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FOREWORD

The papers presented here have been derived primarily from

speakers' summaries of talks presented at the Flight

Mechanics/Estimation Theory Symposium held May 23-24, 1989 at the

Goddard Space Flight Center. Papers included in this document

are presented as received from the authors with little or no

editing.
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THE EFFECTS OF SEASONAL AND LATITUDINAL EARTH
INFI::IARED RADIANCE VARIATIONS ON ERBS

ATTITUDE CONTROL*

M. Phenneger, J. Dehen, D. Foch, E. Harvie, M. Virdy
Computer Sciences Corporation

ABSTRACT

Analysis performed in the Flight Dynamics Facility by the Earth Radiation

Budget Satellite (ERBS) Attitude Determination Support team illustrates

the pitch attitude control motion and roll attitude errors induced by Earth

infrared (IR) horizon radiance variations. IR scanner and inertial refer-

ence unit (IRU) pitch and roll flight data spanning 4 years of the ERBS

mission are analyzed to illustrate the changes in the magnitude of the

errors on time scales of the orbital period, months, and seasons.

The analysis represents a unique opportunity to compare prelaunch esti-

mates of radiance-induced attitude errors with flight measurements. As a

consequence of this work the following additional information is obtained:

an assessment of an average model of these errors and its standard devia-

tion, a measurement to determine and verify previously proposed correc-

tions to the current Earth IR radiance data base, and the possibility of a

mean motion model derived from flight data in place of IRU data for
ERBS fine attitude determination.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), under Contract NAS 5-31500.



1.0 INTRODUCTION

This paper presents analysis performed in the Goddard Space Flight Center (GSFC)

Flight Dynamics Division (FDD) by the Earth Radiation Budget Satellite (ERBS) Attitude

Determination Support team. The analysis was performed to measure the ERBS infrared

(IR) horizon scanner sensing errors induced by seasonal and latitudinal variations in the

Earth's IR horizons. The ERBS mission attitude data offers a unique opportunity to com-

pare prelaunch and early postlaunch estimates of radiance-induced attitude errors with

flight measurements of these errors. In addition, this analysis attempts to corroborate the

conclusions about the FDD Earth ttorizon Radiance Data Base (HRDB) from earlier

analysis of data from the Nimbus-7 Limb Infrared Monitor of the Stratosphere (LEVIS)

experiment. The effects on estimates of these errors, due to adjustments to the radiance

data base derived from the earlier LIb'IS analysis, are evaluated. Radiance errors are

derived by a difference between pitch and roll angles obtained from processed IR scanner

telemetry and pitch and roll propagations from batch least squares estimates of pitch and

roll reference attitudes using the inertial reference unit (IRU). Averages of these differ-

ences are used to illustrate the changes in the magnitude of the horizon radiance-induced

pitch and roll errors on time scales of the orbital period, a month, and 1 year.

The remaining sections of this paper are as follows. Section 2 is an overview relating this

analysis to earlier analysis of IR radiance errors, a description of the ERBS orbit charac-

teristics and attitude system, and a brief description of the ERBS IR scanner sensing

geometry and Earth pulse processing. Section 3 describes how the errors are caused by

seasonal radiance variations, explains the concept and procedures applied here to extract

the errors using the ERBS flight system telemetry data, and presents and describes the

flight data errors. Section 4 provides a brief explanation of the IR sensor modeling soft-

ware system and the result of attempts to model the flight data with this system using two

schemes for rescaling the original ERBS radiance profiles. Section 5 is a summary with

conclusions about the results and future applications of this analysis.

2.0 OVERVIEW

Analysis performed between 1977 and 1984 evaluated the methods of applying an Earth

IR horizon radiance model to correct IR scanner flight data (Ref. 1). Flight data from

12 spacecraft, including early postlaunch data from the ERBS, were used to compare the

actual IR scanner response to the modeled response using the Horizon Radiance Modeling

Utility (HRMU) (Ref. 2). Differences in the actual Earth horizon radiance pitch and roll
errors relative to the model were found to occur due to limitations in the Earth IR model

and IR scanner sensitivity to short duration cold cloud effects.

Data from the Nimbus-7 LIMS experiment, which included horizon radiance measure-

ments in two IR spectral passbands similar to those used for IR horizon scanners, were

compared with a model of the LIMS data using a data base of Earth IR spectra referred to

here as the HRDB (Ref. 3). The HRDB was developed using the LOWTRAN computer

program (Ref. 4) and a data base of worldwide balloon and rocketsonde temperature

profiles (Ref. 5). The LIMS comparison indicated that the modeled IR horizon intensities



for the polar latitudes were underestimatedfor the summer seasonand overestimated for
the winter season.

An overview of the ERBS attitude system and orbital characteristics is provided in
Table 1.

Table 1, ERBS Orbit and Attitude Characteristics

Orbit:

Semimajor axis: 6891 km

Inclination: 57 deg

Eccentricity: 0.0014 (near-frozen orbit)

Attitude Parameters:

Angular momentum biased, Earth oriented, 1 revolution per orbit

Nominal geodetic pitch and roll = 0.0 deg

Nominal yaw = 0.0 or 180.0 deg for solar array illumination

Attitude Sensors:

Two Adcole fine Sun sensors 64x64 deg 0.004 deg (l.s.b.)

Two ITHACO Scanwheel IR sensors 0.025 deg (l.s.b.)

One Schoenstedt three-axis fluxgate magnetometer 4.68 mg (l.s.b.)

Two IRUs with three Northrop rate gyros 0.001 deg/sec (l.s.b.)

One gyrocompass onboard analog processor 0.03125 deg (l.s.b.)

Attitude Actuators:

One pitch momentum wheel

Two ITHACO scanwheels

Four orbit adjust and pitch/roll hydrazine thrusters

Two pairs of yaw turn hydrazine thrusters

One roll axis and one yaw axis, 50-ampere turn meter squared (ATm 2) magnetic dipole
torque rods for pitch momentum control

Two pitch axis 50 ATm 2 dipole torque rods for roll control

2.1 ERBS IR SCANNER DESCRIPTION

The ITHACO IR scanwheels employ a rotating prism lens and a single-flake thermistor

bolometer to sense the Earth with a lx2-deg field of view (FOV), which sweeps along a

45-deg scan cone at 2000 revolutions per minute (rpm). The IR passband is between 14

and 16.1 microns. The scanner cone axes are on opposite sides of the spacecraft in the

pitch-yaw plane and are canted 10 deg down from the pitch axis. Figure 1 illustrates the

inflight geometry of the scanner optics for nominal attitude (Ref. 6).

The IR scanner uses normalized threshold locator logic. For this, the Earth IR pulse is

averaged between 15 and 20 deg and 20 and 25 deg, respectively, from the inward
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and outward horizons to determine the horizon triggering threshold voltage. A typical

Earth pulse is shown in Figure 2, A magnetic pickoff mounted on the sensor body pro-

vides a reference pulse from which the acquisition of signal (AOS) and loss of signal

(LOS) to index angles are computed (Qin and Qou, in Figure 2). The pitch angle is

computed as

P=+ Kp [(f2_s- _Ls) + (f2Ls- ff_Ls)] (1)

where R and L designate the right and left side scanner angles, respectively, and where

Kp is a geometry-dependent constant. For ERBS Kp = 0.2462.

Roll is computed as

R = Kr (g_R _ _"_L)

and (2)

= R,L K,L + f los )

where Kr = 0.24"7.

Figure 3 shows the scanner ground traces at 5-minute intervals for both an equatorial and

a polar view of the Earth. It can be seen that the AOS and LOS threshold computation

regions (indicated by hashmarks in the figure) are separated by a wide range of latitudes
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in the equatorial regions, and that the left and right scanners are widely separated at the
northern and southern extremes of the orbit.

3.0 HORIZON RADIANCE ERRORS FROM FLIGHT DATA

The horizon radiance-induced pitch and roll errors in the IR scanner input to the ERBS

magnetic control system (MCS) control loop are caused by radiance gradients along the

scan ground traces. The gradients are most severe in the winter and summer seasons

between the polar latitudes and the temperate latitudes. The gradient causes the threshold

normalization region intensity and the rising edge of the Earth pulse intensity to vary

relatively. A brightening at the horizon causes an increased Earth width for a given

threshold voltage. Likewise, a diminished radiance at the horizon will decrease the sensed

Earth width. When the ERBS is on the Equator, a minimal north-south gradient occurs for

any month and pitch errors are near zero. Roll errors at this location are dependent on

east-west gradients that on the average will be zero. At the midlatitudes, near 40 deg, the

AOS and LOS horizons for either scanner are at maximum latitudinal separation and

include the latitude regions where the stratosphere experiences the greatest seasonal radi-

ance variation. These are latitudes between 40 deg and the poles. Thus, the pitch errors

will be maximum. At the highest and lowest latitudes, the left and right scanner traces are

at north and south extremes, where differences between the 80 deg and 40 deg radiance

intensities will determine the peak roll errors. At these points the latitudes of the AOS and

LOS horizon points are the same for each scanner and pitch errors are expected to be

near zero.
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3.1 ERROR COMPUTATION CONCEPTS

The flight system horizon radiance-induced errors are computed by subtracting IRU-based

pitch and roll determined by the ERBS Attitude Ground Support System (AGSS) (Ref. 6)

Fine Attitude Determination Subsystem (FADS) from the IR scanner pitch and roll. The

IR scanner pitch error is the error input to the ERBS pitch control loop. Horizon radiance-

induced pitch errors from the IR scanner thus cause pitch motion to null the IR scanner

error signal that is received in the downlink telemetry. However, this motion is sensed by

the pitch IRU. The difference, IR scanner pitch minus FADS-IRU pitch, is approximately

equal to the radiance-induced pitch error in IR scanner output.

The IR scanner roll error signal is not used for continuous roll control, but for intermittent

activation of the magnetic dipoles for nutation and precession control. These torques

cause the spacecraft pitch axis to precess along the 33-deg latitude line at a daily average

rate of 4-deg per day, which is the ascending node rate. IR scanner roll minus FADS-IRU

roll is approximately equal to the radiance-induced roll error in IR scanner output.

In summary, the IR scanner pitch error is continuously hulled by the reaction wheels, and

therefore does not unambiguously indicate attitude motion. The IR scanner roll error

signal should vary with the radiance induced error, with periodic steps to a null roll

caused by magnetic dipole precession activity. The subtraction of IRU pitch and roll atti-

tude data from IR scanner pitch and roll thus isolates IR horizon radiance errors. Since

true spacecraft motion caused by control system and environmental torques is registered

by both the IR scanners and the IRUs, this motion will not contribute to the difference.

Similarly, the pitch rotation that occurs in response to the high-gain antenna transponder

activation for Tracking and Data Relay Satellite (TDRS) contacts, will not appear in the
data.

3.2 ERROR COMPUTATION PROCEDURE

The analysis procedure begins by processing selected orbits of ERBS attitude telemetry

from archived data spanning 4 years of mission operations, between 1984 and 1988. The

Data Adjuster subsystem of the AGSS is used to write processed IR scanner pitch and roll

data to the Processed Engineering data set. After further processing, the IRU pitch and

roll solutions are derived in the FADS and written to the Attitude History File (AHF). A

FORTRAN utility program, written for this analysis, then subtracts the IRU pitch and roll

angles from the IR scanner pitch and roll angles to produce the IR scanner horizon

radiance-induced errors. These errors are averaged over 1-deg latitude bins on the north-

ward and southward sides of each orbit to statistically improve the accuracy and reduce

the data volume. To remove the effect of IR scanner and AGSS processing biases, the

monthly averaged error representations are shifted to be zero at 0-deg latitude, where

these errors are expected to be zero due to orbital geometry and radiance profile symme-

try. The bias values were determined by the averaged pitch and roll errors between -5 and

+5 deg latitude. The one-orbit representations of the latitude averaged errors were again

averaged with three to five orbits for each month in each of the 4 years to form an overall

average for each month.



3.3 FLIGHT DATA ANALYSIS RESULTS

The pitch and roll errors obtained from flight data analysis for each month of the year are

plotted versus subsatellite latitude in Figures 4a and 4b. The standard deviations from the

mean and the northward (N) and southward (S) direction of flight are indicated by the

size and type of the plot symbols. The number of orbits averaged is noted to the right of

each plot. The tick marks on the ordinate at 0 deg latitude are at intervals of 0.I deg.

The following characteristics should be noted. For most of the months the pattern of the

IR radiance-induced pitch and roll errors is as expected. December and February pitch

errors are unusual when compared with adjacent months. The magnitude of the pitch and

roll errors in the winter and summer seasons is two to five times higher than the pre-

launch analysis predicted. The Southern Hemisphere summer and winter errors are sig-

nificantly different from their Northern Hemisphere counterparts. The effects of the

gradual change in the radiance with season is clearly evident in this 4 year averaged data

that indicates a high level of annual similarity in the stratosphere. Finally for June and

July, the months when the errors are the largest, the standard deviations do not exceed

the error amplitude. The next section describes the results of analysis to simulate these

data using the HRMU.

4.0 MODELING THE FLIGHT DATA WITH THE HORIZON RADIANCE
MODELING UTILITY

The horizon radiance errors modeled by the HRMU are derived from a detailed computa-

tion using an Earth IR model and an IR scanner model composed of the orbital geometry,

the IR scanner optics, and the signal processing electronics. The input characteristics of

the IR scanner electronics include threshold normalization parameters and time constants,

scanner mounting tilt angles and FOV, and orbital radius and inclination. HRMU input is

the IR horizon profile of brightness versus FOV tangent height and angle of incidence to

the Earth data. These data are in a set of nine profiles for each month in 20-deg latitude

bins between -90 and +90 deg latitude. This horizon profile dataset is derived from the

HRDB by integrating the HRDB Earth IR spectra over the optical IR passband for each of

the 51 viewing angles represented in the profile. The HRMU computes sensor response to

the Earth radiance by integrating the IR radiance, from a latitude interpolated function of

the profiles, incident on the scanner optics. As the scanner FOV sweeps across the Earth,

a model of the bolometer energy pulse is computed. The scanner step response function is

convo|ved with the pulsed input radiance signal to compute the electronics output Earth

pulse signal. The horizon crossing angle is determined from this output pulse as is done

onboard the spacecraft in the actual IR scanner electronics. The pitch and roll error sig-

nals expected over one orbit for a specific month of the year are computed using the

horizon crossing angles according to Equations (I) and (2). The HRMU model of the

ERBS IR scanner is not precise, and experience has shown that the following approxima-

tions made do not significantly alter the results:

• Two components of the electronics transfer functions are not included

• Nonlinear components in the electronics are not modeled; these are voltage

limiting components

IO
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The Earth pulse processing branch of the actual ERBS IR horizon scanner cir-
cuit for threshold normalization is not modeled. Instead, the Earth detection

pulse processing transfer function is also used for threshold computation.

The optics are modeled by a square FOV without distortion due to the prism-

lens optics.

The pitch and roll errors expected for ERBS as a result of prelaunch analysis using the

HRMU and HRDB are illustrated in Figures 5a and 5b. The HRMU was also run on the

radiance profile data adjusted using two schemes. The first uses LIMS analysis results;

the second adjusts the profiles until a reasonable match to the flight data is obtained.

4.1 HORIZON RADIANCE ANALYSIS USING LIMS DATA

Analysis of the HRDB, in comparison with Nimbus/LIMS Earth radiance data, indicated

that the (HRDB) model underestimates horizon radiance errors in the summer latitudes

and overestimates the errors in the winter latitudes, causing the HRMU to underestimate

the corresponding pitch and roll errors. This result is also verified by the comparison of

the roll and pitch errors measured in this work with errors predicted by the HRMU using

original horizon radiance profile data as input. To investigate the cause of the difference

between the prelaunch predictions and the flight measurements of the errors, modifica-

tions were made to the HRMU input radiance profiles.

Profile adjustment scale factors were determined from plots of 0-kilometer tangent height
radiance intensities from LIMS and HRDB models of LIMS profiles, illustrated in Fig-

ure 6 from Reference 3. For the months in which LIMS data were not available, the

radiance profiles in the Northern and Southern Hemispheres were assumed to be season-

ally symmetric. The pitch and roll errors resulting from this rescaled profile data are

illustrated in Figures 7a and 7b. Improved agreement between predicted and measured

pitch and roll errors for ERBS is demonstrated; however, the differences in the error

magnitudes of 0.2 deg still remained. Because of this the second adjustment scheme was
tried.

4.2 ADJUSTING THE RADIANCE PROFILES TO MATCH THE FLIGHT DATA

ERRORS

The monthly errors from this process are illustrated in Figures 8a and 8b. The match is

approximate; in most cases the model agrees with the average flight errors within the

standard deviation of the flight data. During this exercise the following understanding was

obtained. Efforts to raise the pitch errors relative to the LIMS profile renormalization

scheme by raising and lowering the 60 and 80 deg latitude radiance profile intensities

caused roll errors to exceed 0.5 deg. Thus it was determined that the pitch error in the

model is controlled by changing the radiance gradient between 20, 40, and 60 deg

latitudes and that to avoid excessive roll errors the gradient between 40, 60, and 80 deg

latitudes must be moderated. For the summer months the radiance increases at 80 deg

latitude appear to lag behind those at 60 deg latitude, as these latitudes receive increasing

amounts of sunlight with the approaching solstice. Similarly, the winter 80-deg profiles

are near and not much dimmer than the 60-deg profiles. Thus, roll errors were moderated

13
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by flattening the gradients in the high latitudes, making 40 and 80 deg radiance differ-

ences smaller in the summer and winter seasons.

5.0 CONCLUSIONS

The results of this analysis contribute significantly to the understanding of the effect of

horizon radiance-induced errors in IR scanner systems and complement earlier work per-

formed in the GSFC/FDD. The flight data measurements of the effect provide an impor-

tant comparison to and calibration of the Earth horizon radiance model. The results also

answer questions about the significance of the horizon radiance effect for attitude deter-

mination pointing control accuracy and about the chances of improving the accuracy of

attitude measurements and pointing performance using horizon radiance modeling tech-

niques. They also demonstrate an additional modeling technique using spacecraft flight

data. In particular, the measurements indicate that the measured horizon radiance effect

for ERBS exceeds the original HRMU-modeled value by as much as a factor of five.

Measured values of 0.45 deg compare to 0.1 deg from the model of pitch errors for the

midlatitudes in July. A possible source of this difference was known in 1984. It was

reported then that the HRDB underestimated brightness contrast in the horizon radiance

profiles for the polar latitudes in the winter and summer hemispheres. ERBS pitch and

roll attitude information obtained from pure IR scanner telemetry thus requires the re-

moval of errors as large as 0.45 deg. The accuracy of the model of these errors can be

assessed from the results in three ways:

1, Applying no correction for radiance effects to the IR scanner pitch and roll

limits the accuracy of the IR scanner attitude to 0.5 deg, ignoring all other er-

rors due to biases, alignments, and electronic, optical, and mechanical noise.

. Comparing the accuracy of pitch attitude results corrected using errors modeled

from the original HRDB, there is a maximum 0.3 deg systematic error. How-

ever, applying the original horizon radiance correction model results in less
error than no correction at all.

° Comparing the results of IR pitch accuracy using the horizon radiance errors

derived from a corrected IR Earth model, based on this work, to those from the

uncorrected model shows that a significant component of the systematic error

associated with latitude and season is eliminated. The resulting ]R pitch attitude

solution accuracy is then limited by the variance of the average error measured

in this work and by the extremes exhibited by the longitudinal variations. The

results indicate that the improved model will compensate for errors as large as

0.45 deg, with a 3_ error in the model of these values of approximately

0.3 deg.

The results of this analysis may be used for attitude determination support of ERBS in the

future as a replacement for the spacecraft attitude motion model currently provided by

the IRU. Additional enhancements can be made to this motion model by adding the

effects of control loop magnetic torquing in response to spacecraft nutation and preces-
sion.
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ABSTRACT

Magnetic torquing of spacecraft has been an important mechanism for attitude control since
the earliest satellites were launched. Typically a magnedc control system has been used for
precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for
systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-
biased spacecraft. Although within the small satellite community them has always been interest in
inexpensive, light-weight, and low-power attitude control systems, completely magnetic control
systems have not been used for autonomous three-axis stabilized spacecraft due to the large
computational requirements involved. As increasingly more powerful microprocessors have
become available, this has become less of an impediment. These facts have motivated
consideration of the all-magnetic attitude control system presented here.

The problem of controlling spacecraft attitude using only magnetic torquing is cast into the
form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the

geomagnetic field along a satellite trajectory is not constant, the system equations are time varying.
As a result the optimal feedback gains are time-varying. Orbit geometry is exploited to treat
feedback gains as a function of position rather than time, making feasible the onboard solution of
the optimal control problem. In simulations performed to date, the control laws have shown

themselves to be fairly robust and a good candidate for an onboard attitude control system.
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INTRODUCTION

Magnetic torquing has been used for spacecraftattitudecontrolsince the launch of the

earliest satellites. There are many operational spacecraft which use magnetics for

precession/nutationdamping, momentum dumping, and largeangle maneuvers [I-4].Also, there

are existing three-axiscontrol systems which use magnetic torquing to maintain spin axis

orientationof a pitch reactionwheel [5]. Use of magnetics has recently been suggested for

libration damping and arbitrary yaw angle control of a gravity gradient stabilized satellite [7].

Complete three-axis attitude control has not been used because of the large computational
requirements involved. As increasingly more powerful microprocessors have become available,

computation has become less of an impediment. This has motivated consideration of the all-
magnetic attitudecontrolsystem presentedhere.

We consider a rigid spacecraft without a gravity gradient boom. For the present
discussion, we assume a perfect knowledge of the spacecraft attitude is available. Finally, we
assume the spacecraft is in a near circular orbit and has a nadir pointing nominal attitude.

The geomagnetic field, while essentially constant in an earth-fixed reference frame, is time-
varying in the nominal body reference frame. This introduces a time-varying element into the
linearized system of equations. Because the magnetic torque vector is constrained to always lie
perpendicular to the local geomagnetic field vector, the system appears uncontrollable if fixed at
any instant in time. (When considered over time, it is completely controllable.) This does,
however, limit the achievable closed loop transient reaction speed to the order of magnitude of the
magnetic field time variation. For a nadir pointing satellite in a polar orbit, this is about two cycles
per orbit. The reaction speed should decrease with decreasing orbit inclination because the
geomagnetic field variation decreases in magnitude.

FORMULATION OF THE EQUATIONS OF MOTION

 toza adanlm

LQR

P,R,Y

COo

Ri(0)

CB<--S

CN<---.-S

CB<---_

IB

Linear Quadratic Regulator

Pitch, Roll, Yaw (2-1-3 Euler angles)

Mean angular rate of the local vertical reference frame.

Rotation matrix for an angle 0 about the i-axis.

Rotation matrix from inertial (space) to actual body coordinates.

Rotation matrix from inertial (space) to nominal body coordinates.

Rotation matrix from nominal body to actual body coordinates.

Angular velocity of spacecraft with respect to inertial frame, represented

in the body frame.

Total external torque acting on spacecraft body, in body frame.
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Zdist,B

Y,con,B

Rs

R.

J

Ji {J1,J2,J3 }

on(t)

th

_H_N(t)

g

hi(t) {hl(t),h2(t),h3(t) }

di(t) {dl(t),d2(t),d3(t) }

x(t)

F

G(t)

J(.on(t))

Sf

A

B

S(t)

K(t)

K(13,_.)

a

c

i

External disturbance torque, excluding gravity gradient torque,

represented in the body frame.

Control torque acting on spacecraft body, represented in body frame.

Magnitude of spacecraft position vector in Earth centered coordinates.

Unit vector from center of Earth to spacecraft, represented in the body
frame.

Spacecraft inertia tensor, represented in the body frame.

ith diagonal element of inertia matrix J.

Control dipole moment of spacecraft, represented in the body frame.

Local geomagnetic field intensity, represented in the body frame.

Local geomagnetic field intensity, represented in the nominal body
frame.

Geocentric gravitational constant, GME = _t = 3.986 x 1014 m3/s2.

i th component of ft,(t).

i th component of 0n(t).

State vector[R, P, V, I_, P, ,_,]T.

System matrix of linearized equations.

Input coupling matrix of linearized equations.

Quadratic cost functional.

Final time state cost matrix.

State cost weighting matrix.

Control cost weighting matrix.

Solution of the matrix Riccati equation.

Feedback gain matrix, parameterized by time.

Feedback gain matrix, parameterized by (13,_.).

Orbit semi-major axis

Orbit eccentricity.

Orbit inclination.
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f2

CO

tOE

L

Argument of the ascending node.

Argument of perigee.

Angular rate of the Earth -- 2n radians/24 hours.

Earth fixed longitude of the ascending node.

Argument of latitude (defined in Figure 4).

FORMULATION OF THE EQUATIONS OF MOTION

For the problem at hand, we have considered the rigid-body equations of motion of a nadir-
pointing spacecraft in a circular orbit. Referring to Figure 1, where (S) subscripts indicate inertial
frame, (N) indicates nominal body frame, and (B) indicates actual body frame, we can represent
attitude using 2-1-3 Euler angles as

CB<_S = R3(Y) RI(R) R2(toot + P)

CB<--S = R3(Y) RI(R) R2(P) R2(toot)

(1)

(2)

where Ri(0) is a rotation about axis i through angle 0. Since the desired trajectory has Y, R, and P
all zero, we can define an intermediate "nominal" attitude (to be used later) as

which gives

CN<--S = R2(toot) ,

CB<--N = R3(Y) RI(R) R2(P) .

(3)

(4)

The angular velocity of the body frame with respect to the inertial frame can be expressed as

f°l= 0 +R3(Y) 0 +R3(Y) Rl(R)(mo+15 1 •

1 0 0 (5)

To first order in angles and rates this is

R + 0_oY

= mo +15

Y- moR (6)

To obtain the first-order approximations to Euler's equations we write

_d3 = d (J _,_).B) +_I.B xJ0_B (7)

which, assuming a diagonal inertia matrix, gives
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_KB _ J1 R + _o(J1 + J3 - J2) Y + o_(J2 - J3) R]/J2 _i

/ J3 _" - O)o(J1 + J3- J2) I_ + to2(J2 - J1) Y J (8)

The applied torque "_Bconsists of the gravity gradient, control, and disturbance torques, and can be

represented as

]_d3 = -_dist,B + _._-con,B + _ × (J a_) , (9)

where Rs is the geocentric radius, and RB is the unit vector from the earth to the spacecraft,
represented in the body frame. Since _RBcorresponds to the z-axis in the nominal reference frame,

we can use the first-order approximation

(10)

giving

3kt [ (J2- J3) R 1_LB= _u_list,B + _.con,B - R3 01 - J3) P •0 (11)

Finally, we examine the control torque Icon,B. This torque is obtained from the

commanded dipole d_a(t) as

.'Ttcon,B = __B(t) × H__B (12)

where __3 is the ambient field intensity represented in the body frame. We also have

_H_B = CB<--N __,_(t) = _H_(t) (13)

where the explicit time dependence applied to _H..N(t) emphasizes that its value is attitude

independent. We would like to replace _ in equation (12) with .U_(t). This is valid as a first-

order approximation because we will later be assigning a control law for .0__(t) which is linear in

angles and rates.

Combining equations (8), (11), and (12) with the approximation (13), we obtain the
complete linearized equations of motion as follows:

x_"(t) =

R rooo1oo
P ][ 0 0 0 0 1 0

Y 0 0 0 0 0 1

1_ F41 0 0 0 0 F46

0 F52 0 0 0 0

_' 0 0 F63 F64 0 0

_- R
P

Y
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where

0 0 0

0 0 0

0 0 0

0 G42(t) G43(t)

G51(t) 0 G53(t)

G61(t) G62(t) 0

J1 _ Rs]

dl(t) -]d2(t) / + Yatist,B
d3(t) J

G51(t) =-h3(t) j_.l

G61(t) = h2(t) j_l

F63 = to2,_J2-J_/
- _ J3 / G42(t) = h3(t) J] 1

F64 = CO./Jl+J3-J_ t
"_ J3 ! G62(t) = -hi(t) j]l

t.0JJl+J3-J21
F46=- ,,_ _1 / G43(t) - -h2(t) _11

G53(t) = hi(t) j_l

where

hi(t), h2(t), h3(t) are the components of.H__(t) ,

dl(t), d2(t), d3(t) are the components of tin(t) .

or, in more compact notation,

d_ttx = Fx + G(t) fla(t) + :_tist,B (14)

APPLICATION OF THE LINEAR QUADRATIC REGULATOR (LQR)

Since it is desirable to maintain R, P, and Y as close to zero as possible over time, a
reasonable cost function is the standard quadratic performance index [6]. We wish to minimize
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lxT tf>sfx tf>+1I'f
0

[xT(t) A _x(t) + dTB(t) B d_d.B(t)]dt

(15)

subject to the state equation

_R(t) = F x(t) + G(t) dB(t)

where A is positive definite and B is non-negative-definite, assuming that _list, B = 0 in equation

(14). This problem has a well-known solution given by

_d_B(t)= -B-1GT(t) S(t) x(t) , (16)

where the square matrix S(t) satisfies the Riccati differential equation

S(t) = -S(t)F - FTs(t) + S(t)G(t)B-1GT(t)S(t) - A (17)

with the terminal condition S(tf) = Sf. This equation can be integrated backward in time to give the

time-varying feedback gain matrix K(t) ----B-1GT(t)S(t). The dependence of S(t) on Sf becomes

negligible as tf becomes large, a fact which can be exploited to give K(t) as if we were actually

solving the problem with tf _ co. That is, tf is chosen far enough ahead that its effect is not seen at

the present, and Sf, which can be any appropriately dimensioned non-negative-definite symmetric
matrix, is set to zero.

Kalman [8] has shown for a time-varying linear system, that if controllability is uniform

over time, the closed loop infinite-time-horizon LQR is exponentially stable.

RESULTS OF NUMERICAL SIMULATIONS

The algorithm outlined above was simulated on an AT-class personal computer. The
Riccati equation was solved numericallly using a fourth-order Runge-Kutta integrator, with time
scaling to keep the system numerically well conditioned. The geomagnetic field was modelled

using an 8th-order spherical hamlonic expansion, as described in Wertz [9]. Nonlinear equations
for rigid body dynamics and gravity gradient torques were used in the plant model. The feedback
control law, while derived for the linearized plant equations, was applied to this nonlinear plant.
The orbit used was near-circular and near-polar.

Cost function matrices A and B were chosen empirically to produce desirable performance.
Attention, however, was restricted to matrices of the form

m

where a0, ao_, b > 0.

%

%

a0

a_ I' ], and B = b
b
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In all cases tested, the closed loop system was stable. A simple check of controller
sensitivity was made by using a slightly different model for the closed loop simulation than was

assumed in computing the feedback gain. Moments of inertia, orbit eccentricity, and perigee
position were varied, and in each case the system remained stable, though performance was
degraded slightly, as expected.

The satellite mass properties, orbit, and disturbance parameters used in evaluations are
given in Table 1. The disturbance torques used are based on a 2 m2 area and a 30 cm center of
pressure to center of mass offset. This is conservative for a satellite with a maximum moment of

inertia of 27 kg-m2. Figures 2A through 2E show time histories of Euler angles for several
configurations.

APPLICATION OF GEOMETRIC PROPERTIES

Direct implementation of the time-varying linear-feedback control law described above

requires a numerical solution of the matrix Riccati differential equation. Since the equation is
solved backward from a future time to compute feedback gains at the present time, the integration
must be restarted repetitively, each starting at a point later in time, as illustrated in Figure 3.

Obviously, integration backward in time is not ideal for real-time implementation.
Fortunately, however, we can utilize the quasi-periodicity due to orbit geometry to advantage,
making real-time implementation feasible.

We wish to parameterize the feedback gain K(t) in terms of position rather than time. First,
we make ce_ain assumptions about the orbit:

(1) Orbit has a known semi-major axis,
(2) Orbit is circular,
(3) Orbit has known inclination,

(4) Node is inertially fixed,
(5) Perigee is inertially fixed,
(6) Orbital angular rate is known,

(7) Earth rotational rate is known,

a

e=0
i

dD./dt = 0
dm/dt = 0

COo

mE

These assumptions will typically be valid over several days, which is adequate for our purposes.
Referring to Figure 4, it becomes simple to describe an entire satellite trajectory, r(t), in Earth fixed
coordinates, in terms of only [3(to) and _.(to) at any fixed time to:

,[1]r(t) = R3(mE(t-to)- _,(to))Rl(-i) R3(-_(to)- tOo(t-to) 0

0 (18)

The insight to be gained here is that if the trajectory can be completely parameterized in terms of the
ordered pair (13(to),_.(to)) then the geomagnetic field history, _H_N(t)can be similarly expressed in
terms of (I_,Z.). Hence the feedback gain matrix K(to), which depends on H_N(t) from to<t<,,,,, can

be written as a function of (13(to),Z.(to)) only. This function, K(13,_.), is not time varying. Thus,
K(13,Z.) can be computed once and will remain valid permanently.

A real orbit will not satisfy the assumptions exactly. We can, however, drop the
assumption of a circular orbit; the expression in equation (18) then becomes much more tedious,
but the conclusion is the same. That is, the trajectory can be completely characterized by (13,90.
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Whenassumptions(4) and(5) areviolatedby asmall amount,theeffect is to adda slow
time variation to K([_,Z,).In an implementationof this system,K(13,_.)must be recomputed
periodically. It is expectedthatrecomputingonceeverythreedayswill beadequatefor atypical
perigeedrift rateof threedegrees/day.ThisrequiresmuchlessCPUtimethanthecontinuousgain
computationof Figure3.

Thefeedbackgainfunction K(_,Z.)hasbeencomputedfor severalcases.It appearsto be
reasonablywell behavedandcanbe representedwith amodestinvestmentin computermemory.
Interestingly, a secondaryadvantageof using (13,Z,)to parameterizeK(o), rather than another
positionrepresentationscheme,is that K(13,_,)is periodicin both [_and_.with aperiod of 2ft. It
may bepossibleto reducedatastoragerequirementsby representingK(I_,Z.)in termsof Fourier
coefficients.

FLIGHT SOFTWARECONFIGURATION

A suggestedflight softwareconfigurationis givenin Figure5. Theinfrequentupdatingof
thefeedbackgainsis run asabackgroundtask,andtheRealTime Control operationis the high
priority task.

Sincebothtasksrequireamodelof theorbit, periodicorbit updatesfrom agroundstation
will be necessary.It is believedthat updateson theorder of onceeverysevendaysshouldbe
adequatefor mostapplications.

CONCLUSIONS

The feasibility of spacecraftattitude control using only magnetic torquing has been
demonstrated.Although theclosed-looptransientreactionspeedpossiblewith sucha systemis
fundamentallylimited,theattituderequirementsof manymissionsappearattainable.An algorithm
for flight computerimplementationhasbeensimulated,demonstratingthefeasibilityof usingthis
systemwith a typical onboardmicroprocessor.The mechanicalsimplicity inherent in using
electromagneticsonly for control promisesto make sucha systemboth cost effective and
mechanicallyreliable.
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Table 1

System Parameters Used in Test Cases of Table 2

Moments of Inertia

I1 27 kg-mZ

I2 27 kg-m2

13 10 kg-m2

Orbital Rate

_0o 1.0473E-3 rad]s

Orbit

Semi-major axis a 1.15537 earth radii
Eccentricity e 0.004119
Inclination i 89.547 degrees

Right ascension of _N 111.167 degrees

the ascending node
Arg. of perigee COl, 71.0035 degrees
Node drift rate dDN/dt -0.047522 deg/day

Per. drift rate dcop/dt -3.004395 deg/day

Epoch day 130
Time of day 78194.5 sec
Year 87

Orbservation Time Span

Simulations start at 1987, day 131, time = 100 sec.

Disturbances Used in Performance Analysis

Torque (constant in body frame)
+55 dyne-cm in Roll
+100 dyne-cm in Pitch
+ 10 dyne-cm in Yaw

Residual Magnetic Dipole (constant in body frame)
200 pole-cm in body x-axis
200 pole-cm in body y-axis
200 pole-cm in body z-axis
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Y

Y|

P Y_,YN

X N

XS = YS x ZS

YS = orbit normal

Zs = center of earth to SIC position at time t--0

XN=YNxZ 
YN = orbit normal

Zlq = local vertical (up)

Figure 1: Coordinate System and Small 2-1-3 Euler Angle Definitions

Figure 2a: T'mae history of Euler angles for a case without any disturbance torques or a residual
dipole. Note that angles do not decay precisely to zero because the orbit is not
perfectly circular.
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Figure 2b:
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IEULER ANGLES: O_s¢. 10 _00 5 aynm--cm'j
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TTME (orD it:m)

Case where disturbance torque is a constant +10 dyne-era in roll, +100 dyne-cm in

pitch, and +5 dyne-cm in yaw. A residual dipole of 200 i + 200 j + 200 k pole-cm is
also assumed.
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Figure 2c: Disturbance torque for this case is a constant -55 dyne-cm in roll, +100 dyne-cm in
pitch, and -10 dyne-cm in yaw. A residual dipole of 200 i + 200 j + 200 k pole-cm is
also assumed.
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IEULER ANGLES: Dist. 55 100 I00yne--cml

South Pole ._ North Pole * South Pole _ s No_.h Pole

TIME (orl3&tS}

Figure 2d: The disturbance torque assumed for this case is +55 dyne-cm in roll, +100 dyne-cm in
pitch, and +10 dyne-era in yaw. A residual dipole of 200 i + 200 j + 200 k pole-cm is
also assumed.
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Figure 2e: Disturbance torque is a constant -55 dyne-cm in roll, +100 dyne-cm in pitch, and -10
dyne--era in yaw. A residual dipole of 200 i + 200 j + 200 k pole-cm is also assumed.
The dosed loop system will not capture reliably at initial angles larger than 40 °.
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Numerical
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Solution

Feedback
Control

Law

t2 _ tl t3 ==>t2

_,_ . K(t_ _ K(t_

I II I

I I I !
to t 1 t2 t3

= t

Figure 3: Iteration necessary when using backward Riccati equation integration in real time.

All vectors represented in Earth-fixed coordinates.

= positive orbit normal

-- direction to spacecraft

?
- direction of ascending node

:o,(2 arg)

A A

x, y, $ Earth-fixed coordinate axes, with

= north

Notes:

(1) dd_r= -foE, c0E = 2r_ radians/24 hours

(2) For near circular orbit, dis = COo COo= orbital angular rate (rad/sec)
dt

Figure 4: Definition of position parameters [3 and L
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Figure 5: Control Software Structure
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Abstract

Periodic-disturbance accommodating control is

investigated for asymptotic momentum manage-

ment of control moment gyros used as primary ac-

tuating devices for the Space Station. The pro-

posed controller utilizes the concepts of quaternion
feedback control and periodic-disturbance accom-
modation to achieve oscillations about the constant

torque equilibrium attitude, while minimizing the

control effort required. Three-axis coupled equa-

tions of motion, written in terms of quaternions,

are derived for roll/yaw controller design and sta-
bility analysis. The quaternion feedback controller

designed using the linear-quadratic regulator syn-
thesis technique is shown to be robust for a wide

range of pitch angles. It is also shown that the pro-

posed controller tunes the open-loop unstable ve-

hicle to a stable oscillatory motion which minimizes

the control effort needed for steady-state operations.

Introduction

The Space Station will employ CMGs (control

moment gyros) as primary actuating devices dur-

ing normal flight mode operation. Gravity-gradient

torques will be used for CMG momentum manage-

ment (unloading). The effect of a constant aerody-
namic torque on a gravitationally stabilized space-

craft was first studied by Garber [1]. Such a torque

produces a constant attitude angle for which aerody-

*This work was supported by the NASA Johnson Space

Center through the RICIS program of the University of Hous-
ton at Clear Lake.

? Graduate Research Assistant, Member AIAA.

t Assistant Professor, Dept. of Aerospace Engineering and

Engineering Mechanics, Member AIAA.

§Aerospace Engineer, Mission Planning and Analysis
Division.

namic and gravitational torques are balanced. Gar-

bet [1] has shown that small roll/yaw librational mo-

tions are affected by large pitch angles. The aero-

dynamic disturbance torques acting on the Space
Station are expected to have constant values plus

periodic components caused mostly by the effects

of solar panel rotations and Earth's diurnal bulge.
As a result, attitude and CMG momentum oscilla-

tion about the torque equilibrium attitude will oc-

cur. A recent study [2] demonstrates the usefulness

of the linear-quadratic-regulator synthesis technique

and the concept of periodic-disturbance accommo-

dation in minimizing attitude and/or CMG momen-

tum oscillations as needed for mission requirements.

This paper is primarily concerned with attitude

control and CMG periodic-disturbance rejection for

large-angle pitch maneuvers of the Space Station.

New results are presented expanding on the con-

trol scheme developed in [2]. Pitch-coupled roll/yaw

equations of motion, first discussed in [1], and writ-

ten in terms of Euler angles, are derived here in
terms of quaternions. It is shown that these equa-

tions are well suited for use in designing a roll/yaw

controller for large pitch motions of the Space Sta-

tion. A simple concept of using quaternions for the

control of spacecraft large-angle maneuvers has been

developed in [3, 4]. The concept is extended here

to a more complicated case of controlling both tile

attitude and CMG momentum of the Space Sta-
tion. Furthermore, this paper presents a new con-

trol concept of asymptotic momentum management

of the CMGs, which tunes the open-loop _mstable

vehicle to a stable oscillatory motion during steady-

state operations, while minimiziz_g tl)e control effort
needed.

Figure 1 is a functional block diagram represen-

tation of a quaternion feedback control system pro-

posed for the Space Station. The attitude determi-

nation system utilizes rate gyros and star trackers to

compute inertial quaternions and the absolute angu-
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lar velocity of the Space Station. Relative quater-
nions with respect to a local reference frame are then

computed for control purposes. The proposed atti-

tude/momentum controller utilizes relative quater-

nions, body rates (or relative quaternion rates), and
CMG momenta to generate proper control torque
commands to the CMGs.

Mathematical Models

In thissection,equationsof motion forthe Space

Station in a circularorbitare derived in terms of

quaternions.For simplicity,the Space Stationisas-

sumed tobe a singlerigidbody. Emphasis ison the

use ofquaternions inthe equations ofmotion and in

feedback control.Quaternions definethe rigidbody

attitudeas an Euler-axisrotation.The vectorpart

ofthe quaternionsindicatesthe directionofthe Eu-

ler axis. The scalar part of the quaternions is related

to the rotation angle about the Euler axis. Detailed
discussion of the kinematics associated with quater-

nions and Euler angles can be found in [5, 6].

The relationships between quaternions and Euler

angles, for the pitch-yaw-roll body-axis rotation se-
quence used in this paper, are

ql

q2

q3

q4

C1S2S3 + SIC2C3

ClS2C3 + SlC2S3
C, C2Ss - Sl S2Cs
cl C_C3 - SIS2S3

(i)

where C, _- cos(0j2), Si _ sin(0J2) for i = 1,2, 3,

(01, 02, 03) are the roll, pitch, and yaw Euler angles

of the body axes with respect to the local vertical

and local horizontal (LVLH) axes, which rotate with

the orbital angular velocity; and (ql, q2, q3) are the
vector parts of the quaternions which indicate the

direction of the Euler axis while q4 is the scalar part

of the quaternions and is related to the angle of ro-

tation about the Euler axis. Inverse relations may
also be written as:

[2(ql q4 - q2q3) ]
6, =tan -1 [l_2q__2qa 2j

[ 2(q2q4 - ql q3) ]
0_ = tan -1 [T-__[_7_-_2 /

03 = sin -1 [2(qlq2 + q3q4)] •

(2)

The nonlinear equations of motion and attitude

kinematics for the Space Station are as follows:

Space StationDynamics:

Ill
I21

131

+ 3n2_

,13][,]122 I23 d_ =

Is2 138 _3

111 112 113 ] [ Wl
I21 122 I23 W2

Isl 132 133 w3

111 I12 113 ]
I21 I22 I23
131 I32 13s

+ -us + w2

-u3 + w3

[ol]C2

C3

(3)

where

--" (.#3 0 --{M 1

-w2 wl 0

C -- C3 0 --C 1

-c2 el 0

z_
Cl = 2(qlqa- q2q4)

c2 = 2(qlq4 + q2q3)
Z_

_3= 1- 2q_- 2q_

Attitude Kinematics (with respect to LVLH):

iqll[ql]q2 1 qu
43 = _a q3

6 q4

(4)

where

n_
0 w3 --w2 + n wl

-w3 0 wz w2 + n

W2 -- n --wl 0 W3

--_1 --_2 -- n --W 3 0

CMG Momentum:

[hl][ul]h2 +D h2 = us
h3 ha us

(5)

and (t,_l, W2, gO3) are the body-axis components of

the absolute angular velocity of the Space Station;

Iij (i = j) are the moments of inertia; Ii/ (i ¢ j)

are the products of inertia; (hi, h2, h3) are the

body-axis components of the CMG momentum; (ul,
us, us) are the body-axis components of the control

4O



torque;(Wl, w2, w3) are the body-axis components

ofthe externaldisturbancetorque;and n isthe or-

bitalrate of 0.0011 rad/sec.

When body and control axes are aligned with

the principalaxes of the Space Station (Ii _ 111,

12 _- I22, la -_ I33), Eqs. (3) become

It _I - (I2 - Is)_s

+ 6n2(I2 - Is)(qlq4 + q2qs)(l - 2qx2 -- 2q_)

------Ul -{-Wl

I2_ - (/3 - h)_l_a

+ 6n2(Ia - Ii)(qtqa - q2q4)(1 - 2q_ - 2q_)

= -u2 + w2 (6)

Is&3 - (I1 - I2)_o1_2

+ 12n2(I1 - I2)(qlqa - q2q4)(qtq4 + q_qa)

= --uS + ws •

which can be found in [5]. In this paper, however,

we present a new set of equations determined by

linearizing the above equations for the case of large
pitch angles with small roll/yaw attitude changes.

In this case, Eqs. (4), (5), and (6) can be linearized

with respect to qi and qa as follows:

Space Station Dynamics:

I1¢01 q- 71(12 -- I3)wa + 6n2(I2 - Iz)(q4 - 2q4qJ)ql

+ 6n2(/2 -/a)(2q2q_ - q2)qa = -ul + wl (7a)

l_w_ + 6n2(Ia - Ia)(q2q4 - 2q4q_)

= -us + w2 (7b)

- 12n2(I1 - I2)(q4q_)qa = --us + wa (7c)

Attitude Kinematics (with respect to LVLH):

q4 q2 (8a)
(h = "_wa + -_wa + nqs

q4
q2= T(.,2 + ,_) (Sb)

_- q' (8¢1_la = -- wt + -_ws- nql

q2
04 = --T(w2 + n) (8d)

CMG Momentum:

hi - nh3 = Ul

h2= u, (9)
A3+ nht = ua •

For the case with large pitch angles and small

roll/yaw attitude changes, the relationships between

quaternions and Euler angles can be simplified by

linearizing with respect to 01 and 03. Equations (1)
then reduce to

02
q2 = sin-_- (10a)

02

q4 = cos _- (lOb)

(10c)[+,] 1[+,+2][0,}qa = _ --q2 q4 03 "

Inverse relations for Eqs. (10c) are written as

o_ = 2 . (11)q2 q4 qa

Equations (7) and (8) may be used to derive the
Space Station equations of motion in terms of

quaternions, written as follows:

o,]

0 (12- I_)

X [ (4q4-Oq4q_) (6q2q_-4q2) ](q2 "{"6q2q24) (q,t W 6q4q_) ] [ qtqs

1 [--ul+Wl] (12a)= 2 -us+ wa

h[q4#2 - q2//4] + 3n2(Ia - Ii)(2q4q_ - q4qa)

1

= _(-u2 + w2). (12b)

The quaternion relationsof Eqs. (10) may be used

to transform Eqs. (12) to the followingknown form

[1,6]involvingonly Euler angles:

I,_ + ,;2(h - Is)(1+ 3cos2o2)o_
--n(I1 --12 + 13)03+ 3n2(I2 --Is)(sinO2cos02)O3

= -ul + wl (13a)

I202 + 3n2(/1 - Ia)sinO2cos02

= -u_ + w2 (13b)

I3//3+ .2(t_ - _)(1 + Zsin_02)0_
+ n(l_ - 12+ la)O_ + 3n_(I_ - Ia)(sinO2cos02)O1

= -us + Wa • (13c)

A final linearization with respect to small pitch mo-

tions leads to the following well-known equations of
motion:

Space StationDynamics:

I101 -I- 4n2(I2 -- Ia)Ox
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- n(I1 - Is + I3)03 = --ul + Wl (14a)

I202 + 3n2(I1 - 13)02 = -us + w2 (14b)

13/_'3 "4- n_(I2 - 11)03

+ n(I1 - 12 + Ia)01 : -u3 + w3 (14c)

Attitude Kinematics (with respect to LVLH):

O1 -- nO3 : (M1 (15a)

0_ - n = w2 (15b)

03 + nO1 = w3 . (15c)

These linearized equations are used in [2] for the

case of small roll, pitch, and yaw attitude changes.

In this paper, emphasis is on the use of Eqs. (7)

for the momentum/attitude control of the Space

Station having small roll/yaw attitude changes but

large-angle pitch motions.

Inertia values for the Phase 1 Space Station, as

well as assembly flight 3, are listed in Table 1. Ta-
ble 2 includes expected aerodynamic disturbances

which are modeled as a bias plus periodic terms in

the body-fixed control axes:

w(t) = Bias + A,_sin(nt + _1)

+ A2nsin(2nt + es)

+ Asnsin(3nt + Ca)

+ A4nsin(4nt + ¢4)

The disturbance torque acting in each axis is deter-

mined from data generated at NASA Johnson Space

Center by a nonlinear simulation program. The pro-
gram simulates translational and rotational motions

of the Space Station in orbit about an oblate Earth.

It includes rotating solar panels, time-varying sur-

face areas, and time-varying center-of-pressure lo-

cations. A Jacchia-Lineberry atmospheric model is

used to compute density variations. The dominant
aerodynamic torque frequencies at n and 2n are

caused by Earth's diurnal bulge and solar panel ro-

tation effects, respectively. Actual magnitudes and
phases of these disturbance torques are assumed un-

known for control design.

Control Issues

Before presenting the pitch and roll/yaw con-

troller designs, it is important to clarify some issues

related to the effects of large pitch motions and in-

ertia value uncertainties on the stability of the con-

trolled Space Station. A characteristic of momen-

tum/attitude control using gravity-gradient torque

is that pitch, roll, and yaw responses will settle down

to, or oscillate about, a constant torque equilibrium

attitude (TEA). Primary factors involved in deter-

mining the constant pitch TEA are the magnitude of

the bias in the disturbance torque and the numerical

difference between roll and yaw moments of inertia.

This can be seen by studying the steady-state form
of Eq. (14b):

0-2- '_"
3n2(I1 - 13)

where 0-2 is the pitch TEA angle and qv is the bias of

the pitch disturbance torque. Pitch gravity-gradient

torque is largest when the pitch attitude is 45 de-

grees. This is predicted in Eq. (13b) where, at the
steady-state,

2@

sin (20-s) = 3n2(i1 _ 13) "

It may be necessary to consider this worst-case pitch

TEA in control system design. After switching to

CMG mode from some other modes (e.g., reboost

mode utilizing reaction jets), the Space Station must
be able to achieve TEA in each axis without CMG

momentum or commanded torque saturations.

The large motions possible in the pitch axis em-

phasize the importance of using Eqs. (7), (12), or

(13) in designing the control system. These equa-

tions show the dependence of roll/yaw dynamics on
pitch attitude. In fact, a roll/yaw closed-loop sys-

tem designed for small pitch angles may become

unstable at large pitch angles; therefore, roll/yaw
closed-loop stability must be checked at various

pitch TEA values.

Other factors affecting closed-loop stability are
uncertainties and variations in moments and prod-

ucts of inertia. In particular, the magnitude of the

pitch gravity-gradient torque depends on the differ-
ence between the roll and yaw moments of inertia. If

these inertias are nearly equal (e.g., see Table 1, as-
sembly flight 3 data), pitch gravity-gradient torque

is very small and the pitch TEA (if it exists) is large.
In addition, very small uncertainties in the moments

of inertia can cause the system to become unstable.

A discussion of the importance of checking closed-
loop system robustness with respect to inertia un-

certainties, by varying inertia values in an appropri-

ate "direction", is included in the appendix of this

paper.
Under normal operating conditions, the Space

Station will have rotating solar arrays. This causes

time-varying (sinusoidal) roll and yaw moments of

inertia, and consequently, a similarly time-varying

gravity-gradient torque in the pitch axis as shown
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in Fig.2. If thebiasvalueof Ii(t) - I3(t) is such

that the pitch gravity-gradient torque never changes

sign, the system will remain stable. If the gravity-

gradient torque does switch signs, the system may
become unstable, depending upon how long the sign

of the torque is changed. For sufficiently short peri-
ods of this opposite torque, the system will be sta-

ble with large, bounded responses about the TEA.

If gravity-gradient torque is to ultimately be used

in momentum/attitude control, the above factors

will be useful in the design of the inertia configu-
ration. Consideration should be given to defining a

boundary near the point or condition corresponding

to zero pitch-axis gravity-gradient torque, defined

by Ii(t) - I3(t) = 0. This is illustrated in Fig. 2.

The boundary may be thought of as the minimum

gravity-gradient torque allowed in the pitch axis for
which closed-loop stability, with respect to inertia

uncertainties, is maintained.

In the next sections, the pitch and roll/yaw con-

troller designs are presented along with time sim-
ulations of the closed-loop system. In this paper,

we expand on the previous study [2] by developing

a periodic-disturbance accommodating controller

which achieves asymptotic momentum management
of the CMGs in all three axes. The Phase 1 iner-

tia configuration listed in Table 1 is used. Effects

of products of inertia are assumed negligible. The

corresponding time-varying gravity-gradient torque

in the pitch axis does not change sign; however, the

time simulations presented here use tile assumption
that inertia values remain constant while periodic

terms in the aerodynamic torque include solar panel

rotation effects. Large pitch TEA responses are pro-
duced by introducing an appropriately large bias in

the pitch-axis disturbance torque.

Pitch Control

In this section, a pitch-axis controller is developed
for attitude and CMG momentum control. It is

shown in [2] that disturbance rejection filters can be
used to reject either attitude or CMG momentum

oscillations occurring at the frequencies present in

the disturbance torques. Since asymptotic momen-

tum management of the CMGs in all three axes is

of primary interest in this paper, the disturbance

rejection filters for the pitch axis have the following
for nls:

where initial conditions for the Jilter states can be

arbitrarily selected (usually zero initial conditions).

Use of filters at frequencies n, 2u, 3n, and 4n is in-

dicated by aerodynamic torque data generated by a

nonlinear simulation program written for the Space

Station. The pitch-axis control logic is given by a

single control input involving twelve states:

u2 = K2x 2 (16)

where

K 2 _ a 1 x 12 gain matrix

,_ [ q2 it.. h_ f h2 c_2 52
x2= _2 /32 "Y2 % ,_2 7)_ IT .

The control task is to find proper gains for this
twelve-state feedback controller.

In order to use linear control design methodolo-

gies, Eq. (7b) must be linearized for small pitch mo-

tion. This results in Eq. (14b), which is used as the

basis for pitch control analysis and design. Vari-
ous techniques may be used in selecting the twelve

gains of Eq. (16). These include linear-quadratic-

regulator (LQR) synthesis [7] and direct assignment

of closed-loop eigenvalues using a pole-placement

technique. Several iterations of any method may

be required to achieve satisfactory closed-loop per-

formance and robustness. Note that gains resulting
from Eqs. (14b) are for the use of 02 in state feed-

back. In order to accommodate q2 for use in feed-

back, the gains corresponding to states q2 and q2 are
doubled since the approximation used for q2 is 02/2.

New gains do not need to be computed for the pitch

controller in the case of large pitch motion. It is
most]y roll/yaw destabilization at large pitch angles

which forces pitch-axis instability.

The open-loop pitch axis of the Phase 1 inertia

configuration is unstable, with poles at s = -4-1.5n,
0, 0, and filter poles at s = +jn, :l:j2n, -l-j3n, 4-j4n.

One pole at s = 0 comes from the integral feedback

of h2. After iterative use of an LQR synthesis code,
available in CTRL-C software, a set of closed-loop

eigenvalues have been selected and are listed in Ta-

ble 3. The corresponding gain set is given ill Table 4.
Closed-loop pitch responses of Eq. (6), for a pitch-

axis maneuver of -30 degrees (caused by a large
pitch-axis torque bias), can bc seen in Figs. 4, 5,

and 6. Comments on the responses are reserved un-

til after the presentation of the roll/yaw controller

design.
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Roll/Yaw Control

The roll/yaw controllerhas a structuresimilarto

thatof the pitchcontroller.By examining the open-

loop transferfunction matrix from controlinputsto

roll/yawattitudesand CMG momentum, itisshown

in [2]that a periodicdisturbanceat the orbitalrate

can be rejectedin the yaw attitudebut not in the

rollattitude. The analysisis accomplished using

Eqs. (9) and (14), which assume small motions in

allaxes. In an effortto determine ifitispossibleto

have periodic-disturbancerejectionin both rolland

yaw attitudesfor thisdifferentcase involvinglarge

pitchmotions, a similaranalysisisconsideredhere

usingthe pitch-coupledroll/yawdynamics described

by Eqs. (13).

By combining Eqs. (9) and (13), the transfer func-

tion matrix from (u_,u3) to (01,03) can be written
as

[ 1 1[
where

an(s) =

G13(*)=

 13 s,][u1(s,]

- [I3,2 + (1 + 3d)n2(I2 - '1)]
x [s2 + n2]

- [nU1- I2 + I3)s
_ 3n2(12_ 13),2c2][,2+ n2]

Gal(S) -- [n(I1 - 12 q- I3)s

+ 3n=(i2 _ I1)s2c2][s = + n2]

G33(8 ) -- -- [115= "_- (1 + 3c_)n2(12 - 13)]

x [s2 + n2]
A = 1113(s 2 + n2){s 4 + n2[1 + 3kl + klka

+ 3(k3 - k,)s_], 2
+ [3na(k3 -- kl)S2C2]S + 4n4klk3}

and s2 = sin 82, c2 = cos 02, k, = (I2 - Ia)/Ii, and

k3 : (12 - I1)/I3 . Transmission zeros at +jn ap-
pear in the transfer function matrix. It would seem
that periodic disturbances of frequency n cannot be

rejected in either the roll or yaw attitudes; however,

for CMG momentum and control torque relations

defined by

Pl 1 = U 1

h3 = U3

and with appropriate alterationsof Eqs. (13), the

transferfunctionmatrix from (Ul,ua)to (01,03)can

be writtenas

1

o_(_1 = a31(s) a_3(,) u_(s)

where

Gll -- (S){--/3s 3 -+- n213(11 -- 12)s22 -- ira],

+ 3n3(I2 - _ra)s2c=}

G13 = (ns){(I= - I1)s = + [3n(1= - I3)saca]s

+ (I+ 3d)n=(1=- 11)}

aa_= - (us){(12- X_)s2+ (i+ 34>2(12- 13)}

c33 = - {Z_s'+ n_[3(12- I3)_ + I_ls
+ 3n2(12 - I1)82C2}

A = IlI3(s2){s 4 "4-n2[1 + 3kl -4-klka

+ 3(k3- k,)gl, _
-_- [3n3(k3 -- kl)S2c2],s + 4n4]Clk3}.

Transmission zeros are not apparent in these expres-

sions. A numerical analysis reveals, however, that

there are transmission zeros at +jn for the trans-

fer functions from ul and ua to roll attitude, while

yaw attitude has no troublesome zeros. These re-

suits show that, even for the case of pitch-coupled
roll/yaw dynamics, there is an inability to reject roll

attitude oscillations occurring at the orbital rate.

Hence, in this paper, periodic-disturbance rejection
for CMG momentum in both the roll and yaw axes is

considered. That is, a periodic control of the Space

Station for asymptotic momentum management of

the CMGs in all three axes is of primary interest
here.

Periodic-disturbance rejection filters for the

roll/yaw axes can be represented as:

_1 3t- (n)26[1 = hi

_1 -4- (2n)2 fll = hi

71 + (3n)271 = hi

/h + (4n)=r/1 = hi

&a + (n)2aa = ha

:'}3+ (3n)273 : h3

_3 -1-(4n)2_73 = h3 •

The roll/yaw control logic

inputs and twenty-four states

Ul ]:Ku3

involving two control
is expressed as

Ix _3 ] (17)

where

K _- a 2 x 24 gain matrix

ZX [ ql Wl hi f hi 0"1 _1

Xl = fll _1 71 #1 Th _I

a [ q3 _3 ha f ha aa 53

x3----- f13 _3 "f3 #3 V3 _3

]T (roll states)

]T (yaw states) .
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Thepitch-coupledroll/yawequationsdescribedby
Eqs.(7)areusedasthebasisfor theroll/yawcon-
troller design. It is evidentin the pitch-coupled
equationsthat roll/yawdynamicsare dependent
uponpitchattitude. Considerationmustbegiven
to thepitch-axisTEAwhendesigningtheroll/yaw
controllergains.Equations(7)(orEqs.(12)or(13))
are especiallyusefulfor this purposewhen q2
and q4 in the equations are assigned their respec-

tive values corresponding to the expected pitch

TEA (see Eqs. (10a) and (10b)). As a result,
Eqs. (7a) and (7c) become linear and any linear con-

trol design methodologies may be used to design the

roll/yaw controller gains.

