. q < Qmax
Autorotational inertia . - 2 za
Aeroelastic stability Re _ g -€
Wing box stresses R=1 R = TSai-Hill
criterion
Blade tip deflection WS W
Blade twist 8 < amax
Blade tip Mach no. M= M.y Limits
Blade thickness h < hmax thickness
noise
Blade lift distribution dCl/dx < Spax Limits BVI
& loading
noise
Ground resonance Ia - lel < war Effective
Rotor/Airframe fl < NQ =< fu airframe
constraint

frequency coupling
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TABLE 3.- INTERACTIONS AMONG DISCIPLINES

Variable Acoustics (Petzrzdzgéds) Dynamics | Structures g;::;?f:
Airfoil Dist, S S '} W W
Planform S S S S S/W
Twist w S S W %)
Tip speed S S S S S
Blade number S W S W S
Stiffness W S S S S/W
Mass dist. W w S S S/W
Hinge offset w W S/w W S/W

S = Strong interaction
W = Weak interaction
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TABLE &4.- CANDIDATE TASK AND MISSION FOR PHASE 1 DESIGN ACTIVITY

4000 ft 95° Condition

Aircraft gross welight 16875 1b
Installed power limit 3400 HP
Veruise 140 kts
Vpax 200 kts
g's at 120 kts 3.5
Vertical rate of climb 1000 fpm
Airframe structure UH-60B

Other constraints and guidelines are specified in table 2.
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TABLE 5.- OPTIMIZATION RESULT FOR RECTANGULAR AND TAPERED BLADES

Optimum blade

Reference
blade Rectangular Tapered
30 d.v. 42 d.v.

Ah 1.0 1.0 1.49
fl’ Hz 12.285 12.408+%* 12.408*
f2, Hz 16.098 16.056 16.066
f3, Hz 20.913 20.968 20.888
fa, Hz 34.624 34.546 34.678
fS' Hz 35.861 35.502* 35.507
Autorotational
inertia, 1b-ft2 | 517.3 517.3% 517. 3%
Blade
weight, lbm 98.27 95.62 92.16
Percent
reduction in
blade weight** .- 2.67 6.21

**-From reference blade
*-Active constraint
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