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Abstract

The download on the wing produced by the rotor wake of a tilt rotor vehicle in

hover is of major concern because of its severe impact on payload-carrying capability.

In a concerted effort to understand the fundamental fluid dynamics that causes

this download, and to hclp find ways to reduce it, computational fluid dynamics is

employed to study this problem. The thin-layer Navier-Stokes equations are used to

describe the flow, and an implicit, finite difference numerical algorithm is the method

of solution. This report is a summary of the methodology developed to analyze the

tilt rotor flowfield. Included are discussions of computations of an airfoil and wing in

freestream flows at -90 degrees, a rotor alone, and wing/rotor interaction in two and

three dimensions. Preliminary restllts demonstrate the feasibility and great potential

of the present approach. Recommendations are made for both near-term and far-

term improvements to the method.
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Chapter 1

Introduction

1.1 Motivation

The tilt rotor aircraft is a flight vehicle which combines the vertical takeoff and

landing capability of the helicopter with the efficient high-speed cruise performance

of conventional fixed-wing aircraft. The tilt rotor vehicle has a rotor located at each

wing tip. The rotors can be rotated to permit conversion from the helicopter mode

to the airplane mode and vice versa, the wing remaining fixed.

The concept was first proposed by Bell Helicopter engineers during World War II,

and it evolved into a first prototype in 1955, designated the XV-3 [1]. In 1977, the

NASA/Army/Bell XV-15, a 13:000 lb experimental tilt rotor aircraft, flew for the

first time in a research program that continues to today. The usefulness of the tilt

rotor aircraft is evidenced in the recent development of the V-22 Osprey for the

U.S. Armed Forces by a Bell Helicopter Textron/Boeing Vertol team. The V-22 is

a multi-service, multi-mission tilt rotor aircraft. It has a vertical take-off weight of

47,500 lb and is capable of transporting up to 40 passengers.

The unique features of the tilt. rotor can also be exploited as a civil transport in

the city-center to city-center commuter market or as a feeder to hub airports. The

need for such a mode of transport will certainly increase as community real estate

prices continue to increase, making new airport construction prohibitively expensive,

driving new airport locations further away from large population densities.



The tilt rotor concept offers severalconsiderableadvantagesover the rival tilt

wing concept (in which the rotors and wing both rotate in the transition from heli-

copter to airplane mode and back). Wing tilt requires additional mechanical com-

plexity and resulting increased structural weight to support the higher concentrated

wing/fuselage junction loads. The tilt rotor concept also offers much greater con-

trollability while hovering in gusty wind or cross-wind conditions.

A major limitation of the tilt rotor configuration, however, is the aerodynamic

download imposed on the wing by the rotor flowfield when hovering. Because the

wing is fixed, the rotor flow, in hover, hits the wing at 90 degrees. The download

force on the wing has been measured and can be as large as 10 - 15 percent of

the total rotor thrust [2,3]. Assmning the payload-carrying capability to be about

25% of gross take-off weight, complete elimination of the download could increase

the effective payload by over 50%. The need for a thorough understanding of, and

the eventual reduction of, wing download, then, is the major impetus driving this

theoretical study on tilt rotor flowfields.

Study of the three-dimensional wing/rotor interaction, in hover, therefore, is the

primary focus of this work. The flowfield about a tilt rotor configuration is very

complicated. The rotor, typically located less than a wing chord above the wing,

induces a flow which is closely coupled to the flow about the wing. There exists a

large region of nearly-stagnated flow on the wing upper surface and a large region of

unsteady, turbulent, separated flow below the wing. The flow over the wing upper

surface is highly three-dimensional. Near the wing tip, the flow over the wing is

essentially chordwise. Further inboard, the flow becomes increasingly spanwise. Due

to symmetry of a hovering tilt rotor, the spanwise flow from both wings meets at the

vehicle centerline and is redirected upwards. Some of this rising column of air is re-

ingested by the rotor thus creating a large-scale recirculation pattern which reduces

rotor performance. This flow pattern has been termed the "fountain effect". Refer



to Figure 1.1for a simplified sketchof the main flow featuresabout a V-22 in hover.

1.2 Previous Work

1.2.1 Experimental Work

Flight test of the XV-15 [1,4] has yielded quantitative estimates of hover performance

including download as a function of flap angle. Figure 1.2 shows the download (DL)

normalized by the rotor thrust (T) plotted as a function of flap angle. Flight test

results are compared to estimates from a semi-empirical theory by Felker and Light

[2] . To better study the nature of the tilt rotor flowfield itself, the flexibility and

control offered by wind tunnel testing is required. McCroskey et al. [5] measured the

drag of two-dimensional models of the XV-15 airfoil with various flap and leading

edge configurations. They found that the drag on the airfoil in a freestream flow at

-90 degrees was very sensitive to not only flap angle but also the surface curvature

distribution on the upper surface near the leading edge. Lowering flap reduces the

frontal area thereby reducing the download. A flat plate has a 2-D drag coefficient

about twice that of a circular cylinder. Increasing airfoil thickness and camber, then,

which tend to make the airfoil less like a flat plate and more like a circular cylinder

or ellipse, reduces the download.

Maisel et al. [6] continued this 2-D experimental effort by examining the effects

of several different airfoil, flap, and leading edge configurations on the download.

Boeing has tested a powered tilt rotor model whose basic geometry was that of

a 0.15 scale V-22 Osprey. Some results of this test are reported in reference [7].

Results from model tests of tilt rotor hover and wing/rotor interaction by NASA

have been reported in references [1,2,3]. Large-scale tests involving a 0.658 scale

V-22 rotor and wing as well as small-scale tests of a 0.16 scale S-76 helicopter rotor

and a model wing were carried out at the Outdoor Aerodynamic Research Facility

3
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Figure 1.2: Effect of flap angle on download (Ref. [2]).

(OARF) at NASA Ames Research Center. These tests provided flow visualization

of the complicated flowfield as well as wing pressure measurements and estimates

of wing download and rotor performance. A clearer picture of the flowfield was

obtained. The gradual transition from near-2-D flow on the outboard section of

the wing to near-spanwise flow on the inboard region, and the fountain effect were

observed.

Because the static pressure in separated flow is generally somewhat less than

ambient pressure, a download suction force on the wing lower surface contributes to

the total download. By energizing the boundary layer using tangential blowing on

the upper surface near the leading edge (where the flow is close to separating) the

separation location can be further extended around the leading edge to the lower

surface thereby reducing the chordwise extent of the of the separated flow region

below the wing and significantly reducing the download. This effect was observed

in the experimental work described in [2] using the 0.16 scale model and wing with

elliptic airfoil section with blowing slots. Figure 1.3 shows typical surface pressure

5



distributions on a circulation control airfoil with and without blowing in a rotor-

induced -90 degree slipstream.. The slots were located at 3% and 97% chord, the

former blowing towards the leading edge, the latter towards the trailing edge. It

was found that particularly the leading edge slot was very effective in controlling the

location of separation and in reducing the download.

A more detailed set of tests similar to those described above, scheduled for the

Fall of 1989, will soon provide even more information. A 0.18 scale V-22 rotor

and both a V-22 model wing and an XV-15 wing with blowing slots will be tested.

This experimental research effort will provide a means of direct comparison with the

computational results obtained in this theoretical study, whose preliminary results

are reported here.

1.2.2 Theoretical Work

The theoretical prediction of tilt rotor flows and of download is very difficult because

.of the complexity of the flowfield. Tile rotor wake is an unsteady, three-dimensional

flow with regions of concentrated vorticity (rotor tip vortices). The rotor blades

themselves see highly compressible flows, and beneath the wing there exists a large

region of unsteady, turbulent, separated flow. Accurate, simultaneous prediction of

all these flow features still lies beyond the state of the art. Simplifications must be

made to render the problem tractable.

References [8,9] describe the application of a low-order panel method to the tilt

rotor problem. The ,'otor was modeled using source singularities and the rotor wake

was represented by a time-averaged cylindrical vortex sheath comprised of quadrilat-

eral doublet panels. A blade element model of the rotor feeds time-averaged loading

as a function of radial and azimuthal location to the panel code which contains a

model of the wing. The wing was modeled simply as a cambered plate using a lattice

of doublet singularities. Man 5' of tile overall flow features were predicted using this

6

=

=



1

0 l

-1
_P

-2

-3

-4

-5

UPPER SURFACE

LOWER SURFACE

"\
AIR SUPPLY PLENUMS

/

O UPPER SURFACE

[] LOWER SURFACE

I I III 1 I I

0 _ .4 .6 .8
_c

(a) blowing off, Pp/Pal:m = 1.00.

I

1.0

-1AP

T/A

-2

-5

O UPPER SURFACE

[] LOWER SURFACE

0 .2 .4 .6 .8 1.0
x/c

(b) blowing on, Pp/Pat= = 1.09.

Figure 1.3: Typical surface pressure distributions on a circulation control airfoil in

hover mode with and without blowing.



method. Quantitative results, however, because of the nature of the equations solved

(Laplace's equation) must be viewed with caution as separated flows cannot be accu-

rately predicted with this formulation. As found in the experimental work described

in reference [5], the separation location is very sensitive to leading edge curvature

and thickness. These important effects cannot be accurately predicted using a panel

method. Download, which is dependent on viscous effects, can only be accurately

predicted using an analysis which incorporates the effect of viscosity.

References [5,10] describe discrete-vortex seeding methods to calculate the un-

steady, 2-D flow around an airfoil at an angle of incidence of -90 degrees. In reference

[5], the wing is immersed in a freestream flow. In reference [10], to study rotor/wing

interaction, a rotor is modeled using constant strength doublet panels which induce

a normal velocity distribution. Since no integral boundary layer calculation was

coupled with the potential flow calculation, boundary layer growth and separation

location were not predicted. Separation location was specified and a uniform base

pressure on the wing lower surface was assumed. The methods predicted the upper

surface pressures fairly well but obviously were incapable of accurately calculating

the lower surface pressure. Since the flow over the tilt rotor wing is highly three-

dimensional, two-dimensional analyses such as these are of limited usefulness.

Recent developments in numerical algorithms and in computer speed and memory

capability have made tractable tile solution of the Euler and Navier-Stokes equations

for increasingly complicated flows. However, only very few attempts at the calcu-

lation of rotor flows have so far been made using the latest computational fluid

dynamics (CFD) techniques.

Quasi-steady solutions of a 2-bladed rotor in hover have been obtained by Srini-

vasan and McCroskey [11] using a flux-split, approximately-factored, implicit algo-

rithm to solve the unsteady, thin-layer Navier-Stokes equations. The computation

of the concentrated vortices shed from the rotor tips is affected adversely by nu-



merical diffusion due to insufficient grid density beneath the rotor. Therefore, the

effect of the rotor wake, and in particular, the induced downwash, must be estimated

empirically in order to obtain reasonable results for lifting cases.

The same authors in reference [12] presented their results of airfoil/vortex inter-

action in two-dimensions. They describe a method where the structure of the vortex

is prescribed, but its path in space is allowed to develop as part of the solution.

Using this approach, they were able to simulate the effect of a shed tip vortex on a

section of the following rotor blade.

Roberts [13] combined an unsteady Euler solver with a wake model for a two-

bladed hovering rotor. The bound circulation distribution along the span of each

rotor blade was determined from the Euler solution and used to set the strength of

the wake vortices.

McCroskey and Baeder [14] estimated that in order to calculate two revolutions of

a two-bladed rotor above a simple fuselage using a typical, implicit, thin-layer Navier-

Stokes code with algebraic eddy-viscosity modeling of turbulence, a 100 megaflop

computer would require 40 CPU hours and 30 million words of memory ( or 4 hours

of CPU for a one gigaflop machine). Routine calculations of 3-D rotorcraft flows

including detailed modeling of the rotor blades will remain elusive for some time.

