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i. INTRODUCTION
.¢

There has recently been renewed interest in the properties of domain wails in general

relativity. Most of the work thus far has used the thin wall approximation of Israel 1, treat-

ing the walls as idealized zero thickness objects. However, recent work of Raychaudhuri

and Mukherjee 2 has east some doubt on the applicability of the thin wall approximation

to domain walls. If the thin wall approximation applies to domain walls, then thick domain

walls should have a zero thickness limit that reduces to the Israel thin wall formalism. For

instance, the consistency of the Israel formalism requires that the stress-energy tensor of a

zero thickness wall have no components that are normal to the wall; however_ the work of

Raychaudhuri and Mukerjee indicates that thick domain walls do have components that

are orthogonal to the wall. Unless these components vanish in the zero thickness limit, the

thin wall approximation is not applicable to domain wails. It has been shown by Geroch

and Traschen 3 that a regular zero thicknes limit requires the vanishing of these orthogo-

nal components; but it is not clear that the equations describing thick domain walls are

compatible with a regular zero thickness limit.

This potential conflict was resolved by Widrow in the case of domain walls with planar

symmetry 4. Widrow treats the Einstein-scalar equations for a gravitating domain wall

assuming that the solution has planar symmetry, but places no restrictions on the thickness

of the walI. He then takes the zero thickness limit of his solution and shows that the

orthogonal components of the stress-energy tensor become negligible in that limit and that

the solution reduces to the Vilenkin S-Ipser-Sikivie 8 zero thickness domain wall solution.

In this paper we treat the gravitating domain wails of a A_ 4 theory, making no as-

sumption of symmetry for the solutions. We treat only walls whose thickness is small

compared to their radius of curvature. In such a way, we hope to address the problem of

the zero thickness limit for arbitrary domain walls. Section two introduces the notation

and the equations for these walls. In section three we expand the equations in powers of
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the thicknessof the wall. We show that the zeroth order equations reproduce all the results

of the Israel thin wall formalism for domain walls including the usual expression for the

domain wall stress-energy tensor. We then find the first order corrections to the stress-

energy of the wall and to the wall's equation of motion. Section four contains a treatment

of spherical and planar walls using the corrected equations of motion. Our conclusions are

presented in section five.

2. EINSTEIN-SCALAR EQUATIONS

In an attempt to model the behaviour of a thick domain wall we will consider the A_4

kink, i.e. walls made of a real scalar field _b with Lagrangian

L : -½Va_bVer(_ -- A(_b2 -- r/2) 2 ,

where A and 7/ are constants, (we use units where G = c = 1).

have the equation of motion

VaVa_b -- 4)_¢b(_b2 -- r/2) ----0,

(2.1)

From the Lagrangian we

(2.2)

and the stress-energy tensor

= v.CVb¢ - (2.3)

A wall is characterised by the presence of two or more asymptotic regions in which $

attains seperate vacuum expectation values, the boundary between such regions being the

domain wall. For example, in flat space we could have _b ---* -4-_7as z ---+ 4-oo where z is the

usual Cartesian coordinate. Defining the quantities e and _r for future convenience by

_ 1 (2.4)

o" ----4_V/_ r/S, (2.5)
3
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we may write one solution of equation (2.2) as

=  tanh(zle). (2.6)

This solution represents an infinite planar domain wall centered at z = 0. From equation

(2.3) it follows that the stress-energy tensor of this solution is

3 o"

Tab -- 4 e cosh4(z/e) (gab -- VaZVbZ) " (2.7)

This shows that o" represents the energy per unit area of the wall and that the stress-

energy tensor has no components orthogonal to the z = const, surfaces. We also see that

the energy density is strongly peaked around z = 0, and has an effective cutoff at z = e.

We can thus think of e as the effective thickness of the wall.