For spacecraft operating under the influence of

gravity-gradient torques, it is interesting to exam-
ine the changes in roll/yaw open-loop eigenvalues

that occur as the pitch bias changes. This was first

studied by Garber [1]. A root locus of open-loop

eigenvalues versus pitch angle, for the Pha_se 1 ir-

ertia configuration, is shown in Fig. 3. It can be
seen that the open-loop roll/yaw dynamics are not

very sensitive to pitch attitude. The Space Station

is unstable with poles at s = ±l.05n+j0.7n, 0, 0,

+jn, and filter poles at s = ±jn, ±jn, ±j2n, :k:j2n,

+j3n, ±j3n, +j4n, ±j4n (for 02 = 0° where q2=0

and q4=l). The double pole at s = 0 occur because
of the integral feedback of #q and h3.

After iterative use of an LQR synthesis code,

closed-loop eigenvalues have been selected and are
listed in Table. 3. A gain set for Eqs. (17), corre-

sponding to a pitch TEA of 0°, is listed in Table. 4.

For these gains, the closed-loop roll/yaw axes are

stable for pitch angles ranging from -21 ° to +23 ° .

Since a simulation of the large-angle pitch maneu-

ver needed to reach a pitch TEA of -300 is desired,

a different gain set is used for the simulations pre-
sented in this paper. For these gains, the closed-

loop roll/yaw axes are stable for pitch angles ranging
from -480 to +30 . Closed-loop roll/yaw responses

of Eqs. (6), for a pitch-axis maneuver of -30 de-

grees, can be seen in Figs. 4, 5, and 6. The overall
closed-loop system has a 10 dB gain margin and a

phase margin of 60° in each control loop.

Discussion of Simulation Results

Closed-loop responses for a simulation of the non-

linear dynamics described by Eqs. (6) are shown in

Figs. 4, 5, and, 6. Quantities plotted include quater-

nions, CMG momenta, and control torques. Initial

conditions corresponding to 01(0) = 0_(0) = 0a(0) =

1 degree and ()i(0) = 02(0) = t73(0) = 0.001 deg/sec
are assumed. Allowable limits on CMG momentum

and commanded torque are assumed to be 30,000

ft-lb-sec and 150 ft-lb, respectively.

In the roll axis, quaternion ql oscillates (4-0.7 °)

about a roll TEA of-0.003 (01 = -0.5°). Roll

CMG momentum hi is the input to the roll-axis
disturbance rejection filter and settles down to zero

after reaching a maximum value near 8000 ft-lb-sec.

Control torque ul is zero at the steady-state and

has a peak value near 23 if-lb. In the pitch axis,

quaternion q2 oscillates (±4.3 °) about a pitch TEA

of-0.257 (02 = -30°). The large-angle maneuver
causes the pitch CM • momentunl h,, (dislurbance

filter input) to become quite large at. nearly 18,000

ft-lb-sec, before settling to zero. Control torque u2 is

zero at the steady-state with a maxinmm value near

30 ft-lb. In the yaw axis, quaternion q:_ oscillates

(±1.2 ° ) about a yaw TEA of -0.013 (0a = -1.5°).
Yaw CMG n/omentum ha (disturl)ance filter input)

settles down to zero after reaching a maximum value

close to 600 fl.-lb-sec. Control torque _la is zero at

the steady-st ate, and reaches a maximum value near
12 fl-lb.

Tile simulations show that the proposed control

schellle l, unes the open-loop unslable Space Sta-

tion to a stable, oscillatory mot.ion which mini-

mizes control effort during steady-state operations.
For lhe assumed disturbance torque models (with

unknown niagnitudes and phases), the stabilized

Space Station needs no control torque at steady-

stat.e conditions. Analysis shows, however, that

sma[l-aniplitude periodic components of frequencies

5n and 6n are present in ul and ua at the steady-

state. These small residual componellts are caused

by the coupling between the pitch and roll/yaw axes,

and beconle particularly noticeable for large pitch
biases.

There is an interesting feature of the quaternion
feedback schenle which is not apparent from the sim-

ulation responses. If rejection of pitch and yaw at-

titude oscillations is desired, it seenls natural to use

q:, and qa as inputs to the respective disturbance re-

jection filters. F,ven t]iough q2 and q3 will become

constant ;it the sl,t_ady-sl.al.e, ;ill of ii/e Euler angles
will oscillale. A study of Eqs. (2) (or Eqs. (il)) re-

veals why. l/y assiguilig coilst.ant vahies to q2, qa,

and q4 in Eqs. (2) (or Fqs. (11)), it, can be seen that

0i, 02. and 0a are all flmciions of ql, which oscil-

lates. The sanie nlay be said for ql, q=,, qa, and q4 if

Euler angle feedback is used. For oscillations of 01

and constant vahies for 02 and 0a, Eqs. (1) show that

all quaternions are flinctions of 01 and will therefore
oscillate, lil eit.lwr case, however, those oscillations
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aresmall. Theimportantpoint is that theelimi-
nationof pitchor yawoscillations,if needed,may
beaccomplishedbyusingEulerangles02 and 0_ as

disturbance rejection filter inputs (with appropriate

gain changes).

A check of closed-loop robustness with respect to

inertia uncertainties emphasizes an important issue

associated with the Phase 1 inertia configuration.

By selecting specific "directions" in which to vary

the three moments of inertia (11, I2, I3), the closed-
loop system can be shown to be unstable for as lit-

tle as -7% uncertainty in/3 with +8% uncertainty

in I1. For these inertia variations, the pitch-axis

gravity-gradient torque disappears (11 - Ia = 0) and
closed-loop pitch dynamics become unstable. The

limitations shown in this example (and several oth-
ers involving even smaller inertia uncertainties), are

not related to the selection of control logic but are

physical limitations inherent to the inertia configu-

ration of the Phase 1 Space Station. A description
of the inertia variation "directions" used above is

presented in the appendix of this paper.

Conclusions

In this paper asymptotic momentum manage-

ment of control moment gyros of the Space Sta-
tion has been investigated. It was shown that the

proposed controller tunes the Space Station, which

has a gravitationally "unstable" inertia configura-

tion, to a stable, oscillatory motion which minimizes

the control effort needed at the steady-state. By

utilizing the concepts of quaternion feedback con-
trol and periodic-disturbance rejection filters, the

proposed controller provides robust control of the

Space Station for large-angle pitch motions. The

pitch-coupled roll/yaw equations of motion derived

in this paper were shown to be particularly useful in

roll/yaw controller design and stability analysis.

Appendix: Inertia Variation Directions

It is a common practice in control design to satisfy

time and frequcucy-dolnain requirements first, then
check for closed-loop robustness. For spacecraft, in-

ertial properties may be very sensitive parameters

in the closed-loop system. It seems reasonable to
increase and decrease all inertias by the same per-

centage, thus checking controller effectiveness for a

proportionally heavier and lighter spacecraft. This

procedure may not indicate the true inertia sensi-

tivity. It is important to coHsider the magnitude
and direction of the variation for each inertia value.

Since the inertia matrix may be transformed to three

principal moments of inertia by aligning the body
and principal axes, suggestions for variations in the

moments of inertia for the roll (/1), pitch (12), and
yaw (13) axes are presented here.

Three important relationships may be derived
from the definitions for the moments of inertia.

These relationships are as follows:

I1 +/2 > 13

11 + 13 > I2

12 + Is > I1 •

Together, these relations define the physically pos-

sible inertia configurations. A control designer may

unknowingly use inertia variations which result in
inertia values that violate these constraints. Sta-

bility of the closed-loop system will be tested for

a physically impossible inertia configuration. The
important point is not the fictitious inertias but

whether or not the control designer can redirect this

extraneous stability margin to encompass more of

the region of physically possible inertia values.

When gravity-gradient torque is used in the con-

trol of a rotating spacecraft, additional inertia con-

straints are introduced. The control scheme pre-
sented in this paper is a good example. Equa-

tions (14) show that roll-axis gravity-gradient and

gyroscopic coupling torques are zero when /2 = I3,

pitch-axis gravity-gradient torque is zero when Ii =

I3, and the yaw-axis gyroscopic coupling torque is
zero when I1 =/2.

A useful aid for visualizing the relationship be-
tween inertia constraints and inertia variations

is now presented. Figure A.1 shows a three-

dimensional, cubic figure defined in three "inertial"

directions. The inertia constraint relations may now
be visualized as planes in this "inertial" space. The

planes I1 + I2 = I3, I1 + 13 = I,, and I__+ 13 = I1

are labeled in Fig. A.1, and represent the physical
boundaries of inertia values. The area inside the

three intersecting boundaries represents all physi-

cally possible inertia configurations. A representa-
tion of the cut-away portion of the "inertia cube" is

shown in Fig. A.2. Planes defirfing the physical and

system torque boundaries are labeled. Figures A.1
and A.2 provide a three-dimensional representation

of thc information presented in the k3 versus kl in-

ertia ratio plots in [5-7]. It may be convenient to

normalize the moments of inertia being studied by

_/I_ + 122+ I_ in order to locate the position of the

nominal configuration within a "unit inertia cube".
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Therelativepositioningof thenominalinertiacon-
figurationfromtheconstraintboundariescanthen
beeasilydetermined.

Sincetheshortestdistancefromapointtoaplane
isinadirectionperpendicular to that plane, it seems

logical to check inertia variations in directions per-

pendicular to the inertia boundaries. In this way,

the minimum variation necessary to reach a physi-

cal boundary can be found while checking the closed-

loop stability of the system in question. For rotating

spacecraft with gravity-gradient control systems, in-

ertia variations perpendicular to the planes 11 = I_,

1, = 13, and 12 = I3 are needed. It may be seen

in Fig. A.2 that these planes intersect inside the re-

gion of physically possible inertia values, and par-
tition the region into several sections. It should be

a control designers' goal to include the area within

the physical boundaries inside a "control surface"
which contains all of the inertia values for which the

closed-loop system is stable.
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Table 1. Space station inertia

configurations

Inertia Assembly

(slug-ft 2) Flight#3

Phase 1

Ill 23.22E6 50.28E6

I22 1.30E6 10.80E6

/33 23.23E6 58.57E6

/12 -0.023E6 -0.39E6

/13 0.477E6 -0.24E6

I_3 -0.011E6 0.16E6

Table 2. Phase 1 aerodynamic torque models

(in units of flabs)

Wl

W2

W3

l+sin(nt)+0.5sin(2nt)

+0 3sin( 3nt )+0.5sin( 4nt )

13" + 1.2sin(nt)+3.5sin(2nt)

+0.3sin(3nt)+0.5sin(4nt)

l+sin(nt)+0.5sin(2nt)

+0.3sin(3nt)+0.5sin(4nt)

* nominal pitch bias torque is 4 but 13 is used

to produce a large pitch TEA
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Table 3. Phase 1 closed-loop eigenvalues

(in units of orbital rate - 0.0011 rad/sec)

Momentum/Attitude Disturbance Filters

Pitch -1.0, -1.5 -1.5+jl.5 -0.3+jl.0 -0.3+j2.0

-0.3+j3.0 -0.3d:j4.0

Roll/Yaw -0.23,-0.71 -0.53d=j1.54

- 1.04::!=j0.70 -1.06:t=j0.71

-0.14+j0.99

-0.19+j2.01

-0.32+j3.02

-0.53+j3.97

-1.13=t=j0.75

-0.47+j2.20

-0.68±j3.21

-0.25+j4.00

Table 4. Phase 1 controller gains

Pitch

4.2425E+2

2.5412E+5

1.4840E-2

4.0150E-6

-1.9064E-9

2.1970E-6

-4.6097E-9

-5.2383E-7

-5.3793E-9

-1.9423E-6

-7.3458E-9

-2.6056E-6

U ni ts Roll/Yaw* U n its

(ft-lb/rad)

(ft-lb-sec/rad)

(ft-lb/ft-lb-sec)

(ft-lb/ft-lb-sec 2)

(ft-lb-rad 2/ft-lb-sec a)

(ft-lb-rad2/ft-lb-sec _)

(ft-lb-rad2/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

( ft -lb-rad 2/ ft - lb-sec a)

( ft-lb-rad_/ft-lb-sec 2)

(ft-lb-rad 2/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

[K]r

3.8526E+3

1.2003E+6

1.4360E-2

-1.6361E-6

3.6578E-10

7.6282E-7

-3.2712E-9

-3.3865E-7

-1.0702E-8

-3.4827E-6

-1.5903E-8

-3.1256E-6

9.4016E+2

-1.2743E+5

-2.4992E-3

-7.3398E-7

4.8557E-9

3.7017E-7

2.0608E-9

1.8854E-6

4.0142E-10

1.5548E-6

8.3363E-10

1.3125E-6

3.7381E+2

1.0126E+5

1.9364E-3

2.7852E-7

-1.8526E-10

1.1857E-7

-5.7517E-10

-1.6409E-7

-1.1317E-9

-5.3664E-7

-1.5491E-9

-4.7197E-7

2.4994E+2

1.1386E+5

-3.5209E-3

-1.0348E-6

-5.5935E-10

-4.2651E-6

-6.8224E- 10

-2.4769E-6

9.4962E- 10

-2.7820E-6

8.3453E- 10

-2.5757E-6

(fl-lb/rad)

(ft-lb-sec/rad)

(ft-lb/ft-lb-sec)

(ft-lb/ft-lb-sec 2)

(ft-lb-rad2/ft-lb-sec a)

(ft-lb-rad=/ft-lb-sec =)

(ft-lb-rad2/ft-lb-sec a)

(ft-lb-rad2/ft-lb-sec 2)

(ft-lb- rad2/ft-lb-sec a)

(ft-lb-rad2/ft-lb-sec 2)

(ft -lb-rad2/ft-lb-sec a)

(ft-lb-rad2/ft-lb-sec _)

(ft-lb/rad)
(ft-lb-sec/rad)

(ft-lb/ft-lb-sec)

(ft-lb/ft-lb-sec _)

(ft-lb-rad2/ft-lb-sec 3)

(ft-lb-rad_/ft-lb-sec 2)

(ft-lb-rad2/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec _)

(ft-lb-rad_/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

(ft-lb-rad2 / ft-lb-sec a)

(ft-lb-rad:/ft-lb-sec 2)

* Designed for a pitch TEA of 0°

48



f" "I

I Gyros Trackers I

t
B/I J Inertial Attitude / s'!

I / rq,1"/_ [ q. q, -q, q,1"/' [ o 1'/'
J I I_,1 -I -_' _' _'_'1 I"_(.,/_)I

I q31 I _ -q, q_ q31 I o I

I _ t q,J [ -q, -q, -q, q,J l oo.(,.1_)]

_ Momentum/Attitude ControlAlgorithms I

Momentum t_ J

B/I indicatesbody frame with respecttoinertialframe

B/L indicatesbody frame with respecttoLVLH frame

I/L indicatesinertialframewith respecttoLVLH frame

Fig. 1.A quaternionfeedbackcontrolsystem
fortheSpace Station.

Gravity-Gradient Torque Dcrivatlvc

.B

.2 _oundsry

Safety Morgln for Inartia Uncertainty

0
o. o.s ,.o l.s 2.0

(orbits)

Fig. 2. Time-varying pitch-axis gravity-gradient

torque derivative.

0.0

0.4

0.0

"0.4

-0,|

s-plane

0

I tllAl(ll I!111 Pll{_to Ilql,[

%

%

0

-0.| .0.4 0.0 0.4 O.O 1.3

Fig. 3. Plot of roll/yaw open-loop poles versus pitch angle
in the s plane (s in units of orbital rate).

o

¢i

.°
o

0
o

4

P_
.]

'i'_ 00 £ oo 4: oo o'.oo o: oo

o
_i ....

o
o

o o

iO. O0

o
ID

_1 00

g
o

*to

C/c,
o

4-

_o!o0

:: oo 4:oo o: oo ,: oo

t i i

10.00

£ oo 4:oo .'. oo s: oo
TXME (ORBZTS)

10. O0

Fig. 4. Closed-loop quaternion responses.

49



o

eO
0

m
--Jo

I%

_ooo 2:oo ,' 0o s'00
oo
N

_'_

yoo
_,_

T0,o0 :_'.o0 4:o0 e'.oo
c_

o _ ,

(.)o
t_.to

_,_"
,.jo
Io

I._-¢

-ro
0

oo
"i'o!00 1.oo" ,,:oo _:oo

TZME (ORBZTS)

e,: oo

= l -

e'. o0

e: o0

10. O0

10. O0

Fig. 5. CMG momentum histories.

10.00

o

¢
i..

5o°.
_ ...

61

_t o0

#

vO
0

2'.oo 4:oo d.oo e,'.oo 10.00

o
c_
_N i

'o.oo z:oo 4:oo ,_:oo

I i t i

oi
_.-.. 0 ij

,": !/
PxA

!
Jo. oo 2. oo 4'.oo 6: oo

TIME (ORBITS)

8:00 10.00

Fig. 6. Commanded torque histories.

11

Ii =.I',

12=0

12

11+I==1_

> I1 > 12 Ia > I_

,,>,,>,/;

4=.",

= r,

_=0

Fig. A.I. Physical boundaries of inertia values.
Fig. A.2. Regions within the physical boundaries.

5O ORIGINAL PAGE iS

OF POOR QUALITY



N90-13417

SIMULTANEOUS QUATERNION ESTIMATION (QUEST)

AND BIAS DETERMINATION

F. Landis Markley

Attitude Analysis Section,
Flight Dynamics Analysis Branch, Code 554.1

Goddard Space Flight Center,
Greenbelt, MD 20771

This paper presents tests of a new method for the simultaneous estimation
of spacecraft attitude and sensor biases, based on a quatemion estimation
algorithm minimizing Wahba's loss function. The new method is compared
with a conventional batch least-squares differential correction algorithm.
The estimates are based on data from strapdown gyros and star trackers,

simulated with varying levels of Gaussian noise for both inertially-fixed and
Earth-pointing reference attitudes. Both algorithms solve for the spacecraft
attitude and the gyro drift rate biases. They converge to the same estimates
at the same rate for inertially-fixed attitude, but the new algorithm converges
more slowly than the differential correction for Earth-pointing attitude. The
slower convergence of the new method for non-zero attitude rates is
believed to be due to the use of an inadequate approximation for a partial
derivative matrix. The new method requires about twice the computational
effort of the differential correction. Improving the approximation for the
partial derivative matrix in the new method is expected to improve its
convergence at the cost of increased computational effort.
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Introduction

When detemfining the three-axis attitude of a spacecraft, it is often necessary to simultaneously

estimate sensor biases and misalignments. An extended Kalman filter or a batch least-squares

differential correction procedure is generally used for this process [ 1]. These methods, collectively

referred to as state estimation methods, require that the nonlinear estimation problem be linearized

about a priori estimates of the attitude, biases, and misalignments. The purpose of this paper is to

compare the standard batch least-squares differential correction procedure with a new algorithm

[2] based on the q-method for minimizing Wahba's least-squares loss function [3]. The new

algorithm computes the parameters iteratively, but does not linearize about an a priori attitude

estimate, so it is expected to be more robust than the usual state estimation methods if the problem

is highly nonlinear or if initial estimates are l)_×_r.

The development of the new algorithnl is presented in detail in reference 2, along with some

historical background, so it will not be repeated here. The following iterative procedure estimates

the attitude at time t and the vector x comprising the m non-attitude parameters. An apriori estimate

x 0 of x is used to compute the matrix

B(t, x) - £ a i _l_(t, ti; x)bi(x)riT(x), (1)
i=1

where the unit vectors r i are representations in an inertial reference frame of the directions to some

observed objects, the b i are the unit vector representations of the corresponding observations in the

spacecraft body frame, the ai are positive weights, and n is the number of observations. The 3x3

attitude propagation matrix O(t, to; x) is the solution of the differential equation

with initial value

d_(t, to; x)/dt ..... [co(t, x)x] _(t, to; x)

• (t0, to; x) = I - the 3x3 identity matrix,

(2)

(3)

where the column vector c0(t, x) contains the components in the body frame of the spacecraft

angular velocity relative to inertial space. The matrix lvxl is defined for an arbitrary three-vector v

by

0 - v3 v2 /

Iv×] = v 3 0 - v 1 ]v2 v 1 0

The parameters in x may enter the matrix B(t, x) through the kinematics expressed by cb(t, ti; x),

the observation modeling in hi(x), or the reference vector models in ri(x ). The m matrices aB/axj,

and the m(m+ 1)/2 independent matrices O2B/Ox)Ox k expressing the derivatives of B(t, x) with

respect to the parameters must also be computed.

Standard methods [4] are next used to compute the largest eigenvalue A,max(X ) and

corresponding normalized eigenvector qopt(t, x) of the symmetric 4x4 matrix

B(t, x) + BT(t, x) - I trB(t, x) p(t, x) q
K(t, x) -- ] (5)pT(t, x) trB(t, x)

(4)
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with the three-component column vector p(t, x) defined by

[p(t, x)×] = BT(t, x) -B(t, x). (6)

Then the optimal attitude matrix for parameter vector x, Aopt(t, x), is computed from qopt(t, x) by

Aopt(t, x) = (q2 _ QTQ) I + 2QQ T- 2q[Q×], (7)

where the three-vector part Q and scalar part q of the quatemion qopt(t, x) are given by

qoptT(t, x) = [Q T, q]. (8)

The parameter vector update is given by

_Xop t = w-l(x)[h(x) - WO(x - xO)], (9)

where, for j, k = 1 ..... m,

Wjk(X) = [W 0 - NT(t,

and

x)M-l(t, x)N(t, x)]jk - tr[AoptT(t, x)_2B(t, x)/_xj_xk],

hj(x)

Nlj(t, x) = {[_B(t,

N2j(t, x) = {[_B(t,

N3j(t, x) = {[_B(t,

= tr{ [_B(t, x)/3xj]AoptT(t, x)},

x)/_xj]AoptT(t, x)}23 - {[_B(t, x)/_xj]AoptT(t, x)}32,

x)/_xj]AoptT(t, x) }31 - {[_B(t, x)/_xj]AoptT(t, x)} 13,

x)/_xj]AoptT(t, x)}12 - {[_B(t, x)/_xj]AoptT(t, x)}21,

(10)

(11)

(12a)

(12b)

(12c)

(13)M(t, x) = ,_,max(X) I - B(t, x)AoptT(t, x).

In these equations x 0 is the a priori estimate of x and W 0 is a symmetric positive-semidef'mite

matrix of weights assigned to this estimate; it is permissible to assign zero weights to the a priori

estimate by setting W 0 = 0. The update tSXopt is added to x to get the new parameter estimate. If the

update is small enough, the procedure is complete; otherwise the computations are repeated from

equation (1) until convergence is achieved.

The attitude covariance P00, the parameter covariance Pxx, and the cross-covariance POx of

the converged estimate can be computed as follows:

Poo(t) = tYtot2[M-l(t, x) + M-l(t, x)N(t, x)W-l(x)NT(t, x)M-l(t, x)], (14)

and exx = tYtot 2 w-l(x), (15)

P0x(t) = PxoT(t) = tYtot2M-l(t, x)N(t, x)W-l(x), (16)
where n

trtot 2 - [ 5". tri-2]-I (17)
i=1

with ty/2 equal to the variance of the ith vector measurement. The covariance computation assumes

the weights to be

ai = tYtot2/cri 2 (18)
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and
vIA) = Crtot2(po)- l , (19)

where p0 is the covariance of the a priori parameter vector estimate. An expression for M-l(t, x) is

derived in the Appendix, eliminating the need for a numerical matrix inversion.

Application to Gyro Drift Determination

For the application to be treated in this paper, we assume that the kinematic information for

attitude propagation is obtained from three gyros aligned with the spacecraft body axes. In this case

the estimation algorithm assumes that the body rate vector c0(t, x) is

c0(t, x) = cog(t)- x, (20)

where cog(t) is the column vector of gyro outputs and x, a three-component vector of gyro drifts,

is the vector of parameters to be estimated. These parameters enter B(t, x) through the attitude

propagation matrices _(t, ti; x). The first and second partial derivatives of _(t, ti; x) with respect

to the components of x are needed to evaluate the corresponding partial derivatives ofB(t, x). The

partial derivative of equation (2) with respect to xj is, using equation (20),

d[_(t, to; x)/_xj ]/dt = - [co(t, x)×][_(t, to; x)/_xj ] + [ej x] _(t, to; x), (21)

where ej is the unit vector along thej th spacecraft axis. The solution of this differential equation

consistent with equations (2) and (3) is
t

0_(t, to; x)/_xj = _0_(t, t'; x)[ej ×] _(t', to; x) dt'. (22)

Using the group property and orthogonality of the attitude propagation matrix,

• (t', to; x) = _(t', t; x)O(t, to; x) = _T(t, t'; x)O(t, to; x), (23)

and the relation

O[ej ×l @T = [(Oe.i 1×],

which holds for any proper orthogonal matrix O, gives

(24)

0O(t, to; x)/3xj = - [_tj(t, to; x)×lO(t, to; x), (25)

where _tj(t, to; x) is the jth column of the matrix
t

W(t, to; x) = - _ @(t, t'; x) dt' = [_l(t, to; x) _2(t, to; x) _3(t, to; x)]. (26)
to

The matrices @(t, to; x) and tP(t, to; x) are also used for the usual state estimation methods

15, 61. They are computed by adding up contributions over time intervals ti+ 1 - t i, which are

chosen to be short enough that variations in co over the interval can be neglected. Thus

@(ti+ 1, to; x) = @(ti+ 1, t i ; x)@(t i, to; x), (27)
where

• (ti+ 1, ti ; x) = I - [u×]sinl¢l + [u×]2(1 - cosl¢l), (28)
u is the unit vector

u ---co/Icol, (29)
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and I_1is the length of the vector

- co(ti+l- ti ). (30)
Similarly,

W(/i+I, to; x) = W(ti+l, ti; x) + _(ti+l, ti ; x)W(/i, to; x), (31)
with

W(ti+ 1, t/; x) = - (t/+ 1 - t i ){I- [u×]l_l-l(1 -cosieD + [u×]2(1 -I_l-lsinl_l)}. (32)

The second partial derivatives of _(t, to; x) only appear in W(x) and not in h(x), so

approximate forms will be used for these partials. They are also computed by adding up

contributions over short time intervals ti+ 1 - ti, giving

b2_(ti+l, to; x)/3xj bx k = [_2_(/i+1, ti ; x)/Oxj bx k ]O(ti, to; x)

+ [_I)(ti+l, ti; x)/bxj][b_(ti, to; x)/bXk] + [b_(ti+l, ti ; x)/bXk][bO(ti, to; x)/Oxj]

+ O(ti+ 1, ti ; x)[b2_(ti, to; x)/bxj bx k ], (33)

where the first partial derivatives are give by equations (25) - (32) and where

32_(ti+ 1, t i ; x)/Oxj bx k = (/i+1 - ti )2{½ (ej ekr + ek ejr_ 28j/cI)

+ 31(¢j[e k ×] + Ck[ej ×] + 8jk[_bx])}. (34)

The approximation is in equation (34), which is valid to first order in _b. Starting the iterative

computations of equations (27), (31), and (33) requires initial values for the matrices: the identity

for _(t 0 , to; x) from equation (3), and zero for W(t0, to; x) and b2_(t0, to; x)/bxj bx k .

Observation Modeling

Star tracker data are used to estimate the spacecraft attitude and gyro drifts. Each star tracker

measurement is a two-component vector Yi giving the location of the star image in the focal plane

of the sensor. For attitude estimation with the new method we need to compute the star unit vector

in the spacecraft body frame b i in terms of the measurement data Yi" The star unit vector in the
sensor frame is

s i = (1 + lYi 12)-l/2[(yi) 1, fYi)2' 1IT'

and then b i is given by

b i = CiTsi,

(35)

(36)

where C i is the proper orthogonal 3×3 matrix defining the orientation in the body frame of the star

tracker making this observation.

Data Simulation

Simulated gyro data and star tracker data are used to test the algorithm. The simulation assumes

a constant angular velocity vector COtrue.The gyro data are simulated by adding varying levels of

Gaussian noise to the components of COtrue.A true attitude matrix is computed by integrating the

angular rates;

dAtrue(t)/dt =- [COtrue×] Atrue(t), (37)

with some specified initial attitude matrix Atrue(tO).
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A staris initially simulatedfor eachstartrackerby randomlygeneratingameasurementvector
Yi within thestartrackerfield of view.Equations(35)and(36) thengive thestarunit vectorbi in

the body frame, and the star unit vector in the inertial reference frame is given by

r i = A trueT(ti ) b i ' (38)

where t i is the simulation time. For successive simulation times ti , the reference vector r i is held

fixed and the vector in the body frame is computed as

h i -- A true(ti)ri . (39)

Then the corresponding vector in the star tracker reference frame is given by the inverse of

equation (36),
s i=Cibi; (40)

the measurement vector Yi by the inverse of equation (35),

Yi = (si)3-1[ (Si)l' (si)2]r, (41)

and Gaussian noise is added to the two components of Yi" This process is continued until the star

has been tracked for some fixed number of observations or until it leaves the field of view, at

which time a new star is randomly placed in the field of view. Earth and Sun interference are

neglected in these simulations.

Comparison Algorithm

The algorithm chosen for comparison is a batch least-squares differential correction algorithm

similar to that employed in the attitude ground support system of the Upper Atmosphere Research

Satellite (UARS) [6]. The algorithm provides a least-squares estimate of a six-component state

vector

8X T - [80 T 8xT], (42)

where 80 is the attitude error vector at epoch, and 8x is the error in the gyro drift estimates. This is

updated iteratively as follows. At the start of each iteration, an estimate x of the gyro drifts and

Aest(to) of the epoch attitude are available. For each measurement Yi, a predicted value gi is

computed from the known reference vector r i by equations identical to (39) - (41), but with the

unknown attitude matrix Atrue(ti) replaced by

Aest(ti) = O(ti, to; x)Aest(to). (43)

The computed value gi is seen to depend on both x and Aest(to). The optimal state update is the

solution of

F 8X = E cri-2GiT(yi - gi) - (44)
i=1 (P0)-I(x - x 0 '

where

n_ I:F - Y-, tr;-2GiTG i +
i=l

(45)
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with o'i-2, p0, and x 0 as defined previously, and with 0 a three-vector of zeros and 0 a 3×3 matrix

of zeros. The 2×6 matrix G i of partial derivatives of the errors of the ith measurement with respect

to _X is given by

_F(t i, to; x)]. (46)
Gi =I(Yi)l(Yi)2 -1-(Yi)l 2 (Yi)2 ]1+ 0,i)22 -(Yi)l(Yi)2 -(Yi)I ci [_(ti'to;X)

This state update gives new estimates of the gym drifts and attitude:

and Xnew = x + 8x, (47)

Anew(tO) = {I- 1801--1180x]sin1801+ 180V2180x]2(1 - coslSOl)}Aest(to). (48)

Thisiterativeprocedureisrepeamd untilconvergence isachievcckAn estimateof thecovariance

matrixisprovided by

Po0 POx] =F_ 1 (49)
Px0 Pxx.J

The initial attitude to begin the fLrSt iteration is provided by the q-method, as embodied in equations

(i)- (7).

Numerical Examples

Tests were performed for both inertially-fixed and earth-pointing spacecraft attitudes, with star

tracker orientations and other parameters corresponding to the Gamma Ray Observatory (GRO) [7]

and UARS [6] spacecraft, respectively. Two star trackers were modeled with 8 degree by 8 degree

fields of view and with an angle of approximately 73 degrees between their boresights. Some tests

were performed with perfect star tracker measurements, but the results presented in this paper all

include Gaussian noise on each star tracker output with standard deviation of 8 arc seconds, or

3.88 × 10-5 radians. The time interval between star tracker measurements was 32.768 seconds, the

interval used by the UARS onboard computer. The data were simulated with no gyro bias, and the

estimations were performed with non-zero initial bias estimates, so the bias estimate is the same as

the bias error for these tests. The initial bias error was 10 -4 radians/sec along either the spacecraft

roll or yaw axis, but only representative results with initial roll bias errors are given below.

The epoch time tO for the estimation was taken to be the time of the first observation. In all but

four tests, the true attitude matrix at epoch was set equal to the identity matrix. The tests for one

simulation case were repeated with four different true attitude matrices at epoch:

0.352 0.864 0.3601

at,ue(to)=|-0.864 0.152 0.480/ ,
L 0.360 -0.480 0.800.1

Atrue(to)= diag[I,-I, -I],

Atr_(to) = diag[-1, 1, -1],

(50a)

(50b)

(50c)
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and

Atrue(tO) = diag[-1,-1, 1], (50d)

where diag[...] denotes a 3×3 matrix with the given elements on the main diagonal and zeros

elsewhere. The attitude and bias errors for these different initial attitudes were identical to those for

Atrue(tO) = I within the precision of the output, as they should be. The covariance p0 of the a priori

bias estimates was taken to be infinite for all tests.

A representative subset of the tests is presented in Tables 1-7. At least 10 iterations were

performed in each case, and the errors for all the iterations after those presented are identical to the

errors of the last iteration in the table, to the precision of the table. The first "iteration" in the

differential correction (DC) colunms is not really a DC iteration; it is an initial attitude estimation

using the q-method, as explained above. Thus the bias error after one DC "iteration" is the a priori

error. The last line in each table is the estimate of the error standard deviations from the covariance

matrices of equations (14) and (15) or equation (49).

Tables 1-6 present the tests with inertially-fixed attitude. These are in pairs: Tables 1 and 2 give

the results for the highest observability case with two star trackers and a full orbit of data, Tables 3

and 4 have two star trackers but only 10 observations in each, and Tables 5 and 6 are for the case

of only 10 observations in a single star tracker. Each simulated star was observed five times in

these tests, so the cases in Tables 5 and 6 contain only two stars; the angular separation between

these stars was 1.3 degrees. In each pair of tables, the first (odd-numbered) presents the results

with no gyro noise, and the second (even-numbered) shows the effects of Gaussian noise on each

gyro with standard deviation of 1 degree/hour, or 4.848 x 10-6 rad/sec.

The most important aspect of the tests, as concerns this paper, is the comparison of the results

of the new method to those of the DC. The bias and attitude errors are not the same at each

iteration, but both the general rate of convergence and the final converged errors are almost

identical. Where there are differences, the errors of the new method are slightly lower, but not by a

significant amount.

In the cases without gyro noise, the covariance matrix is a good indicator of the estimation

errors. This correspondence is especially striking in Tables 1 and 3, while the actual errors in Table

5 are about 20 times less than the covariance matrix would indicate. The errors in the latter case are

remarkably small considering the poor measurement geometry, with only two reference vectors

separated by 1.3 degrees. When gyro noise is included, the actual errors can exceed the covariance

estimates; this is not surprising since the covariance computation does not take gyro errors into

account, nor does any other part of the estimation process. When unrealistically large gyro noise

with standard deviation of 100 degree/hour was included, both estimation procedures became

unreliable. The new method failed catastrophically when the nominally positive-definite matrix W

defined by equation (10) developed a negative element on its main diagonal. The DC did not

become singular, since the matrix F of equation (45), unlike W, is manifestly positive-semidefinite;

but the bias estimation error increased monotonically for the first 10 iterations. Thus the new meth-

od is somewhat less robust than the DC in this case; but this is not very significant since a Kalman

filter or smoother should probably be used in the presence of large amounts of dynamic noise [5].
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Table1.BiasandAttitudeErrorsfor Inertially-fixedAttitude
with Two StarTrackers,95.6Minutesof Data,andno GyroNoise

BatchDC NewMethod
Iteration Bias (rad/sec) Attitude(rad) Bias(rad/sec) Attitude(rad)

1 1.00D-4 2.88D-1 1.68D-6 2.88D-1
2 5.65D-7 1.50D-3 1.69D-9 4.83D-3
3 1.68D-9 5.83D-6 1.68D-9 5.82D-6
4 1.68D-9 5.81D-6 1.68D-9 5.80D-6

Covariance 2.90D-9 9.53D-6 2.91D-9 9.54D-6

Table2. BiasandAttitudeErrorsfor Inertially-fixedAttitude
with Two StarTrackers,95.6Minutesof Data,andGyro Noiseof 1deg/hour

BatchDC New Method

Iteration Bias (rad/sec) Attitude(rad) Bias(rad/sec) Attitude(rad)
1 1.00D-4 2.87D-1 1.73D--6 2.87D-1
2 6.54D-7 2.66D-3 2.90D-7 5.46D-3
3 2.90D-7 1.98D-3 2.90D-7 1.98D-3

Covariance 2.90D-9 9.53D-6 2.91D-9 9.54D-6

Table3.BiasandAttitudeErrorsfor Inertially-fixedAttitude
with Two StarTrackers,5.5Minutesof Data,andnoGyro Noise

BatchDC NewMethod
Iteration Bias (rad/sec) Attitude(rad) Bias(rad/sec) Attitude(rad)

1 1.00D--4 1.48D-2 2.12D-7 1.48D-2
2 2.17D-7 2.95D-5 2.07D-7 3.02D-5
3 2.07D-7 2.93D-5 2.07D-7 2.93D-5

Covariance 2.10D-7 3.67D-5 2.10D-7 3.68D-5

Table4. BiasandAttitudeErrorsfor Inertially-fixedAttitude
with Two StarTrackers,5.5Minutesof Data,andGyroNoiseof 1deg/hour

BatchDC New Method
Iteration Bias (rad/sec) Attitude(rad) Bias(rad/sec) Attitude(rad)

1 1.00D-4 1.49D-2 3.50D-6 1.49D-2
2 3.50D-6 2.71D-4 3.50D--6 2.71D-4
3 3.50D-6 2.72D-4 3.50D-6 2.72D--4

Covariance 2.10D-7 3.67D-5 2.10D-7 3.68D-5
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Table5. BiasandAttitudeErrorsfor Inertially-fixedAttitude
with OneStarTracker,5.5Minutesof Data,andnoGyro Noise

BatchDC New Method

Iteration Bias (rad/sec) Attitude(rad) Bias(rad/sec) Attitude (rad)

1 1.00D-4 1.63D-2 1.14D-4 1.63D-2

2 2.29D-5 3.25D-3 1.07D--6 5.69D-3

3 1.38D-6 2.94D-4 1.08D-6 2.49D--4

4 1.10D-6 2.55D--4 1.08D-6 2.51D-4

5 1.11D-6 2.55D--4 1.08D-6 2.51D-4

Covariance 2.39D-5 4.18D-3 2.40D-5 4.19D-3

Table 6. Bias and Attitude Errors for InertiaUy-fixed Attitude

with One Star Tracker, 5.5 Minutes of Data, and Gyro Noise of 1 deg/hour

Batch DC New Method

Iteration Bias (rad/sec) Attitude (rad) Bias (rad/sec) Attitude (rad)

1 1.00D-4 1.44D-2 1.18D-4 1.44D-2

2 2.25D-5 1.16D-2 4.39D-6 7.11D--4

3 4.51D-6 1.54D-2 4.41D-6 1.54D-2

4 4.50D-6 1.54D-2 4.41D-6 1.54D-2

Covariance 2.37D-5 4.16D-3 2.38D-5 4.18D-3

Table 7. Bias and Attitude Errors for Earth-Pointing Attitude

with One Star Tracker, 5.5 Minutes of Data, and no Gyro Noise

Batch DC New Method

Iteration Bias (rad/sec) Attitude (rad) Bias (rad/sec) Attitude (rad)

1 1.00D-4 3.01D-2 8.04D-5 3.01D-2

2 1.37D-5 2.54D-3 1.73D-5 3.02D-2

3 4.74D-6 8.52D-4 7.17D-6 3.05D-3

4 4.88D-6 8.76D--4 5.31D-6 1.27D-3

5 4.88D-6 8.76D--4 4.97D-6 9.48D--4

6 4.88D-6 8.76D-4 4.91D-6 8.90D-4

7 4.88D--6 8.76D-4 4.89D-6 8.79D--4

8 4.88D-6 8.76D-4 4.89D-6 8.78D-4

9 4.88D-6 8.76D-4 4.89D-6 8.77D-4

Covariance 1.24D-5 2.15D-3 1.12D-5 1.96D-3
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TheattitudeerrorsinTable2 arelargerthanthosein Table4, showingthatestimatorsthatdonot
handledynamicnoisecorrecctlyshouldnotbeusedwith longspansof dataincludingtheeffectsof
dynamicnoise.

ThetestswithEarth-pointingattitudeusedaconstantpitchrateof-1.083073 x 10.3 rad/sec,
whichcorrespondsto anorbit periodof 96.7minutes.For thesetests,a simulatedstarwastracked
until it left thestartrackerfield of view.Thetestparameterswereotherwisethesameasfor
inertially-fixedattitude.Thenewmethoddid not fareaswell in thesetests;it generallyrequired
moreiterationsthantheDC to converge,althoughthefinal errorswerevirtually identical.This
suggeststhepresenceof errorsin thematrixW(x) that steers the estimates to their optimal values,

and not in the vector h(x) that identifies the optimum once it has been reached. Table 7 presents the

results of a test with a single star tracker, observing only two stars with angular separation of 7

degrees. This is a particularly discouraging example, in which the DC converged in four iterations,

while the new method required nine. Since this is a low observability case, in which attitude

kinematics information is more important compared to the measurements than in a high

observability case, an accurate computation of W(x) is especially important.

The greater success of the new method for inertially-fixed attitude than for non-inertial attitude

suggests the inadequacy of the approximation of equation (34) for the matrix of second partial

derivatives O2_(ti+ l, ti; x)/Oxj _x k, which appears in W(x) and not in h(x). This approximation

should be replaced by one that is valid for all values of the rotation angle _, subject to the

assumption that the angular rates are approximately constant between observations. This may also

avoid the failure of the new method in the test with 100 degree/hour gyro noise, since this has an

effect on the propagation of the partial derivative matrices similar to the effects of actual angular

rates of the same size.

The computational effort required by the two algorithms was also measured. Both algorithms

were implemented in double-precision Fortran and executed on a DEC VAX 11/780. The CPU

times were proportional to the number of iterations performed, the times per iteration for the two

methods being

and tcPU, ne w = 13 + 15.2 n msec (51a)

tCPU, DC = 31 + 6.7 n msec. (51b)

where n is the number of observations. The coefficient of n in these times can be interpreted as the

time required to process a measurement, including propagation of the attitude transition matrix,

partial dervative matrices, and so forth. The n-independent term represents the end-of-iteration

computations, including matrix inversions and computation of updates to the bias vector and

attitude matrix. Thus equation (51) shows that the measurement processing is more expensive for

the new method, while the end-of-iteration computations of the DC require more effort. The exact

CPU times will vary from case to case, but the DC appears to be about twice as fast, overall, as the

new method for the numbers of measurements typically processed. Improving the computation of

the matrix of second partial derivatives for the new method will require even more effort to process

each measurement.
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Conclusions

Thesetestsestablishthevalidity of a new method for the simultaneous estimation of spacecraft

attitude and sensor biases, based on a quaternion estimation algorithm minimizing Wahba's loss

function. The new algorithm performs as well as a batch least-squares differential correction in

tests with inertiaUy-fixed attitude, in the sense of converging to equally accurate estimates in the

same number of iterations. The new algorithm converges more slowly than the differential

correction for Earth-pointing attitude, probably owing to the use of an inadequate approximation

for a partial derivative matrix in the new method. The new method does not show any advantages

in terms of robustness or speed of convergence, and in addition requires about twice the

computational effort of the differential correction. It is hoped that improving the approximation for

the partial derivative matrix in the new method will improve its convergence and/or robustness,

without adding significantly to its computational burden.

Appendix

The matrix B(t, x) has the singular value decomposition [8]

B = U+ S' V+ T, (A1)

where U+ and V+ are proper orthogonal matrices, and

S' = diag[S 1, S 2, $3], (A2)

a 3x3 matrix with S 1, $2, and S 3 on the main diagonal and zeros elsewhere. The arguments t and

x are omitted from this and all subsequent equations for notational simplicity. The optimal attitude

estimate is given in terms of these matrices by [8]

Aop t = U+ V+ T. (A3)

The maximum eigenvalue 2.max of the matrix K defined by equation (5) is related to the optimal

attitude by [2]

Zma x = tr(A optB T), (An)

where tr denotes the trace. Equations (A1) - (A4) and (13) show that

det B = $1S2S 3, (A5)

2ma x = S 1 + S z + S 3, (A6)

M = U+ diag[S 2 + S 3, S 3 + S 1, S 1 + S2]u+T. (A7)

and

We now define the scalar

A little algebra shows that

det M = (S 2 + $3)(S 3 + S1)(S 1 + $2).

t¢ = $2S 3 + $3S 1 +S1S2,

(A8)

(A9)

(A10)
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_¢_'max- detB = det M, (A11)

and

tel + BB T = U+ diag[(S 3 + S1)(S 1 + $2), (S 1 + $2)(S 2 + $3), (S 2 + $3)(S 3 + S1)]u+T = adj M,

(A12)
where adj denotes the adjoint matrix. Equations (A11) and (A12) give the desired result

M -1 = (to _,max _ det B )-l(x'l + BBT). (A13)

The evaluation of M-1 by means of equations (A9) and (A13) does not require the singular value

decomposition of B.
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COBE NONSPINNING ATTITUDE PROPAGATION*

D. Chu

Computer Sciences Corporation (CSC)

ABSTRACT

The Cosmic Background Explorer (COBE) spacecraft will exhibit complex

attitude motion consisting of a spin rate of approximately -0.8 revolution

per minute (rpm) about the x-axis and simultaneous precession of the

spin axis at a rate of one revolution per orbit (rpo) about the nearly per-

pendicular spacecraft-to-Sun vector. The effect of the combined spinning

and precession is to make accurate attitude propagation difficult and

the 1-degree (3t7) solution accuracy goal problematic.

To improve this situation, an intermediate reference frame is introduced,

and the angular velocity divided into two parts. The "nonspinning" part is
that which would be observed if there were no rotation about the x-axis.

The "spinning" part is simply the x-axis component of the angular veloc-

ity. The two are propagated independently and combined whenever the

complete attitude is needed. This approach is better than the usual "one-

step" method because each of the two angular velocities look nearly con-

stant in their respective reference frames. Since the angular velocities are

almost constant, the approximations made in discrete time propagation

are more nearly true.

To demonstrate the advantages of this "nonspinning" method, attitude is

propagated as outlined above and is then compared with the results of the

one-step method. Over the 100-minute COBE orbit, the one-step error

grows to several degrees while the nonspinning error remains negligible.

" This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard
Space Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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COBE ATTITUDE AND THE NEED FOR MORE ACCURATE
PROPAGATION

The attitude of the Cosmic Background Explorer (COBE) is three-axis stabilized with the

minus x-axis maintained 94 degrees from the Sun line (Figure 1). The spacecraft pitches

about that line at a rate of 1 revolution per 100-minute orbit period. It also spins about

the minus x-axis once every 75 seconds. COBE attitude can be expressed as an

Euler 3-2-1 (pitch-roll-yaw) rotation sequence with respect to a rotating Earth-Sun coordi-

nate frame with the z-axis pointing toward the Sun and the y-axis pointing along the cross

product of the Sun and Earth vectors. Nominal pitch and roll are then 0 and -4 degrees,
respectively.

SUN

SUN ANGLE =

94 °

PITCH RATE =

--O.D6o/sec

X

SPIN RATE =

-4.8°/sec

2

Figure 1. COBE Attitude Profile

Propagating the attitude from samples of the angular velocity assumes that the angular

velocity remains constant in the body frame over the sample interval. The COBE gyro

sampling intervals are 0.5, 1, 2, or 4 seconds, depending on the telemetry format and

data rate. For COBE, which spins as much as 19.2 degrees per gyro sample, the pitch

component of the angular velocity can change direction significantly. Under these circum-
stances, the usual method of propagation, which handles the total incremental rotation at

once, introduces errors that accumulate over time and become unacceptably large.

This paper describes a variation on the usual one-step propagation that reduces this error

by introducing an intermediate nonspinning coordinate frame. The advantage of the

nonspinning frame is that the angular velocities used for its propagation and for the

subsequent transformation to the body frame vary much less between gyro samples. The

associated equations for gyro calibration follow along with numerical estimates of the

improvement in COBE propagation accuracy.
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NOTATION AND THE USUAL ONE-STEP ATTITUDE PROPAGATION

Attitude is represented here by the orthogonal inertial-to-body coordinate transformation

matrix, Aa/n, and the kinematic equation for its propagation (Reference 1, p. 512) is

iB/I = - O)B AB/I (1)

The dot (-) above AB/I indicates differentiation with respect to time. Since the angular

velocity, COB, is not constant, Equation (1) is solved numerically. Still, a formal solution

may be written as

AB/I (O = (I)BII (t, to) AB/I (to) (2)

_a/_ is the attitude propagation matrix satisfying the differential equation:

(i)B/i = -- O) B (I)B/I (3)

and the initial condition:

CI_B/I (to, to) = I (4)

where I is the identity matrix.

The subscripts I and B refer here to the inertial and body coordinates in which a vector or

matrix is expressed. The vector ogB, for example, is the angular velocity in body coordi-

nates, and _a is the antisymmetric matrix derived from it.

I 0 - ('OB3 0")B2 1
('_)B = ('OB3 0 -- O)B1

L- O)B2 O)B1 0

(5)

The slash (/) indicates a transformation from the frame on the right to that on the left.

Thus, AB/_ is the inertial-to-body coordinate transformation matrix.

NONSPINNING INTERMEDIATE FRAME AND TWO-STEP PROPAGATION

In body coordinates, the spin component of the COBE angular velocity, o9_, is constant,

while the pitch component, o_, varies with time:

r tt

rOB (t) = O) B (t) + rOB (6)

If the spin axis is denoted by ]B, these two portions of the angular velocity can be com-

puted as follows:

toh = (I - _B (_B) T) (/)B (7)
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,, A
COB ---- SB (_B) T COB (8)

An intermediate, nonspinning coordinate system denoted by the subscript N can be intro-

duced that is defined by the propagation equation

AN/I = - _N AN/I (9)

where

' (A )T ' (10)(-ON _ B/N COB

Since the magnitude of cob is less than that of COB, COB does not change as much as O)B

does between gyro samples. Thus, all other things being the same, the error in propagat-

ing AN/I should be less than the error in propagating AB/1. If the propagation from the

nonspinning frame to the body frame can be done perfectly, as is plausible since the spin

rate is constant, the total propagation error for this two-step method should also be less

than that for the usual one-step method•

To complete the propagation of AB/I, it remains to compute AB/N, which transforms

from the nonspinning to the body frame:

AB/N = AB/I (ANn) f (11)

By the product rule for differentiation, the ,&Bn is

/kB/N = AB/I (AN/I) y + AB/I (/kN/I) T (12)

Substituting for ABn and /_N/I from Equations (1), (6), and (9) and combining attitude

transformations yields

• ¢

AB/N = -(_COB + _B)AB/N + AB/N _N (13)

Noting that _D is the similarity transformation of WB,

_N = (AB/N) T O)B AB/N (14)

gives the differential equation for the propagation of AB/N"

AB/N = - _B AB/N (15)

With equations for both AB/N and AN/I, the complete attitude, AB/I, can be propagated.

GYRO CALIBRATION

In addition to reducing the propagation error due to the finite gyro sampling interval, it is

usually necessary to calibrate the gyros to reduce systematic errors in the sensed angular
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velocity. Because calibration involves the same type of computations as propagation, it is

also done more accurately with a two-step method.

With one-step propagation, gyro calibration errors, Aa, can be found using the solution

to the following error propagation equation (Reference 2, p. 4-13):

0B = -('_)B 0B 4" a(.o B (16)

where 0B is the attitude error expressed in axis and angle form, and the angular velocity

error, AWB, is related to the gyro calibration errors by the matrix G(oJa).

AOJB= G( OB)Aa (17)

The solution to the error equation has the form

0B (t) = FB/I (t, to) Aa + OB/I (t, to) 0B (to) (18)

where the variational matrix, FB/I, transforms the gyro calibration errors into contribu-

tions to the attitude error

ft IFB/I (t, to) = OB/I (t, r) G ({OB) dr (19)
O

The matrix FB/I then serves as the partial derivative of the propagated attitude error with

respect to the gyro parameter errors:

00a
= Va/i (t, to) (20)

OAa

If one knows 0a at times t and to, Aa can be found from Equation (18).

A corresponding variational matrix is needed for calibration with the nonspinning propa-

gation method. Because the two methods are different, there is no reason to expect the

variational matrices to be the same. Both steps of the nonspinning propagation, however,

follow the same kind of propagation equation as does the one-step method, and the corre-

sponding error equations can be applied to each step separately:

"l s ¢

O N -- AON - o N O N (21)

• _# ff H

0B = AwE - WB 0B (22)

Here, 0_ is the error in the nonspinning propagation expressed in the nonspinning frame.

0H is the corresponding error in the spinning propagation expressed in body coordinates.

The angular velocity errors, Aw_ and AwE, are defined as follows:

A(ON ---- AN/B [I - _ B ( _ B)T] G (_OB) Aa (23)
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Ao)_ - _B (_n) T G (COB) Aa (24)

0_ and 0_ can be solved for as in the one-step propagation to give solutions of the form

t t

ON = FN/! Act + ON/! ON (to) (25)

0_ = FB/N Aa + (I)B/N 0B (to) (26)

where the variational matrices FNa and FB/N are computed as follows:

FN/i = _N/I (t, r) AON dr (27)
O

fl t '_FB/N = CI}B/N (t, r) AW B dr (28)
O

The total propagation error, 0B, then equals

0B = AB/N 0_,t + 0B (29)

This gives the partial derivative of the attitude error with respect to the gyro calibration
errors as

r'B/l = I"B/N + OB/N I"N/I (30)

which can be used in Equation (18) to solve for Aa.

NUMERICAL SIMULATION

Although the large COBE gyro sampling interval can be expected to degrade one-step

propagation accuracy, it is useful to know how much of an effect it actually has. The

nonspinning method must justify its additional computation with significantly better accu-

racy.

To compute the propagation error for each method, the pitch rate, _, roll rate, 0, and

spin rate, _P, measured with respect to the inertial frame are assumed to be constant.

= (31)- 360°/6000 sec = - 0.06°/sec

b = 0 (32)

V) = -0.8rpm = -4.8°/sec (33)
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The exact attitude is then found by first performing the pitch rotation, _, followed by the

roll and spin rotations, 0 and W.

_p = (t- to) _ + _Po (34)

0 = -4 ° (35)

= (t- to) _ + _o (36)

The one-step attitude can be propagated from the following formula for the angular veloc-

ity (Reference 1, p. 765):

COB (t) T = [_' - sin (0) _, cos (0) sin (_) _, cos (0) cos (_') _] (37)

The two angular velocities for the nonspinning propagation are as follows:

W_ (t) T = [0, COS (o9mt) O9B2 - sin (o981t) O9B3, sin (O9Blt) 0982 + COS (OgBlt) O9B3] (38)

COBT = [_ _ sin (0) _, 0, 01 (39)

The one-step and nonspinning attitudes are then compared to the exact attitude, and the

angular differences are computed. A plot of the one-step propagation error for 0.5-second

sampling intervals is shown in Figure 2 for a timespan of one orbit. While the one-step

error grows to a maximum value of 2.4 degrees, the nonspinning error remains less than

0.003 degree.

The results show that, even for the smallest gyro sampling interval, which is 0.5 second,

the one-step propagation errors are quite large. This is counterintuitive. Since a constant

spin can be propagated without error, it would be expected that adding a much smaller

constant pitch rate would have a negligible effect. The flaw in that argument is that,

although the spin is constant in the body frame, the pitch angular velocity is not. It is

constant in the inertial frame. The assumption about the size of the error is also slightly

misplaced. Small pitch rates do produce slowly growing propagation errors, but because

the orbit is correspondingly longer, they have more time to grow.

Even more surprising than the size of the error is its oscillation. Rather than grow without

limit, the propagation error peaks at the middle of the orbit. The reason is that while the

actual pitch angular velocity moves continuously in the body frame, the sampled pitch

angular velocity is fixed in the direction it has at the start of the interval. Thus, the

sampled value lags the true value and introduces a roll component of angular velocity

(Figure 3). Over an orbit period, the roll direction changes by 360 degrees, and the

propagation error that builds up in the first half of the orbit decreases over the second

half.
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Figure 2. One-Step Propagation Error Time Dependence
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Figure 3. Sampling Introduces a Roll Angular Velocity

SUMMARY

The nonspinning propagation method described here is a means of trading computation

for accuracy when the body angular velocity changes direction between gyro samples.

This method is currently implemented for batch attitude determination in the COBE flight

dynamics support system (Reference 3, p. 3.1.2.42-1), where it is needed to meet the

attitude determination accuracy goal of 1 degree (3G). Further investigation should still

be done on understanding the effects of nonconstant roll, interpolating the angular
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velocity to the midpoint of the sampling interval, and using higher order numerical inte-

gration methods.

Whether nonspinning propagation is worth the extra work for other missions depends on

the magnitude and form of the angular velocity, the gyro sampling rate, and the accuracy

requirements. The unexpectedly large errors that would have been observed for COBE,

however, argue for consideration of this effect whenever a three-axis stabilized spacecraft

undergoes a compound rotational motion, such as spinning and pitching.
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ABSTRACT

The simulation of spacecraft attitude dynamics and control using the

generic, multi-body code called TREETOPS and other codes written especially

to simulate particular systems is discussed. Differences in the methods

used to derive equations of motion--Kane's method for TREETOPS and the

Lagrangian and Newton-Euler methods, respectively, for the other two codes--

are considered. Simulation results from the TREETOPS code are compared with

those from the other two codes for two example systems. One system is a

chain of rigid bodies; the other consists of two rigid bodies attached to a

flexible base body. Since the computer codes were developed independently,

consistent results serve as a verification of the correctness of all the

programs. Differences in the results are discussed. Results for the two-

rigid-body, one-flexible-body system are useful also as information on

multi-body, flexible, pointing payload dynamics.

INTRODUCTION

Since the launch of Explorer I and the realization, based on its

I
anomalous attitude time history, that a spacecraft generally could not be

considered a rigid body, the field of spacecraft attitude dynamics and

control has developed to the point that many methods of analysis2'3'A'5'6and

numerous attitude dynamics and control simulation codes 7'8'9' are now

available. The volume of literature in the area of spacecraft attitude

dynamics is great enough that we will not attempt to review even the part

more directly concerned with multibody spacecraft. The purpose of this

paper is merely to consider some methods for developing equations of motion

for multi-body spacecraft and to compare results obtained from a rather

general digital simulation code called TREETOPS 8 with those from simulations

which are model-specific.

First, we will consider the use of the Newton-Euler method, the

Lagrangian method with quasi-coordinates I0'II and Kane's method 4 for

deriving equations of motion for bot_ rigid and flexible multi-body

spacecraft models. Second, we will discuss, briefly, the computer codes

used to obtain comparative results. Third, we will present some examples of

results obtained from the computer codes.

*Professor, Department of Aerospace Engineering.

SGraduate Student, Department of Aerospace Engineering.
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METHODS FOR DERIVING EQUATIONS OF MOTION

To illustrate the use of the three methods for deriving equations of

motion, we adopt the simple two-body model shown in Fig. I. Our motivation

for doing this is that a chain configuration will be considered in the

examples. Body BI, of mass ml, is rigid and body B2, of mass m2, is either

rigid, or flexible, at our convenience. The bodies have centers of mass of

C 1 and C2, respectively, and move with respect to an inertial frame N in

which a dextral, orthogonal coordinate system, OXYZ, with its associated
A

unit vectors nj, J-1,2,3, is fixed. Body BI has a centroidal inertia dyadic

_j. For body BI, _I is constant. If we decide that B 2 is rigid, _2 is also

constant. But, generally, _2 varies with time when B 2 is flexible.

O

Fig. 1 Two-body system for example.

We let _Rj denote the position vector from 0 to Cj, p_j the vector from

Cj to an arbitrary element of mass dmj in body Bj when that body is

undeformed and uj denote the displacement of dmj from the position it

occupies when body Bj is deformed. In addition, we let _Qj denote the

angular velocity of a coordinate system, Cjxjyjzj, in body Bj. For j-l, the

ClXlYlZ I coordinate system is fixed in B I. For j-2, we may let the C2x2Y2Z 2

system be such that u2u2dm 2 (where u 2 is the skew-symmetrlc matrix
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counterpart of u2x) is diagonal, or some other condition can be used to

2

define the orientation of C2x2Y2Z 2 in B 2.

n

For convenience, we let u 2 = 7, #_kqk, where the -_k are modal vectors
k-i

and are functions of the undeformed coordinates of dm 2.

Newton-Euler Equations

The Newton-Euler method is to write equations for the translation and

4
rotation of each body subject to external, or active, forces and moments

and forces and moments of constraint.