Rajagopalan and Mathur [15] modeled a three-dimensional rotor in forward flight

using a distribution of nlomentum sources added to the steady, incompressible, lami-

nar Navier-Stokes equations. Rotor geometry and blade sectional aerodynamic char-

acteristics were incorporated into the evaluation of the source terms. Their results

represent a time-averaged solution. In complexity, this method lies between an ac-

tuator disk representation and a CFD computation of the individual blades.



1.3 Current Approach

Despite the research efforts of the past several years, gaps in our fundamental un-

derstanding of the tilt rotor flowfield remain. It is the objective of this current work

to model the tilt rotor flowfield as accurately as present computational tools allow.

Computer resources and solution algorithms have evolved, during the past several

years, to the point where the solution of the thin-layer Navier-Stokes equations about

a simplified tilt rotor configuration comprised of wing and rotor model is technically

feasible. Since the modeling of the flow about the individual rotor blades remains

such a complex task and tremendous computational drain, and since the primary in-

terest here is wing download prediction and not detailed rotor simulation, the rotor

in this study, is modeled as an actuator disk. The loads from the blades are aver-

aged over the entire rotor disk area. The viscous flow around the airfoil, however, is

accurately predicted by defining a suitable grid. A multiple zone approach is used

to incorporate the effects of the rotor. Empirical data or, in this case, a momen-

tum theory/blade element analysis is used to estimate the average radial distribution

of axial and swirl velocities, and the pressure rise across the rotor disk (which are

required for the CFD calculation).

The theory and numerical method, grid generation, development of boundary

conditions, and preliminary results obtained, will all be discussed in greater detail

in the chapters to follow.
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Chapter 2

Governing Fluid Dynamic

Equations and Solution Method

2.1 General Comments

The work described in this report involves the numerical solution of the three-

dimensional Navier-Stokes equations. It is assumed that there are no body forces

(eg. gravity effects are not important) and there is no heat addition or removal. The

thin-layer approximation, described later, is applied. It assumes that the viscous

forces are confined to a small region near the wing surface. The solution method, in

the form in which it is applied here, was formulated by Fujii and Obayashi [16,17,18].

It is suitable for subsonic, transonic, and supersonic flow calculations. Although the

solution method is implicit, the boundary conditions are applied explicitly. This

allows easier application of the code to a wide variety of geometries.

The general formulation is outlined in the following sections. Greater detail can

be found in references [16,17,18,19].

2.2 Governing Equations

The Navier-Stokes equations are the most basic continuum-representation of fluid

dynamic flows. To ensure proper shock capturing (in transonic flow, for example),

i.e. to accurately predict shock strength and location, the three-dimensional Navier-

11



Stokesequationsare written and solvedin strong conservationlaw form wherethe

dependentvariablesare expressedin the form of spatial gradients. Theseequations

can be seen in severaldifferent references. See, for example, reference[19]. To

convert them to a more useful form for computational purposes,the equations are

manipulated somewhat. This is describedbelow.

The equationsarenon-dimensionalizedby dividing the density p by the freestream

density p_, the velocity components u, v, and w by the freestream speed of sound

aoo, and the total energy per unit volume e by pooa_.2 Conforming to the normal

convention, u is in the downstream (x) direction, v is in the spanwise (y) direction,

and w is in the vertical, upwards (z) direction. The coefficient of viscosity is normal-

ized by _t,:_, and tile tinle is normalized by c/a¢¢ where c is the wing chord. Applying

this non-dimensi0nalization to the Naviei'-St0kes equations results in a term con-

taining the expression (po_ao.c)/#_. Introducing the definition of Mach number,

Moo = u_/a_ where uoo = _/u 2 + v2 + w 2 oo, then it is seen that this expression

equals Re/Mo_ where Re = (poouo, c)/#oo.

Next, the Navier-Stokes equations are transformed from Cartesian coordinates

to general curvilinear coordinates. This makes tt_e formulation independent of the

body geometry thereby easing the specification of the boundary conditions. It also

allows for straight-forward application of the thin-layer assumption later. In addition,

since the physical domain is transformed into the computational domain which is a

rectangular box with a uniformly-spaced mesh, then standard differencing schemes

can be used for lh_' &,rival ires. The coordinate transformation is defined by:

r = t

,t = (2.1)

= :, 0

12



where t represents the time independent variable. The airfoil surface is transformed

to the {-direction, the spanwise direction is transformed to 77,and _ is roughly normal

to the wing surface. The governing equations must, correspondingly, be transformed

from the physical domain (z,V, z) to the computational domain (_,77, _). Details

of this transformation procedure can be found in references [20,21]. By writing

the transformation in terms of spatial derivatives and applying the chain rule, a

transformation Jacobian, J, and several identities called metrics can be defined as

follows:

x_ xn x(

J= 1/det y_ y_ y( (2.2)

z_ z n z(

where x_ = Ox/cg_, etc. i.e. all the above matrix elements area partial derivatives.

They are evaluated numerically using second-order accurate differences. The metrics

are:

_,: = J (y,z¢ - y¢z,),

= J (x¢.., - z,,..¢),

7]_ = J (x_z¢ - xcz_):

7_z = g (x_y_ - x_y_),

_ = J (y_z, 7 - y,_z_)

_ = J (x_y. - x,_y_)

5 = - -

yt = -x_-_?x - y_-yy - z_

(2.3)

Note that for stationary grids (no body motion), the metric time derivative terms

are zero.

Generally, the thin-layer approximation is applied to the Navier-Stokes equations

to reduce the computational effort (particularly in three dimensions) to a manageable

level. For the high Reynolds number flows which are typical of practical aerodynamic

problems, the viscous effects are confined to a small region near the body surface

and in the wake. Computer memory limitations usually necessitate concentrating
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the availablegrid points near the surfaceof interest. This results in fine grid spac-

ing normal and nearto the surfaceand coarsegrid spacingtangential to the surface.

With this type of grid, evenif the full Navier-Stokesequationswereprogrammed,the

viscousterms associatedwith the flux vectorsalong the body wouldnot be resolved,

and for most casesof interest, theseterms arenegligibleanyway.Therefore, it is jus-

tifiable to eliminate fi'om the calculation the viscousfluxes in the directions parallel

to the surface,i.e. the _ (chordwise)direction and the r/(spanwise) direction. This is

easy to do with the equations already transformed to the body-fitted computational

domain. The thin-layer approximation is similar in philosophy but somewhat differ-

ent than the assumptions in boundary layer theory. Less restrictive than boundary

layer theory, the thin-layer approximation retains the normal momentum equation

and allows pressure variation through the boundary layer.

The thin-layer approximation is less valid for low Reynolds number flows and

in regions of large flow separation. This then is one of the major limitations of

this method for studying tilt' 3-D tilt rotor flowfield. Even if the full Navier-Stokes

were solved, the limitations of the turbulence model in regions of extensive separation

would contribute to inaccuracies in the computed flowfield in this region. The current

approach, however, makes the calculation tractable and far superior to any method

hitherto applied to this problem. The full 3-D Navier-Stokes solution is beyond the

means of current practically-available computer power.

Applying the thin-layer approximation, then, the non-dimensional, 3-D Navier-

Stokes equations in transformed curvilinear coordinates become:

OQ OE OF oa M_ oar (2.4)
o-7+ -g-(+ +o-7- o¢

The Q vector contains the transformed conservative flow variables

C2= J-' pv (2.5)
pw

6
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Note that the elementsof the Q vector, as well asall flow variablesreferredto in

subsequentdiscussionsin this chapter, arenon-dimensionalquantities.

E, F, and G are vectors that contain the inviscid "Euler" terms:

--1

pU

puU + (_p

pvU + (_p

pwU + _zp

g (e + p) - _,p

(2.6)

F_j -|

-1

pV

puV + rl,,p

pvV + rlup

pwV + rhp

V (e + p) - _,p

pW

puW +

pvW +

where p is the static pressure and U, V, and W

(2.7)

_P

6p (zs)
pwW + GP

w (_ + p) - (,p

are the contravariant velocity com-

ponents that appear a.s a result of the coordinate transformation. They are defined

below:

U = (t + (_u + (_v + (_w

V = _t + rl::u + rlyv + rlzW

V = (t + G:u + (_v + (zW

(2.9)

The vector Gv contains the viscous terms retained after the application of the thin-

layer approximation. It is given by

where

0

(2.10)

T j- T - --p(u_. + v_ + w_) + 2_u_
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2
r_ - 51*(u_ + v_ + w_) + 21.v_

2

r_ = -_1*(u_ + vy + w_) + 21*w_

r_ = r_x =1* (% + v_)

r_ = r_=1*(vz+w_)

71.3 e

7tz
'_ = p--7Oyei + ury_ + v%y + W%z

flz _ 71* Ozei + Urzx + Vrzu + Wrzz
Pr

(2.11)

i

The internal energy per unit mass, ei is

e (us + v2+ w_)
ei _-

p 2

The Prandtl number Pr is defined as Pr = %1*/k where cp is the specific heat at

constant pressure and k is the coefficient of thermal conductivity. Also, 3' is the ratio

of specific heats. For air, at temperatures and pressures of interest here, Pr = 0.72

and "7 = 1.4. Pressure is related to the conservative flow variables through the

equation of state for a perfect gas

[ # v 2 )] (2.12)p=('?'-l) e-_(u 2+ +w 2

To evaluate the spatial derivatives of the Cartesian velocity components in Eq. 2.11,

the chain rule is applied. For example,

u_ = (,ue + r/,u, + (_u¢

2.3 Turbulence Model

In order to resolve the turbulent eddies which contribute to a flow's turbulence level,

an extremely tiny grid spacing and a huge number of points would be required.
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For the solution of practical problemsof interest to be feasible,a turbulence model

is generally introduced which greatly reducesthe number of grid points required

in viscous regions. Basedon a combination of theory and empiricism, turbulence

models, although far from precisepredictors of turbulence, do provide a meansof

modeling a real flow with a turbulent boundary layer.

For the purposesof this preliminary work, no turbulencemodelwasincorporated.

Only laminar flow calculationswereperformedbecausethe main focuswason mod-

ification of the Navier-Stokescodefor the tilt rotor problem, and on generationof

suitable grids and boundary conditions.

A turbulencemodelproposedby Baldwin and Lomax [22]for conventionalbound-

ary layersandanother for turbulent wall jets oncurvedsurfacesproposedby Roberts

[23]will be incorporated in the near future.

2.4 Numerical Algorithm

The solution technique employs an implicit, approximately factored, non-iterative

method first developed by Beam and Warming [24]. Explicit methods suffer the

disadvantage of having a severe restriction on time step size in order to maintain

stability. This is particularly acute for Navier-Stokes solutions where, because of

the relatively small scales associated with resolving the boundary layer, the partial

differential equations are very stiff. Often, the steady-state solution is of principal

interest, so being able to use large time steps to accelerate the rate of convergence is

very important. Implicit methods are stable for relatively large time steps even for

highly nonlinear equations such as the Navier-Stokes equations.

Applying the first-order accurate (in time) implicit Euler scheme to Eq. 2.4 results

in

0E '+1 OF '_+1 OG '_+1 M_ OG_ +l )Qn+, _ + + o,--7 + = 0 (2.13)

where n + 1 is the time at which Q is desired, n is the previous time level at which
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Q is known everywhere, and Q'_ = Q(nAt) .

