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NOTICE

The applications study conducted in this SBIR Phase 1 program consid-
ered only one SiC/A1 material fabricated by Dural Aluminum Composites Corpora-
tion (DACC). Any materials deficiencies uncovered in this investigation are
assumed to be associated with the relative state of materials development.
The use of DACC's SiC/Al material in this investigation does not constitute an
endorsement by PDA Engineering for other applications.
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Modeled by J. Bentley, PDA; Courtesy of John Deere

Figure 1. PATRAN Solid Representation of a Rotor
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1.0 INTRODUCTION, WORK STATEMENT, SUMMARY

1.1 Introduction

Important developments have been occurring in metal matrix
composites (MMC) technology which could be of major significance to the
development of advanced rotary combustion engines. One of the most promising
of these developments is silicon carbide reinforced-aluminum (SiC/A1) where
whiskers, flakes, or particulates of silicon carbide are wused as the
reinforcing constituent for the aluminum alloy matrix of interest.

At the time of the SBIR Phase 1 proposal preparation [1], specific
stiffness increases up to 70 percent [2] and specific strength increases up
to 30 percent [3], relative to the properties of the aluminum alloy employed
as the matrix material, had been reported. A major effect of the SiC
reinforcement, where strength increases are obtained, is the retention of
this strength increase and the stiffness increase to higher temperatures.
These effects have the potential of increasing the operating temperature
capability of aluminum on the order of one hundred degrees, Fahrenheit [3].
In addition to these potential high temperature strength and stiffness
improvements, other reported property characteristics of SiC/Al that appear
to have merit with respect to rotary engine applications include increased
wear resistance [4] and lower thermal expansion behavior [2].

While improved mechanical and thermal properties of this
discontinuous fiber-reinforced aluminum are the major motivator behind this
applications evaluation study, other attributes of this class of MMCs
represent potential improvements relative to practical engineering usage.
The first of these is manufacturability. While discontinuous MMC's can
achieve only a percentage of the unidirectional properties of continuous
filament-reinforced composites, the random orientation of the SiC particles
dispersed in the aluminum matrix results in a material which can have
essentially isotropic properties. This characteristic should significantly
aid in design, manufacturing and attachment considerations. A second



attribute is the variety of fabrication procedures employed to make these
discontinuous SiC/Al materials. Casting, forging and extrusion processes are
available for these materials. This allows for near-shape component
fabrication, with associated reductions in final part machining requirements.
Finally, this MMC has the potential of low cost, resulting from the use of
relatively inexpensive constituents, aided by the above fabrication benefits,
which also contribute to the low cost.

NASA has conducted an on-going program to study advanced rotary
engine designs. In a study published in 1982, “advanced" and "highly
advanced” stratified charge rotary combustion engine designs were evaluated
[5]. The resultant engine-airframe integration study predicted substantial
improvements in performance, weight, noise and cost factors, including a 30
to 35 percent lower fuel usage, for these advanced rotary engines. These
improvements were predicated on the necessary technological advances,
identified in the study, being achieved and implemented. The 1982 study
identified a number of technological advances which would be of major
importance in achieving the advanced rotary engine objectives. Among these
were a higher, hot strength aluminum alloy for housing applications, a
lightweight rotor, and improved apex seal/trochoid housing coating materials.

In state-of-the-art rotary engines, these components are fabricated
from conventional materials. The trochoid housing is usually fabricated from
A201, an aluminum casting alloy with good high temperature properties. The
end housing can be fabricated from A242, another aluminum casting alloy.
Stainless steel and modular iron are commonly employed as rotor materials.
Aluminum has also been investigated for rotor applications but low stiffness,
high wear and high thermal expansion constituted major limitations [21]. As
Figure 2 illustrates, rotary engine housings also employ a high wear
resistant coating to counter the actions of the rotor apex seal. Chrominum
and molybdenum are representative coating materials. Because of the thermal
expansion mismatch that exists between these coatings and aluminum alloys, a
stainless steel insert between the coating and the aluminum is employed.
While this approach provides a solution to the sealing requirements of rotary
engines, it obviously introduces weight and fabrication complexity penalties.
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Steel Sheet

(Enlarged)
86-0711

Figure 2. Cross-Sectional Representative of Rotary Engine Housing
(Reference 19)

The characteristics of SiC/Al, previously outlined, appear
compatible with the technological advances needed for many components of
“advanced" statified charge rotary combustion engines. Strength improvements
at higher temperatures for SiC/Al, if applied to housing components, could
lead to higher engine operating temperatures and, hence, increases 1in
performance efficiency. Additionally, a higher specific stiffness at
temperature could lead to thinner, lighter weight housing designs; the lower
thermal expansion behavior might mitigate the need for the stainless steel
insert; and increased wear resistance might reduce the coating requirements.
The property limitations that defeated the use of aluminum as a rotor
material may be overcome by the higher stiffness, increased wear resistance,
and lower thermal expansion behavior of SiC/Al. Substantial weight savings
would result. Finally, the wear characteristics of SiC/Al could conceivably
contribute to improved apex seal/trochoid housing coating designs and

materials.

Based on this preliminary assessment, it would appear that SiC/Al
has several characteristics that merit _its investigation for application to
rotary engine components.
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Several vendors have been involved in the development of SiC/Al
composites [6-10]. The majority of the fabrication processes employed have
utilized powder metallurgy technology. A casting approach utilizing
conventional aluminum foundry technology and silicon carbide grit appears to
have attractive potential [9,10]*. The casting approach minimizes both the
formation of interface oxides and retention of dissolved gases. It can
produce an extremely uniform dispersion of particulates throughout the
aluminum matrix (11). The means by which wetting is achieved between the SiC
particles and the aluminum matrix is proprietary technology. The casting
approach has major fabricational cost advantages, contributing to
expectations that it should result in a low cost MMC. Additionally, as
opposed to the powder metallurgy approach, the casting process offers
additional cost advantages in the fabrication and machining of complex
shapes. As Figure 3 illustrates, the fabrication techniques for this
composite material are already in a fairly advanced state of development.

In summary, SiC/A1 and especially the cast SiC/Al1 process, appears
to have the potential of making major contributions to achieving the
objectives of the advanced rotary engine program. This results from its
promising material properties, the relative ease of fabricating complex
shapes, and its cost potential. The critical need appears to be a materials
testing program and preliminary design analysis study focused specifically on
the rotary engine application. This preliminary evaluation study is the
overall goal of this Phase I program. If the Phase I program is successful
in identifying a rotary engine component which would produce significant
overall performance benefits if fabricated from cast SiC/A1, the Phase II
program would pursue engineering development of this component.

* Dr. David M. Schuster developed this process while at Scientific
Applications International Corporation, La Jolla, California.
Subsequently, the American subsidiary of Alcan, Ltd., acquired the rights
to the process and has established the Dural Aluminum Composites
Corporation (DACC) to further the development of this material.
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ROLLING

AUTOMOBILE ENGINE

CONNECTING ROD
FORGED FROM EXTRUDED BAR
16 v/o 8iC IN 6081 Al

CASTING
TEN THREADED TENSILE BARS
CAST IN ONE MOLD
20% SIC-A357 Al

EXTRUSION
0.042 WICH THICK
EXTAUDED TUBING
20% $iC-8081 Al

86-0712

Figure 3. Representative Casting Teéhniques for Cast SiC/Al
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1.2 Phase | Statement of Work and Conducted Activities

As presented in the Phase I proposal[l], "the general objective of
the Phase I program is to demonstrate that the cast SiC/Al material can make
a significant contribution to the advanced rotary combustion engine program."

"The specific technical objectives are to: assess the feasibility
and the benefits of making the trochoid housings from cast SiC/Al; determine
what improved performance (housing) coatings are compatible with the cast
SiC/Al; and evaluate other applications for the cast SiC/A1, such as end
housings, the rotor and the apex seals."

The proposed Phase I work plan included the conduct of the following
tasks:

1. Fabrication of SiC/A1 Test Specimens

"Test specimens will be fabricated for high temperature tensile
testing, fatigue testing and coefficient of thermal expansion (CTE)
measurements. Two volume fractions of SiC loading will Dbe
considered."

10 volume percent {v/o) and 20 v/o SiC were selected as the volume
fractions of the loading material. A201 aluminum alloy was selected
as the matrix material. The composite was hot isostatically pressed
(hipped) and heat treated to a T6 condition. The material test
matrix was expanded to include DACC's hipped A201-T6 matrix material
and commercially available A201-T6, both to provide reference
properties data.

2. Mechanical Testing

The Phase 1 proposal specified limited mechanical testing consisting
of tensile tests at temperature and some fatigue measurements.
Duplicate tensile specimens at four temperatures for the two loading
fractions was the proposed extent of the tensile testing program.