For body j, if F. and F.
-3 e -3 c

body j and the constraint force,

are, respectively, the external force on

m.R. = F. + F. , j = 1,2, (I)
.]-3 -3 e -3 c

Also, for body I, if _le and _Ic are the external moment and constraint

moment, respectively, we have,

!1" 1 + 81x  l'gl = +e _Ic
(2)

The equations of motion for body B 2 are somewhat different, of course,

if it is flexible. First, to obtain an independent equation for each q_, we

may take the fundamental equation for the acceleration of dm2,

('-R2 + _2 + "-u2)dm2 = df2 ' (3)

where df2 is the force on dm2, expand _2 and _2' dot multiply by _ and

integrate over the mass of the body to get

I _dm2._2 = 92.1_x[(P2 + u2)x 92]dm 2

- I[_x(P2 + u2)]dm2"_2

I 0- 2 __Q,x u 2 dm2._Q 2

-I__9.__2 dm2 = I_9"df2 (4)
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where u 2 and -_2 are the time derivatives of u 2 in the coordinate system

C2x2Y2Z 2 . Here,

9_, " I #-o"df2

contains contributions due to the external forces on B 2.

compatible with the constraints, then 9_ will contain terms due to the

constraint forces.

(5)

Also, if _ is not

An equation for the rotational motion of B 2 is also required. To find

one, we may cross 82 + _2 into Eq. (4) and integrate over the mass of B 2 to

get

- I (_2+_2) x[(_2x_2) x _2]dm2 - _2 x I(p2+u2)x[(P2+u2)x _2]dm2

I "- 2 (P2+u2) x(u2xQ2)dm 2

I "- (e2+_2) x _2 dm2

" I (_2+_2) x df2 - _2e + _2c (6)

If B 2 is rigid, we can reduce Eq. (6) to

_2"_2 + _2x_2"_2 " _2e + _2c (7)

We will consider that B 1 and B 2 are coupled together with a hinge which

allows rotation of B 2 with respect to B 1 with three degrees of freedom. In

such a case, we can consider _Ic " - _2c to be a function of state variables

such as the components of _2/I " _2 - _I and the angles used to describe the

relative rotational motion.

The constraint force _Ic "- _2c can be found by subtracting the first

of Eqs. (I) from the second and simplifying, i.e.,

c" 2 (lie- [2e-m2 t2 +mi _l ) (8)

From Eq. (8) and Eqs. (I) we can obtain verifications of the well known fact

that the center of mass of the system, C, moves according to

i

-_" _ (E1e÷ F-2e) (9)
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where R - (mlR 1 + m2R2)/M and M - m I + m 2.

Equations (2), (4), (6) and (9) define the motion except for that of

C2. One way to get an equation for the motion of C 2 is to write (see

Fig. 2)

m2c 2 + mlc I -

and

51 - _2 =- _i - _2

(I0)

(11)

P2

O 2

O

0

Fig. 2

Then, since

_2 " I (_2 + _2)dm2

and from Eq. (i0),

Position vectors.

(12)

79



_1 " - (m2/ml)_2' (13)

we find that

I_ f

M/ml _2 " dl- + m2 J( 2 + _2)dm2 (14)

Our dependent variables are R, R, 01, _2' the qk' k-l,2,...,n, and suitable

orientation variables for B I and the relative angular orientation of B2 with

respect to B I.

Lagrange's Method

An ad hoc procedure based directly on Newton's equations of motion is

not as attractive to many analysts as one which includes a "recipe" for

obtaining the desired result. For complex dynamlcal systems subject to

holonomlc constraints a modification of Lagrange's method often leads more

easily, or at least more dlrectly, to equations of motion which are first

order in the derivatives of "quasl-coordlnates." The quasl-coordinates are

introduced by Whittaker by homogeneous dlfferential forms in generalized

coordinates. For our example, we can take as generallzed coordinates 81j

and %2J' J-1,2,3, Euler angles which define the attitude of B I with respect

to the OXYZ system and the attitude of B2 with respect to BI, respectlvely,

the qj, J-1,2,...,n, associated with the vlbratlonal modes and the

coordinates of the center of mass of B I and B2. Then, for convenience, we

define

g* = (Xl Y1 Zl X2 Y2 Z2 ell el2 e13 e21

022 023 ql q2 "'" qn )T

An N-12 + n vector of quasi-coordinates, _, can be defined by

d_ - A dg*

where A is a non-alngular NxN matrix of functions of the q_, k=l,2, .... N,

and posslbly the time.

In particular, the _k can be chosen so that

d_7/dt

_i = d_8/dt

d_91dt

(15)

(16)

(I7)
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and

-°2

dWloldt

dWll/dt

d_121dt

(18)

The other _k may be identical to the other orlglnal generalized coordinates,

or we may take

d_l/dt - E 1

d_2/dt " Y1 (19)

d_3/dt " Z1

A

and use Eqs. (10)-(14) to write the components of the vector r = x12 11 +

^

YI2 _I + _12 _I from C I to C 2 in terms of the Euler angles 02j and the qk"

This equation would be a vector (3xl) holomonic constraint.

* are in matrix form,Lagrange's equations using the qk

d .aT . aT__ QT

d--tta-_ j - aq* = - '

(20)

where T is the kinetic energy of the system and g Is an N vector of

generalized forces.

If we let

0 = d_/dt (21)

and

B =A 1 ,

then Eqs. (20) may be transformed into

(22)

d aT [aT]cT aT Dz NT
[_] + a9 - ag---_ -_ ,

(23)
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where T is expressed usin 8 8 and 9", C and D are NxN matrices, and N is a

generalized force matrix. For a single rigid body of mass m I centroidal

inertia dyadic _i and center of mass velocity Yl '

T - I/2 81"!"_i + I/2 miy1.y1. (24)

Or, in matrix form, body-fixed basis, we have

T T Y1T - 1/2 81 !i 81 + I/2 mlYI (25)

T TThus, if we let 8 Ts (8 V I) '

1 QT

J 0

0 mlI

Q (26)

where I is the 3x3 identity matrix and J is the inertia matrix, then

8.__.T. QT
8fl -

J 0

0 mlI

(27)

Note that 83/88 does not contain the q_, explicitly, and

d %T)Td-_(F_ "

J 0

0 mll

6

In this case, we have

and

F

N s

M

(28)

(29)

(30)
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For the two-body example, we get a matrix equation of the form

M _I = N_
(31)

Kane's Method

Kane's method for deriving equations of motion is based on the use of

"partial velocities and partial angular velocities" (see Ref. 4, pp. 87-90

and Chapter Four) to extract from Newton's equations of motion a sufficient

set of equations of motion in terms of chosen variables, the so-called

"generalized speeds" and and finding partial coordinates. Kane's procedure

for a system of N particles with n degrees of freedom consists of (I)

choosing generalized speeds, generalized velocities and partial angular

velocities; (2) writing [i' the resultant force on each particle, mi, in the

system; (3) writing the acceleration, _i' i-l,2,...n; (3) dotting each of

the partial velocities (Vr)_ in turn, into F._I - mini " _0 and summing over the

particles. The basic equation used is

where

F + F* = 0 (r=l,...,n) , (34)
r r

N

F - 7, V .R. (r-l,2,...,n) (35)
r -r -l

i=l

are the generalized active forces and

N

F* = 7, Vr'(-mia i) (r-l,2,...,n) (36)r
i=l

are the generalized inertia forces.

For our two-body example, we may use the equations,

^ A A

= n ti + + ng,3_k ,, (37)

A A

_V = X _l + # n2 + _ n3 (38)
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and

n n

-U2 : _ -_k qk + -Q2 X _ -_k qk '
k=l k=i

(39)

where

^ ^ ^

-_k = _kl i2 + _k2 J-'2+ _k3 k2 ' (4O)

^

to identify the partial velocities _r' r=1,2,3, of C; partial angular

^ A ^ ^

velocities i_,j_,k_, _=1,2, of Body _; and the partial velocities _kli2,

A ^

_k2J 2 and _k3k2, k=l,2,...,n, of the elements of B 2 due to deformation.

By writing the acceleration of an element in each boedy, as we did in

the Newton-Euler method, we can obtain the V to substitute into Eq. (36).
-r

The equations are basically the same in form as those found using the

Newton-Euler method. However, the procedure is well defined rather than ad

hoe.

COMPUTER CODES

Four digital computer programs for simulating multi-body dynamics have

been used to obtain the results which follow. There is a model-specific

program written to simulate the system shown in Fig. 3. The three-body

satellite (actually a sounding rocket payload 12) consists of a rigid body to

which are attached two booms carrying sphere. Equations of motion 12 were

obtained directly from Newton's laws and programmed in a special code.

10
A second program called MBODY was developed to model a chain of rigid

bodies. The equations for this more general model were derived using

Lagrange's equation with quasi-coordinates.

TREETOPS, the third program to simulate example systems, is based on

equations of motion obtained by applying Kane's method. The latest version,

which apparently is still in the development stage, contains rather general

models of flexible bodies interconnected in a tree topology and of active

control elements.

TREETOPS is intended to be useful control system analysis tool.

A fourth program, called FMBODY, has been developed along the same

lines as MBODY to handle flexible as well as rigid bodies. This code has

not been fully checked out, but some results from it are included in the

next section.
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EXAMPLES

Simulation results for several example spacecraft models have been

generated using MBODY, TREETOPS, the model-speclfic code and FMBODY.

Results for three spacecraft models are presented here.

The first model, depicted in Fig. 3, consists of a rigid body and two

rigid booms. Physical data for the model, which is intended to represent

12
the SPEAR-I sounding rocket payload, are given in Table I.

Table I. Physical Characteristics of Model I.

I. Main Body

Mass: 300 kg

Moments of Inertia:

2
I - I00 kg-m
xx

2
I - 400 kg-m
YY

2
I - 400 kg-m
zz

Distance from Boom Attachment Point to

Center of Mass of Main Body: 6 m

2. Booms

Length: 2 m

Moments of Inertia (Rods Neglected):

I - I - I
xx yy zz

2
: I0 kg-m

Table 2 gives the initial conditions for two cases in which the booms

rotate from positions parallel to the main body's axis of symmetry toward

orientations in which booms are perpendicular to the symmetry axis. In both

cases, the system is initially spinning about its symmetry axis and the

external torque is zero throughout the motion. In Case I, the deployment is

symmetric, since the booms initially have equal and opposite angular

velocities with respect to the main body. In Case II, the booms start with

different magnitude relative angular rates.

Figure 4 shows the spin rate (QII) time history for Case I. Although

it is not representative of an actual deployment, the booms rotate through

approximately 190 deg in 5 s. The results for the SPECIAL PROGRAM and MBODY

are in exact agreement. The Qll from TREETOPS begins to disagree with the

other results at around 2.5 s, but the values at t - 5 s, all look the same.
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The same characteristic is seen in the deployment rate time histories shown

in Fig. 5. The small differences in the TREETOPS results are reflected in

Table 2. Initial Conditions for Example I Results

CASE I:

CASE II:

Main Body Splnnlng/Symmetrlc Deployment of Booms

_t(0) = (90 0

Q2/1(o) - (o o

o311(o) = (o o

Main Body Spinning Asymmetric Deployment of Booms

0) T dee/sac

10) T deg/sec

-10) T dee/sac

QI(0) = (90 0 0) T deg/sec

Q2/I(0) = (0 0 10) T deg/sec

o311(0) = (0 0 -5) T deg/sec

the plot of H, the magnitude of the angular momentum of the system about its

center of mass, versus time shown in Fig. 6. The reasons for the small

variations in H have not been determined, but it is conjectured that they

are due to lack of numerical precision or the way in which constraints are
enforced.

Case II is an asymmetric deployment of the booms. The results for

spin rate (011) are similar (see Figs. 7 and 8) to those for Case I and

again there is some difference in the results from MBODY and the Special

Program and TREETOPS. The difference is more evident in the results for H

given in Fig. 9.

Example 2

The model for the second example is a uniform flexible beam to which

two rigid bodies are coupled. Figure 10 shows the geometry of the system

and Table 3 gives the values of system constants used to obtain the
numerical results. This model is intended to represent a simple multi-body

pointing spacecraft. Bodies B 2 and B 3 are those which are to be pointed.

The base body, BI, is flexible and, for the purposes of this example is

uncontrolled. Only two mode shapes were used in this example. The motion

of the system is described by the inertialposition of the center of mass of

BI , the attitude of B I (elj, J=1,2,3), the attitudes of B2 and B 3 with

respect to B I (e2j and e3j, J-1,2,3) and the generalized coordinates qk'

k-Ip2,3,4.
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The system is initially quiescent. At t-0, torques are applied to B2

and B3 about axes parallel to the y-axis and passing through the points of

attachment of B 2 and B3, respectively.

The time histories of the angles ej3, J-1,2,3, are shown in Fig. 11.

Figure 12 shows the time history of the two non-zero generalized coordinates

qll and q12' for deformation in the x-direction. As expected, the base body

rotated clockwise around the y-axis. It also translated in the z-direction.

Results from TREETOPS for this example have not been obtained as of

this writing since a new version of TREETOPS was installed recently on a VAX
785 at Auburn University and a few problems have not been resolved.
Additional results will be available soon.

Table 3. Physical Characteristics of Model for Example 2.

Body i

Mass: 500 k8

Moments of Inertia: Stiffness Characteristics:

Ixx - 4333.33 kg-m 2 El - I00 N-m 2 ,

2
I - 4333.33 kg-m Uniform
YY

I - 333.33 kg-m2-
zz

Dimensions:

a - b - 2 m, c - lO m
d- Ira, h-2m

dl -d2 - 1 m

Bodies 2 and 3

Mass: 100 kg

Moments of Inertia_

2
I - 12.5 kg-m

I
YY

2
= 39.6 kg-m

2
I = 39.6 kg-m
zz

Dimensions:

d= Imf h=2m
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CONCLUSIONS

Methods for deriving equations which mathematically model multi-body

pointing spacecraft have been discussed. None of the three methods

considered appear clearly superior from both the aspects of understanding

the system and generating equations.

Results obtained using the model-specific code, based on Newton-Euler

equations, and MBODY, based on equations derived using Lagrange's equations

and quasi-coordinates, agree to within the numerical precision used. Thus,

both of these programs are probably correct. The TREETOPS results differ

slightly, but probably not significantly, from those obtained from the model

specific code and MBODY. The reason for a non-constant computed angular

momentum magnitude may lie in the method for computing the angular momentum.

Addition of checking needs to be done to determine the exact course.

For the multi-body pointing spacecraft example, we obtained, and have

presented here, results from a program, FMBODY, based on equations derived

using Lagrange's equations with quasi-coordinates and flexible body model

data. We were not able by the time this paper was submitted to get results

from a new, updated TREETOPS program. However, it is expected that we will

find that TREETOPS and FMBODY results agree and that TREETOPS requires less

CPU time.
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ABSTRACT

Presented are orbit and attitude determination results from the launch of

Satellite Business Systems (SBS)-5 satellite on September 8, 1988 by Ariane-

space. SBS-5 is a Hughes Aircraft Corporation HS-376 spin-stabilized space-

craft. The launch vehicle injected the spacecraft into a low inclination

transfer orbit. Apogee motor firing (AMF) attitude was achieved with trim

maneuvers. An apogee kick motor placed the spacecraft into drift orbit.

Postburn, reorientation and spindown maneuvers were performed during the next

25 hours. The spacecraft was on-station 19 days later.

The orbit and attitude were determined by both an extended Kalman filter and a

weighted least squares batch processor. Although the orbit inclination was

low and the launch was near equinox, post-AMF analysis indicated an attitude

declination error of 0.034 degree, resulting in a saving of 8.5 pounds of fuel.

The AMF velocity error was 0.4 percent below nominal.

The post-AMF drift rate was determined with the filter only 2.5 hours after

motor firing. The filter was used to monitor and retarget the reorientation

to orbit normal in real-time.
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i. INTRODUCTION

SBS-5 is an HS-376 spin-stabilized communications spacecraft built by Hughes

Aircraft Corporation (Reference I). It is designed to provide voice, video,

and data traffic to the United States on 14 channels in the Ku-band frequency,

i.e. in the 14/12 GHz range.

Figure I shows an exploded view of the spacecraft components. The spacecraft

remains in the stowed position until drift orbit, when the communications

platform is despun and the solar panel is extended. The main sections of the

spacecraft are the spinning rotor and the despun Earth-oriented platform.

The reaction control subsystem (RCS), which uses hydrazine propellant, is lo-

cated on the spinning rotor. It consists of two independent systems joined by

an interconnect manifold. Each system contains two conispherical tanks, one

radial, and one axial thruster. A Thiokol Star 30 apogee kick motor (AKM) pro-

vides the impulse to inject the spacecraft into drift orbit.

The attitude control subsystem (ACS) provides velocity control, spin-axis atti-

tude control and antenna pointing control. Data for attitude determination are

provided by spinning Sun and Earth sensors. A thruster actuated active nuta-

tion control (ANC) subsystem is used after apogee motor firing to dampen nuta-

tion. After the communications reflector is deployed, the despin active nuta-

tion damping electronics (DANDE) controls nutation with despin motor torques.

Accelerometers in the rotor sense nutation for both ANC and DANDE nutation damp-

ing. Figure 2 shows the ACS functional block diagram (Reference i).

Telemetry, command/track, and ranging subsystems provide command capability

and spacecraft information. The slant range from the ground station to the

spacecraft is determined by a multiple-tone ranging system.

The Flight Dynamics group and Mission Control Facility (MCF) are located at

the Clarksburg, Maryland ground station. This facility is used for tracking,

telemetry and commanding (TT&C) support and contains the real-time computers

for data collection and storage. In addition, the following ground stations

provided support: Castle Rock, Colorado; Allan Park, Canada; Perth, Australia;

Sydney, Australia; and Betzdorf, Luxembourg.

The software used to support the SBS-5 mission was written by the Flight Dy-

namics Department at Telesat Canada (Reference 2). The software system was

used to support several Telesat missions and was modified for the SBS mission.

Two Hewlett-Packard (HP)-IO00 minicomputers were used as primary and backup

systems for the mission. Telesat personnel also provided support during the

SBS-5 mission.

SBS-5 was assigned a longitude of 123 degrees West by the Federal Communica-

tions Commission (FCC). Prelaunch mission analysis was conducted to optimize

the transfer orbit and drift orbit trajectories based on a 10-year mission

lifetime requirement.

SBS-5 and the GSTAR-3 spacecraft of GTE Spacenet Corporation were copassengers

on the Ariane 3 launch vehicle. The launch site was Kourou, French Guiana. A

combined launch window is shown in Figure 3. The SBS-5 constraints are based

on Sun angle and eclipse duration restrictions.
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The spacecraft sensors provide three basic measurements: Sun angle, Earth
chord, and separation data, i.e. the angle between the spin axis-Sun plane and
the spin axls-Earth plane. Using only Sun angle and Earth chord measurements,
attitude determination errors place stringent constraints on the launch window
for low inclination orbits during periods near the equinoxes. However, the
spin-axis attitude is sensitive to separation angle measurementsexcept when
the Earth, the spacecraft, and the Sun are colinear. Since colinearity occurs
at only one instance in the transfer orbit, and sensor data are collected for
approximately two hours during each apogee pass, separation angle measurements
restore attitude determination accuracy during periods near equinox (Refer-
rence 3).

Liftoff occurred at the opening of the launch window (23:00 GMT), resulting in
a nominal separation time of 23:20:52 GMT. The separation Sun angle of 72.1
degrees and spin rate of 6.94 rpm were near the nominal predicted values of
70.0 degrees and 7.0 rpm respectively. The postlaunch orbit vector delivered
by Ariane showedthe semimajor axis 2.6-sigma below nominal. After processing
tracking data through the first and second revolutions (revs), the semimajor
axis was determined to be 4.8-sigma high.

A spinup maneuverwas performed during the first rev to increase the spin rate
to 50 rpm. Thruster functionals and ANCtest firings were performed. The first
attitude trim maneuverwas postponed until the fourth rev due to the uncertainty
_n the orbit and attitude state. An attitude touchup was necessary before the
apogee motor firing (AMF) on rev 7.

On September ii at 20:17:39 GMT,the apogee motor was fired at a longitude of
150.5 degrees West. The orbit solution from the Kalman filter 2.5 hours after
AMFshowedthat the orbital plane was achieved, but the drift rate was 3 deg-
rees per day East instead of the nominal i degree per day East. This indicat-
ed a 0.4-percent underperformance of the apogee motor with negligible attitude
pointing errors. The drift orbit maneuversequence was redesigned.

At the perigee following AMF, a postburn maneuverand a reorientation (reor) ma-
neuver to near orbit normal attitude were performed. The attitude target was

planned to account for the precession expected during the spindown maneuver.

The reor was monitored and retargeted in real-time with the Kalman filter. At

the next apogee, the spindown maneuver was performed to reduce the spin rate to

37.4 rpm in preparation for despinning the communications platform. The spin

rate increased to 55 rpm as a result of deployment activities which began on

on September 13.

On September 18 a series of four maneuvers were executed to reduce drift rate.

Three additional orbit maneuvers were performed on September 26 and 27 to stop

the drift rate at a longitude of 123 degrees West. Stationkeeping support began

on September 27. The first North-South maneuver was executed on October 12.

2, MODELING

Predicting the orbital and attitude motion of a spacecraft during the transfer

orbit is very complicated. This is due to the many perturbing forces on the

spacecraft such as the Earth's geopotential field, atmospheric drag, and lunar

and solar gravity. These forces must be accounted for to accurately predict

the motion of the spacecraft. An Earth sensor model is required to predict
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the output as seen from the spacecraft Earth sensors.

2.1 ORBIT DETERMINATION

An extended Kalman filter and weighted least squares batch processor were both

used for orbit determination during launch support (Reference 2). The Mission

Kalman Filter (MKAL) Program provided real-time orbit estimation, tracking

data monitoring, and automatic deweighting of less accurate or "bad" data sam-

pies. The effects of drag at perigee on the orbit are predicted and the state

covariances are corrupted appropriately. The filter equations are augmented

with considered parameters, i.e. station location and range bias uncertainties

to insure stability (Reference 4). The filter estimates the spacecraft posi-

tion and velocity vectors, and azimuth and elevation biases. When a set of

observations are averaged, the orbit state vector and covariance matrix are

advanced to the average time of the observations. The data are filtered using

the extended Kalman filter algorithm. The method produces a state vector

which minimizes the weighted mean square residuals between the model and the

measurements. The filter adjusts the covariances to account for modeling,

propagation, and maneuver performance errors.

The weighted least squares algorithm with a priori statistics was used to min-

imize the sum of the square of the weighted residuals between actual and com-

puted observations, while simultaneously constraining the state to satisfy an

a priori state within a specified uncertainty (Reference 2). The data are av-

eraged to the mid-interval of the observations. The mean and the root mean

square are computed for each residual type. Azimuth and elevation biases for

each station were adjusted with this information. Range biases for Allan Park

and Perth were set to zero for the mission. Range biases for Castle Rock and

Clarksburg were set to values estimated by orbit determination of on-station

spacecraft.

The spacecraft position vector was propagated by numerical integration of the

Encke formulation of the equations of motion. A fourth order Runge-Kutta-Gill

integrator was used with variable stepsize. Stepsizes of 54 seconds at peri-

gee, and 360 seconds at apogee, were used during transfer orbit. A stepsize

of approximately 35 minutes was used during drift orbit.

The following forces were modeled: geopotential, lunar and solar gravity, and

atmospheric drag. Solar radiation pressure was modeled during drift orbit. The

Goddard Earth Model (GEM)-I0 was used for nonspherical gravitational perturba-

tions. The geopotential order 6 was used during the transfer orbit. Accelera-

tions due to lunar and solar forces were computed via Encke's method. Drag ac-

celeration was modeled analytically as outlined in Reference 5. The Jacchia-

Roberts atmospheric density model was used. Lunar and solar positions were ob-

tained from a Jet Propulsion Laboratory ephemerides tape.

The tracking data rates were as follows: The Perth and Allan Park ground sta-

tions sent 25 azimuth, elevation, and range measurements within 25 seconds;

Castle Rock sent six azimuth and elevation measurements within 30 seconds, fol-

lowed by 25 range tone measurements in 25 seconds; Clarksburg sent 5 range tone

measurements in 5 seconds (only during the drift orbit).

2.1.1 INITIAL ASSUMPTIONS

The Ariane 3 launch vehicle injects the spacecraft into a transfer orbit with
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a perigee height of 200 kilometers, an apogee height of 36,206 kilometers, and

an inclination of 7 degrees. After transfer orbit injection, the attitude and

roll control system (SCAR) of the Ariane vehicle begins orientation maneuvers

required before separation of the GSTAR-3 and SBS-5 satellites. Separation of

SBS-5 occurs about four minutes after injection.

The prelaunch nominal separation state (at injection time) was as follows:

Epoch (GMT)

Semimajor Axis (km)

Eccentricity

Inclination (deg)

Mean Anomaly (deg)

Argument of Perigee (deg)

Node (deg)

- 88:252:23:16:47:241 l-sigma

- September 8, 1988
- 24554.0830 20.231

- 0.73210339 0.226E-03

- 6.998977 0.173E-01

- 0.536041 0.157E-02

- 177.977117 0.141

- 146.985053 0.141

Mass (kg)

Spin (rpm)

RMOI (kg * m**2)

- 1238.9741

- 7.0

- 500. 25623

This state was used for prelaunch mission analysis and for generating nominal

station prediction information. It corresponds to a seventh rev apogee bias

of approximately 171.6 kilometers. A correlation matrix in spherical coordi-

nates at spacecraft injection/separation was delivered by Ariane before launch.

It contained expected launch vehicle dispersions.

2.1.2 ESTIMATION OF ORBITAL DRAG

Prelaunch analysis was conducted to develop a procedure for estimating the ef-

fect of atmospheric drag on the orbit (Reference 6). Because the spacecraft

attitude was altered only slightly during transfer orbit, the angle between

the spin axis and the velocity vector of the spacecraft relative to the atmo-

sphere was the same each perigee. It was not possible to distinquish between

the axial and normal drag force components, so the drag coefficents were equated.

The perigee drag coefficients were estimated with two successive revs of

tracking data to independently compute the apogee height of the second of the

two revs. Due to perigee drag, the apogee height computed with the second of

the two revs of data should be lower than the apogee height computed with the

first of the two revs. The difference in the computed apogee heights was ex-

pected to vary from a minimum of 540 meters, corresponding to drag coefficients

of i, to a maximum of 2.7 kilometers, corresponding to drag coefficients of 5.

2.2 ATTITUDE DETERMINATION

The MKAL Program was used for real-time attitude estimation and reorientation

maneuver retargeting. The Mission Attitude Determination (MAD) Program was

used for weighted least squares batch processing of data (Reference 2).

The attitude data were provided by the spacecraft attitude data processor

(ADP), which makes time interval measurements (t-times), between occurrences

of real-time reference pulses. Ten measurements made up one set of t-times,

which were received approximately every 15 seconds. These pulse code modula-

tion (PCM) data were then converted to the types needed for attitude determina-
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tion. The five data types were: psi data (the spin angle separating the mid-

points of the psi and psi-2 Sun pulses); north and south Earth sensor half-

chord widths; and north and south Earth separation data (the angles between

the psi pulse and the center of the north or south Earth sensor pulse).

Five sets of observations are averaged to the midpoint of the interval. The

attitude state vector included the phi and theta angles of the spin-axis atti-

tude vector, psi bias, Earth sensor cant angle biases, and Sun/Earth sensor

separation biases. Earth sensor chord width biases were determined with the

MAD Program and applied to the observation model of the filter. During large

reor maneuvers, the maneuver precession rate and force centroid error are also

included in the filter state vector. (The force centroid error is the differ-

ence between the desired and actual thrust direction.)

The Phi-Theta coordinate system (Reference 2) is shown in Figure 4. Theta is

the angle between the planes formed by the Sun vector/Earth spin axis and the

Sun vector/spacecraft spin-axis vector. Theta is positive if measured clock-

wise looking along the Sun vector. Phi is the angle measured from the space-

craft spin axis to the Sun vector.

Earth sensor scanning and delay models were included in the software (Refer-

ence 2). Since the Earth sensors have a 1.5-degree field of view that is dia-

mond shaped, a point source cannot be used to accurately predict the Earth

chord width. The scanning model reproduces the discrete digital waveform of

the Earth sensor and uses a fixed threshold level of 31 percent to estimate

the Earth chord width. Due to thermal capacitance and AC coupling in the

Earth sensor amplifiers, the actual sensor output will be distorted (Refer-

ence 2). The delay model was developed to account for this effect.

2.2.1 INITIAL ASSUMPTIONS

SBS-5 was injected with an orientation near AMF attitude. This was based on

an average AMF attitude over the Ariane two-month launch period. The Ariane

3-sigma error on this injection attitude was 2.8 degrees, with a contractual

agreement that it be within six degrees. The prelaunch nominal attitude state
was as follows:

Epoch (GMT)

Spin-axls declination (deg)

Spin-axis right ascension (deg)

- 88:252:23:16:47:241

l-sigma
- 236.428 2.00

- -8.3495 2.00

The nominal AMF target attitude had a spin-axis right ascension of 238.148

degrees and declination of -7.777 degrees. An objective of this mission was

to target the post-AMF plane so that the inclination was less than 0.05 degree

on October 15, 1988, without North-South maneuvers.

The pre-AMF inclination was 7.0 degrees and the right ascension of the ascending

node was 146.98 degrees. The target post-AMF inclination was 0.16 degree and

the node was 287.57 degrees. The target plane was biased to allow for the plane

change effects of the reorientation maneuver to orbit normal and the spindown

maneuver.
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2.2.2 ESTIMATIONOFATTITUDEPRECESSIONDUETO PERIGEEDRAG

The torque due to atmospheric drag is in the direction of A x V, where V is
the velocity of the spacecraft with respect to the atmosphere, and A is the
spin-axis vector. At perigee, V is normal to the spacecraft position vector
R, and A is nearly normal to R. Therefore, A x V is nearly in the direction
of R. Since the inclination of the spacecraft orbit is low, R is directed
primarily in right ascension. The change in right ascension due to perigee
precession was estimated from the measuredchange in the Sun angle, phi, dur-
ing perigee passage. The Sunangle is estimated from the measured rotation
angle, psi, between the midpoints of the two Sunpulses from the spacecraft
Sun sensor.

3, RESULTS

A summary of both weighted least squares and real-time orbit determination

results are shown in Table I. A summary of both weighted least squares and
real-time attitude determination results are shown in Table 2.

3.1 TRANSFER ORBIT

3.1.1 SEPARATION STATE VECTOR DETERMINATION

Liftoff of the Ariane 3 occurred at the opening of the September 8th launch

window (23:00 GMT), resulting in a nominal SBS-5 separation time of 23:20:52
GMT.

Ariane delivered a transfer orbit solution about 23:46 GMT. It was obvious soon

after launch that the SBS-5 transfer orbit was not nominal. The semimajor axis

of a weighted least squares (WLS) solution was 96 kilometers above the Ariane

nominal, whereas the Ariane 3-sigma error was only 61 kilometers. The nominal

seventh rev apogee bias was 171.6 kilometers, whereas the WLS apogee bias was

367.1 kilometers (Table I).

Ariane delivered an attitude solution shortly after launch. This is shown in

Table 2 as the GSFC/ARIANE solution. It was 2.2 degrees from the nominal and

within the Ariane 3-sigma error. However, the spacecraft attitude could only

be verified in the phi direction. The ADP on-board the spacecraft cannot send

valid data at spin rates below 29 rpm. Frequency modulated (FM) real-time atti-

tude sensor data were used to calculate a Sun sensor psi to psi period of 8642

milliseconds, corresponding to a spin rate of 6.9 rpm. The phi angle of 72.1 de-

grees was derived from these psi data, and was identical to the Ariane delivery.

The MKAL Program diverged due to inaccurate starting conditions. The filter

was restarted with the WLS solution. At the start of rev 2, the filter di-

verged again, and it was restarted with a WLS solution based on tracking data

just from rev 2. The attitude covariance was reinitialized. This shows the

importance of an accurate state vector and covariance matrix for starting the
filter.

3.1.2 ORBITAL DRAG ESTIMATION

Since the first attitude trim maneuver was postponed until the fourth rev of

the transfer orbit, an estimate of the orbital drag could be made for perigees

103



2 and 3. The drop in apogee due to perigee 2 was estimated to be 0.592 kilo-

meters, which correponded to a drag coefficient of one. The drop in apogee

due to perigee 3 was estimated to be 0.013 kilometers, which corresponded to

a drag coefficient of zero. The decision was made to leave the drag coeffi-

cients equal to zero throughout the transfer orbit.

3.1.3 ATTITUDE SENSOR AND DATA BIAS DETERMINATION

A procedure was developed during launch simulations to calculate sensor and

data biases using the MAD Program. The psi bias was first computed with cant

angle biases fixed at zero. Then the cant angle biases were computed with the

psi bias fixed at its value computed in the first iteration.

A psi bias of -0.242 degree was estimated at the end of rev i. A psi bias of

0.088 degree was estimated at the end of rev 2 and -0.067 degree during rev 3.

It was apparent that the psi bias was not converging. The decision was made

to fix the psi bias at zero and calculate the other biases with WLS processing

for the remainder of the mission (Table 2). Chord width biases estimated with

WLS processing were input to the filter.

3.1.4 ATTITUDE TOUCHUPS FOR APOGEE MOTOR FIRING

The first attitude touchup was performed on rev 4. The reor target is shown in

Table 2. The reor target was biased to account for precession expected due to

perigees 5, 6, and 7. The perigee precession was consistent from rev to rev.

The delta psi angle was about -0.013 degree, which corresponded to a delta phi

angle of 0.016 degree.

Figure 5 shows the results of the first attitude touchup. The filter solu-

tions are designated by KF, and the WLS solutions are designated by AD. Each

solution was propagated to rev 4 to account for perigee precession. The dif-

ference, 0.82 degree, between the WLS solution for revs 2 and 3 indicates a

modeling error. The WLS solutions for revs 4, 5, and 6 in Table 2, show similar

but smaller differences. The WLS solution for revs 4, 5, and 6 taken together

(not shown in Table 2) is essentially identical to the filter solution at the
end of rev 6.

The first attitude touchup was executed with 115 pulses of the axial I thruster

and a start angle of 172.7 degrees. The expected precession was 1.68 degrees,

and the expected precession phase was 334.4 degrees. Table 3 shows the preces-

sion calculated from the premaneuver and postmaneuver attitude solutions in Fig-

ure 5. The table also shows the percent difference between the measured and nom-

inal precession, the difference between the measured and nominal precession

phase, relative to the Sun's azimuth in the spacecraft spin plane, and the

corresponding thrust centroid error. In each case, the postmaneuver attitude

is the KF/END-REV6 solution. Of the three premaneuver solutions, the KF/END-REV3

solution was probably closest to the true attitude.

Figure 6 shows the results of the second attitude touchup. Only sensor data

were provided during rev 6 which was the Luxembourg pass. The decision wheth-

er or not to do a touchup on rev 7 was based primarily on the filter solution
at the end of rev 6.

As mentioned above, the discrepancy between the weighted least squares atti-

tude state solutions for revs 2 and 3 indicates a modeling error. The attitude
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solutions differ by 0.82 degree, and sensor biases differ significantly (Table
2). Most of the discrepancy between the attitude solutions can be removedby
fixing the biases. Table 4 contains the weighted least squares solutions us-
ing fixed biases. For comparison, the corresponding solutions from Table 2
are also shown. To account for perigee precession, all solutions were prop-
agated to rev 4. Table 4 shows that fixing the biases removes most of the
difference between weighted least squares solutions that use data from differ-
erent revs.

Figure 7 shows the Earth chord residuals for revs 2 through 6. These residuals
were computedwith WLSusing the fixed biases from solution KF/END-REV6(Table 2).
The north Earth chord data residuals showeda different signature for the even
revs than for the odd revs. The south Earth chord residuals showedand even/odd
rev pattern to a lesser degree. Table 4 also shows that the weighted least
squares solutions for revs 4 and 6 are muchcloser to each other than the solu-
tion for either rev is to the rev 5 solution.

Allan Park executed the AMFmaneuveras scheduled on SeptemberII at 20:17:39
GMT. The apogee motor firing was successful. The burn duration was about
54.9 seconds. The predicted duration was 54.1 seconds.

The AMFdelta-velocity vector was determined from pre- and post-AMF orbit so-
lutions. The delta-velocity vector corresponded to an AMFattitude error of 0.18
degree in right ascension and 0.03 degree in declination. The magnitude of the
error was well within the 3-sigma value of 0.5 degree used for dispersion fuel
allocation. The AKMperformance error was about 0.4 percent below nominal.

The small attitude declination error resulted in a saving of approximately 8.5
pounds of fuel, based on a prelaunch study of injection and AMFdispersion er-
rors (Reference 7).

3.2 DRIFT ORBIT

The filter was used to monitor and confirm the results of the apogee motor

firing in real-time. Three parameters were closely monitored in an effort to

confirm the AMF delta-velocity and attitude, i.e. drift rate, inclination and

node. A scan was made on these three parameters by varying the apogee motor

delta-velocity and attitude right ascension and declination, i.e. the initial

burn vector. By comparing the post-AMF results from the filter with these

scans, a preliminary estimate of the initial burn vector was made.

3.2.1 REAL-TIME POST-AMF MONITORING

Allan Park sent azimuth and elevation data following _MF. About one hour lat-

er, Allan Park also sent range data. About 1.5 hours after AMF, Castle Rock

sent azimuth, elevation, and range data. Coverage continued for 3.7 hours

after AMF.

The post-AMF weighted least squares solution showed an inclination of 0.15 de-

gree, in agreement with solutions received from Millstone and NORAD. The MKAL

Program showed an inclination of 0.08 degree. A later Millstone solution con-

firmed this inclination.

Figure 8 shows the drift rate, and inclination, along with the 1-sigma errors

as determined by the MKAL Program. The filter had an accurate determination
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of the drift rate and inclination within 2.5 hours of AMF. The node was not

accurately determined until more data were received after the slx-hour ground

station coverage gap. Due to an apparent 0.4-percent underperformance of the

AKM, the observed drift rate, inclination, and node were different than expected.

3.2.2 REAL-TIME MONITORING OF REORIENTATION TO ORBIT NORMAL ATTITUDE

A postburn maneuver and reorientation maneuver to orbit normal attitude were

performed near perigee to remove most of the drift orbit apogee bias. The reor

was planned in two parts to insure Earth sensor coverage during the burn by at

least one sensor. The target attitude was five degrees off orbit normal atti-

tude to account for the precession expected during the spindown maneuver.

The first leg of the reor was performed about 15 minutes after the posthurn.

The second leg was performed 9 minutes later. The maneuver was terminated

early due to the loss of execute pulses caused by incorrect polarization of the

transmitting antenna at Allan Park. Commanding was switched to Castle Rock.

Leg 3 was performed about 12 minutes later. This part of the maneuver was termi-

nated early due to commanding constraints near Earth shadow. The attitude was

about 1.5 degrees from the target. A spindown maneuver was performed about 12

hours later.

The filter was used to monitor and retarget the reor in real-time. The filter

calculated a new Jet start angle and maneuver duration for each leg of the

reor. Because the precession error was slight, the first part of the reor was

allowed to continue to its nominal end time. The MKAL Program computed a new

jet start angle and duration for the second leg of the maneuver. Figure 9

shows the predicted and observed attitude motion during the reor as it was

monitored in real-time with data from the MKAL Program.

3.2.3 TRANSITION FROM MISSION OPERATIONS TO STATIONKEEPING OPERATIONS

The stationkeeping Kalman filter, KALMN, estimates both the orbit vector and

the spln-axis vector. KALMN models the force and torque exerted on the space-

craft due to solar radiation. KAI24N uses a quadratic fit to the GEM-IO model

about a specified central longitude. The force model includes the gravita-
tional forces due to the Sun and Moon. Maneuvers are modeled as instantaneous

changes in velocity and spin-axis orientation. The spacecraft state vector

includes the spin-axis orientation, a correction to the solar radiation torque

and force model, a psi bias, and cant angle biases.

KALMN began processing range and attitude data from 88:258 (September 14).

Orbit and attitude vectors were taken from the MKAL Program. The covariances

were corrupted to accommodate differences in modeling. The psi and cant angle

biases were set to zero and the chord width biases were set to 0.25 degree.

The corrections to the solar radiation force and torque models were set to

zero. Tracking and attitude data were processed by hoth KALMN and MKAL until

88:262 (September 18), when MKAL processing was suspended. On 88:270 (Septem-

ber 26), MKAL was restarted using the KALMN state to monitor three drift and

two attitude maneuvers on 88:270 and 88:271. MKAL processing was terminated

on 88:272 (September 27), and normal stationkeeping operations began.
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4 CONCLUSION

The source of the attitude modeling error is unknown and existed in both the

Kalman filter and weighted least squares batch processor. The filter contin-

uously estimated the attitude state vector using data from revs 2 through 6;

whereas, the weighted least squares processor estimated a state vector one rev

at a time, and was more sensitive to the even/odd rev modeling error.

The low orbital inclination and launch time near equinox produced poor attitude

determination geometry. Attitude separation data were used to restore attitude

determination accuracy. The attitude precession due to perigee drag was deter-

mined from rev to rev and this information was used to benefit the AMF attitude

targeting. A Kalman filter and weighted least squares processor were used to

determine the attitude and orbit. This provided a way to verify the accuracy

of state vector solutions. As a result, the AMF attitude error in declination

was only 0.034 degree.

Since the Kalman filter continuously updated the orbit and attitude state vector,

it was possible to: (i) determine the drift rate and inclination 2.5 hours after

AMF, which verified the results of the motor firing, and facilitated prompt plan-

ning of the drift orbit maneuver sequence; (2) monitor and retarget the reorien-

tation to orbit normal attitude in real-time, which minimized pointing errors

during the large maneuver.

The SBS-5 predicted end of life was extended nearly 4 months as a result of the

technical expertise and dedication of the launch support team.
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Table 1. SBS-5 Orbit Determination Summary

SOLN I TI"H APOGEE ARGUMENTI

f f I j °'l'"""'°"TIME(88:255) BIAS INC PERIGEE HEIGHT
MH:I_4:SS (104) (DEG) (DEG) _ (IOl)

NOMINAL

GSFC SEP

R1003

R1004

KF-REV1

R1005

R12001

R12002

R12003

R123C01

R123002

R123003

R123004

R123001B

20:00:37

19:47:26

20:24:38

20:24:41

20:24:51

20:25:18

20:24:48

20:24:56

20:24:55

20:24:57

20:24:56

20:24:55

20:24:54

20:24:56

171.656

75.099

366.707

367.094

37'0. 728

360.324

362.179

362.633

361.074

360.619

360.452

360.353

360.228

360.195

7.003

7.007

7.024

7.014

6.842

6.930

6.965

6.9?7

6.992

7.002

7.000

6.999

6.995

6.998

180.333

179.912

177.013

176.992

177.265

177.651

180.448

180.455

180.240

180.177

180.152

180.137

180.118

180.119

205.411

198.305

200.275

200.365

197.733

212.400

205.953

206.808

208.301

209.040

209.074

209.080

209.038

209.592

TOUCHUP
.............................................................................

I

R12345 001 ! 20:24:53 359.919 6.99 180.148 209.358

R450D1 [ 20:24:48 356.398 7.012 180.091 211.260
i

R123 PROPUP ! 20:24:56 360.220 6.995 180.115 209.596

R12345002 i 20:24:50 359.917 6.985 180.123 208.705

I 'R45001B 20:24:47 354.760 7.017 180.090 212.730
I

TOUCHUP

I

PRE-AHF I 20:24:47 357.114 7.019 1 180.096 210.370

L

I IR1-7001 I 20:24:52 359.638 6.996 180.094 209.486

I I

MOTES - The fottc_ing is an explanation for the solution titles.

ExampLe - RnOOx

R - abbreviation for revolution

n - revolution nu_i)ers of the tracking data used in the solution
OD - weighted Least squares orbft determination
x - solution number

KF - orbit determination from the filter (MICAL)
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TabLe 2. SBS-5 Attitude Determiner|on Summry

.. ...... ..°..o. ........ ..°...°°. .... o ........ .o..o ........ . ............................................

o l lo o ! i(DEG) (DEG) (DEG) (DEG) SEPARAT%ONBIASES (DEG)

I I (DEG)N S N S N I S
°o.°o°°.°....o°...o.°o..ooo. .... °....°.o.°.o°°o°..° ....... o ...... .°. ............ . ......................

236.429NON!NAL

GSFC/AR!ANE

R1AD1

KF

R2_2

KF/EI_) -REV2

R3N) I

KF/END-REV3

238.632

238.806

238.782

238.860

238.880

238.800

238.958

-8.349

-8.20O

-6.442

-8.751

-9.120

-8.W2

-8.296

-8._)6

0.0000

-.1332

.0068

.O_T

- ._50

-. 1724

-.0020

.0210

-.0035

.0164

.0210

-.1286

0.000

0.000

°.150

-.150

•.074

o.074

0.000

O. 000

- .164

-.164

- .051

-.051

0.000

1.605

1.519

1.558

1.7,92

1.6,57

1.766

1.462

1.544

1.548

1.663

1.595

-. 242

.000

.088

.088

-.067,

.093
................... °.°.. ........ °°°°° ................. ° .................................. . .............

TOUCHUP
...... o°°°° ............ , .... °.°°.° ....... . ............ . ..................... °°.°° ......................

REOR-TARGET 237.483 -7.419 I ]R4/_1C 237.400 -7.736 -.0220 .0100 -.0% I -.085 1.587 1.560 .000

I i
KF/END-REV4 237.436 -7.603 -.0448 -.0059 -.0_ I-.O85 I 1._3 1.594 .014

RSADI_NAD 237.470 -7.343 -.1380 -.0780 -.104 I -.082 1.827 1.708 I .000

R45AD1 NAO 237.427 -7.606 -.0763 -.0345 -.100 I -,084 1.671 1.609 I .000

' IKF/END-REV5 2.37.462 -7.546 -.1110 - .0680 - .104 ' - .082 1.749 1.6.56 .018

i IR6AD1B NAD 237.405 -7.922 -.0020 .0596 -.051 I -.045 I 1.468 1.457 .000

KF/END-REV6 :)37.478 -7.008 -.0800 .0040 -.051 -.045 I 1.633 1.555 I .025
...... . ................ . ........ ..... .... ° ............ . ..................... o...° ......................

TOUCHUP

I
ANF-TARGET l 7_37,.47 1 -7.40O I I I l

iiiiiiiiiiiiiii.....................................................................................
DV-VECTOR I 237.292 - ?.434 I [ I' I t
POSTANF-KFS11 238.074 -?'.895 -.0330 -.0051 -.051 -.045 1.709 1.657' # .019

_,,,,-_,$31_.o_ -7'.7'12 -.02, -.oo19-.o,1I-.04,1.7'41 1.421 -.oo_
AMF+ADI _ 238.149 "7.164 ".1337 .0120 ".051 ".045 J 1.968 1.826 I ".0009
°°.°..° ........ . ...... ° .......... ° ....... ° ....... ° ............. ° .......................................

NOTES - The fottc_ing is an explanation for the motution titles.

ExampLe • RnN)x

R - abbreviation for revolution
n - revolution numbers of the sensor data used in the solution
N) - weighted Least squares attitude de.am|nat|on (NAD)
x - solution _r

KF - attitude determination from the filter (NKAL)
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Table 3. Precession and Phase Errors Relative to Nominal

DELTA-P PHASE CENTROID

ATTITUDE SOLUTION DELTA-P ERROR ERROR ERROR

PREMANEUVER POSTMANEUVER (DEG) (%) (DEG) (MS)

R2AD2 END-RV6-KF

R3ADI END-RV6-KF

END-RV3-KF END-RV6-KF

2.08

1.54

1.82

24

- 8

8

12.7

6.8

0.3

- 42

23

i

I I I I
R3ADI RSADI I 1.65 I -2 I -1.6 I -5

I I I I

NOTES

DELTA-P is the angular separation between the Intial and final solutions.

DELTA-P ERROR is the difference between DELTA-P and the nominal precession.

PHASE ERROR is the difference between the measured and nominal precession

phase relative to the Sun's azlmuch in the spacecraft spin plane.

CENTROID ERROR is PHASE ERROR divided by the spin rate.

R3ADI and RSADI were the solutions used to calibrate the first reor during

the mission.

Table 4. Comparison of WLS Attitude Solutions Generated with Fixed and Free

Biases. (All angles are in degrees.)

REV

2

FREE BIASES FIXED BIASES

.......................... ..........................-.

SARA SADEC ANG. $EP. SARA SADEC ANG. SEP.

-8 30 10"82 0.063 238.82 . 238.88 -8.70

TOUCHUF

) 7ii>>:,5 237.45 -7. 0.18 237.42 -7 0.04

.59 i

6 237.37 -7. 237.44 -7
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Figure i. SBS-5 Spacecraft Components
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Figure 2. ACS Functional Block Diagram
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GOES-I/M ASCENT MANEUVERS FROM TRANSFER
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ABSTRACT

The Geostationary Operational Environmental Satellite (GOES)-I/M sta-

tion acquisition sequence consists nominally of three in-plane/out-of-plane

maneuvers at apogee on the line of relative nodes and a small in-plane

maneuver at perigee. Existing software to determine maneuver attitude,

ignition time, and burn duration required modification to optimize the

out-of-plane parts and admit the noninertial, three-axis stabilized attitude.

The Modified Multiple Impulse Station Acquisition Maneuver Planning

Program (SENARIO2) was developed from its predecessor, SCENARIO,

to optimize the out-of-plane components of the impulsive delta-V vectors.

Additional new features include computation of short-term 22 perturba-

tions and output of all premaneuver and postmaneuver orbit elements,

coarse maneuver attitudes, propellant usage, spacecraft antenna aspect

angles, and ground station coverage. The output data are intended to be

used in the launch window computation and by the maneuver targeting

computation (General Maneuver (GMAN) Program) software.

The maneuver targeting computation in GMAN was modified to admit the

GOES-I/M maneuver attitude. Appropriate combinations of ignition time,

burn duration, and attitude enable any reasonable target orbit to be

achieved.

"This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), Greenbelt, Maryland, Contract NAS 5-31500.
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1. INTRODUCTION

Salient features of the optimization software and targeting algorithms for the Geosta-

tionary Operational Environmental Satellite (GOES)-I/M station acquisition maneuvers

are presented in this paper. Selected numerical results will be shown for maneuvers at

apogee.

The nominal mission consists of three apogee maneuvers and one perigee maneuver. The

initial orbit is an elliptic transfer orbit inclined at about 27.5 degrees. The desired orbit is

geosynchronous at near-zero inclination at a desired right ascension of the ascending node

(see Figure 1). The line of apsides and line of relative nodes are nearly coincident for

each of the maneuvers so that in-plane and out-of-plane changes can take place simultane-

ously. The spacecraft is said to have acquired station when the final synchronous orbit has

been achieved with the spacecraft at the desired longitude.

Using the two-body approximation, a set of impulsive delta-V vectors is first determined

that enables the spacecraft to acquire station with satisfactory ground station coverage for

the lowest fuel expenditure (minimum total delta-V). Elements for each of the post-

maneuver orbits are then determined from the delta-V vectors. Next, ignition time, atti-

tude, and burn duration are determined for the three-axis stabilized, noninertial maneuver

attitude. The software is designed to permit quick replanning in case of contingency.

2. DESCRIPTION OF THE MANEUVER ATTITUDE AND THE STATION
ACQUISITION SEQUENCE

The maneuver attitude is controlled as follows: Spacecraft pitch is held constant in the

local orbital coordinate system with the Earth sensors and the thrust vector is held with

the gyroscope at a fixed angle to the negative orbit normal of the initial orbit (determined

by the initial yaw). The Earth sensors also maintain zero roll. The thrust vector is not

inertially fixed, but sweeps out a cone about the negative orbit normal of the initial orbit.

A diagram of the attitude appears in Figure 1.

The nominal transfer orbit provided by the launch vehicle is elliptic (eccentricity approxi-

mately 0.73)with apogee near geosynchronous radius (maximum dispersion about

5:100 km) at an inclination of approximately 27.5 degrees. The required final

geosynchronous orbit has a near-zero inclination and a right ascension of the ascending

node (Q) near 270 degrees, which provides maximum stability to solar and lunar pertur-

bations. Apogee will be placed on or near the line of relative nodes so that a simultaneous

raising of perigee and reduction of inclination (coupled with the required change in f2)

can be accomplished optimally at each apogee motor firing. Perigee motor firings for fine

adjustment of the apogee radius are small and purely in-plane. (An enhancement to in-

clude plane changes for the perigee maneuvers is under consideration for contingency

planning.) Additional small maneuvers at either apsis are planned to achieve precise sta-

tion acquisition. All maneuvers take place at designated apogees or perigees. Apogee

maneuvers have either combined in-plane and out-of-plane parts or are purely in-plane.
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Figure 1. Maneuver Attitude (a) and Orbits (b) for the Station
Acquisition Sequence
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Maneuver durations of 45 to 60 minutes are anticipated for the first apogee motor firing,

with shorter durations for the subsequent apogee motor firings. Apogee maneuvers with

out-of-plane parts will be approximately centered about the line of relative nodes. In-plane

maneuvers will be centered on an apsis.

3. SOFTWARE FOR DETERMINING IMPULSIVE DELTA-V VECTORS

Optimum, impulsive delta-V vectors are determined by the Modified Multiple Impulse

Station Acquisition Maneuver Planning Program (SENARIO2). Postmaneuver orbital ele-

ments are computed for use in the maneuver targeting computation.

SENARIO2 was developed from SCENARIO (Reference 1) to compute impulsive delta-V

vectors when maneuvers have an out-of-plane part. The solution is found in two stages.

First, an optimum set of in-plane, impulsive delta-V vectors is determined in a two-body

calculation to acquire station without regard to inclination or Q (this is the original SCE-

NARIO code). The user designates apogees and perigees for 3 to 10 maneuvers. Three

maneuvers are solved for, placing the final apogee and perigee at geosynchronous radius

with the last maneuver occurring at the desired longitude. For a two-maneuver sequence,

the third maneuver is made negligibly small. To improve ground station coverage or in

case of contingency, a nonoptimal set of in-plane delta-V vectors can be determined.

Second, an optimum set of out-of-plane components to attach to the in-plane delta-V

vectors of selected maneuvers is then determined using a standard minimization routine

(a quasi-Newton algorithm available from the International Mathematics and Statistics

Library (IMSL)). The optimization is described in detail in Reference 2. The result is

achievement of the desired final inclination, ascending node, and in-plane goals. This

simple procedure yields a rigorous optimization because apogee is very near

geosynchronous radius and each perigee maneuver is purely in-plane. A more sophisti-

cated optimization procedure might have been necessary otherwise.

Additional features of SENARIO2 include the following approximate calculations: short-

term oblateness perturbations on semimajor axis and eccentricity up to the first apogee

motor firing; maneuver attitude; azimuth, elevation, and range for up to 10 specified

ground stations for a user-specified time interval surrounding each maneuver; spacecraft

antenna aspect angle at each maneuver; and propellant usage according to the rocket

equation. Premaneuver and postmaneuver orbital elements for use in the maneuver tar-

geting and launch window computations are displayed.

4. SOFTWARE FOR MANEUVER TARGETING

The maneuver targeting computation in the General Maneuver (GMAN) Program deter-

mines the maneuver attitude, ignition time, and burn duration to achieve the post-

maneuver orbits supplied by SENARIO2. GMAN uses these postmaneuver orbital

elements to compute a coarse delta-V vector that sets an initial guess for the thrust direc-

tion and duration. An ignition time is either supplied by the user or calculated to result in
a condition such as "maneuver center lies on the line of relative nodes." A thrust
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simulation is then performed. The achieved orbit parameters are compared against the

desired ones. A modified coarse delta-V vector is then computed, which attempts to com-

pensate for the differences between the achieved and desired orbits. This process is iter-
ated. Further details can be found in Reference 3.

The thrust direction for the GOES-FM spacecraft is not inertially fixed. It changes about

5 degrees during the first apogee maneuver. The orbit maneuver attitude control model

was implemented in GMAN using an instantaneous orbital coordinate system. Because the

orbit plane changes during an apogee maneuver, the attitude (defined in Section 2) is

maintained by a recalculation of the spacecraft yaw in every time step. See Reference 4

for details of the calculation. In many cases convergence occurs despite the poor initial

guess for thrust direction. In some cases convergence does not occur. References 5 and 6

supplement the discussion of convergence that follows.

Convergence can be physically impossible. Apogee maneuvers with little or no change in

apogee radius are desired. If a maneuver is centered on apogee, it is physically impossible

to prevent the apogee radius from increasing slightly (about 30 km on the first apogee

maneuver). Figures 2 and 3 illustrate the apogee raising. This may be explained by com-

parison with the spin-stabilized attitude that keeps the thrust direction fixed while achiev-

ing a similar target orbit. The three-axis stabilized thrust vector follows the velocity vector

more closely than the spin-stabilized one (i.e., the angle between the thrust vector and the

spacecraft velocity vector is smaller for the three-axis stabilized attitude than for the

spin-stabilized attitude). Apogee radius therefore increases more rapidly during the first

half of a maneuver. Apogee radius decreases during the last half of a maneuver at about
the same rate for both attitudes and the amount of the decrease is small because the

spacecraft is near apogee. There is no net change in apogee radius for the spin-stabilized

attitude, but a net increase in apogee radius does occur for the three-axis stabilized atti-
tude.

To obtain an attitude that does not change apogee radius, it is necessary to off-center a

maneuver about apogee. A tradeoff exists between convergence of the in-plane and out-

of-plane parts for any amount of offcentering. A discrepancy between the desired and

achieved ascending node of a few degrees can usually be tolerated on an early maneuver

to permit in-plane convergence because the excess nodal rotation can be compensated for

in a later maneuver with a minimal delta-V penalty.

A scan of initial yaw and pitch angles was made to find the minimum apogee rise for an

apogee maneuver centered on the relative node at apogee. Pitch was varied arbitrarily, but

yaw was determined to maintain an angle of 39.42 degrees between the thrust vector and

the negative orbit normal of the initial orbit for the sake of out-of-plane convergence. The

apogee radius increase could not be reduced below 25.2 kin, and this occurred when the

pitch was approximately 2.4 degrees. See Table 1 and Figure 2. The time dependence of

the apogee radius is shown in Figure 3 for three of the cases in Table 1. Notice that the

initial rise in apogee radius is large and it is followed by either a continued rise or a

gentle lowering.

Failure to converge may also occur because the thrust direction changes. The GMAN fine

targeting algorithm assumes that if the thrust vector initially points in the direction of the
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Table 1. Change in Apogee Radius Versus Attitude

A

E

uJ
(.9
z
<
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n"
uJ
ILl

8
n

100--

90--

8o-

70-

60-

50-

40-

30-

20-

10-

0

NOTE"

YAW(deg)

50.966135 6.0

50,796640 4.5

50.767960 4.2

50.734438 3.8

50.696518 3.3

50.652485 2.6

50.647054 2.5

50.641837 2.4

50.623107 2.0

50.591219 1.0

50.591219 -1.0
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Figure 2. Apogee Radius Change Versus Pitch
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Figure 3. Apogee Radius Versus Burn Time

coarse delta-V vector, the resultant delta-V vector will be close to the coarse delta-V

vector. The change in thrust direction obviates this assumption. To correct GMAN, a bias

is applied to the initial Euler angles so that the resultant delta-V vector produced by the

fine targeting module is close to the coarse delta-V vector (see Reference 4). This correc-

tion results in the attainment of convergence when an increase in apogee radius is de-

sired, and produces a minimum apogee rise when no change in apogee radius is desired.

For a given set of initial and end trust conditions, Table 2 shows the uncorrected yaw and

pitch and associated in-plane errors (difference between achieved and desired values) on

the third and subsequent iterations of GMAN targeting for the first apogee maneuver, and

corrected yaw and pitch and associated in-plane errors on the fourth and subsequent

iterations. Errors in the out-of-plane part are small and not shown.

The difference in direction between the uncorrected delta-V vector produced by fine tar-

geting and the corrected delta-V vector is 0.78 degree.

Shift in Ignition Time To Improve In-Plane Convergence

When an unwanted apogee rise cannot be avoided because apogee lies near burn center, a

shift of ignition time can enable apogee radius to remain unchanged. The amount of the

shift is calculated by determining the location on the initial orbit where the position vector

is lower than the original radius at burn center by an amount equal to the apogee radius

rise. The difference in time corresponding to the difference in position is the amount of

the shift. See Reference 4 for further details.

In Table 3, convergence for the first apogee maneuver is achieved for an ignition delay of

8 to 26 minutes or advancement by 11 to 28 minutes. The out-of-plane part fails to

converge for larger shifts in ignition time. Notice that pitch exceeds 5 degrees in the cases
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Table 2. In-Plane Errors for a GMAN Run

AapogeeDESZRED = 40.0 km

AperigeeDESlnED = 9304.0 km

iDESlRED = 9.2104 deg

AQDES,aED = - 0.4206 deg

apogeeiNrru_ = 42165.0 km

perigeelsn_o. = 6548.0 km

iisrn_ = 27.0035 deg

f_lsn'u_ = 353.77 deg

uncorrected error In corrected error In
yaw pitch apo per yaw pitch apo per

(deg) (deg) (kin} (km) (deg) (deg) (kin) (krn)

50.648 0.046 -10 9 50.601 -1.654 -0.7 0.7

Table 3. In-Plane Convergence Improvement Via Offcentering on the First

Apogee Maneuver (Coincident Apogee and Relative Node)

INITIAL ORBITAL PARAMETERS AND GOALS

INITIAL VALUES DESIRED VALUES TOLERANCES UNITS

INCLINATION

Q

APOGEE

PERIGEE

27.0035

353.8

42165.0

6548.0

9.21035

353.4

42165.0

15852.0

0.05

7.0

5.0

30.0

deg

deg

km

km

IGNITION DATE: 900401

IGNITION TIME
(HHMMSS)

142857

144557

"145657

150457

152257

INITIAL ATTITUDE

YAW PITCH
(deo) (deg)

50.567 -3.770

50.644 -3.971

50.566 0.046

50.759 5.071

50.999 5.195

MANEUVER
DURATION

(sec)

3302

3293

3285

3293

3314

"MANEUVER CENTERED ON RELATIVE NODE.

