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Abstract

Convergence propertiesof a multigridalgorithm,developed to calculatecompressibleviscousflows,are

analysed by a vector sequence eigenvalueestimate. The fullthree-dimensionalReynolds-averaged Navier-

Stokes equations are integratedby an implicitmultigridscheme while a k - $ turbulence model issolved,

uncoupled from the flow equations. Estimates of the eigenvaluestructure for both singleand multigrid

calculationsare compared in an attempt to analyse the process as well as the resultsof the multigrid

technique.The flowthrough an annular turbineisused toillustratethe scheme's abilityto calculatecomplex
three-dimensionalflows.

Introduction

In many ways the use of computational fluid dynamics has been legitimised by the successful calculation
of two-dimensional inviscid transonic flows. However, for computational fluid dynamics to have a continued

impact on the aerodynamic design process, efficient three-dimensional methods must be developed. Because
the greatest aerodynamic gains are now being realised by truly three-dimensional designs, the need to
compute three-dimensional compressible viscous flows is apparent.

The present work deals with the analysis of a multigrid scheme to solve the Reynolds-averaged Navier-
Stokes equations. The flow equations are solved by the diagonally inverted LU implicit multigrid scheme, I
while the Reynolds stess tensor is modelled by a Boussinesq eddy-viscosity formulation which calculates

turbulent viscosities from a high Reynolds number k - • model.
The multigrid method has been, by far, the most successful means of accelerating inviscid calculations

to steady state. A number of researchers have recently extended this technique to viscous flow calculations.
Although it is true that relatively greater benefits are produced with the Euler equations, a significant
amount of acceleration is also produced with the Navier-Stokes equations. In an attempt to understand the

process by which the multigrid method produces this acceleration, eigenvalue estimates are compared for
both single and multigrid calculations of inviscid and viscous flows.

Analysis

The three-dimensional Reynolds-averaged Navier-Stokes equations, with the Boussinesq eddy-viscosity
formulation, can be written in divergence form and then transformed from the Cartesian coordinate system

(z, y, z) to the generalised system (_, 17,_'). The Jacobians of the coordinate transformation are defined as

where D isthe determinant ofthe matrix J. Contravariantvelocitycomponents (U,V,W) r = j-1 (u,v,to)r

can be derived from the Cartesian components (u,v,w) and then used inthe transformed equations:
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and p, P, and T are the fluid density, pressure, and temperature; and E is the total energy per unit volume.
Prt = 0.72 is the laminar Prandtl number, Prt = 0.90 is the turbulent Prandtl number,/_t is the laminar
viscosity found from Sutherland's law, and pt is the turbulent viscosity obtained from the k - • turbulence
model. The total energy and pressure of a calorically perfect gas are related through the equation of state

P = ('I - 1)(E- ptT. _7/2), where 7 = 1.4 is the ratio of specific heat capacities.
The eddy viscosity,/_t, is modelled as:

,_ = c. _' (2)

where k, the turbulence kinetic energy, and _, the dissipation rate of the turbulence kinetic energy, are
obtained from the Launder and Spalding a high Reynolds number k - • turbulence model. C, is a scalar
constant for isotropic turbulence and a wall function is used near solid boundaries. The k - • model has
a number of benefits over the more widely used algebraic models. An explicit wake model is not required.
This means that wakes do not have to be located and treated uniquely and are thus more likely to evolve and
convect in a more realistic fashion. The wall function eliminates the need to sample information in a direction

normal to solid boundaries thus making the calculation less sensitive to skewed or nonorthogonal mesh cells
near solid walls. Furthermore this treatment, which makes no attempt to resolve the flow within the laminar

viscous sublayer, requires fewer mesh cells and is thus less likely to be affected by the computational stiffness
associated with highly stretched grids. Although it is true that heat transfer effects may not be modelled



accuratelybyawall function, the stiffness of a low Reynolds number formulation and its corresponding poor
convergence properties, axe not present in the high Reynolds number model. The high Reynolds number

k - ¢ equations can be written:
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for which the production rate of the turbulence kinetic energy can be defined as