Since the flux vectors E, F, G, and Gv are nonlinear functions of Q, then Eq. 2.13

is nonlinear in Q,_+I. In order for the method to be non-iterative, the nonlinear terms

are linearized in time about Q'_ by a Taylor series expansion such that

En+ 1

F,,+I

an+ 1

a_+ _

= E" + A"AQ" + 0 (At 2)

= F'_+B'_AQn+O(At 2)

: ao+c"AQ"+o(A,

: G'_+M"AQ'_+O(At 2)

(2.14)

Note that AQ" = Qn+l _ Qn. Also, A n, B ", C", and M '_ are the flux Jacobians.

Expressions for these matrices can be found in reference [25].

In the Beam and Warming method, the alternating direction implicit (ADI) al-

gorithm replaces the inversion of one huge matrix -- which would be prohibitively

expensive to compute -- to the inversions of three block tridiagonal matrices, one

for each direction. Efficient block tridiagonal inversion routines exist, making this

algorithm a viable solution technique.

A linear constant coefficient Fourier stability analysis (assumes periodic boundary

conditions) for the three-dimensional model wave equation shows a mild, uncondi-

tional instability for the Beam-Warming factored algorithm [26]. A small amount

of artificial dissipation (also called "smoothing") is required to render the scheme

stable. The most common procedure is to add fourth-order artificial dissipation to

the explicit right hand side of the equation (see Eq. 2.15 below) and second-order

dissipation to each of the three implicit one-dimensional block operators on the left

hand side. Second-order implicil dissipation is used so as to keep the block implicit

operators tridiagonal.

Applying the Beana-Warming scheme to Eq. 2.13 using the linearized expressions
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for the flux vectors, Eqs.2.14, the solution algorithm canbe written as

[I + AtS_An- AteIJ-1V_A_J] [I + AtSnB '_ - AtelJ-IV, AnJ]

3"I_ J-15_M'_J - At elJ-aV, A,J] AQ '_I + At 5_C "_- At Re

Moo ,0
= -At [6_E '_ + 5,7F '_ + 5_G '_ _ 5_Gvl

-zx -1 + (v,&) 2+ J Q"

(2.15)

In the above notation,

[I + At 5_A"] AQn= AQ '_ + At 5_ (A_AQ ")

Note that I is the identity matrix, 5 is a central difference operator, and V and A

are backward and forward difference operators, respectively, e_ and eE are constants

that control the magnitude of artificial dissipation introduced in the scheme on the

implicit side (left hand side) and on the explicit side (right hand side) of Eq. 2.15,

respectively.

The algorithm is said to be in "delta form". For steady-state solutions ,AQ n --* 0,

and the solution is independent of the choice of operators on the left hand side of

Eq. 2.15. The algorithm is first-order accurate in time. Since second-order spatial

differences are used on the implicit side, the method is second-order in space. For

converged, steady-state solutions, when the implicit side (left hand side) of the equa-

tion approaches zero, and if fourth-order differencing is used on the explicit (right

hand side terms), then the method becomes fourth-order accurate in space.

Most of the computational effort involved in an implicit algorithm such as the

one outlined above is associated with inverting the block tridiagonal matrices in

each direction. Pulliam and Chaussee [27] suggested a way to diagonalize the blocks

within the block tridiagonal matrices, thereby transforming them to scalar tridiagonal

matrices which are much more efficient computationally to invert. Their approach

is based on the fact that the flux Jacobians A, B, and C each have real eigenvalues
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and a completeset of eigenvectors.This meansthat the Jacobianmatrices can be

diagonalizedby similarity transformationsas indicated below:

A_= T_-IAT_, A,_ = T_IBT,_, A_ = T(1CT_

where, for clarity, the superscript n has been dropped from the flux Jacobians. A¢,

An, and A; are diagonal matrices containing the eigenvalues of matrices A, B, and

C, respectively. T¢, T,, and T_ are similarity transformation matrices. Expressions

for the above matrices can be found in references [26,27].

For simplicity, looking at only the _-direction, the Beam-Warming's ADI implicit

operator (see Eq. 2.15) can be written in the diagonal form as

I + __t 6_,4 + At eIJ-1V_A_J

= T_T( 1 + At6_ (T_A_T_ -1) + AtJ-aelV_A_J

T_ [I + At6_A_ + AtJ-lelV_A_J] T( 1 (2.16)

Moving T_ and T_-a outside of the difference operator 6_ introduces an error which

renders the method at most first-order accurate in time [27]. For steady-state cal-

culations, however, where the left hand side of Eq. 2.15 goes to zero as AQ '_ _ 0,

the solution obtained using the diagonal algorithm will be identical to that obtained

from the original Beam-Warming ADI scheme since the right hand side is identical

for both methods.

Fujii, Obayashi, and Kuwahara [16,17,18] introduced a further modification to the

left hand side operators that reduces the tridiagonal matrix -- obtained after the

diagonalization described above -- to a product of a lower and an upper bidiagonal

matrix, thereby reducing the computational effort even more. This is possible by

employing the flux vector splitting technique introduced by Steger and Warming in

reference [28], and by using a diagonally dominant factorization first proposed in

reference [29]. These modifications are outlined below.
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The central differencingof Eq. 2.16 can be decomposedinto two one-sideddif-

ferencesby using the flux vector splitting technique. Continuing to look at the

_-direction operator only, Eq. 2.16canbe re-written as

I + At 6{A + At elJ-aV{A{J

T,[I+ v,q +A,Ag]T{-1 (2.17)

with

At (A{ + IA{I)+_*J_-'e,d (2.18)A_= T

where A_ contains all the positive eigenvalues and A_- contains all the negative

eigenvalues. Note that the positive-moving characteristics (eigenvalues) are backward

differenced, and the negative-moving characteristics are forward differenced. This is

required for numerical stability../-1 the inverse of the Jacobian, is evaluated at

the central point. Using first-order, three-point, upwind differencing (three-point

differences offer greater numerical stability than two-point differences) for the V_

and A{ operators, Eq, 2.17 can be written as

T¢[L{ + D{ + U_] T_-' (2.19)

where

_ 8A+L{ - -g ,_,+ 1A_26-
7

D{ = I+_(A +-Aj-)

8 1 A _
U_ = _A;+I- 6 j+2

where the subscript j is the grid point index in the {-direction.

Applying diagonally dominant factorization (refer to [29]),

L{ + D{ + U{ = (L{ + D{) D-_ 1 (D{ + U¢)+ O (At 2)

(2.20)

(2.21)
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This can be shownby examining Eqs. 2.18and 2.20and noting that D_ is of order

1 and L_, U_ are of order A_. Substituting Eq. 2.21 into Eq. 2.19, Eq. 2.17 becomes

I + At _A + At eIV_A_J

T¢ (i¢ + D_) D_ 1 (De + U¢) To-' (2.22)

The block tridiagonal system of the left hand side of Eq. 2.16 has been trans-

formed to matrix multiplications and the product of the lower scalar bidiagonal

matrix (L¢ + D¢) and the upper scalar bidiagonal matrix D_ -1 (De + U¢). The same

analysis is carried out for the q-direction and a slightly modified analysis is performed

in the _-direction.

The viscous flux Jacobian 2_./_ is not diagonalizable by the similarity transfor-

mations T_ and T¢-1 and, therefore, the _-direction implicit operator of Eq. 2.15

cannot be reduced to diagonal form. To retain the diagonalization in all three direc-

tions (and not incur the computation penalties associated with not simplifying the

block tridiagonal operator in the _-direction), the viscous flux Jacobian M n is simply

neglected. Pulliam [26] , using the unsplit diagonalized method, compared results

obtained with and without the implicit viscous flux Jacobian. He found that neglect-

ing this term actually yielded the most efficient steady-state solutions. Pulliam and

Steger [32] employ this method for steady viscous flows and convection dominated

unsteady flows. Guruswamy [30,31] , using this same numerical algorithm (ignoring

the implicit viscous flux Jacobian) for both the Euler and Navier-Stokes equations,

obtained good results for unsteady aerodynamic and aeroelastic calculations.

In order to maintain stability of the Fnjii/Obayashi method with the thin-layer

viscous terms retained on the explicit, right hand side of the equation, the diagonal

matrix of eigenvalues, A;, of the inviscid flux Jacobian matrix ,C '_, is modified (see

references [16,18]) as indicated below (compare with Eq. 2.18, for example):

Lt

= y (a¢ + Ii¢l) + .l e1J + _,I
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where

n_ A(M--_P

where, in the computational domain, A_ = At/ = A( = 1.

Finally, the present scheme can be summarized as follows,

T¢ (L_ + D¢) D-_ _ (D¢ + U¢) T_IT,7 (L, + D,7) D[' ( D, 7 + U,_) T;_T(

(L( + D_) D_ _ (D_ + U_) T( _ AQ n

Moo ,+l
= -At [3,E n + 3nF" + 3(G n -_e 3(G,] (2.23)

-At 2+ (v.A,) ++ J Q"

Analytical expressions for T(aT, and T_tT; and their inverses dan be used to reduce

the computational effort. They are presented in reference [27].

It is evident from the above equation that the inversion process has been reduced

to one forward scalar sweep and one backward scalar sweep in each direction, and

simple matrix multiplications.

2.5 Additional Features

To further enhance convergence speeds for steady-state calculations, a space varying

time step size At can be specified. This modification can be very effective for typical

grids that have a wide variation of grid spacing. By scaling At with grid spacing,

a more uniform local Courant number (ratio of local time step to grid cell width

multiplied by the characteristic velocity) can be maintained throughout the fiowfield.

Since the local transformation Jacobian, J, scales with the inverse of grid cell volume,

the following has been found to work well ( refer to [32]:

l+v_

where At [,el is a fixed, inputted time step. Due to numerical approximations made

to calculate the metrics, a computed freestream flow may be somewhat in error. To
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remedy this problem,freestreamsubtraction is employed[33].The freestreamvalues

of all the fluxesare calculatedand subtractedfrom all the computedfluxes. This al-

lowsfor recoveryof the freestreamcondition without affectingthe basicformulation.
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Chapter 3

Grid Generation

3.1 General Philosophy

Grid generation is a very important aspect of computational fluid dynamics. The

grid is the assembly of points at which the numerical solution to the relevant partial

differential equations is found. To maintain solution accuracy, the grid should possess

a smooth distribution of points (refer to [34]). Also, the grid (or mesh) and the

distribution of points must be compatible with the fluid dynamics equations being

solved and the particular flowfield expected.

As discussed in Section 2.2, the thin-layer approximation is made so as to limit

the computer storage requirements to a manageable level. The viscous fluxes normal

to the surface are dominant. In order to resolve this important contribution, the grid

spacing must be very fine in a direction normal to the surface. Grid spacing can be

much coarser along the surface where the far less significant tangential viscous fluxes

need not be resolved. In addition, grid points must be clustered in regions where

relatively large flow gradients are anticipated. For example, the wing leading edge

and trailing edge as well as the mid-chord regions for a = -90 ° flow require grid

point concentration. Figure 5.1 is an example of the grid generated for a freestream

flow computation about the V-22 airfoil at an angle of incidence of -90 degrees.

There are 47 points in the circumferential direction around the airfoil surface, three

of which overlap to ease implementation of the periodic boundary conditions (refer
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Figure 3.1: Exponential grid point stretching applied to an arbitrary curve.

to Section 4.2 for a further discussion of periodic boundary conditions). There are

33 points in the direction normal to the airfoil surface.

To obtain the desired clustering of grid points on a body surface and in the mesh

interior for algebraically-defined grids, extensive use is made of an exponential type

of stretching. If a distribution of N points is desired along a curve of specified length

S, and the arc length between the first two points is specified to be AS, then an

expression for the total length can be written as (refer to Figure 3.1 ) :

S = AS + aAS + a2AS + a3AS +...