RESULTS

AV
(M/S) INCLINATION

Ide_)

2977 0.088

2967 -0,018

2959 -0.0007

2967 -0.012

2989 -0,022

ERRORS (ACHIEVED-DESIRED VALUES)
A RAAN

(dog)

6.53

2.37

=0.34

-2.34

-6.96

A APOGEE

_km_
0.29

3.23

29.8

3.94

0.88

A PERIGEE
(krn)

-1.14

-4.20

26.70

3,46

-1.26

of ignition delay. The maximum pitch available from the onboard control system is near
this value.

Shift in Ignition Time To Improve Out-of-Plane Convergence

Errors affecting the out-of-plane convergence can similarly be compensated for by a shift
in ignition time. Determine the achieved relative node and its distance from the desired

relative node. The difference in time corresponding to the difference in position of the
relative nodes is the amount of the shift. See Reference 4 for further details.
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The following example for the second apogee maneuver demonstrates improved conver-

gence with a burn center offset of 1 minute. The difference between achieved and desired

inclination and if2 are shown as errors on the fourth iteration.

Table 4. Improved Out-of-Plane Convergence With a Time Shift

INITIAL ORBITAL ELEMENTS GOALS

a = 29037.7 km Q = 352.3 deg Aapogee = 0.0 km

e = 0.4531738 co = 181.5 deg Aperigee = 24556.7km

i = 9.2 deg M = 169.3 deg i = 0.1 deg

tignition iERROR (deg) QER_O_ (deg)

Centered 900403.214057 0.0300 -3.60

Offcentered" 900403.213955 0.0002 -0.01

In addition to improving convergence, an a priori shift in ignition time may be a desirable,

conservative measure to safeguard against hardware system problems or to balance the

amount of apsidal motion between the prime and backup choices of apogee number for a

maneuver.

Displacement of Apogee From the Relative Node

A slight shift in the argument of perigee displaces apogee from the relative node. A burn

centered on the relative node could then be expected to have smaller in-plane errors.

Table 5 compares an example of the second apogee maneuver with coincident apogee

and relative node (item 1) against an identical one except for a displacement of 2 degrees

between apogee and relative node (item 2). The change in apogee radius is 34.8 km when

the burn is centered on the relative node with coincident apogee. When the apogee is

2 degrees from the relative node, the apogee radius change is -5.0 km. This result is

within the convergence tolerance for the run.

Table 5. Comparison of Maneuver Goals Against Achieved Changes

I
T TIME
E HHMMSS
M

1 213832

2 212740

INCLI-
NATION

(dog)

0.10000

0.10000

GOALS

NODE APOGEE
CHANGE CHANGE

(deg) (km)

-15.0000 0.0

-15.0000 0.0

PERIGEE
CHANGE

(kin)

24556.7

24556.7

ACHIEVED

INCLI- NODE
NATION CHANGE

(deg) (deg)

0.100 -34.47

0.099 -34.26

APOGEE
CHANGE

(kin)

34.8

-5.0

PERIGEE
CHANGE

(km)

24647.7

24562.1

ITEM 1 -- AMF2 CENTERED ABOUT RELATIVE WITH APOGEE ON RELATIVE NODE.
ITEM 2 -- AMF2 CENTERED ABOUT RELATIVE NODE WITH APOGEE 2 DEGREES OFF THE RELATIVE

NODE.
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Apogee and relative node can be arranged to be noncoincident on the second apogee

maneuver by adjusting ignition time on the first apogee maneuver. The amount of adjust-

ment needed can be interpolated from the data in Table 6, which shows the angular

displacement between relative node and apogee at the beginning and end of a maneuver

for various ignition times. In this table the burns are not centered on the relative node.

Table 6. Angular Displacement Between Relative Node and Apogee for the First

Apogee Maneuver Versus Ignition Time

iGNiTION DATE:
9O04O1

iGNITION TIME

(HHMMSS)

142857

143057

143557

144857

"145657

150857

151057

151457

152157

INITIAL FINAL
I i

(dig) (_)

27.S0360_ 9.29410758

27.00360_ 9`2840926

27:0036083 9_u3312"J

27.0038161 9.1926361

27.0036204 9.2O96661

27.00,38206 9.1918236

27.0036196 9.2014617

27.0036182 9.1967485

27.0036143 9.1692856

TOLERANCE ON APOGEE CHANGE - 5 km

INITIAL FINAL
INiTIAL FINAL ARGUMENT ARGUMENT

Q OF OF

(dell) (de9) PERIGEE PERIGEE

(d_l) (d_)

:363.76648 _39.871_7 180.21130 176.(181129

353.76648 359.31_10 180.21128 176,91120

3_3.78648 358.18352 180.21124 177.44410

353.76648 355.71ffil6 180.21117 177,72551

353.76648 353.00797 180.21109 180.40966

353.76648 350.51139 180.21102 18324896

353.76648 349.5C236 180.21099 183.36782

353.76648 348.47884 180.2101M 183.80722

353.76648 34_.(_0 180.21091 184.(R_92

(EXCEPT FOR THE CENTERED MANEUVER - SEE TABLE 3)

DISIIt.ACEMENT OF RELATIVE

NODE FROM APOGEE

INITIAL FINAL

ORBiT ORBIT

(dog) (_)

3.00 -12.60

2.74 -11.70

2.09 4).28

O,8O -5.24

0.18 0.74

-1.47 1.89

•1.99 3.10

-2,52 4.21

•3.46 6.12

CHANGE |N

DISPI.AC EMENT

OF RELATIVE
NODE FROM

APOGEE

(deg)

-15.60

-14.44

-11.37

-6.04

0.56

3.16

5.09

6.73

9.39

If desired, both a change in the argument of perigee for the sake of a later maneuver and

offcentering for the sake of convergence can be performed together on a maneuver.

5. SUMMARY

The SENARIO2 algorithm for the determination of optimum delta-V vectors for station

acquisition, including combined in-plane/out-of-plane apogee maneuvers, was described.

Associated computations of ground station coverage, coarse maneuver attitude,

postmaneuver orbit elements, and approximate propellant usage enable the user to obtain

a satisfactory station acquisition sequence for subsequent refinement.

The GOES-I/M maneuver attitude was implemented in GMAN. Convergence was ensured

by modifying the targeting algorithm to bias the initial attitude to compensate for the

change in thrust direction during a maneuver. An unavoidable rise in apogee radius oc-

curs for maneuvers with apogee near the burn center. The rise can be avoided by shifting

the ignition time or by changing the argument of perigee of the initial orbit so that apogee

is displaced from the burn center.

Data from the spacecraft manufacturer on the INSAT-1D station acquisition are being

studied for use in verifying the new software.
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ABSTRACT

Image Navigation and Registration (INR) is the system that will be used

on future Geostationary Operational Environmental Satellite (GOES) mis-

sions to locate and register radiometric imagery data. It consists of a

semiclosed loop system with a ground-based segment that generates coef-

ficients to perform image motion compensation (IMC). The IMC coeffi-

cients are uplinked to the satellite-based segment, where they are used to

adjust the displacement of the imagery data due to movement of the im-

aging instrument line-of-sight. This paper describes the flight dynamics

aspects of the INR system in terms of the attitude and orbit determina-

tion, attitude pointing, and attitude and orbit control needed to perform

INR. It discusses the modeling used in the determination of orbit and

attitude, the method of on-orbit control used in the INR system, and vari-

ous factors that affect stability. It also discusses potential error sources

inherent in the INR system and the operational methods of compensating
for these errors.

* This work was supported by the National Oceanic and Atmospheric Administration (NOAA), Suitland,

Maryland, under Contract 50-DGNE-6-00003.
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INTRODUCTION

The Geostationary Operational Environmental Satellites (GOES) I through M (I-M) will

begin a new era in the monitoring of the Earth's meteorological environment by the Na-

tional Oceanic and Atmospheric Administration (NOAA). This monitoring is done

through the collection and distribution of environmental images and soundings of the

Earth's surface and atmosphere. NOAA will use the Image Navigation and Registration

(INR) System to navigate and register these images accurately. Image navigation is the

process of determining the Earth latitude and longitude of each pixel in an image. Image

registration is the process of maintaining the relative pixel-to-pixel pointing within an

image and the relative pointing of a particular pixel from image to image. This paper

introduces and describes the GOES I-M INR system and illustrates the intimate connec-

tions between the new concept of INR and concepts that are more familiar to flight dy-

namics specialists, namely, the concepts of orbit and attitude determination and control.

The images and soundings for GOES I-M are acquired by two instruments, the imager

and the sounder, which are located on the Earth-pointing face of the spacecraft main

body. Figure 1 shows these instruments and the other major components of the space-

craft. More detailed descriptions of the spacecraft are presented in the literature listed in

the Bibliography.

EAST (X)

:
SOUTH RS---_(Y) EARTHSENSORS

/ X\ 1/ --

MR

Figure 1. GOES I-M Spacecraft Configuration

To maintain proper positioning and pointing for the imager and sounder, two operational

GOES I-M spacecraft will be positioned in geostationary orbits with a nominal attitude.

These two operational spacecraft are located along the Equator at geostationary positions
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of 75 and 135 degrees West longitude (Figure 2). At these locations, meteorological envi-

ronmental images and soundings will be provided for much of the Western Hemisphere.

Nonoperational spacecraft will be positioned in geostationary orbits at longitudinal loca-

tions safely away from the operational satellites. A nominal three-axis attitude is also

sustained to provide proper pointing for the imager and sounder. This nominal attitude,

shown in Figure 3, has the yaw axis pointing at nadir (the Earth), the pitch axis pointing

along negative orbit normal, and the roll axis pointing along the velocity vector. Taken

together, these geostationary locations and nominal attitude form the reference orbit and

attitude for GOES-East and GOES-West, respectively.

Figure 2. Nominal GOES Stations

Because they are fixed in an Earth-pointing direction, the imager and sounder use inde-

pendent two-axis gimbaled mirror scan systems to generate their respective images and

soundings. Figures 4 and 5 show typical scan patterns for the imager and sounder detec-

tor arrays, respectively. The imager detector array consists of one visible and four IR

channels, as shown in Figure 4. The sounder has 18 IR channels and 1 visible channel,
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all of which are configured as shown in Figure 5. During a typical scan line, the mirror

will continuously move along the scan line to a new position. At each new position, radio-

metric data are taken. At the end of a line, the mirror steps in the north/south direction to

a new scan line. Both instruments act as their own star sensors, slewing away from the
Earth to view stars.

EAST X ORBITAL PLANE

Figure 3. Nominal GOES I-M Orientation

The line-of-sight pointing for these instruments is not truly fixed. There are pointing er-

rors that also move the line of sight. These errors are caused by orbit and attitude drifts,

spacecraft thermal distortions, instrument servo errors, attitude control system noise, and

dynamic interactions between the instruments and the spacecraft. The INR system is de-

signed to remove or minimize these errors.

The GOES I-M INR system is a cyclical system, as represented in Figure 6. In this system,

the imager and sounder gather star and landmark observations as part of their daily

operations. These observations are sent to the Operations Ground Equipment (OGE),

where they are used in conjunction with range data to perform orbit and attitude determi-

nation. Over the course of a day, an orbit and attitude profile is developed, from which a

set of image motion compensation (IMC) coefficients are generated. These IMC coeffi-

cients are uplinked to the spacecraft, where they are used by the onboard computer to

correct the pointing of each pixel for drifts caused by predicted, systematic errors such as

orbit and attitude drifts and predictable thermal distortions. However, random errors also

affect pixel pointing during the imaging period when these compensations are being
made. These random errors are reflected in the new star and landmark observations that

are taken and used for subsequent orbit and attitude determination. The goal of the INR

system is to remove or minimize these errors to within acceptable values. Table 1 lists the

specifications for these acceptable values. During orbit day, visible imagery data are used

for INR; during orbit night, infrared imagery data are used.
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/ I,LLII _ 8KM -.
I _ SCAN W-E -i_ SCAN -_'_

NOTES:

1 - ONE 8-KM IR CHANNEL FOR 6.5- TO 7.00-MICROMETER WATER VAPOR

2, 3 - THREE 4oKM IR CHANNELS FOR 3.8- TO 4.00-MICROMETER NIGHt" CLOUDS
10.2- TO 11.2-MICROMETER SURFACE TEMPERATURE

11.5- TO 12.5-MICROMETER _ SURFACE TEMPE RATURE

AND WATER VAPOR

4 • ONE $-KM VISIBLE CHANNEL FOR 0.55- TO 0.75-MICROMETER CLOUO COVER

Figure 4. Typical Imager Scan Pattern

", '

_'_ %,. _._. 11 1 I I i

NOTES:

18 IR CHANNELS

1 VISIBLE CHANNEL

Figure 5. Typical Sounder Scan Pattern
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RANGE = I
ORBIT AND

AI-rlTUDE

DETERMINATION

IMAGE

MOTION

COMPENSATION

STARS

LANDMARKS

GROUND

_1
-I

SYSTEMATIC
ERRORS

ONBOARD I
IMC

PROCESSING

ERRORS

SOUNDER

SATELLITE

Figure 6. GOES I-M INR System

Table 1. INR Specifications

PARAMETER

Rl

ORBIT NOON :f.8 HOURS ORBIT MIDNIGHT :1:4HOURS

KILOMETERS* MICRORADIANS KILOMETERS" MICRORADIANS

IMAGER
Jl i elll =

IMAGE NAVIGATION (AT NADIR)

IMAGE REGISTRATION WITHIN A

25-MINUTE iMAGE

IMAGE REGISTRATION BETWEEN REPEATED
IMAGES TAKEN WITHIN 90 MINUTES

IMAGE REGISTRATION BETWEEN REPEATED
IMAGES TAKEN WITHIN 24 HOURS

4

1.5

3

6

112

42

84

168

6

1.5

3.75

6

168

42

105

168

SOUNDER

IMAGE NAVIGATION (A T NADIR) 10 280 10

IMAGE REGISTRATION WITHIN A 12G-MINUTE 3 84 4
SOUNDING

IMAGE REGISTRATION BETWEEN 10 280 10

SOUNDINGS TAKEN WITHIN 24 HOURS

"NOTE: AT GEOSYNCHRONOU$ ALTITUOE, 28 MICRORADIANS SUB] ENOS 1 KILOMETER ON THE GROUND.

|l

280

112

28O
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IMAGE NAVIGATION

Determining the location on the Earth at which a pixel is pointing requires a knowledge of

the position and orientation of the pixel. This is equivalent to knowing the spacecraft orbit

and the spacecraft and instrument attitudes. Consequently, orbit and attitude determina-

tion play a major role in image navigation.

Three types of observations are used in determining the orbit and attitude: range, land-

mark, and star data. Range data are normally acquired from NOAA's Command and

Data Acquisition (CDA) station located at Wallops, Virginia. Occasionally, the NASA

Deep Space Network (DSN) is also used. Landmark and star data are obtained by the

imager and sounder. Landmarks are obtained during each instrument's normal imaging

operation. Each operational satellite has a reference set of landmarks (Figure 7). The

landmark is a well-defined land point, usually at a boundary between land and water.

Figure 8 shows an example landmark for the GOES-West satellite. Visual landmarks are

used during day, and infrared landmarks are used during night. Star observations are also

obtained by the imager and sounder. After completion of an image, the scan mirror slews

to a position just ahead of an expected star crossing. The mirror remains fixed while the

normal orbital motion of the spacecraft allows the star to sweep across the mirror and be

detected. The imager and sounder are capable of observing stars down to the sixth magni-
tude.

GOES-WEST GOES-EAST

(135°w) SECTOR (75 °w)

------'_ USED
BY BOTH ! "

SATELLITES

' SRi

rr _'r.w'- •, :-_-,, ......:_,0,_.1.__,o_._
' I:l I _d". NIC _'xIVENi_ PA

, 1 __t,_......_........_l-_r41_.-;i,_......- _
• [T_-iMAR .... ;' ' " " i : : : B L lIT) : :

TAH

Figure 7. GOES Reference Landmark Locations

Once the observations are recorded, they are corrected for known physical effects and

processed into observables. Range data are corrected for atmospheric refraction, polar

ORIGINAL PAGE IS
OF. POOR QUALITY
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Figure 8. Example GOES Landmark--Tahiti

wander, and electronics delays. A predetermined station clock bias and range bias are

then added to the range data to produce a slant range observable.

Star observations are corrected for proper motion, stellar aberration, and parallax; land-
mark observations are corrected for satellite orbital motion aberration. Additional correc-

tions due to instrument characteristics such as image rotation and misalignments are also
included in star and landmark observation corrections. Because of the orientation of the

scan mirror with respect to the detector at a particular north/south scan angle, the projec-

tion of the image will be rotated as shown in Figure 9. This phenomena is known as

image rotation. Mounting misalignments cause a constant systematic bias. Detector

misalignment is caused by thermal distortions between other components of the space-
craft and the instrument. One additional correction is made on landmark observations.

Because the onboard computer applies IMC shifts to pixels on the Earth, the landmark

ORIGINAL FAGE IS

OF POOR QUALITY



observation obtained on the ground is at its ideal rather than true location. This IMC shift

is therefore removed on the ground so that the true landmark location can be used for

orbit and attitude determination.

C
i

21 °

t

i

23 °

+N

-41

  OETECTO.
DETECTOR

r_ IMAGE CENTERSHIFT AT NADIR

,,-O-M
ma

IMAGE CENTER
SHIFT AT .-N

N+(Z

N = NORTH/SOUTH SCAN ANGLE

_rna, 0me= ROLL, PITCH MISALIGNMENTS

r, 0¢= POLAR REPRESENTATION OF 0)ma, 0ma)

Figure 9. Image Field and Image Rotation Effect

Scan angle observables are produced from these corrected star and landmark observa-

tions. These observables, shown in Figure 10, are the azimuth, e, and elevation, x, of

the line-of-sight vector, _B, tO the star or landmark in the instrument body coordinate

system. This coordinate system is fixed in the instrument body with the _B axis in the

instrument baseplate, the _ B axis along the instrument nadir, and the 9 B axis completing
the orthogonal system. Figure 11 shows the geometry for the line-of-siaht unit vector, s o,

to a landmark in the spacecraft orbital coordinate system (So, 9o, _o). The spacecraft

orbital system and the instrument body coordinate system are related through an attitude

transformation, Me. Consequently, the relationship between the line-of-sight unit vectors,

_B (in Figure 10) and _o (in Figure 11), is

_B = ME _O (1)

The specific nature of this transformation is discussed later in this paper. From the ge-

ometry of Figure 11, it is evident that

^ (2)
So - II_L_ _

Orbit and attitude determination are performed by developing a measurement model that

is an expression of the observables in terms of the orbit and attitude, parameterizing the
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STAR OR LANDMARK)
SATELLITE T_ ......... "" - -- -'-_ ..... -- _"B

 .1

YB XB

(X B' YB' ZB) = INSTRUMENT BODY COORDINATE SYSTEM

Figure 10. Scan Angle Observables in Instrument Body Coordinate System

(_, _r_, 2tO - SPACECRAFT ORBITAL CO0

/ __ _ RL = VECTOR FROM CENTER OF EARTH

/EARTH _ .., TO LANDMARKposITION VECTOR

' _. SO X_

Figure 11. Scan Angle Measurement
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orbit and attitude in terms of a state vector, generating partials of the measurement model

with respect to the state vector, and estimating the orbit and attitude. Equations (1) and

(2) form the basis for the first step--developing the measurement model for the scan

angle observables--since these observables are components of _B in the instrument body

coordinate system (_B, 9B, _B). The measurement model for the slant range, O, is

illustrated geometrically in Figure 12 and mathematically by

0 (slant range) = If - 1_1 + range bias (3)

EARTH ' _ GROUND _= SPACECRAFT POSITION VECTOR

Re STATION _ P

Figure 12. Range Measurement

The orbit model in the state vector is parameterized in terms of equinoctial elements that

are used to avoid singularities for zero or near-zero inclination and zero or near-zero

eccentricity orbits. The equinoctial elements are listed below in terms of the more familiar

Keplerian elements.

Equinoctial Elements

af = e cos (_ + _o)

ag = e sin (f_ + w)

n -- t.aU

(u = gravitational constant)

Keplerian Elements

e = eccentricity

f_ = right ascension of ascending
node

60 = argument of perigee

a = semimajor axis
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Equinoctial Elements

L=f2+w+M

sin i sin if2
X=

1 + cos i

sin i cos
_p=

(1 + cos i)

Keplerian Elements

M = mean anomaly

i = inclination

The attitude model in the state vector is a linear combination of basis functions represent-

ing each of the five attitude angles: roll (q_), pitch (0), yaw (lp), roll misalignment

(qSm._), and pitch misalignment (0ma)- The basis function consists of Fourier, exponen-

tial, and monomial sinusoid functions denoted by subscripts F, E, and MS, respectively:

if(t) = fliF(t) + fib(t) + ffMS(t) i --- (1,..., 5)corresponding to (4)

(qs,o, _, ¢ma, 0ma)

The attitude can be expressed by up to three basis function sets. A Fourier series

n

= >i c_j cos (i_t + al)fl_(t) (5)

j=0

is used to model the nominal daily attitude behavior. Exponential functions

fl_(t) = C_1 e -'/c_ (6)

are included to model the deviations in attitude that usually occur around eclipse. Mono-
mial sinusoid functions

flMS(t) = E C]j (t- Chj) Dj cos (Ojo)t + C_j) (7)

j=l

are available to model attitude deviations that cannot be modeled by Fourier or exponen-

tial functions.

The solve-for parameters in the orbit model are the equinoctial elements at epoch, _o; in

i Dj, and Oj) in the basis function setthe attitude model, they are the coefficients (c_, aj,
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modeling the attitude. Consequently, the partial matrix of the measurement model, IVI,

contains elements that are chain rule partial derivatives of these solve-for parameters:

affl a(e, v-') a#
v-')

(orbit partials) (8)

(attitude partials) (9)

These partials are used in a linearized least-squares estimation to determine the orbit,

attitude, and attitude misalignments.

IMAGE REGISTRATION

To maintain the relative pixel-to-pixel pointing within an image and between images, it is

necessary to control the orbit and attitude of the spacecraft. For GOES I-M, orbit control

is performed through manual ground commands, and attitude control is performed

autonomously on the spacecraft.

To meet the INR requirements listed in Table 1, the geosynchronous GOES orbit must be

controlled in both inclination (north/south excursion from the Equator) and longitude

(east/west excursion from nominal longitude). The inclination is maintained to within

0.1 degree of the Equator, and the longitude is maintained to within 0.5 degree on either

side of its nominal longitude.

Solar and lunar gravity are the primary perturbations that cause the inclination drift away

from the Equator. This drift causes an inclination maneuver approximately every

2.8 months. The tesseral harmonic terms of the Earth's gravitational potential are the

principle contributors to longitudinal drift. This drift causes a longitude maneuver ap-

proximately every 2.5 months.

Nominal attitude control is performed using a horizon sensor and a pair of momentum

wheels. The momentum wheels nominally run with a constant pitch angular momentum to

maintain Earth pointing. The horizon sensor senses pitch and roll. Pitch errors cause a

speed modulation in both momentum wheels to control pitch. Roll errors cause a differen-

tial modulation of the momentum wheel speeds to induce momentum along the yaw axis.

Roll and yaw are coupled due to the rotation of the roll/yaw plane around an orbit. Peri-

odically, momentum is dumped using thrusters to avoid saturation of the momentum
wheels.

The primary environmental torque at geosynchronous orbit is due to solar radiation pres-

sure force, which causes an inertial roll torque. Coarse control of this torque is done using

the rigid solar sail located on the north face of the spacecraft and the movable trim tab

panel located on the base of the solar array (Figure 1). Fine control is done using the

magnetic torquer coils.
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The control system also performs corrections to the instrument servos, preventing image

disturbances in one instrument caused by the independent motion of the scanning mirror

in the other instrument. This autonomous correction, known as mirror motion compensa-

tion (MMC), causes the mirror drive electronics to adjust the inertial pointing of the

mirror to compensate for attitude disturbances caused by motion of the other instrument's
mirror.

Certain circumstances cause pointing disturbances in the control system and consequently

affect INR. Cloud and radiance gradient excursions and solar or lunar intrusions into the

horizon sensor field of view are such circumstances. Cloud and radiance gradient excur-

sions result in a deviation in the detected infrared threshold that produces an anomalous

pitch or roll error. Sun and Moon intrusions result in a deviation in the Earth horizon limb

detection that also produces an anomalous pitch or roll error. Either of these conditions

can be identified by observing the residual errors of star and landmark observations from

their predicted locations. Special ground operations minimize their effects. In these

special operations, intermediate IMC coefficient sets, based on the observation data af-

fected by these conditions, are uplinked and used to navigate and register the image until
normal conditions resume.

Orbit maneuvers also cause significant postmaneuver disturbances. During an orbit ma-

neuver, the attitude is autonomously controlled using the horizon sensor, three mutually

perpendicular gyros, and thrusters. An attitude error sensed by the sensor or the gyros

causes an automatic thruster firing, compensating for the error. When the orbit maneuver

is completed, attitude control is resumed by the horizon sensor and momentum wheels.

The thruster firings during the maneuver cause significant disturbances that do not imme-

diately die down after the maneuver. The yaw error from these disturbances is not imme-

diately sensed. Special ground operations are used to reduce the yaw attitude error after

the maneuver. These operations consist of determining the yaw error using star observa-

tions and manually performing short thruster firings to remove most of the yaw error.

Any residual yaw error remaining is removed by the magnetic torquer coils.

IMAGE MOTION COMPENSATION

IMC is the main component of the INR system. It is the process used by the onboard

computer to correct the azimuth and elevation pointing of each image pixel, in real time,

for deviations caused by orbit drift, attitude drift, misalignments caused by spacecraft

thermal distortions, and other systematic errors.

In effect, IMC corrects the true pointing of the pixels in an image to the ideal pointing of

the pixels. The ideal.pointing of the pixel is defined with respect to an ideal, or reference,

orbit and attitude. The true pointing of the pixel deviates from this ideal pointing due to

deviations of the orbit, attitude, and attitude misalignments from this reference orbit and
attitude.
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This is illustrated in Figure 13. In this figure, I_R represents the ideal pointing of a pixel

in the reference orbit and attitude coordinate system (_R, 9R' _P-)" This system defines

the ideal, or reference, orbit and attitude. The reference coordinate system is one in which

the spacecraft orbit and attitude are as follows:

• The spacecraft is always located at its reference longitude (75 °W for GOES-East

or 135°W for GOES-West).

• The spacecraft is always along the Equator in a zero inclination orbit.

• The spacecraft attitude is referenced with roll = pitch = yaw = 0 in the orienta-

tion shown in Figure 3.

_ __B-R_= VECTOR FROM SPACECRAFT REFERENCE

-- ORBIT AND ATTITUDE TO CENTER OF EARTH
"R_ = VECTOR FROM SPACECRAFT TRUE ORBIT

_u AND ATTITUDE TO CENTER OF EARTH
A

^ XB^

/ - x°

Figure 13. IMC Geometry

The true orbit deviation from the reference orbit is a function of the difference in longi-

tude, 2e, from the reference longitude; the nonzero inclination, i, of the true orbit; and

the argument of latitude, u, of the spacecraft position in the nonzero inclination orbit.

This is shown graphically in Figure 14. The 2-3-2 transformation, Mo, defines the rela-

tionship between the reference coordinate system, (_R, 9 R' _R)' and the spacecraft or-

bital coordinate system, (_o, _)o, _o )' The geometries of these systems are shown in
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Figure 13. The relationships between a pointing vector in the spacecraft orbital coordinate

system can then be expressed with respect to the reference coordinate system as follows:

1_ = Mo (2e, i, u) R.R (10)

A

Z

°

! A

,, i|
_,ref

Figure 14. True Orbit Transformation Geometry With Respect to an
Earth-Cerltered Coordinate System (_, _, _)

where Mo is the transformation matrix between the pointing vector, I_R, in the reference

coordinate system (_R, 9R' _R) and the pointing vector, I_, in the spacecraft orbital

coordinate system ( _o, 9o, _-o)"

Attitude deviations are functions of the spacecraft roll (_), pitch (0), and yaw (_)

angles with respect to the reference attitude. They are represented by a 1-2-3 Euler trans-

formation, ME. When applied to the spacecraft orbital coordinate system, (_o, 90, _o),

this transformation produces the instrument body coordinate system (_a, _a, _B),

which is also shown in Figure 13. The equations

I_B = ME (¢, 0, _p)15.o (11)

and

R.B = Me (qS, 0, _p)Mo (;re, i, u)ff, R (12)

show the relationships between the pointing vector, l_u, in the instrument body coordi-

nate system (_B, 9B, _B) and the spacecraft orbital and reference coordinate system

pointing vectors, _ and I_R, respectively.
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The IMC system uses these transformations and misalignment offsets of the scan angles

in the instrument body scan plane (Figures 9 and 10). Misalignment deviations are any

roll and pitch misalignments, _ma and 0ma , of the instrument with respect to the space-

craft. These misalignments affect the scan angle observables, E and _, through offsets,

6e and 6 X, in the instrument body coordinate system (see Figure 9). These offsets are

dependent upon the elevation angle, .If, of the scan plane in the instrument body coordi-

nate system (see Figure 10):

(_E" = Oma COS JT + _ma sin 3¢ (13)

8 x = Om_ sin J¢- _ma cos .IT (14)

The coordinate transformations and misalignment offsets from Equations (12) through

(14) are used to correct the azimuth and elevation angles that define the pointing of an

image pixel. Referring to Figure 13, these angles in the instrument body coordinate sys-

tem are AZB and ELa. However, in the reference coordinate system, these angles are

AZR and ELR. IMC changes the true pointing of the pixel by applying the following

compensations:

6AZ = AZR - AZB (15)

tSEL = ELR - ELB (16)

This is done by using the ground-determined orbit and attitude states in the form of IMC

coefficients. The corrections due to orbit deviations are used by expressing the ground-

computed orbit in terms of the following parameters:

• AR--difference in radial distance from the ideal radial distance

• A2--difference in subsatellite longitude from the ideal subsatellite longitude

• A L--difference in subsatellite latitude from the Equator

• A_ --difference in yaw caused by the orbit's inclination

The corrections due to attitude are computed by determining the attitude angles from the

solve-for coefficients of the attitude determination process. As many as 550 coefficients

are uploaded daily to determine these orbit and attitude corrections.

During scanning of the Earth, the onboard computer continually computes these correc-

tions. The onboard flight model approximates the exact computation to provide high-

speed calculations for real-time pixel corrections. Because the mirror is continually

scanning during these computations, the onboard computer performs extrapolations to

account for this motion. It also models the curvature of the Earth at the limb to avoid

erratic behavior at the scanner turnaround point.
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SUMMARY

This paper introduced and described the new system of navigating and registering mete-

orological environmental images--Image Navigation and Registration--that will be used

on the GOES I-M spacecraft. It also demonstrated the deep-rooted connection between
INR and orbit and attitude determination and control.

Before the expected launch of the spacecraft in the early 1990s, NOAA is working to

resolve several issues dealing with the operational performance of this system. As with

any new spacecraft system, a thorough checkout of each component must be accom-

plished once in orbit before it begins operation. NOAA and NASA INR specialists are

currently working together to ensure that every component of the INR system undergoes

complete ground testing so that the in-orbit checkout will be successful.

During the operation of the system, anomalous or degraded INR performance could occur

due to some unforeseen circumstance. Once again, NOAA is preparing for such

circumstances by investigating potential anomalous behavior and preparing operational

procedures for dealing with their occurrence. The special operational procedures pre-

viously discussed in the section on image registration are examples of NOAA's prepara-
tion.
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ABSTRACT

A Shuttle mission planned in 1991 will test the feasibility of tethers in

space. This mission, a joint effort between Italy and the United States, will

connect a satellite (built by the Italians) to the Shuttle with a 20 km long

tether.

This mission poses unique navigation problems. The flight software on the

Shuttle was never designed to account for the low level acceleration that is

generated by the gravity gradient. IMUs on the Shuttle will sense the

acceleration of the tether but it tulns out that incorporating the continuous

accelerometer noise also generates large error growth. Relative navigation is

another important issue since the majority of the mission will be conducted

while the satellite is out of the visual range of the crew. Some kind of

feedback on the motion of the satellite will be desirable. Feedback of the

satellite motion can be generated by using the rendezvous radar. To process

the radar measurements, the flight software uses a 13 state Kalman Filter, but

unforunately with the filter currently tuned as it is, valid measurements tend

to be ignored. This is due to the constraint of the tether on the satellite,

which is an unmodeled force. Analysis shows that with proper tuning, relative

navigation is possible.

PRECEDING PAGE BLANK NOT FILMED
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1.0 INTRODUCTION

The first tether satellite mission (TSSI) is an attempt to fly the easiest

profile that can be performed and yet provide us with valuable data to proceed

with more complex tethered missions. Several questions and issues need to be

resolved: Can the onboard flight software propagate the inertial state

accurately enough? Can the ground software update the state? Can the Shuttle

maintain a good target state? Additionally, there are numerous proximity

issues that will also need to be answered. This paper will describe the

analysis and answer the questions that pertain to the current onboard flight

software, and in particular, to relative navigation issues.

The basic design of this mission is to fly the Shuttle at an altitude of 296

km. A satellite, built by Aeritalia, will be deployed away from the Earth

(upward deploy) on a 20 km. long tether. The satellite is a 1.5 m diameter

sphere containing various instrumentation. The tether consists of kevlar with

a conducting wire passing through it. The mission does call for a 1 amp

current to be passed along the tether.

Satellite thrusters will be used during the deploy until the gravity gradient

between the Shuttle and the satellite is sufficient to continue deploying at

the desired rate. During the deploy, the satellite will fall behind the z

radial of the Shuttle and during the retrieval, it will be in front of the z

radial. This can be seen pictorially in Figure 7.

There are two basic programs used to perform this analysis. The tether

mission trajectories are generated using Shuttle Tethered Object Control

Simulation (STOCS). STOCS is a high fidelity Shuttle simulation with a

general purpose tether model attached. Reference 1 describes STOCS in greater

detail. Onboard software is modeled in Shuttle Environment and Navigation

Software for Onorbit and Rendezvous (SENSOR). Section 2.1 gives more

explanation of the onboard software and Reference 2 gives a full description

of SENSOR.
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2.0 DISCUSSION

The satellite, a small object, will be out of visual range of the crew for the

majority of the mission. Sensors mounted on the boom indicate, among other

things, tether tension, tether angle and length of tether deployed, but this

information does not give a lot of direct feedback on the satellite itself.

More useful information could be obtained by using the rendezvous radar, which

generates range, range rate and in and out of plane angles of the satellite.

This radar data is also information that the crew has seen before and is

familiar with.

The radar is self contained and handles tracking by itself so the simplest

method of use would be to turn it on and watch the data. What happens if the

radar breaks lock? Remember that the satellite is small and will be up to 20

km from the radar. Since the default search mode of the radar is to start the

search with a shaft and trunnion angle of 0" and a range of 609 m, it is

unlikely that the radar will be able to reacquire the target. An alternative

would be to use the Relative Navigation (Rel Nav) function on the Shuttle.

Using Rel Nav allows the flight software to maintain a target state. When the

radar tries to acquire a target, the navigation software (Nay) will supply a

target state vector. As will be seen later, there are also problems using the

radar with Rel Nav.

2.1 FLIGHT SOFTWARE BASICS

There are two methods for incorporating accelerations into the state

propagations. The first is by using modeled atmospheric drag and modeled vent

and thrusting. An alternative method is by using the Inertial Measuring Unit

(IMU) sensed acceleration output. The appropriate acceleration source is

chosen by comparing the IMU sensed accelerations against the 1,000 _g

threshold. If the sensed accelerations are less then this threshold, then the

models are used, otherwise the IMU output is used. Sensed accelerations will

also be used if the digital autopilot (DAP) jet flag is turned on during a

given Nav cycle. The DAP jet flag is used to incorporate jet firing when it

is known that the low level accelerations are due to the jet firing. Finally,

a 4 x 4 gravity model is used for the state propagation which is performed by

the Super G integrator.
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Relative navigation data processing is done using a thirteen state Kalman

Filter. The first three components of the state are the inertial position and

velocity vectors. States seven through nine are the inertial unmodeled

acceleration biases, which are used in the calculation of the vehicle

accelerations. Finally, the last four states are the measurement biases. The

flight software has a choice of filtering the Shuttle state or the target

state.

2.2 PROCESSING A TETHER MISSION

The first step to onboard processing is to propagate the inertial position and

velocity of the vehicles. For the Shuttle, the immediate consequence of

having the tether attached is to impart a continuous low level acceleration.

Unfortunately, the tether acceleration is below 1,000 _g. Setting the

acceleration limit lower so that the state propagation could pick up the

tether acceleration does not work since IMU errors are also incorporated.

This leads to worse state propagation than when the tether is ignored. Ruling

out flight software modifications, the inertial error growth will have to be

accepted and handled through ground processing with state vector uplinks.

The next step to onboard processing is to address the relative navigation

problem. Typically, the Shuttle state is the choice state for filtering. The

reason is that normally the target has been tracked for months and it's orbit

is well known. Also, the target will be essentially dead and therefore will

not be venting or thrusting. Modeled accelerations are sufficiently accurate

in propagating the target state for these types of rendezvous. The Shuttle,

on the other hand, is conducting numerous venting and thrusting. Thus, the

Shuttle state is better suited for filtering during a nominal rendezvous. For

the tether mission, the Shuttle is still performing the venting and thrusting,

but look at what the target is doing. It will be moving from an orbit at 296

km to an orbit at 316 km. Thus, the target state is better suited for

filtering during the tether mission.

During the propagation/update process, the filter takes the measurements and

adjusts the state by using the measurement residual and the Kalman gain. When

the measurements are coming in, one would expect the filter to bring the state

152



closer to the truth. As shown in Figure i, this does not happen.
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USING STANDARD I-LOADS

If measurements were not being used, the satellite would follow a path shown

in Figure 2, which depicts the natural motion of the satellite had the tether

not been connected. This seems to indicate that Nay is using the dynamics in

the state propagation and is ignoring the measurements. What is actually

happening can be seen in Figure 3 and Figure 4. The measurements aren't being

edited but rather the filter is adjusting the shaft bias by about 80" and the

trunnion bias by 25". Successful relative navigation now requires tuning the

filter and giving the measurements more weight so that they are "believed"

over the coded dynamics.
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2.3 FILTER TUNING

The flight software is designed so that various parameters (called I-LOADs)

can be changed without major recoding of the software. As an example, the

choice of which vehicle state to filter is set by the I-LOAD

Shuttle_filter_flag. Eight of these I-LOADs were found to require adjustments

in order to properly tune the filter. The eight I-LOADs are shown in table i.
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TABLE 1 - I-LOADS USED TO TUNE THE FILTER

UNMOD ACC BIAS FLAG

SIG UPDATE

VAR RRDOT

VAR RR ANGLES

COV U A COAST

BIAS VAR RRDOT

BIAS VAR RR ANGLES

VAR U A COAST

Enable the filter to solve for unmodeled

acceleration

change initial position and velocity _ to

prox ops values

decrease initial range variance

decrease initial radar angle variance

increase initial unmodeled acceleration

variance

decrease range ecrv bias _for state noise

decrease radar angle ecrv bias _ for state

noise

increase unmodeled acceleration ecrv bias

for state

SIG_UPDATE is used to initialize the covariance. Normally it is only used at

the beginning of a rendezvous, but for the tether mission, uplinks are

required which triggers a covariance reinitialization. COV U A COAST will

also be used at each uplink to reinitialize the unmodeled acceleration slots

of the covariance matrix. Measurement variances are only used at rendezvous

start up time and when an instrument is switched. The bias slots of the state

(slots 7 - 13) are modeled as exponentially correlated random variables

(ecrv). The last three parameters in table 1 control the ecrv state noise for

the propagation.

2 .4 RADAR BREAK-LOCK

A major impact to using relative Navigation during this mission will be if the

radar loses the lock on the target. Having Rel Nav active will aid in the

radar finding the target by telling the radar where to look, but in the period

of time that no measurements are being processed, Nay is simply propagating

the target state. The target state vector would then be following a path

similar to that shown in Figure 2. Eventually Nay will be telling the radar
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to point in the wrong direction. The question for the break-lock studies is

how long will it take before Nay points the radar such that it can't locate

the target? To answer this, some radar basics are needed.

When the radar is in GPC mode, it takes a state vector from Nav and points to

that location. If a positive return signal is not received, a spiralling

search within a designated cone is begun. The limit of the cone is determined

by the expected distance to the target. For instance, a cone of ±20" is

searched at 20 km and a cone of ±30" is searched at 13 km. A new search is

begun every 20 seconds until the target is found.

This topic is studied from a navigation standpoint only. There are other

concerns about the actual functioning of the radar hardware. One concern is

that the radar may begin tracking the tether instead of the satellite. This

can easily be checked real time by watching the radar data and comparing it to

the timeline and the tether length output. If this phenomenon does happen, it

will be during the portions of the mission when the satellite is towards the

20 km point and the tether begins to bow. At some point during the retrieval,

the radar should be able to reacquire the satellite via Rel Nav and target

state vector uplinks. Reacquiring the target during retrieval will still be a

useful aid to the mission and crew by having some radar feedback as the

satellite approaches the Shuttle.
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3.0 MISSION ANALYSIS

Several different trajectories were generated and processed for the TSS1

mission. The purpose of having the different trajectories is to try to

encompass the actual performance (a true unknown) within simulated data. To

do this, various scenarios were generated by adjusting mission parameters. By

doing this, the most difficult mission to navigate was found to be one that

needed a lot of attitude controlling. This mission profile also required

numerous uplinks to keep the Shuttle inertial state errors within procedural

limits.

The particular trajectory used in this paper is named STVHO. The profile uses

vernier jet control and there is a current flowing through the tether during

the on-station phase of the mission. The Shuttle is held at a pitch of 25"

nose up with 2" attitude dead bands. Six uplinks were required for this

profile.

There is a concern as to what happens to a standard rendezvous when I-LOADs

are changed. This could be a question if another rendezvous is scheduled for

the same Shuttle mission or if an unplanned rendezvous would be desired. To

look at this, I used a trajectory called OMP13, which is simulated data. A 30

cycle Monte Carlo run was performed on both STVHO and OMPI3.

3.1 ANALYS I S OF STVHO

Figures 5 and 6 show the 30 cycle Monte Carlo output for STVHO. These two

plots indicate good Rel Nay performance. The downtrack and cross track errors

are both 320 m during the on-station phase and reducing to zero towards the

end of the retrieval. The radial position error remains around 20 m

throughout the whole mission. Velocity errors seen in Figure 6 also are

acceptable. The spikes, which are more prominent in the velocity plot, are

due to the state vector uplinks. When an uplink occurs, the covariance gets

reset and it takes about 1,000 seconds for the filter to recover.
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Figure 7 shows the Shuttle centered relative motion plot for STVHO.

Differences seen in the trace of the environment versus Nav is due to the

measurement errors so the actual mission could vary depending on how well the

measurement errors have been predicted. Withthe measurement errors used, the

angle between the line of site error to the on-station points seen in Figure 7

is around 1.3".
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Figure 7 - RELATIVE MOTION PLOT FOR STVHO

3.2 ANALYSXS OF OMPI3 USING THE NEW I-LOADS

Figures 8 and 9 show OMPI3 using the standard filter I-LOADs. Star tracker

measurements are taken during the first portion of the rendezvous. At 10,000

seconds the measurement source is switched to the rendezvous radar. These

plots show typical performance. Figure i0 is the target centered relative

motion plot. Figures II, 12 and 13 are for OMPI3 using the new I-LOAD set.

Performance is the same up until 12,000 seconds. This is the point of the

profile where the Terminal phase Initiation (TI) burn is executed.
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Another significant event during this time is angle measurements drop out from

12,000 seconds to 14,000 seconds. The relative motion data in Figure 13 does

not reflect the state errors shown in Figure II because Figure 13 is from a

single cycle run. The Monte Carlo analysis in SENSOR does not print the

relative state for each cycle.

The performance of OMPI3 with the new I-LOAD set is not good. The Root-

Sum_Squared (RSS) position error at 14,000 seconds into the run is 7,000 m.

The actual distance between the Shuttle and the target at this time is

approximately 12,000 m. This portion of the rendezvous requires several

midcourse maneuvers, which are normally targeted onboard. The plots show that

the Nav state would not be accurate enough to do this.

3 •3 RADAR BREAK- LOCK ANALYS I S

This analysis was performed by inhibiting measurements at a given time. This

allowed Nav to propagate the target state using normal orbital dynamics.

Figures 14, 15 and 16 show results at three different times: 1,000 seconds,

15,000 seconds and 45,000 seconds respectively. Relative times can be taken

from the plots since there is 38.4 seconds between markers.

The objective is to see how long Nav can propagate the state before the state

error is to large to help the radar point at the target. The lines shown on

the plots indicate the point after which the target will not be within the

search cone of a given Nav state. The work shown here attempts to answer the

break-lock question from a navigation stand point. The actual radar hardware

could shorten the period of time for reacquisition.

Figure 14 shows an interesting propagation, which is due to the unusual motion

of the satellite at the time the measurements are shut off. This plot

indicates that it will take 800 seconds before the Nay state will point the

radar in the correct direction to find the target. From this point, there is

700 seconds for which the Nay state will point the radar such that it can

reacquire the target.

The next run, shown in Figure 15, behaves as expected. If the break-lock

happens 15,000 seconds into the deploy, the radar has 450 seconds to reacquire
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the target before Nay state errors become to large. This time is based only

on the search cone. There is also a large range difference between the Nay

state and the actual position of the target which could also limit the

reacquisition time.

Figure 16 shows the final case analyzed. This break-lock is simulated at

45,000 seconds into the run, which is during the on-station phase of the

mission. This plot indicates that about 400 seconds are available for Nav to

help the radar find the target. Again, as previously mentioned, there is a

large range difference between the environment and the Nay state.
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4.0 CONCLUSIONS

Relative navigation performance is acceptable for the TSSI mission. To do

this requires 9 I-LOADs to be changed. This new I-LOAD set does work for the

standard rendezvous trajectory that I have available, but shows poor

performance during the final 14 km of the rendezvous. State vector uplinks

around the time of the TI burn might be able to keep the state errors within

acceptable limits. An alternative method of performing a standard rendezvous

would be to target the midcourse maneuvers on the ground and then uplink them

to the Shuttle. These ideas require more analysis.

The performance of the radar itself is a question that may not be completely

answered until the mission. The satellite is small and will be difficult to

track at 20 km. If tracking of the satellite is not possible at the extreme

distances, Rel Nay and the radar, with the help of ground uplinks, should be

able to acquire the target at some point during the retrieval.

167



5.0 REFERENCES

o Wacker, R.A. and crew, "STOCS USER MANUAL", McDonnell Douglas

Astronautics Co.-Houston Division, I.I-TM-EH86020-06, 14 February 1986.

. Alland, K.A. and Kralicek, T.L., "SENSOR6A USER'S GUIDE", McDonnell

Douglas Technical Services Co.-Houston Astronautics Division, 1.2-TM-

FM85018-219, 29 August 1985.

168



Ngo-lz424
Impact of Tether Cutting on Onboard Navigation During the Tethered Satellite Mission -1

Dana M. Pirker

McDonnell Douglas Space Systems Company
Engineering Services Division

16055 Space Center Blvd, Houston, TX 77062
JSC Mail Code T5H

280-1500 x4074

Abstract

The first Tethered Satellite System mission (TSS-1) is manifested for Shuttle Flight STS-44 in
January of 1991. The TSS mission presents a new challenge to engineers, requiring advanced
guidance, navigation and control concepts. As an example, current navigational systems track the
Orbiter exclusively and do not model the accelerations induced by the tether on the Shuttle. Due to
the offset of the center of mass of the system from the that of the Shuttle, the navigational system
assumes the tracking data are biased, and tracks the center of mass of the system. This offset can

be quite large, to several hundreds of feet. As a result, determination of the navigational state of the
Shuttle becrmes more difficult and less certain.

Current NASA flight rules require that the navigational state of the Orbiter at deorbit bum be known
to an accuracy of 20 nautical miles. Response of the Shuttle crew to this contingency may involve
cutting the tether prior to a complete retrieval. This paper examines the degradation of the
navigational state accuracy as modelled by Shuttle navigation systems.

Responses to the loss of communication scenario are proposed for two cases. The first case
examines navigational performance during a "nominal" attitude profile. The second case is identical
to the first, with the inclusion of modelled tether electrodynamical forces.

Comparisons of trajectories propagated from the onboard navigational state-vector and a reference
ephemeris state-vector were performed, with the tether cut simulated at various points during the
mission. Additionally, updates to the onboard navigational state via ground uplinks were provided
prior to the assumed loss of communication. Through these comparisons, the onboard navigation
state error was determined. Alternative responses result from efforts to minimize this error during
the various phases of TSS-1 deployment. These results demonstrated existing NASA flight rules
could be violated by cutting the tether, and suggests responses to a loss of communications

contingency to maintain a more accurate navigational state.
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In_rodu_lion

Perhaps the most exciting and challenging Shuttle mission ever flown is scheduled
for STS 44, in late January, 1991. A satellite will be deployed in an nominally outward
radial direction on a conducting tether during the first Tethered Satellite System
mission (TSS-1). The satellite is designed by an italian aerospace company, Aeritalia.

Primary objectives for the mission are to demonstrate closed loop control of a
tethered object, and to examine the behavior of a current carrying tether passing
through the Earth's magnetic field.

The deployment of the satellite moves the center of mass of the system away from
that of the Orbiter. For a twenty kilometer long tether, this separation can be as great
as 100 meters. Additionally, the presence of the tether results in a tension force

continually experienced by the Shuttle, a force unmodelled by current Shuttle
ground-based navigational systems onboard Shuttle. Although the Inertial
Measurement Units (IMUs) detect tether accelerations, these accelerations are within
the noise thresholds. Therefore this data is not passed on to the navigational systems.
These two facts make navigation difficult. When this force is suddenly removed, as in
a cut or break of the tether, the Shuttle's orbit changes, and the system center of
mass returns instantly to the Shuttle. The onboard navigation system is unaware of
the removal of the tether, resulting in rapid navigational state degradation.

An accurate Shuttle state can be determined following a tether cut, given
communications with ground based systems. The ground navigation systems are able
to determine the new orbit of the Shuttle, then uplink an accurate state, resetting the

onboard systems. Shuttle navigation proceeds as if the tether was never present. In
a loss of communications contingency, however, an accurate updated state is
unavailable to onboard systems.

This paper examines Shuttle navigational response to the removal of the tether.
Additionally, responses are suggested to a loss of communications in an effort to
minimize navigational error.

During a loss of communications, the onboard navigation systems perform
unsatisfactorily, as no uplink can be provided. Efforts to minimize onboard

navigational error growth result in responses to a loss of communications
contingency. Navigation performance is improved to acceptable standards by
reeling in the tether as much as possible prior to cutting.

Analysis tools used for the research of this paper include three simulations: The
Shuttle Tethered Object Control Simulation (STOCS), a high fidelity engineering
simulation of the TSS-1 mission (Reference 1); the Shuttle Environment Navigation
Simulation for Orbit and Rendezvous (SENSOR), an onboard navigation simulation

(Reference 2); and the Standalone Orbital Navigation (SONAV) program, a ground
system emulator (Reference 3). An additional tool is the Houston Operations
Predictor/Estimator (HOPE). HOPE was used primarily as a propagator of Shuttle state
in the absence of tether accelerations (Reference 4).

Effect of Tether on Shuttle Navigation Systems and State

Current navigational systems track the Orbiter exclusively and do not model the
accelerations imparted to the Shuttle by the tether. These accelerations include
gravity gradients, and the aerodynamic and electrodynamic drag of the tether. The
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gravity gradient accelerations are dominant of these three. Because the existing

ground navigation systems do not incorporate these accelerations in their
propagations, the combination of a propagation of the previous state and a weighted
least-squares reduction of the observation data results in a state vector for that point
in the TSS where the gravity gradient accelerations are zero. This point is
approximately the center of mass of the system. Effectively, the ground navigation
systems assume the observations are biased by the difference in position between the
system center of mass and that of the Shuttle. As a result, the navigational accuracy
of the shuttle deteriorates rapidly, particularly during reel-out, when these two
points are moving apart. Reference 5 presents a further discussion of tether effects
on inertial navigation.

To the onboard navigational systems, the presence of the tether goes completely
unnoticed. Accelerations of the same magnitude as the tether tension appear as noise
to the navigational systems. These forces are therefore not considered in the

onboard state propagation.

The comparison of the ground ephemeris for the Shuttle and the simulated tethered
trajectory in Figure 1 illustrates the effect of tethered operations on Shuttle
navigation. During the initial phases of the mission (i.e. reel-out, see Figure 2 for a
tether length profile), the navigational state error grows rapidly. Following the first
uplink during the onstation portion of the mission, the ground system ephemeris
matches the simulation quite closely. Navigation performance improves when the
difference in the position vectors of the system center of mass and the Shuttle center
of mass remains relatively constant, as it does during the onstation portion of the
mission. The ground navigation systems predict the state of the Orbiter with greater
accuracy, much more so then when the observation data biases are constantly
changing.

Removal of the Tether

When a tether cut removes the TSS gravity gradient accelerations from the Shuttle,
the ground navigation systems detect a displacement of the target's center of mass.
Because the forces not modelled in the the ground system propagation are no longer
present, the ground system no longer treats the observational data as biased, and
once again generates state vectors for the center of mass of the Orbiter.

Just as the tether force went undetected while the tether was attached, the absence of

the tether force also goes unnoticed. The onboard systems continue to propagate a
state of the Shuttle determined with the tether attached, resulting in rapid
navigational error growth. An uplink of a state-vector from the ground ephemeris
resets the onboard state, however, and the onboard systems perform correctly.

At this point it is important to point out a limitation of the Shuttle navigational
systems. The displacement of the center of mass following a tether cut can be
thought of as an an acceleration being applied to the Shuttle. If the Shuttle
experiences a large unmodelled force, ground navigation requires one full
revolution of observation data to redefine the Orbiter's orbital energy. During this
time, no uplink is provided to onboard systems. Consequently, the onboard navigation
error becomes excessive (Figure 3).

171



_.0

I.,.3

cz_ 2.0

I----

Z
{-9

_- 1.5
Z

(23

F--,

C3
o._ 1.0

...J

l.d
C3

0.5

B.O

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

TIMC (5EC.)
55.0

_I0_

Figure 1" Comparison of Ground System vs. Simulated Trajectories

20.0

17.5

15.0

12.5

10.0
I

Z

_ 7.5

5.0 ' _

2.5 5_ _a ....

0.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 @.0 |0.0

TIMK (5CC.) MIO4

Figure 2: Tether Length Profile for Nominal and Eiectrodynamic Missions

172



8.0

)..-

h..1
0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

TIMC (SCC.)

Figure 3: Comparison of Onboard vs. Simulated Trajectory

55.0

x 103

Simulation of a Cut Tether

Two mission profiles were considered in the study of an immediate cut and return

response. The Shuttle was in an local vertical, local horizontal (LVLH 1) attitude hold
for both profiles, with a constant pitch angle of 25 degrees, zero roll and yaw.

The first profile, considered a nominal case, assumes no current flows through the
tether during any portion of the mission. The second is identical to the first, with the
current turned on during the onstation portions of the mission.

A propagation of a Shuttle state=vector served as a simulation of Shuttle trajectory
following a cut tether. The vector was propagated with gravitational and
environmental accelerations, but without tether tension force. Assumptions
validating this method of simulation begin with the assumption the cut is placed at
the boom tip. By putting the cut at the boom tip, the dynamic behavior of recoiling
tether need not be considered.

An additional assumption pertains to the change in energy of the Orbiter. If it is
assumed a negligible amount of tether energy is imparted to the Orbiter as a result of
cutting the tether, a propagation excluding tether related forces of the Shuttle state-
vector is a valid simulation of a cut. Furthermore, in the STOCS generated trajectories

l The LVLH coordinate system is a right-handed cartesian coordinate system with its Z

axis pointed toward the center of mass of the Earth, and in the instantaneous orbital
plane. The Y axis is formed by taking the cross product of the position and velocity
vectors, in that order. The X axis is mutually orthogonal to the Y and Z axes.
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presented here, a massless tether was used. This assumption neglects transmitted
tether energy from sources such wave transmission.

HOPE was used as the propagator for generation of post-cut trajectories. HOPE is a
generic spacecraft trajectory navigation analysis tool, utilized to measure
performance of new trajectory generation or navigation software. The HOPE
propagator does not model tether-induced accelerations, but does have geopotential,
atmospheric, and solar radiation models. Additionally, mass, attitude, and payload
door timelines characteristic of TSS-1 mission can be included.

A complete TSS trajectory during which the tether has been cut can be formed by
splicing the STOCS simulated trajectory and the propagation. These spliced
trajectories were used for this study.

Responses to a Loss of Communication Contingency

With some insight into the systems navigating the Shuttle, examining a loss of
communications scenario becomes possible. NASA flight rule 4-50 (Reference 6) sets
a limit on the navigation uncertainty for a deorbit burn. It states the navigational
state error at deorbit must not exceed 20 nautical miles (approximately 37.039
kilometers). Additionally, it states for the case of emergency deorbit with loss of
communications, designers are to assume it will take four revolutions to find an
appropriate landing site.

There are basically four responses to a loss of communications: immediate cut and
return, a partial retrieval and return, a complete retrieval, or a tether length hold
prior to cut and return.

At the time of writing this paper, simulation data for a complete retrieval from
maximum tether length to the boom tip is not available, as the baseline tether
retrieval includes a hold phase at a tether length of 2.4 kilometers (the reader is
again referred to Figure 2). Therefore this option is not considered here.

Immediate Cut Resnonse

Navigational error envelopes were generated for the four revolutions following the
loss of communications. A cut was simulated by propagating the Shuttle state in the
absence of tether accelerations, using a STOCS state-vector as the initial state of the

Shuttle. The identical process was then performed using a state-vector determined
by the onboard systems simulator, SENSOR. After the four revolution propagation,
the resulting trajectories were compared. Any differences were recorded as the
navigational state error of the onboard systems. The time of the tether cut was
incremented in fifteen minute steps.

The navigational error of the onboard system during the nominal mission appears in
Figure 4. The data shown represents the navigational error after the four orbital
periods. The navigational error never exceeds 30 kilometers, and Flight Rule 4-50 is
not violated. The maximum error occurs at the onset of the onstation portion,
reflecting the effect of the system center of mass moving away from the Shuttle
center of mass on Shuttle navigation. After the first uplink during the onstation
portion, the navigation systems begin to maintain an accurate state when compared
to the simulation. Navigational accuracy improves with constant measurement
biases and small penurbative forces. Furthermore, note the decrease in error during
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the first reel in of the retrieval phase of the mission (approximately 53,000 seconds to

80,000 seconds). Because the two centers of mass are approaching each other,
navigational performance improves in the absence of perturbing accelerations•
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Figure 5 shows the onboard navigational performance during a TSS mission with
current flowing through the tether. The current is first turned on when the tether
is fully deployed to a final length of 20 kilometers (at an approximate mission clasped
time of 20,000 seconds). The onboard state error approaches 37 kilometers at this
time. After an uplink, providing the onboard systems with an accurate state and
constant observational biases, the navigational state error four revolutions after the
tether cut increases to within 160 meters of violating NASA flight rule 4-50. Because
these data were generated following current navigational procedures, it is very
likely this situation could occur during the course of the actual mission. An
immediate cut and deorbit response is inappropriate for TSS-1.

The presence of perturbing accelerations induced by the tether cause the onboard
state to quickly degrade. Similar to the nominal profile, note the initial improvement

in onboard navigational performance during retrieval. Following an uplink in the
middle of the onstation phase, however, the navigational error begins to grow,
unlike the nominal case. Out-of-plane tether librations (see Figure 6) cause the
Vernier Reaction Control System (VRCS) to hit roll and yaw deadbands, increasing
the number of VRCS jet firings. These jet firings increase navigational degradation.
Out-of-plane librations are the result of electrodynamical interactions of the tether
and the Earth's magnetic field, begun during the onstation period. Because the
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Shuttle's trajectory is inclined with respect to the magnetic field lines, the tether
electrodynamic force contains a component perpendicular to the Shuttle's orbital
plane. At full deployment, the librations are relatively small and benign. As the
tether length decreases, however, these librations increase in amplitude, resulting
in more frequent RCS deadbanding.

Partial Retrieval and Cut

In a partial retrieval, followed by a tether cut, the tether is assumed to be reeled in

following a nominal tether length profile to a given tether length and then cut. The
loss of communications was assumed to occur just prior to an uplink, representing a
worst case scenario. A electrodynamic mission profile was used, with the uplinks

modified to place the missed uplink at the onset of retrieval. Onboard navigational
errors were determined for a period of four revolutions after the beginning of
retrieval.