As a result of early materials quality problems, better definition
of critical design problems and the desire to obtain a property data
base more in accordance with the needs of the analysis effort, the
mechanical test program was expanded significantly. The final
evaluation and test program consisted of:

a. metallography and radiography - conducted to provide quality
assurance information on the SiC/Al billets;

b. chemical analysis of billet inclusions;

c. characterizing two forms of the matrix alloy - to better define
the properties improvements provided by the SiC loadings;

d. hardness tests - as a check on matrix quality;

e. threeﬁ'tensi1e specimens tested at each test temperature
(room temperature (RT), 300, 400 and 500°F; and

f. a retest of some 20 v/o specimens, necessitated by poor
billet quality.

Wear and long-cycle fatigue testing on the 20 v/o material were
conducted under PDA's IRAD funds. 17-7 ph and 17-4 ph stainless steels,
respectively, were used in these test activities to provide reference data.
Fatigue data to 50 million cycles at RT was acquired for the steel and MMC
along with fatigue data at 400 F for the MMC.

3. Thermal Property Tests

The proposal called for thermal testing to be 1limited to CTE
measurements of the two SiC/Al materials.

The conducted thermal test program was expanded to also include:
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a. CTE measurements of the reference aluminum alloy.

b. thermal conductivity measurements on the two SiC/Al
materials.

In addition, since data from the initial CTE tests appeared
questionable, these tests were repeated to assure high quality data.

4. Housing Coating Investigation

An analytical investigation of the compatibility between wear
resistant coatings and the SiC/A) material was proposed.

Component evaluation emphasis was ultimately directed at the rotor,
as opposed to the trochoid housing anticipated in the Phase 1 proposal. This
reduced the criticality of assessing coating compatibility in the Phase I
study. Additionally, the practice of employing stainless steel liners to
achieve CTE matching with coatings in current engine designs further reduced
the criticality of this problem in influencing an assessment of SiC/A}
applicability for housing applications.

Activities in this task were ultimately restricted to reviewing NASA
state-of-the-art studies in advanced coating materials[12] and assessing the

CTE compatibility of these coatings with the SiC/Al1 material.

5. Evaluation of Possible Component Applications

The Phase I proposal called for an assessment of possible component
applications as well as the conduct of a feasibility design study of one
selected component.

After a review of engine components, the rotor was selected for
detailed study. A generalized finite element model of a rotor was
constructed using PATRAN[13] and thermal stress, static stress and fatigue



analyses were conducted for two loading conditions. A performance comparison
of 17-4 ph stainless steel rotor versus a 20 v/o SiC/A201-T6 rotor was
accomplished, utilizing an existing rotor design.

6. Reports

Monthly letters were proposed along with the contracturally required
final report.
A11 reporting requirements were fully met[14].

1.3 Summary
A1l tasks of the Phase I program were completed. A1l objectives of
the Phase I program were attained.

The general conclusion of the Phase I study is that the cast SiC/Al
MAC may generate significant performance benefits for rotary engines since
viable applications appear feasible in rotor, end housing and trochoid
housing components. This conclusion is reached, in part, based on the
mechanical and thermal properties measured in the test program. These showed
significant improvements in high temperature modulus, wear, high temperature
fatigue and thermal expansion behavior relative to the properties of the
A201-T6. The SiC/A) had no degradation in high temperature strength nor
reduction in thermal conductivity relative to A201.

The specific conclusion of the Phase 1 study is that 20 v/o
SiC/A201-T6 appears viable as a rotor material. The rotor feasibility design
study disclosed no major limitations in the use of this material. If
successfully developed, an SiC/Al rotor could achieve a total weight
reduction in a rotary engine on the order of 17%.

Although the rotor design specifically studied in the Phase I
program had been developed for stainless steel characteristics,* direct
substitution of the stainless steel by 20 v/o SiC/A201-T6, in this design,
based on thermal stress, static stress and fatigue analyses, indicated the
following:

¥ 1t 75 anticipated that a rotor design, specifically based on SiC/Al
characteristics, would demonstrate even stronger performance
capabilities.

-9-
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1. Mean static stress in the SiC/Al rotor was one-half of the mean
static stress in a 17-4 ph stainless steel rotor;

2. The maximum static stress in the SiC/Al rotor occurred in the
critical shallow pocket rib area in the Top Dead Center (TDC)
position where the temperature is the highest.* Under the
conditions of this design study and at this stress level, the
factor of safety in static design was one.- A rotor redesign
would be expected to lower peak stresses or temperatures 1in
this critical area, thus providing an acceptable safety margin.

3. Fatigue testing and response analyses suggest a 1ife of 100
million cycles for a SiC/Al rotor compared to an infinite life
for the steel rotor. Based on a continuous operation, at a
crankshaft speed of 8000 RPM, this feasibility design study
predicts a SiC/A1 rotor 1life of about 600 hours. Again, a
rotor redesign specifically based on SiC/Al properties should
result in an operating 1life in excess of 3000 hours.

4. If a direct substitution of SiC/Al for steel is possible, the
weight savings will be: 63 percent for the rotor; 51 percent
for the counterweight; and 17 percent for the total engine.

Other accomplishments of the Phase I program can be categorized and
summarized as follows:

Materials Development

1. Radiographic inspection of cast SiC/Al billets detected
extraneous high atomic number particle inclusions. The vendor
determined their source, changed fabrication procedures, and
eliminated the problem.

¥ 1t 7s anticipated that a rotor design, specifically based on SiC/Al
characteristics, would demonstrate even  stronger performance
capabilities.

-10-
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Comparative testing of A201 alloys, commercially obtained
versus as-processed-for metal matrix composite fabrication,
indicated a nominal 10% reduction in strength and stiffness
properties for the latter. This suggests material improvements
in the MMC may be possible by improving alloy processing
procedures.

Average properties may have been adversely affected by
lack of uniformity in billet materials. Relatively large
data scatter was observed in the test program. It is to be
expected this problem will gradually be reduced as DACC gains
additional experience in the processing of these materials.

For the rotary engine application(s) under investigation in
this program, no "Achilles heels" were uncovered in fundamental
characteristics of this material. This 1is an extremely
important conclusion, signifying no major materials improvement
are required to implement application of this material to the
rotary engine.

Mechanical Properties

The strength and the modulus of the A201 alloy used in the MMC
was degraded slightly from that available in commercial A201
alloys. This is attributed to processing procedures and not an
inherent result of the SiC addition.

DACC notes that processing optimization studies to improve
matrix properties have not been conducted[15].

No high temperature strength improvements were measured for the
10 v/o and 20 v/o SiC/A201-Té relative to the properties of the
base alloy. This is attributed to the low aspect ratio ( 3:1)
of the SiC grit employed which inhibits effective low transfer
from the matrix to the particles. In addition, no work
hardening benefits were gained, as only a straight casting
approach was used in billet fabrication.

-11-



The use of SiC particles with greater aspect ratios and/or the
use of work hardening methods (grain boundary effects) in
fabrication would be expected to result in high temperature
strength improvements. Such improvements, however, are not
considered to be a responsibility of the PDA program under
discussion. A1l performance assessments in this study were
made on the basis of no strength improvements at temperature
for cast SiC/A201-T6.

Significant improvements in the elastic modulus of the SiC/Al
material, relative to the base alloy, were produced and
maintained to the maximum test temperature of  500°F.
Considering the lower modulus of the matrix alloy relative to
the commercial material (9.6 million psi vs 10.3 million psi},
the values for the reinforced aluminum approximated rule of
mixtures responses. At 500°F, moduli for the unloaded, 10 v/o
and 20 v/o materials were 8.7 million psi, 10.7 million psi,
and 12.7 million psi, respectively.

Wear resistance tests, considered critical to rotary engine
applications assessment, were conducted under PDA IRAD funds
because of Phase I resource limitations. The resultant data

_are considered proprietary to PDA. They will be provided to

NASA under separate cover to assist in the evaluation of this
proposed application.

In summary, the Taber wear test was employed. Only room
temperature tests were conducted. 20 v/o SiC/A201-T6 was
compared with 17-7 ph stainless steel, H1050 condition.

Fatigue resistance data was acquired on the 20 v/o SiC/A201-Té
at room temperature and 300°F under PDA IRAD funds. This data
is also considered proprietary to PDA. The fatigue data will
also be supplied to NASA under separate cover.

-12-
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A rotating beam fatigue test was employed. Data was acquired
to 50 million cycles. 17-4 ph H1025 stainless steel was also
tested at room temperature for comparative purposes.

Hardness tests were conducted on the base alloy and the 10 v/o
and 20 v/o MMC materials. Results were significantly lower
than manufacturer's data on the commercial alloy. These
results are believed associated with the non-optimum processing
of the A201 base alloy in fabrication of the SiC/A1 composites.

Thermal Properties

The thermal expansion of the SiC/A201-T6 is significantly
Tower, relative to the expansion characteristics of the base
A201 alloy. This represents a very positive attribute for
rotary engine components. For example, in the moderate
temperature range of RT to 212 F, the CTE of the 20 v/o
material is 50% lower than that of the base alloy. Over a
temperature range of RT to 400 F, the CTE of the 20 v/o
material is 33 percent lower than that of the base alloy.