N-2

= ASia k

Defining a function f where

k=0

N-2

f = S - AS _ e, k
k=O

then an iterative root finding procedure such as the Newton-Raphson method is

used to determine the value of a that satisfies f = 0 within a desired tolerance. This

method can easily be extended to a distribution of points with exponential stretching

in both directions, i.e. a different AS is specified at both ends of the interval.

To generate a mesh for a 2-D calculation, five identical 2-D grids were stacked

parallel to each other. This is required because the Navier-Stokes code employs
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a fourth-order accurate 5-point spatial numerical differencing. The computational

results are then referred to as " pseudo2-D " as they are essentially 2-D in char-

acter although they aregeneratedby a 3-D code. This is made possibleby proper

application of symmetry boundary conditions at both ends of the mesh (refer to

Section4.2).

For actual 3-D cases,2-D grids are generatedat many spanwisestations along

the wing and beyond the wing tip, and stackedin parallel.

3.2 Elliptic Grid Generation

To ensure smooth grid point distributions on the interior of a 2-D mesh, an elliptic

grid solver can be employed. It is well-suited to the types of grids employed in this

study. Because of the symmetry of the 2-D flowfield at a given station of the tilt

rotor wing in hover, an O-grid is more suitable than either a C-grid or an H-grid.

The O-grid is so named because of the way the grid lines encircle the airfoil.

The elliptic grid generation scheme was first proposed by Thompson, Thames,

et al. in references [35,36]. It requires specification of grid point locations along

the boundary - in this case, both the inner boundary (airfoil surface) and the outer

boundary. The solution algorithm is outlined below.

The Poisson equations are used to generate a boundary-fitted, curvilinear 2-D

grid:

where ((, r/) represent coordinates in the computational domain, (x, y) represent co-

ordinates in the physical domain, and P and Q are source terms which control the

grid point spacing in the mesh interior. The computational domain is rectangular

and the grid points within it are evenly-spaced. To simplify the evaluation of the
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derivativesand to easethe specificationof the boundary conditions, the aboveequa-

tions are transformed to, and solvedin, the computational domain. To do this, the

rolesof the independentand dependentvariablesare interchanged,and the equations

become

(3.1)

where

2 2

-- x_x,7 + Y_Y,_

"7 = x_ + y_

J = x_yn - xny_

All derivatives are approximated using standard second-order accurate finite dif-

ferences. The spatial increments A_ and At/can, without any loss in generalization,

be assumed to be constant everywhere and equal to 1. The grid point locations on

the boundary must be specified, and an initial guess for the interior grid values must

be made. Any number of standard relaxation schemes can be used to solve the sys-

tem of two elliptic equations. Here, a fully implicit scheme - an alternating direction

implicit (ADI) scheme - constructed using approximate factorization to convert the

solution process to two one-dimensional inversions is employed. The solution method

is discussed in more detail in reference [37].

This method with P = Q = 0 provides no control over the grid point spacing near

a boundary. The grid points tend to be pulled away from the surface by the Laplacian

elliptic solver. Sorenson and Steger [38] developed a technique for defining P and Q

such that the angle at which the ( = constant grid lines intersect the boundary, as

well as the distance between the boundary and the first off-boundary grid point on
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these grid lines, could be specified. In this way, grids having a very fine grid spacing

near surfaces (for viscous calculations) can be generated. Also, orthogonality of the

grid at the boundaries can be specified, if desired.

In this current study, the elliptic grid solver has been used to generate the grids

for the 2-D and 3-D freestream calculations. Since Sorenson and Steger's boundary

control technique has not as yet been implemented (i.e. P = Q = 0), post-processing

in the form of exponential stretching was employed to obtain the desired grid density

in the boundary layer region.

For the wing/rotor interaction computations, a grid with a flat outer boundary

in the plane of the rotor is desired so as to enable an easier and a more accurate im-

plementation of the boundary conditions that correspond to the rotor. An outer grid

is then defined to encircle the inner zone. See , for example, Figures 5.20 and 5.21.

These grids have been generated purely algebraically. Elliptic grid smoothing has

not as yet been applied to the rotor/wing meshes.
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Chapter 4

Boundary Conditions

4.1 General Remarks

The finite difference solution of the Navier-Stokes equations requires specification of

boundary conditions on all domain boundaries. In the numerical method employed

in this study (described in Chapter 2), the boundary conditions are applied explicitly,

i.e. the flow variables at the boundaries are evaluated at the time level preceding that

at which the implicit solution on the mesh interior is found. This permits greater

flexibility in applying the boundary conditions to a variety of geometries and flow

situations. At all grid points located on the mesh boundaries, each of the five flow

parameters that make up the vector of conserved quantities, Q, must be updated

explicitly - either by specifying them or by extrapolating from computed interior

values. Referring then to the definition of Q in Section 2.2, the density p, the three

components of mass flux pu, pv, and pw, and the total energy per unit volume, ¢,

must all be updated at each time step.

Determination of the boundary conditions representative of a lifting rotor require

a separate analysis and will be discussed in a later section. First, those boundary

conditions not pertaining to the rotor will be described.
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4.2 Non-Rotor Boundary Conditions

At grid points on the wing surface, for viscous (Navier-Stokes) calculations the no-slip

boundary condition is imposed, i.e. all components of velocity are zero (u = v =

w = 0). Inviscid computations can also be performed using the present computer

code by omitting all viscous terms, i.e. the Gv flux vector, and by applying the

inviscid boundary condition on the wing - zero normal velocity. In the rectangular

computational domain, this condition is easily satisfied by setting the contravariant

velocity component normal to the surface, W, to zero.

The pressures on the wing surface are found by solving the normal momentum

equation (refer to [33,34]). The normal momentum equation is derived by taking the

dot product of the vector comprised of the transformed x-, y-, and z- momentum

equations, and the unit normal vector, ft. The viscous effects are assumed to have an

insignificant effect on the pressure at the surface and are neglected (typical boundary

layer assumption).

[x-morn;+y-morn-;+ z om r-] = no,'mal, ome,. m

where

g

From the momentum equations, it can be seen that the normaL-momentum equation,

at the body surface reduces to cOp�On = pn = O. Performing the above operations,

where U = V = 0 for viscous flow calculations, pc can be approximated by second-

order one-sided differences and p_ and pn by second-order central differences at the
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surface. Re-arranging the equation, and applying approximate factorization, re-

sults in an implicit solution algorithm for p at the surface which involves two one-

dimensional tridiagonal inversions - one in the _-direction and the other in the r/-

direction. Obtaining surface pressures using the above method yields a more accurate

and stable solution method than simply using zero-order extrapolation.

Once the surface pressures are known, assuming adiabatic conditions at the sur-

face (i.e. no heat flux - zero normal temperature gradient), then the density is

obtained by a zero-order extrapolation from the value at the nearest off-body point.

The final quantity required, the total energy per unit volume, e, is calculated

directly from Eq. 2.12 using all previously-defined quantities.

Only one-half of the tilt rotor configuration is modeled due to the symmetry that

exists in hover. Two parallel 2-D grid planes straddle the plane of symmetry and

these grid points are used to specify the following symmetry boundary conditions

Pl = P3

(pu), = (pu)3

(pv), = -(pv)0

(pro), = (pw)3

el --- e3

(4.1)

This ensures that, at the centerline, there is no temperature gradient (assuming adi-

abatic conditions) or pressure gradient, and that the spanwise component of velocity

is zero.

The 3-D Navier-Stokes code was modified to allow the computation of two-

dimensional flows. Because fourth-order spatial differencing is used on the right

hand side of Eq. 2.23, at least five parallel and identical 2-D grids are required. For

"pseudo 2-D" calculations, then, symmetry conditions are also applied between grid

planes 3 and 5. This ensures that the code effectively sees an infinitely long wing
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having constant airfoil section.

On all outer boundaries other than the plane of symmetry, inflow or outflow

boundary conditions are specified. The flow is essentially inviscid in these far-field

regions. The Euler equations are hyperbolic partial differential equations. Applying

a method of characteristics analysis to hyperbolic PDE's helps to determine the

appropriate boundary conditions for inflow and outflow boundaries. For subsonic

flow in three dimensions, four of the characteristic velocities are positive and the

fifth one is negative. For a subsonic inflow boundary, then, four independent flow

thermodynamic and kinematic flow properties should be specified, and one should be

extrapolated from the interior of the flow domain. For a subsonic outflow boundary,

on the other hand, only one property should be specified and four extrapolated.

For freestream calculations for flow at an angle of incidence of -90 degrees, inflow

boundary conditions are applied at the grid points on the outer boundary that lie

above the chord plane. Freestream Mach number and flow angle are specified. Also

the pressure is set to be freestream ambient. The density is extrapolated from the

interior using zero-order extrapolation. The outflow boundary is defined as those

points on the outer boundary which lie below the chord plane. Here zero-order

extrapolation from the nearest interior point is used for four flow properties. The

pressure is specified and assumed to be again at freestream ambient.

The grid points of the O-grid along the airfoil surface (j index) wrap around the

airfoil and overlap by three points. This couples the j = 1 and the j = JMAX

boundaries, which in tile rectangular volume computational domain, are at oppo-

site ends. The following periodic boundary conditions are then imposed, where the

subscripts are for the j index:

ql = qJMAX-2

qJMAX = q3

where q represents an element of the vector of conserved quantities, Q, and the above
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is applied to all five elements. Also, for consistency,

q2 "= qJMAX-1

is specified.

4.3 Modeling the Rotor

4.3.1 Approach

As discussed in Chapter 1, detailed modeling of individual rotor blades using CFD

is a formidable task requiring computer resources that push the currently-available

technology. Because the focus of this work is wing download, the problem is rendered

more tractable by employing a simpler model for the rotor. The rotor is assumed

to be an actuator disk. The combined position- and time- dependent effects of the

blades on the flow are averaged. In the analysis presented here, radial variations in

loading are permitted. On any given annular ring of the actuator disk, the load is

assumed to be uniform.

A classical analysis of propellers/rotors is employed which combines axial and

angular momentum conservation through the rotor disk with blade element strip

theory. The latter allows for the incorporation of empirical data which can introduce

viscous (Reynolds number) effects and Mach number effects at the rotor, if desired.

The current analysis presented below does not include the effect of the wing on the

rotor. Clark [8], using a panel method applied to the tilt rotor configuration, showed

that although the local effects of the wing on the rotor are significant, the global

effects on total torque and power are surprisingly small due to counterbalancing

local effects.

The analysis below is used to independently obtain the pressure rise through the

rotor disk and the swirl velocity immediately downstream of the disk. These are

then used as boundary conditions for the Navier-Stokes code.
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4.3.2 Combined Momentum Conservation - Blade Element

Analysis

Glauert [39], McCormick [40], and erouty [41] provide good discussions on momen-

tum conservation and blade element analysis applied to propellers and/or rotors.

The theory, as it is applied here, is outlined below.

The analysis assumes that (i) the slipstream produced by the rotor does not

contract. This is a valid assumption for lightly or moderately loaded rotors, which

is assumed to be the case here. (ii) There is no radial interference, i.e. the flow is

two-dimensional at every spanwise station of the rotor. This assumption is valid

except for a very small region near the blade tip. Small empirical corrections can

be made for this effect, if desired. (iii) The torque and axial loads produced by

the blade elements of the finite number of blades at distance r from the rotation

axis, are averaged over the entire annulus. (iv) The rotation axis is aligned with the

freestream uo_ flow. We assume here, for convenience, that the propeller/rotor axis

is horizontal. (v) The flow is incompressible.