This is the solution for a flat domain wall in a flat spacetime; we however are interested

in curved gravitating walls. In order to investigate these, we will assume that the radii of

curvature of the wall are much larger than its thickness. We may therefore expect that

locally the wall will resemble the planar non-gravitating wall. Let _ be the surface on

which ¢ = 0. Then we suspect that ¢ and the metric components are quickly varying

in directions orthogonal to _ and slowly varying in directions tangential to E. Thus we

would like to split the field equations into their components orthogonal and tangential to

E. We use the Gauss Codazzi formalism to achieve this aim.

Let n a be a unit geodesic vector field ortb.ogonal to _. We wish to define an analog

of the Cartesian coordinate z for the curved gravitating wall and do so as follows: let z

be the length parameter along the integral curves of n a. Each z = const, surface then has

unit normal na, intrinsic metric hab and extrinsic curvature Kab given by

(2.8)

hab = gab - nan b , (2.9)
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Kab = haeVcnb = Vanb. (2.10)

We may now write the coupled Einstein-scalax equations as differential equations for

hab , Kab and ¢. (This is essentially a spacelike analog of the usual "3 + 1" formal-

ism for Einstein's equation).

Define Da and (S)Rab to be respectively the derivative operator and Ricci tensor asso-

ciated with hab. From equations (2.9,10) it follows that

f-.nhab = 2Kab, (2.11)

where L:r, is the Lie derivative with respect to the vector field n a.

Now, the Gauss-Codazzi equations for the wall imply

|

L

|

(a)Rac = hbahdcRbd -- Rabcdnbn d + KKac - KabKbe •

Rabcdnbn d ----nd(VcVd -- VdVc)n a

-" ndVcKda -- VnKac

- KdaKdc - £r, Kac ,

.12)

(3)Rac = hbahdcRbd -{- £nKac + KKac - 2KabKbe •

we may also deduce

Racnan c -" -£uK = KacK ac ,

laxly, that

Rabnahb e _ a-b cd= Xtcadbn n eg

= (VdKbc - VbKcd)hbeg cd

= DcKee - DeK •

rom (2.13) and (2.14), we may deduce that

(s}R = R + KacK ac + K 2 + 2£nK •

(2.12)

(2.13)

(2.14)

(2.15)

(2.1e)
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Having now split the curvature tensor into its perpendicular and parallel components,

we may use Einstein's equation and the expression (2.3) for the stress-energy tensor to find

OKab -{S) Ra b + 2KacKeb - KKab - 87rDaeDb¢ - 8_-5(¢ 2 - _?2)2hab . (2.17)
Oz

Equation (2.2) becomes

a2¢
Oz 2 + K _z + DaDa¢ - 45¢(¢ 2 - _72) = 0. (2.18)

Equations (2.11,17,18) are equivalent to the Einstein-scalar equations.

Define the variable u and the field X by

(2.10)

X = ¢/_7. (2.20)

Note that for the flat non-gravitating wall, ¢/_? is a smooth function of z/e even in the

e --, 0 limit. Since the curved wall should locally resemble the flat wall, we expect that

X is a smooth function of u even as e ---, 0. Define the zero thicknesa limit of the wall to

be the limit e ---* 0 with o" remaining fixed. We assume that X, hab and gab are smooth

functions of U even in the zero thickness limit. Writing equations (2.11,17,18) in terms of

e and quantities that are smooth in the zero thickness limit we obtain

Ohab = 2eKab , (2.21)
Ou

Og b
Ou =-3_r_r(X2--1)2hab + e((a)Rab ÷ 2KaeKeb - KKab) - 67re2crDaXDbX' (2.22)

_ K OX
02X 2X(X 2 1) + e _ + e2DaDaX --0 (2.23)
Ou 2

For any quantity S let S O denote Sic=0 and let S denote _-_ _=0 " Then for small e, S is

well approximated by S O+ e_'. By evaluating equations (2.21-23) and their derivatives at

e = 0 we hope to obtain approximate equations for hab , Kab and X.
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3. ZEROTH AND FIRST ORDER EQUATIONS

We begin by evaluating equations (2.21-23) at e = 0:

Equation (3.1) has solution

0 Koa b

Ou

02 X o

Ou2

cgh°ab = 0 ,
Ou

- -3_(x0 _- 1)2_0ob,

2x0(x0_- 1)= o.