No apparent decrease in the conductivity of the base A201

alloy resulted from the 10 v/o and 20 v/o additions of SiC
grit. A decrease had been expected based on a rule of mixtures
response. Lack of this decrease has very major, positive

ramifications with respect to the use of this material in
rotary engine applications. Both housing and rotor
applications will benefit from the retained conductivity.

Component Evaluation

SiC/A1 warrants consideration as a materials candidate for end
housing and trochoid housing components. Atthough no
preliminary analyses were conducted on these components, an
assessment of the properties of the SiC/A1 relative to the
critical needs of these components suggests the following:

-13-
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(a) There is no penalty in thermal conductivity relative to
A201, a major consideration in the thermal management
problems of trochoid housing usage. Consequently, the
higher modulus and lower CTE of the SiC/Al may translate
into a more efficient housing component (e.g., thinner,
reduced requirements for the component stainless steel
insert, etc.). Tne asset of the higher wear resistance of
the SiC/A1 material for this application also merits
investigation.

(b) The end housing's design constraints are not as rigid as
those for the trochoid housing. Consequently, the
advantages of the SiC/Al, as discussed for the trochoid
housing, have additional utility for this application.

2. Other components, such as the apex seal, side seals, etc. were
not addressed at all. Consequently, no specific conclusions
can be drawn for the components. The wear resistance
capability of the SiC/Al1 probably justifies an investigation
for these seal applications.

3. As discussed earlier, the specific conclusion of the Phase I
study is that it appears feasible to utilize SiC/Al1 for rotors
for rotary engines. Significant weight savings would result.
Higher rotational speeds may also be possible, resulting 1in
additional performance benefits.

Phase II Program

At the initiation of the Phase I study, three possible scenarios
were anticipated as a result of the conduct of the Phase I study:

1. The SiC/A1 MMC appeared promising for one or more component
applications, but a serious material deficiency had been
identified. Tne Phase II program would thus emphasize
materials development activities to correct this deficiency.

-14-



e

2. The SiC/Al MMC appeared viable for a particular component, but
the feasibility analyses had identified a critical design
problem. The Phase II program would focus on detailed analysis
activities supplemented by additional materials testing to
correct this problem.

3. The SiC/A1 MMC material and component application appeared
extremely viable as a result of the Phase I assessments. The
Phase II program would emphasize component fabrication and
prototype testing.

Scenario 1 did not develop. The results of the Phase I study lie
between Scenarios 2 and 3. Given that the Phase I study suggests the
feasibility of an SiC/Al rotor, the appropriate Phase II program should
consist of:

1. The development of a rotor design specifically utilizing the
characteristics of SiC/Al1, the objective being to obtain an
adequate margin of safety based on thermal static 1loads and
fatigue analyses. This development activity should be an
iterative design and analysis study.

2. The conduct of additional mechanical testing to better define
critical characteristics of the SiC/A1 material. Additional
information is needed on extended fatigue behavior and wear
resistance at temperature. The elevated temperature creep
properties of SiC/Al should be addressed.

3. Optimizing the SiC/Al material by addressing design performance
of the rotor as a function of SiC loading fraction and by
improving the processing of the base alloy.

4. Analyzing performance 1limiting engineering problems on the
rotor such as the apex seal, slot wear and deformation,



rotor-bore alignment, and fatigue resistance. These analyses
should be conducted in sufficient detail to constitute an
engineering assessment of the rotor.

5. The development of a casting process for the SiC/Al material to
accommodate the complex geometry of a rotor. Evaluation of
this casting process should include both nondestructive and
destructive testing. Sufficient iterations should be provided
for this casting development program to result in a prototype
rotor adequate for test purposes.

The ultimate deliverable product of the Phase II program, which will
be proposed to NASA, will be a prototype SiC/A1 rotor available for simulated
and/or engine testing.
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2.0 TEST MATERIALS AND PHYSICAL CHARACTERIZATION ACTIVITIES

2.1 Test Materials

The primary objective of the properties testing program was to
characterize the cast SiC/Al materials. To this effect, two billets each,
3.5" x 10" x 1", of 10 v/o and 20 v/o SiC/A201 alloy, heat treated to a T6
condition, after being hot isostatically pressed (hipped)), were acquired
from Scientific Applications International Corporation (SAIC)(Figure 4).

86-0670

Figure 4. Billets of As-Received SiC/Al

To provide reference properties of the matrix material, a billet of
A201-T6, subjected to hot isostatic pressing and to a T6 heat-treat condition
was also acquired from SAIC. An ingot of A201, in a non-heat-treated
condition, was obtained from the Consolidated Aluminum Company (CONALCO).

Radiographic inspection determined that all Sic/Al billets contained
high density inclusions. The 20 v/o billets contained the greatest number of
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inclusions, to the point where insufficient material existed for the full
extent of the materials test program. Replacement billets were obtained from
SAIC. Upon radiographic inspection, it was also detected that the A201-Té6
billet acquired from SAIC had not been "hipped". A replacement A201 billet,
subjected to the same hot isostatically pressing and heat treatment
conditions as the SiC/A201-T6 materials, was subsequently obtained from the
vendor.

In the wear and fatigue tests conducted by PDA under IRAD funds,
17-7 ph stainless steel (for wear tests) and 17-4 ph stainless steel (for
fatigue tests) were also tested to provide reference data by which the SiC/Al
material could be evaluated.

In summary, the materials for the test program were:

1. 10 v/o and 20 v/o SiC/A201, hipped, with T-6 heat treatment
2. A201, hipped with T-6 heat treatment, supplied by SAIC
3. A201 - CONALCO; T-6 heat treatment provided by PDA
4. 17-4 ph and 17-7 ph stainless steels
2.2 Physical Characterization

Radiography of the 10 v/o (Figure 5) and 20 v/o (Figure 6) billets
was conducted to assess overall material uniformity. Radiography was also
performed on the A201 billets obtained from SAIC.

In the x-rays of the SiC/Al composites, no obvious porosity defects
were detected. There are smooth density variations and “"grain" effects in
the x-ray images resulting from thickness variations in the billets. The
x-rays also showed many high density inclusions in the billets ranging from
approximately 1/16" to 3/8" in thickness.

The detection of these inclusions created the first perturbation to

the Phase I work plan. Optical microscopy, electron microscopy and x-ray
analyses were performed to identify the inclusions. Micrographs of two high
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Billet #2

Figure 5.
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Billet #1

Photographs of 10 v/o Billets
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Billet #1

Figure 6.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Billet #2 86-0673

Radiographs of 20 v/o Billets
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density inclusions contained in the 20 v/o material are presented in Figure
7. Both micrographs show a similar microstructure; a glassy interior
material, surrounded by a reaction zone, grading into the unperturbed SiC/Al
material. The inclusions were assessed as being inorganic compounds, one
containing large amounts of zirconia.*

Given the population density of the inclusions in the 20 v/o
billets, insufficient unflawed material existed to conduct the desired
mechanical and thermal test program. DACC agreed to provide replacement 20
v/o billets.

Optical microscopy was also performed on the 10 v/o and 20 v/o
billets to assess the general microstructure of the SiC/A1 material.
Representative photomicrographs, taken at 100 magnification, of the two
materials are presented in Figure 8.

These micrographs indicate a tendency for the SiC particles to
agglomerate at the grain boundaries of the aluminum. This provides a
mechanism whereby work hardening would lead to a strengthening of the
material. This grain boundary agglomeration tendency appears moré pronounced
for the lightly loaded, 10 v/o material. With the 20 v/o material, it is
more difficult to assess the relative magnitude, if any, of the agglomeration
effect of particles at the grain boundary. On a macroscopic basis, the
dispersion of the particles throughout the matrix material appears to be
reasonably uniform.

¥ In a meeting with D.M. Schuster, the casting process for SiC/A1 was
described as involving low pressures. Certain components of the casting
mold employ a ceramic cement, in which an organic pinder is used. It
appears the molten SiC/Al destroyed the organic binder, sweeping ceramic
particles into the melt. Recognition of this problem led DACC to replace
the ceramic/organic cement with a non-reactive material. Radiographic
inspection of the 20 v/o replacement billet would indicate this has
solved the problem.
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Micrographs of High Density Inclusions in 20 v/o Billets
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Figure 8.

Micrographs of 10 v/o and 20 v/o Billets, 100x
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DACC utilizes a low-cost SiC grit as their loading material. Figure
8 indicates that the particle size employed has increased from the 10 v/o to
20 v/o material. This 1is believed to be a consequence of processing
difficulties associated with higher volume fraction materiails. This also
suggests increasing difficulty may exist in the producing SiC/Al with loading
fractions greater than 20 v/o.