Expression for the Thrust

Applying momentum conservation to an annulus of a cylindrical control volume at

radius r, having width dr, and which extends to infinity upstream and downstream

of the rotor,

dT = p(2rcrdr)(u_ + Wa) (2Wa) (4.2)

mas: flow velocity change

where dT is the average elemental thrust force in the axial direction on an annulus

of area 2r, r dr, uo_ is the freestream velocity, wa is the induced axial velocity in the

rotor disk, and 2Wa iS the induced axial velocity far downstream. Eq. 4.2 equates

the net axial force with the rate of change of momentum (the mass flow multiplied

by the net change in axial velocity).

That the induced axial velocity far downstream is twice that at the rotor plane
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Figure 4.1: Relative velocity and force diagram at a rotor blade element.

can be shown in two ways. (i) Simple actuator disk theory using the principles of

mass continuity and momentum conservation, and applying the Bernoulli equation

twice - once upstream of the rotor disk, and once downstream of the rotor disk. (ii)

Model the circulation on the rotor blade and the vorticity shed into the wake by

horseshoe vorticies placed at each blade element.

The elemental thrust force can also be expressed in terms of the 2-D lift and

drag of the airfoil at a blade element. Referring to the relative velocity and the force

diagram of Figure 4.1, it can be seen that

dT= B(dLcos(¢+ ai) - dD sin (4 + ai) ) (4.3)

where the total element thrust dT is equal to the sum of the contributions of all

blades, B is the total number of blades, a_ is the induced angle of incidence, and ¢

is defined in Figure 4.1.

From the definition of the aerodynamic force coefficients,

1 2 Cl c dr
dL = "_ pUef ]
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1 2 Cdcdr (4.4)
dD= -_ pu_f]

where C1 and Cd are the two-dimensional airfoil llft and drag coefficients, respectively,

c is the local blade chord, and u<ff is the effective velocity that the blade element

sees.

Substituting Eqs. 4.4 into Eq. 4.3 ,

1 2 Bcdr(C_cos(¢+ai)-Cdsin(¢+ai)) (4.5)
dT= _ p Uef f

Equating Eqs. 4.2 and 4.5, and observing from Figure 4.1 that

(llc _ .31_ Wa)2 -_ Ueff2 sin 2 (¢ + ai)

we get:

Bc (C, cos (¢ + ai) - C4 sin (¢ + ai))

u,¢ + w_ 8_rr sin 2 (¢ + a,)
(4.6)

Note that the aerodynamic coefficients can be expressed as a function of angle of

incidence, a, i.e.

where, from Figure 4.1,

a=_+0-(¢+ai) (4.7)

where _ is the blade pitch angle setting, and 0 is the local blade twist angle relative

to the twist at the 75% radial station.

Empirically-derived section lift and drag characteristics as a function of angle

of incidence can therefore be used in this analysis, thereby improving the predicted

results for the rotor, and at the same time reducing the computational effort that

would otherwise be required to generate this data using a Navier-Stokes solver, for

example.
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Note that for hover, u¢¢ = 0, and the left hand side of Eq. 4.6 becomes unity.

The only unknown in this equation, then, is ai. The angle ¢ is zero when u_ = 0

(see Figure 4.1).

Expression for the Torque

The swirl velocity, wt, is zero ahead (upstream) of the rotor, wt at the rotor, and a

constant 2wt from immediately downstream of the rotor face to infinity downstream,

in the inviscid analysis employed here.

The conservation of angular momentum equates the net torque produced by an

annular element of the rotor on the fluid, with the rate of change of angular momen-

tum (the mass flow multiplied by the net circumferential change in velocity multiplied

by the moment arm r).

dQ (2w,) (4.S)
mass .flow velocity change

Similar to the thrust analysis, the elemental torque contribution averaged on an

annulus of width dr located a distance r from the axis of rotation can be written in

terms of the elemental lift and drag loads. Referring to Figure 4.1,

dQ = B (dL sin (¢ + _,) + dD cos (¢ + a,) ) r (4.9)

Substituting Eqs. 4.4 into Eq. 4.9 and equating to Eq. 4.8 yields, upon re-arrangement,

wt = Bc(Clsin(¢+_i)+Cdcos(¢+ai)) (4.10)
u_, + Wa STrr sin 2 (¢ + ai)

In hover, when u_ = 0, the left hand side of Eq. 4.10 reduces to Wt/Wa. Since ai is

determined from Eq. 4.6, then Eq. 4.10 can be solved for Wt/Wa.

Calculation of Required Quantities

Referring to Figure 4.1, it can be seen that

w : _/(u_ + Wa) 2 + (wr -- Wt) 2 sin ai = _/w_ + w_

= 38



wherew is the angular frequency of rotation of the rotor. Re-arranging and setting

u_ = 0 for hover, we get for the local induced axial velocity

_or

w, = (4.11)

V<°+°'+c='/'°)'+ (w,/wo)
sin _i

Once w_ is calculated using Eq. 4.11 knowing wt/w_ from Eq. 4.10, then the swirl

velocity wt is immediately known as well.

Applying the Bernoulli equation upstream of the rotor and again downstream of

the rotor, we find that the pressure rise across the rotor, Ap, in hover, is

Ap = 2pw_

The total thrust and torque on the rotor disk is calculated by integrating the radial

thrust gradient and radial torque gradient, respectively. Eqs. 4.2 and 4.8 can be

easily written in terms of dT/dr and dQ/dr, respectively. Then

/?TTOT = (dT/dr)dr

joQTOT = (dQ/dr)dr

The total thrust coefficient and total torque coefficient are calculated using the stan-

dard definitions:

TTOT
CT =

pA +
QTOT

CQ =
pA (uS + (wR) _) R

where A is the rotor disk area and R is the blade radius.

Solution Procedure

For a given rotor having specified blade geometry and for a given thrust coefficient,

CT, an iterative solution procedure outlined below gives the radial distributions of

axial and swirl velocities and pressure rise, at a converged value of blade pitch angle

setting, _.
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° Input rotor RPM, and rotor geometry including:

• number of blades

• rotor radius

• blade planform shape, i.e. local chord, c, distribution

• blade twist relative to the 75% radial location

2. Input 2-D airfoil characteristics: Cl, Cd vs. a.

3. Input desired total thrust coefficient, CT.

4. Make an initial guess for the blade pitch angle,/3.

5. Divide the rotor disk into a number of annular rings. At each, calculate the

induced angle of incidence, ai, using Eq. 4.6. Calculate the effective angle of

incidence, _, from Eq. 4.7. Use the inputted 2-D airfoil data to determine the

Cl and Cd corresponding to a.

6. Calculate wa, wt, Ap, dT/dr, and dQ/dr at each annulus.

7. Integrate along the radius to obtain CT and CQ.

8. If CT is within a certain specified tolerance from the desired, inputted value of

CT, then the solution is converged; otherwise, go to (4) and repeat steps (4)

through (8).

Figure 4.2 is an example of the output generated from this analysis, for a 3-

bladed, 7-ft diameter rotor similar to the 0.16 scale model tested at the NASA Ames

Outdoor Aerodynamic Research Facility. For this example, NACA 0012 airfoil data

was substituted for the aerodynamic characteristics of the actual rotor blade sections.
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Figure 4.2: Sample output from the momentum theory/blade element analysis for a

7-ft diameter, 3-bladed rotor at 2090 RPM and with CT = 0.0065.

4.3.3 Grid Used for Modeling the Rotor

To limit the size of the computational domain, it was originally intended to extend

the inflow boundary only to the horizontal plane containing the rotor. Solution

convergence problems were encountered, however, due to the close proximity of the

boundary to the wing whose presence induces large flow gradients near the inflow

plane. It was decided, therefore, to increase the size of the physical domain so

as to include the effect of the large-scale entrainment of flow back into the top of

the rotor. An inner zone surrounding the wing and extending to the rotor plane

was developed. An outer zone was also created which encircled the inner grid and

extended approximately 20 rotor diameters from the wing in all directions. The

outer grid line of the inner zone matches exactly the inner grid line of the outer

zone. See, for example, Figures 5.20 and ,5.21. Consecutive, independent solutions

are performed on the inner and outer zones until adequate convergence is achieved.

Everywhere along this common boundary between the two zones except for points
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located in the region defined by the rotor disk, simple averaging of the flow properties

is performed to couple the two solutions. For a given spanwise grid station, k, and

a given chordwise index, j, the most recently computed values of the flow properties

at the interior grid points immediately to either side of the common boundary are

averaged. This same procedure is applied both for the outer boundary points of the

inner grid and the inner boundary points of the outer grid. This averaging assures a

continuity of mass across the common boundary.

The outer boundary grid points of the inner zone that lie within the rotor disk are

viewed as an inflow boundary. From a method of characteristics analysis, as discussed

in Section 4.2, a subsonic inflow boundary requires specification of four quantities and

extrapolation of the fifth. The interior values of pu, pv, and pw are averaged across

the disk as described above, and these averages used as inflow boundary conditions

for the inner zone. The pressure, p, is obtained from the pressure at the first interior

point of the outer zone (just above the rotor face). To this is added the pressure

rise, Ap, obtained in the momentum conservation theory/blade element analysis of

Section 4.3.2 . The density, p, is extrapolated from the interior of the inner zone

using zero-order extrapolation. To include the effects of swirl, the tangential velocity,

w_, obtained from the analysis of Section 4.3.2, can be decomposed into a u and v

contribution in the horizontal plane and used to replace the values above obtained

by averaging.

For the inner boundary grid points of the outer zone that lie within the rotor

disk, search for the best combination of boundary conditions is still being pursued.

Currently, averaging across the rotor is used to specify the boundary conditions for

all the flow variables but the pressure. For the pressure, the prescribed pressure rise,

Ap, is subtracted from the most recently-computed value of p at the nearest interior

point in the inner zone. Specifying Ap across a zonal boundary was first suggested

to the authors by Tavella [42].

,-.'i 42



T
-,w////; ,//////////.. y/,,,'/////////. :,,1
",j = JMAX - 1,'Ix 3 lf,Y/////,,'; 3"= 2:/'///

j=JMAX

4.4

Figure 4.3: One-point overlap grid for wall jet boundary conditions.

Wall Jet

In previous CFD studies (for example, reference [19]), multiple zones were used to

model a tangential, circulation control jet on the surface of an airfoil. Preliminary

calculations during the course of the current research, however, have demonstrated

that a single-zone grid, an approach suggested by Tavella [42], is suitable for this

computation.

The grid must have sufficient grid density in the jet region to resolve the jet flow

and associated entrainment of the outer flow. For easier implementation of boundary

conditions for the wall jet, the 3-point grid overlap in the chordwise j index normally

used, is reduced to a 1-point overlap (see Figure 4.3).

The wall jet boundary conditions are specified on the j = JMAX line. The grid

is defined such that 10 - 20 grid points lie within the ._. 0.1% chord jet slot height.

Beyond this jet region, the values of the flow properties at j = 1 and j = JMAX are

obtained by taking the average of the values at the corresponding interior points at

j = 2 and j = JMAX-1. Within the slot region, the j = JMAX grid points are viewed

as an inflow boundary. A total pressure corresponding to the plenum pressure used

in the model tests, a total temperature assumed to be freestream ambient, and jet
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exit angle are all specified. The jet is assumed to be tangent to the airfoil surface at

the jet exit. The magnitude of the jet exit velocity is calculated assuming isentropic

expansion of the compressed air from the plenum to local static pressure at the jet

exit . The j = 1 grid points that overlap the j = JMAX points in the jet are viewed

as outflow boundary points. Pressure is specified and set equal to that at the jet

exit. Zero-order extrapolation from the j = JMAX-1 values is used for all the other

flow properties.