The standard Launder and SpaldingI constants

Ct_ = 0.09 tt = 1.44 t2 = 1.92 at, = 1.0 a, = 1.3

were used throughout this work and no attempt was made to model nonisotropic turbulence.
The transformed Navier-Stokes and k - • equations axe discretized by a finite volume formulation that

approximates the spatial differences as a net flux across the faces of each mesh cell. z Viscous stresses and
geometric quantities are evaluated directly on the cell faces, while the flow and k - • variables are averaged
over values found in adjacent cells. The unsteady equations axe discretised into a linearized implicit delta
form whose steady state solutions axe not time-step dependent. To minimize the construction of the implicit
operator, only the inviscid flux vectors axe linearised. The flow equations can be written:

where AI_ n = I_"+I --I_'_;At isthe time step sise;0 _<Pi _< I isa parameter governing the degree of

implicitness;6 and $ are cell-and face-centeredcentraldifferences;I isthe identitymatrix; and A, B, and

C axe the inviscidfluxJacobian matrices relativeto the vectors_, G, and/I. An implicitform ofthe k - e

equations can alsobe written:

where Ak,, B_,, and C_, axe the inviscid flux Jacobian matrices relative to the inviscid terms found in the
vectors _,, G_,, and /_,; and E_, is the .lacobiaa matrix relative to the source vector _k,.



Artificial Dissipation

Explicit artificial dissipation terms must be added to this centered finite volume formulation to suppress

possible odd and even point oscillations and shock overshoots. Fourth difference terms, similar to those used
by Jameson 4 and Pulliam, 5 are added throughout the flow field to prevent odd-even decoupling, while second
difference terms are added near shocks to stabilise the flow calculation. A local Much number scaling is used

to reduce the artificial dissipation in viscous-dominated flow regions and is similar to the treatment suggested

by Flores and Hoist. _ The local Much number scaling is normalised by the inflow Much number and limited
to a maximum value of unity.

LU Approvclmate l_actorization

The equations are solved by approximately factoring the block-banded implicit operator into two block
triangular ones. The LU factorisation, which is based on one-sided spatial differences, can be written for the

flow equations as:

- + - + (o)

and for the k - • equations as follows:

(7)

where 6+ and 6- are cell-centered forward and backward first differences; and A, = 0.5(A +  [AlX) and

A2 = 0.5(A - _[A[I) are the reconstructed flux Jacobian matrices, where IAI= ma*glA, I) is the maximum
absolute-valued eigenvalue of the Jacobian matrix A. _ _ 1 is a scalar constant governing the amount of
implicit dissipation produced by the matrix reconstructions, and I is the identity matrix. The vectors T
and Tk, represent the artificial dissipation terms added to the numerical schemes. These implicit systems

of equations are solved by a two step procedure which, through back substitution, can be reduced to simple
5x5 matrix systems at every mesh cell. These reduced systems can be written for the flow equations:

1) Lower Sweep

(8)

2) Upper Sweep

[JrI-I_At(A2+B_+C2) ] ". ,, - _At(AaAW_+,,£_ + BaAW/_.+,,_ + {9)

and for the k - • equations

1) Lower Sweep

(m)



2) Upper Sweep
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Diagonally Inverted LU Factoriffiation

The k - • equations are solved algebraically, while the flow equations are diagonally inverted using the
similarity transformation: x

where
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and c is the local speed of sound. For a local time step defined as:

Cn
At =

(IAI + IBI + ICl)

where Cn is the Courant number, the lower and upper sweeps, Eqs. 8 and 9, can be approximated by the
following scalar equations(m = 1, ..., 5).

i) Lower Sweep
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2) Upper Sweep
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where Da, = 0.5(Da + DIAII); b., = 0.s(b. - _IAII); and b. contains only the diagonal elements of

the symmetric matrix Q-_AQ [i.e., d_,_ = d_,, = d_,, = U; da,, = U + ¢(_:,lt + _ula + _,/3); and

d,,,s = U - c(_xl_ + _la + _,lz), with similar terms for/)_, Dh, /)e_, and D_,)].