(3.1)

(3.2)

(3.3)

Equation (3.3) is solved by

X o = tanhu . (3.5)

This solution has the same form as the fiat wall solution in equation (2.6). However, the

interpretation is somewhat different. Though X o is a function of u alone, this does not

imply any symmetry of the wail. On the contrary, since the u = 0 surface in general has no

symmetries, a field configuration that depends only on u has, in general, no symmetries.

Instead equation (3.5) simply expresses the fact that the curved gravitating wall locally

resembles the flat non-gravitating wall.

Using equations (3.4) and (3.5) in equation (3.2) we find

sinhu (2cosh2u + 1) (3.6)
goa b = Koab(O ) - _r_r h0ab(O ) cosh3u

In the zero thickness limit, all points at finite values of u are equivalent to z = O. We

therefore need to be more careful in interpreting this solution. In the Israel formalism the

quantity [Kab ] was defined by

[gab]= g_10+ - gab10-

lim (Kab]_
_--,0 _,

hoab(U ) = hoab(O ) . (3.4)

Thus, to zeroth order the intrinsic metric is constant across the wall. This is what we

would expect, since in the zero thickness limit, the metric is continuous across the wall.
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the difference in extrinsic curvature across the wall.

e -* O, the correct quantity to consider is

[Kab ] -- lira (Koab(u) - Koab(-U))
"1_-"4 00

= -47rcr hoab(O],. B

Since u = z/e, clearly in the limit

(3._)

This is just Israel's equation for a zero thickness domain wall. Thus the solutions of our

zeroth order equations reproduce the usual results of the Israel formalism for domain walls.

Now let us consider the energy-momentum tensor. Though Tab becomes singular as

e ---* 0, the quantity e Tab is smooth. Define the quantities S and Qab by

1
s - -5_habTab, (3.8)

Qab =- e Tab -Shab. (3.9)

Thus S is the part of e Tab proportional to hob and Qab is the remainder. Using equation

(2.3), we see that in terms of the wall fields

3 [fdX'_ 2
Qab= _,,,_,_b_,_,-_ ) - (x 2- 1)2)

+ I : (DoXD X- D XD°X(2h + dX(n D X+
du

(3._o)

(3.11)

nbD_X)) •

Evaluating these quantities at e = 0, using equation (3.5) we find

3 0"

- - -- , (3.12)
So = 4 cosh 4 u

Qoab ----0. (3.13)

It then follows that as a distribution Tab is (to lowest order in e) equal to -o'hab_(z).

This is just the usual thin wall expression for the stress-energy tensor of a domain wall.

Therefore the results of our zeroth order equations reproduce all of the usual results of the

thin wall formalism applied to domain walls.



We now consider the first order corrections to this thin wall limit. Taking the derivative

of equations (2.21-23) with respect to e at e = 0 gives the following:

aiab

Ou

ak.b
au

a2x
Ou 2

_ = 2 Koa b ,

- -3_0-(x0_ - 1)2_ - 12_0-Xo(X_o- 1)x ho_

+ (3)Roa b + 2KoacK cob - Ko Koab '

0 X o
_:(3Xo_-1) + Xo0----4-=0.

(3.14)

(3.15)

(3.16)

Using equation (3.5) we find that equation (3.16) can be written as

o( ))o,,cos /to
cosh4u "

(3.1T)

In order for X to have the appropriate behavior for large lul, it follows from equation

(3.17) that f_C_c_ Kocosh-4u du = 0. Using the expression for Koa b in equation (3.6) we

find that K0(0 ) = 0. (The condition that K0(0 ) = 0 can also be derived from equation

(3.7).) Then integration of equation (3.17) using equation (3.6) yields

._ 7r 3u + tanh u=- -0- (3.18)
2 cosh2u

Thus to first order, the solution for the scalar field is given by

X = tanh u
eTr0- (3u + tanh u)

2 cosh2u

The zeroth order solution is only slightly modified and the expansion remains consistent.