4.5 Initial Conditions

The steady-state (or pseudo steady-state in this case where some residual unsteadi-

ness due to vortex shedding off the wing leading and trailing edge may exist) solution

of a hyperbolic system of partial differential equations is independent of the initial

conditions. In our case, the interior points can be seeded initially with a freestream

flow close in magnitude to the expected rotor slipstream velocity, or the interior could

be set initially to have zero flow everywhere. Both of the above initial conditions

yield the same final results, with similar rates of convergence.

sj
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Chapter 5

Discussion of Results

5.1 Preliminary Comments

The computation of tilt rotor flowfields using the Navier-Stokes equations is a chal-

lenging task. A problem such as this is best divided into smaller, more manageable

parts, and a step-by-step approach used to reach the final objective. That is why

this preliminary CFD study of tilt rotor flowfields has focused on the calculation of

subsets of this complicated 3-D flow.

In the following discussion, freestream results both in 2-D and in 3-D are presented

for an airfoil and a wing, respectively, at an angle of incidence of -90 degrees. The

rotor alone was modeled as an actuator "line" in 2-D and as, an actuator disk in 3-D

with and without swirl. These results are followed by two-dimensional wing/rotor

interaction computations. Preliminary results for 3-D wing/rotor interaction are also

discussed. Finally, the results of a 2-D tangential blowing calculation are presented.

These computations serve as building blocks necessary to ensure the successful com-

pletion of the final objective - to compute accurately the three-dimensional tilt rotor

flowfield with a wing having tangential blowing for leading edge separation control.

All plots shown in this chapter were generated using PLOT3D, an interactive

graphics package developed at NASA Ames Research Center [43,44].
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Freestream Calculations

Results in Two Dimensions

(No Rotor)

Figure 5.1 shows two views of a typical grid used to calculate the freestream flow

around the V-22 airfoil section at an angle of incidence of -90 degrees. In order to

resolve the fine details of the flow in the region of a blunt trailing edge, very high

grid resolution is required. The focus of this work was not on the trailing edge flow

alone. For this reason, as is often done in CFD airfoil work, the original trailing

edge is extended to a point and the modified airfoil is re-scaled to the original chord

length. The V-22 airfoil trailing edge thickness is considerably less than 0.5% chord

so the modification to the airfoil section is slight. A 2-D elliptic grid solver is used to

obtain a smooth distribution of grid points. Exponential clustering produces a fine

mesh near the airfoil surface. As discussed in Section 4.2, five identical, parallel 2-D

grid planes are required for the two-dimensional calculations so as to accommodate

the 5-point, fourth-order differencing stencil used on the right hand side of Eq. 2.23.

Symmetry boundary conditions are imposed on both ends of the grid, to simulate

an infinitely-high aspect ratio wing.

Figures 5.2 to 5.5 are all results of a "pseudo" 2-D calculation. A freestream flow

of M = 0.2 at a = -90 ° is imposed on the upper inflow boundary. A Reynolds

number of 0.5 x 106 is selected as being representative of the small scale (_ 0.16

scale) model flow in tests that were - and that will be - undertaken at NASA Ames'

Outdoor Aerodynamic Research Facility (OARF) - refer to Section 1.2.r. A time-

accurate computation is performed, i.e. the time step is sufficiently small to resolve

the unsteadiness in the flow.

Figure 5.2 shows the velocity vectors around the airfoil at two different points

in time. In the upper picture, a vortex has just been shed off the airfoil leading

edge. In the lower picture, a vortex has just been shed off the trailing edge. This
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(a) Cutaway,farfield view of the grid.

\

/

(b) Close-up view of the airfoil gridding.

Figure 5.1" Views of a 2-D O-grid around the V-22 airfoil.
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Figure 5.2: Velocity vector plots about the V-22 airfoil at two different points in
time, in a Moo = 0.2, c_ = -90 ° flow.
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asymmetric vortex shedding is typical of the vortex streets created behind bluff

bodies at these Reynolds numbers. The frequency of this shedding was computed to

be about 16 cycles per second. For comparison purposes, a 2-D cylinder, at the same

Reynolds number, whose diameter is equal to the airfoil chord, typically produces

vortex shedding at the rate of about 30 cycles per second. This value was obtained

from an empirical relation in reference [45]:

19.7'_
fd = 0.198 1

where f is the frequency of vortex shedding and d is the cylinder diameter which,

for the above calculation, was set to 0.447 meter which is the 0.16 scale model wing

chord. No experimental data exists for the V-22 airfoil to confirm the accuracy of

this unsteady, computational result. Examining the velocity profile at the airfoil

surface, it can be observed that the boundary layer has been resolved. Figure 5.3

is a close-up view of the flow around the wing leading edge. Separation is seen to

occur at a location on the airfoil upper surface slightly aft of the leading edge. This,

of course, changes somewhat with time due to the unsteady nature of this 2-D flow.

Note that in this and all subsequent calculations discussed in this report, laminar

flow was assumed - i.e. no model has as yet been implemented to model turbulence

effects.

Figure 5.4 is a Mach contour plot of the flowfield at one point in time. Note that

the flow stagnates in the mid-chord region on the upper surface, and beyond the

leading and trailing edges, the flow accelerates to about M = 0.26.

A computation was performed where large time steps were taken to accelerate

convergence to a "pseudo" steady-state solution. The resulting pressure distribution

is shown in Figure 5.5. The general shape of the Cp distribution compares favorably

with the download distribution of Figure 1.3. The loop in the distributions near the

leading edge indicates a deceleration of the flow even before it gets to the leading edge.

This was observed previously in Figure 5.3. The base pressure is fairly uniform along
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Figure 5.3: Close-up view of the velocity vectors around the V-22 airfoil leading edge,

in a Moo = 0.2, a = -90 ° flow.

Figure 5.4: Mach number contours about the V-22 airfoil, in a Moo

flOW.
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Figure 5.5: Surface pressure coefficient distribution on the V-22 airfoil, in a

M_ = 0.2, a = -90 ° flow.

the airfoil lower surface; this is also seen experimentally. The computed base pressure

is higher than wind tunnel measurements. This is most likely due to the inaccuracy

of the steady-state calculation for time dependent problems. The computed flowfield

below the airfoil showed two symmetric vortices of equal strength but opposite sense

of rotation whose centers were located over a chord length downstream of the airfoil.

Certainly, in the future, it would be better to run the code in a time accurate fashion

and take a time average of the desired flow characteristics. A pressure integration

around the airfoil yields a computed 2-D drag coefficient Cd of 1.2. This compares

to Ca _ 1.6 obtained from wind tunnel tests of the XV-15 airfoil [6].

5.2.2 Results in Three Dimensions

As discussed in Section 3.1, a grid for three-dimensional calculations is generated by

placing a series of 2-D grids at various spanwise stations along the wing and beyond

the wing tip. Exponential stretching increases the grid density near the tip where the

51



three-dimensionaleffectsaremost significant. The wing is basedon the dimensions

of the 0.16scalemodel usedin the NASA AmesOARF tests. It hasan aspectratio

of 6.1 and is of constant chordwith no twist or sweep.By comparison,the V-22 wing

hasan aspectratio of 5.5 and 6° of forward sweep. The outer boundary of the grid

extends 20 chord lengths in all directions. As mentioned previously, due to symmetry

of the flow about the centerline, only one half of the wing needs to be modeled. For

the results shown in this section, the grid has 47 points defining the wing surface.

Each grid line extending from the body to the outer boundary is defined using 33

points, with exponential clustering near the surface. There are 35 parallel 2-D grid

planes defining the spanwise grid distribution. This yields just over 54,000 points

in total. A converged solution takes about 700 time steps and about 30 minutes of

CPU time on the Cray-XMP supercomputer. Figure 5.6 shows two views of the grid

employed. Figure 5.6(a) is a cutaway perspective view of the grid, and Figure 5.6(b)

is a horizontal cut through the wing chord (z - y) plane and including the upper

surface gridding. The wing tip is defined arbitrarily to be the last 5% of the wing

semi-span, and it has a chord variation that is elliptic, with each tip airfoil section

having the same thickness-to-chord ratio, tic. It can be seen from Figure 5.6(b) that

the tip region is not well-defined, and the mesh is highly skewed here. Improvements

in gridding the tip region will be pursued in future work.

Figures 5.7 and 5.8 are both views of the flow features in a vertical plane running

spanwise through the wing mid-chord. Figure 5.7 is a plot of velocity vectors for a

freestream flow of M = 0.2 at a = -90 °, the same as for the 2-D case. Figure 5.8

shows the corresponding Mach number contours. Both of these plots show that

much of the span of the wing in the mid-chord region sees stagnated flow. The flow

becomes increasingly more spanwise as the tip is approached, as expected. The flow

accelerates around the tip, and viscous effects give rise to a very pronounced vortex

beneath the tip.
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(b) An x - y cut through the wing chord plane and including the wing upper

surface grid distribution.
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Figure 5.6: Views of a 3-D grid around the finite-span wing.
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Figure 5.7: Velocity vectors in a vertical plane running spanwise through the wing

mid-chord, in a Moo = 0.2, a = -90 ° flow.
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Figure 5.8: Mach number contours in a vertical plane running spanwise through the

wing mid-chord, in a/1,Ioo = 0.2, a = -90 ° flow.
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Figure 5.9 is a view of the velocity vectors above the wing surface and in the x -y

plane beyond the wi'ng. The stagnation region runs from the centerline to about half
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Figure 5.9: Velocity vectors just above the wing and beyond the wing in the x - y

plane, in a Moo = 0.2, a = -90 ° flow.

way to the wing tip. In this region, the flow is primarily two-dimensional in character.

From the mid-span region outboard to the tip, the flow becomes increasingly spanwise

before rounding the tip where it is rapidly re-directed by the freestream.

Figure 5.10 shows five separate chordwise surface pressure coefficient distribu-

tions, each at a different spanwise location on the wing. Three-dimensionality is

again observed in the form of changing pressure distributions particularly in the tip

region. For all spanwise stations, the wing leading edge induces a greater flow ac-

celeration than the trailing edge - as evidenced in lower peak C;'s at the leading

edge.

Figure 5.11 shows seven separate upper surface pressure coefficient distributions,

each for a different percent chord location• Here, tip effects are clearly shown. The
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Figure 5.10: Typical chordwise surface pressure coefficient distributions at various

spanwise stations along the wing, in a M_o = 0.2, a = -90 ° flow.

pressure coefficient for all but the leading edge Cp distribution drops sharply at the

tip. Kinks in the tip region are due to insufficient grid-point density. Along the

wing leading edge, as the tip is approached from the mid semi-span, the flow is

accelerated not only by the 2-D flow effect around the leading edge, but also by

the increasing, 3-D spanwise flow. That is why the negative pressure coefficient

starts to increase well inboard of the tip. After a certain point, as evidenced by the

peak in the leading edge Cp distribution, the spanwise flow dominates and the flow

acceleration diminishes because less of the flow travels around the leading edge to

the lower surface.