Strength reinforcement of matrix materials requires a high aspect
ratio for the reinforcing constituent to allow effective load transfer from
the matrix to the reinforcing element to be attained. 1In metal composites,
an aspect ratio of 10:1 is typically considered the Jlower 1limit for
reinforcement constituent dimensions, below which this effective load
transfer 1is not obtained. Examination of the micrographs (Figure 8)
indicates typical aspect ratios for the SiC grit used in the DACC SiC/Al
materials to be on the order of 3:1 or less. These aspect ratios are
insufficient to achieve strength reinforcement. In addition, the casting
process employed does not appear to have induced any orientation or alignment
effects in the particle distribution which would have simulated the effect of
higher aspect ratios. Therefore, it 1is anticipated that an effective
strengthening mechanism will not be observed in these composite materials. *

¥ This constituted a major disappointment in our evaluation program.
Specification Tliterature issued by SAIC and, subsequently, by DACC
indicates higher strengths are produced for their SiC/Al materials
relative to the reference alloys. The conditions by which these strength
increases were obtained by DACC are not known by PDA.
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3.0 MECHANICAL PROPERTIES OF SiC/Al

3.1 Introduction

As a result of this Phase I program and PDA's IRAD funds, data was
obtained on the hardness, high temperature strength and modulus properties,
wear resistance at room temperature (RT) and fatigue resistance (RT and
400°F) of the cast SiC/Al material.

Overall, the mechanical testing program conducted exceeded that
contained in the Phase I proposal. Some problems were encountered that
adversely affected the resources allocated to this aspect of the Phase I
program.  PDA had no experience in machining of SiC/A1. The increased wear
resistance of this material significantly increased the difficulty of
machining specimens for the test program, necessitating a learning experience.
PDA does not have an in-house high temperature, mechanical testing capability.
The contract with the first service laboratory engaged to perform mechanical
testing was terminated over procedural concerns based upon checkout tests.
This necessitated the use of a second service laboratory with additional
startup costs and wasted test specimens. Additionally, it was originally
proposed to conduct mechanical tests to temperatures as high as 550 to 600°F.
Equipment limitations and material response behavior revised the maximum test
temperature to 500°F.

The test program that was achieved, however, more than provided an
adequate based of material property data by which the feasibility design
studies were conducted. It is important to recognize the relative soundness
of the engineering materials property data used in these design studies. All
material property data employed in the design analyses were directly obtained
from this Phase I test program.

\

3.2 Hardness

Hardness tests were performed on each of the materials tested to
assess the heat treatment. Hardness values were measured on the Rockwell "B
scale at three points on each sample of material. Material samples were



selected at random, and no difference was found measuring hardness on a
ground surface or a smooth as-cast surface. The averages of these values are
tabulated in Table 1. Manufacturer's data for A201-T6 are presented in
Figure 9.

Table 1

Hardness Values of A201-T6 Materials

Material Hardness
A201-T6 (unhipped) RB70
A201-T6 (hipped) RB79

10v/o SiC/A1 (hipped)| RB76
20v/o0 SiC/A1 (hipped)

Billets 1 & 2 RB85
Billets 3 & 4 RB75

Hardness values for all materials, except the first two billets of
20v/0 SiC/Al, are low.* The technician conducting the tests stated that the
accuracy of these tests on cast aluminum is within 15%. While this amount of
uncertainty would allow actual hardness values to lie in the range of the
manufacturer's data, it does not explain the consistently low values.

%01 76
" TESTS

Reference:

Conalco Technical Information
Report, CDRL-75-TIR-3, Compo-
sition, Properties and Metal-
lography of Casting Alloy 201.

NUMBER OF TESTS
»
o

© " -
Rockwell *'B"”’

Figure 9. Manufacturer's Hardness Data for A201-T6

* Tensile tests on the higher hardness 20 v/o material did not show a
significant increase in strength.
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These low hardness values appear to be consistent with the slightly
Tower strength and stiffness properties measured on the base A201 alloy (see
3.3) relative to "handbook" properties. It is assumed all of these
properties are a reflection of the non-optimized processing of the A201 alloy
in conjunction with the fabrication of the MMC.

3.3 High Temperature Strength and Stiffness Properties

The tensile testing program was conducted at Truesdail Laboratories,
Tustin, CA. The equipment used included an Instron model 1125 tensile test
machine with a two pen recorder, a SATEK 3" I.D. furnace with temperature
controller, a Measurement Group model 2100 signal conditioning system and one
Micro-Measurements WK-06-125AD-350 strain gage bonded to each specimen. Room
temperature (RT) data was taken at 74°F, while elevated temperature data was
taken shortly after reaching the designated test temperature. Specimens were
brought up to temperature in approximately one half hour. Specimen
temperature was monitored continuously with two thermocouples, one at each
end of the gage section. The temperature gradient across the specimen never
exceeded 9°F and was usually 3-4°F. Three specimens were tested at each
temperature. Test temperatures were RT, 300, 400 and 500°F.

The 0.2% yield strength data as a function of temperature are
presented in Figure 10. The wultimate strength data as a function of
temperature are presented in Figure 11. Manufacturer's and handbook property
data on the A201-T6 alloy are presented in Appendix A.

The test results show some scatter, as well as a decrease in yield
strength above 300°F when compared to reference data for A201-T6. Ultimate
strength was almost always greater for the SiC/Al than for the A201-T6 alone.
However, the ultimate strength of the A201-T6 material furnished by DACC was
considerably lower than the reference data for A201-T6 material.

These data, along with the hardness data, would indicate the quality

of the A201 material employed as the matrix constituent is not of an
equivalent quality to the as-cast, commercially available A201 alloy. This
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Figure 10. Yield Strength of SiC/201 Alloy

-28-




bk Gl Aty Gl

P

SILICON
S

CARBIDE / ARLUMINUM ULTIMATE
TRENGTH VS TEMPERATURE

O A201-T6 (HIPPED] O 10v% SIC/AL
© 20vi SIC/AL

ULTIMATE STRENGTH PSI

7.00

tx 104

.00

.00

.00

.00

.00

.00

! ! i |

-29-

.00 '
0 100 260 360 40C 500 600
TEMPERATURE DEGREES F
Figure11. Ultimate Strength of SiC/201 Alloy




—_m_———_—_—--“-ﬂ—’-“

is, of course, not an unexpected result given the state of development for
this material. It would suggest further improvements in material properties
are achievable as better production processes are ultimately developed by
DACC.

The average Young's modulus data for the three materials tested are
presented in Figure 12. The discrete data points as well as the standard
deviations are presented in Appendix B. The average value of 9.5 million psi
for the unloaded A201-T6 is 8% lower than the reference value. (During check
out procedures, the test apparatus indicated a room temperature modulus of
9.7 million psi for 6061-T6 aluminum. This is approximately 2% lower than
the MIL-5-Handbook value of 9.9 million psi [16]).

Modulus values did consistently increase with increasing silicon
carbide volume fraction. However, in elevated temperature tests, the shape
of the stress-strain curve also changed as a function of silicon carbide
volume fraction. The unloaded A201-Té specimens show a long elastic region
and a fairly well defined yield point. The 10 v/o suggests these specimens
experience a plastic deformation at a lower stress and as a consequence have
a more gradual yield behavior.. These effects are slightly more pronounced in
the 20 v/o specimens. This difference in stress-strain behavior is not
noticeable at room temperature, but the trend is consistent throughout the
high temperature data. This suggests that creep is taking place at the
strain rate being used (0.02 in/in/min). These results also indicate that
the creep properties of this material should be investigated.

3.4 Wear Resistance

Under PDA IRAD funds, wear tests were conducted to compare the wear
characteristics of 20 v/o SiC/A201-T6é with a material similar to the 17-4 ph
H1025 stainless steel used for the rotor in the NASA engine. These wear
tests were also conducted at Truesdail Laboratories.

A Taber Abraser machine was used. This machine rotates a specimen
approximately 3.5" square on a turntable at 70 rpm. Two free-turning
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Figure 12. Average Young's Modulus for SiC/Al
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abrasive wheels rest on the face of the specimen under pressure from dead
weights. Specimens are weighed before and after testing to determine the
material lost.

17-7 ph stainless steel was substituted for 17-4 stainless because
of the ready availability of a small sample of the former material.

An IRAD report is in preparation documenting the results of these
tests. A copy of this report will be provided to NASA-LeRC.

3.5 Fatigue Resistance

Under IRAD funds, PDA conducted fatigue testing of 17-4 ph stainless
steel and 20 v/o SiC/A201-T6. The former material was tested at RT to about
50 million cycles. The latter material was tested at RT, to a maximum of 35
million cycles, and at 300°F, to a maximum of 15 million cycles.

Fatigue testing was accomplished using a rotating beam, high cycie
fatigue test. The Rotating Beam Fatigue Testing Machine, Model RBF-2000,
manufactured by Fatigue Dynamics of Dearborn, MI was used. Tests were
conducted at Truesdail Laboratories.

Results will be published in a separate IRAD report. A copy of this
report will be provided to NASA-LeRC.