In Figure 7, navigational error data show navigational performance improves in a
loss of communications contingency if the tether is partially reeled in prior to
cutting. A cut at 20 kilometers represents an immediate cut (in which the onboard
navigational system performed unacceptably), demonstrating an error of 41
kilometers at the end of the four revolution period. Figure 8 compares the onboard

navigational state to a simulated cut tether trajectory. The navigational state error
grows linearly approximately 35 kilometers in four revolutions, or 8.75 kilometers

per revolution.
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As the tether is further shortened, navigational accuracy improves. The closer the

satellite is reeled in, the better the navigational performance. At a tether length of 3
kilometers, the final navigation error is approximately 22 kilometers, well within the
limits set by the NASA flight rule. A comparison similar to Figure 8 appears in Figure
9 for a partial retrieve to a final tether length of 3 kilometers. Note the navigational
error growth rate after the tether cut is close to that of an immediate cut,
approximately 8.75 kilometers per revolution. The increase in performance occurs
during the retrieval portion of the response, due to the relatively slower
navigational error growth rate.

Tether Length Hold Prior to Cut

The simplest operational response to a loss of communications contingency is to do
nothing. In the TSS-1 mission, doing nothing means holding the tether length
constant, and cutting the tether at the last possible moment before deorbit
preparation must begin.

This response has a number of advantages. Because the Orbiter does not alter its orbit
significantly until just prior to the deorbit burn, the onboard navigational systems
propagate Shuttle state more accurately. Due to the operational simplicity of this
response, a double failure is much less likely. The systems supporting the tether are
used minimally, and it is less likely something else would go wrong.

The navigational error just prior to the deorbit burn for a 3 revolution hold followed
by a tether cut appears in Figure 10. The loss of communications was assumed to
occur just prior to an uplink in the middle of the onstation phase. The final error
during this response is 23.5 kilometers, well within the limit set by the NASA flight
rule.
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Conclusions

A cut tether contingency does not represent a threat to the a tethered system mission,
provided the onboard navigation systems have contact with the ground. Although
the onboard navigational error grows at an alarming rate immediately after a tether
cut, the onboard systems can be reset with an uplink from the ground systems. Once
reset, the onboard systems perform accurately.

During a loss of communications contingency, however, an incorrect action during
the tether cut can threaten the mission, to the point of violation of NASA flight rules.
Appropriate action requires not cutting the tether immediately after losing
communications.

Tether retrieval, even partially, improves navigational performance. A tether hold
offers an attractive alternative to retrieval, demonstrating comparable accuracy
while remaining operationally simpler. The price for this simplicity, however, is
loss of the satellite.

The benefits of retrieving the satellite outweigh reduced onboard navigational
performance, provided existing flight rules are not violated. Therefore the best
response to a loss of communications contingency would simply be to do nothing for
as long as possible while attempting to reestablish contact with the ground systems.
This response offers acceptable navigational accuracy, and is operationally simple.
If contact can be reestablished, the satellite can be recovered.
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1991 will see one of the most ambitious Shuttle missions ever

planned -- the first full-scale test of a large tethered
satellite system. The Orbiter will be linked to a 500 kg payload

by a 20 km tether, an action with a profound effect on the
trajectory of the Orbiter. For the first time in the history of

the Shuttle program, the vehicle will conduct prolonged

operations with the center of mass of the orbiting system a
significant distance from the center of mass of the Space Shuttle
Orbiter, a violation of a fundamental assumption made in both the

Orbiter ground-based and onboard navigation software.

Inertial navigation of tethered operations with the Shuttle is

further complicated by the presence of non-conservative forces in
the system: RCS translational effects, atmospheric drag, and

electro-magnetic dynamics. These can couple with the

conservative tether dynamics effects, and degrade the navigation

software performance.

This paper examines the primary effects of tether dynamics on the
Orbiter's trajectory, coupling by conservative forces during

tethered operations, and the impact of both on the ability to

meet inertial navigation constraints. The impact of

electrodynamics, different RCS control modes, commanded

attitudes, and attitude deadbands are presented. Operational

guidelines which optimize successful mission navigation, and

necessary navigation constraints are discussed.
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INTRODUCTION:

In January, 1991, the Shuttle program will attempt one of its most

ambitious missions to date -- the first full scale test of a large

tethered satellite system. The Orbiter will be linked to a 500 kg
payload by a 20 km tether, and tethered operations will occur over a

32-hour period. The Tethered Satellite System Mission 1 (TSS-I) has

two major objectives: to attain a better understanding of the

mechanics of tethered systems, and to investigate the feasibility of
using conductive tethers to generate electricity. This mission will

have the Shuttle Orbiter deploy the tethered satellite in an upward
direction, with the Orbiter initially in a 28.5-degree inclination,
296 km (160 NMi), orbit.

TSS-I poses unique challenges for Space Shuttle navigation. For the
first time in the history of the Shuttle program, the vehicle will

conduct prolonged operations with the center of mass of the orbiting

system a significant distance from the center of mass of the Space
Shuttle Orbiter, a violation of a fundamental assumption made in

both the Orbiter ground-based and onboard navigation software.
Inertial navigation of tethered operations with the Shuttle is

further complicated by the presence of non-conservative forces in

the system: Reaction Control System (RCS) translational effects,

atmospheric drag, and electromagnetic dynamics. These couple with
the conservative tether dynamics effects, degrading the navigation
software performance.

The most significant sources of trajectory perturbations during TSS-
1 tethered operations are due to tether-induced RCS attitude-control

thruster firing. Direct tether effects, atmospheric drag on the
tether and electrodynamic drag during periods when current is

flowing through the tether, have effects an order of magnitude
smaller than these tether-induced thruster firings.

The results presented in this paper were obtained through analysis
conducted on and with three simulations: The Shuttle Tethered

Object Control Simulation (STOCS) -- a high fidelity engineering
simulation of the TSS-I mission (Reference i); the Shuttle

Environment Navigation Simulation for Orbit and Rendezvous (SENSOR)
program, an onboard navigation system simulation (Reference 2); and

the Standalone Orbital Navigation (SONAV) program, a Space Shuttle
ground navigation system emulator (Reference 3).

SHUTTLE ONORBIT INERTIAL NAVIGATION:

The Space Shuttle uses two navigation systems: the onboard

navigation system which provides the navigation state used by the

Shuttle flight system and the Ground (more accurately Ground-based)
navigation system which provides independent validation of the

onboard navigation. The onboard navigation incorporates sensed and

modelled accelerations to propagate an Orbiter state vector. The
Ground navigation system uses radar observations of the Orbiter to
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generate a new estimate of the state vector. When the onboard
navigation state vector differs from the Ground-generated Orbiter

ephemeris, the current ground ephemeris state vector is uplinked to

onboard navigation system and replaces the onboard vector.

The onboard navigation propagates an initial state vector

incorporating sensed accelerations and acceleration models into the

equations of motion. The Orbiter's Inertial Measurement Units
(IMUs) sense accelerations. When the acceleration are above a

threshhold (the standard onorbit acceleration threshold during non-

powered flight is i000 micro-gravities), then these accelerations

are directly incorporated into the propagation. If the sensed
acceleration is below the threshhold, the sensed accelerations are

replaced by an average model for RCS accelerations. The onboard
navigation system also models geopotential effects and the effects

of atmospheric drag on the Orbiter. A full description of the

onboard navigation system can be found in Reference 4.

The onboard navigation accuracy degrades due to three reasons:

initial state vector uncertainty, mismodelled or unsensed

accelerations, and limitations of the environmental models. Any
difference between the estimated state and the true state of the

Orbiter increases linearly as it is propagated over time. The

initial state vector is the best estimate of the Orbiter's position

at that time. Even given optimal conditions, at least 50 meters of

position uncertainty will exist in this estimate. Unsensed

acceleration changes the true position of the Orbiter without being
incorporated into the navigated state. A low-level acceleration

present continuously over a period will produce a quadratic growth

in in the navigation uncertainty. Finally, the environmental models
used in the onboard navigation software are simplified models to

save computation time and ease storage requirements. The onboard

navigation uses a GEM10 4x4 geopotential model and a Babb-Muller

drag model. These introduce an an error growth of 360 meters/rev
into the navigation state.

These factors require the onboard navigation system to be
periodically updated. Navigation solutions obtained by the Ground

navigation system are used for this. The Ground navigation system
takes an initial estimate of the Orbiter's state vector, propagate

it using a more sophisticated set of environment models (GEM10 7x7

geopotential model and Jacchia-Lineberry atmosphere model). It

performs a differential correction of the propagated trajectory
through a weighted least-squares fit of tracking observations.

Observation are taken from ground-based S-band and C-band tracking

stations, and through Tracking and Data Relay System (TDRS) system

S-band relay tracking. A new state vector is generated, until a

convergent solution that minimizes tracking residuals -- the

difference between the propagated state and the observed position at
that time -- over the differential correction arc. Ground

navigation can also model constant, Orbiter body-axis centered

accelerations. A description of the Ground-based navigation systems
can be found in Reference 5.
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MECHANICS OF TETHERS:

Tethered operations are possible due to gradient effects of

gravltlonal acceleration. The force of gravity attraction is

proportional to the inverse of the distance between two bodies. Thus

two bodies orbiting the Earth at different orbital radii have

different gravitational acceleration -- the lower body has a greater

acceleration acting on it than the higher body. If the difference
in radius is small, then the difference is acceleration is also

small. Two vehicles in low Earth orbit separated by 20 km

difference in orbital radius experience a gravitational acceleration

difference of approximately 0.05 m/sec2.

Under normal circumstances the greater orbital velocity of the lower

object would cause it to separate from the upper object. If the two

objects are connected they cannot separate. Instead the connection,

whether a rigid truss or a flexible tether, exerts a tension force

on the endpolnts, equal and opposite to the difference in

gravitational acceleration vectors. If the tethered endpoints are
aligned radially to the Earth's center of mass, the tether tension

acceleration acts purely radially. Whenever the tether is not

aligned radially, the tension has a downtrack component, reducing

the velocity of the leading object, and increasing the velocity of

the lagging object. If the tether length is constant, equilibrium
is achieved when the two objects are aligned radially with the

Earth's center of mass. (See Figure i.) A full derivation of

tethered equations of motion can be found in Reference 6.

_.. y (Into
= - I paper)Fg Grlvltet,onal Fgl > Fg2 x

Force

FT = Tether Tenalon FTX = 0 when tether }satong
z-axis z

M;_x M__Fg:_ M2F_z__lrFg2

C.M. C.M,_r,r

+Fo, +Fo, +F+
FIGURE 1: TETHER GRAVITY-GRADIANT STABLIZATION

184



Some interesting consequences result from this behavior. For

tethers lengths of the order of interest of the TSS-I mission

(tether length is less than 1% of the orbital radius) the tethered

system effectively orbits as if it were a point mass at the center
of mass of the system. Changing the length of the tether changes

the distance of the endpoints of the system from the system center

of mass, without changing the orbital radius of the system C.M.

Tethers redistribute angular momentum, but do not create it.

Changing the length of the tether, tether libration (rigid pendulous

motion of the system), or spinning the endpoints are all means of

redistributing angular momentum. Unless the tether is cut or

broken, the energy transfer between endpoints of a tethered system
is conservative.

Changing the length of the tether does change the orientation of the

endpoints to each other. As the tether increases in length, the
tension is reduced below the difference in gravitational force, and

the lower endpoint begins to lead the upper endpoint. As the tether

decreases in length, tether tension increase, and the upper endpoint

begins to lead the lower endpoint. This behavior is illustrated in

Figure 2, which shows relative motion between the Orbiter and the

TSS-I Object during tethered operations.
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Figure 3 illustrates the tether profile baselined for the TSS-I

mission. There are five phases in this profile. The tether deploy
phase occurs over the first 24 000 seconds of tethered operations.
The 20-km on-station phase runs from 24 000 seconds to 56 000

seconds. Retrieval to 2.4-km then begins and continues until 80 000

seconds. The 2.4 km on-station phase comprises the next 20 000

seconds, followed by retrieval to boom tip.

TETHER INTERACTION WITH THE ORBITER:

while tethered mechanics are conservative, the effect that they will
have on the Orbiter's trajectory during the TSS-I mission will not

be. Two environmental sources -- atmospheric drag and

electrodynamic drag introduce non-conservative energy perturbations

to the system. Both these enviromental perturbations and tethered

mechanics, induce firing by the Orbiter's Reaction Control System

(RCS) to maintain the Orbiter's commanded attitude. This thrusting

adds or subtracts energy from the system as a function of the
Orbiter's orientation. The attitudes and attitude control modes

baselined for the TSS-I mission will result in a net loss of energy.

Atmospsheric drag on the tether and TSS-I Object are minor, though
constant perturbations. Drag is primarily a downtrack acceleration

reducing net orbital energy. Less than 1% of the drag acceleration

acts perpendicular to the orbital plane.
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Electrodynamic drag results from using the tether to generate

electricity. Electricity is generated by using the tether as a
portion of a current loop, which is passing through the Earth's

magnetic field. This generates a force normal to the Earth's

magnetic field lines, proportional to the electrical power generated

by the tether. (Note that "negative" electrical power -- pumping

energy into the tether -- give a net gain in orbital energy.) Since

the Earth's magnetic field is a tilted dipole, the magnetic field

lines are rarely perpendicular to the Orbiter's velocity vector. A

significant percentage of the electrodynamic perturbation will act

out-of-plane. Electrodynamic force is functionally identical to

atmospheric drag -- the in-plane component of force reduces the net

orbital energy.

Tether tension does not directly affect the inertial trajectory of

the system, but does have a significant induced effect. The tether

applies a tension force on the endpoints. Unless the Orbiter's

center of mass and the tether attach point are aligned with the

tension vector, the tension will apply a torque, rotating the

Orbiter until the attach point, Orbiter C.M. and tension vector are
aligned. The planned attach point for the tether boom is ahead of
the Orbiter C.M. The Orbiter will stabilize into a nose-forward,

positive-pitch attitude (see Figure 4). The angle between the local

vertical axis and Orbiter X-body axis that results is called the

hang angle. Given the currently manifested tether attach point, and

a stable tether of 20 km length, the Orbiter will settle into a +25
degree pitch attitude. Different attach points and tether lengths

change this angle.

®

FIGURE 4: HANG-ANGLE INDUCED ORBITER ATTITUDE STABILIZATION
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Tether-induced hang-angle perturbations interacts with the Orbiter's

RCS two ways. If the commanded pitch differs from the hang angle by
less than the attitude angle deadband, then the tether will act to

stablize the Orbiter into its commanded attitude, much as a tail
stabilizes a kite. If the difference between the commanded attitude

and the hang angle exceeds the attitude deadband, high RCS thrusting

results. The tether pulls the Orbiter towards the hang angle until
the attitude deadband is reached. Then the RCS jets fire to restore
the Orbiter to its commanded attitude.

Figure 5 illustrates these different behaviors. The upper graph
presents the Z-body axis thruster firings in a simulation in which

the Orbiter was commanded to a hold a pitch of 25 degrees. The

bottom graph presents Z-body axis firings in a simulation where the

Orbiter had a commanded pitch of 30 degrees. In both cases, vernier

control with a 2 degree attitude deadband was used, allowing the
Orbiter to drift up to two degrees from the commanded attitude.

During the period that the tether was in the 20 km on-station phase

of the mission, the hang angle was 25-degrees. No RCS thrusting
occurred over that time in the 25 degree commanded pitch case. The

30 degree pitch case exhibited high RCS activity over the same
period.

Tether libration also induces attitude deadband firing. In-plane

libration causes pitch deadbanding. Out-of-plane libration induces

yaw and roll deadbanding. Figures 6 and 7 illustrate RCS thrusting
present in a in-plane and out-of-plane libration simulation

respectively. Both cases used a 5 degree tether libration.

Libration-induced deadbanding can be caused by other tether

perturbations. Electrodynamic drag produces both out-of-plane and
in-plane force on the tether. The out-of-plane force induces out-

of-plane libration, in turn, inducing yaw and roll deadbanding.

TETHER EFFECTS ON THE TRAJECTORY:

Tether interactions with the Orbiter perturbs the orbital trajectory
of the system, directly or indirectly. Downtrack effects of

continuous drag forces behave in a straightforward manner -- a

continuous retrograde acceleration (shown in Table i).

Tether-induced RCS firings produce more subtle effects. They could

cause the dramatic effects shown in Table i, if fired continuously
while aligned in the downtrack axis. In reality, RCS jets are

impulsive rather than continuous, and rarely aligned with the
downtrack axis. Combinations of thrusters can either cancel or

amplify translational effects. Despite the larger magnitude of the
individual PRCS jets, these have a smaller translation effect when

used for attitude control than the Vernier jets. The combinations of

PRCS jets used for attitude control have much higher rotational
coupling, and lower net translation.
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TABLE 1: PERTURBATION SOURCES AND TRAJECTORY EFFECT

PERTURBATION SOURCE ACCELERATION

(micro-

Gravities)

NET CHANGE IN

TRAJECTORY AFTER

5 REVS *

(meters)

CONTINUOUS EFFECTS

Atmospheric Drag on Tether

(296 KM)

Electrodynamic Drag (1-Amp

Current)

0.04 320

0.63 4 300

IMPULSIVE EFFECTS

Vernier Attitude-Hold

Thrusting (per Jet)

Primary RCS Attitude-

Hold Thrusting (per Jet)

3.5 24 000

120 820 000

* Assumes perturbation is active over entire 5 revs -- for RCS jets this

implies a thruster failed on. Shuttle fuel limitations would prevent this from

occurring. This table is intended to show relative effects of these sources

The Orbiter normally uses Vernier attitude control during on-orbit

mission phases. This is baselined as the nominal control mode for
the TSS-I mission. The Orbiter has six Vernier thrusters. The

vernier attitude-control firing patterns are shown in Figure 8. All

six verniers are aligned in the Orbiter body frame Y-Z plane. Four

of the jets thrust in the +Z-body direction, translating the Orbiter

in the -Z direction. Any pitch or roll rotation yields a net -Z-

axis translation of the Orbiter. When the Orbiter is in a +25 to

+30 degree pitch relative to to local horizon, significant downtrack

perturbations occur. Table 2 gives the net downtrack acceleration

that results from deadbanding when the Orbiter is in the nose-

forward +25 degree pitch baselined for the 20-km on-station phase of
the TSS-I mission.

The total trajectory displacement induced by RCS attitude control

thrusting is the product of the downtrack acceleration and the

number of thruster firings. The best illustration of this behavior

can be shown by comparing simulated trajectories of nominal deploy

and the 5-degree high-pitch deploy (the cases which generated the
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Jet-firing histories of Figure 5). Figure 9 presents both the

difference in position and in the semi-major-axis between these

cases. (Delta-SMA indicates total energy changes between two

orbits.) The High-Pitch case lost energy relative to the Standard

Deploy. Pitch-axis deadbanding was the primary cause of a trajectory

position delta of nearly 80 000 meters, and and an SMA change of -
900 meters after i00 000 seconds of propagation.

TABLE 2: VERNIER-INDUCED DOWNTRACK ACCELERATION AT
ORBITER ATTITUDE: PITCH - 25 deg; ROLL - O deg; YAW - 0 deg

Maneuver Downtrack Accel

(mlcro-G)

+PITCH -0.38

-PITCH -0.53

+ROLL -0.45
+YAW -0.19
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One item of interest is the net gain in energy that the High-Pitch

case demonstrates over the first 20 000 seconds of the profile.

This is the period when the tether is being deployed, and the hang

angle is +30 degrees pitch. Thus, the +30 degree commanded pitch of

the High-Pitch case was closer to the tether-induced hang angle than

the +25 commanded pitch of the Standard case over that phase of the

mission. During the 20-km portion on-station of the mission through

retrieval to the 2.4-km on-station period, the Standard case pitch

was closer to the tether hang angle.

The net trajectory perturbation induced by tethered operations is a

product of all tether-induced perturbation sources. Separating

these effects is difficult due to coupling between them (e.g.

electrodymanic drag exciting out-of-plane libration). Gross

estimates of these effects can be developed by comparing

trajectories with different perturbations present against a constant

yardstick. Table 3 summarizes differences observed in six different

simulated tether trajectories.

The Standard Profile used baselined TSS-I mission tether profile

with the following parameters: Commanded attitude: Nose-forward +25

degree pitch; Attitude deadbands of Z 2 degrees, Vernier attitude

control, no tether electrodynamics, no tether libration. Each of

the other five cases varied one of these parameters, but was
otherwise identical.

TABLE 3: TRAJECTORY DIFFERENCES DUE TO TETHER-INDUCED PERTURBATIONS

COMPARED POSITION SMA SIM. TIME PRIMARY

TRAJECTORIES DELTA DELTA DELTA PERTURB.

(Meters) (Meters) (Seconds) SOURCES

Standard Profile

vs. High-Pitch

Standard (Vernier)

vs. PRCS Cntl

Standard Profile

vs. Science

(Tether Electro-

dynamics On)

Standard Profile

vs. 5 deg In-
Plane Libration

Standard Profile

vs. 5 deg Out-

of-Plane Libration

79 200 -314 I00 000

-106 700 1070 I00 000

56 400 -1280 I00 000

42 700 -60 55 000

219 400 -4110 55 000

Pitch Deadbanding

Vernier vs. PRCS

Translation

Attitude Dead-

banding, Out-of-

Plane Libration,

Electrodynamics

Pitch Deadbanding

Yaw and Roll Axis

Deadbanding
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The High-Pitch case used a commanded pitch attitude of +30 degrees.

The PRCS case used the Orbiter PRCS jets for attitude control. The

Science case modelled the effects of a 1-ampere current flowing

through the tether during the 20-km and 2.4-km on-station phases.
The In-Plane and Out-of-Plane Libration cases began with a 5-degree

libration in each of the respective axes. The High-Pitch, PRCS, and

Science cases were each run over the entire tethered operation

phase. The two libration cases began during the 20-km on-station

phase, using the current Standard case parameters as their initial

conditions, with a displaced TSS Object (to induce the libration).
Comparisons in Table 3 are made against the Standard case. Negative

SMA indicates that the compared case has less orbital energy at time

of comparison than the Standard case.

TETHER EFFECTS ON INERTIAL NAVIGATION:

A tether separates the system center of mass from the tracked radar

target (the Shuttle Orbiter) and induces acceleration which is not

modelled by either the onboard or ground navigation systems and

which is below the onboard navigation sensed-acceleration
thresholds. Both acceleration mlsmodelllng and C.M.-Tracking

Target offset affect Shuttle navigation.

As the tether length increases, the Orbiter moves away from the

system center of mass. The Ground-based radar observations track

the Orbiter rather than the system C.M. When the tether is deployed
to its full length (20 km), the radar observations are offset from

the true center of mass of the system by i00 meters. A navigation

solution minimizing the radar observation residuals of a single
tracking pass produces a state vector which places the Orbiter in an

orbit I00 meters below the actual semi-major-axis of the system.

Propagating this vector yields a position difference from the actual

trajectory of the Orbiter that grows by 4500 meters per revolution.

If several sets of radar observations, taken from different tracking

stations and distributed over at least one orbital period are used a

different solution occurs. Minimizing all tracking residuals over
the period in question yields a state vector near the system's true

C.M. The tracking residuals behave as if they were all biased by

the offset difference. Reducing the residuals below that threshold

at one station produces much larger residuals at the other stations.

Similar behavior is observed when single-station solutions are
weighted with a covarience matrix. The covarience constrains the

amount that the orginal input state vector can alter by changing the
weighting placed on the observations in the least-squares

regression. The result moves the solution's new state vector to the

system C.M. rather than at the Orbiter. The C.M.-Tracking Target

offset does not degrade navigation performance unless unconstrained

single-station solutions are attempted.

The center of mass offset does not affect the onboard navigation

system because this system does not use external inertial predic-
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tions of the Orbiter's state. It propagates an initial state
vector, assumed to be at the center of mass of the orbital system.

This assumption is correct prior to the beginning of tethered opera-

tions. The Orbiter is at the system C.M. As tethered operations

begin, and the Orbiter drops below the system C.M. the onboard

navigation state vector remains at the system C.M. until it deviates
due to environmental mismodelling and unsensed acceleration.

Tether-induced acceleration has more significant effects on Shuttle

navigation. These accelerations are unmodelled by Ground Navigation
and unsensed by the onboard navigation. With both systems, an

accurate state vector propagates poorly over periods when the tether

is inducing significant non-conservative acceleration. This has a

greater impact on onboard navigation than on Ground navigation

because the onboard navigation has no means of correcting for

unincorporated accelerations, except by replacing the onboard

navigation state with a new solution. The radar observations used

in Ground navigation reset the Orbiter's state vector to the system
C.M. with each set of radar data processed.

Figures l0 and ii illustrate this behavior in the Standard and High-
Pitch cases respectively. These illustrate navigation performance in

quiet and active tether cases. The top graph shows the difference

in position between the Ground ephemeris -- a propagation of a
"best" constrained local solution -- with the STOCS-generated simu-

lated trajectory. The lower graph displays the position difference

between the Ground ephemeris and the onboard navigation state.

The Standard case had minimal tether-induced trajectory perturbation

over the 20-km on-statlon portion of the mission. No RCS jet firings

occurred, and the only mismodelled environmental perturbation

present was atmospheric drag on the tether and TSS Object. The
Ground ephemeris had to be updated three times, twice during the

deploy phase and once during the on-station phase of the mission.

Following the on-station update of the ground ephemeris, 36 000

seconds after the beginning of tethered operations, propagation of

the ephemeris vector over the next 64 000 seconds yielded a maximum
difference with the environment trajectory of less than 3700 meters.

The 0nboard state deviated from the ground ephemeris by small
amounts -- 900 meters maximum with differences smaller than 200

meters over the 20-km on-station phase. This is expected, as these

differences represent the difference in propagation models in the
two systems. Neither system propagates the unmodelled accelerations

characteristic of tether-induced perturbations. The ground

navigation system detects these as tracking passes subsequent to the

pass from which the ground ephemeris was generated are processed,

and correct the Orbiter's position. When these differences between the

ground ephemeris and the local solutions exceed console guidelines

(20 * delta-SMA + delta downtrack position > 6100 meters), the
ground ephemeris is replaced with a current good ground solution.

The High-Pitch case, with numerous RCS attitude firing throughout

tethered operations, showed markedly different performance. The
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Ground ephemeris required frequent updating to correct the unmodel-

led acceleration introduced by the RCS system. Differences between

Ground ephemeris and environment trajectory were much higher than

those seen in the Standard case. Similarly degraded performance _s

demonstrated by the onboard navigation system•

CONCLUSION:

Tethered operations will have a significant effect on both the

inertial trajectory of the TSS-I mission and the navigation of that

mission• Pure tether mechanics effects -- typified by the offset

between the system center-of-mass and the Orbiter -- cause behavior

that is interesting rather than damaging• Mission navigation is not

adversely affected.

Tether-induced force does degrade navigation by causing low-level

acceleration that are not directly incorporated into the propagation

of the trajectory. These effect are cause major changes to the

orbital trajectory over time. Even in this worse case, navigation

performance using existing Mission Control Center software and

processing guidelines did not degrade below acceptable limits.

Tethered operations as exemplified by the TSS-I mission will provide

navigation challenges, but challenges that can be met.
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ABSTRACT

This paper presents results on the temperature correlation of the relative

coalignment between the fine-pointing Sun sensor (FPSS) and fixed-head

star trackers (FHSTs) on the Solar Maximum Mission (SMM). This corre-

lation can be caused by spacecraft electronic and mechanical effects.

Routine daily measurements reveal a time-dependent sensor coalignment

variation. The magnitude of the alignment variation is on the order of

120 arc-seconds (arc-sec), which greatly exceeds the prelaunch thermal

structural analysis estimate of 15 arc-sec. Differences between FPSS-only

and FHST-only yaw solutions as a function of mission day are correlated

with the relevant spacecraft temperature. If unaccounted for, the sensor

misalignments due to thermal effects are a significant source of error in

attitude determination accuracy. Prominent sources of temperature vari-

ation are identified and correlated with the temperature profile observed
on the SMM.

It has been determined that even relatively small changes in spacecraft

temperature can affect the coalignments between the attitude hardware

on the SMM and the science instrument support plate and that frequent

recalibration of sensor alignments is necessary to compensate for this

effect. An alternative to frequent recalibration is to model the variation of

alignments as a function of temperature and use this to maintain accurate

ground or onboard alignment estimates. These flight data analysis results

may be important considerations for prelaunch analysis of future mis-

sions.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. INTRODUCTION

This paper presents the Solar Maximum Mission (SMM) flight system measurement of

the correlation between the spacecraft structure temperature and the coalignment of the

fine attitude sensors, composed of two Adcole fine-pointing Sun sensors (FPSSs) and two

Ball Aerospace CT401 fixed-head star trackers (FHSTs). An overview of the SMM, in-

cluding mission history and configuration, is presented. Possible causes of the variation in

the coalignment, subsequently referred to as the misalignment, are discussed, and the

conclusion is drawn that the spacecraft temperature is the predominant factor affecting

the FPSS-FHST misalignment. Two methods of compensating for this misalignment, fre-

quent in-flight calibration and misalignment function modeling, are compared with regard

to accuracy and impact to science data collection. This work was done by the Flight

Dynamics Division (FDD) attitude determination and control ground support team, work-

ing in the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC).

1.1 MISSION HISTORY

The SMM was launched in February 1980 from the Eastern Test Range at Kennedy Space

Center (KSC), into an approximately circular low-Earth orbit, with an inclination of

nearly 28 degrees (deg) (Reference 1). The scientific objective of the mission was to

study solar phenomena. The spacecraft attitude system provided three-axis stabilization

and supported solar feature targeting. The spacecraft functioned normally until November

1980, when the standard reaction wheel (SRW) package that provides the controlling

torques to the spacecraft began to fail. To preserve the mission, the SMM was put into a

spin (_ 1 deg per second) about the minor principal axis in which it remained until April

1984. With the spacecraft in the spin mode, only minimal solar observation was possible.

During April 1984, the spacecraft was repaired in-orbit by the Space Transportation Sys-

tem (STS). The entire attitude control system was replaced, and the spacecraft was re-

turned to the nominal scientific observing mode.

1.2 M!SSION CONFIGURATION

The SMM was the first of the multimission modular spacecraft (MMS) series. The MMS

were modular to facilitate mission repair and mission adaptation. The SMM basically

consists of two parts as shown in Figure 1: the MMS itself and the experiment module.

The modules that come with the MMS series are

A Command and Data Handling (CD&H) system that handles all the communi-

cations between the ground and the spacecraft and includes the spacecraft on-

board computer (OBC)

A Modular Power System (MPS) that operates all the power systems, including

the Solar Array System (SAS)

A Modular Attitude Control System (MACS) that contains most of the sensors

used in the attitude determination and control of the spacecraft. A High-Gain

Antenna System (HGAS), for use in communicating with the Tracking and Data

Relay Satellite System (TDRSS), is also attached to the end of the spacecraft.
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The experiment module contains all the SMM mission-specific components. The two main

types of components are the SMM scientific instruments and the mission-specific attitude

sensors. The instruments comprising the scientific payload mainly study the emissions of

the Sun on several different wavelengths, including x-ray, ultraviolet, and gamma ray.

The mission-specific attitude sensors are the coarse Sun sensor (CSS) and the FPSSs. The

FPSSs are the primary sources of solar pointing information in the normal mission mode,

so their colocation with the scientific instruments makes sense. The two separate modules

are connected by a mission adapter ring as shown in Figure 1.

The FPSS, a vector sensor, outputs rotations, a and fl, about two sensor axes. It has a

2-deg-by-2-deg field-of-view (FOV). The specified accuracy of the FPSS is 5 arc-seconds

(arc-sec) (3 o) within a 1-deg square FOV (Reference 2). The FPSS is mounted on the

instrument support plate (ISP). The normal to the ISP is parallel to the y-axis of the

spacecraft body frame, as shown in Figure 1.

The spacecraft body coordinate frame is defined by the orientation of the FPSS (Refer-

ence 2). The x-axis (roll) of the body frame is defined as parallel to the boresight of the

FPSS. The y-axis (pitch) and z-axis (yaw) of the body frame are parallel to the FPSS

axes. This definition of the body frame facilitates the calculation of the spacecraft pitch

and yaw by the FPSS. The spacecraft pitch and yaw attitude may be read directly from the

FPSS readings. Thus, at nominal (zero) roll, the spot on the Sun where the spacecraft is

pointing may be easily obtained. However, because of this orientation, the FPSS provides

no resolution on the roll attitude of the spacecraft. Also, since the FPSS nominally defines

the body frame, no alignment calibration of the FPSS is necessary. The only calibration of

the FPSS is for the electronic angular response curve of the sensor.

The FHSTs are also vector sensors. They are mounted in the MACS in the MMS section

of the spacecraft. The FHSTs have a two-axis sensor coordinate system, with an 8-deg-

by-8-deg FOV. Star positions are output in the telemetry as projected angles in the FHST

coordinate frame. These values are then converted to a vector and transformed to the

body frame by the FHST alignment matrix, S. Since the FPSS defines the body frame, S

represents the relative alignment of the FHST and the FPSS, called the coalignment. The

position accuracy of a single FHST measurement is 30 arc-sec (3 or) (Reference 2). This

noise in the observation is mainly due to instrument temperature and the varying mag-
netic field of the Earth.

Since there are two well-separated FHSTs, a full three-axis attitude may be obtained

solely from FHST data. However, in August 1987, FHST 2 experienced a loss of power

and became inoperable. Hence, the quality of the FHST-only attitudes became signifi-

cantly degraded. Since star observations in the sensor FOV are only separated by a maxi-

mum of 8 deg, poor attitude resolution about the FHST boresight axis resulted; thus, after

the failure of FHST 2, FHST-only attitudes were of minimal use. Consequently, the analy-

sis in this paper is concerned only with the FHST misalignment behavior before August
1987.

The FHSTs collect data by tracking stars in the FOV. A single star will be tracked for

several (N) observations. These N observations are combined to form a track group,
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which is the average position of the star in the FHST FOV. Thus, reduction in the uncer-

tainty of the track group position can be averaged out by using

a = 30/(N) _/_ (1)

After a track group is formed, the FHST moves to another star and tracks the new star

until another track group is formed. This process continues until the FHST becomes oc-
culted.

The sampling rate of the star observations in telemetry and, therefore, the number of

observations per track group, is set by the spacecraft telemetry mode. In science mode

(the nominal operational mode) the number of observations that form a track group

ranges from 6 to 20, while in engineering mode, 60 to 120 observations are available per

track group. Engineering mode telemetry, however, does not contain experiment data.

Thus, it is requested only for occasional calibration activities when the high FHST sam-

pling rate can be justified. Because of this restriction, the accuracy of the attitude solu-

tions computed from FHST data approximately ranges from 10 to 30 arc-sec (3a),

depending on the quality of the track groups and the degree to which the alignment ma-

trix, S, is known.

Since, as stated previously, the FPSS is not able to determine the spacecraft roll, the

FHSTs are the only source of fine roll determination. A coarse roll can be determined

from magnetometer data; however, typical accuracies of the coarse-determined roll are

between 1 and 2 deg, much larger than the specified roll accuracy of 0.1 deg. Thus, it is

important to compute accurate coalignments of the FHSTs so that the computed roll is as

accurate as possible. The nominal alignments of the FHSTs are the original design align-

ments. The calibrations are performed to calculate the misalignment from the nominal

alignments.

The misalignment of the FHSTs has two components. The first component is the

misalignment of the sensors with respect to the coordinate frame of the MACS. The

second component is the misalignment of the MACS frame with respect to the body

frame. Because of problems in observability of the orientation of the MACS frame, these

components are combined into one set of values for the misalignment.

For the SMM, the misalignment matrices, Mi, represent the change in the alignment from

the original design alignments, Soi, where i = 1 or 2, depending on which FHST is being

calibrated. The alignment matrices, Si, of the FHSTs can then be represented by

Si = MiSoi i = 1, 2 (2)

Since the So_ are known, the purpose of the FHST alignment calibrations is to compute

the Mi. The calibrations are performed by taking observed vectors from the three sen-

sors, one FPSS and two FHSTs, and comparing them to the respective reference vectors.

The theoretical aspects of the SMM alignment calibrations have been presented in Refer-

ence 3 and will not be presented here. This alignment calibration scheme has typically

yielded accuracies of 5 to 10 arc-sec in the relative alignment of the FHSTs if engineering

mode telemetry is used in the calibration.
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2. ANALYSIS

2.1 POSSIBLE CAUSES OF THE MISALIGNMENT VARIATION

Immediately after the SMM repair mission, the new FHST alignments were computed and

used in the onboard and ground software. Thus, when pitch and yaw solutions were calcu-

lated by the FPSS and FHSTs separately, the resulting differences between the two solu-

tions were initially very small, on the order of the position accuracy in the FHST.

However, over the approximately 1-week period before the next alignment calibration was

performed, a variation of the differences in yaw attitude, computed separately by the

FHSTs and the FPSS, was exhibited that was clearly not random and was well in excess

of the FHST solution accuracy (Reference 4). This initial variation is shown in Figure 2.

Note that, as shown in Figure 3, the pitch differences show no such variation. Subse-

quently, to keep track of this variation, although the alignments were recalibrated, the

original calibrated alignments were kept on hand and used to process a segment of data

each day. The magnitude of the variation eventually reached 120 arc-see, approximately 8

times greater than the original prerepair estimate for the alignment variation (Refer-

ence 5). Obviously, an unmodeled effect was causing this variation.

Several causes were proposed to account for the variation in misalignment:

• Spacecraft bending due to solar radiation pressure

• Electronic or mechanical changes in the sensors

• Uncertainty in the attitude solutions

• Mounting-plate expansion and contraction due to thermal effects

The first possible cause was eliminated because the effects would be too small to meas-

ure. Solar radiation pressure, while being a significant effect on spacecraft appendages,

will not bend the body of a rigid spacecraft more than a fraction of an arc-second.

The next possibility is electronic or mechanical changes in the sensors themselves. Since

the FPSS response was calibrated frequently and since the agreement between FHST

readings did not exhibit measurable variations, the change in sensor response was ruled

out. The FPSS response did show changes on the order of 1 to 2 arc-see per month

(Reference 4). This small change would not account for the 120-arc-see differences being

observed. An effect related to changes in the sensor, redefinition of the FPSS null, (zero

pitch and yaw), occurred once in December 1984. Because of the manner of the FPSS

angular re_pons e calibrations, the accuracy of the null of the FPSS is not determined

directly. The null of the FPSS is defined as the output of the FPSS at the center of the

Sun. Some of the experiments are capable of estimating the errors in their solar pointing.

These readings have always been measured by the scientific personnel and communicated

to the FDF personnel, who incorporated them into the FPSS response function. Because

of changes in the electronic response of the FPSS, the null shows time-dependent shifts.

Since scientists noticed a significant error in the FPSS null, it was redefined in December

1984 (Reference 4). This caused a significant (20 to 30 arc-see) change in the
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Figure 2. Initial Yaw Misalignment Variations

misalignment of the FHSTs. This shift in the FPSS null was most likely accumulated over

the time since the repair mission. However, because of the manner in which the FPSS

calibrations are performed, it could not be accounted for until the discrepancy was no-

ticed by the scientific instruments. The effect of the null shift can be most clearly seen in

the pitch misalignment data, shown in Figure 3. Note that the discontinuous drop at ap-

proximately day 350, which apparently reversed the accumulated drift from day 100. This

same effect occurred in the yaw misalignment data; however, the discontinuous change

was not significant enough to show clearly on the plot. This, however, serves the purpose

to show that the effect would not be completely responsible for the misalignment vari-

ation.
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The third possibility is the uncertainty in the attitude solutions. As mentioned previously,

the misalignment variations were measured daily using FHST and FPSS attitudes com-

puted during normal operations. This attitude comparison does not accurately determine

the misalignments. More accurate results would have been obtained by performing fre-

quent FHST calibrations; however, that approach was deemed unfeasible because of the

resources required and the need to interrupt scientific observation to increase the FHST

sampling rate during calibration. Hence, the less accurate but much quicker method of

subtracting the computed attitudes was devised. The disadvantage is that a noise level is

introduced that is equal in magnitude to the uncertainty of the less accurate attitude

solution, which is the FHST attitude. Thus, a noise level of 20 to 30 arc-sec was expected
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in the misalignment variation plot. However, this noise would not explain the observed

variation because it is random, as compared to the observed patterned variation, and its

magnitude is approximately one sixth of the magnitude of the observed variation. It is

also worth noting that as full in-flight calibrations were performed, the results were com-

pletely consistent with the daily attitude calculations.

The effect of temperature variation on attitude sensor alignments has been seen on previ-

ous missions, most notably the Magnetic Field Explorer (Magsat) (Reference 6). Thus,

the possibility of bending due to thermal effects was explored by checking various tem-

peratures in the spacecraft. It was found that temperatures on the ISP and the mission

adapter ring showed a variation over time that was similar to the variation seen in the yaw

misalignment. Six temperatures were initially monitored; however, since all six showed

the same basic variation, only one was used for graphing and statistical purposes. Since

the temperatures were available in the spacecraft telemetry, they could easily be recorded

from all real-time station contacts. The temperatures varied slowly over time, taking at

least several orbits to change measurably. After this determination was made, data were

collected for yaw misalignment and temperature only once per day. The variation of the

temperature superimposed on a graph of the variation of the yaw misalignment is shown

in Figure 4. The relative scales in the plot were chosen by performing a fit of yaw differ-

ences to temperature. The correlation is obvious. Figure 4 shows only 8 months of data to

accentuate the correlation. However, all data taken between the SMM repair and the

FHST 2 failure exhibited this trend.

The similarity of the two variations points to spacecraft thermal bending as the cause of

the misalignment variation. Thus, the changing spacecraft temperatures cause a tempera-

ture gradient which, in turn, causes the spacecraft structure to bend. A temperature gradi-

ent requires two temperatures. However, because of a lack of thermocouples on the

spacecraft, no other temperature, which when set up as a gradient with the ISP tempera-

ture resulted in a variation similar to the yaw misalignment. However, since the single

temperature variation correlates so well with the yaw misalignment, it can be postulated

that the second temperature remains basically constant (i.e., heat-sunk to the spacecraft

chassis). In other words, the variation of the ISP temperature is equal to the variation of

the temperature gradient.

The pitch misalignment never showed any significant patterned variation similar to the

yaw misalignment variation. As shown in Figure 3, the variation seems to have a noise

level of 20 to 30 arc-sec, a slow drift over several months, and a major shift at the point

of the FPSS null redefinition. Thus, it seems the dominant effects in the pitch misalign-

ment variation are the uncertainty of the FHST attitude solutions and the shift in the FPSS

null.

The fact that the thermal profile variations seemingly do not affect the pitch misalignment

can possibly be explained by the orientation of the ISP and the mounting of the FPSS on

the ISP. As shown in Figure 5, the ISP is aligned along the z-axis (yaw). The FPSS is

mounted in the middle of the ISP, right on the y-axis (pitch) and off-set from the z-axis.

Thus, bending of the ISP translates directly into rotation of the FPSS about the yaw axis.

Conversely, bending of the ISP will not cause any rotation about the pitch or roll axes.
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Therefore, this analysis suggests that it is the FPSS that is actually moving. This causes a

strange situation in that it is the movement of the FPSS that is causing the misalignment

of the FHSTs. This peculiarity can be removed when it is realized that the FPSS defines

the body-frame coordinates and, in fact, provides the most critical pointing information

for the experiments. Thus, the movement of the FPSS causes the body frame to rotate,

which, in turn, causes the FHST misalignment to change. Therefore, the FHSTs never

really experience any significant motion with respect to the spacecraft chassis; it is the

moving body frame that causes the alignment of the FHSTs to change. Presumably, the
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other attitude sensors on the spacecraft, such as the three-axis magnetometer, experience

this same phenomena. However, because of the low accuracy of these instruments, this

phenomena cannot be seen in their alignments. This analysis is a possible explanation of

the misalignment variation. However, the full structure of the spacecraft would need to be

analyzed before any explanations of the variation could be proved.

2.2 YAW MISALIGNMENT ESTIMATION FROM THE TEMPERATURE PROFILE

Since the dominating factor in the FHST misalignment variation about the yaw axis is the

variation of the temperature, it would seem likely that the misalignment could be esti-
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mated from the observed temperature, thus reducing the need for in-flight FHST align-

ment calibration. The first step was to set up a scatter plot of the yaw misalignment

versus the temperature. This scatter plot, shown in Figure 6, shows a nearly linear
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relationship between the yaw misalignment and the temperature. A linear least-squares fit
was performed on the data, and the resulting equation was

M = 13.410 * T- 173.790 (3)

where M is the scalar yaw misalignment and T is the temperature. The root mean square

(RMS) residual of the straight line fit was approximately 10.5 arc-sec, thus 99.7 percent

212



of the yaw misalignments calculated from the function in Equation (3) would be within

31.5 arc-see (3o). The error (1 o) in the slope is 0.3 arc-see per deg celsius and the error

(lo) in the y-intercept is 5.6 arc-see. This fit could be incorporated into the attitude

determination system to estimate the misalignment matrix so that a more accurate atti-
tude could be determined.

A more accurate fit may be determined if the effect due to the null shifts is taken into

account. As shown in Figures 7 and 8, the data in Figure 6 can be broken down into two

segments: data starting at the SMM repair mission and running until the date of the null

shift in December 1984, and data starting at the null shift and running until the failure of

FHST 2. Figures 7 and 8 show two different functions. Fits were done to the two func-

tions and the equations were

M1 = 10.801 * T- 130.029 (4)

M2 = 15.721 *T- 215.072 (5)

The error (3o) of the calculated misalignment in Equation (4) is 25.5 arc-sec, the uncer-

tainty (1 or) in the slope is 0.3 arc-sec per deg, and the uncertainty (1 c_) in the y-intercept

is 5.9 arc-sec. The error (3o) of the calculated misalignment in Equation (5) is 31.1 arc-

sec, the uncertainty (1 (_) in the slope is 0.5 arc-sec per deg, and the uncertainty (1 c_) in

the y-intercept is 7.6 arc-sec.

Equations (4) and (5) have different slopes, which poses an interesting question. Since

the null shift is a change in the position of the boresight of the tracker, one would think

this would be reflected as a change in the constant term of the misalignrnent function

only. While a significant change in the constant term of these equations exists, the change

in the slope indicates that the dependence of the misalignment on the temperature is

changing. This would indicate that the equation for the estimate of the alignment would

need to be calibrated. This would seem to undermine the estimate, since its prime use

would be to replace FHST alignment calibration. However, since the variance improved

by only about 2 arc-sec for the first segment, calibration of this equation would probably

not exceed once per year.

2.3 SUGGESTIONS FOR SPACECRAFT OPERATIONS

It has been shown that as temperatures in the SMM structure vary; the yaw misalignments

of the FHSTs vary similarily, thus degrading the accuracy of the attitude solutions. To

compensate for this effect, two methods of solution are available: (1) frequent in-flight

alignment calibration and (2) misalignment function modeling. Both methods have their

advantages and disadvantages.

The advantage of frequent in-flight calibration is that immediately following the calibra-

tion, the resulting alignments are known to a high degree of accuracy, better than 15 arc-

sec. However, this accuracy will degrade over a couple of weeks as the temperature

varies. This problem can be overcome by recalibrating the alignments every 2 to 3 weeks.

However, this points out the major disadvantage of this scheme: in-flight calibration of the
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FHST misalignment requires operational time, typically three orbits, on the spacecraft

and the ground and, in the case of the SMM, requires the use of engineering mode te-

lemetry. Time spent calibrating the attitude sensors is lost to the scientists. Thus, ideally,

these type of calibrations should be performed infrequently, perhaps no more often than

every 2 months.

On the other hand, modeling of the misalignment function requires calibration of the

function at most once a year. These calibrations of the function require no special opera-

tional time of the spacecraft; they can be completed during routine processing of the
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attitude data. However, the disadvantage of using the misalignment function is slightly

degraded knowledge of the misalignments, between 5 and 15 arc-sec less accuracy than

the in-flight calibration.

For best results, it is suggested that a combination of the two methods be used. The

in-flight calibrations should be used initially to determine an accurate estimate of the

misalignment matrix, M, and the misalignment function should be used to monitor the

changes in M. Then, every 6 months to 1 year, the alignment calibration should be re-

done, using the in-flight method to maintain the most accurate estimate of M. This
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scheme combines the advantages of both methods by using as little operational time as

possible and maintaining a high degree of knowledge of the FHST alignment matrix.

For example, the SMM could use the following scheme. The postrepair FHST alignments

could be calibrated using the in-flight method. Then, the yaw misalignment function could

be used to maintain the yaw misalignment accuracy. The pitch and roll misalignment

would not need to be maintained because their misalignments are not affected by the

varying temperatures as stated previously. The changes in these misalignments due to the

other factors are much smaller and could be maintained by the in-flight calibrations every

6 months.

2.4 MODELING THE TEMPERATURE DATA

The relevant temperatures on the SMM are received from the spacecraft telemetry; thus,

the misalignment can be easily calculated from the simple models presented previously.

However, for missions where the relevant temperature data are not available in the te-

lemetry or where the configuration of the mission is substantially different from the SMM,

the previously presented analysis needs to be supplemented by other sources of data.

For missions with a similar configuration to the SMM but for which temperatures are not

available in the telemetry, an analysis of the temperature profile of the SMM shows that

the profile can also be modeled simply. For the SMM, the temperatures on the ISP and

the mission adapter ring are a function of instrument activity, distance from the Sun, and

the length of the spacecraft day. The attitude of the spacecraft, of course, plays a large

part in the profile. However, the SMM maintains nearly the same attitude relative to the

Sun so that the temperature does not vary due to this effect. Therefore, this effect is not

taken into account in this analysis. However, for missions with attitudes that are dynamic

relative to the Sun, i.e., Earth-pointing or astronomical missions, this effect should also be
modeled.

As seen in Figure 9, the dominating effect on the spacecraft temperature is payload in-

strument activity. Operating the scientific instruments generates a great deal of heat that

is dissipated and radiated to other parts of the spacecraft. The temperature profile experi-

ences major changes along with changes in instrument activity. At the repair of the SMM,

approximately day 100 of 1984, all the payload instruments were off, and, as seen in

Figure 9, the temperature was very low. As the mission started scientific activities, the

payload instruments were turned on, and the temperature rose rapidly. Another example

is seen later near day 250 when the spacecraft went into safehold mode and all the scien-

tific instruments were powered off. For the SMM, safehold mode is the spacecraft's re-

sponse to a perceived dangerous situation. The MACS safehold electronics takes attitude

control from the OBC and holds the spacecraft in a Sun-oriented attitude until the prob-

lem is resolved. To conserve spacecraft power, most of the instruments are, consequently,

powered off. Thus, the temperature of the spacecraft drops quickly.

Since the temperature changes in the case of powering on and off of the payload instru-

ments occur relatively quickly, this effect can be modeled as a step function. The size of

the step will vary with the number of instruments that are powered off. This component of

the temperature profile is shown in Figure 9.
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Figure 9. SMM Temperature Profile and Components

Another effect on the SMM temperature profile is the distance of the spacecraft from the

Sun. This is a consequence of the Earth's orbit about the Sun. The Earth's orbit is not

exactly circular, having an eccentricity of 0.016. Thus, the spacecraft is closer to the Sun
in December at the Winter Solstice and farthest from the Sun in June at the Summer

Solstice. This effect can be modeled by a sinusoidaf pattern with a period of 1 year. The

contribution of this effect on the SMM is shown in Figure 9.

The last effect on the temperature profile is the variation in the length of the spacecraft

daylight period. The spacecraft daylight period is the amount of time per orbit that the
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spacecraft is in view of the Sun. This varies due to the geometry of the orbit. Orbit dawn

is defined as the beginning of the spacecraft daylight period, i.e., the time when the

spacecraft becomes unblocked from the Sun by the Earth, and orbit dusk is defined as the

end of the spacecraft daylight period. Then, orbit noon is the middle of the daylight

period, the time exactly between orbit dawn and orbit dusk; orbit midnight is the time

exactly between orbit dusk and orbit dawn. Due to geometrical considerations, the maxi-

mum time of the spacecraft daylight period is when the right ascension of the ascending

node of the spacecraft is at orbit noon or midnight. This causes the declination of the

spacecraft orbit to be a maximum near orbit dusk and dawn. The spacecraft crosses a

shorter chord of the Earth at the higher declinations; thus, the effective amount of Earth

that is blocking the Sun from the spacecraft is less. Consequently, orbit dawn occurs

earlier and orbit dusk occurs later. The effect also has a seasonal component, being more

pronounced near the solstices, as shown in Figure 9.

This effect is completely dependent on the orbit parameters and can be solved for exactly

if the spacecraft ephemeris is known. If the mission is in the planning stages, the effect

can be modeled from the preliminary knowledge of the orbital elements. This component

of the temperature profile for the SMM is shown in Figure 9.

Once the effect of these parameters is taken into account, the total temperature profile

can be formed. Then, after investigating the mission configuration and its response to

temperature variation, an approximate function, analagous to Equations (3) through (5)

can be determined. This function can be used in the premission attitude stability, determi-

nation, and control planning and the early mission operations. During the mission, data

would be collected over a sufficiently long baseline to completely specify the model; if the

SMM can be used as a guide, a minimum of 6 months would be required to account for

the seasonal effects. Clearly, this approach requires substantially more intensive analysis

than the use of direct temperature measurements.

3. SUMMARY AND CONCLUSION

In summary, flight data from the SMM mission attitude determination support demon-

strates that spacecraft attitude sensor alignments vary with spacecraft temperature by up

to 120 arc-see over a 1-year period, with the majority of the variation occurring during the

first few weeks as the temperatures stabilize. These levels are about eight times greater

than were indicated in the currently available reports on the prelaunch thermal structural

stability of the SMM. Methods have been proposed to incorporate flight measurement of

the temperature-versus-alignment function and its variance to operational procedures with

the benefit of reducing the spacecraft operations time required to support attitude sensor

alignment calibration. Also, combining an approximate model of the temperature with the

model of the alignment-versus-temperature could provide a significant reference for plan-

ning and analysis currently in progress for future missions. This prelaunch planning

should also include incorporating the spacecraft structure temperatures in the attitude
telemetry record.
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This paper presents a covartance analysis of the
performance and sensitivity of the attitude
determination Extended Kalman Filter (EKF) used by the
On Board Computer (OBC) of the Extreme Ultra Violet
Explorer (EUVE) spacecraft. The linearized dynamics and
measurement equations of the error states are derived
which constitute the "truth model" describing the real
behavior of the systems involved. The "design model"
used by the OBC EKF is then obtained by _educing the
order of the truth model. The covariance matrix of the
EKF which uses the reduced order model is not the
correct covartance of the EKF estimation error. A "true
covartance analysis" has to be carried out in order to
evaluate the correct accuracy of the OBC generated
estimates. The results of such analysis are presented
which indicate both the performance and the sensitivity
of the OBC EKF.

l.O INTRODUCTION

The Extreme Ultraviolet Explorer (EUVE) ts scheduled to
be launched by a Delta launch vehicle in August 1990
into a 550 km orbit with a 28.5 degree inclination. The

EUVE experiment will observe stellar objects emitting
electromagnetic radiation with wavelengths of 100 to
1000 angstroms. The spacecraft design is called an
Explorer Platform (EP). The EP is designed to be
flexible enough to be used by many different
experiments. The EP consists of three main modules:
experiment, Platform Equipment Deck (PED), and the
multimission modular spacecraft (MMS). The MMS contains
the attitude control system, power system, and the
command and data handling system. The EUVE mission is
divided into two phases: all sky survey and
spectroscopy. In the all sky survey, the spacecraft
will be rotating at 3 revolutions per orbit (3 RPO
about the roll axis) while instruments perpendicular to
the roll axis scan the sky. Six months later, EUVE
will be three axis stabilized at selected spectroscopic

targets.

2.0 ALGORITHM

2.1 INTRODUCIION

The attitude of the Explorer Platform (EP) is
determined by gyros which measure the angular rate
vector of the EP, by two fixed-head star trackers
(FHST), and by one fine sun sensor (FSS). The gyros
yield three components of the angular rate vector of
the EP rotation with respect to inertial space. The
components measured by the gyros are the projections of
the vector on the body axes, which are the axes of the
attitude control system (ACS).

NRC NASA Resident Research Associate. On Sabbatical
leave from the Aerospace Engineering Dept.,
Technlon - IsraelInstitute of Tecnology, Haifa
32000, Israel.

Aerospace Engineer, Attitude Analysis Section, Flight
Dynamics Analysis Branch.

If the exact orientation of the ACS with respect to
inertial coordinates is known at some point, if the
gyro outputs are perfect, and if no computation errors
are introduced when solving the attitude propagation
equations, then from that time on the EP attitude is
known exactly. However, since the initial knowledge of
the attitude is never perfect, since the gyro outputs
include measurement and misalignment errors, and since
the computation is not perfect either, the attitude of
the EP is not perfectly known. Moreover, the attitude
errors tend to diverge and consequently corrections of
the computed attitude have to be performed. This is the
reason for employing two FHSTs and one FSS in attitude
determination.

Star tracker and Sun sensor measurements, when used
correctly, check the attitude error growth. The
information supplied by the FHSTs and by the FSS is
blended with the attitude computed based on the gyro
outputs and on the initial EP orientation. This
blending is done by a Kalman filter (KF). The EP on
board computer (OBC) software uses quaternions for
attitude determination. The relationship between vector
measurements, which are the outputs of the FHSTs and of
the FSS, and the quaternion of rotation is non-linear.
Therefore an Extended Kalman filter (EKF), rather than
a KF, has to be employed.

For simplicity of implementation the EKF used by the
OBC is actually a reduced order suboptimal filter which
does not contain all the error sources in the gyros,
in the FHSTs and in the FSS [1,2]. It is, therefore,
necessary to investigate the predicted performance of
the on board reduced order EKF. To evaluate the
performance of the EKF, finer error models have to be
used in describing the performance of the true hardware
[3,4]. Such models are referred to in the literature as
"truth models" [5]. In this paper we introduce a "truth
model" which takes in account factors neglected in the
OBC EKF model. These factors are gyro, FHST and FSS
misalignments, gyro scale factor errors and the effect
of the Sun not being captured in a narrow field of view
about the boresight of the FSS.

A convenient analysis tool is the "true covariance"
simulation [6]. This paper presents such analysis of
the performance of the on board attitude determination
EKF of the EUVE satellite. The "truth model" of the
attitude determination problem is developed next. The
"design model" is then listed in Section 2.3. Next the
"true covariance" simulation algorithm is presented in
Section 3. The analysis which was carried out and its
results are presented in Section 4 and finally, the
conclusions drawn from this analysis are presented in
Section 5.

Z.Z THE TRUTHMODEL

Error Propaqation Mode]

Open-]ooo attitude determination

Consider Fig. I which describes a generic attitude
control spacecraft (S/C). The input quaternion, qi,
represents a command attitude and qt is the quaternion
which represents the actual attitude of the S/C. As
shown in Fig. I, gyros which are mounted on the S/C
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measure its angular velocity• The readings of these

gyros are used by the Attitude Determination algorithm

to compute the quaternion qc which represents the

computed attitude. This configuration is called "open-

loop" since here qc is not fed back

I I
qi _ ATTITUDE CONTROLLED _ qt

I SPACECRAFT

l i
I
I _wt

..... ,•..I .........

:GYROS +_+

I
l_m

I I
I ATTITUDE i

] DETERMINATION I

I I

qc

Fig. i: Generic open-loop attitude determination

configuration

into the attitude controlled S/C. Consequently in this

configuration the gyro error,dw, of these gyros is not

affecting the S/C attitude.

Let us denote by "i" the inertial coordinate system

which is the reference coordinate system and by "a"

the ACS coordinate system which which we assume to be

identical to the body system. The attitude

determination problem is that of finding the quaternion

which corresponds to the transformation matrix from "i"

to "a" (or vice-versa). Since the gyros introduce
measurement errors (d_w) the computed attitude is

erroneous. Therefore the computed transformation matrix

which is supposed to transform vectors from the "i"

to the "a" frame, actually transforms the vectors
From the "i" frame to another erroneous coordinate

system which we denote by "c"• Thus we distinguish

between three coordinate systems; namely, the "i", the

"a" and the "c" systems. We assume that the error in

computing the transformation matrix is small,

consequently "a" and "c" are almost identical. In

other words, a very small transformation takes us from

qc

i ............................... > a ---> c

dq

qt

Fig. 2: Schematic description of the quaternion
relations in the attitude determination

problem

the "a" to the %" system. To the transformations

between the coordinates there correspond suitable

quaternions as depicted in Fig. 2• As indicated in this
diagram

qt = qi-to-a (1.a)

qc " qi-to-c (1•b)

dq : qa-to-c (i.c)

The subscript "t" corresponds to the transformation to

the true attitude of the vehicle whereas the subscript

"c" denotes the transformation to the computed

attitude. (Note that "c" corresponds to the

subscripted notation 'measured' in refs. 2 and 3). When

defining a quaternion of rotation and especially when

dealing with quaternion products, a special care has to

be given to the question of what coordinate frame the

quaternion is referred to. If each of the three

quaternions defined is referred to the coordinate

system from which it transforms vectors, then the

following relation between them holds

qi-to-c qi-to-a a" qa-to-c (Z)

where the product on the right hand side of (2) is the

quaternion product (defined in the Appendix) and the

superscript_denote the frame to which each quaternion

is referred . From (I.c) the rightmost quaternion in

(Z) is dq. Note that dq is the only quaternion
referred to the body frame whereas the other two are

referred to the inertial frame• Keeping this in mind we

omit all superscripts and use the notations of (1) to

write (2) as

I I
I qc _ qtdq I

I I
(3)

Differentiation of (3) yields

qc = qtdq + qtd_ (4)

It is well known [7] that

]

(It _ _ qtW (5)

where W is a quaternion of angular velocities defined
as follows

W = iwx + jWy + kwz (6)

The components w_,w.,w, are the components of the true
• _ £

angular velocity v_ctor at which the ACS coordinate

frame rotates with respect to the inertial frame,

coordinatized in the ACS frame. These components are

measured by gyros which supply measured (and hence

erroneous) data. In the lack of knowledge of the true

rates, the gyro outputs are used in computing the

quaternion, therefore the solution of (5) yields qc
rather than qt; that is, qc is the solution of

]

cIc " _qcWm (7)

* Note that nl . . . i-i -Co qa_to-c, q
all quaternions acre reTerreo cGt_h_

the order of the product is reversed.