Initial and Boundary Conditions

A uniform flow field based on an initial guess of the upstream conditions is used to start both the flow
and k- • calculations. A no-slip condition is enforced along the solid boundaries and thus only pressures need



to be specifiedalong the solidwalls.These pressuresaxe obtained from a three-dimensionalinterpretation
of the normal momentum analysisdeveloped by Rissi.7

Total pressure,totaltemperature, and two flowanglesare specifiedat subsonic inflowboundaries,while

a one-dimensional Rieman invaxiantisextrapolatedfrom the interiorflow field.An inlettotaltemperature

isfixedwhile a power law velocityprofileisspecifiedby varying the inlettotalpressure. This treatment

attempts to simulate an incoming boundary-layer profile,s The specifiedcondition at a subsonic outflow

boundary isa nonreflectivetreatment that attempts to minimise unwanted reflectedwaves._ Staticpressures

axe obtained from a radialmomentum analysisand then coupled with the incoming compatibilityrelation

to produce a nonreflectiveboundary condition.
An a_sumed two percent upstream turbulence intensityisused as an inflowboundaxy condition while

the specifiedcondition at the outflow boundary isa serothorder extrapolationof the k and • variables.
Turbulent viscositiesare setto sets along solidwallswhile a wall function2 isused to evaluatethe k -

variables in cells immediately adjacent to these solid boundaries.

Steady State Calculations

Local time-stepping and the multigrid method axe used to accelerate the convergence of steady state
calculations.

A locally varying time step size, based on a constant Courant number, is defined throughout the flow
field. This preconditioning creates a warped time integration that can accelerate calculations to a steady
state without affecting the final solution. Local time stepping is used for both the flow and k - • equations,
although the value of the Courant numbers used in their integration may vary.

The flow algorithm is developed within the framework of the multigrid method to increase the efficiency
of the time-maxching procedure. Following the work of Jameson, 1° the basic flow algorithm is used to

resolve the high frequency errors present on any current grid level (h), while the multigrid method is used to
eliminate the lower frequencies through a sequence of calculations on coarser grids (2h, 4h, 8h,...). A four-

level W-cycle, where a single flow calculation is performed on each grid level before transfering information
to their respective coarser grids, was found to be the most efficient means of accelerating the steady state
calculations. Coarse grid boundary conditions axe identical to those on the fine grid, with the exception

being that inflow/outflow conditions axe updated only on the finest grid. The viscous fluxes axe evaluated
only on the finest grid, and thus influence the coarser grid calculations only through the transfered fine grid
residual.

The k - • equations are solved every multigrid cycle but only on the finest grid. They axe not accelerated
by the multigrid method defined above, which requires approximately 1.32 work units of computational effort.

(One work unit is equivalent to a single Navier-Stokes calculation on the finest grid.) There is little to be
gained by multigridding the k-e equations between each fine grid flow solution since it is the time asymptote,
rather than the solution at any current time level, thatis ultimately required. Moreover, a coarse grid wall
function, consistent with the fine grid flow field, is not easily defined and thus prohibits the simultaneous
multigridding of both the flow and k - • equations. In addition, the viscous stresses cannot be adequately
resolved on the coarser grids and thus their neglect at worst creates a high frequency error that, in any event,
cannot be sustained by the multigrid method.

Vector Sequence Acceleration Methods

A number of vector sequence extrapolationmethods have been used to acceleratesteady state flow

calculations.1L12,13Most of these methods assume a slowly converging asymptotic linearbehavior of the

form

W '_+I = AW '_ -1-b (14)

where W is the flow solution, b is an arbitrary vector, and A is the iteration matrix, whose largest eigenvalue

has a magnitude close to unity. To remove the influence of the largest eigenvalue(s), and thus increase
the rate of convergence, a number of extrapolation methods have been developed. 14 One such method is
Eddy's Is and Mesina's Is Reduced Rank Extrapolation. This method can be described as follows:

Given the vector sequence W '*+k-l,W n+k-2, ...,Wa;where k <:n, the followingdifferenceterms can be

constructed

]:in = W n+l _ W n

6



----Rn+t _ R n

such that the solution of the normalised system of equations

k-I

R-' J)cj-- R") i = 0,1...,k - 1 (15)
j=O

(where (R"_i, R_'_y) is the inner product of the two vectors, _-'_ and R'_VY), can be used to construct an

extrapolated solution:

k

We,, = Z "b'Wn+Y (16)

i=o

where

'70 = 1- co

"Tj = ci-I - c1 1 <_ j <_ k- 1

"Tk = ok- 1

For a fixed value of k, the accuracy of this extrapolated solution increases as n increases. In general it is

true that the greatest amount of acceleration is produced when only a small value of k is needed to influence

a small number of eigenvalues with large moduli. If a large number of dominant eigenvalues are of similar

magnitude, then the extrapolation method may be of limited value since the manipulation of an equally

laxge number of vectors would be required. As k increases, the solution of Eq. 15 becomes more sensitive to

truncation errors and thus the accuracy of the extrapolated solution decreases.