4.0 THERMAL PROPERTIES OF SiC/Al

Because of the importance of thermal conductivity in trochoid
housing applications, the Phase I program was expanded to include thermal
conductivity measurements. These were made by the Thermophysical Properties
Research Laboratory (TPRL), School of Mechanical Engineering, Purdue
University.

As proposed in the Phase I proposal, thermal expansion tests were
conducted on the 0 v/o, 10 v/o and 20 v/o SiC/A201-T6 materials. Similar to
the problems experienced in mechanical testing, a second testing 1laboratory
was ultimately employed to perform thermal expansion measurements.

4.1 Thermal Conductivity

TPRL performed thermal conductivity measurements on 10 v/0 and 20
v/o SiC/A201-T6. Their complete report to PDA is incliuded as Appendix C.

The bulk density (d), specific heat (Cp) and thermal diffusivity (a)
were measured on each material. The thermal conductivity (a) was calculated
as a product of these gquantities, i.e., A = aCpd. These data are summarized
in Table 2 along with available handbook information.

Table 2
Thermal Conductivity Measurements of SiC/Al
Sample Temp Density | Specific Heat Diffusivity| Conductivity
Designation | (°C) | (gn on™3)[ (ws gn k1) (emPsecl) | (wem kD)
10 v/o 23 2.828 0.875 . 0.620 1.534
15 2.828 0.910 0.582 1.498
150 2.820 0.967 0.577 1.578
225 2.828 1.000 0.597 1.688
315 2.828 1.096 0.630 1.953
20 v/o 23 2.851 0.855 0.627 1.528
75 2.851 0.902 0.588 1.512
150 2.851 0.967 0.59] 1.629
225 2.851 1.000 0.588 1.676
315 2.851 1.098 0.588 1.841
Hd bk 25 2.17 emoee i .2}
A201 100 e R 11 om-e- 1-—--
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The Metals Handbook [17] lists a conductivity for A201 (no heat
treatment specified) of 1.21 W cm=1 k-1. The Engineering Data for Aluminum
Structures handbook[18] indicates a range of conductivities for aluminum
alloys of from 1.09 to 2.34 W cm-1 k-1,

A review of Appendix C and Table 2 indicates, somewhat surprisingly,
that no penalty is incurred resulting in a decreasing the thermal
conductivity of the base alloy by the additions of SiC. Also, there is
essentially no difference 1in thermal conductivity between the two volume
fraction materials tested. This deviation from the rule of mixtures response
was a pleasant surprise.

In all conversations with John Deere Technologies, the criticality
of maintaining the thermal conductivity of A201 for trochoid housing
applications was emphasized. A sufficiently high thermal conductivity is
needed to ensure proper heat management within the combustion chamber and at
the housing surface. Feasibility design analyses showed this to also be an
important material property for rotor applications. Thermal stresses are
inversely proportional to the thermal conductivity. Consequently, these
conductivity data are considered to be an jmportant contributor to a
favorable assessment of the usage of SiC/Al in rotary engine applications.

4.2 Thermal Expansion

Measurements of the thermal expansion of A201-T6, 10 v/o SiC/A201-T6
and 20 v/o SiC/A201-T6 were made by the Analytical Services Corporation of
Irvine, CA and the Orange County Materials Test Labs of Santa Ana, CA. The
former data are reported in Appendix D along with handbook data. A summary
of the CTE results are presented in Table 3.

Table 3

Coefficient of Thermal Expansion Data
(10-6 in/in/OF)

Temperature Material System _

Range, OF A201-76(nabk) | A201-16(Dural) | 10 v/0 SiC | 20 v/0 SiC
122-212 10.8* 10.6 8.8 5.7
212-392 13.7 13.8 11.7 11.0
392-572 16.0 16.8 10.5 15.1

* 68-212°F
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It would appear that the data in the maximum temperature range for
the 10 v/o material may be invalid. With that exception, the CTE data
appears reasonable. These results also have several benefits with respect to
rotary engine applications.

In the moderate temperature range of RT to 212°F, the 20 v/o
material nas essentially a 50% reduction in thermal expansion behavior
compared to the baseline alloy. Over the probable temperature range of
interests for rotary engine applications, RT to 400°F, the 20 v/o material
has a 33% lower thermal expansion behavior compared to the baseline alloy.

The result should be a significant reduction in generated thermal
stresses as a result of exposure to high temperature environments. This will
also reduce the expansion mismatch between the wear resistant coating and the
housing wall. It should also ease the rotor-bore misalignment problem due to
thermal expansion differences.



5.0 COATINGS COMPATIBILITY

In the Phase I proposal, the assumption was made that the trochoid
housing would be the primary component for applications assessment studies.
Hence, an important issue was believed to be the mechanical, physical and
thermal compatibility of the SiC/Al with wear resistant coatings applied to
the trochoid housing. The Phase I proposal listed a specific task to address
this subject.

The use of the stainless steel inserts between the housing material
and the coating (see Figure 2) 1is a conventional practice, employed to
minimize thermal expansion differences-induced problems. The use of this
insert reduces the importance of the coating compatibility problem, regardless
of the thermal expansion characteristics of the SiC/Al. Additionally, the
applications assessment studies ultimately focused on the rotor, not the
trochoid housing, further lessening the importance of this problem in a Phase
I study. Consequently, while the Phase I proposal anticipated a design
analysis of this problem, this effort was not justified in the conducted
program.

The potential versatility of the SiC/Al materials for rotary engine
applications indicates this problem ultimately will require design study.
Consequently, compatibility with conventional housing coatings, such as cnrome
plating, nickel plating containing silicon carbide, or combined carbide or
molybdenum alloys [19] is of interest. In addition, NASA has sponsored
another SBIR study which addressed the potential of an adiabatic rotary engine
[12]. This study identified Crp03 and Ir0, as ceramic coatings of potential
interest to this type of engine.

The key issue in coating compatibility should be the magnitude of the
mismatch in thermal expansion behavior that exists between the materials of
interest. Presented in Table 4 is a comparison of the CTE values for the
materials of interest for rotary engine applications. Clearly, the 20 v/o
SiC/A201-T6 constitutes a significant reduction in the mismatch in thermal
expansion behavior. Given the improvement in CTE in-going from 10 v/o
SiC/A201 to 20 v/o SiC (i.e., 8.8 to 5.7), even higher volume fraction
materials, if they can be fabricated, would be of interest to this problem.
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Table 4

A Comparison of CTEs* for Materials
of Interest - Rotary Engine

Iron Chrome Molyb. SiC Cr 0 ir0

20v/0 SiC/A201

5.5 3.9 2.8 4.5 4.5 5.8

*

10-6 in/in/OF at R.T

5.7



6.0 EVALUATION OF POSSIBLE COMPONENT APPLICATIONS

As noted in the introductory section, at the time of the Phase I
proposal preparation, it was assumed that, because of the high temperature
properties of SiC/Al, the trochoid housing would be the logical rotary engine
component to receive a preliminary design study. The proposal did provide
the option of selecting another component for evaluation based on the
information acquired in the early stages of the Phase program.

There are at least four components in a rotary engine that are
possible candidates to employ the SiC/Al material. These are the trochoid

housing, the end housing, the (rotor) apex seal, and the rotor.

6.1 Trochoid Housing

The A201 &1loy currently used for the trochoid housing, obviously,
has acceptable properties. Its major disadvantage is a low wear resistance,
necessitating the use of coating materials for interior surfaces of the
housing. Tnis, in turn, requires the use of a stainless steel liner to
separate the two components, because of the thermal expansion mismatch
between aluminum and the coating materials.

The anticipated merits of the SiC/A201 for this application were
expected to be primarily in increased strength properties at temperature[1l].
This was hypothesized to allow the rotary engine to run at higher
temperatures and, hence, achieve higher operating efficiencies[1]. Lack of
the strength increase at temperature has already been noted. Although, PDA
has not conducted a thermostructural analysis of the A201 alloy for the
trochoid housing application, it is reported by John Deere personnel not to
be strength limited at current operating temperatures. Furthermore, higher
engine operating temperatures, desirable from a performance efficiency
standpoint, might present significant apex seal and coating wear
problems[20].

Early component evaluation activities in the Phase I program focused
on the trochoid housing. The complexity of the housing structure from an
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analysis standpoint, the complexity of the housing structure from a
fabrication standpoint, and recommendations by John Deere personnel of higher
payoffs from other applications led to the decision to reduce the priority of
this component with respect to evaluation. This position was reinforced when
high temperature mechanical tests indicated improvements in strength
properties had not been obtained.

Regardiess, as a long term activity, it is amply justified to
consider SiC/Al as a materials candidate for the trochoid housing. Even with
no improvement in tensile strength, the SiC/A201-T6 material is a potential
candidate for tne following reasons:

1. in the critical area of heat transfer (i.e., thermal
conductivity), its use incurs no penalty;

2. with a significantly higher modulus than the baseline alloy,
approaching 50% for the 20 v/o material, the same applied loads
will result in significantly lower deflections. Reductions in
walk thicknesses may be possible, resulting in  weight
reductions.