; that is, when

inertial Frame
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where Wm is of the form of (6) only that the quaternion

components are the measured rather than the exact

angular rates.

When (5) and (7) are substituted into (4) we obtain

_qcW m . i_qt W dq + qtd_

Define a quaternion of angular-rate error as follows

then

dW - Wm - W

W = Wm - dW

Substituting (9) and (3) into (8) yields

I I

_qtdqWm - _qt(Wm - dW)dq + qtd_

which can be written as

qt [d_l + _(W m - dW)dq - dqWm] - 0

Since qt Is invertible, it is possible to pre-multiply

both siaes of the last equation by the inverse of %.

This yields the result that the expression in tee

brackets is equal to zero and consequently

i i , l
i d_ - _dqW m - _Wmd q + _dWdq II

I t

(lO)

[et us express the quaternions appearing in (10) in

a more explicit form by their vector and scalar parts.

Accordingly

I I I I
Id__l I _ml

dq : I....I Wm" I.....I
I I I I
I de_l I_ o _1

where d! is the vector part of the quaternion. When the

quaternion product is carried out (see the Appendix for

the rules of quaternion product), (10) reads as follows

l- -I I- -I I _m xd6 + de_mll
I d_ I 11 d6XW-m + dew-ml
I...( - - -'
I • I 21............. I 21 I
l_de_l I_ -d6._ _t t_ -_.d_ _l

I I

+ _I dwxd! + dedW[l

l_ -dw_.dl _I

The last quaternion equation is equivalent to two

equations, one for the vector part of q and one for

its scalar part. Using the following rules of vector

product, Axe - -BxA and A.B : B.A, the two equations
can be written as

d__ = -WmXd_i + _dedw + dwxd6 (]].a)

de - -dw.d6 (11.b)

When dq expresses a small rotation, its vector
(8) part, d!, is small, therefore the last term on the

right hand side of (]].a) is of second order and hence

is negligible. The right hand side of (if.b) is

negligible too and indeed, since the absolute value of

any quaternion of rotation is equal to i, the sqa]_
part of dq satisfies the equation de - [1 - Id_l:] A/L

and since the vector part is small, de, stays close to

I, hence its time derivative is nearly zero. Note that

as de is nearly I, the second term on the right hand

side of (ll.a) is not negligible. Consequently (l])
(9) yields

d_- -_xd6+ _d_ (IZ.a)

and as explained above

de - 1 (12.b)

The equation of interest is (12.a).

The transformation matrix T_ which corresponds to dq

can be expressed in terms of s6all Euler angles. Define

the angles as follows

is the roll angle error defined about the body x-axis

"_-is the pitch angle error defined about the body y-axis

y_is the yaw angle error defined about the body z-axls.

Note that for small rotations the order of rotation is

irrelevant and we may refer all angles to the initial

coordinate system which prevailed before the small

rotations took place. Also note that these angles are

referred to the body frame, "a", as is implied in (2)

and (3). When the transformation matrix from the body

to the computed frame is expressed as a function of the

three Euler angles defined above and when the angles

approach zero, the transformation matrix becomes

I-_ y' -'_I
q

I
(13)

On the other hand, in terms of the components of dq,

the upper right elements of T_ are [8]

tl, 2 = 2dqldq2 + 2dq3dq 4

tl, 3 - 2dqldq3 - 2dq2dq4

t2, 3 - 2dq2dq3 + 2dqldq 4

(14.a)

(14.b)

(14.c)

The First term on the right hand side of each one of

the above equations is of second order and hence is

negligible. On the other hand, dq4 appearing in the

second term is the scalar part of dq which we denoted

by de. As noted earlier this component is nearly equal
to one. For these reasons (14) can be approximated as

follows
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tl, 3 _ -2dq 2 (IS.b) _'_F'- ) GENERATOR )i "IDYNAMICS((i _"
W

t2, 3 2dq I (]5.c) I _c I1 ..I.........
I :+_GY__EQ_ :

l •I'__ dR:
Comparing (15) to the corresponding elements in (13) i _--- :
yields I :.i........ :

i ) i_c
. r

I qc "--I ATTITUDE _(DETERMINATION
dq2 _l> I i

]

dq3 , _ Fig. 3: Generic rate command control loop part of a
spacecraft attitude control system

The above three components of q constitute the

elements of _, thus Consequently, w, the actual angular rate of the $/C

differs from the desired angular rate vector, _i, by
the gyro drift rate vector, dw; that is

and in particular when w i - 0 ; that is, when the S/C
is required to maintain a constant attitude

- -d_ (22)

d!-
11 I

2_1 I
l_Y'_l

(16)

and (12.a) can be written as

ilYI il-° wz -Wy-l(_-lli% %i-dwv-l_i
I_,l-I-Wz o Wxlll_l+ldWyl
L I I II I I I
I_y,_l I_ Wy -wx o _1 I__'_l I_dwz_l

{17)

Closed-loop attitude determination

In the case of a closed-loop attitude determination,

the S/C is maintained at a desired (possibly time-

varying) attitude by a closed control loop which uses

the gyro outputs to keep track of the S/C angular rate.

This is shown in Fig. 3 in which a part of the control

loop of a generic attitude control system of a S/C is

presented. The purpose of this control loop is to force

the S/C to follow a prescribed angular velocity vector,

wi, and in particular to maintain a constant attitude

wBen wi-O. (Normally the commanded rate _i is a
function of the difference between a commanded

quaternion and the computed quaternion, qc)" We note
from Fig. 3 that

@'_i - _c (18)

lhe control loop is designed to force ) to vanish, then

_c " _i (]g)

and since

_c " _ + d_ (20)

therefore

_i " _ + d_

that is; the S/C drifts at the drift rate of the gyros

but in a direction opposite to the gyro drift. We

conclude from this discussion that _ differs from the

con_nanded rate by d_. Consequently the attitude of the

S/C differs from the commanded attitude by the attitude

error angles _,_ and _. In this case therefore, the

attitude errors develop according to the following

equation rather than according to (17)

I? I l 0 wz -Wy

I _l - I Wz o WxII _I - I dWy I# I I II I i
!

I___I I_ Wy -wx 0 _II_%1 l_dWz_l

(23)

Indeed when the commanded angular rate is zero (23)
yields

_- -dwx, _= -dWy and _- -dw z

The right most term in (23) is not a white noise

vector, therefore this dynamic model, while correct, is

not suitable for use in a KF algorithm. To solve this

difficulty the standard procedure of "signal shaping"

is applied. This is done by considering the non-white

vector as an output of a linear system whose input is

white [5]. This is accomplished as follows.

The elements dWx,dW,,dw, are the errors in measuring
w. In other words, the_ a_e the errors in the x,y and

z gyros respectively. It is assumed that an accurate

enough model of the gyro errors is a one where there

are five contributions to dw, which we denote by gi,

_2, d_, _ and El; that is,

dR - gI + g2 + d_ + w_ + DI (24.a)

where g] is a vector of constant drift rates of the

gyros, g2 is a vector of random walk components of the
gyros, d_ is the vector of gyro scale factor errors and
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w_te_tts the error due to gyro mtsaltgnments. D] is the
noise component of the gyros. Stnc6 _] is

constant

_] - 0 (24.b)

and since _Z is random walk then we can write

_2 " _2 (24.c)

where n 2 is white noise. Note that despite the
notation, does not have the units of angular
velocity. _ us denote the vector of scale factor

errors by _, then

k' " [kx, ky, kz] (24.d)

where ' denotes the transpose and kx, kv and kz are the
scale factor errors of the x, y" and z gyros
respectively. The expression for dl is given by

_x 0 0-1I

dl- iO Wy 0 i k (24.e)

,oo ,_,fI_

Note that since _ Is a constant

of the gyro outputs in order to obtain more accurate
gyro measurements, therefore the same result is
acSieved when we estimate their sum. When we combine 9i
and H_ into one state denoted by g, we may use (24.b)
and (24.c) to write the dynamic model of

" n 2 (24.i)

In order to augment the models presented in (23) and
(Z4) we define the following matrices

X_ l

#_- 0 (:74"f) -I1""

The gyro errors due to mlsallgnments are generated by
the projection on the gyro input axis of the angular
velocity components which are nominally perpendicular
to that axis. The mlsallgnment angles are the angles by
which the gyro sensitive axis Is off from its nominal
orthogonal direction towards the other two coordinate
axes. Consequently we have

l;y,zO0,
_- I%1 - IO o WzWxo o i{_xz[

$ I t II I
IW_zl {o o o o wx w_lldyz!
I_ _1 I_ :11 I

_yx)

Ozx

_zy

(24.g)

where _il i-a,y,z J-x,y,z is the non-orthogonallty
angle between the i-th gyro and the j-th axis. Now

since #ij is constant we can write

_ij " 0 i-x,y,z (24.h)
jmX,y,z

The next step in the derivation of the dynamics matrix
is the augmentation of the system error model given in
(23) with the gyro error model given In (24) [5]. Such
an augmented model has, in our case, 27 states.
Fortunately, we can eliminate 3 states by combining the
constant drift rate components and the random walk
components into one error. This will eliminate the
possibility of distinguishing between them, but this is
of no great consequence since even if we can estimate
them separately, we subtract them both from the reading

-y-I

t_

y,

uX

Uy

l_Uz_l

A i_ m

0 wz -_ -1 0 0 -

-wz 0 wx 0 -I 0

-wx 0 0 0 -I

0 0 0 0 0 0

0 0 0 0 0 0

Lo o o o o o_i
....(z5)

i-n]x-

nly

nlz

n2x

n)y

I_n2z_l

A _t i

l_Wxo

o-wyO o

0 0 -wz 0

0 0 0 0

0 0 0 0

I_O o o o

0 -Wy-Wz 0 0 0 0-

0 -Wz-Wx 0 0

0 0 0-Wx-Wy

0 0 0 0 0

0 0 0 0 0

0 0 0 0 O_

... (z6)

J-' " [._xy, _xz' _yz, ._yx, _zx' )dzy] (27)

We may also want to consider the misalignment angles of
the two FHSTs and of the FSS, therefore let us denote
the vector of, the three mtsaltgnmont angl_ of the
first FHST by '_, that of the second FHST by _ and the
vector of the FSS mlsallgnment angles by _ where

1_, . Jinx, ]_y, l_z] (28.a)

2_, . [2_x ' 2_y, 2#z ] (28.b)

s(, . [S#x' S#y, S#z] (28.c)

Since all of these angles are constants we may write

1_ . 0 2j . 0 s_ . 0 (29)

With the above information and notations we can now

write the augmented dynamics equation of the "truth
model". The augmented dynamics equation of the "truth
model" is given in (30). The validity of (30) can be
verified by examining (23) - (19).
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MeasurementModel

Star)_rJ_k_ measurements

Define a star tracker coordinate system as shown in

Fig. 4. The z axis points along the boresight of the

star tracker. Consequently the x and y axes a_e in

the image-plane of the star tracker. Denote by _ the
vector in the direction of the star and whose length is

the length of the light path from the image-plane to

the optics. It is assumed that the light which is
emitted from the star towards which the star tracker is

pointing, hits the image-plane close to the boreslght

such that it can be assumed that the distance between

the optics and the image plane is nearly equal to that

of the light path from the optics to the Image-plane,

i.e. h-J_). The signals measured by the tracker are the

projections of -_ on ,

the x and the y

axes which, as

mentioned, are in

the image-plane. The
OBC converts the

two outputs of the

star tracker to

tangents of A and B.

Obviously, the tan-

gents of A and of B

are, respectively,

the projections of

-_ on the x and y

axes of the tracker,

where _ is a unit

vector in the

direction of the

star. That is, if we

denote these axes by

_st and
respectively, th_ st

-S*

Y

Xm " "_'_st + ex Sx

... (3I.a)
/

Ym " -_'Ist + ey /

... (31.b) -_st

where xm and Ym are the tangents of A and B, *'"
denotes the dot product of vectors and ex and
are measurement noise signals which are assumed to ;_

zero-mean white processes. (Actually, the OBC converts

xm and Ym into components of the unit vector _. For
small A and B the'se components are basically equal to

the respective tangents). Let us now express the vector

quantities of (31) in the EP body coordinate system

Xm = ._a.(Xst) a + eX (32.a)

Fig. 4: Schematic diagram
of the star tracker

measurements

Ym " -_a'(Xst)a + ey (32.b)

We use an under-bar and a subscript to denote a column
matrix whose elements are the components of the vector
in question when resolved in the coordinate system
denoted by the subscript.

The observables (also known as effective

measurements) which are processed by the EKF are the

difference between measured and computed quantities.
For star tracker measurements we feed the EKF with the

difference between the measured components x and y

given in (32) and the corresponding computed values

which are obtained by transforming the star vector from

inertial to body coordinates. The star vector

coordinatized in the inertial Frame, which we denote by

_I, is precisely known From the almanac. WeTdo not

khow, however, the exact value of TA, the

transformation matrix from inertial to body sysCep. All

we know is the computed transformation matrix T_. The

relatlonshlp between the two matrlces is g_ven by

T_ a I (33)= TcT a

where T) is the error matrix given in (13). If we

define th_ matrix g as follows

i- o y_ -_c I
I i

o - I -_ 0 b_ I {34)
I i
I__ -P O_l

then

T_ - I + B {35)

We also do not know the exact direction of _st.and,_st
since the star tracker is misaligned, we onmy Know

iB_tt_s" and _+ _ which are the vectors _tand _+assumm_"_dordinate system of the RI-ST (thi{

Is, in the non mlsaligned FHST). Consequently, the

computed values are calculated in correspondence with

(32) as follows

Xc = -(T_I).(_st,ass)a (36.a)

Yc " "(T_I)'(_st,ass)a (36.b)

Using (33) and (35) these two equations become

xc - -[(I+O)TiSI].(xst,ass)a (37.a)

Yc = "[(I+O)T_I]'(_st,ass)a

m

(37.b)

We note that

T_)I = _a (38)

therefore (37) can be written as

Xc = -[_a + g_a]'(_st,ass)a (39.a)

Yc = "[_a + O_a]'(_st,ass)a (39.b)

When we now difference (32) and (39) the following

equations are obtained

Zl " Xm - Xc " "_a'(_st)a + ex + [Ja + OJa]'(_st,ass)a

... (4O.a)

z2 " Ym " Yc " "_a'(_st)a + ey + [_a + g_a]'(_st,ass)a

... (40.b)

We note that
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_st " MT'ass _st,ass (41.a)

Zst - MT'ass_st,ass (41.b)

where MT,ass is the transformation matrix from the
assumed FHST coordinate system to the actual one. In
analogy to (35) it can also be shown that

MT'ass - I - [_x] (42)

where

I
- [(x] - t -,ez o #xl

I I
(- #y ".fix O_I

(43)

The angles _i i-x,y,z are the misalignment angles of
the actual FHST coordinates with respect to the assumed
FHST coordinates. Note that because of the closeness of

the two, the angles are the same in either coordinates.
(See development leading to (56)). When we substitute
(42) into (41) we obtain

_st " ( I - [_x] ) _st,ass (44.a)

_st " ( I - [_x) ) _st,ass (44.b)

hence

Zst " Zst,ass " ( x Zst,ass (45.a)

Ist " Zst,ass " ( x Xst,ass (45.b)

When (45) are substituted into (40) the following is
obtained

zI - -_a.(_st,ass - ( x _st,ass)a + ex + [_a +

+ g_a].(_st,ass)a

z2 - -_a.(_st,ass - _ x _st,ass)a + ey + {_a +

+ G_a].(_st,ass)a

which, after some multiplications and subtractions,
yields

Zl " )a.(( x _st,ass)a + g)a'(_st,ass)a + ex (46.a)

z2 " _a.(_ x 2st,ass)a + O_a.(_st,ass)a + ey (46.b)

For (46) to be useful, we need to evaluate

(_st ass)_ and (_t,ass)a" As mentioned earlier, _I
is [_own _rom the aTmanac, _herefore

We do not know T_ but we do know T_ whlc_, for
small attitude err-ors, is quite close -to T_. The
replacement of the true value by its estimate is-one of
the features of an EKF, so, we too, follow this
practice, compute

_c " T_ _I (48)

and use _ rather than _a in (46) Next we handle
the comput_tlon of (_st,ass)a and ilst,ass)a" It is
clear that

.T,ass,_ , (4g.a)(_st,ass)a " _a _ast,assYT,ass

(_st,ass)a " Ml'ass(_st,ass)T,ass (49.b)

where T denotes the star tracker coordinate s_stem
defined at the beginning of thls section and M_ 'ass

is the transformation matrix from the assumrd tracker

frame to the body frame. This matrix Is known
precisely. Let us write

Ml,ass . [ ml , m2, m3 ] (50)

where _1, _ and _ are the three columns of M_ 'ass.

It is cl_ar _hat (_st,ass)T, the unit vector alo6g the
tracker assumed x axis expressed in tracker
coordinates, is given by

111
(_st,ass)T " i 0 1 (51.a)

io_i

and similarly

IOI
(Yst,ass)T" I I I (51.b)

10_l

Therefore when (50) and (51) are substituted into (4g),
the following is obtained

(_Xst,ass)a- m1 (52.a)

(Vst,ass)a " m2 (52.b)

When (52) is substituted into (46), and when Sa is
replaced in (46) by _c whlch is given in (48),-the
following is obtained

zI - Sc.[({Oa x ell + O._S.c.m1 + ex (53.a)

z2 - _c.[(#_)a x m2] + O_c.m2 + ey (53.b)

Noting that

. .[@ax]

and using the vector identity

(ax e).c- elix c)._

equations {53) can be written as

zI - (mI x _c)._{a+ (mI x Sc).Oa + ex (54.a)

z2 - (m2 x Sc)._a + (m_2 x _c)'Oa + ey (54.b)

Expressed by its components _ given as follows

lexl

_a " )_Y li (ss)
l_&_t

however, the angles which constitute the components of
are defined in the FHST coordinate system. Therefore,
to ke using the same angles we write {{, - MJ_'ass mi
But HI'pass- I - [l_x],therefore MJ['ass 1{% d -'[mix](-
(E.Consequently,

(a " ( (s6)

When (56) is substituted into (54) we obtain

zI • (mI x_c)'_+ (mlx _c)'Oa+ ex (57.a)

z2 - (m2 x _c).J_+ (I_gx _c).Oa + ey (57.b)

We can write (57) as follows

229



I zl . X_c)' I I? Il 1 I (-ml II I+
I z2_l l_(m2 x S_c)'_ll _> I

I I
I_T_I

,_Im I
IJ_zl

-e X- ]

l

eyI
I_O_I

... (se.a)

where ' denotes the transpose. This equation is the

measurement model of a generic FHST. Each one of the

two FHST has such a measurement equation. Writing (58)

in terms of the state vector _ and thus forming the

measurement matrix, H, is straight forward. The matrix

which corresponds to this measurement equation for the

first FHSS is

,,F.i I I Io2,+
l_(_m 2 x Sc)' I 02X12 I (m2 x _c)' I _

... (SS.b)

and the matrix for the second FHST is

! (m! X_c)' I
2H F I I

l_(mz x _c)' I

FSS measurement model

02X15
I (ml x _c)' I -I
I lOzx31
I (_Z x _c)' I _I

.,, (SS.c)

The geometry of the FSS measurement is similar to

that of the FHST presented in Fig. 4. Here, however, we

cannot assume that the angles A and B are small; that

ts, the Sun vector is not nearly coincidental wtth the

boresight line. Therefore all the developments that

were based on this assumption are not valid in the

development of the FSS error model. Consequently a

different approach has to be taken. It is evident that

shown in Fig.4, can be expressed in the FSS

coordinates, s, as follows

_ - [-tanA, -tanB, lid (59.a7

d - [(tanA72 + {tanB) 2 + i] "I/2 (59.b)

Let _ .... denote a column matrix whose elements are

the co=_p_ents of _ in the essumed (non-misaligned) FSS

coordinates. The relationship between this vector and

_s is given by

_S " G_'aSS_s,ass (60)

where GI ,ass is the transformation matrix from the
assumed to the fine Sun sensor coordinates. In analogy

to (42) we can write

where

G) 'ass - I - [S(x] (61)

I[-° s#z -S_yI
- [Sllx] " i -s_z o s_ x (BZ)

l
I_ S#y _s,_x 0_1

Substitution of (61) into (60) yields

_s = _s,ass - [S_x] _s,ass (63)

From (63) we immediately realize that if instead of

_$ a_$ we use Ss, we introduce a_ error due to the FSS

m1_a1_gnment. _is error is - [ _x] _s,ass"

The FSS outputs are really (tanA)m and (tanB)m where

(see flg.4) tanA - Sx/h and tanB - S_/h. The subscript
m denotes the measured tanA and _anB. Define the

following column matrix

_s,m" [-(tanATm, -(tanB7m, ]]d m (64.a7

dm - [(tanA)_ + (tanB)_ + l]"1/2 (64.b)

Let um - (tanA)m and vm - (tanB)m, then (64) can be
written as

_s,m" ['Um, -Vm, l]dm (6S.a)

dm - [u_ + v_ + 1] -1/2 (65.b)

Furthermore, using Taylor series expansion we can write

[9]

where _s,m " _s + dE (667

I W11 WI2 I ex II

d,_- I W21 W22 l_ey_l -We (67)

I-w31 w23-I

The matrix W Is evaluated as follows [9]

_ 32 .
WII - dm dmU m WI2 -dm3UmVm

32
WZI - WI_ W22 - dm - dmV m (687

W31- -d3m W32- -dm3Vm

and ex and ev are the additive measurement errors

involved in mehsuring tanA and tanB respectively. From

(66) and (67) we obtain

_s,m " Ss + We (69)

Substitution of (63) into (69) yields

Ss,m " Ss,ass [S_x] _s,ass + WO (70)

Next we compute the estimate of S.. We denote the

computed value by _s,c' The computation iscarried out
as follows

a I
Ss, c - Gs,assTcS I (71)

In (/Ii we actually have to use the matrix T_; I
however, since this matrix is unknown to us we use T_

instead. _I is taken from the ephemeris. From (337-(35)

T_. (t- [_Ox])T_

Thus C/I) can be written as

Ss, c - Gsa,ass{I - [Ox]}Ti_ I

which can be written as

a
_s,c " Gs,ass_a " Ga,ass[OX]_a

where S a is a column matrix whose elements are

the compBnents of _ when the latter is resolved in the
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body, a, coordinate system• Note that since Ga iss,ass
orthogonal

- G_,ass[BX]Sa = - (G_,assB) x Gas,ass:a=

= - (G_,ass@) x _s,as

Using the last equation, we can write the former as

_s,c = _a,ass (G_,assg_._x _s,ass (72)

Now define the first component of the effective
measurement (which is to be processed by the EKF) as
follows

Zl = (_s,m - _s,c)x {73)

where ( )y denotes thex component of the expression n
the brackets. When (70) and (72) are substituted into
(73), we obtain

Zl = (_s,ass " [S_x] _s,ass + W_

- _a,ass + iBm,ass@) x _s,ass)x
which yields

Zl = {" [_s,assX]G_,ass_ + _s,ass x s_ + We}x (74)

Following the rationale that led to (56), we can

substitute _s ass _ (74) by S¢ m with practically noloss of accurgcy, addition,-_use the notation

Ga = [gl, g2, g3] (75)
srass

therefore (74) can be written as

Zl " {['_s,m x][gl, g2, g3]B + _s,m x s_ + W_}x (76.a)

To compute z2 we apply the foregoing development but
now we use tiley rather than the x component. This
will yield a result similar to (76.a); namely,

z? " {['_s,m x][gl, g2, g3]B + _s,m x s_ + W_)y (76.b)

The last two equations can be put in the following form

i- -I i- -i
z] I I I I I

) = glX_s'm' g2x-Ss'm' g3xSs'm I]!J_Iz2 I
I_ _i i_ -(2 i I

I

I I }
I I S_x

+ )[_s,mx]) S,y

l_ _12 Sdzl

]- -I)
I extl

+W2 )ey) (
i
lOtl
}__)}

I

..• (77.a)

where the subscript 2 denotes the first two rows of a
matrix The measurement matrix, H. which corresponds to

• " •

thls measurement equatlon is given by

i- I 1 I
I I 1 l

Hs= fllX_s,m,g2X_s,m, g3X_s,m 03x24 l[_s,mx]

i_ i t _12

... {77.b)

Note that the 3rd row of the square matrices in (77) is
omitted. This completes the development of the "truth
model"• To sum it up, the dynamics model is given by
(30), the FHST measurement model is given by (58) and
it fits either one of the two FHSTs, and finally, the
measurement model of the FSS is given by (77).

2.3. THE DESIGN MODEL

rF=z_r_qj2Propaqation Model

The "design model" is the simplified, reduced order
model which is assumed to be the model of the system
for the OBC filter design purposes. The following
assumptions are made in the design of the EUVE Update
Filter• The gyro scale factor errors and misalignments
are negligible (or fully compensated for). The FHSTs
and the FSS are perfectly aligned. With these
assumptions the error propagation equation of the
"truth model" reduces to

I

II _ ( I 0 wz -Wy -I 0
It II
II _ I I -wz 0 wx 0 -1
II II
II _' I I Wy -wx 0 0 0
II I=I

Uxll o o o o oI) ,,
liuyll o o o o o
II li

l l_Uz_l I_ o o 0 o o

o Wix
0 _ l ] Wly

)I
-] _Ull Wlz

I+1
0 ux

(( 1 W2x

0 II UyIf I W2y

0 _1I_Uz_l I_ Wzz_l

This model can be expressed as

_* = A'X* + _*

where X*, A* and n*_ are defined in (25).

(78)

{7g)

Mea_uremnt Mode]

Star tracker measurements

With the assumption mentioned before and
corresponding to the "design model" of (78), The FHST
measurement matrix of either star tracker reduces to

I zl I I (-m1 x So)' ex I

l_z2_I i_(m2 x Sc)_'Ii_ I I ey I
I I I I

)___{ i_o_I

(80.a)

This yields the Following measurement matrix

-(ml
. x c)'l I
HF " ) 02x3 I (80.b)

l_ m2x _c)'l _I

It is easily seen that this is the measurement matrix
for either FHST.

Sun sensor measurements

Corresponding to the state vector of the "design
model" the FSS measurement equation is reduced to
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I zl ) )- -) i-y-t i ex

I I
I___1

... (el.a)

The corresponding measurement matrix is

$- I -$

H_= _qlXSs'm , qzX_s,m, 93X_s,ml 03x 3_12 (81.b)

3.0 TRUE COYARIAMCE SIMULATION ALGORITHM

To present the so-cal led "true covariance"

simulation algorithm whose development is introduced in

[6],we have to define, D, the transformation matrix
from the state vector of the "truth model" to that of

the 'design model", It Is easy to see that in our case

0 = [I6xBI 06x18 ] (8Z)

Using D we define the following matrices

dA = DA - A*D (83.a)

where A is t_e 24xZ4 matrix defined in (30), The
matrixes A, A and dA are then used to define Ac as

fol 1ows

I-AJ0-I
Ac- I---1--;t (S3.b)

(dA( A_I

Next, we discretize the matrices Ac and Q* where the

latter is the spectral density matrix of the white

noise vector driving the dynamics part of the 'design

model" given in (78). The discretizatJon algorithm is

given in [5, pp. 296 - 299]. The discretization is
denoted as follows

AC "-'> _-i

Q* ...> Q_.]

With Q;-I on hand, we compute Q_-I as follows

-I-I Q* L-I ) DT
(84)i v

I_D_I

In our case, all the preceding matrices are constant

and need to be computed only once.

Between measurement updates we propagate the

matrices Ck and Pk as follows

Ck(-)" _-] ck-1I_-I'+ Q_-I (SS.a}

P_(-) - 4" ¢* ' *k-! P_-](+) k-1 + Qk-1 (85.b)

where Ck is the second moment matrix of the augmented
state vector whose entries are, from top to bottom, the
state vector of the *truth model" given in (30), and a

vector which is the difference between the state

esimate generated by the OBC EKF and the correct value
of this state. Note that the second vector, which has 6

components, is the correct estimation error vector.

Therefore the last 6 elements on the main diagonal of

Ck are the mean squre errors of the filter estimation
error and their evaluation is the goal of the "true

covariance" analysis. In contrast to these 6 elements,

the 6 elements on the main diagonal of Pk are the
apparent variances of the estimation error states. That
is, if the "truth model" were Identical to the "design

model", these elements would have been the variances of
the estimation error.

When a measurement is acquired, the following

computations are carried out

* = * *, * • • Rk]-IKk Pk(-)Hk [HkPk(-)Hk' + _ (86.a)

Pk (+) = [I-KkHk] Pk(-) [I-KkHk] + KkRkKk (86.b)

dHk = Hk - H_D (86.c)

I I I 0 I
Bk = )--; .... (B6.d))---_-;- )

)-KkdH k I-KkHk_{

Ck(+ } = Bk Ck(- ) B k' + K_ R k K_' (86.e)

4.0 CASE _ OBJECTIVES AND

There were three primary objectives in the case

studies. First, the performance of the EP filter was
examined in the ideal situation when its model was

equivalent to the truth model. Secondly, the expected

onorbit behavior of the 611ter was examined. Lastly, a

sensitivity analysis was performed. The cases studied
were as follows:

- Case I: No Errors

- Case 2: Expected Errors

- Case 3: Sensitivity Analysis

3A: Gyro white noise about each axis

- 3B: Gyro random walk about each axis

3C: Gyro Misalignments about each axis

3D: Gyro Scale factor errors about each axls

- 3E: FHST noise

- 3F: FHST # Z misalignments about each axis
3G: FSS noise

3H: FSS mlsallgnments about each axis

Each simulation was ten minutes. The attitude and

gyro drift estimation errors were determined by the

truth model and update filter. The results in sections

4.], 4.2, and 4.3 represent the truth model determined

estimation errors. The following is a listing of

nominal simulation input values:

Initial State V_rianc_

Initial Attitude Error: ]800 arcsec/axis

Initial Drift Rate Bias: 0.5 arcsec/sec/axis

D.y__ No]se Inputs

IRU White Noise drift (rot1): (0.68936 arcsec/sec_)_

(pitch and yaw axes): (4.246E-2 arcse_e_=/=) =

IRU Random Walk Drift: (4.4413E-5 arcsec/sec°/=)¢/axis

Measurement _

FHST Measurment Noise Variances: {14 arcsec) 2

FSS Measurement Noise Variances: (24.4131 arcsec) 2

4.1 Case 1: No rr.e_ZEQ.__

The following case demonstates the performance of
the filter in the ideal case when the truth model was

identical to the design model. The final attitude and

gyro drift errors were as follows:
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Attitude Estimation Errors

(arcseconds)

Roll Pitch Yaw

4.8784 2,8321 2.50B0

Gyro Drift Estimation Errors

(arcseconds/second)
Roll Pitch Yaw

3,022E-2 0.9103E-2 8.313E-3

4.2 _2: _Errors

This case demonstrates the expected performance of
the filter on orbit. The attitude is defined relative

to one of the FHSTs (#i in our simulations). Thus, the

obtained attitude accuracy is on the order of the

accuracy of the FHSTs which are the primary attitude

sensor. The following are additional expected on orbit

input errors:

FHST #I Misalignment: 0 arcseconds/axis

FHST #2 Misalignment: 24 arcseconds/axis

FSS Misalignment: 35 arcseconds/axis

Gyro Scale Factor Error: I000 ppm/axis

Gyro Misalignment: 8 arcseconds/axis

The results are the following:

Attitude Estimation Errors

(arcseconds)

Ro11 Pitch Yaw

16.5005 19.1984 13.0119

Gyro Drift Estimation Errors

(arcseconds/second)
Roll Pitch Yaw

3.2513E-2 5.II60E-2 6.9354E-2

Comparing these values to the ideal case, one can see

errors induced by only considering a subset of the true
state vector in state estimation. The attitude

estimation errors are off by several orders of

magnitude and the gyro drift estimation errors are off

almost an order of magnitude.

4.3 Case 2: Sensitivity

In the Following simulations, the sensitivity of

onboard filter to additional attitude sensor noises,

misalignments, and scale factor errors was tested.

These errors were applied separately to each sensor

axis, and the resulting attitude and gyro drift

estimation errors were observed. Sensitivity to the

various error sources were determined in the following

manner about each spacecraft axis (where applicable):

Dynamic noise (white & random walk): 3x nominal/axis

FHST #2 Misalignments: 2x nomlnal/axis

FSS Misalignments: 2x nominal/axis

Heasurement noise (FHSTs & FSS): 2x nominal

The following tables and figures demonstrate

filter performance due to the increased errors.

Attitude [s_imatlon Errors (arcseconds)

the

Case Axis Roll Pitch Yaw

3A x 18.6886 19.1984 13.0119

3A y 16.5006 19.2332 13.0179

3A z 16.5005 19.2065 13,0435

3B x 16.5007 19.1984 13.0119

3B y 16.5005 19.1994 13.0121
3B z 16,5005 19.1987 13.0125

3C x

3C y
3C z

3D x

3D y
3D z

3E

3F x

3F y
3F z

3G

3H x

3H y
3H z

16.5005

16.5005

16.5005

16.5005
16.5005

16.5005

19.1600

27.2160
22.3209
]7.38]9

16.9075

16.7568

16.8615

16.5005

19,1984
]9.1984

19,1984

19.1984

|9,1984
19.]984

25.7578

29.6328

25.5485

19.3448

18.9557

24.9939
19.8543

19.1984

13.0119

13.0119
13.0119

13,0119

13.0119

13.0119

18.0298

15.9332
13.0534

21.7191

13.0284

13.1199

16.3459

13.0119

)r so-

z 11 2_.
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Fig. 5: The standard deviation of the pitch estimation

error vs. time. (The solid line is that of the

true error, and the dashed line is of the

error predicted by the update filter

covariance matrix.)

The time history of the standard deviations of the

attitude and gyro drlft estimation errors was plotted
for Case 2 (expected onorbit errors). The results

about each axis were found to be similar. A typical

plot (pitch attitude error) is presented in Fig. 5.

Case Axis

3A x

3A y

3A z

3B x

3B y
3B z

Drift EstlmatlQn rr__zZ£Z_

(arcseconds/second)

Roll Pitch Yaw

8.7164E-2 5.1150E-2 6.9354E-2
3.2513E-2 5.1451E-2 6.9364E-2

3.2513E-2 5.1202E-2 6.9566E-2

3.2564E-2 5.1160E-2 6.9354E-2
3.2513E-2 5.1197E-2 6.9355E-2
3.2513E-2 5.1161E-2 6.9378E-2
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3C
3C
3C

30
3D
3D

3E

3F
3F
3F

3.2513E-2
3.2513E-2
3.2513E-Z

3.8577E-2
3.2513E-2
3.2513E-2

3.5639E-2

3.2513E-2
3.2513E-2
3.2513E-Z

5.1160E-2
6.8993E-2
5.1160E-2

5.1160E-2
5.1160E-2
5.1160E-Z

6.5980E-2

5.9675E-2
5.1277E-2
7.7423E-Z

6.9354E-2
6.9354E-2
8.3385E-2

6.9354E-2
6.9354E-2
6.9354E-2

8.9894E-2

10.2473E-2
8.9347E-2
6.9809E-2

_ o k9

a_

I

\

'-._

,-' _¢_ rs Do _o Do _;,_ _c Joe _o 3_50o 4so Do zzs'e_ eo_, Do

T_E _ SECONOS)

Fig. 6: The standard deviation of the pitch gyro drift
estimation error vs. time. (The solid llne is
that of the true error, and the dashed is of
the error predicted by the update filter
covariance matrix.)

3G 3.2543E-2 5.1259E-2 6.8545E-2

3H x 3.2513E-2 5.1467E-2 8.7576E-2
3H y 3.2513E-2 6.0912E-2 7.1389E-2
3H z 3.2513E-2 5.1160E-2 6.g354E-2

A typical plot for gyro drift error is presented in
Fig. 6.

Of the gyro noises, the white noise component had the
most effect on the filter performance. As expected, the
effect was confined primarily to the axls being
corrupted. When the X-axis gyro white noise was
increased by 3x, the roll 9yro drift estimation error
jumped 5.0E-Z arcseconds/second, and the roll
estimation errors jumped approximately 2 arcseconds.
The effect of an Increase in pitch and yaw gyro white
noise had a very nominal affect on estimation errors.
Since EUVE has a roll rate of 3 RPO, the roll gyro has
to use less accurate gyro data as compared to the pitch
and yaw axes which are approximately inertial. This
inaccuracy in roll gyro data is modeled by an increase
in the white noise component in the roll gyro data.
Thus, an increase in the white noise about the roll
axis affects the attitude much more significantly than
an increase about the pitch and yaw axes. The gyro
mlsalignments about the pitch and yaw axes corrupted

their respective drift estimates significantly due to
their projections picking up the relatively hlgh roll
rate. The roll axis mlsalignments have no effect due
to zero yaw and pitch rates. The gyro scale factors
only showed up in the roll gyro drift estimation error
due the above mentioned high relavive roll rate and 0
pitch and yaw rates. The FHST #2 misalignments were
the largest contributer to attitude and gyro drift
estimation errors as expected with the FHST X-axis
misalignment causing roll and pitch errors of 27.2 and
29.6 arcseconds. The FHST Z-axls caused a yaw error of
21.7 arcseconds. The FSS misalignments affect on the
attitude and gyro drift estimation errors were
significant but not as significant as the FHSTs due to
the larger sensor noise variance. The FSS X-axls
misallgnment translated into a pitch error of 24.9
arcseconds while a Y-axis misallgnment caused roll and
yaw attitude errors of 16.B and ]6.3 arcseconds
respectively. The FHST measurement noise increases
affected the attitude estimation errors almost as much

as the FHST misalignments with roll, pitch, and yaw
errors of Ig.l, 25.7, and 18.0 arcseconds respectively.
An increase in FSS measurement noise had a relatively
small effect on estimation errors. The resulting roll,
pitch, and yaw attitude errors were 16.9, ]8.9, and
13.0 arcseconds respectively. The pitch attitude
estimation error went down slightly as compared to the
nominal simulation, and the roll and yaw attitude
errors increased slightly. The reason the attitude
estimation errors were affected so little as compared
to the increased FHST noise simulation was due to the

filter weighting the more accurate FHST measurements
heavier than the less accurate FSS measurements.

5.0 CONCLUSIONS

Of all the errors, the FHST misalignments proved to
cause the most significant attitude and gyro drift
estimation errors. The roll and pitch estimation
errors increased by approximately 10 arcseconds from
the nominal estimation errors when the X-axls
mlsalignment of FHST #2 was doubled to 48 arcseconds.
Doubling the Z-axis misalignment of FHST #2 increased
the yaw estimation errors by approximately 8
arcseconds. The pitch and yaw gyro drift estimation
errors were affected most by Z and Y axis
mlsalignments of FHST #2. An increase in the white
noise about the gyro X-axis was responsible for the
largest roll gyro drift estimation error. The gyro
drift estimation errors only affects the system when
measurement update periods are large. EUVE should have
a sufficient number of star measurement updates from
the FHSTs. [6 not, the attitude estimation accuracy
could degrade significantly. Overall, the results
showed the EUVE update filter to be quite robust even
though some significant errors were put into the
system. This study demonstrated the six states modeled
in the filter are the most significant states needed
for onboard attitude estimation.

{ [

'f!)q! " I and
I Pll
l_ _l

where £1, £2
quaternions and

Express the two quaternions qI and q2 as follows

[ [
Icz(

q2" #...I
JP21
l__l

are the vector parts of the respective

Pl, P2 are their scalar parts. Then
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I I
I £1x£2 ÷ PlZ2 + P2Z! I
I I

qlq2 " J..................... J
I I
/ PIP2 - £tz2 I
I_ _1

The upper part of the column yields three components
which are the components of the imaginary part of the
quaternion product and the lower part yields the scalar
part of the product.
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ABSTRACT

The attitude analysts of the Flight Dynamics Division (FDD) are responsi-

ble for calibrating, among other sensors, inertial reference units (IRU), a

crucial activity for accurate attitude determination. The IRU calibration

utility (IRUCAL) for the Gamma Ray Observatory (GRO) spacecraft,

based on an algorithm developed by P. Davenport, includes user-specified

weighting matrices for the measurements, for the a priori misalignments,

and for the a priori biases. By assigning "large" values to the appropriate

a priori weighting matrix elements, one can choose to adjust only the

biases, only the misalignments, or some combination of the two. Different

weight matrices produce vastly different biases and misalignments for the

same measurement.

Current documentation and software do not adequately address the calcu-

lation and use of the optimal weight matrices involved in calibrating the

IRU. This study investigates several facets of the GRO IRU calibration as

it relates to the bias and misalignment weighting matrices. The physical

meaning and use of the bias and misalignment weight matrices in IRU

calibration are examined. The relation of the weighting and the final bi-

ases, misalignments, and their corrections are pursued.

Ultimately, methods for determining reliable, realistic weighting matrices

to be used in the GRO IRUCAL utility are determined. Possible correla-

tions among observation uncertainties are also explored. For the undeter-

mined case where the maneuvers are insufficient to identify all calibration

parameters, the weighting matrices allow as much information as possible

to be extracted from the measurements. Finally, applicable simulated

flight data are used, incorporating the appropriate calibration maneuvers,

to test the weighting matrices in the IRUCAL utility, and examine correla-
tion effects.

*This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard
Space Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. INTRODUCTION

The gyro calibration process contains many subtleties. Data can be used and interpreted

several ways; identical data can be processed through the same software yet could achieve

vastly different calibration results. A paper in the May 1988 Flight Mechanics and Estima-

tion Theory Symposium (Reference 1) investigates the gyroscope calibration for the

Hubble Space Telescope, using the same algorithm as the Gamma Ray Observatory

(GRO) software. Last year's paper, by Davenport and Welter, examines the selection of

the loss function weight matrix when more accurate attitude sensor information is avail-

able in pitch and yaw than roll; the study, however, ignores the use of a priori informa-

tion, assigning a zero weight to that term in the loss equation. The GRO mission will not

encounter such situations during normal operations but could benefit from incorporating
a priori information into the gyro calibration effort. This paper examines the careful use

of a priori gyro information and eovariance in calibration for the GRO mission and also

considers any implications for future missions.

The GRO mission will employ an inertial reference unit (IRU) consisting of three two-
degree-of-freedom gyros built by Teledyne Systems Company. This National Aeronautics

and Space Administration (NASA) standard IRU, DRIRU-II, has flown successfully on

several missions, including the Solar Maximum Mission (SMM). Each gyro in the IRU

contains two orthogonal sensing axes and are oriented to provide redundant sensing about
each of these axes. References 2 and 3 contain a more detailed description of the IRU.

The general method that the Flight Dynamics Facility (FDF) will use to calibrate the IRU
from the ground comes from the algorithm used by SMM. A period of fixed-inertial
attitude will be followed by an attitude maneuver. A period of constant attitude will then

follow the maneuver. An attitude solution will be determined using fixed-head star tracker

(FHST) data for both periods of fixed attitude. Gyro data are collected and compared to

the attitude solution generated by the FHSTs. Biases, misalignments, and scale factors
can then be determined. The basic mathematics for gyro calibration is presented first as

background for the reader. Further documentation is referenced for a more thorough
discussion.

The search for a priori information begins with past missions. To anticipate the kinds of

biases and misalignments GRO's IRU might experience during launch, past missions that

used and calibrated the DRIRU-1I in flight were examined. Unfortunately, Landsat did not
fully calibrate its DRIRU-II because of the nature of the mission. SMM, however, used a

calibration scheme similar to GRO's; the information from SMM's early mission could,

therefore, be applied to the GRO effort. Unfortunately, some information is not available

from the SMM calibration effort, so workarounds were developed where possible. A com-
plete plan is, therefore, offered in Section 7 of this study so that all information will be

available from GRO's early mission. These data can be analyzed for future launches to

help establish appropriate a priori information to be incorporated into IRU calibration
efforts for future missions.

During the GRO mission, flight dynamics analysts will be using the IRUCAL utility (part

of the GRO Attitude Ground Support System (AGSS)) to process gyro data and calibrate
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the IRU. In this utility, the user is given the option of including a priori information. The

user is also allowed to weigh this information as he/she chooses. IRUCAL is sensitive to

these weights, as identical information weighted differently results in dissimilar calibra-

tion results. Section 6 of this study explores this sensitivity by performing simulations.

The dynamic simulator will create gyro data that will be processed through the AGSS.

These processed data will then be put through simulations involving the IRUCAL, includ-

ing different a priori estimates and weights. Different weighting schemes will be incorpo-

rated, noting the sensitivity of the results to weighting changes.

The final portion of this study presents conclusions and recommendations. Unfortunately,

little is documented concerning past use of the DRIRU-II and in-flight calibration as far as

actual early mission data. Some data could, however, be deduced and incorporated into

the GRO IRU calibration effort. The study furnishes a detailed list and schedule of early

calibration activities. During GRO's launch it will prove crucial to keep track of various

information not only to test out new a priori weighting schemes but to provide critical

information for missions still in the planning stages.

2. GRO GYRO CALIBRATION ALGORITHM

This discussion of the GRO gyro calibration algorithm closely follows Reference 1, and an

alternate derivation can be found in Reference 4. The calibration algorithm for GRO

assumes that a three-vector R is output from the gyros, and the measured angular velocity

is given by

QM = Go R - Do (1)

where Go is the 3-by-3 scale factor/alignment matrix and Do is the drift-rate bias. The

algorithm determines a correction matrix M to Go and a correction to the bias, d.

Ideally, the true angular rate Q is found using the corrected alignment matrix G and bias

D via the following equations:

G = M Go (2a)

D = MDo + d (2b)

Q = GR - D = M_M - d (2c)

Let m = M - I, for I the 3-by-3 identity matrix and define the difference between the

measured and true angular rate to by

to = ff2M - g2 = -m_M + d (3)

The elements of m and d are the parameters solved for in the calibration algorithm.

These parameters can be related to attitude solutions as determined through data from

sensors such as star trackers if gyro output data are available between attitude solutions.

239



Again following Reference 1, let attitude solutions at time t be denoted by Q(t) in quater-

nion form. The quatemion time derivative is given by

Q'(t) = Q(t) q(_/2) (4)

where q(Q/2) is a quaternion with vector component 12/2 and scalar component zero.

Let Q be the quatemion representing the true rotation for a maneuver and QM be the

quaternion representing the rotation as determined by the gyro output. The attitude error

quaternion _ Q expressing the rotation from the gyro-determined postmaneuver attitude

to the true postmaneuver attitude is given by

_Q = QM(Q_Q) Q_ - QQ_

Applying the chain rule of differentiation to Equation (5) above gives

Noting that

6Q' = Q q (2/2) Q_ + Q q-I (_M/2) Q_

and using Equation (3) results in

q-I (QM/2) ffi q (-QM/2)

(5)

(6)

_Q' = Q q (-o_12) Q_ (7)

IntegratingEquation (7) over the maneuver gives

- 1 = f Qq(-w/2)6Q Q72dt (8)

where 1, the identity quaternion, is the constant of integration. Let QRI and QR2 be the

reference quaternions at the beginning and end of the maneuver (for GRO, these come

from the Fine Attitude Determination System (FADS)) so that

Q = Q_I Qlt2

Similarly, define the gyro propagated quaternions QGI and Q¢;2 so that

Equation (8) then becomes

QM = Q_;11 Q¢32

(9)(QRII QR2) (Qc;_ Q61) - I = f Qq(-w/2) Q_dt
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The first order, Q can be replaced by QM in Equation (9). When this substitution is

made, the integrand becomes the quaternion representation for the rotation of the vector

-to/2 from the spacecraft coordinates at time t to the premaneuver spacecraft coordi-

nates. Dropping the scalar portion of Equation (9) and substituting for Q gives

1 f Ti to dt (10)Zt= _"

where _ is the vector component of tSQ, Ti is the (time-dependent) matrix trans-

forming vectors to premaneuver spacecraft coordinates, and i is a subscript designating

maneuver number. By dropping the scalar part of Equation (9), an approximation is

made equating 1 to the cosine of the error rotation angle. Because of these approxima-

tions, the calibration algorithm is by nature an iterative process.

Least-squares techniques can be applied to Equation (10). Rewrite Equation (10) as

Z = H x (11)

where Z is composed of the (assumed) n Zt vectors for n maneuvers, and x is defined as
shown below:

Z = {Z T, Z_, ..., Z_} r (12a)

x = {m11. m12, m13, m21, m22, m23, m31, m32, m33, dl, d2, d3} (12b)

H is a 3n-by-12 matrix of the form

+1H = .: (13)

,, - Yn

where each U1 is a 3-by-9 matrix with components given by

,f(Uj,k÷3(i-1))1 ffi "_- (Tjk)1 (QM)t dt (14)

and each Y1 is a 3-by-3 matrix given by

,f(Yjk)1 = _ (Tjk)1dt (15)

An observed value for Z derived from combination of Q's from the GRO FADS and the

gyro's and is assumed to be of the form

Zobs = H xt + v (16)
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where xt

in Zobs.

where

W and Sa

contains the true bias and alignment parameters and v is the measurement error

The loss function J for the least-squares solution is chosen to be

1 {ETWE + (x - xa)a`Sa(x - xa)}J= _" (17)

E = Zobs - H x

arc symmctric nonnegativc definiteweighting matrices, and xa

(18)

is an a priori

estimate of x. x*, the least-squares solution for x, is given by setting the derivative of the

loss function with respect to x equal to zero,

0 = H rw[Zob,- Hx

or

Define

*] - Sa[x* - x,] (19)

x * = {H T W H + Sa}-i [H T W lobs + Sa Xa]

(_ll --- It -- X*

and substitute Equation (16) into Equation (19) to give

6x = {H a`W H + Sa} -1 [Ha` W v - Sa (xt - x_)]

Let

(20)

(21)

N = {H T W H + S_}-I

Ifthe correlationbetween v and (xt - xa) isassumed to be zcro, the covariancc for (Sx

can bc written as

<[_x(SxT> = N{HTw <vv T> WH + Sa <(xt- x_)(xt - x_)T> Sa}N (22)

Ifthe optimal weightings,

W = < v va` >-1 (23a)

and

Sa = < (xt - xa)(x, - Xa) T >-1 (23b)

242



are used, Equation (22) reduces to

< 6X OX T > = N (24)

3. CROSS-CORRELATION OF ERRORS

Equation (23a) above identifies the optimal weighting of the maneuvers for gyro calibra-

tion as the W matrix given by

W = <vv T>-1 (25)

where v = measurement error in Zob,

The GRO FADS computes the error for an attitude in a form appropriate for computing

the error, v, for a maneuver. A maneuver, or calibration interval, is a time interval with

gyro-rate information and accurate attitude solutions (available at the end points of the

interval). The set of angles (measured in radians) of the small rotation carrying the true

attitude matrix into the measured attitude matrix in the current spacecraft body frame

defines the covariance of the error angle vector. The FADS computes this covariance for

each attitude solution. Combining the attitude errors at each end of the maneuver com-

prises the total measurement error for the Z._ corresponding to a single maneuver.

As long as the calibration interval is large enough so that the attitude solutions incorpo-
rate different star vectors, the attitude errors at the ends of the maneuver will be uncorre-

lated. The weight matrix is then given by

w = + -I (26)

where

pf =

Tit =

covariance of the initial error angle vector

covariance of the final error angle vector

transformation from spacecraft body frame at end of maneuver to

body frame at start of maneuver

A difficulty arises for the more general case where Zob s contains multiple intervals.

When an attitude solution is used at both the end of one interval and the start of another,

the covariance of v contains significant cross-correlation terms. GRO's IRU calibration

algorithm neglects these cross-correlation terms.

In general, the effect of cross-correlations remains small as long as the algorithm is used

efficiently. When given a time interval containing accurate attitude solutions (at the end

points and inside the interval), those who calibrate the GRO IRU should choose their

calibration interval with care. Only one calibration interval of maximum length should be

formed; the original time interval should not be broken into two or more calibration

intervals, thereby avoiding using one attitude solution for two calibration intervals.
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4. INFORMATION FROM PAST MISSIONS

The IRU calibration algorithm for GRO is capable of including the weighting of the a

priori estimates of the components of x. From Equation (23b), the optimal weighting

matrix associated with this a priori information is

S, = < (xt- xa)(xt- xa) "r >-1 (27)

Since the a priori values of x will always be zero, S_ reduces to the inverse of the covari-

ance of xt • The following two scenarios for estimating S_ are expected to occur during

GRO's mission, the first of which is the focus of this section:

GRO's gyros will first be calibrated on the ground. Therefore, when GRO is first

deployed, the effects of the launch shock on the IRU will be the major contribu-

tor to the uncertainty in xt.

Following the first calibration of the gyros, the a priori information becomes

simply the covariance of the 6x from the previous calibration (propagated to a

time appropriate for the current calibration effort).

Due to the lack of rigorous analysis on launch shock effects, only a rough estimate of the

statistics of xt after launch is considered. For this reason, several simplifications are

incorporated. The first assumption is that the change in the alignment and bias for each

gyro channel from the ground calibration values to the first in-flight calibration is as-
sumed to be a normal random variable with zero mean.

The value of xt depends on the error in the prelaunch calibration, the change due to

launch shock, and all other effects occurring before the first calibration in orbit. Along

with the space environment, launch shock is assumed to be the dominant effect. The best

source of launch shock information should be past missions that also flew a DRIRU-II.
Two missions have flown these IRUs: SMM and Landsat.

Unfortunately, because of the nature of its attitude during mission (constant 1 revolution

per orbit (RPO)), Landsat did not calibrate the misalignments, as GRO's algorithm must,

but depended solely on bias adjustments to meet accuracy requirements. Therefore, this

study relies on SMM as the prime source of information on gyro performance during
launch.

Following the development in Reference 5, gyro drift is neglected and an inertial frame is

defined as the body frame at the start of the maneuver. The equation

_")inertial --" R Mo _')M (28)
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where

R matrix representing a rotation from the current body frame to the cur-
rent inertial frame

Mo = alignment correction matrix with perfect reference attitudes

expresses the transformation of the gyro-measured angular velocity into the inertial

frame. During a commanded roll slew, the control system will try to rotate the spacecraft

about the roll axis (as sensed by the gyros) at a constant rate. The following relations hold

C_M = d@, O, 0 (29)

1 0 0 1
R = 0 cos $ -sinq_ (30)

0 sin $ cos

where ¢ = roll slew angle at time t from start of maneuver

Integrating Equation (28) yields

O(M_) -- _inerfial dr (31)

= T(@) M_

or

O(M_) E JM_I

sin (_) M_1 - (1 - cos _) M]l

(1 - cos g})M_l + sin (_)M]I

where M_ is the first column of M ° and

[@ o o ]
T(@) = fo__ Rd@ = 0 sin @ -(1 - cos @)

0 (1 - cos @) sin

Let M be the calculated correction matrix containing errors and write

MI - M_ = dM

(32)

(33)

(34)

(35)
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The effect of errors in M1 on gyro-measured attitude changes is given by

d0(M_) dM_ = T(_) d-Ml (36)
e = dM I M1 = M_

Solving Equation (34) for Mll, M21, and M31, yields

dMll = e__L (37a)

= ,]
These equations can be used to give the roll gyro calibration uncertainty in M11, M21, and

M31 due to the reference attitude uncertainties. For a pitch calibration slew through the

angle _2, the corresponding expressions are

q (38a)

dM22 = E._2_2 (38b)

dM32 = (1) ['2 cot (--_-) + E,]

Similarly for a yaw calibration maneuver of angl e _b2

(38c)

dM,3 = (21--)[6, cot(-_)+e2 ] (39a)

dM23 : (1)[e2cot('-_)-',] (39b)

dM33 : e--2-3 (39C)
_3

The following results for the first two calibrations (in February and July 1980) of the

SMM gyros are taken from Reference 6 and converted to their M and d forms. Each gyro

has two channels. There exist, therefore, eight possible gyro configurations; A1B1C1,

A2BIC1, etc. The configurations A1B1C1 and A2B2C2 together contain information from
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all six gyro channels. Reference3 quotes an accuracy of 0.005 deg (1 a) for the SMM
FHST attitude solutions.

Equations (37) through (39) with all components of e equal to 1.23E-4 radians

(0.005 deg spherical uncertainty at the start and end of the calibration interval) were used

to compute the uncertainty in the calibration coefficients. Also, a roll slew of 90 deg, a

pitch slew of 25 deg, and a yaw slew of 25 deg were assumed (Reference 6). The original

calibration plan for SMM calibration plan called for a 55-minute (rain) inertial period for

the bias calibration (Reference 3), which results in a 2E-6 deg/sec accuracy. Table 1

shows the calibration results and their approximate uncertainties.

Table 1. SMM Calibration Results

CALIBRATED A1B1C1 (Feb) A1B1C1 (Jut) A2B2C2 (Feb) A2B2C2 (Jul) ACCURACY
VALUES

VALUES x 10 -4

Mll

Me_

MI=

M..

M_,

M_

M=_

M=

22.0

10.9

2.9

-9.85

-1.08

-47.4

-9.87

26,0

-10.1

21.0

9.8

4.0

-9,11

2.83

-47.1

-6.17

26.2

-15,7

1.9

7.1

3.3

-8.88

-7.67

-39.9

-7.58

34.2

-3.34

4.0

6,0

5,4

-7,85

-3.39

-40,4

-4.59

34,6

-8,51

0.8

0.6

0.6

0.6

3.0

3.0

3.0

3.0

3.0

VALUES x 10 -_ DEGISEC

dl -40.828 -39.292 -34.904 -34,493 2.0

d= 107.80 107,94 -89.301 -87,852 2,0

cl= -5.8081 -6.0539 -6.7913 -6,7340 2.0

For this study, the measurement uncertainty is sufficiently small to neglect its effect on

any conclusions drawn. Several useful observations can be made from the SMM-tabulated
calibration results.

The requirements for ground calibration indicate that the absolute alignment error be less

than some relatively large tolerance. The GRO specification stipulates the absolute align-

ment errors be less than 300 arc-seconds (arc-sec) (Reference 2). GRO's prelaunch gyro

alignment is, therefore, required to be within this tolerance of the nominal alignment.

A more stringent requirement exists on the measured ground alignment. For GRO, the

orientation of the gyro axes to the system mounting interface is required to be known to

within +10 arc-sec. The SMM calibration results assume the nominal alignment and no

bias initially..Therefore, the results contain the corrections due to the large absolute
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alignment errors. This correction can contain directional biases; the x-axis misalignment

is likely to be similar for both configurations.

The calibration results show a 0.91 sample correction between the A1B1C1 and A2B2C2

misalignment terms (Mij). The degree to which this effect is due to launch shock cannot

be determined without the measured values for the prelaunch misalignments, and unfortu-

nately, these results are no longer available. The sample mean and standard deviation

are -1.8 and 21 (x 10-4), respectively, for the A1B1C1 configuration and -2.3 and 19

(x 10 -4), respectively, for the A2B2C2 configuration. During the first calibration for the

GRO DRIRU-II, the SMM results indicate that for the correction made to the nominal

alignment matrix a zero mean can reasonably be assumed, and an uncertainty on the

order of 20 (x 10 -4) can be expected.

Although the Mii terms contain scale factor and misalignment effects, this estimation

treats the Mi i identically. For the current analysis, no further effort seems worthwhile;

however, it should be noted that assuming that the M_j terms are normal variables allows

one to assign a confidence level of 90 percent to the assumption that the standard devia-

tion of the Mij for A1B1C1 is less than 34 (x 10 -4).

When the initial estimate of the GRO alignment is taken from the more accurate meas-

ured prelatmch alignments, a substantially lower variance in the alignment results can be

expected. Environmental testing performed on the DRIRU-II shows that the gyro uncer-

tainties due to any environmental effects are small compared to the absolute alignment

errors. The alignment shifts due to environmental tests of Reference 6 reflect a standard

deviation of 17 arc-see, with the absolute alignment errors producing a standard deviation

of 111 arc-see. A 17 arc-see change in alignment (first order) corresponds to roughly a

0.8 (x 10 -4 ) change in Mij (i not equal to j for alignment effects). The GRO requirement

(Reference 5) is for alignment stability to within 20 arc-sec.