5.3 Rotor Alone in Two and Three Dimensions

Initially the inflow boundary (upper boundary - see, for example, Figure 5.6) for

the wing/rotor computation was to be the plane of the rotor. The rotor was to
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Figure 5.11: Spanwise upper surface pressure coefficient distributions at seven dif-

ferent chordwise locations along the wing, in a M_ = 0.2, a = -90 ° flow.
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be modeled by specifyinga pressureand velocitiescorrespondingto a lifting rotor

(obtained from the momentum theory/blade elementanalysisof Section 4.3). It is

unclear, however,what boundary conditions to imposeat thosegrid points that are

on the inflow boundary but away fi'om the rotor disk. Being an inflow boundary,

pressureand velocity shouldbe specified, for consistency. These,however,are not

known to sufficient accuracy.A previously-developedvortex panel model of the tilt

rotor wasdeemedinadequateto provide this information. Additionally, no velocity

or pressuresurveyshavebeenperformedthat couldbe of assistance.Computational

results that were obtained by extrapolating valuesof the flow properties from the

interior of the solution to the upper boundary werenot satisfactory. Another draw-

backof this initial approachis the fact that becausethe pressuresand velocitieswere

specifiedat the rotor face,the influenceof the wing wascompletely decoupledfrom

the rotor.

For these reasons,it was decided to model the rotor using two zones, and a

multiple zone algorithm. The commonboundary betweenthe two zonesis selected

to coincidewith the location of the rotor. This allowsspecificationof a pressurerise,

Ap , across the disk without having to fix the static pressure itself. The pressure

in the rotor plane, then, can float under the influence of the wing below. The use

of two zones also extends the solution domain much further thereby permitting the

resolution of the fountain flow and the large scale recirculation pattern through the

rotor.

Figures 5.12 and 5.13 show the results of two different two-dimensional calcu-

lations using a Cartesian grid comprised of two zones, one above the other. Each

zone has 47 grid lines in the direction parallel to the rotor axis of rotation and 17

grid lines l_erpendicular to the rotor axis. The common boundary between the zones

is used to define the rotor boundary conditions. Exponential stretching is used to

cluster the grid points in the location of the rotor. The freestream velocity was set to
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Moo = 0.001 so the flow is driven exclusively by the specified pressure rise across the

rotor. Here, the magnitude of the pressure rise, Ap, is 10% of freestream ambient

pressure. The actuator "line" of these 2-D calculations is assumed to be uniformly

loaded, i.e. Ap = constant.

Figure 5.12 shows the instantaneous particle traces (same as streamlines in steady

flow) through the rotor disk. For inviscid flow, the flow accelerates through the
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Figure 5.12: Particle traces released in a flow through a 2-D actuator disk, where

Ap = 0.01poo.

rotor disk reaching a maximum velocity downstream of the disk. Theoretically, this

flow momentum is maintained indefinitely. The slipstream, therefore, contracts to

a minimum width below the rotor, and thereafter remains unchanged. Examining

Figure 5.12, it is seen that the computed slipstream contracts to a minimum width, as

expected, but then begins to expand slowly indicating that there is a corresponding

deceleration of the flow. This behavior is unrelated to the contribution of the viscous

terms in the Navier-Stokes equations because the same results are obtained for the
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Euler equations alone. Admittedly, an actual rotor slipstream diffuseswithin a few

rotor diameters. Sinceit is not the physicsmodeledby the equations that is causing

the diffusion, it must, therefore, be due entirely to numerical dissipation. Numerical

dissipation is caused by the truncation error associated with the spatial differencing

of the partial differential equations. It increases with grid cell size. Mesh refinement,

then, i.e. a finer mesh, would reduce the computed diffusion of the rotor slipstream.

Figure 5.13 shows the pressure above and below the rotor. As anticipated from

-I0.0 -7.S -'S.O -2.5 0.0 2.$ 5.0 7.5 10.0

X

Pressure contours for a flow through a 2-D actuator disk, whereFigure 5.13:

Ap = 0.01p_.

simple momentum theory, the pressure far above the rotor is at freestream ambient

(non-dimensionalized p_ = 1/')' = 1/1.4 = 0.7143). The static pressure drops to a

minimum value just above the rotor due to the accelerating flow being drawn into

the rotor disk. The rotor produces an increase in total pressure, which in this figure,

is seen as a step in the static pressure immediately downstream of the rotor. The

pressure then decays back towards its original freestream value as the flow accelerates
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to a near constant value downstreamof the rotor. As expected, the flow gradients

increaseas the rotor disk is approached.

Three-dimensional results areobtained for a rotor by creating a meshin the form

of a rectangular box. A horizontal plane through the middle of this grid forms the

common boundary between the upper and lower zones. Each zone is comprised of

35 stacked,parallel 2-D grid planes. Eachgrid plane is identical to that usedfor the

2-D calculations discussedabove.

Figures 5.14 - 5.19 are results from a computation where Ap across the rotor

is set to a uniform 0.05poo, the freestream is essentially zero (M_o = 0.001), and

the rotor diameter is 6 units. The plots focus on a small portion of the entire

domain which extends to 100 units in all directions. Figure 5.14 shows the computed

velocity field in the near vicinity of the lifting rotor on a vertical plane through

the rotor axis. Note that far above the rotor, the flow velocity is near zero. The
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Figure 5.14: Velocity vectors in a vertical plane through the 3-D actuator disk, where

Ap = 0.05p_.
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flow acceleratescontinuously down through the rotor until it reachesa maximum

value within a rotor radius dow.nstreamof the rotor face. Simple, incompressible

momentum considerationsin 1-D indicate that the maximum axial velocity, induced

by an actuator disk in zero fl'eestream flow, is twice that of the velocity in the

rotor plane. Qualitatively, this can be seenin the figure by comparing the velocity

vector lengths in the rotor plane with those far downstream. Figure 5.15showsthe

accompanyingparticle traces through the rotor disk. Figure 5.16 is a plot of the
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Figure 5.15: Particle traces in a vertical plane through the 3-D actuator disk, where

Ap = 0.05p_.

Mach number contours in a vertical plane through the center of the actuator disk.

Note that the flow accelerates smoothly through the disk and the flow gradients

increase in the vicinity of the rotor, as expected. With the given pressure rise of 5%

of freestream ambient pressure, a simple analysis assuming incompressible, 1-D flow

and applying the Bernoulli equation above and below the rotor yields a maximum

induced Mach number of 0.267. This quick check provides confidence in the CFD
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Figure 5.16: Mach number contours in a vertical plane through the 3-D actuator

disk, where Ap = 0.05poo.

solution. As observed in the 2-D case, here also the rotor wake diffuses due to

numerical dissipation.

Figure 5.17 shows the computed Mach contours in the plane of the rotor. The

squared contours in the outer regions are due to a combination of insufficient grid

point density and the contour plotting algorithm itself. Certainly, to study a rotor

alone, a cylindrical mesh is more appropriate. A rectangular type of mesh, however,

fits more easily in with the rest of the tilt rotor configuration.

Figures 5.18 and 5.19 show the effect of swirl on the flowfield. The tangential

velocity (swirl) induced by the rotor is estimated from either experimental data or

the momentum theory/blade element analysis discussed in Section 4.3 . For this

test case, an arbitrary swirl Mach number of M = 0.05 is imposed uniformly on the

upper boundary of the lower zone at the rotor location. The resulting flow pattern

immediately downstream of the rotor is shown in Figure 5.18. It can be seen that the
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Figure 5.17: Mach number contours in the rotor plane, where Ap = 0.05po_.
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Figure 5.18i Velocity vectors in a horizontal plane immediately downstream of the

rotor plane showing the effect of swirl, where Ap = 0.05p_o and Ms,,,irt = 0.05.
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flow beyond the rotor is influencedby the specifiedrotational motion• It is obvious

from this plot that a greater number of grid points is required to better represent

the physical extent of the rotor disk. Figure 5.19 is a projection of the particle traces

onto a vertical plane running through the center of the rotor and wake. Clearly, the

effect of the swirl imposed at the rotor face is communicated to the rotor wake.

?

l/
• S.O 7.5 I0.0

Figure 5.19: Particle traces projected on a vertical plane through the actuator disk

showing the effect of swirl, where Ap = 0.05p_o and Ms_,irt = 0.05.

Wing/Rotor Interaction

Results in Two Dimensions

With the experience gained from studying the wing and airfoil in a freestream, and

the rotor alone modeled using two zones, the computation of 2-D airfoil/rotor inter-

action is pursued. A more complicated grid is required. An inner zone is generated

which extends from the airfoil surface to a flat boundary sufficiently wide to ac-

commodate the complete rotor. Encircling this inner zone is another O-grid whose
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inner boundary matchesidentically the outer boundary of the inner zone.The outer

boundary of the outer grid extends about 20 rotor diameters in all directions - see

Figures 5.20 and 5.21. The common boundary between the two zones is high-

Figure 5.20: Farfield
wing/rotor interaction.

-so.o -_s.o o'.o 2s.o so.o 7_.o ioo.o

x/c

view of the 2-D, two-zone grid used for computations of

lighted• As in the freestream computations, 47 points are used to define the airfoil

surface• In the inner zone, 22 points define each grid line normal to the surface. In

the outer zone, 12 points define each grid line. Again, for "pseudo 2-D" calculations,

five identical, parallel grid planes are required for the computation. The current grid

is produced algebraically, resulting in some undesirable kinks in the grid interior.

Smoother grids, using the elliptic grid solver, await future grid refinement.

Figures 5.22 and 5.23 show farfield and nearfield views, respectively, of the com-

puted flowfield. The rotor diameter is 4.78 airfoil chords (determined from 0.16 scale

model dimensions), and the uniform pressure rise across the rotor is Ap = 0.05p_.

The rotor diameter and the rotor height above the airfoil, when non-dimensionatized
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Figure 5.21: Nearfield view of the 2-D, two-zone grid used for computations of

wing/rotor interaction.

by airfoil chord, all match the small scale model geometry of the past and projected

future tests at NASA Ames Outdoor Aerodynamic Research Facility (OARF). For

this hover calculation, Moo was set to 0.001 . The flow is driven purely by the

0.05p_ that is imposed across the zonal boundary at all points that lie within the

rotor disk. Note that the near-stationary flow far above the rotor is pulled down into

the rotor disk. The flow impinges on the airfoil where it stagnates at the mid-chord,

bifurcates, and accelerates around the leading and trailing edges• An asymmetric

separated flow region is produced beneath the airfoil very similar to that seen in the

freestream calculations (refer to Figure 5.2). Again, as before, the Reynolds number

is 0.5 x 106 and although turbulent flow is expected, only laminar calculations have

been performed.

A moderately-loaded tilt rotor in hover produces an average pressure rise of

around 0.01p_ across the rotor disk. Although good computational results have
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Figure 5.22: Farfield view of the velocity vectors for 2-D wing/rotor interaction,

where Ap = 0.05p_ and the rotor diameter is 4.78.
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Figure 5.23: Nearfield view of the velocity vectors for 2-D wing/rotor interaction,

where Ap = 0.05p_ and the rotor diameter is 4.78.
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been obtained with this magnitude of pressure rise (refer to subsequent discussions),

a higher Ap induces a higher Mach number flow which results in better solution

convergence behavior for the compressible flow code. For program development pur-

poses, then, a somewhat higher Ap is often used.

Figure 5.24 is a plot of the Mach number contours around the rotor and airfoil.

The slight discontinuity in Mach contours through the rotor disk may be due to

o
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Figure 5.24: Mach number contours for

Ap = 0.05poo and the rotor diameter is 4.78.

1.0 2.0 3.0

2-D wing/rotor interaction, where

an insufficiently converged solution, or insufficient grid point density in this region.