3. the lower CTE along with its increased stiffness reduces the
expansion incompatibilities with the wear resistance coatings.
It may be possible to eliminate the stainless steel liner.

4. more speculative possibilities include the wear resistance
characteristics of the SiC/A1 and the potential of developing a
higher-strength-at-temperature material.

Whether these result in significant performance benefits relative
to the added material costs would require a detailed engineering study.

It would appear that to obtain performance benefits in addition to
the above hypothesized weight reductions, such as higher operating
temperatures, the development of a cast SiC/A201-T6 material with increased



high temperature strength properties, will be required. While such a
material property appears obtainable, it would probably require the usage of
higher priced silicon carbide whiskers as opposed to the silicon carbide grit
now employed in the DACC material.

6.2 End Housing

The end housing appears to be an attractive candidate for SiC/Al, if
adequate cost benefits can be established.

John Deere reports that a rotary engine developed by the Israeli's
has an aluminum end housing that does not utilize wear-resistant coatings.
Tnis would suggest that, on higher performance engines that now require
coatings on the end housings, the SiC/Al material may provide an adequate
wear resistant surface, thus eliminating the need for coatings.

As in the trochoid housing application, the higher stiffness of the
SiC/A1 could allow housing thicknesses to be reduced. Detailed design
studies would be required to assess the relative merits of this design
improvement.,

6.3 Seals - Apex, Corner and Side

"The gas sealing mechanism for the rotary engine consists of a side
seal corresponding to the compression ring of the reciprocating engine, an
apex seal to seal each working chamber from its adjacent ones, and a corner
seal used at the junction of the above two seals" [19]. A self-lubricating
special carbon (steel) has often been used for the apex seal. The side seal
is usually made of a special cast iron. The corner seal is generally of a
special cast iron with its outer surface chrome-plated to improve wear
resistance of the seal diameter and the rotor seal hole.

Given that wear resistance appears to be the dominating material
characteristic for these seal components, it would appear logical that the
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SiC/A1 could be a replacement material candidate. Possible advantages to its
use 1in these seal applications would be weight reduction and perhaps a
reduction in fabrication complexity.

6.4 Rotor

Current rotary engine designs employ nodular iron or stainless steel
as rotor materials. If SiC/Al is practical as a rotor material, approxi-
mately a 60% savings in rotor weight ( 2.8 gm/cc vs 7.1 gm/cc) would be
obtained. Additionally, since rotor engine designs employ counterbalancing
weights on the rotor shaft to balance the inertial forces, then the use of
SiC/Al as a rotor material could lead to a significant overall weight
reduction in the rotary engine itself.

In the mid-sixties, the predecessor to the John Deere Rotary Engine
Division, the Curtiss-Wright Corporation experimented with an aluminum rotor
[21]. It is important to note that the major design limitation of the
aluminum rotor was not its high temperature strength properties. Wall
thicknesses could be increased to accommodate the lower strength of the
aluminum. This, of course, essentially negated the density advantages of
aluminum. However, two other problems influenced by wear resistance,
stiffness and CTE characteristics, served to preclude the use of aluminum.

One problem was maintenance of the alignment of the rotor. With an
jron or steal rotor shaft being used, the thermal expansion mismatch at the
rotor bore between the aluminum and ferrous materials made it difficult to
maintain rotor alignment. Some innovative mechanical design approaches
mitigated this problem[22]; nevertheless, it remained a major hindrance to
the use of aluminum rotors.

The other problem involved the wear resistance and the bowing of the
rotor at the apex seal location induced by the resistance forces of the apex
seal on the rotor housing. The origins of this problem lie in the poor wear
resistance of aluminum and its relatively low modulus, resulting in high
deformations under the resultant bending loads.
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These proplems have not yet been subjected to a comprehensive
quantitative analysis (see Section 7) or specialized testing to determine the
extent to which SiC/A1 could mitigate or eliminate them. However, the
mechanical properties (i.e., increased wear resistance and fatigue
resistance, higher stiffness) and thermal properties (i.e., lower CTE) of
SiC/A1 are all favorable attributes to achieving solutions to these problems.
The feasibility design study of an SiC/A1 rotor, discussed 1in Section 7,
uncovered no other major problems in the usage of this material.
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7.0 FEASIBILITY DESIGN STUDY - SiC/A1 ROTOR
7.1 QOverview

Based on the recommendation of John Deere Technologies, the rotor of
the NASA-Lewis rotary engine was selected for analysis. The NASA rotor is
constructed from 17-4 ph stainless steel and has a compresssion ratio of
7.5:1.

The analysis approach was to construct a finite element model of the
rotor. John Deere Technologies proprietary design information of the rotor
was protected. Static analyses under several types of loading were conducted
to determine the cyclic stress history of the rotor. Loading information was
provided by John Deere Technologies.

No attempt was made to modify the design of the NASA rotor to
accommodate the characteristics of the SiC/Al.

1.2 Finite Element Model

The geometry used for the finite element model was based on the NASA
drawing of the rotor[23]. The model, Figure 13, is of a 1/4 rotor and was
constructed using quadrilateral shell elements. The model contains 1734
elements, 1561 nodes and 9366 degrees of freedom. The model was constructed
with PATRAN[13].

The flank and scodp cavity were modeled as being symmetric. An apex
seal slot was added to investigate the relative deformations between a steel
rotor and an SiC/Al rotor in the apex seal area (See 6.4). Symmetric
boundary conditions were applied to the model in order to analyze a complete
rotor.

7.3 Analxses

Analyses of the finite element model were conducted in order to
construct a cyclic stress history for the rotor, similar to the one
illustrated in Figure 14. These stress profiles, together with fatigue
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Figure 13.

A

Finite Element Model of NASA Rotor

Figure 14. Cyclic Stress Profile
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resistance data, will provide a comparison of cycles in failure for the
baseline material (17-4 ph stainless steel) and the SiC/Al. In addition, the
analyses will provide information on: the highly stressed regions; critical
thermal expansion regions, such as the rotor-bearing bore; and critical
deformation regions, such as the apex seal slot.

There are three basic loads present on the rotor; gas pressure,
inertial, and thermal. These load conditions were analyzed at two specific
crank angles to obtain cyclic stress information. The crank angles analyzed
were Top Dead Center (TOC) and Bottom Dead Center (BDC). Each of the load
conditions were analyzed separately at these crank angles. Then, by means of
superpositioning of the stresses, the cyclic stress profile is obtained.

In the TDC load case, pressure loads are generated by the combustion
and compression of the fuel. The centrifugal accelerations are generated by
the rotation of the rotor about it's own axis. The translational acceleration
is due to the eccentricity of the rotor's rotation about the crankshaft. The
thermal loads are generated by thermal gradients setl up by the expansion and
cooling of hot combustion gases. The BDC load case contains all of the same
loading components except the pressure.

The loading conditions were provided by John Deere Technologies.
John Deere also provided film coefficients along with gas and oil reference
temperatures in order to perform a convective thermal analysis and to
generate a temperature distribution over the model.

Each load case was analyzed in two steps. The first was static
analyses with pressure and/or acceleration/loadings. The second was a static
analysis with thermal loads. Superposition was then used to obtain the
predicted stress values. All analyses were conducted with the ANSYS finite
element analysis program [24].
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7.3.1 Thermal Analyses

The thermal analyses of the rotor was conducted in two steps. The
first step was the determination of the equilibrium temperature distributions
in the rotor for each material. Convective film coefficients, provided by
John Deere Technologies, were applied to the rotor surface together with the
corresponding reference temperatures and a heat balance was conducted using
ANSYS[24]. The resulting temperature distributions are as shown in Figure
15. As this figure illustrates the steel rotor's hot spots reach peaks near
700°F while the peak temperature of the SiC/AL rotor's peak approaches only
450°F. The much lower peak temperatures in the SiC/AL rotor can be attributed
to the higher conductivity of the SiC/AL material compared to steel. For
example, at 400°F, the conductivities for 20 v/o SiC/A201-T6 and 17-4 ph
steel are 8.07 and 0.899 Btu hr-lin-1F respectively.

The second step was the calculation of thermal stresses. Using the
temperature distributions and values of CTE and stiffness for each material,
the thermal stresses in the rotor were calculated using ANSYS. The peak
stresses occurred 1in the pocket areas, and the shallow ribs supporting the
pocket. In these critical areas the stresses for the SiC/AL rotor were about
1/2 the magnitude of those present in the steel rotor, as shown in Figure 16.
Contributing to this difference was the lower peak temperatures and stiffness
of SiC/A1 material compared to steel.