These vector sequence methods can also be used to analyse the convergence properties of any iterative

methocl. IT It can be shown Is that, for n sufficiently large, the seros of the polynomial

k

= o (17)
j'=0

axe estimates of the ]c largest eigenvalues of the iteration matrix A. Even though these values are only

approximates, their locations with respect to one another can be used to analyse the convergence properties

of the iterative method and predict the effectiveness of a vector sequence extrapolation.

Results

Numerical results for the flow through an annular turbine are used to illustrate this diagonMly inverted

LU implicit multigrid scheme's ability to calculate three-dimensional compressible viscous flows.
Turbomachinery calculations were performed on H-type grids consisting of 96x24x24 mesh cells in the

throughflow, blade-to-blade, and radial directions, respectively. All calculations were performed on the

NASA-Lewis CRAY X-MP, where approximately 1.5 million words of memory and 40 minutes of CPU time

were required for a calculation consisting of 211 work units.

The annular turbine, designed and tested at NASA Lewis, 19'2° is shown in Figure 1. This blade row is

made up of 36 core turbine stator vanes, 38.10 mm high, with an axial chord of 38.23 mm. The stator has a

tip diameter of 508 mm and a 0.85 hub-to-tip radius ratio. Mesh cells found immediately adjacent to solid
walls are centered at distances 0.002 of an axial chord away, which correspond to a value of 60 < Y+ _< 200

for the following flow calculations.

Experimental test conditions of ambient axial inflow and a 0.65 hub-static to inlet-total pressure ratio

produce a flow field with mean radius inlet and exit critical velocity ratios of 0.231 and 0.778, respectively.

To match the upstream flow conditions {an inflow Mach number of 0.211), these nonrotating calculations

were run with a 0.665 hub-static to inlet, total pressure ratio.

The resulting flow field is fully subsonic and is compared with experimental data at three spanwise

positions. Figures 2, 3, and 4 compare the calculated blade surface static pressure distributions {normalized

by inlet total pressure} at 13.3, 50, and 86.7 percent span with the experimental data produced by Goldman

and Seasholtz. 1_ Due to the bluntness of the blade's trailing edge, the flow in this region is not sufficiently

resolved, but the overall pressure distributions agree well with the experimental data. The calculations are

most significant near the uncovered portion of the blade's suction surface, where an inadequate turbulence

model can greatly affect the accuracy of the flow solution.



Figure 5 shows the critical velocity ratio distributions along the O, 50, and 81.7 percent raclial span planes
at the 155.8 percent axial chord location. The agreement between the computational and experimental results
is extremely good and increases as one moves away from the hub and towards the tip region. The differences
near the hub may be due to secondary flow and the non-isotropic turbulence found within this region. In

general, the flow calculation has captured the viscous wake effects and agrees well with the experimental data.
These results are obtained with the k - • turbulence model, which unlike the more widely used algebraic

models, does not require the implimentation of an explicit wake model.
Figure 6 shows the flow angles at the previously defined grid locations. The computational results

compare extremely well with the experimental data at mid-span but deviate from the experimental data as
one move-_ towards the hub and tip regions. These results are clue to the Unde_rediction of the boundary

layer thicknesses and are not unexpected since the k - • model assumes fully turbulent flow and a transition
model has not been incorporated into the calculation.

Overall the numerical calculations compare extremely well with the experimental data and demonstrate

the scheme's ability to calculate three-dimensional viscous flows.
To investigate the convergence properties of this multigrid scheme, a number of flow calculations, both

viscous and inviscid, were performed. In all cases a Courant number of six was used to solve the flow

equations while a Courant number of four was used for the k - • equations. The inviscid solutions were
calculated on a 64x16x16 grid, which was of a relative fineness, comparable to that used for the viscous
calculations. This was clone in an attempt to insure that each of the flow calculations was performed on

computational grids relevant to their respective length scales. It would seem to make little sense to perform
viscous calculations on inviscid grids and vice versa. Thus, in order for meaningful comparisons to be made,
each calculation, both viscous and inviscid, was performed on grids whose sizes were relevant to the physical

problems being acldressed.
After four hundred work units on a single grid, the viscous flow calculatlon's convergence history (Figure