Figure 5.25 clearly shows the drop in static pressure as the rotor is approached from

above and the pressure jump across the rotor. The influence of the wing on the

pressure distribution at the rotor is made more obvious by comparing this plot with

Figure 5.13 for a rotor alone (where the pressure is uniform along the width of the

disk)•

Figure 5.26 shows the static pressure distribution on the surface of the airfoil in
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Figure 5.25: Pressure contours for 2-D wing/rotor interaction, where Ap = 0.05poo

and the rotor diameter is 4.78.

the presence of the lifting rotor. Note that for the non-dimensionalization used in the

flow solver, p_o = 1/_, = 0.7143. The shape of the pressure distribution is very similar

to that for an airfoil in -90 ° freestream flow (Figure 5.5). These results are from

steady-state (i.e. large time step) computations of the flow code. A time accurate

calculation, on the other hand, yields a base pressure distribution that changes as a

function of time (depending on the relative positions of the leading and trailing edge

vortices with respect to the lower surface).

5.4.2 Results in Three Dimensions

A 2-zone grid suitable for computation of three-dimensional wing/rotor interaction

is generated by stacking many 2-D grids in parallel. Various views of the 3-D mesh

are shown in Figures 5.27 to 5.30. Figure 5.27 is a farfield view of the grid showing

the outer dimensions. Figure 5.28 shows more details including the wing surface,

and the inner and outer zones at the wing centerline (y = 0). The actual location of
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Figure 5.26: Pressure distribution on the surface of the airfoil for 2-D wing/rotor

interaction, where Ap = 0.05p_ and the rotor diameter is 4.78.
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Figure 5.27: Farfield, cutaway view of the 3-D, two-zone grid used for computations

of wing/rotor interaction.
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Figure 5.28: Nearfield, cutaway view of the 3-D, two-zone grid used for computations

of wing/rotor interaction.

the rotor is superimposed on this view. Figure 5.29 is a horizontal cut in the plane

of the rotor. The physical extent of the rotor disk is outlined here as well. Rotor

boundary conditions are imposed at all points which lie on this plane and are within

the rotor diameter. It is obvious from this figure that for accurate quantitative

results, further grid refinement is required to define the rotor, particularly in the

region outboard of the wing tip. Also, if the fountain effect is to be predicted, grid

density must be increased in the centerline region of the mesh. The results presented

here, therefore, are preliminary and are primarily qualitative in nature. Beyond

the wing tip, those inner grid points which define the airfoil section, coalesce to

essentially a single location as shown in Figure 5.30. This line which extends from

the wing tip to the outer boundary in the spanwise direction is termed the "singular

line". Boundary conditions must be imposed at all the coalesced points located on

the singular line. All points immediately surrounding the singular line are used to
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Figure 5.29: View in the plane of the rotor of the 3-D, two-zone grid used for com-

putations of wing/rotor interaction•
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Figure 5.30: View of a vertical x - z plane of the grid outboard of the wing tip of

the 3-D, two-zone grid used for computations of wing/rotor interaction.
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determine the average value of each of the flow properties. This is used to specify

the boundary conditions on the singular line. This region, which is of no major

concern in the freestream flow solutions, is seen to cause problems in the wing/rotor

interaction calculations. This will be discussed in greater detail later.

For these calculations, a uniform Ap is again imposed across the rotor, but, for

this case, a more representative value of 0.01poo is used.

Figure 5.31 shows the Mach number contours in a vertical x - z plane at the mid

semi-span location. For this calculation, the Mach contours pass smoothly through

o
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z/c

Figure 5.31: Mach number contours in a vertical plane through the mid semi-span

location for 3-D wing/rotor interaction, where Ap = 0.01p_ and the rotor diameter

is 4.78.

the rotor. Figure 5.32 is the corresponding plot for the static pressure contours.

Figures 5.33 to 5.35 are all views of flow properties in a vertical plane that runs

spanwise through the wing mid-chord. The rotor location is superimposed on these

plots• Intuitively, the flow above the wing seems to have been computed correctly.

The flow stagnates in the mid-chord region at the semi-span location corresponding
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Figure 5.32: Pressure contours in a vertical plane through the mid semi-span location

for 3-D wing/rotor interaction, where Ap = 0.01poo and the rotor diameter is 4.78.

to about y/c = 2.0. From this point the flow is divided into two opposite spanwise

directions - towards the tip and towards the wing root.

Beyond the wing tip, however, the singular line of the grid is affecting the results.

It seems to be acting as a source, producing a discontinuity in velocity along its

length. The reason for this behavior is as yet unknown. Figure 5.36 is a view

of the Mach number contours in a vertical x -z plane beyond the wing tip. A

large gradient in flow velocity is produced in a very localized region. The singular

line boundary conditions are treated identically for the 3-D freestream computations,

and, as previously mentioned, no anomaly was found for that case (see Section 5.2.2).

It is possible that there may be some inconsistency in the application of the boundary

conditions for the rotor, and that this may be affecting the computation on the inner

boundary that contains the singular line. Various attempts at correcting the situation

have so far been unsuccessful. One way to eliminate the problem is to develop a grid
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Figure 5.33: Velocity vectors in a vertical, spanwise plane through the wing

mid-chord for 3-D wing/rotor interaction, where Ap = 0.01p_ and the rotor di-

ameter is 4.78.
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Figure 5.34: Velocity vectors around the wing tip in a vertical, spanwise plane

through the wing mid-chord for 3-D wing/rotor interaction, where Ap = 0.01poo

and the rotor diameter is 4.78.

with no singular line. Although grid generation becomes considerably more complex,

this approach is currently being pursued.

5.5 Wall Jet in Two Dimensions

Some preliminary results for tangential blowing near the leading edge have also been

obtained. The furthest forward slot on the 0.18 scale model soon to be tested at

NASA Ames' OARF is located at 8.1% of the airfoil chord from the leading edge. A

tangential jet at this location is modeled by imposing a jet velocity at the appropriate

grid locations. This jet velocity is derived by assuming isentropic expansion from the

plenum within the airfoil where the total pressure is specified. Assuming a plenum

pressure 8°_ above freestream ambient pressure, the jet velocity at the plenum exit

is about M = 0.3. Figure 5.37 is a plot of the velocity vectors for a 2-D wing/rotor

interaction case with tangential leading edge blowing. A uniform pressure rise of
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Figure 5.35: Mach number contours in a vertical, spanwise plane through the wing

mid-chord for 3-D wing/rotor interaction, where Ap = 0.01poo and the rotor diameter

is 4.78.

Figure 5.36: Mach number contours in a vertical x -z plane beyond the wing tip for

3-D wing/rotor interaction, where Ap = 0.01p_o and the rotor diameter is 4.78.
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Figure 5.37: Velocity vectors for a 2-D wing/rotor interaction casewith tangential
wall blowing, where the plenum pressureis 1.08poo,Ap = 0.05poo across the rotor,

and Moo = 0.001.

0.05poo across the rotor is specified for this hover calculation. It can be seen that the

magnitude of the jet velocity far exceeds any of the rotor-induced flow velocities.

Figure 5.38 is a close-up view of the jet velocity profiles in the downstream of the

jet exit. This case assumes a freestream flow of Moo = 0.2 at -90 °, in addition to a

rotor pressure rise of 0.03poo. The plenum pressure, as before, is 1.08poo. Of interest

in this plot is the evolution of the velocity profiles as the outer flow is entrained by

the jet through momentum transfer due to viscous effects within the boundary layer.
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Figure 5.38: Close-up view of velocity vectors for a 2-D wing/rotor interaction case
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Chapter 6

Conclusions and

Recommendations

6.1 Conclusions

The research undertaken to date has demonstrated the feasibility of analyzing the

tilt rotor flowfield using the thin-layer Navier-Stokes equations and an implicit, finite

difference technique to solve them. Computational fluid dynamics promises to yield

the most accurate, theoretical prediction of download yet. Good results have been

obtained for the V-22 airfoil and wing in a low subsonic Mach number flow (M_ =

0.2) at -90 degrees. The use of multiple grid zones has enabled a more accurate

representation of the full rotor flowfield. A rotor alone in two and three dimensions

has been modeled using two zones. The results are very good and can be further

improved by grid refinement. Wing/rotor interaction has been modeled in such a way

that rotor and wing flows are partially coupled. Although the Ap across the rotor

remains fixed, the pressures in the rotor plane are influenced by the wing which lies

less than a chord length below the rotor. Good results in two dimensions have been

obtained for a lifting rotor in hover. In three dimensions, the flow computed over the

wing looks intuitively correct, but beyond the wing tip, the presence of the singular

line in the grid causes a local discontinuity in the computed flowfield. This problem

is currently being investigated. Finally, preliminary results obtained for tangential
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leadingedgeblowing in two dimensionslook very encouraging.

Recommendations

Near Term

It is first desired to improve the three-dimensional wing/rotor interaction solution by

solving the problem associated with the singular line in the grid outboard of the wing

tip. Perhaps an inconsistency in the boundary conditions exists that could be alle-

viated by improved implementation. Alternatively, a new, albeit more complicated,

grid could be generated which has no singular line.

The elliptic grid solver should be employed with the boundary control suggested

by Sorrenson and Steger. This would smooth the interior grid point distributions

and remove the kinks, thereby improving spatial accuracy of the solution.

Modification of the code to allow for non-uniform, radial distributions of pressure

rise and swirl is a fairly straight-forward task.

A turbulence model should be implemented. A Baldwin-Lomax model would

be adequate for the boundary layer, and Roberts' model would be suitable for the

curved jet region.

Tangential leading edge blowing over the finite wing should also be implemented.

The above modifications should be followed by detailed flow calculations and

comparisons with available experimental results obtained in scale model tilt rotor

tests by the Rotorcraft Aeromechanics Branch of the Full Scale Aerodynamics Divi-

sion of NASA Ames Research Center. Effect of rotor thrust coefficient, swirl velocity,

swirl direction, jet blowing strength and location, on the wing download should be

studied.

It is the intention of the authors to pursue these near term recommendations

during the coming year.

-1
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6.2.2 Far Term

In the far term, there are severalimprovementsto the methodologythat could be

introduced to yield a computation that is moreaccurateand more representativeof

an actual tilt rotor vehicle.

One of first areasof focus would be the rotor. Eventually, at somepoint in the

future when computational resourcesbecomeavailable,it would be desirableto per-

form a time-accurate Navier-Stokescalculation about eachof the rotating bladesof

the rotor and to couple that with the solution of the rest of the tilt rotor fiowfield.

In the interim, however, incorporating the momentum theory/blade element anal-

ysis into the Navier-Stokesflow solver would be a considerableimprovement. This

would allow radial and azimuthal variationsof flow propertieson the rotor disk that

would also be influencedby the wing. Ap, for example, would not be fixed prior to

the Navier-Stokes calculation but would result from it. The improved rotor model

could be incorporated into the boundary conditions of the flow solver at a common

boundary between two zones. Alternatively, by adding momentum source terms to

the momentum equations of the Navier-Stokes equations, the rotor could be defined

at any desired set of grid points in the mesh interior, thus eliminating the need for

a zonal approach to rotor modeling. It is recommended that both of the approaches

be attempted, and the results compared.

Modeling the engine pylon and the fuselage are obvious improvements that would

help yield a more accurate representation of the actual tilt rotor aircraft. This, of

course, would entail complex grid generation. In the same vein, incorporation of a

trailing edge flap in the airfoil grid would be helpful in the analysis of the effect of

download due to flap deflection.

A greater degree of accuracy in the modeling of the separated flow region would be

attained if the full Navier-Stokes equations are solved. Also, an improved turbulence

model developed specifically for bluff body flows would definitely improve the results
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even further. A computation which is second-order accurate in time might also be

attempted to better resolve the unsteadiness of the flow.

Implementation of the above recommendations is a challenging task, but one that

would be invaluable in the pursuit of the complete understanding of the complicated

tilt rotor flowfield.
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