It is interesting to note the corrections to the stress-energy tensor. From equations (3.10),

(3.11) and (3.18) it follows that

= 3_" °"2 5tanh2u + 12utanhu - 4 , (3.19)
8 cosh 4 u

Qab = 3_" 0"2 3cosh2u + 1 nanb , (3.20)
8 cosh 6 u
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3zreo "2 3 cosh 2 u + 1

eTab -- - _crsech4u hab 1 + (5 tanh 2 u + 12u tanh u 4) 8 cosh 6 u

Thus although the stress-energy tensor is predominantly proportional to the induced metric

of the wall, it does acquire a piece orthogonal to the wall which vanishes smoothly in the

zero thickness limit. This shows that, as far as the matter fields are concerned, the zero

thickness limit is a physically consistent approximation.

We find hab by integrating equation (3.14) using equation (3.6):

hab = hab(O ) + 2u goab(O ) - 7ro'hoab(O) (41ncoshu + tanh2u) (3.21)

When our expansion scheme is valid, hab is well approximated by hod b + e]_ab , i.e.

hoab(O)( 1\ --eTro- (41ncoshz\ + tanh2Z'_) + ehab(O)+ 2z Koab(O ) • (3.22)hab =

We expect the approximation to be good only for those values of z where the first order

corrections are much less than the zeroth order values. Thus this equation tells us that

for the validity of the approximation, we require that z << (_r) -1 and z << L where L is

the length scale associated with Kab. This latter cutoff we expect anyway, since it merely

expresses the constraint on our coordinate system being well-defined. The former provides

a cut-off associated with the mass of the domain wall, and is indicative of the horizon

structure associated with a domain wall. In analogy with [Kab] in the Israel formalism, we

will need to define [Kab ] and [hab ] for the thick wall formalism. Since [Kab ] was defined

in terms of a limiting process as one approached each side of the wall, a natural way to

generalise this for thick walls would seem to be:

[Kab] = Kablz=ea -- Kablz=-ea,

where eA is chosen to be sufficiently large so that the matter fields take their vacuum

values, but smaller than other relevant length scales. We define [hab ] similarly. It then



follows from equation (3.22) that

II

[hab ] = 4cA Koab(O). (3.23)

We now evaluate [Kab ]. Since Kab is well approximated by Koa b -4- e.Kab we find that

[Kab] is well approximated by

_' OR,,b[gab] = goab(A) - goab(-A) + e du. (3.24)
ix Ou

Then using equations (3.6), (3.15), (3.18) and (3.21) and the fact that ZX > 1, we find that

[gab] is well approximated by

[gab] =-4_'tr(hoab(0) + ehab(O)) -4- 2e_r2(_---81n2)tr2hoab(O)
(3.25).(a)

+ 2cA( Roab(O ) + 2Koac(O)KCb(O) -47r2tr2hoab(O)) •

Now define the quantity "[_ab to be _ (Kab[z=cA +

ogously. Then to zeroth order in e

R_ = go_(0),

Kablz=_eA ) and define _tab anal-

(3.26)

and to first order in e

_b= ho._(0) + A.b(0). (3.27)

Then evaluating equations (3.23) and (3.25) to first order in e we find

[hab ] = 4eA.Kab ,

[Kab]=-47ro'_tab(1 +a-eo'(41n2- _[-_+2A)) + 2cA (kab+2-Kac/_'/_)

(3.28)

(3.29)

Here kab is the Ricci tensor associated with 7tab. Equations (3.28) and (3.29) are the

modified version of the Israel equations for thin domain walls with corrections due to the

thickness of the wall.
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4. WALL MOTION

We now apply the modified Israel equations to the motion of spherical and planar

walls. We first find two vacuum spacetimes with boundary, representing respectively the

z > eA and the z < --eA portions of the wall spacetime. We then impose equations (3.28)

and (3.29) and thus find the motion of the wall.