7) shows that the residual of the continuity equation has been reduced only two and a half orders of magni-
tude. An abrupt 'flattening out' of the convergence history occurs after 300 work units and thus any further
reduction would require significantly more iterations. The corresponding eigenvalue plot for this calculation
is shown in Figure 8, where twenty-two of the largest eigenvalues are plotted in the complex plane. All of the

eigenvalues have relatively equal magnitude and are thus located on a circle centered at the origin. This type
of structure is characteristic of optimised SOR schemes, 21 which are analogous to the LU implicit method in
that both techniques require a back substitution step. Because of the large number of dominant eigenv_lues,
a vector sequence extrapolation would, in all likelihood, prove to be ineffective. The presence of virtually all

of the eigenvalues would have to be accounted for before any amount of acceleration could be produced.
The multigrid method is another way to accelerate convergence. Figure 9 shows the convergence history

of the viscous multigrid calculation where a residual drop of approximately four and a half orders of magnitude

was produced within 400 work units. The convergence acceleration is produced by a reduction in the
magnitude of the largest eigenvalue(s), which are most likely associated with a low or intermediate spatial
frequency. It is also interesting to discover that the multigrid method has altered the basic eigenvalue
structure. The structure of the multigrid calculation, Figure i0, is clearly less clustered than that of the

single grid solution. These results suggest that a multigrid scheme is more likely to benefit from a vector
sequence extrapolation, an observation that has been confirmed in practice, by Reddy and Jacocks. _

These trends are also observed in the inviscid calculations. The convergence history (Figure 11) and

eigenvalue structure (Figure 12) of the inviscid, single grid calculation again suggest the unlikelihood of
using a vector sequence extrapolation method to accelerate convergence. The multigrid method produces a
significant amount of convergence acceleration (Figure 13) and again has & less clustered eigenvalue structure
(Figure 14). These calculations are more likely to be accelerated by a vector sequence extrapolation. Since
both the inviscid and viscous eigenvalue plots are similar in structure (at least for the largest values), it
would seem that, either inherently or by design, the convergence properties of the iterative procedures are

inviscidly dominated (inviscid in the sense that the high frequency modes mos t often associated with viscous
effects do not seem to be dominating the convergence rates). This speculation is not unreasonable since it is
also true that the viscous fluxes were not included in the implicit operator of the LU scheme. The differences

in the amount of convergence acceleration produced by the viscous and inviscid multigrid calculations may
be attributed more to differences in grid sise and stretching, and less to viscous effects.

Eriksson and Rissi 23 found that the most persistant eigenmodes in their inviscid Runga-Kutta calcula-
tions were most often associated with high spatial frequencies. They speculated that these high frequency
modes could not be removed by the multigrid method, which operates on low frequency errors. Others have

suggested that there would be little opportunity to accelerate viscous calculations since they presumably
contain even more high frequency modes then do the inviscid equations. However, the existence of a num-
ber of successful multigrid calculations indicates that there are significant amounts of low or intermediate

8



frequenciesgoverningtheconvergence rates of a number of single grid calculations. The convergence accel-
eration and modified eigenvalue structure produced by the multigrid method are evidence that a number of
low frequency modes are dominant in these single grid calculations (Figures 7,8,11, and 12) and that they
can be removed by the multigrid method (Figures 9,10,13 and 14). This analysis could also explain why a
significant amount of acceleration occurs in the viscous calculations since presumably these low frequency
modes exist in both the Euler and Navier-Stokes equations.

In any event, the large number of dominant eigenvaJues would prohibit the effectiveness of a vector
sequence extrapolation in either the single or mukigrid calculations. The eigenvalue plots suggest that at
least 25-30 eigenvalues would have to be accounted for before amy significant amount of acceleration could
be achieved. This prediction is confirmed in Figure 15, where only a slight amount of acceleration (12
percent more than the base mukigrid convergence rate shown in Figure 9) is produced by the storage and
manipulation of 25 viscous mukigrid flow solutions. Although these results may seem discouraging, vector
sequence methods are highly problem dependent and may be of greater value in other flow calculations. In
addition, the eigenvalue estimates are extremely useful in the analysis of any iterative method.

Concluding Remarks

The convergence properties of an implicit multigrid scheme have been investigated for the calculation of
complex three-dimensional flows. A vector extrapolation method was used to calculate eigenv_lue estimates
of the iterative procedure to gain a further understanding of the process by which the multigrid method

accelerates calculations to steady state.
Results illustrate both the scheme's ability to calculate turbulent viscous flows and the convergence

acceleration produced by the multigrid method.
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