7.3.2 Static Analyses

Static analyses were conducted on the rotor model in both the TDC
and BDC positions. In the TDC position, the mechanical loads on the rotor
were gas pressure, centrifugal and translational accelerations. These loads,
which were also provided by John Deere Technologies, were applied to the
model as shown in Figure 17. The bearing reaction forces were applied on the
jnner surface of the hub in order to satisfy conditions of static
equilibrium. These reaction forces are depicted as a single vector in Figure
17; however, they were applied as a distributed force normal to the hub
surface. The loads due the translational and centrifugal acceleration were
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applied by constraining the rotor's translational motion and applying a
translational acceleration and a angular velocity to the rotor. The
translational acceleration was calculated from the rotors eccentricity and
angular velocity.

The results of TDC static analyses, as shown in Figure 18, indicate
that the pocket and shallow rib area are again the critical stress locations.
The magnitude of the peak stress values for both the steel and SiC/Al rotors
are approximately 19-20 Ksi.

In the BDC position, the only mechanical loads that were applied to
the model are the translational and centrifugal accelerations. These loads
were applied in the same manner as the TDC case. The results, shown 1in
Figure 19, reveal that the stresses in the SiC/Al rotor are much lower than
those in the steel rotor. These differences can be attributed to the
substantially lower “weight (density) of the SiC/Al rotor.

7.3.3 Fatiqgue Analyses

With the completion of the static and thermal analyses, the critical
areas of the rotor were identified as the pocket and shallow pocket rib.
Superimposing the results from the mechanical and thermal analyses, total
equivalent stresses were calculated for both the SiC/Al and steel rotors in
these critical areas. Cyclic stress profiles were then generated using the
results from the TDC and BDC case together with the model's symmetry.  One
such profile, for a critical area in the shallow pocket rib is shown in
Figure 20. This figure shows the stress levels that the rib will experience
during one rotor revolution. Table 5 1lists the mean stress (o) and
amplitude stress (g,) for both the steel and SiC/Al rotors in the shallow rib
location of Figure 20.
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NASA 40 CU. IN. ROTARY ENGINE ROTOR
PRESSURE(TDC1=1400 PSI SPEED=8000 RPM

O 17-4PH STAINLESS BTEEL R8TER O 20 v/8 S8IC/RL-A201 RATOR

EQUIVALENT STRESS (KSI)

70.0

20.0fF o 2N
\\ / \\ ;:'
‘\\ I,/ \\\ ~ I/’
\‘ ,l \\ ’,
‘\\ ’I’ ‘\ . "/
P ~f¥“"
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ROTOR REVBLUTIONS

Figure 20. A Comparison of Critical Cyclic Stresses in SiC/Al
and Stainless Steel Rotors
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Table 5§

A Comparison of Mean and Amplitude Stresses -
Shallow Pocket Rib

ROTOR MEAN STRESS AMPLITUDE STRESS
MATERIAL
(KSI) (KSI)
20 v/o
SiC/AL-A201 23.2 11.4
17-4 ph
Stainless Steel 46.6 12.5

In order to utilize the fatigue data obtained during the fatigue
testing of the material, an equivalent fully reversed cyclic stress had to be
approximated. The fatigue testing completed on SiC/AL specimens used a fully
reversed cyclic stress (op=0) to determine the fatigue 1life of the material.
The actual stresses in the rotor cycled between a8 maximum and minimum Tevel
as shown in Figure 20, and do not have a mean stress equal to zero.
Therefore, an equivalent amplitude stress (aae) representing a completely
reversed condition was approximated using methodsioutlined in Reference 25.
These equivalent amplitude stresses for both rotor materials are listed

below.
ROTOR EQUIVALENT AMPLITUDE
MATERIAL STRESS (KSI)
20 v/o SiC/A1-A201 21.6
17-4 ph Stainless Steel 23.0
Results
Static

The maximum static stress that the SiC/A1 rotor experienced is 34.5
Ksi (Figure 20). This peak occurred in the critical shallow pocket rib area



when the rotor is in the TDC position. The temperature in that region ranges
from 400-450°F. The results of the high temperature mechanical testing found
that the yield strength of 20 v/o SiC/A201-T6 is approximately 35 Ksi at
450°F. These preliminary results indicate that the material does not provide
any factor of safety in the static design of the rotor. However, it is
important to note that: 1. the model used was a simplified shell model which
was generated for a comparative analysis; 2. material testing did not show
any increases in material strength that were expected and can possibly be
obtained with further material development; and 3. the analytical model was
based upon the design of a stainless steel rotor, which inherently has much
higher strength than aluminum alloys. Redesigns of the rotor should Tlower
peak stresses or temperatures in the critical areas.

Fatigue

The results of the factigue testing and fatigue analyses suggest a
life of 100 million cycles for the SiC/A1 rotor compared to an infinite life
for the steel rotor. These predictions were based on the estimated values of
equivalent completely reversed stresses and high temperature fatigue data.
Based on continuous operation, at a crankshaft speed of 8000 RPM (rotor speed
2667 RPM) the predicted 1life of the SiC/A1 rotor is 625 hours. It is
anticipated that a 1life of 3000 hours is obtainable if peak stresses and
temperatures could be lowered in a redesign and better definition can be
obtained of the material's high temperature fatigue properties in the 100 to
500 million cycles testing range.
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8.0 CONCLUSIONS AND RECOMMENDATIONS
8.1 Conclusions

The major conclusion is that, on the basis of the feasibility design
study, cast SiC/A1 appears to be a viable materials candidate for rotors of
rotary engines. The result would be a substantial weight savings,
approaching 17% of the total engine weight.

A more subjective conclusion, based on an assessment of material
properties and component performance requirements, but unsupported by design
and analysis studies, 1is that cast SiC/A1 may be applicable to other
components, primarily for the end housing and trochoid housing.

The cast SiC/A201-T6 material, as it currently stands in its
development phase,“ appears reasonably adequate for component wusage, as

outlined above, without major materials refinements needed.

8.2 Recommendations

It is specifically recommended that NASA-Lewis, on the basis of the
accomplishments of this Phase [ study, support the development of a cast
SiC/AY rotor program. Major elements of this program should include:

1. the design of a rotor specifically aimed at utilizing the
properties of SiC/A1 while maintaining current functionality
requirements;

2.  the conduct of additional mechanical testing of SiC/Al to
acquire design and analysis critical information. Such
information to include: high temperature fatigue resistance at
250 million cycles; creep behavior at high temperature; and
wear resistance at high temperature;
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3. an assessment of rotor fabricability using the cast SiC/Al
material. Such assessment to include the fabrication of one or
more SiC/Al rotors.

It is suggested to NASA and to John Deere Technologies that John
Deere participate in this proposed program by assisting in the design of a
cast SiC/Al rotor.

It is furtner recommended to Dural Aluminum Composites Corporation
that refinements to their casting process be investigated to improve the
properties of the baseline process and to improve the homogeneity and
properties of tnis material.
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APPENDIX A

MANUFACTURER'S MECHANICAL PROPERTIES
DATA ON A201-T6
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1 September 1971

Table Al. Design Mechanical and Physical Properties for 201.0
Aluminum Alloy (castings)

Specification ........ceiiienennn. AMS 4228 AMS 4229
b - . P Castings Castings
Temper ...ooovviiiniiiincacnnns T6 ™
Clas?® oo 10 10° 2% 1€
Basis ...eoiiiiiiiiiiaiia., s s s S
Mechanical Properties:
F ksiooooiiiiiiiiinienann. 60 56 60 s6
R S0 4 $0 48
O P 51 49 - -
Fopksiiiiiiiiiiiiinian, 37 3s - -
F . ksi:
©D=15......... peenanans 90 84 - -
E@D=2.0) cooieiinannnnnnnn. 115 107 - -
Fb . ks
(€/D=1.8) .ovveinnnnnnnn.n. 17 74 - -
©D=2.0) .coueeiannnnnn... 90 86 - -
e, percent:
N2inordD ..o [ 3 3 1.5
E100KS o oiviiiiiiiniannnn, 10.3
E 100ksi coiiiiiiiii... 10.7
G 1OPKSi v oveeieeiiiaennnnn, 4.0
B ettt et .33
Physical Properties:
wbfind ..., Ceveonn . 0.101
CoBUW/(IBMF) .evveeennannnns 0.22 (at212F)
K. Bro/[(h)( I DP(D)] - ....... 70. Gt77F
a. 10-% in./in./F (See Figure 3.12.1.0)

“Om designations are defined in MIL-A-21180C.
.hopcrtin in Classes 1 and 2 are obtainabdle only in designated areas within casting.

€Properties in Classes 10 and 11 apply to unspecified locations within zuun;

A201-T6 Reference Data

From MIL-HDBK-5B, 1 September 1971,
Metallic Materials and Elements for
Aerospace Vehicle Structures.
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APPENDIX B

HIGH TEMPERATURE MODULUS DATA
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APPENDIX C

THERMAL CONDUCTIVITY OF 10 v/o and 20 v/o SiC/A201-T6
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Thermal Conductivity of SiC/Al

INTRODUCTION

Tw? samples of SiC dispersed in an aluminum matrix were submitted by J.
Norman of PDA Engineering for thermal conductivity testing. One sample con-
tained 10 volume percent of SiC (10V) and the other contained 20 volume
percent (V). The bulk density (d), specific heat (Cp) and thermal diffusiv-
ity (a) were measured. The thermal conductivity (1) was calculated as the

product of these quantities, i.e. A = oCpd.