Similarly, scale factor changes across the environmental testing were on the order of

120 parts per million (ppm) compared to absolute alignment errors on the order of

1300 ppm. The diagonal elements of M are roughly 1.2 (x 10 -4) for a 120 ppm change

in scale factor. Uncertainties comparable to this are on the order of the likely measure-

ment errors for GRO calibration, 0.008 deg 1 a attitude solution uncertainty.

For the gyro biases, the environmental tests showed results similar to the alignment data.

For the different test temperatures, the environmental change in the biases gave standard

deviations ranging from 4 to 8 (x 10 -6 deg/sec). The standard deviation for the bias itself

was on the order of 42 (x 10 -6 deg/sec). Again, the tested environmental stability was on

the order of the attitude solution uncertainties, with the total bias correction an order of

magnitude larger.

The following conclusions are drawn considering the a priori weighting matrix for the first

in-flight calibration of GRO. For nominal initial calibration alignments and biases, large

uncertainties (with respect to the expected measurement errors) should be assigned to the

a priori estimates. The calibration algorithm will not be sensitive to the exact uncertain-

ties used in this case; values commensurate with the SMM values are appropriate. If the
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ground-measured alignments and biases are assumed to be the initial values, uncertainties

that agree with the environmental stability requirements are probably appropriate. The

a priori alignments and biases will then be weighted roughly equally to the in-flight meas-

urements. Without access to the ground measured alignments and biases for SMM, as-

suming such small uncertainty due to launch shock, seems presumptuous. For GRO,

however, maneuvers sufficient to determine the alignment/scale factor matrices and bi-

ases are planned. It is suggested that both approaches be implemented as well as a third

approach using the ground-measured alignments and biases and applying large a priori

uncertainties. The results for all three approaches should then be analyzed for consis-

tency.

5. PROPAGATION OF COVARIANCE MATRIX

As noted previously, a method is needed to propagate the covariance matrix of the cali-

bration solution x. After the first planned set of maneuvers for GRO, it is likely that only

partial information will be available for subsequent calibration updates. In this situation,

the GRO algorithm operates optimally if the a priori uncertainties are known.

Immediately after the first in-flight calibration, the covariance of the solved-for biases and

misalignments can be computed. The uncertainty in the solved-for values then increases
with time. The random walk acts as the standard model to describe the time variation of

the estimated state vector (for gyro calibration, the 12 vector of the misalignment terms

Mij and the bias vector corrections).

For the DRIRU-II, randomwalk type modeling is used for the short term (roughly

6 hours). However, this type of modeling is not appropriate for the DRIRU-II's long-term

behavior. The misalignment and bias corrections appear to be bounded in the long term

as opposed to the unbounded behavior of the random walk processes. Reference 7 reports

the ground measured 74-month stability value for the serial number 1001 DRIRU-II to be

7.9 arc-sec. The 74-month stability of its scale factor was 58-ppm (dropping the data for

the "c" channel due to electronic module changes) and the 66-month stability for the

serial number 1004 was 77 ppm. The absolute changes in the gyro biases for these two

cases were 0.005 and 0.009 deg/h0ur, respectively.

Numbers commensurate with these can be used to give conservative estimates of the

increase in the state vector corresponding to times of several months or more if the in-

flight calibrations results support them. The noise processes leading to the increases in

the state vector uncertainty are assumed to be independent. Therefore, only the diagonal
terms of the covariance would increase.

The SMM values for misalignment angles can be approximated (in radians to first order)

by the off-diagonal values of M. The scale factors (SFi) resulting from the in-flight cali-

brations can be computed from the resultant alignment matrix and are displayed in

Table 2.

The measurement accuracies are approximately 80 ppm for SF1 and 300 ppm for SF2

and SF3. The error propagation effects are on the order of the measurement noise so that
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Table 2. SMM Scale Factors

SCALE
FACTOR

SF1

SF=

SFa

A1B1C1 (Feb)
(ppm)

-2195.6

-598.40

1706.4

A1B1C1 (Jul)
(pprn)

-2096.1

-727.45

2006.5

A2B2C2 (Feb)
(ppm)

189.84

404.31

683.8

A2B2C2 (Jul)
(ppm)

399.9

212.3

964.5

these effects cannot be observed directly. However, as the derivation of Equations (35)

through (42) demonstrates, the attitude solution errors effect on the calculation of M is

linear in the attitude error vector E. If, for example, Mij for A1B1C1 in February is
subtracted from the February value for A2B2C2, the error due to e cancels, and the

result becomes the difference in Mij due to internal effects. If the two configurations are

independent, the difference should have a variance given by the sum of the squares of the

standard deviation for each configuration for Mij.

The quantity of interest is the change in the difference from February to July. The compu-

tations are straightforward, and the sample standard deviation for the six off-diagonal

elements of M is 0.38 (x 10 -4) or equivalently a misalignment of approximately 7.8 arc-

sec. The sample standard deviation for the three scale factors is 74 ppm. These results

assume that the M U have zero means, and the two configurations are independent. A

similar process can be applied to the biases, giving a sample standard deviation of 0.78

(x 10 -6 deg/sec) or 0.003 deg/hour. All the values derived from SMM calibration results

are consistent with the reported long-term test results.

The in-flight SMM calibration results support the ground test long-term outcome. Uncer-

tainties based on the ground test results might be applicable to the GRO in-flight calibra-

tion effort. Once data are available for GRO, analysis similar to that accomplished in this

study can be used to investigate the time propagation of uncertainty for GRO calibration.

6. SUGGESTED CALIBRATION PLAN

This section presents a suggested calibration plan that includes some accepted calibration

practices (taken predominantly from the SMM and SM Repair Mission (SMRM), Refer-

ence 7) and several suggestions for faster, more accurate gyro calibration. Included also

are certain components of calibration, times and initial bias values for example, which

should be tracked for future analysis of both the GRO spacecraft and other missions using

the same gyro package. Tracking the items could prove to be extremely enlightening for

future missions for accurately deducing a priori calibration parameters and their weights.

Valuable calibration information should be carefully saved for GRO and all subsequent

DRIRU-II missions (particularly STS-launched missions); each case offers one more ex-

ample of launch and deployment effects.
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Basic Procedures

Initially, the gyro biases will be determined while GRO is in a fixed-inertial attitude at the

very beginning of the mission. Ideally, at least 1/2 hour of data will be used, comparing
the gyro-propagated attitude with a finer FHST solution. This early bias determination will

help improve course attitude solutions during orbit night early in the mission.

Once the FHSTs have been calibrated to meet GRO attitude determination requirements,

the acquisition of gyro misalignments and scale factors begins. A series of slews are

performed. Ideally, six slews of 30 deg each will be performed, for example, beginning in
a fixed-inertial attitude, +X axis as the velocity vector and the +Z axis as the orbit nor-

mal, then performing a ÷30-deg roll slew, then back to zero, then a -30-deg roll slew,
back to zero and so forth for the other two directions. These are, at this writing, the

planned attitude verification slews. The slews should be separated by a period (at least

10 minutes) of fixed-inertial attitude. An attitude solution is determined using the highly
accurate FHST data, both before and after the maneuver; it is, therefore, important to

plan the maneuvers to ensure star data during the inertial periods between slews. These
fine FHST-determined attitude solutions are then compared with the gyro data throughout

the maneuver. The IRUCAL utility in the GRO AGSS uses this information to determine

the gyro misalignments and scale factors.

As mentioned in Section 3, correlation of errors should be considered during calibration.

During a fixed-inertial attitude, it is beneficial to consider observations at the beginning

and the end of the span and not to break the interval into two or more spans. Due to the

algorithm currently used in the GRO operational software, which ignores the off-diagonal
correlation terms, correlation at the shared end points of the smaller intervals discount

any benefit from the increased information. To avoid any correlation problems encoun-
tered when performing slews, observations at a maneuver's end point should not be used

as the beginning point for another maneuver. As long as the slews are separated by at
least 10 minutes of fixed-inertial attitude, this should not be a problem.

The gyro calibration process is then complete. Calibration is, however, an iterative proc-
ess. When the FHST calibration constants are improved, IRUCAL can be rerun using the

new FHST information. Calculating the covariance of the gyro calibration solutions, a

capability to soon be added to the current operational version of IRUCAL, would be

extremely beneficial here. Using the previous results from gyro calibration as the a priori

guess for the next iteration (x= in Equation (17)) and using the inverse of the propagated

covariance to weight the guess (S= in Equation (17)) would expedite this iterative proc-

ess.

Calibration Information to Preserve

Some information accumulated during these early calibration phases is not only crucial to

GRO postlaunch gyro calibration analysis but also to future missions. As trends begin to

emerge from calibration analysis of every mission using the DRIRU-II, accurate assump-
tions can be made about launch effects and gyro performance. These assumptions in turn

can be used to infer a priori calibration coefficient information and weighting. Each

launch, with careful documenting, supplies analysts with another case for comparison.
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Although each launch and spacecraft is different, with a number of different launches,
trends can still be established.

Specific items for consideration are listed below:

A detailed record of the prelaunch, ground-measured alignments, biases and the
times that the measurements were taken

A detailed record of the first inflight calibration, including the attitude solutions

and covariances, time-interval information (average rates, total angles, times),

the calibration covariance, and information from all six channels

• A launch acceleration history as it relates to the gyro frame

Calibration information (as detailed in first calibration above) for all subsequent

calibration efforts, to aid in building a time model for the growth in error uncer-

tainty

A series of simulations are planned using the GRO data simulators and operational atti-

tude ground support software to be performed as soon as these tools are available. The

GRO Software Simulator (GROSS), which simulates dynamic errors, in conjunction with

the GRO telemetry simulator (GROSIM) will generate data for a series of attitude slews

separated by inertially fixed intervals. The slews will mimic those planned for early atti-

tude verification where possible (see above). The spacecraft x-axis will point at the Sun

and the z-axis parallel to the orbit normal both for simplicity and validity. (During early

mission, the GRO Flight Dynamics analysts would like to have the spacecraft x-axis point-

ing at the Sun to calibrate the Fine Sun Sensor (leSS) and for simplicity.) In this case,

inertially fixed intervals (for FHST FADS solutions) will be planned for orbit night to

ensure star data (when the FHSTs are viewing away from the Earth and are, therefore,

not occulted.)

Data spans will be selected so that correlation effects are small; those with suspected high

correlation.may also be selected to analyze correlation effects on final calibration results.

FADS solutions will be determined during the inertially fixed intervals, while gyroscope

data accumulate during the maneuvers. Appropriate a priori calibration estimates will be

determined. A series of a priori weights, both correct and with reasonable deviations, will

be used with the a priori estimate in IRUCAL. Results from these simulations will be

plotted to show sensitivity to a priori weighting changes.

7. CONCLUSIONS AND RECOMMENDATIONS

The current algorithm for GRO gyro calibration does not account for some important yet

subtle areas of calibration, while some other useful features are traditionally ignored. The

cross correlations of errors does not appear in the IRUCAL process; careful considera-

tions of observation intervals can compensate.

The covariance of the errors in a calibration solution is not currently calculated in the

GRO algorithm. This information could, however, prove useful in weighting the a priori
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state calibration values. With proper, albeit simple, propagation over time, a previous

calibration result can be used as an a priori estimate, weighted optimally by the inverse of

covariance of the errors. This a priori information, though included in the algorithm (Xa

in Equation (17)), has not generally been utilized in past calibration efforts.

Gyro calibration can be a very tricky process. When it is not carefully examined, impor-

tant information is lost. Every mission using the DRIRU-II can learn about the expected

launch effects and performance of their gyro from previous launches. The DRIRU-II gyro

package is apparently quite accurate and stable; a priori knowledge could, consequently,

be greatly beneficial. Therefore, the careful recording of calibration results of GRO in

providing an initial a priori estimate improves the efficiency of the gyro calibration efforts

of future missions, and that information for those missions that follow.

.
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SPACECRAFT ATTITUDE DETERMINATION USING THE EARTH'S MAGNETIC FIELD

David G. Simpson

OAO Corporation, Greenbelt, Maryland 20770

A method is presented by which the attitude of a low-Earth orbiting space-

craft may be determined using a vector magnetometer, a digital Sun sensor,

and a mathematical model of the Earth's magnetic field. The method is

currently being implemented for the Solar Maximum Mission spacecraft (as

a backup for the failing star trackers) as a way to determine roll gyro

dri ft.
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I. INTRODUCTION

For centuries sailors have used the Earth's magnetic field to guide
their ships though the oceans of the world by means of the magnetic compass.
Today it is possible for spacecraft to navigate themselves in much the same
way, with the mariner's compass replaced by the modern magnetometer. In
this paper I describe how a vector magnetometer, in conjunction with a
digital Sun sensor, can be used to determine the attitude of a low-Earth
orbiting spacecraft.

This work was motivated by the failure of one of the two star trackers
on the Solar Maximum Mission (SMM) spacecraft in 1987. The complement of
attitude sensors on SMM provides only gyroscopes, two star trackers, and
vector magnetometers for determining the roll attitude. As currently
written, the on-board computer flight software uses the gyros to determine
the roll attitude of the spacecraft, with the star tracker used only to
calculate the roll gyro drift. The magnetometers are not currently used
for attitude determination on SMM.

Should the remaining star tracker fail, however, this would leave the
magnetometers as the only means of determining an absolute roll attitude,
since the gyros only measure changes in the attitude with respect to
inertial space. The work described in this paper is a result of an effort
to determine how SMM's magnetometers might be used as a replacement for the
remaining star tracker in the event that it fails.

The approach here will be to find the components of two vectors (the

eomagnetic induction and Sun vectors) in each of two coordinate frames
the spacecraft frame and a reference frame); we then solve for the

rotation matrix between the two frames to determine the spacecraft

attitude. These calculations will be performed by a computer on the ground

using data telemetered from the spacecraft; the ground computer will
calculate roll gyro drift coefficients which will be periodically uplinked

to the on-board computer. Calculating the gyro drift coefficients on the

ground will permit ground personnel to select data which was sampled

while the geomagnetic field was relatively quiet, thus giving the most
accurate results.

Section II of this paper describes how the Earth's magnetic field vector

at the spacecraft position can be calculated from a mathematical model.

Section Ill describes the calculation of the Sun vector; and Sections
IV and V describe how these two vectors may be combined with sensor data

to determine the spacecraft attitude. Section Vl is a summary of the

paper, and Section Vll is a short discussion of associated Legendre
functions.
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II. MODELING THE GEOMAGNETIC FIELD

In order to determine the spacecraft attitude from the magnetometers,

one must first generate an accurate mathematical model of the Earth's

magnetic field. Ampere's law at the spacecraft position r is (SI units):

V x _(_) = _(_) + _(_) (1)
_t

where _(_) is the geomagnetic intensity at _, _(_) is the electric current

density, and _(_)/_ is the displacement current. Since there is no

current density at _ and the geomagnetic field is approximately static,

we may take _ and _/_ to both be zero. Eq. (I) then becomes

Vx _(_) = _ (2)

The constitutive relation for the magnetic induction _ is

1 : +

-7 -2

where _. is the permeability of free space (4_ x i0 N A

magnetization, which is zero at r. Eq. (3) then becomes

(3)

), and _ is the

I ]_(_) = _(;) (4)
Po

Substituting Eq. (4) for _ into Eq. (2) we get

v x 1 = (5)
P.

since the curl of any gradient is zero, this means that _ can be written as

the gradient of a magnetic scalar potential V :I

_(_) : -u._V(_) (6)

It is conventional in geomagnetism to model the geomagnetic field by

expanding the magnetic scalar potential V(_) into a Laplace series of

spherical harmonics with real eigenfunctions: 2
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V(r,e,x)

k n
n+l

= _.E(z_) E[g nm

n:1 m:O

cos m_ + hnm sin mX] Prim(cos B) (7)

where

r

0

a

pnm(cos e )

gnm and h nm

is the distance of the spacecraft from the center of the Earth;

is the co-eJevation of the sub-satellite point (90" minus the north

latitude;

is the east longitude of the sub-satellite point;

is the radius of the Earth, taken to be 6371.2 km;

are the Gauss-normalized associated Legendre functions of

the first kind;

are the Gauss-normalized coefficients of the expansion.

The n=O terms in this expansion are absent because they would represent a

magnetic monopole component of the field; the n=l terms represent the

dipole component, the n=2 terms represent the quadrupole component, etc.

The expansion coefficients gnm and hnm are found empirically; they are

updated every five years and published along with their time derivatives

(the sec_lo_ variation) by the International Association of Geomagnetism

and Aeronomy (IAGA). These published coefficients are Schmidt normalized

and may be used to calculate the geomagnetic scalar potential V(_) using

Eq. (7) if the Schmidt-normalized associated Legendre functions Pnm are

substituted for the Gauss-normalized functions pnm. Using Gauss normalization

will save about 7% in computer time, however, 3 so for convenience in

computer work, Gauss normalization will be used throughout this paper.

Table I shows the Gauss-normalized coefficients gnm and hnm for the

International Geomagnetic Reference Field (IGRF) 1985. These were

calculated from the Schmidt-normalized coefficients published by the

IAGA and can safely be extended to 1990 with the secular variation

coefficients in the last two columns.
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TABLE I. International Geomagnetic Reference Field, IGRF 1985.

Coeffi cients are C,_wss-normal ized.

nm

n m InT)

1 0 -29877

1 1 -1903

2 0 -3110

2 1 5274
2 2 1464

3 0 3250

3 1 -6761

3 2 2409

3 3 660

4 0 4099

4 1 4317

4 2 1420

4 3 -891

4 4 125

5 0 -1693

5 I 3619

5 2 1944

5 3 -442

5 4 -357

5 5 -34

6 0 751

6 1 1229

6 2 747

6 3 -1853

6 4 22

6 5 40

6 6 -69

7 0 2011

7 1 -2164

7 2 58

7 3 491

7 4 -74

7 5 25

7 6 22

7 7 0

8 0 1056

8 1 402

8 2 0

8 3 -456

8 4 -241

8 5 30

8 6 27

8 7 10

8 8 -4

"nm _nmhnm g

(nT) (nT/yr) (nT/yr)

23.2

5497 10.0 -24.5

-20.6

-3795 5.9 -19.9

-268 6.1 -17.5

12.8

-955 -14.1 16.2

550 -1.2 4.5

-234 0.1 -8.5

0.4

1289 -3.3 21.0

-978 -30.5 8.6
142 -2.9 5.2

-220 -5.0 0.7
10.2

478 1.0 1.0

1137 -11.5 -1.5

-729 -15.1 -0.5

-166 0,2 1.3

67 -0.1 0.0

20.2

-302 -5.7 -7.6

1345 25.4 -16.4

687 6.0 -8.0

-273 0.0 -12.6

-9 2.1 -1.2

13 0.8 -0.1
5.4

-2909 -21.3 7.1

-753 -14.5 29.0

-20 16.4 22.5

284 12.3 23.5

105 2.5 1.9

-51 -1.2 0.5

-4 -0.1 0.6

35.2

469 0.0 6.7

-1178 16.8 -56.1

207 16.6 4.1

-668 -8.0 -21.4

163 -4.4 3.0

82 0.7 -5.5

-40 -1.3 -0.3

-6 -0.5 0.8
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TABLE I (cont.)

n m

9 0

9 1

9 2

9 3

9 4

9 5

9 6

9 7

9 8

9 9

10 0

I0 I

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

nm hnm "nm _nmg
nT) (nT) (nT/yr) (nT/yr)

475

1274

109

-996

5O7

-101

-17

53

5

-3

-722

-973

421
-826

-234

370

124

20

16

8

0

-2675

1738

747

-282

-202

157

75

-16

1

243

0

496

701

-296

0

-20

33

0

-4

26O



Whenthe coefficients in Table I are substituted into Eq. (7), we get

the geomagnetic scalar potential V(_); substituting this V(_) into Eq. (6)

yields the geomagnetic induction vector _(_) in a reference frame fixed

in the Earth (which will be referred to as the EB (Earth-based) frame).

The EB frame has its origin at the center of the Earth, its x axis pointing

out of the intersection of the equator with the prime meridian, its z axis

pointing out of the Earth's geographic north pole, and its y axis in the

x x z direction.

If we calculate the gradient in Eq. (6) in spherical polar coordinates,

_/ e + 1 _ e + I _ e (8)
_ - _r r _ _0 0 r sin 0 _ )_

-9-

the resulting spherical components of B may be used to easily calculate the

standard geomagnetic elements: 2

X = -B 8

y = Bx

Z = -B
r

H = (X2 + y2)½

v = Izl
F = (X2 + y2 + Z2)½

D = arctan (Y/X)

I = arctan (Z/H)

(Northward component)

(Eastward component)

(Downward component)

(Horizontal intensity)

(Vertical intensity)

(Total intensity)

(Magnetic declination)

(Magnetic inclination)

A computer program which calculates _(_) can then be checked by comparing

the geomagnetic elements it calculates with the elements found in charts

and tables in the literature, s

For spacecraft attitude determination, we will need to know the

components of the modeled geomagnetic induction vector_('_) in the

geooentrie inertial (GCI) reference frame rather than the EB frame.

The GCI frame is fixed with respect to the stars and has its origin at the

Earth's center, its x axis toward the vernal equinox, its z axis out of
^

the Earth's geographic north pole, and its y axis in the z × x direction.
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The GCl frame differs from the EB frame only by a rotation about their

common z axis. Specifically, in cartesian coordinates

where the rotation matrix R is given by

R =

I cos y sin y 0
-sin y cos y 0

0 0 1

(10)

and where y is the Greenwich hour angle of the vernal equinox, which is

equal to the sidereal time at Greenwich (GST) and is given by_

y : LST - (x/15") (11)

where LST is the local sidereal time and _ the east longitude of any

convenient point on the Earth's surface. An expression for y which is

often more convenient is6

y : 99".6910 + 36000".7689T + _ .O004T 2 + UTC (12)

where T is the time (in Julian centuries of 36525 days) since 1900 and

UTC is Coordinated Universal Time expressed in degrees.

Alternatively, if we work in spherical polar coordinates, Eqs. (9) and

(10) may be replaced with

B = B
rGCI fEB

BOGCI = BeE B

B_GCI = BXE B
- y

(13)
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III. SUN VECTOR CALCULATION

The geomagnetic induction vector _(_) modeled in Section II is by itself

insufficient to determine the spacecraft attitude, since if the spacecraft

is rotated about the _ vector it will still yield the same components of i_

in a reference frame fixed in the spacecraft; hence one degree of freedom

is left unspecified. ? It is therefore necessary to know the components of

one more vector (not parallel to _(_)) in order to specify the spacecraft

attitude completely. For this discussion we choose the Earth-to-Sun vector

(or simply the "Sun vector") S, and in this section I discuss how to

calculate the components of S in the GCl frame. (The cartesian GCI compon-
^ -9-

ents of S will be used along with the cartesian GCl components of B from

Section II to determine the spacecraft attitude in Sections IV and V.) The

Sun unit vector S is given in cartesian GCI coordinates approximately by

(ignoring the small corrections for parallax and light aberration) 8

[cos c ]S(t) : Isln 5 cos _ (14)
Lsin 5 sin

where L(t) is the mean longitude of the Sun and e is the mean inclination

of the ecliptic from the Earth's equatorial plane.

The mean longitude of the Sun L(t) may be calculated from 8

L(t) = L(t ) + M(t) + 2e sin M(t) + Bt (15)
0

where t is a reference time, e is the eccentricity of the Earth's orbit
0

(e = 0.016722), M(t) is the mean anomaly of the Sun, and 8 is defined by

_ 360" 360" (16)

Zsy _ay

7

where Zsy is the length of the sidereal year (3.1558149548 x ?10 seconds)

and _ay is the length of the anomalistic year (3.1558433 x 10 seconds).

The mean anomaly of the Sun M(t) is given by s

M(t) : M(t ) + 360"(t _ s) (17)
0 T

ay
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where _ is the time it takes light to travel from the Sun to the Earth,

about 499 seconds.

Finally, the mean inclination of the ecliptic _ is given by8

E = 23"27' 8.26" - 46.845" %' (18)

where T is the time in Julian centuries since 1900.

IV. GENERAL ATTITUDE DETERMINATION

Knowing the cartesian components of the geomagnetic induction unit vector
^

B and the Sun unit vector S in the GCI reference frame (as described in

Sections II and Ill), we can now determine the spacecraft attitude if we

also know the components of these two vectors in the spacecraft (SC)

reference frame (i.e. along the roll (x), pitch (y), and yaw (z) axes).

The essence of the problem of determining the spacecraft attitude is then

this: we are given the components of two vectors in each of these two

reference frames which have a common origin, and we must solve for the

rotation matrix between the two frames. There are several ways of doing

this; I will describe here one of the simplest methods, known as the

algebraio method. 9 Let _ be some vector whose components we wish to

transform from the GCI reference frame to the SC frame. The two sets of

components are related by

_SC : A _GCI (19)

-).. ._

where _SC and _GCl are column vectors containing the SC and GCl components,

respectively, and A is the rotation matrix we wish to solve for. Fo_mallg,

we could solve this equation of A by post-multiplying both sides by the

inverse of the matrix _GCI:

A = _SC CGCI

Unfortunately, _GCI is not a square matrix, so we cannot take its inverse

directly (without a somewhat messy diversion into pseudo-inverses).

264



In the algebraic method, we use the two known vectors B and S to

oonst_et an orthogonal triad of vectors (a, b, and c) in each reference

frame (SC and GCI). (This will work only if B and S are not parallel.)
A ^

We then define a matrix M for each frame which has the vectors a, b, and c

as its columns; the columns of this matrix will transform from GCI to SC

coordinates just like the vector _ above, and we will be able to take its

inverse (since it will be a square matrix), thus allowing us to solve for

the rotation matrix A.

Specifically, let us define the vectors a, b, and c in the GCI and SC

reference frames as follows:

GCI Frame SC Frame

^ ^ A ^

aGC I = SGC I aSC = SSC

_Gclx _Gcl " Ssc× Bsc (20)
GGcl= ISGct× _aclf bSC: ISscx fiSCl

^ A A ^ ^

cGC I = aGC I x bGCI CSC = aSC x bSC

where :

A

BGCI

_GCI

A

BSC

^

SSC

is the geomagnetic induction unit vector in GCl cartesian

coordinates, calculated as in Section II.

is the Sun unit vector in GCI cartesian coordinates, calculated

as in Section Ill.

is the geomagnetic induction unit vector in SC cartesian

coordinates, from the spacecraft magnetometers.

is the Sun unit vector in SC cartesian coordinates, from the

spacecraft digital Sun sensor.

265



We now construct two 3x3 square matrices MGC I and Msc whose columns are
A

the cartesian components of a, b, and c:

MGCI

MSC

= [aGCl I bGCI I cGCI]

: [a c l  cl sc ]
(21)

Since the rotation matrix A rotates column vectors from the GCI to the SC

reference frame, it will also rotate each column of MGC I into the corre-

sponding column of MSC:

MSC = A MGCI

Since MGC I is a square matrix, we can now solve for the rotation matrix A

by post-multiplying both sides by the inverse of MGCI:

A = MSC MGCl "I

Furthermore, since MGC I was defined to be an orthogonal matrix, its inverse

is equal to its transpose and so

A = MSC MGCI T (22)

The matrix A given by Eq. (22) rotates any vector from the GCl to the

spacecraft reference frame and thus determines the spacecraft attitude.
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V. SMM ROLL ATTITUDE DETERMINATION

On SMM, the roll, pitch, and yaw angles are measured with respect to

the somewhat whimsically named "SUN" reference frame, defined by the three

orthonormal vectors S, U, and N:

ii

is the Sun unit vector, calculated as in Section III.

(U points out of the east limb of the Sun,

alonq the solar equator.)

(N is P projected onto the plane normal to the

line of sight.)

where P is the solar spin axis unit vector. In order to determine the

spacecraft attitude from the magnetometers and the Fine Pointing Sun

Sensor (FPSS), we will need to know the components of the vectors S, U,

and N in the GCl reference frame.

We first need to calculate the cartesian components of the solar spin

axis unit vector P in the GCI frame. We begin by working in the eoliptio

(ECL) frame, defined by the unit vectors xEC L, YECL' and zEC L.

(23)

xEC L points in the direction of the vernal equinox;
A

YECL points in the direction of zEC L x XECL;

zEC L points toward the ecliptic north pole.

The vector P in the ecliptic frame has cartesian components s

I sin _ sin i 1
PECL : -cos _ sin i

cos i
(24)

where R is the longitude of the ascending node of the solar equator on the

ecliptic, given bye

= 73" 40' + 50" 25' A (25)
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where A is the time in years since 1850; i is the inclination of the solar

equator to the ecliptic:

i : 7" 15' (26)

The ecliptic and GCl reference frames differ only by a rotation of

magnitude -_ about their common x axis, where c is the inclination of the

ecliptic (Eq. (18)). Hence the GCI cartesian components of P are

^ [1 0 0 I ^PGCl = 0 cos c -sin E PECL (27)
0 sin _ cos

Having found the cartesian components of the solar spin axis unit vector

in the GCI frame, and knowing the components of S from section Ill, we may

now use Eq. (23) to determine the cartesian components of the U and

vectors in the GCI frame; these will be used in Eq. (29) below to determine

the SMM roll attitude.

It is especially convenient to determine SMM's roll angle p when the

spacecraft's FPSS is pointed at Sun center (so that the pitch and yaw

angles are zero). In this case the x axis of the spacecraft reference

frame (the roll axis) will coincide with the _ vector of the SUN frame.

The two reference frames will then differ only by a rotation about their
^

common x-S axis (Fig. 1). The roll angle p is then given bys

p : - (28)
1 2

where @ is calculated from the magnetic field model and solar ephemeris
I

(Sections II-V):

1

-1
: tan

 GCl

BGCI " NGCI

(29)
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Fig. 1. Determination of SMM roll attitude. This view is looking

from the Sun down onto the SMM top face plate. (After E8].)

269



and @ is found from magnetometer data:
2

"I "_magpi tCh (30)
_b = tan

2 i_magyaw

Substituting Eqs. (29) and (30) into Eq. (28) then determines the SMM roll

attitude. Note that we do not require any FPSS data in this case; the Sun

vector SSC was tacitly assumed to lie along the S axis of the SUN frame

since the FPSS is pointed at Sun center.

VI. SUMMARY

Two methods for spacecraft attitude determination using the Earth's

magnetic field have been presented: the algebraic method for spacecraft

in general (Section IV), and a simpler method specific to SMM (Section V).

Both methods compare the Earth's magnetic field as calculated by a

mathematical model (Eq. (7)) with magnetometer measurements; in addition,

the Sun vector calculated by Eq. (14) and measured with a digital Sun

sensor is used to completely specify the spacecraft attitude.
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VII. APPENDIX: ASSOCIATED LEGENDRE FUNCTIONS

The associated Legendre functions of the first kind form a complete

orthogonal set of functions over the interval o = [0, 7]; it is this

property which makes them a useful basis in which to expand the geomagnetic

scalar potential V(_).

Although a variety of normalization conventions for the associated

Legendre functions are in common use, the three most common are the so-

called Neumann, Schmidt, and Gauss normalization conventions. Neumann

normalization is the convention most often found in mathematics text-

booksZ. °-12 The geomagnetic coefficients g and h given in the literature

are usually defined for the Schmidt-normalized associated Legendre

functions; Schmidt normalization has the advantage that the normalization

constants are independent of m (for m _ O) for any given n, so the

relative strengths of the different terms can be easily judged. Gauss

normalization is useful because it saves about 7% in computation time

on a computer3; the g and h coefficients in this paper have been converted

to Gauss normalization for ready use in computer work.

The various normalization conventions are defined as follows:

Neumann normalization (Pnm):

fo
m)Schmidt normalization (Pn :

fo _ m
Pn (cos e) Pzm(cos e)

Gauss normalization (pnm):

_ pnm(cos B) P_'m(cos e)

Pnm(COS B) Pzm(COS o) sin o do

sin O do :

sin e de =

2 (n+m)!
_ anc

2 (2 - _mO)
2n + I _n_

2 (n-m)! (n+m)!
(2n+'1) [(2n'-'i')'!!] '2 6nc
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One may easily calculate the conversion factors for converting between

Schmidt and Gauss normalizations by simply taking the square root of the

quotient of the respective normalization constants. In particular, if

the conversion factors Snm are defined by13

= pnmPnm Snm

then

Snm
2(2-amO) 1

2n + -I 6n_

' 2(n-m)! (n+m)I
(2n+1) [{2n-1)!I] z an_

½

or

F(2-6mO) (n-m)! 1 ½ (2n-l)!J

Snm = L (n+m)! "- ] (n-m}!

Table II lists the explicit values of these conversion factors up to n=12.

To convert a table of Schmidt-normalized coefficients gnm and hnm (such as

those usually found in the literature) from Schmidt to Gauss normalization,

use

nm m
g = Snm gn

h nm = Snm hnm

and analogous expressions for the secular variation coefficients.
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TABLE II. Conversion factors Snm between Schmidt- and Gauss- normalized

associated Legendre functions of the first kind.

n m Snm n m

1 0 1 9 0

1 1 1 9 1
2 0 3/2 9 2

2 1 /3 9 3

2 2 (1/2) /3 9 4

3 0 5/2 9 5

3 1 (5/4) /6 9 6

3 2 (I/2) /15 9 7

3 3 (I/4) /10 9 8

4 0 35/8 9 9

4 1 (7/4) /10 10 0
4 2 (7/4) ¢5 10 I
4 3 (1/4) /70 I0 2
4 4 (1/8) /35 I0 3
5 0 63/8 I0 4
5 1 (21/8) /15 I0 5
5 2 (3/4) /105 10 6
5 3 (9/16) /70 10 7

5 4 (3/8) J35 10 8
5 5 (3/16) /14 10 9
6 0 231/16 10 10
6 1 (33/8) /21 11 0
6 2 (33/32) /210 11 1
6 3 (11/16) /210 11 2
6 4 (33/16) /7 11 3
6 5 (3/16) /154 11 4
6 6 (1/32) /462 11 5
7 0 429116 11 6

7 I (429/32) /7 11 7

7 2 (143132) ,/42 11 8

7 3 (143/32) ¢21 11 9

7 4 (13/16) ¢231 11 10

7 5 (13/32) ¢231 11 11

7 6 (I/32) /6006 12 0

7 7 (1/32) /429 12 1
8 0 6435/128 12 2

8 I 2145/32 12 3
8 2 (429/64) /70 12 4

8 3 (39/32) /1155 12 5

8 4 (195/64) J77 12 6

8 5 (15/32) /I001 12 7

8 6 (15/64) /858 12 8

8 7 (3/32) /715 12 9

8 8 (3/128) /715 12 10

12 11

12 12

Snm

12155/128
(7293/128) ,/5
(663/64) ,/110

(221/128) /2310
(51/64) /5005
(255/128) /286
(17/64) 1/4290
(51/256) /1430
(3/128) /12155
(1/256) ¢24310

46189/256
(4199/128) /55

(4199/256) /165
(323/128) /4290
(323/128) /2145

(323/128) /858
(323/512) /4290
(19/256) /72930
(191256) ¢12155

(I/256) /461890

(1/512) /92378

88179/256

(29393/512) /66
(2261/256) /2145

(969/512) /30030

(969/128) J1001
(6783/512) /143

(399/512) ,/14586

(133/512) ¢36465

(7/256) /692835

(21/512) /46189

(I/512) /1939938

(1/512) /88179

676039/1024

(52003/512) J78

(7429/512) /3003

(7429/512) ,/2002

(22287/2048) /2002

(1311/512) /17017

(3059/1024) /4862
(161/512) /138567

(161/1024) /138567
(23/512) /323323

(23/1024) /176358

(1/512) /2028117

(I/2048) J1352078
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Abstract: In This paper we illustrate new methods of online nonlinear estimation

applied to the lateral deflection of an elastic beam from on board measurements

of angular rates and angular accelerations. We contrast the development of the

filter equations, together with practical issues of their numerical solution as devel-

oped from global linearization by nonlinear output injection with the usual method

of the the extended Kalman filter(EKF).We show how nonlinear estimation due

to gyroscopic coupling can be implemented as an adptive covariance filter using

off-the-shelf Kalman filter alghorithms. The effect of the global linearization by

nonlinear output injection is to introduce a change of coordinates in which only

the process noise covariance is to be updated in online implementation. This is in

contrast to the computational approach which arises in EKF methods arising by

local linearization with respect to the current conditional mean. We also highlight

processing refinements for nonlinear estimation based on optimal ,nonlinear inter-

polation between observations. In these methods the extrapolation of the process

dynamics between measurement updates is obtained by replacing a transition ma-

trix with an operator spline that is optimized off-line from responses to selected

test inputs.

*Supported in part by SDIO/IST and managed by AFSOR under contract F49620-
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1 Introduction

In this paper, a new nonlinear, nonparametric method is proposed for off-

line modeling and on-line estimation of nonlinear dynamic systems. For

illustration, it is applied to the estimation of the deformation of an elastic

structure,undergoing rapid rotational maneuvers.

In these circumstances,the structural stiffness and damping coefficients

depend on the angular acceleration &,the angular rate w and the square of

the angular rate .In the single axis case,the excitation of the structure is

represented by the vector u T = (vS,w2,2w),to which the structural dynam-

ics responds as a "bilinear"( i.e., parametrically excited) system. A similar

technique for multiaxial rotations yields a bilinear model with respect to
matrix valued excitations.

Two methods of estimation and modeling are combined to achieve de-
formation state determination:

• A method based on a feedback linearized procedure which gives an esti-

mate by a filter constructed from the equivalent linear dynamics,which

is faster than the extended Kalman filter.

• The modeling of the deformation state of the structure by means of a

Volterra series interpolator.

2 Simplified Model of a Deformable Structure and Equations
of Motion

For purposes of illustration of the principles involved,the structure will con-

sist of a primary mirror, attached to a spacecraft (containing the hardware

of the slewing controller),and a secondary mirror attached to the central

one in the shape of a Cassegrain telescope by means of massless links.The

primary mirror structure will also be regarded as attached to the spacecraft

by means of a massless link. Equivalently the same model can be thought to

represent a laser beam expander,as in Figure 1 . More realistic models, such

as in [1] or [2], exibit the same form of interaction between the rotational

and vibrational dynamics. The simplified telescope part of the structure

can itself be modeled as a system of two masses attached together by a sin-

gle "equivalent" link,with "equivalent" stiffness and damping coefficients,so

that the same restoring and dissipation forces at the secondary are obtained

as if wilh more than one link.The modeling of such a deformable body is
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summarizedin Figure2 .

If one takes now only the vibrational equation of motion ,and set the rota-

tion around a single a_s _'3 ,i.e, a_ =0_3 ,and if the translational acceleration

term is substituted from the translational equation, then one finds:

_M_ + (C + 20jM)) + (K + (0 + J02)07M)y + (t_ + 02J)JMp = f (1)

where 07is not an inertia term,but rather an augmented symplectic matrix,

(_ -1)while M is a modified structure mass matrix tomade of blocks 0
account for contributions due to translation,and pis the 2n x 1 matrix compo-

nents of the vectors pi from the undeformed appendage mass centers. Here

y denotes the (2n x 1) (for planar motion or(3n x 1) for out of plane motion)

matrix of deflection coordinates of the center of mass of n appendages from

their undeformed positions,n = 2 in the case of the secondary mirror and

the spacecraft platform regarded as appendages of the primary.

f is the (2n x 1) (say, 4 x 1 here)matrix of body coordinates of external

forces acting on the centers of mass of the n appendages.

All other notations used are found in [12],[13].

Let now 7/be a new variable such that

r/= _M(y + p)

and let

aS well as

(2)

d = CM (3)

h_ = KM -1 (4)

.r = (s)

Then the vibrational equation of motion becomes:

"4- (C' "4- 1/307)/) -1- (/_" "4- 71107 "4- u3J2)r/= f + I(p (6)

This transformed equation can also be written in the bilinear form ,which

will be used frequently in the following sections,

:K =AX + B(X)u + b (7)

A=( [0] [I] ) (8)[-/?] I-d]

where:
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and

B(X) = [ [o] [o] [o]JX1 J2Xa JX2} (9)

[01 } (10)b= (f+Kp

while Xland X2 are the vector components of the state vector X = (_7T, flT) T.

This simplified model,insofar as the links are regarded to be mass-less ,

exibits all the coupling effects between slewing motion and vibrational mo-

tion.A distributed model under the assumption of symmetry about the mass

center also yields product terms between 02 and structural deformations, and

can be found in Chapter 9 of the book by Junkin._ and Turner[3]. That model

of a symmetric four appendage spacecraft can also be used to illustrate the

procedures being developed in this study,if desired, although damping must

be present, so that the matrix A above will be stable. A slewing Timo-

shenko beam model likewise exhibits this gyroscopic coupling effect, and

also accounts for damping, so that A becomes stable, as found in [4].

3 Estimation of the state by means of observers

This part of the estimation technique will deal mainly with updating the

state from sensor data.

3.1 Extended Kalman filter formulation

Usually,when one deals with a nonlinear system of which the state variables

cannot all be observed (or are corrupted with noise) Jhen the most com-

monly used method of filtering or smoothing is the extended Kalman filter

formulation [5]. Let the dynamical system be modeled as shown,

(11)
y = h(x + v)

where u* is the deterministic(mean) part of the input,_ is a zero mean input

noise,and h is defined in our case as h = (hTl,hT) T, where

hi(.) =211-1(.-n)h2(.) = M-'(.) (12)

Let Rd_(t - r) = E[vi(t)vi(r) T] be the covariance matrix of the sensor noise

vectors vi, with R = diag(R1,R2) and let Q6(t- r) = E[_(t)_(r) T] be
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the covariancematrix of the actuatornoisewith vi and _ presumed to be

uncorreiated for simplicity.

The propagation error matrix is defined by P ,which satisfies the following

Riccati differential equation along the estimated state trajectory _:

"Of1 p "cO/]T G(_)QG(_) T_P = L-6-dJ_ + P[-_x " +

_Oh T 1 Oh T
p[-_x]_R-[_x]_ P (13)

_: can be expressed as an observer,

x = f(_) + G(_)u* + K(y- _) (14)f/ = h(£')

where K is the extended Kalman gain , and is defined as follows:

Oh T 1

K = P[_x]h.t_:R- (15)

A procedure [6] based on a change of variables, in preliminary studies gave

a faster computation time .This procedure is outlined next.

3.2 Feedback linearized procedure:

The idea is to change the state configuration of the original system ,which

has the particular form below:

{ xl = FI(Xl)X2 (16)52 = r_(x)(_*+ _)+ f2(x)

yl = hl(_x+ _1) (17)y2 = h2(x2 + v_)

By using the change of variables x_ = xl,x'2 = Fl(Xl)X2,

U'-- Xl -- F2(x)u*+ f2(x) and y_ = h_](yl),y_ = h_l(y2) one gets

{• --" X I
x', 2 _' (18)Xl2 = U I* Jr

where {_ = F1F2_ and v_ = Fll]i,so that the covariance of {i is approximated

by

Q' = FI(_x)F2(_)QF_(_)T F](_]) T (19)
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while that for v_ is approximated by

R_ = FI(kl)RiFI(_I) T (20)

Then the new error covariance matrix propagation is derived from the fol-

lowing Riccati differential equation:

16, ([0] [I] _ p, ( [01 [01
\[o] [o]/ +P' += klS] [o])

[0] [sl]
The observed deformation state is also propagated in the usual manner:

where the innovation process gain is now given as follows:

K'= P'(t, to)R'(t) -1 (23)

For the case of single axis slew-induced structural deformation estimation

one has F1 = I and F2 = lower half of B(X) defined by equation (2). In

particular,one finds R_ = Ri ,so that,in contrast to the extended Kalman

filter,only the P_- independent forcing term of the equation (21) given by

Q' has to be updated, all oefficients being now constants. In dealing with

this procedure a 25% increase in speed, with comparable accuracy has been

found in preliminary simulations discussed below. The problem in using

either one of those two estimation techniques (even the faster one) in more

realistic models than the example used here, is the high dimensionality of

the filter then required, which may not be accommodated by the on-board

data processing rate, causing estimation delays.
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3.3 Estimation Examples:

A simplified model of a beam expander was represented by a primary mirror

mass elastically linked to a secondary nfirror mass according to the simpli-

fied model outlined in Section 2. Restoring forces and dissipative forces

proportional to relative secondary mirror motion were modeled at the sec-

ondary.The structural parameters are found in the companion example in

Subsection 5.1. A piecewise constant angular acceleration was commanded,

representing the acceleration-deceleration profile of a minimum time retar-

geting maneuver. The commanded angular acceleration profile was:

[ 0.3rad.s -2 if 0 < t < .5(s);
_b(t)

-0.3rad.s -2 if.5(s) _< t < l(s);

Presumed angular accelerometer and gyro noise covarianccs were trans-

formed into equivalent process noise for the feedback-linearized filter,with

the additional simplification of neglecting a square noise term correspond-

ing to the second entry u2 = w_ of the equivalent input u. Presumed strain

gauge sensor noises were taken from the literature. The sensor noise covari-

ance matrix was modeled as a diagonal matrix with all diagonal elements

equal to 0.00018 .Likewise the input co_ariance for ul was 0.000005 and for

u3 was 0.00001 . The input covariance related to the input u2 was supposed

to be negligible with respect to the other two. Two simulations were made

, each one of them to illustrate the two methods of estimation described

above.The first simulation was made without active bias suppression, i.e

f = 0 in equation (10), the results being shown in Figures 3, 4. The sec-

ond simulation was made with the use of bias suppression making b = 0 in

eqaution (7) by letting f = -Kp,the results being shown in Figures 5, 6.

4 Off Line Modeling

In this section the method of Optimal Bilinear System Interpolation is used.

In this technique the dynamical system is represented in in bilinear form (by

active suppression ,if needed, of the bias term b),

{ X = AX+ B(X)u (24)y = cTX

where B(X) = [BIX I B2X I ...]. This also means:
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• The(I/ O)behavioris highlynonlinear.

• Themodelishighdimensionalif arisingfromCarlemanlinearization.

• Thereis nocleanARMA modelfor systemidentification.

Then,by usingoptimal interpolationonefinds:

• A closedform,circuit-implementable,reducedorder,decoupledmodel
whichis alsobilinear:cf. Figure 7.

• (I/O)-based system identification can be used to tune the model to

known responses to designer-selected typical excitations.

• The dimension of the new system model is equal to the number of test

signals.

In the present application, the model is "a priori" bilinear by the choice made

for the inputs, so that the dimension is that of the structural model, here

given by the number of mass points. For more realistic structural models,

the filter dimension would nevertheless be high. Rather than tolerate the

time delay found in the previous techniques of estimation, the method of

operator spline interpolation can be used, to find the deflection amount

between observations. The input-output (I/O)operator V,

V:u --, y (25)

from the excitation vector u to an output vector y (such as v given by

equation (2)) is imbedded in a ttilbert space of (I/O)operators of candidate

bilinear systems, equipped with a reproducing kernel, see equation (31)

t

Kt(u, v) = expf uT(s)R-lv(s)ds
1,

(26)
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where the weight matrix R is determined by eigenvalues of A in equation

(24), which in the context of the present application corresponds to bounds

on the structural frequencies. An interpolator of the form

= Z c,(t)Ic,(u,¢) (27)
i

is constructed,tuned so that the structural responses to preselected test

inputs u i are recorded,and optimally interpolating at system level the re-

sponses to other excitations in the signal class.

If the recorded system responses yi to the test input u i are reliably known,the

'tuned' coefficients ci are obtained by solving the matrix equation

G(t)e(t) = y(t) (28)

where c(t) = col{ci},$r(t) = Col{yi(t)} and G(t) = {Kt(ui,uJ)}i,j. A more

complex matrix equation yields the ci for uncertain yi:cf.[7], [8],[9]. The

optimization leading to the functional interpolator Vt is formulated as a

minimization of the maximum distance between the interpolating operator

and any candidate operator that matches the experimental input-output

signals. If the system data are not accurate, a weighted minimization that

does not require exact matching of system responses can also be used. This

minimization is carried out in a Hilbert space of input-output operators

equipped with a weighted "Fock space" scalar product which is the Hilbert

sum of the causal (i.e., with lower triangular domains of integration) L 2

scalar products of the kernels of the Volterra series of the operators in ques-

tion,for which Kt is the reproducing kernel. The general method is discussed

in [9], although causality was differently implemented there,since symmetric
kernels were used.

The Hilbert space structure for m inputs(here m = 3) is defined as follows:let

hn,q .....i,,(t, tl,. . .,tn) = cT exp{(t - tl )A}Pd . . .

... ezp((t._l - t.)A}B_, exp(t.a)x(o) (29)

where B(X) = [B,(X) I B_(X)I ...] and i,,...,in E {1,... ,m}.

These are the Volterra kernels for uq(q),...,ui,(tn) so long as triangu-

lar integration is used as in equation (30). Then the inner product is given

as shown ,

£/?< Vt, llt >= 2n _il ..._i_ rq ... ri, ...
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fo'" h,,i_ .....i,,( t, tl , . . . , t,_)h,_,ia .....i.( t, tl , . . . , t,_)

dtn . .. dq (30)

with designer-selected weights ri > 0 corresponding to R = diag{ri}, which

yields the reproducing property:

< V,,K,Cu, .) >= v, Cu) (31)

The Volterra series for a bilinear system will yield a bounded norm < Vt, Vt >

provided the weights rj are chosen so that

2_

Z,rH]Bi]]2 (32)

where N = dimX and "a" is a bound on the real parts of the eigenvalues

of A, so that I[exp(At)H 2 <_ N.ezp(-2at) . The bound (32) is obtained af-

ter cancellation of intermediate exponents in the factors exp{-2a(ti-1 - ti},

which can be interchanged when computing L _ bounds of ]hn,q ..... i,(t, tl,..., tn)l,

to guarantee negativity of the remaining exponential coefficients. The same

bound is sufficient for having I_(t)[ = [_(u)[ _ 0 as t _ oo when u is

L _ (Square integrable), as is found by use of the reproducing property (31)

(Lower bounds are also needed when the inputs are not L 2 ,but are bounded

almost everywhere:Dwyer,[7]). The advantages of such modeling are:

• The model dimension is equal to the number of test inputs.

• The modeling error is distributed throughout the chosen input sig-

nal class (i.e by frequency or amplitude), rather than depending on

nearness to a single reference input.

• The interpolated signal(response) can be proven to converge asymp-

totically to the true system response for any (unknown) excitation in

the chosen signal class.

In thistechniqueofmodeling,therealdata r}(;),i16)can be recordedby ex-

citingthe realsystem with (constantornonconstant)testinputstoconstruct

the interpolator.Thetestinputscan be chosento approximate the expected

excitationsofthe system. Thus, the realsystem time responsesare used for

model matching, ratherthan responsessynthesizedfrom the mathematical
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model.

The problem with this technique, however, lies in the fact that storage of

curves is required in order to compute the ci's. The number of stored curves

is equal to m x k x I N, where m is the number of test inputs,k is the di-

mension of the output vector y, N the dimension of the state to be modeled

and I is the number of possible initial values of each component.This diffi-

culty does not allow the system to run in real time: e.g.,for the case of n

point masses linked by massless but elastic connections one has N = 2n and

k = n when measuring deflections or k = N = 2n if full state information is

required in the planar motion case.

5 Interpolator-Based Estimation:

In this section, the two last techniques are combined to create a more effec-

tive one by making use of the transition matrix spline of the bilinear system
of the model:

_(t) = _(t,tk)_(t,tk) (33)

In fact, the matrix-valued operator spline _ interpolates the transition ma-

trices ¢i corresponding to the bilinear system model excited by constant

or piecewise constant test inputs u(i).This permits the construction of the

response of the real time system in piecewise closed form,thereby replacing

response curve storage by an analytic transition matrix generator, rather

than the construction of the coefficients interpolator cifrom the output test

signals yT = (yl, y2,..., ym).

Pq of the matrix valued spline coefficients ci by let-One gets each entry c i

ring _i = @_,qin equation (28) where &_'qis the (p,q)-entry in the transition
matrix with constant u(i) :

• , = exp{(A + __, B/u_i))t} (34)
J

The interpolated transition matrix is then used to update between obser-

vations the structural state estimates obtained from an adaptive covariance

filter based on a globally feedback-linearized transformation(seen in Section

3.2) of the bilinear structural model.

This last technique has the following features:

• _ is open loop, with _ made to match the real system at discrete
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interwls by re-initializing:

[O(t) !01 1

In contrast,thedirectmodeling of the I/O operator

(35)

t¢7= Z ci(1)ezP uT R-luldt (36)
i

continuously tracks the true system time responses _i(t),but in this case

ci(t) cannot be generated analytically and must be computed off-line.

• The presence of an additive input does not give rise to a steady state

tracking error observed in the earlier literature when additive as well as

multiplicative inputs are present, as is the case for rapidly slewing struc-
tures.Indeed, a convolution correction based on _ can be added, eliminating

the need for active suppression of the bias term b in equation (7).

• The number of curves to be generated is only m × N 2 instead of

m x k × I N,(where again N = 2n for the example of a structure composed

of point masses connected by elastic appendages and in plane motion).

, The possibly high dimensional recursive filter can run at a slower sam-

piing rate chosen to be consistent with on board CPU capabilities.

5,1 Interpolation Example

An interpolator was designed for the same two bodies beam expander model

previously described: The interpolator was optimized for input vectors u T =

(ux, u2, u3) of the form (constant, 0, 0), (0, constant, 0) and (0, 0,constant)

,chosen with a positive constant during the first half of a 1 second nominal

minimum time rotation, and negative during the second half, for the first

test input vector.The same positive constant was chosen throughout the 1

second repointing for the second and third test input vectors, this qualita-

tively correspond to the nominal angular motion where & is a square wave

beginning at +0.3 and reversing, which yields positive (though not constant)

values for w_ and 2w :cf.Eq.(5). The constants were selected for boundedness

of the interpolator according to [7],[8]. For the sake of convergence of the

interpolator to the actual output of the system, and in the case of applying

test inputs which are not square integrable ,the matrix R described above

in the reproducing kernel analytical form should have diagonal elements

satisfying the following condition:

aim-  i(alm)2- IIB,II'IV, ?_<
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riNlIBilJ _ <

a/m + x/(a/,,,) 2 -IIBilI2N,Xi 2 (37)

If A is N x N,IIB_II2 = Epqb?,,m where bi,m is the (p,q) element of Bi, then
Ai, which is the upper limit of the i-th test input component, must be chosen

to satisfy the bounds below,

0 < Ai < a/mv_llBill (38)

where a is an upper bound on the real parts of the eigenvalues of the matrix

A ,and m is the number of test inputs applied to the interpolator. Indeed,

the bound (41) allows selecting positive r_s in the inequality (37), which

itself occurs in obtaining bounds on _)(t) = Vt(u) from equation (34), to

guarantee _(t) _ 0 :cf.[6]

In case the applied test inputs are square integrable, as will be chosen on

the example, one needs only a simpler form of bounds for ri described as

follows,which implies the inequality (32) if all ri are the same,

0 < r_NllBdl2 < 2a/m (39)

The data used to drive this example are very near to those of a space
based laser model:

J0 = 20,556kg.m 2, m ° = 10,720k9, m 1 = 152kg, pl = (0, 14.421m) T

K= (1642 121.6) C=( 162 :::7)121.6 1355.8 ' 120

The nondiagonal form of the above matrices K and C is due to the fact that

the two links that hold the small mirror in the top can be regarded as an

equivalent link with equivalent stiffness and damping matrices ,as shown in

[13].

Now by applying those data to the system and by the choice of constant = .3

in the test inputs, one finds 0 <_ ri _< 1/12 where ri = r for all i, giving

R = diag(ri) = r[I]m×m .Two series of simulations were made. In each

one of them two alternatives , namely, bias elimination ,i.e., b = 0 or no

external tip forces ,i.e, f = 0 are considered. In the first series of simulations

the interpolator was used over the entire minimum time lsecond maneuver

and thereafter.The results for the case of lateral deflection of the appendage

are shown in Figures 8,9. It is important to notice here that in case of

bias presence, a numerical convolution product was used with the original
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transition matrix ¢(t, tk) as well as with the interpolated transition matrix

(_(t, tk) for the sake of error comparisons." Original" in the plots means the

numerical solution of Eq.(1), "discrete" means tile numerical computation

of _u(t,0)z(0) + q),,(t, .) • b. One last numerical diffuculty was observed, in

addition to care needed in generating the contribution from b by convolution

(at least in this unusual beam expander example). That was the singular-

ity of Eq.(28) at t=0 as already discussed in [9],which caused numerical

unreliability during the first 0.25 seconds of this motion. Thus "transient

error" is consistent with the "adaptive" nature of the interpolator which

must "learn" from the system resonse to alleviate this numerical diffuculty,

in the other series the state estimated in the example of section 3.3 was

used to re-initialize the interpolator each .5s The results are shown in Fig-

ures 10,11. The re-initialization from the estimated state at given moments

yielded better results than when using the same interpolator throughout.

6 Concluding Remarks

Filter alghorithms combine the propagation of measurements "between" ob-

servations with updating of measurements "across" observations. Such up-

dating to account for new observations has been shown here to be obtainable

from an estimator based on a globally feedback-linearizcd model of a nolJ-

linear process.

In case nonlinear transformation of the observed part of the process

state is required, it was shown that the associated matrix Riccati differen-

tial equation for the propagation of the estimation error covariance needs

to be l:i)dated only in its "driving" term, giv,,_ by the process noise co-

variance . In contrast, all the coefficients of the Ricatti equation for the

corresponding extended Kalman filter must be updated, so that consider-

able CPU time is saved by pre-linearization, although the filter dimension
is the same. Dimension reduction between measurements is therefore still

desirable, motivating the next part of this work, which is reviewed below.

If the process dynamics is "parametrically excited", e.g. by gyroscopic cou-

pling, it was then shown how the process state can be propagated between

observations by interpolation of the input-output operator that maps the

process excitation to the (time-varying) state transition matrix. This inter-

polator was shown to be simultaneously optimized to match the measured

system response to a set of pre-selected "test inputs", which if chosen piece-

wise constant can also be encoded analytically in closed form.

Since the interpolator dimension is determined by the dimension of the pro-
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cessstate ,it is thereforefasterto periodicallyre-start the interpolatorat
theratethefeedbacklinearizedfilter( or anyother) canprocessfull statein-
formatiol:, rather thanbetied downto thefull orderfilter processingrate.
Newresultswerethen givenon the applicationof the methodto the on-
line estimationof transversedeflectionsof a rapidly slewing,gyroscopically
slew-coupledbeamexpander,previouslyreportedin [12]. Applicationsto
line of sightdisturbanceerrorboundestimationin slidingcontrolfollowing
[10]arealsooutlinedin [11]. the interpolationtechniquemay alsobeused
to update observationsfor multi-axis motionof multibody systems, but
this latter workis still undeveloped.
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Abstract

Euler's theorem states that any sequence of finite rotations

of a rigid body can be described as a single rotation of the body

about a fixed axis in three dimensional Euclidean space. The

usual statement of the theorem in the literature cannot be

extended to Euclidean spaces of other dimensions. Equivalent

formulations of the theorem are given in this paper and proven in

a way which does not limit them to the three dimensional

Euclidean space. Thus, the equivalent theorems hold in other

dimensions. The proof of one formulation presents an algorithm

which shows how to compute an angular-difference matrix that

represents a single rotation which is equivalent to the sequence

of rotations that have generated the final n-D orientation. This

algorithm results also in a constant angular-velocity which, when

applied to the initial orientation, yields eventually the final

orientation regardless of what angular velocity generated the

latter. Finally, the extension of the theorem is demonstrated in

a four dimensional numerical example.
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I. EULER'S THEOREM

In 1775 Euler published a paper on the rotation of rigid

bodies [i]. In that paper, which was written in Latin, he

Theorema.

__.uomodocunquefphaera circa centrum fuum conuer-
tatur , /'emper affignari potefl diameter, cuiuJ"
dire#tio in fi;_ t ranslato conueniat cure fitg
initiali.

F__i_.l: Euler's theorem on the rotation of a rigid

body as it appeared in the 1775 publication.

presented the theorem whose photograph is shown in fig. i. The

theorem states the following:

In whatever way a sphere is rotated about its center, it is

always possible to reckon a diameter about which a rotation

brings the sphere into coincidence with its original

location.

A modern formulation of this theorem states [2]:

A body set of axes at any time t can always be obtained by

a single rotation of the initial set of axes.