Equation (3.28) is somewhat more difficult to apply than the corresponding Israel

condition [ha/, ] = 0. This is because when the Israel condition is applied both surfaces

often have the same metric and this yields a natural way to identify them, whereas in our

case we are comparing the surfaces z = +cA, which are at a finite proper distance apart,

thus the identification of corresponding points in the two surfaces will not in general be

so obvious. In the case of reflection symmetry (such as the conventional planar wall) this

difficulty is circumvented, since [hub ] = Kab = 0, and equation (3.29) reduces to

on the z = eA surface. However, even here, we are left with the problem of finding Kab at

z = eA rather than z = 0. We therefore need to find a way of rewriting (3.28,9) in terms

of quantities evaluated at z = 0; in fact, this turns out to be quite straightforward.

To model the thick domain wall, we first glue together two vacuum spacetimes along

a surface X_in such a way that _ has induced metric Hub and extrinsic curvatures k_ on

one side and k_ on the other side. We then realize the z = +cA surfaces of the wall as the

surfaces at geodesic distances +cA from the surface E in the spacetime just introduced.

Since equations (3.28) and (3.29) are only correct to first order in e we need only calculate

quantities to first order in e, and to find these, we simply expand in a Taylor series around

z = 0. Equations (3.28) and (3.29) then become conditions on Jirah , ka_ and k_.

Using this procedure for the induced metric gives via equation (2.11)
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For the extrinsic curvature, we note that in a vacuum spacetime Kab satisfies the relation

£,_Kab =(a) Rab + 2KacKe b _ KKab ' (4.3)

where (3)Rab is the Ricci tensor of the intrinsic metric of the surface. In our particular

coordinate system L:n = an, and therefore we have

= k k_b) (4.4)gabl_=±_,x k± + _,x(Rab + 2k_k±% - ± ±ab

From equations (4.2) and (4.4) we can now see that equation (3.28) is automatically sat-

isfied (to first order in e ).

Now define the quantity [/Cab] by

[kab]= _, - k;b. (4.5)

Then using equations (4.2) and (4.4) in equation (3.29) and keeping only terms to order e

we obtain

(4.6)

Recall in section three we showed that _f_ = 0. Using this result, equation (4.6) reduces to

an equation on z = 0. We can now see that [kab ] = -4_raHab to zeroth order in e, which

is just Israel's equation for the wall surface, as would be expected. Substituting back in

equation (4.6) we obtain the first order correction

+
Defining the quantity & by

we see that equation (4.7) is identical to the usual Israel equation with the quantity _"

playing the role of cr. Thus the finite width corrections simply produce corrections to



14

_r,andleavethe form of the equationsof motion unchanged. Since 41n 2 < 29/10,it follows

that _ < or. Thus the effect of finite thickness is to substitute a lower effective surface

energy in the Israel equations. We can now apply these results to the cases of spherical

and planar domain walls.

In the case of the reflection and plane symmetric domain wall (the case treated by

Ipser and Sikivie and by Widrow), k + -k_b , and hence equation (4.7) reduces toab =

]Ca+b= -- 21r&H ab . (4.9)

Thus we find a plane symmetric surface satisfying equation (4.9) in a plane symmetric

vacuum spacetime. There are only two different plane symmetric vacuum spacetimes 8,

(called class I and class II by Ipser and Sildvie). The class II spacetime is singular and we

will not consider it here. The class I spacetime has a metric of the form

= 2dvdr + r 2 (dz 2+dy 2) ,ds 2 (4.10)

which is simply the metric of Minkowski spacetime written in an unusual set of coordinates.

A plane symmetric surface in this spacetime is given by a relation of the form r = R(T)

where r is the proper time measured by an observer in the surface whose four-velocity is

orthogonal to the planes of symmetry. Let u a be the four-velocity of this observer and

define the tensor qab by

qab -- r2 (Va_Vb_" + VayVbY) " (4.11)

Then the intrinsic metric of the surface is given by

hab =--UaUb _- qab" (4.12)

Using equation (4.10) a straightforward calculation shows that the extrinsic curvature

of the surface is

= s - (4.13)
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Here a dot denotes derivative with respect to r and s = 4-1 with the value of 8 depending

on the direction of the normal to the surface (without loss of generality s = 1).