Specific heat was measured using a standard Perkin-Elmer Model DSC-2 Dif-
ferential Scanning Calorimeter (Figure 1) using sapphire as a reference
material. The standard and sample, both encapsulated in pans, were subjected
to the same heat flux and the differential power required to heat the sample
at the same rate was recorded using the digital data acquisition system (Fig-
ure 2). From the mass of the sapphire standard, pans, the differential power,
and the known specific heat of sapphire, the specific heat of the sample is
computed. The experimental data is wvisually displayed as the experiment

progresses. All measured quantities are directly traceable to NBS standards.

Thermal diffusivity was determined using the 1laser flash diffusivity
method. The flash method, in which the front face of a small disc-shaped sam-
ple is subjected to a short laser burst and the resulting rear face
temperature rise is reccrded, is used in over 80Z of the present thermal dif-

fusivity measurements throughout the world. A highly developed apparatus
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exists at TPRL (Figure 3) and we have been involved in an extensive program to
evaluate the technique and broaden its uses. The apparatus consists of a
Korad K2 1laser, a high vacuum system including a bell jar with windows for
viewing the sample, a tantalum tube heater surrounding & sample holding assem-
bly, a spring-loaded thermocouple or an i.r. detector, appropriate biasing
circuits, amplifiers, A-D converters, crystal clocks and a minicomputer based
digital data acquisition system (Figure 2) capable of accurately taking data
in the 40 microsecond and longer time domain. The computer controls the
experiment, <collects the data, calculates the results and compares the raw

data with the theoretical model.

RESULTS AND DISCUSSION

The diffusivity sample dimensions, masses and bulk density values are
given in Table 1. The bulk density of the 20V sample is only about one per—

cent greater than that of the 10V sample.

Specific heat results are given in Table 2 and are plotted in Figure 4.
The samples were rerun because of the relatively large "peak" and "valley"
exhibited during initial heating. The peak and valley were evident for both
samples. Results obtained during the reruns (after the samples had been heat-
ed to 317C) followed the normal pattern for annealed materials. It is not
unusual for aluminum based materials to exhibit anomalies until they are

t

annealed.
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Thermal diffusivity results are given in Table 3 and are plotted in Fig-
ure 5. These measurements were made at selected temperatures and the samples
were allosed to come to equilibrium before the laser pulse. The results for
the two materials are fairly close to each other. The maximum difference is

less than 87 and occur at the highest temperature measured.

Thermal conductivity values are calculated in Tcble 4. The anneaied
Visa. ¢ used for specific heat since the diffusivity results are obtained
during conditions in which the anomalous specific heat behavior would not be a
factor. The conductivity results are plotted in Figure 6. Because the dif-
fusivity, specific heat and density values for the two materials are all
similar, the conductivity values are also close together. The maximum differ-

ence is less than six percent.

ORIGINAL FAGE i3
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TABLE Cl

Sample Geometries and Bulk Density Values

Diameter
(in.)

0.5080
0.5060

TABLE (2

Mass Densitg
(gms) (gm cm™)
1.8882 2.828
1.9139 2.851

Specific Heat Results

(ws gn-1K-1)(ws gm-1K-1)(ws gn-1K-1)(ws gm-1k-1)

Sample Thick
Designation (in.)

lov 0.201

20V 0.204
Temp. 10V-RUN 1
(c)

52. 0.9068
17. 0.9351
102. 0.9650
127. 0.9866
152, 1.0118
162. 1.0247
172. 1.0410
182. 1.0623
192. 1.0874
202, 1.1068
212, 1.1013
222, 1.0570
232, 0.9876
252, 0.8370
262. 0.7956
272. 0.7861
282. 0.8219
292. 0.8833
302. 0.9446
312. 1.0012
317. 1.0219

10V=-RUN 2

0.8937
0.9109
0.9332
0.9546
0.9729

0.9792
0.9843
0.9930
0.9959

0.9983
0.9999
1.0003
1.0004
1.0006

1.0027
1.0095
1.0238
1.0466
1.0724

1.0956
1.1045

-77-

20V-RUN 1 20V-RUN 2

0.8854
0.9280
0.9727
1.0034
1.0175

1.0178
1.0182
1.0241
1.0341
1.0333

1.0117
0.9759
0.9434
0.9088
0.8669

0.8259
0.8213
0.8761
0.9563
1.0233

1.0615
1.0728

0.8755
0.9003
0.9270
0.9510
0.9712

0.9783
0.9840
0.9890
0.9929
0.9959

0.9983
0.9996
0.9999
1.0002
1.0016

1,0055
1.0142
1.0301
1.0518
1.0728

1.0897
1.0959
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TABLE C3

Thermal Diffusivity Results

Sample Temp. u51vi
Designation (°C) (cm sec”
1ov 23 0.620
75 0.582

150 0.572

225 0.597

315 0.633

20V 23 0.627
75 0.588

150 0.597

225 0.588

315 0.588

TABLE C4

Thermal Conductivity Calculations

Sample Temp. Den51ty Specific Heat Diffusivity Conductivity
Designation (°C) (gm cm™ ) (Ws gm -lg-1 ) (cm2 sec l) (Wcm‘lK‘l)

1oV 23 2.828 0.875 0.620 1.534
75 2.828 0.910 0.582 1.498

150 2.820 0.967 0.577 1.578

225 2.828 1.000 0.597 1.688

315 2.828 1.096 0.630 1.953

20V 23 2.851 0.855 0.627 1.528
75 2.851 0.902 0.588 1.512

150 2.851 0.967 0.591 1.629

225 2.851 1.000 0.588 1.676

315 2.851 1.098 0.588 1.841
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Figure C2 Digital Data Acquisition System
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Figure C3 Flash Diffusivity Apparatus
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APPENDIX D

THERMAL EXPANSION OF 10 v/o and 20 v/o SiC/A201-T6
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Coefficient of thermal
Corporation, Irvine,
Analysis Data Station.

Specimen [.D.

201-2
10v/0-2
20V/0-2

expansion results from Analytical
CA, wusing a Perkin-Elmer TMS-2 with

Material
A201-T6 (unhipped)
10V/0 SiC/A201-T6 (hipped)
20V/0 SiC/A201-T6 (hipped)
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ORANGE COUNTY MATERIALS TEST LABS, INC

O AT e -3 N Ly P Y N e T - L —, e~ A~ -

- - 1320B EAST ST. ANDREWS PLACE
N SANTA ANA CALIFORNIA 92705

\%h*i«b (714) 751-9124

April 9, 1986

Mr. John Norman OCMTL #860302

PDA Engineering
1560 Brookhollow Drive
Santa Ana, California 92705

SAMPLE DESCRIPTION:

Three (3) aluminum alloys labelled: A201-T-6
20%
and 10% .
SCOPE:

Determine linear coefficent of expansion (CTE) for each sanmple.
INSTVEURENTATION:

Fowler MAX-CAL electronic digital calipers
Perkin-Elmer TMS-1 thermomechanical analyzer with DSC-2
temperature controller and thernal analysis data station.

METHOD:

Samples were machined to 2 millimeters thickness along direction
of measurement to accomondate the test apparatus. Intial sample
dimensions vere recorded from digital calipers at rooa
temperature.

The linear displacenment with respect to increasing texperature of
each sample was recorded from the Perkin-Elmer TMS-1. Theramograph
plotting and expansion coefficent calculations were perforaed
with the thersmal analysis data station.
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OF POOR QUALITY
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RESULTS:
Linear esxpansion coefficents - ppmn/’C 3 (ppa/’F)
Temperature ranées
Sasple 1D 50-100’C 100-200°C 200-300’C
) (122-212’F) (212-392°F) (392-572"F)

A201-T-6 18.1 23.4 25.8
(10.1) (13.0) (14.3)

20% 18.6 24.8 24.2
(10.3) (13.8) (13.4)

10% 15.6 17 20.9
(8.67) (9.44) (11.6)

ENCLOSURES:

Theraographs depicting linear displacement as a function of
teaperature are enclosed for each sample. CTE calculations, in .
ppm/*C, are included with thermographs.

COMMENTS:

Original CTE measurements by strain gague monitoring were aborted
vhen proper gagues were not iamediately availalable. Measurements
recorded froa improper gagues yeild erroneous data. The results
of this report reflect measurenents taken at Analytical Service
Center in Irvine, California. These measurements were made under
my direct supervision to expidite analyslis.

Respectfully Sukbmitted,

- -

/

g el L

William Wire,
Consultant
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