It now follows that the tensor equation (4.9) reduces to the following (equivalent) pair

of ordinary differential equations:

/i
= 2_r& (4.14a)

R

-- = (4.14b)
R

Clearly the solution to these equations is

R = ce 2"_r (4.15)

where c is some constant.

The Ipser-Sikivie wall solution has the same form as equation (4.15) but with _r instead

of 8. Thus our soIution simply substitutes an "efFective energy per unit area" with finite

thickness corrections for the quantity _r; otherwise our solution is identical to the Ipser-

Sikivie solution. The Widrow solution in the zero thickness limit reduces to the Ipser-

Sikivie solution. Our solution can be regarded as the Widrow solution expanded to first

order in thickness.

We now apply the equations of motion to the collapse of a spherical wall in vacuum.

In this case, by Birkhofl"s theorem, we know that the spacetime exterior to the wall must

be Schwarzschild, and we will take the interior to be flat. The motion of a spherical wall

is given by a relation of the form r = R(r) where r is the 'radius' of the wall and r is the

proper time of a radially moving observer in the wall. Using the Ipser-Sikivie equation of

motion for the wall 6 and substituting & for _r we find that the equation of motion for the

wall is

- -- 4_'&R. (4.16)
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Let Rm be the maximum radius of the wall. Then it follows from equation (4.16) that

M = 4_'&Rm 2 (1 - 2zr_Rm) .

Using equation (4.17) in equation (4.16) we find

Thus for a given R and Rm smuller & leads to a larger R2.

corrections lead to a slightly faster collapse of the wdl.

(4.17)

(4.18)

Therefore the finite thickness

5. CONCLUSIONS.

In this paper we have developed an expansion procedure for the equations describing

the motion of a domain wM1. Our formalism has a well defined zero thickness limit which

is just the Israel formalism. Perhaps most importantly, we have shown that for a general

domain wall, the stress-energy tensor tends uniformly to the standard distributional form

in the zero thickness limit.

We applied our equations of motion to the case of domain walls in vacuo, and showed

that the effect of finite (as opposed to zero) thickness was to substitute a smaller effective

surface energy in the Israel equations. Thus finite thickness vacuum domain walls have

exactly the same qualitative behaviour as their zero thickness cousins. In particular, the

general result that domain walls are gravitationally repulsive still holds, although the

repulsive force is slightly weaker than their zero thickness counterparts.

Whilst it is generally thought that GUT scale wMls are cosmologically disasterous,

it has recently been suggested 9 that very thick domain walls could have played a part

in the formation of structure in the universe. It is therefore important to obtain a good

understanding of the gravitational properties of such walls. It is therefore encouraging

that many of the properties of zero thickness walls persist in the case of thick walls.
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We applied our results to the cases of planar and spherical domain walls to obtain the

first order corrections to the metric. For the planar wall, our metric was clearly consistent

with the zero thickness results of Ipser and Sikivie 6 and Vilenkin 5, and the thick wall

treatment of Widrow. We then turned to the cosmologically more interesting case of a

spherical collapsing domain wall. Here the smaller effective energy per unit area produces

qualitatively the same behaviour as with the zero thickness wall, but the result of having a

'lighter' wall is to speed up collapse. This latter result is suggestive of the rigidifying effect

of gravity on domain walls. The zero thickness limit corresponds to scaling out all other

physics except gravity. Thus, we would expect the gravitational effects on the dynamics of

the wall to be the strongest in the zero thickness limit. Since this limit produces the slowest

collapse rate for a spherical wall, the effect of gravity is to resist r_gimes of large curvature.

We can therefore think of gravity as rigidifying domain walls. The effect of gravity and

wall thickness upon the dynamics of domain walls is currently under investigation.
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