We prefer to formulate this theorem as follows:

Regardless of the way a coordinate system is rotated from

its original orientation, it is always possible to find a

fixed axis in space about which a single rotation of the
initial coordinates ends at the final orientation.
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Euler's theorem serves as a cornerstone in attitude

determination [3-9] and tracking [7,9,10]. In particular, if n is

a unit vector along the axis of rotation and e is the angle by

which the initial coordinate system has to be rotated in order to

coincide with the final one, then D(n,8), the transformation

matrix from the initial to the final coordinate system, is given

by [7-10]

A AA A

D(n,e) = Icose + (l-cose)nn T - sine[nx] (i)

where I denotes the identity matrix, T denotes the matrix

A A

transpose and [nx] denotes the cross product matrix of n. The

relationship formulated in (i) can also be expressed as follows

^ -[ex]D(n,e) = e - (2)

^

where e = ne. The rate of change of the vector quantity e as a

function of w, the angular velocity at which the coordinate

system rotates, is given by [9,10]

• 1
_e(t) = w(t) +-_e(t)x_w(t) +

M

2-e (t) cot [e (t)/2 ]

2e(t) 2
_e(t) x [_8 (t) XW_ (t) ]

(3)

II. ALTERNATE FORMULATIONS OF EULER'S THEOREM

An qular-matrix (discrete} formulation

Denote the skew-symmetric matrix [ex] by e; that is,

e = [_ex] (4)
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where the explicit expression for e is:

O m

m

0 -e 3 e2

e3 0 -81

-e 2 e1 o

(5)

Equation (2) can be written as

= e-e (6)

Let the initial orientation of a certain coordinate system with

respect to some reference system be expressed by the attitude

matrix DO • Suppose now that this coordinate system is rotated

from its Initlal orientation by the sequence of rotations _1, _2,

• '', _k" Denote the cross product matrices which correspond to

_1, _2, .... , _k by 21 , _2, .... , _k respectively. Then, in view

of (6), the attitude matrix that transforms the reference

coordinate system to the final one, and which expresses the

orientation of that system, is given by

Df - e -ek .... e-e2 e-el Do
(7)

On the other hand

-el (8)
Df = e DO

However

ef _ ek+ .... +e2+e I (9)

We realize that the equivalence between (7) and (8) is another

expression of Euler'e theorem. We can, then, formulate Euler's
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theorem also as follows:

Regardless of the way a coordinate system is rotated from

its original orientation, it is always possible to express

the final orientation of the system by the attitude matrix

Df where

-ef
Df = e D O

and ef is a skew-symmetric matrix.

We call this formulation discrete because the rotation expressed

by ef is equivalent to the discrete k rotations expressed by the

individual 8 i (i=I,2, .... , k) matrices.

Angular-rate (continuous} formulation

Euler's theorem gave rise to (I) and (3) which indicate how to

find the orientation of a coordinate system, at any given time

tf, with respect to its initial orientation at time t o if w(t),

the history of its rate of rotation, is known for to<t<tf;

namely, w(t) is used in (3) to solve for 8(t) and then, that

solution is used in (i) to obtain the required orientation

specified by D(tf). The attitude matrix D(tf) can be computed

in yet another way, since the rate of change of D(t) as a

function Jf w(t) is given by the well known matrix differential

equation

D(t) =- [w(t)x]D(t) (i0)

The matrix [w(t)x] is defined on the components of w(t) when the

latter is resolved in the changing (final) coordinate system. We

also denote this matrix by W(t); that is,
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W(t) = [w(t)x] (Ii)

Hence (I0) can be written also as

D(t) = - W(t)D(t) (12)

The explicit expression for W(t) ( or [w(t)x] ) is given by the

skew-symmetric matrix:

W(t) =

0 -w 3 (t) w 2 (t)

w 3 (t) 0 -w I (t)

-w2 (t) wl(t) 0

(13)

There is, then, an equivalence between the pair (i) and (3) on

the one hand, and (12) on the other hand.

Euler's theorem states, basically, that there always exists a

vector O(tf) which specifies the orientation regardless of

which w(t) generated that O(tf). Consequently, any w(t) which

satisfies the following two conditions, rotates the initial

coordinate system into the same orientation

w(t) ^
w_t[ = n (14.a)

6t_(t) dt = 0(tf) (14.b)

tG

While the truth of the last proposition is self evident, it can

also be easily verified by solving (3) for any angular rate w(t)

which satisfies conditions (14). Since any E(t) which satisfies

(14) rotates the initial coordinates into the same orientation,
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then certainly the constant angular rate vector specified by

= (15)
tf-t o

rotates the initial coordinates into the same orientation and

since according to Euler's theorem such 8(tf) always exists, then

such constant w exists too. Finally, since such a constant

exists then, following (4) and (ii), there also exists a

corresponding constant matrix, W,

W

1

W = tf-to 8f (16)

which when used in solving (12), yields the D(tf) that

corresponds to 8(tf). Therefore, in view of the equivalence

between the pair (i) and (3) on the one hand, and (12) on the

other hand, we can phrase an equivalent formulation of Euler's

theorem as follows:

Regardless of what matrix W(t) generated D(tf), it is

always possible to find a constant matrix W which generates

the same D(tf).

We call this formulation continuous because it relates to the

continuous change of the orientation as a result of the existence

of an angular rate at which the orientation changes.

III. REPRESENTATION OF ROTATIONS I__NNn-D

Denote the dimension of an Euclidean space by n. The rotation

matrix in n-D, being a square matrix, consists of n 2 elements.
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However, the orthogonality of the matrix imposes (n+l)n/2

constraints on it. Consequently a rotation matrix in n-D has only

m=(n-l)n/2 independent parameters. That is, a rotation matrix in

n-D is defined by exactly m=(n-l)n/2 parameters. Consider now the

3-D rotation. As indicated by (i) and indeed as stated by Euler

[i,ii] the vector 8(tf) in its three components contains the

necessary and sufficient information for specifying the 3-D

rotation. Similarly the orthogonal rotation matrix D(tf) contains

three independent parameters although it has nine elements. So

the 3-D case is unique in that n=m and the rotation can be

described by either a vector or a matrix. In all other

dimensions, though, n_m and since m parameters are needed to

define the rotation, a vector with its n elements cannot

specify a rotation. Rotation matrices though, with their m

independent parameters, do specify the rotation. As a

consequence of this discussion, it is concluded that the

original version of Euler's theorem or any of its variants

presented in Section I are not extendible to n-D while the

alternate formulation of Euler's theorem given in the preceding

section may be extended to n-D.

IV. EULER'S THEOREM IN n-D

In view of the conclusion drawn in the last section, the

general formulations of Euler's theorem in n-D are that given in

Section II. Let us first address the angular-matrix (discrete)

formulation and rephrase it in a more general frame by the

following theorem:
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Theorem i: Given the arbitrary unitary matrices Do-D(t o) and

Df=D(tf), then Df can always be expressed in the
form- o

Df = e-e DO (17)

where e is a skew Hermitlan-matrlx.

Since the rotation matrix is orthogonal, the angular-matrix

formulation of Euler's theorem is a special case of this theorem.

Although the theorem is not new [see e.g. exercise 4 on p. 346 of

ref. 12], for the sake of completeness, we present here a proof

of the theorem.

Proof: Define the unitary matrix

D = DfD_ (18)

where + denotes the conjugate transpose of a matrix. Since D is

unitary, it is also normal and as such it has n orthogonal

eigenvectors (see theorem A1 in the Appendix). Define a matrix V

whose columns are the eigenvectors of D. Then V is unitary. Since

the eigenvectors of D form an orthonormal set, then

D = V G V + (19)

where G is the diagonal matrix of the eigenvalues of D (see A2).

Now since D is unitary, its n eigenvalues gl,g2, ...... ,gn

lie on the unit circle of the complex plane (see A3); that is,

J#igi = e i=i,2, ... ,n

where j=(-1) 1/2 and _i is the phase of the ith eigenvalue. Let us

form a diagonal matrix
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= diag(-_l,-_2 , .... ,-_n ) (20)

Then, obviously,

G = e -j_ (21)

Next we define a constant matrix e as

8 = V jl V + (22)

then (see A4)

e -8 = e -v J_ V+= V e -j_ V + (23)

Substituting (21) into (23) we obtain

e -8 = V G V + (24)

A comparison between (24) and (19) yields

D = e-e (25)

Then from (18) and (25) we obtain

Df = e -8 D O

To complete the proof we still have to show that e is skew-

Hermitian. From (25)

D + = e -e+ (26)

Also (see A5)

D -I = e e (27)

but, since D is unitary
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D + = D-I

therefore the right hand side of (26) is equal to that of (27),

consequently

e+ = -e

This completes the proof.

With Theorem 1 on-hand we are ready now to address the

angular-rate (continuous) formulation of Euler's theorem. Here

too we rephrase the latter in a more general frame as follows:

Theorem 2: Given the arbitrary unitary matrices Do=D(to) and

Df=D(tf), then Df can always be obtained as a

solution of (12) with the initial condition D o
where W is a constant skew-Hermitian matrix.

Note that due to the orthogonality of the rotation matrix, the

angular-rate formulation of Euler's theorem constitutes a special

case of the last theorem. The following proof of the latter is

based on the former theorem.

Proof: From Theorem 1

Df = e-e D O

On the other hand, the solution (12) when W is constant is

-W(to-t f)
Df = e D o

the equality of these yields

1
W = e (28)

tf-t o

that is; no matter what W(t) generated Df, we can always find a
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constant W according to (28) for which the solution of (12) with

the initial condition Do yields Df at tf. Since 8 is skew-

Hermitian then, from (28), W is skew-Hermitian too. This

concludes the proof.

While we can consider W as an average velocity computed by

(28), we note however that W is not the average of W(t); that is,

ft'(t) dt (29)
1

W _ tf_t ° t_

This inequality is known in 3-D as non-commutativity. (Another

expression for the non-commutativity of rotations is the

inequality expressed in (9) ).

The above theorems extend Euler's theorem in two ways. First

they deal with the general n-D rather than the 3-D case and

secondly they extend Euler's theorem to the unitary (complex)

transformation. Euler's original formulation is, then, a special

case of the above theorems.

V. NUMERICAL EXAMPLE

To demonstrate the facts pointed out in the preceding section

we bring a fourth order example in which we show how Df which is

obtained as a result of the solution of (5) for a certain time

varying angular velocity matrix, W(t), can be obtained by the

solution of (5) with a constant angular velocity matrix, W.

For simplicity we deal with a special unitary matrix; namely,

with an orthogonal one. Also for simplicity and with no loss of
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generality, we choose Do=I. We first use the following time

varying W(t) to solve (12) from to=0. to tf=0.5 sec

- 0. 1.5t 1.5t 2 0.8t 3 -

W(t) =

-l.5t

-l.5t 2

-0.8t 3

0. -0.9sin (6.28t) -0.95/(l.-t)

0.9sin (6.28t) 0. 0.75

0.95/(l.-t) -0.75 0.

(3O)

this yields the following solution at tf:

D f=

D

0.98130682

0.18388549

0.04691911

-0.03196326

-0.15805594

0.76180341

-0.10221727

-0.61985926

-0.08266215

0.21777062

0.96379421

0.12978307

-0.07226489

0.58173674

-0.24176631

0.77324588

The following eigenvector matrix of Df is obtained using the

EIGZF routine of the IMSL library:

V

-0.038+j0.161

0.683+j0.

-0.170+j0.184

0.056+j0.664

-0.038-j0.161

0.683+j0.

-0.170-j0.184

0.056-90.664

m

0.687+j0. 0.687+j0. I0.037-j0.177 0 037+j0.177

-0.052-j0. 659 -0 052+j0. 659

-0. 151+j0. 181 -0 151-j0. 181_

The same routine also yields the following eigenvalues of Df:

gl = 0.7452+j0.6668 = e j0.7300

g2 = 0.7452-j0.6668 = e -j0"7300

g3 = 0.9949+j0.i012 = e j0.i013

g4 = 0.9949-j0.i012 = e -j0"I013

The diagonal matrix j_ is computed according to (20) and used in

(22) and (28) to compute the following constant angular velocity

matrix:
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W

m

0.00000000

-0.37147707

-0.12387442

-0.04981448

0.37147707

0.00000000

0.35388342

1.31771209

m

0.12387442 0.04981448

-0.35388342 -1.31771209

0.00000000 0.40459905

-0.40459905 0.00000000

(31)

When now (12) is solved with the initial condition Do=I starting

at to=0. then, as expected, Df is the solution obtained at time

t=0.5. Finally, to demonstrate the inequality presented in (29)

we average W(t) given in (30). The resulting average is:

W(t)

tf-t o

dt =
Ii O. 0.375 0.125 0.025

-0.375 0. -0.573 -1.317

-0.125 0.573 0. 0.750

-0.025 1.317 -0.750 0.

Obviously the latter matrix differs from the constant angular

matrix, W, given in (31).

V. CONCLUSIONS

Euler's fundamental theorem on the ability to describe any

orientation of a rigid body as a single rotation and the various

known versions of this theorem cannot be directly extended to

other dimensions because all known formulations hinge on the

concept of axis of rotation which does not exist in dimensions

other than three. Nevertheless, when it is recognized that the

general n-D rotation is characterized not by an axis of rotation

but rather by an angular-difference matrix or by an angular

velocity matrix, Euler's theorem can be reformulated in 3-D in

ways which are equivalent to the other known formulations and

then the new formulations can be extended to n-D. In this work we

presented the new formulations in 3-D and then we proved that
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they hold for any dimension. One of the new formulations states

that no matter what was the sequence of rotations that resulted

in the final orientation, it is always possible to express the

rotation matrix as an exponential function of a skew-symmetric

angular-difference matrix. The other new formulation of Euler's

theorem states that no matter how the angular velocity matrix

changes as a function of time, we can always find a constant

angular-velocity matrix which will result in identical

orientation change over the same time interval.

The proof of the theorems supplied the algorithm needed to

compute the angular-difference matrix and the equivalent constant

angular-velocity matrix once the initial and the final attitudes

as well as the time interval are given. To demonstrate the new

formulations of the theorem and their extendibility to dimensions

other than 3 we used the algorithm to solve a 4-D example. The

example clearly demonstrates the ability to reach the same final

orientation using a constant angular velocity matrix.

Appendix

This appendix lists some known theorems which are used in the

proof of the theorem on the extended Euler theorem.

A_!: A set of n orthonormal eigenvectors can be found for an nxn

normal matrix. [See p. 76 of Ref. 13].

A_Z2: A matrix can be reduced to a diagonal matrix by a similarity

transformation if and only if a set of n linearly
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A_23:

A_44:

A_55:

independent eigenvectors can be found. [See p. 72 of Ref.

13].

The eigenvalues of a unitary matrix have absolute value i.

[See p. 129 in Ref. 14].

If A = TJT -I, then f(A) = Tf(J)T -I. [See p. 80 of Ref. 13].

If A = e B then A -I = e -B.

Proof: Since B and -B commute, then eBe -B = e B-B = I

hence

thus

Ae-B=I

A-I=e-B
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ANALYSIS OF THE FLIGHT DYNAMICS OF THE SOLAR
MAXIMUMMISSION(SMM) OFF-SUN

SCIENTIFIC POINTING*

D. S. Pitone and J. R. Klein

Computer Sciences Corporation (CSC)

ABSTRACT

This paper presents the algorithms created and implemented by the

Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM)

attitude operations team to support large-angle spacecraft pointing at sci-

entific objectives. The mission objective of the post-repair SMM satellite

was to study solar phenomena. However, because the scientific instru-

ments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray

Burst Spectrometer (HXRBS), were able to view objects other than the

Sun, attitude operations support for attitude pointing at large angles from

the nominal solar-pointing attitudes has been required. Subsequently, atti-

tude support for SMM has been provided for scientific objectives such as

Comet Halley, Supernova 1987A, Cygnus X-l, and the Crab Nebula. In

addition, the analysis has been extended to include the reverse problem,

computing the right ascension and declination of a body given the off-Sun

angles. This analysis has led to the computation of the orbits of seven new

solar comets seen in the field-of-view (FOV) of the CP. The activities nec-

essary to meet these large-angle attitude-pointing sequences, such as slew

sequence planning, viewing-period prediction, and tracking-bias computa-

tion are described. Analysis is presented for the computation of

manuevers and pointing parameters relative to the SMM-unique, Sun-

centered reference frame. Finally, science data and independent attitude

solutions are used to evaluate the large-angle pointing performance.

*This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. INTRODUCTION

This paper presents

Algorithms used in support of large-angle attitude pointing maneuvers by the

Solar Maximum Mission (SMM) spacecraft to nonsolar scientific objectives

A brief history of the mission and its primary scientific objectives

Background of the problem of pointing at celestial objects, especially as pertains
to the SMM

The algorithms used to compute the necessary parameters for the observations are de-

rived and results are presented that show the algorithms worked correctly, with accuracy

significantly better than that specified by the SMM project. This work was performed by

the Flight Dynamics Division (FDD) attitude determination and control analysts in the

Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC).

1.1 MISSION HISTORY

The SMM spacecraft was launched in February 1980 from the Eastern Test Range into an

approximately circular low-Earth orbit, with an inclination of nearly 28 degrees (deg)

(Reference 1). The spacecraft functioned normally until November 1980 when the stand-

ard reaction wheel (SRW) package that controls the spacecraft attitude failed. To preserve

the mission, the spacecraft was put into a spin, approximately 1 deg per second (sec),

about the minor principal axis. While the spacecraft was in this spin mode, very little

scientific work was accomplished. In April 1984, the spacecraft was repaired in-orbit by

astronauts aboard the Space Transportation System (STS) orbiter. The entire modular

attitude control system (MACS) was replaced, and the spacecraft returned to normal

operations.

Some time before the repair mission, scientists at the GSFC Laboratory for Astronomy

and Solar Physics proposed that the SMM be used to observe Comet Halley for approxi-

mately 1 month before and after perihelion of the comet's orbit (February 9, 1986). Dur-

ing this time, the comet, as seen from the Earth, would be between 7 and 45 deg from the

Sun, and very little useful ground-based observation was anticipated.

1.2 SMM SCIENTIFIC OBJECTIVES AND PAYLOAD

The original scientific objective of the SMM was to study solar phenomena, especially the

solar maximum of 1981. The mission was planned to be three-axis stabilized to keep the

scientific payload pointed at the Sun. However, because of the SRW failure, most of the

scientific instruments missed the solar maximum. Since the repair of the spacecraft, a

tremendous amount of solar radiation data at a variety of wavelengths has been amassed.

In addition, beginning with the Comet Halley observations, several interesting nonsolar

targets have been and are being studied.

A Coronagraph/Polarimeter (CP), designed to study the solar corona in the visible spec-

trum, was used to observe Comet Halley and the Moon. In addition, seven solar grazing
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comets have been discovered during routine operation of the CP. A Hard X-Ray Burst

Spectrometer (HXRBS) was pointed at Cygnus X-1 (a suspected black hole) and the Crab

Nebula. The Gamma Ray Spectrometer (GRS) was used to study gamma ray output from

Supernova 1987A and the Ultra-Violet Spectrometer (UVSP) observed a transit of the Sun

by Mercury. All of these observations required attitude excursions from the primary solar

objective and provided valuable data for the scientific community on a wide range of

celestial objectives.

1.3 MANEUVER REQUIREMENTS

The goal of this analysis is to provide algorithms for attitude control of the SMM so that

the scientific payload points at the desired celestial body and tracks it, even if it is moving

relatively fast, to keep the body in the instrument field of view (FOV). In addition, the

periods during which the celestial body is visible to the spacecraft (i.e., not occulted by

the Earth) must be determined.

Requirements for attitude support of the large-angle attitude pointing maneuvers were not

defined until several years after the spacecraft had been launched. For this reason,

mathematical algorithms were developed for each nonsolar objective, as needed. The

algorithms were later combined to form one software system that could efficiently plan

the large-angle off-solar pointing maneuvers for any celestial body. The software was

designed to plan the maneuver sequence, compute the viewing periods available, and

determine the tracking parameters. Once computed, these data are uplinked to the space-
craft.

The constraints imposed by the SMM experimenters were few and were concerned with

getting the best observations possible. To accomplish normal pointing, an accuracy of a

tenth of a degree was desired. Another consideration was the determination accuracy in

the viewing periods. Because of uncertainties in the spacecraft ephemeris, pointing accu-

racy, and spacecraft gyro drift, accuracy in computing the start and stop times of the

viewing periods was estimated to be 10 sec (3 a).

Consideration for spacecraft safety placed other constraints on the maneuvers. The most

important constraint was that the spacecraft had to remain in a power-positive mode to

ensure survival of the spacecraft following any observation period contingency. This effec-

tively meant that the body-fixed Solar Panel Array would always need to be absorbing at

least as much energy as the spacecraft was using. During nominal operation, the solar

panels are approximately perpendicular to the spacecraft-to-Sun vector. As a result of the

analysis by the power engineers, the maximum off-Sun pointing angle was set at 65 deg.

2. PROBLEM ANALYSIS

2.1 THE SMM REFERENCE FRAMES

The SMM spacecraft attitude is represented in a solar reference frame, referred to as the

SUN frame. The X-axis of the SUN frame is defined by the apparent spacecraft-to-Sun

unit vector, V___s• The Y-axis is the unitized cross-product of the Sun's North Pole vector,
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S,p, and V__s. The Z-axis completes the right-handed coordinate system. The equations

for the unit vectors along the Sun frame axes are (Reference 2)

x = _ (1)

Y = a _p x x) (2)

_z = a _p - S_p • x_)x) (3)

where

a = [1 - _p

Figure 1 illustrates the SUN coordinate system.

X_X)2] -1/2 (4)

A

X 'APPARENT' SPACECRAFT-TO-SUN UNIT VECTOR

NP SOLAR NORTH
POLE UNIT VECTOR

.,::,_"

Y

A

Z
i

A

v

Figure 1. Solar Coordinate System

The transform, A, from geocentric inertial (GCI) coordinates to the SUN frame, is com-

puted from the actual spacecraft and Sun positions with consideration for the Earth and

spacecraft velocities and the speed of light to correct for aberration. Thus, for attitude

determination, reference vectors must be transformed using A to get the reference vectors

in the SUN frame. Due to the spacecraft's orbit about the Earth and the Earth's orbit

about the Sun, the SUN frame is constantly changing. Thus, each time the attitude of the
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spacecraft is computed by the spacecraft's onboard computer (OBC) or the ground sys-

tem, the SUN frame has to be recomputed.

The SMM spacecraft attitude is represented as the transformation from the SUN frame to

the SMM body frame. As shown in Figure 2, the fine-pointing Sun sensor (FPSS) and the

scientific instruments are at one end of the spacecraft. During normal operations, the

attitude control system is designed to point this end of the spacecraft at small areas of the

Sun. The X-axis (roll) of the spacecraft body frame is defined to coincide with the direc-

tion of the FPSS boresight. Two orthogonal axes perpendicular to the FPSS boresight and

corresponding to the FPSS outputs are defined as the Y- (pitch) and Z- (yaw) axes of the

body frame. This alignment is advantageous because the spacecraft pitch and yaw rota-

tions are read directly from the output of the FPSS when the Sun is in the FOV of the

FPSS, which is 4-square deg. Thus, during normal operations, the spacecraft is observing

the Sun, and the attitude accuracy in pitch and yaw is 5 arc-sec (3a). The roll is deter-

mined by the fixed-head star trackers (FHSTs) to an accuracy of approximately 30 arc-

sec (3 a). During periods of solar occultation or spacecraft pitch or yaw offpoint, the Sun

is not in the FPSS FOV, and the attitude of all three axes is determined by the FHSTs to

an accuracy of approximately 30 arc-sec (3a). Most of the scientific instrument

boresights are parallel to the boresight of the FPSS; thus, the output from the FPSS can

be used directly to determine where the instruments are pointing to within 5 arc-sec when

the Sun is being observed.

The SMM attitude matrix, B, is the matrix that transforms a vector from the SUN frame

to the SMM body frame. If the roll angle is _0, the pitch angle O, and the yaw angle fl,

the matrix B is (Reference 2)

B = %@ %(0) T O) (5)

where Ti are the individual matrices for each Euler rotation on the intermediate axes.

Thus,

B

cos/_ cos 0 I-sin fl cos 0 t

sin 0 [

cos fl sin 0 sin @ + sin fl cos @ ]

-sin fl sin 0 sin _ + cos fl cos _ [

-cos 0 sin _ [

-1
-cos fl sin 0 cos _O + sin fl sin $1

sin fl sin 0 cos q_ + cos fl sin _ [
/

cos 0 cos _ _]

(6)

2.2 CALCULATION OF POINTING MANEUVERS

Pointing at a celestial object involves rotating the SMM to align its X-axis with the

spacecraft-to-target vector. In general, pointing from an initial target to any other target

on the celestial sphere can be accomplished by consecutive rotations about any two

orthogonal axes (Reference 3). Thus, any pair of rotations of roll, pitch, or yaw will

suffice. For convenience, the first maneuver is chosen to be a roll. After this, the four

choices for the second maneuver are positive or negative pitch or yaw. The magnitude of

any of these second maneuvers is simply the angular distance from the Sun to the target
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objective. For this algorithm, the roll corresponding to each choice of second rotations is
computed, and the smallest roll is chosen.

x, TO SUN

DIRECTION OF

SCIENTIFIC INSTRUMENT
AND FPSS BORES_GHTS

Figure 2. Scientific and FPSS Boresight Directions

To compute the maneuvers, the roll-yaw combination is computed first. The attitude ma-

trix, B, for this case is T3(fl) T1(¢) or

F cos fl I sin fl cos tp I sin fl sin _]

B=[ -sOfllc°sflc°seplc°sflsinq_l-sin _ I cos ¢ J (7)

This transforms vectors from the SUN frame to the body frame after the maneuvers have

been completed.
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Since the scientific instrument boresightsare parallel to the X-axis, the representation of
the celestial target vector in the body frame after the maneuver is desired to be

Ell_ob = o (8)
0

The GCI coordinate representation of the celestial target vector, unchanged by the maneu-
ver is

I Vgcil
_o, : v_oi2[ (9)

To represent the celestial target vector in the SUN frame, the matrix A is calculated for

the time of the maneuvers. The representation of the celestial target vector, V___, in the

Sun frame is

while V_.scb

V__ = A V_4¢i

is related to V_s as follows:

V__ = B T V___¢b

(lO)

(11)

or

[v..l[ o 1]V,2 = sinfl cos ¢ I cosfl cos ¢ I -sinq_ 0

Vs3 sinfl sin _ I cosfl sin ¢ ] cos el 0

(12)

Thus, V__scan be computed from Equation (10) and substituted into the left-hand side of

Equation (12). The unknowns in Equation (12) are then the maneuver angles fl and ¢.

Further reduction of this equation leads to

v_ = cos fl (13)

Vs2 = sinf cos ¢ (14)

Vs3 = sin fl sin _ (15)
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Dividing Equation (15) by Equation (14)

Vs3/Vs2 = tan _p (16)

Thus, the equations for the roll-yaw maneuversare

Yaw = /3 = cos-' (Vsl) (17)

Roll = ¢p = tan -1 (Vs3/Vs2) (18)

The sign of the roll is resolved by using the function DATAN2 to compute the inverse

tangent. The roll-pitch sequences are calculated from the above roll-yaw results by adding

and subtracting 90 deg from the roll and selecting the sign of the pitch accordingly. As

stated earlier, the maneuver sequence requiring the smallest roll rotation is the favored

sequence. For targets that are further than 65 deg from the Sun, the maneuver to the

attitude closest to the celestial body is computed. In this case the angular distance from

the target to the planned closest attitude is also computed and delivered to the experi-
menters.

2.3 COMET POSITION DETERMINATION

To date, seven Sun-grazing comets have been discovered in the CP FOV during normal

observations of the solar corona. The CP uses an occulting disk on its sensor FOV to

block out the main part of the Sun, enabling it to observe the solar corona. These comets

could not have been observed without this special instrumentation of the CP. Several

observations of each comet in CP instrument coordinates have been reported. In support

of these observations, it is desired to transform the CP comet coordinate positions to GCI
coordinates to determine the orbits of the comets.

The determination of the comet positions in GCI coordinates is the inverse of the maneu.

ver planning. It is assumed that the CP boresight is parallel to the X-axis of the space-

craft. The comet position in CP coordinates is transformed to an equivalent spacecraft

roll-pitch maneuver sequence that would point the spacecraft directly at the comet. The

spacecraft, however, is never actually maneuvered; the maneuver is only computed so

that the maneuver planning procedure can be reversed, and the comet position computed.

The position vector in the Sun frame is then determined from the roll-pitch angles. The

comet position vector in GCI coordinates is computed by multiplying the comet position

vector in the Sun frame by the transpose of A at the time of the observation.

The CP uses a two-dimensional polar coordinate system. The first coordinate is the coun-

terclockwise rotation about the X-axis (roll) from the positive Z-axis (yaw). Thus, this is

the negative roll necessary to align the positive Z-axis (yaw) with the Sun-to-comet vector.

The second coordinate is the angular separation between the center of the Sun and the

comet, along the positive Z-axis (yaw). This corresponds to a negative pitch angle. The

result is the roll-pitch angle pair that would be required to maneuver the spacecraft and

align the boresight with the spacecraft-to-comet vector.
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If the matrix, B', for a roll (_)-pitch (0) maneuver from a null attitude in the Sun frame
to the comet is

I c O 0 ] sin 0 sin _ ] -sin0cos _]

1

B' = [ cos cp [ sin _ 1 (19)Lsin 0 [ -cos 0sin _ [ cos 0cos tp

then the position vector, Vc, of the comet in the Sun frame is simply

Vc=B ''r 0

0

(20)

or

rcos00 sin0leviv, = | sin o sin I cos I -cos o sin (21)
L-sin0 cos tp I sin _ I cos 0 cos _b

This assumes that the spacecraft attitude is zero roll, pitch, and yaw so that the SUN

frame is aligned to the body frame. If the spacecraft is at a non-nominal attitude, the

matrix B must be recomputed, taking into account the spacecraft attitude at the time of

the observation. The comet position in GCI coordinates, Vcgct, is then

Vcgci = A "r Vc (22)

The vector, V_gci, is then reduced to right ascension and declination (mean of 1950) and

delivered to the International Astronomical Union (IAU), where it is used for orbit com-

putations.

2.4 CELESTIAL BODY VIEWING PERIOD PREDICTION

Because of the geometry of the SMM orbit, every point in the celestial sphere of the

spacecraft is occulted by the Earth at some time in one revolution of the ascending node

of the spacecraft's orbit. Thus, a list of periods when the celestial target can be viewed by

the spacecraft is necessary for all times that observations of nonsolar targets are being

planned. The computation of these periods is done by comparing the relevant angles in

the geometry of the spacecraft, Earth, and the target objective.

The unit vector, W__ce, from the center of the Earth to the spacecraft, is constantly chang-

ing as the spacecraft orbits the Earth and is known from the spacecraft ephemeris. The

vector from the Earth to the target body, Web, is normally computed from the right

ascension and declination of the target body in the Earth's celestial sphere. To compute

the viewing periods, the spacecraft-to-target vector, W___b is needed. Since the distance to

the viewing target in most cases has not been relevant, the Earth-to-target vector is
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represented as a unit vector. Thus, vector addition of the Earth-to-target vector and the

Earth-to-spacecraft vector does not give the spacecraft-to-target vector. Instead, it is as-

sumed that the parallax of the target body's position due to the spacecraft's orbit around

the Earth is negligible, and, therefore,

__wob-- (23)

For objects out of the solar system and the outer planets, this approximation will yield

results that are well within the constraints. For the inner planets and comets, this approxi-
mation leads to an error in the vector of between 1 arc-sec and 20 arc-sec. This will

translate to an error of less than 1 sec in the occultation times, which can be considered

negligible compared to the 10-sec constraint on the accuracy. If observations of the Moon

are planned, the position error caused by the above assumption can reach 1 deg. This will

translate to approximately a 15-sec error in the occultation times, which is greater than

the maximum error allowed. To resolve this, the Earth-to-Moon vector obtained from

lunar ephemerides is used to calculate W__b directly by vector addition.

Once W__b and W__¢e are known, the angle, _, between the vectors is computed by taking

the inverse cosine of the dot product of the two vectors as

= cos -1 (_W__sb W__ce) (24)

This geometry is illustrated in Figure 3.

SPACECRAFT
SPACECRAFT TO CELESTIAL BODY

EARTH TO CELESTIAL BODY
r

Figure 3. Occultation Geometry

To compute whether the celestial target is blocked by the Earth, • is compared to the

subtended Earth half angle, f2. The computation of f_ assumes a perfectly circular
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Earth, with a radius equal to the equatorial radius. This translates to a maximum of 8 sec

for celestial objects with declinations near positive or negative 90 deg. However, nearly

all of the celestial targets observed by the SMM have had declinations close to the Sun's.

Thus, the typical error induced by the Earth's oblateness is typically near 3 or 4 sec.

The half angle subtended by the Earth is given by

if2 = sin -1 (R/D) (25)

where R is the equatorial radius of the Earth and D is the magnitude of the Earth-to-

spacecraft vector obtained from the spacecraft ephemeris file. The relationship of the

computed angles is also shown in Figure 3. The only variable on the right-hand side of

Equation (25) is D. This varies with the orbital eccentricity and more slowly with the rate

of decay of the spacecraft's altitude above the Earth. Thus, for SMM, Q changes very

slowly and is approximately 69 deg. The celestial object is considered to be occulted by

the Earth from the spacecraft if _ is larger than _. Conversely, if • is larger than f2,

the celestial object is considered in view of the spacecraft. This makes sense intuitively,

since at times the spacecraft is between the Earth and the celestial object, q_ will be

obtuse, while if the Earth is between the spacecraft and the celestial object, tl) will be

acute.

Earth occultation computations are performed every 4 minutes (min) for the period of

interest. When a change occurs, a binary search is used to narrow the change time to the

nearest second, which will typically have a maximum error (3t y) of less than 10 sec

(Reference 4).

2.5 TRACKING PARAMETER COMPUTATION

Targets not in the solar system, such as distant stars, do not move significantly relative to

the SMM due to the spacecraft's orbit about the Earth or the Earth's motion about the

Sun. Thus, during observations of very distant objects, provisions need not be made to

track motion of the celestial target due to parallax and proper motion. However, bodies in

heliocentric (planets or comets) or geocentric (the Moon) orbits will move through an

angle d, which can be represented as a rotation about a unit vector, e_, in the spacecraft

inertial reference unit (IRU) coordinate frame as illustrated in Figure 4. This motion is

due to the spacecraft's motion about the Earth, the Earth's motion about the Sun, and the

target objects motion in its orbit about the Sun or Earth. During an observation period at

a constant attitude, this motion will cause the celestial target to move through, and even-

tually out of, the scientific sensor FOV. To compensate, the spacecraft is rotated about

the axis e by the angle 6 from the beginning to the end of the observation period. This

motion is called tracking.

Tracking by the spacecraft is accomplished by computing the angle, 6, and axis of rota-

tion, e__,of the target body in the IRU sensor frame of reference and combining d and e_

with the observation time At to form a command gyro rate bias vector (historically called

BGDT) which is uplinked to the spacecraft. These BGDTs cause the gyros to show motion

opposite to the way the target is moving. This apparent (in that the spacecraft is not
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actually moving) motion causes the SRWs to counteract the apparent motion and move

the spacecraft in the direction of the celestial objective. Thus, tracking is accomplished.

To compute the BGDTs, the transformation matrix, H, between the SMM body-frame

attitude at the start of the observation period and the attitude at the end of the observation

period is computed and used to determine average rates about the three IRU axes.

TARGET AT
OBSERVATION

STOP TIME

TARGET AT
OBSERVATION

START TIME

_ XBODY

MOTION

Figure 4. Tracking Geometry

"7
_C

To compute H, the maneuvers to point the spacecraft at the target are computed by the

methods described earlier at the observation start and stop times. The maneuvers are

assumed to be relative to an attitude of roll, pitch, and yaw equal to zero. Thus, using

Equation (6), the SUN-frame-to-body-frame matrices, B1 and B2, at the start and stop

times are computed. However, the coordinate frame that B is referenced to at all times on

the SMM mission is the SUN frame, which, as stated above, is not inertial. The attitude

motion for target tracking must be referenced to an inertial frame. For this, the GCI-to-

SUN frame matrix, A, is used. In addition, because the BGDTs are for the IRUs, they

must be represented in the IRU sensor frame. Defining G1 and G2 to be the GCI-to-IRU

transformation matrices at the start and stop times, respectively, and M to be the IRU-to-

body transformation matrix, then

G1 = M T B1 A1 (26)
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and

02 = M T B2 A2 (27)

Gz = H G1 (28)

Solving for H yields

H = G2 G1T = M T B2 A2 (M T Ba A1) T

= M T B2 A2 A T BT M

(29)

If the Sun frame were an inertial flame, A1 would be equal to A2, and Equation (29)

would be simplified. Now that H has been found, 6 and _. can be computed from H, and

the BGDTs can be computed.

To compute 6 and e, H is written as an Euler rotation with unit vector e in the IRU frame

and rotation angle d. Thus, using the Euler convention for a general rotation, H is (Refer-

ence 4)

H = cos (6) I + (1 - cos (6))ee T - sin (d)[[e]] (3o)

where [[e]] is the skew symmetric matrix representation of a vector. The general form for

a three-component vector is

[[x_l]

0

= X 3

- X 2

q
- X3 X2 /

J0 -xl

Xl 0

(31)

Thus, it is desired to manipulate Equation (30) to solve for e and d. Defining the pa-

rameter k 2 as

k z = (H23 - H32) 2 + (H31 - HI3) 2 + (H12 - Hza) 2 (32)

substitution from Equation (30) leads to

k z = [e2 e3 (1 - cos d) + el sin d - ez e3 (1 - cos d) + el sin 612

+ [el e3 (1 - cos 6) + ez sin d - el e3 (1 - cos d) + e2 sin d] z (33)

+ [el e2 (1 - cos d) + e3 sin d - el e2 (1 - cos 6) + e3 sin d]2
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Some simple algebra leads to

k 2 = 4el2 sin 2 6 + 4e22 sin E 6 + 4e 2 sin 2 6

(34)

= 4 " sin 2 6 * (e_ + e] + e 2)

Since e is a unit vector, the last quantity on the right-hand side of Equation (34) is equal

to 1. Therefore,

k 2 = 4 * sin 2 6 (35)

or taking the square root of both sides and solving for 6

6 = sin -1 (k/2) (36)

where k is defined by Equation (32).

To solve for .¢., the off-diagonal terms in Equation (30) are used. To demonstrate this

using el,

H23 - H32 = e2 e3 (1 -

Solving for el

=2*el*

Similarily,

cos 6) + e] sin 6 - e2 e3 (1 -

sin 6

cos 6) + el sin 6

(37)

el = (H23 - H32)/(2 * sin 6) (38)

e2 = (H31 - H13)/(2 * sin 6) (39)

e3 = (H12 - H21)/(2 " sin 6) (40)

To compute the BGDTs, the angle of rotation in the IRU coordinate frame is divided by

the observation time. The rate about each of the IRU axes is then

x' = e] " (6/At) (41)

y' = e2 * (6/At) (42)

z' = e3 * (6/At) (43)

where At is the observation time. These rates are converted to the units of the SMM IRU,

radians per 0.512 sec, and uplinked to the spacecraft for use in the control loop.
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3. RESULTS AND CONCLUSIONS

3.1 RESULTS

To date, these algorithms have been used to support all the SMM scientific off-Sun ma-

neuvers. Since the computed parameters are designed to support pointing to celestial

objects other than the Sun, the performance of the algorithms is ultimately measured by

the quality of these observations. Thus far, the science observations have been completed

without incident and have yielded excellent results each time. Images obtained from the

SMM scientific instruments have always had the target object in the sensor FOV and at

the correct times. In addition, for the heliocentric and geocentric objectives, the tracking

system has continuously kept the object in view.

As an independent check, attitude determination solutions during the observations have

indicated the spacecraft pointing accuracy is within 180 arc-sec. The accuracy of the solu-

tions was approximately 30 arc-sec (3 or). The bulk of the pointing error was due to uncer-

tainty in the IRU bias. During the observations, the spacecraft was inertially stabilized by

the IRU package. However, spacecraft attitude drift occurred because of uncertainty in

the knowledge of the IRU bias. This bias was calibrated periodically, and the error in the

pointing did not exceed 120 arc-sec due to the error in the bias.

Most of the remaining error in the pointing accuracy was due to uncontrollable timing

problems with the maneuvers. Since the geometry of the spacecraft, Earth, Sun, and

target-body system was constantly changing, the required maneuvers were constantly

changing. The algorithm derived above assumes the maneuvers were instantaneous. How-

ever, the SMM maneuvered at approximately 5 deg per rain; consequently, pointing

errors were incurred. In addition, the start time of the maneuvers was calculated at 5-see

intervals. Thus, if the maneuvers did not start at these times, greater error was incurred.

The pointing errors due to the timing errors did not exceed 50 arc-sec. Other potential

error sources include uncertainties in the position of the target body, the initial spacecraft

attitude from which the maneuvers were performed, and the IRU scale factors which

controlled the magnitude of a commanded maneuver.

3.2 CONCLUSIONS

Algorithms to support off-Sun maneuvers of the SMM have been presented. These algo-

rithms compute parameters for maneuver planning, viewing period start and stop times,

and target tracking rate. All of these items are necessary to maneuver the spacecraft to

observe and track the celestial target objective. Because the Sun reference frame is non-

inertial, the equations differ from ones normally seen. This work can be adapted to space-
craft that are controlled relative to the inertial frame; however, the primary application is

to missions with non-inertial reference frames, such as Earth-pointing (1 revolution per

orbit) missions.
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This paper describes the design and testing of an
Extended Kalman Filter (EKE} for ground attitude
determination, misalignment estimation and sensor

calibration of the Earth Radiation Budget Satellite
(ERBS). Attitude is represented by the quater_ion of
rotation and the attitude estimation error is defined

as an additive error, quaternion normalization is used

for increasing the convergence rate and for minimizing
the need for filter tuning. The paper presents the

development of the filter dynamic model, the gyro error
model and the measurement models of the Sun sensors,

the IR horizon scanner and the magnetometers which are
used to generate vector measurements. The filter ts

applied to real data transmitted by ERBS sensors.
Results are presented and analyzed and the EKF

advantages as yell as sensitivities are discussed. On
the whole the filter meets the expected synergism,

accuracy and robustness.

I, INTRODUCTION

An important part of spacecraft ground support is

attitude determination, sensor alignment, and sensor

calibration. In the past, at Goddard Space Flight

Center (GSFC) in the Flight Dynamics Division (FDD)

each task was performed separately, usually using a

relatively small state . The use of more sophisticated

algorithms has been suggested in the literature, but

they have not yet been tested with real spacecraft data

for ground processing in Flight Dynamics.

The purpose of this study was to design and test an

Extended Kalman Filter (EKF). The filter was designed

for the Earth Radiation Budget Satellite (ERBS). ERBS

is equipped with the following sensors which are used
For attitude determination: 2 redundant Inertial

Reference Units (IRUs) each containing 3 slngle-axis

gyroscopes, 2 digital fine Sun sensors (FSSs), 2 infra-

red (IR) horizon scanners, and I three-axis
magnetometer. The state estimated by the filter

consists of the attitude parameters (quaternlon),

sensor misallgnments for the Sun sensor, magnetometer

and gyros, biases for the Sun sensor, horizon scanner,

magnetometer, and gyros, and scale factor corrections

for the Sun sensor, magnetometer, and gyros. The

filter was tested using real spacecraft data

transmitted to Earth by ERBS.

Kalman filters have not been used for ground

attitude processing in the FDD at GSFC. The current

ground support software implements single frame and

batch estimators and, as mentioned before, much of the

calibration effort is performed separately from the

*Aerospace Engineer, Attitude Analysis Section,

Flight Dynamic Analysis Branch.

Professor, on leave from the Aerospace Department of

Technion -Israel Institute of Technology. Member,

Technion Space Research Institute, Haifa 32000,
Israel.

attitude determination. The EKF designed for ERBS

allows for all of the calibration to be performed along

with the attitude determination.

The use of the extended Kalman filter (EKF) for
spacecraft attitude determination has been dealt with

quite extensively in the past. Kau et al. [I] as well

as Farrell [2], for example, used an ad-hoc solution to

the problem of estimating the Euler angles directly

from vector measurements. A more general approach to

this problem was presented in {3]. The problem of

estimating the direction cosine matrix directly from

vector measurements was discussed in [4]. The filter

which was required there was a linear one with some

adaptation. A general analytic exposition of the use of

the EKF for spacecraft attitude determination was given

by Lefferts, Markley and Shuster [5]. Reference [6]

dealt with the problem of estimating the attitude

quaternlon from vector measurements. Baslcally, the

estimated quantity was the difference between the best

known value of the quaternlon and its true value. This

difference was defined as a four component additive
quantity. Because of this definition the estimate of

the quaternion is not necessarily "normal unless it

converges to the correct quaternion. It was found that

normalization of the estimated quaternlon during the

fi|tering process speeds up convergence and eliminates

the need for filter tuning. In other references, e.g.

[5], [7] and for on board attitude determination

software which is used in LANDSAT 4 and is planned to

be used in the GRO and EP spacecraft a multiolicatiy_

quaternlon difference is used. Since it is assumed that

this difference quaternion is small and as for small

rotations the scalar part of the quaternion is close to

I, those algorithms are estimating only three attitude

- error components. Obviously, estimation of an

additive quaternlon error of four parameters plus the
induced normality constraint is equivalent to

estimating three parameters. Because of our good

experience with the additive quaternion error approach
[6] we chose to implement this approach in the present

EKF algorithm.

In the next section we introduce the algorithms

developed for the ERBS EKF.

II. THE EXTENDED _LMAN FILTER_

The EKF algorithm is based on the following assumed

models: System model:

- f(1{t),t) + _(t) (2.1)

Measurement Model:

_k " bk(_(tk)) + _k (2._)
where:

_(t) - state vector.

_(t)- zero mean white process.

_k" zero mean white sequence.

The EKF algorithm is as follows [8]. The measurement

update of the state estimate and of the estimation

error covariance are performed as follows:
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State Estimation Update:

_k(+) " _k(') + Kk[Zk " hkl_k('))] (2.3)

where the Gain Matrix is evaluated as follows:

Kk - Pkl-)HkT(_kl-))[Hk(_kl-))Pk(-)HkT(_k(-)) + Rk]'l

... (2,4)

Covarlance Uodatm:

Pk(+) - [l - KkHk]Pk(-)[! KkHk]T + KkRkKkT (2.5)

The propagation of the state estimate and the error
covarlance are accompllshed uslng:

State Estimation Prooaoatlon:

_(t) - f(_(t),t) (2.6)

Error Covartance Prooaaatton:

)(t) m F(_(t),t)P(t) + P(t)FT(_(t),t) + Q(t) (2.7)

where
)_(1(t),t) I

F(1(t),t) ........... I (2.8a)
)_(t) I _(t)._(t)

lh{_(t)) I

H(X(-)) - l_(t) I X(t)-_(t)

_k = covarlanca matrix of white sequence.
m spectral density matrix of H(t).

(2.eb)

The EKF rather than the linear KF algorithm must be
used because the measurement vectors obtetned from the
sensors are non-linear functions of the state vector.
The state vector was selected to be:

I-Q-I 4
I

is 3

_ " _s 2 12.91

I_sl 2

I dhl 2I

I_m 3I

I_ml 6I
I1_1 3
I__1

Following the tradition of the NASA Goddard's Flight
Dynamics Division we used vector measurenwmntsto update
the EKF. (It should be noted that thls Is not a must
but rather a choice). The effective measurements which
are used to update the filter are defined as follows

. A ^

v - MATWT,,meas (g)X I (2.10)

quaternlon components

gyro scale factor errors

gyro mlsallgnment angles

gyro biases

FSS mlsalignment angles

FSS scale factor errors

FSS biases

IR horizon scanner blases

magnetometer scale factors

magnetometer mlsallgnments

magnetometer biases

where:

- effective measurements.

MAT - transformation matrix from the nominal (non-
misallgned) sensor to body coordinates.

WT' mas - unit vector as measured by the sensor In the
sensor mtsaltgned coordinates.

A(_) - transformation matrix from the inertial to the
body coordinates as a function of the
estimated quaternton.

]I " the measured unit vector as known In the
inertial coordinates.

While the traditional EKF algorithm updates the state
estimate according to (2.31, we use _ (as computed in
(2.10)) to update the state estimate as follows

_k (+) " _k(') + KkZk (2.11)

To reconcile this apparent deviation from the ordinary
EKF algorithm, define dZk as follows

dZk " Zk - bk(_k(')) (2.121

then (2.37, the state update equation in the ordinary
EKF algorithm, reads

_k (+) l _k(') + Kkd_k (2.13)

Next define X(tk) as

_(tk) " _k(') + _(tk) (2.141

expand (2.2) in Taylor series expansion about _k(-)
and omit terms oaf second and higher order of _(_k)"
This yields

_k " bk(_k(')) + Hk_(tk) + _k (2.157

where Hk Is as defined In (2.8b). When Zk from (2.15)
is subsfituted into (2.12) we obtain

dzk " Hk_(tk) + _k (2.16)

that Is, d_k J._ ].tl).Ur.]._related to X(tk). An
inspection of (2.13) reveals that the EKF estimates
S(tk), whlch according to (2.161 is linearly related to

the effecttve measurement d_k , and then adds the
estimate, _(t_), to _k('), the best estimate of
Z(tk). As will _e seen in _he ensuing, also our use of
2, is defined in (2.10), in the state update equation,
(2.11), amounts to estimating _(tk), which is^llnearly
related to Z , and adding the estimate to _k('). In
fact, to show the latter we only have to shbw that
X(tk) is linearly related to Z. This wlll indeed be
shown in Section IV.

Ill. THE YH_

The states which vary in time are the attitude
parameters and bias states which are modeled as Markov
rather than as bias states. (The reason for thls
modellng will be discussed later). The scale factors
and mlsallgnments are assumed to be constant in time.

The attitude matrix is given in terms of the
quaternion, q, as follows

iq_'q_-q_÷q_ 2(qlq2+q3q41 2(qlq3-q2q4iI

A" (2{qlq2-q3q4) -q_+q_-q_÷q( 2(q2q3+qlq4) (3.11
I
)2(qlq3+q2q4) 2(q2q3-qlq47 -ql-q_+q_+q_
i_ _)
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The quaternton changes in time according to [B, pp.
511, 512]

where:

. Qq (3.2)

I-O wz -Wy w_lI

)-wz 0 wx WyI

 )wy-,xo w,
Q

l:wx -Wy -wz o_i

(3.3)

and where Wx ' z are the components of the spacecraft
angular velod{(y vector resolved in the spacecraft
coordinates. The true quaternion of the spacecraft
propagates in time according to (3.2). We cannot
compute q precisely since we do not know precisely the
initial quaternion nor do we know _ precisely as it is
a measured vector and the measurement contains errors.
The measured angular velocity can be written as

- _ + dw (3.4}

where

1 gyro reading.
l true angular velocity.

d_ 1 vector of gyro errors.

Since the true quaternlon propagates according to (3.2)
we propagate the estimated quaternion in a similar
manner; that is, we propagate it according to

Ao. o_ (3.s)

where _ has the form of (3.3) but its elements are the
elements of the measured angular rate B. Now a matrix
d_ can be defined as follows

- _ - dQ (3.6)

Substitution of (3.6) into (3.2) results in

i " _ - diQ (3.7)

When (3.5) is subtracted from (3.7) we obtain

As discussed in the introduction, we define an additive
quaternion error as follows

d_ -_ -_ (3.9)

Then (3.8) can be written as

di - _d_ - dOo (3.10)

A matrix, B, can be defined as follows

I-'q4 q3 q2-
I

i I "q3 "q4 ql

B l 2 Ii q2 "ql -q4
(3.11)

I
I_ ql q2 q3_l

and used in (3.10). HoweverA since _ itself is not
known, we use its estimate, g to compute (3.11}. When
this is done, we can write (3.10) as follows

I _ I (3.1z)I d_ - _dg + _dw I
I I

where _ is computed as in (3.11) using _ rather than g.

Equation (3.12) is the dynamics equation of the

additive quaternlon error.

Equation (3.12) cannot be used as a dynamics model
in an EKF since the vector of gyro errors, dw, is not a
white noise vector. It could be modeled though as a
linear system excited by a white noise. Consequently
this linear model can be augmented with the dynamics
model of (3.12). The augmented model is linear and is
driven by a white noise vector hence the model can
legitimately used by the EKF [8]. To accomplish that we
use the following standard gyro error model.

Bwx SgX 0 0 iwxl IIII0 ggxy 0gxz ll_x-ll]_gx

IdwvI-10 0 llwy 0I "I I Sgy II + Ogyx Ogyz[ Wy lll+Ibgy

I0 0 Sgzl wz lOgzx Ogzy 0 I Iwz I Ibgzldwz, I_ _I I_ _I _I I_ _) I_ _I

where

ng]x

+(noly] (3.13)
I_ I
Inolzl
l_°_(

[Sgx, Sgy, Sgz] (3.14a)

[ggxy, Ogxz, ggyx, Ogyz, Ogzx, Ogzy] (3.14b)

[bgX, bgy, bgz] (3.14c)

_T l [nglx, ngly, nglz] (3.14d)

and T denotes the transpose, _, 9-o and b_ are as
explained in (2.9) and 1!oiis a w_nite=noisev-'_ctor.We
can write (3.13) as folloVs

I
,,li]WxlWx 0 0 Wy Wz 0 0 0 0 I 0 0 nglx I

lJdWv)=)0"llwy 0 0 0 wx wz 0 0 0 l 0]i_x*+ Ingly

dwz I0 0 wz 0 0 0 0 WxWy0 0 11 Inalzl__ I_ _1 I_o I

where

Define the following matrices

;x 0 0-Ii

U-lO Wy Ol
I I

lO 0 wz[-

(3.17a)

... (3.1s)

(3.16)

-Wy WzO 0 0 0 1
I

W l I O 0 WX WZ 0 O I

I I
( 0 0 0 0 WxW
I_ Y_

then (3.15) can be written as

d_ - [UlWlI]_*

The vectors _g and _g contained in X
therefore

... (3.17b)

+ -%1 (3.18)

are constants,
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- 0 (3.19a) _ - 0 (3.1gb)

The gyro bias vector, _, may actually be time-varylng
so they are more adequat=elymodeled as Markov states as
follows [8].

(Bgx) -i/tg 0 0-J [;gx Ing2xd I I I

(bgyt"i o ,/tg o + n"'H
Ib.zl i 0 0 -l/tgllbnzl Inozzl
I_°_l )_ _$$_=_1 I__ _$

(3.ZO)

where tg is the ttme constant of the Markov states and

l!g2T . [ng2x , ng2y , ng2z] (3.21)

is the white noise vector which drives the Markov

states. Define the matrix Tgas follows

ITlltg 0 0 -I
i I

Tg - ) 0 -I/tg 0 J
I I
) 0 0 -I/tg)
I_ _i

then (3.20) can be written as

(3.22)

___ - Tg% + llg 2 (3.23)

The other bias states in the fine Sun sensor, [R
horizon scanner, and magnetometer which are listed
tn (2.9) and wtll be mentioned in the development
of the sensor error models, are also modeled as
Markov states as follows. Deftne the following
matrices

]TI/t s 0 -I ITI/th 0 -I
Ts - [ I Th - I J

l_ 0 -]/ts_l l_ 0 -l/th_l

... (3.24a) ... (3.24b)

then

where

)_ - [bA, be)

iTl/tm 0 0 -I
$ I

Tm " I O -l/t m 0 1

I_ 0 0 -i/tml_I

(3.24c)

_s " Ts_s + _s (3.25a)

_h " Th_h + _h (3.25b)

t

b-m" Tm_mb + _m (3.ZSc)

_ - [d r , dp] ._ - [bmx, bmy, bez]

... (3.26)

These vectors denote "biases" as defined in (2.9). The
scale factor and mtsalignment states of the sensors
which also are a part of the state vector listed in
(2.g), are assumed Constant. That is

6s'° (3.27)

where

_ " [Osx, Osy, gsz) ;_ " [CA, CB]

- [Smx, Smy, Smz]

" [gmxy, gmxz, gmyx, gmyz, gmzx, g_)(3.28)

The seven sensor states (of the Sun sensor, IR horizon
scanner and magnetometer) which are listed in (3.26)
and in (3.28), are augmented wlth the quaternton error
and gyro states to form the attitude augmented state
vector, _. This vector is that shown in (2.9) when g is
replaced by dQ. The differential equation which governs
the propagation of _ is obtained by combining the
linear differential equations of the components of the
attitude augmented state vector. Accordingly the
augmentation of (3.11), (3.18), (3.1g), (3.23), (3.25)
and (3.27) yields

J----J

Id_ I
I...I

,,°J

,,,|

I-_1 ^_l ^_1 ^1
I_.1 BUI BW$ BI
I..I...I...I..I
I I I I I
I..I...I...I..1
I I i I i
I..1...I...I..I
I I I ITg
I..l...I..I..

d I...I t "1
6£ [Csl'(..i..$...

I dhl I I I

i._l I I I
I...I I..)-..]

I...I I,.I...I
II_l I I I
I__l I_

..t.

,,I.

,,I o

.,I,

,°lo

I I I
I I I

.1..I..I..
I I

.I..I..I..
I I

•I..I.,I ....
I I

•I..I..I ....
I I

I I

ITs I
•1..I .... I..

I ITh
• I ..I ,.I ....

I I I
.1..I..I..I..

I I I
.I..I..I..I..

I I I

I
1

., °,J.°

I
.... J.,

I
.,J.,

..I.°

..I,.

°.1.o

,o_°,

..1.°

.,Jo.

.,J,,

IT_

I I

I..-I

,,.

...

°.o

I _sl
I...I

I..

i...l

I__I

I^ I

,',oJ

i
• °- I

l
°'°,I

+ .... l

%1

nh I

) I
I....I
I J
I....i

I_ _I

(3.29a)

which is of the form

= F(_)_ + _ (3.29b)

The spectral density of the elements of the white noise
driving Markov states in _ is related to the individual
states they dr_ve according to the well known relation
[8] Qi " 2/Ti$) _ where Qi is the spectral density of
the w_ite nbls__ driving state i, Ti is the time
constant of this Markov state and Si,o is the initial

standard deviation of the state. The matrix F(_) is the
one defined in (2.8a).

The estimation problem dealt with in this paper is
characterized by a linear dynamics equation. The system
dynamics Is determined by (3.5), (3.19), (3.23), (3.25)
and (3.27). It is easy to see that when these equatlons
are augmented into one equation we obtain an equation
of the form

- f(t)_ + _ (3.30)

where ) is given by (2.g) and f(t) is the following
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matrix

f(t) -

1-01
To.

.°

"'I'''

I
"°l'''

l
"'I''"

I

I

l
. .... .l.°

l
...... To.

T"
l

"°'l'"

l
"''l'"

I
,..I,°

I I
"°I""

l
''l'"

l
o°l ° •

I
.°l • ,

..t°.

..I,°

..I ° •

°'I''

..I."

"*I'"

II
•,l......l..l
l II

•.l......l..l
l II

•.l......l..l
l II

•,l......l.,l
l II

•.l...... l..l
I II

•.I......l..l
II

.,l..l,,l

Ti)'''.... l,.l..l
lllll

.,l.,l..l,.l°.I
lllll

..l,,l..l,.l.,l
I I I ITml

_I

(3.317

The white noise vector Q is of no consequence when

dealing with the role of (3.307 in the estimation

process since according to (2.67 the propagation of

requires only the evaluation of f(t).

IV. THE MEASUREMENTMODEL

As mentioned in Section II the effective
epeasurementswhich are used to update the filter are
defined as follows

I I (4.1)I _ = MAT_T',meas" A(Q)_II
I I

where:

- effective measurements.

MAT - transformation matrix from the nominal (non-
mlsaligned) sensor to body coordinates.

WT, meas - unit vector as measured by the sensor in the
sensor misaligned coordinates.

A(Q) - transformation matrix from the inertial to
the body coordinates as a function of the
estimated quaternion.

_I " the measured unit vector as known in the
inertial coordinates.

In the ideal (nominal) situation the sensor is well
aligned and, _n addition, introduces no measurement
errors. Also, _, the estimate of Q is perfect and is,
thus, equal to Q itself. Therefore, using (4.1), we
obtain

- A(_)_I - MAT,_T, - A(Q)VI - 0 (4.2)MAT_T',meas
1

Any deviation from the nominal will be reflected in _.
If the deviations are small, then _ will be related
linearly to them. It is our purpose in this section to
derive the linear relations between the effective
measurement _ and those deviations which are actually
the error states in _ (whose time behavior was given in
(3.25 and 3.27)).

Let us denote the two terms on the right-hand side
of (4.1) as follows

^

_A " MAT_T',meas (4.3a) _A = A(Q)_I (4.3b7

Consider first WA. The ideal sensor measures in its
mlsaligned coordTnates the vector _T" Since the sensor
is not ideal, it adds to the measured vector the error

term dWT,, hence

_T',meas " _T' + d_T' (4.4)

Substitution of (4.4) into (4.3a) yields

_A " MAT(_T' + d_T'7 (4.5)

Now

MT,A = MT,TMTA (4.6)

For small misalignment angles

MT,T - I + 9 (4.7)

where

From (4.6)

]-0 ez -eyl
I ]

0- I-e z 0 exl
I I
l_ey -eX 0_I

(4.8)

MAT - MAT,MT,T (4.97

Substitution of (4.7) into (4.9) yields

MAT - MAT,(I + g) (4.10)

When (4.107 is substituted into (4.5) and the term
containing products of errors is dropped, the Following
is obtained

_A " MAT'_T' + MAT'O_T' + MAT'dHT' (4.]1)

Next we address _A defined in (4.3b7. Using the
definition of d_ in (3.g) we van write

A(Q) - A(Q - dQ) (4.12)

Using Taylor series expansion A(Q) can be approximated
to within first order terms as follows

_I )ql I_dql

substitution of (4,13) into (4.3b) yields

4_-.aA!g)l

_A " A(Q)_I "_-_'Sql IQ_I dql (4.14)

Note that the derivatives have to be evaluated at Q

which is unknown. Therefore, as usual, we use
instead. This is based on the assumption that d_ is

small enough such that Q is close enough to Q. Define

_A(_)I

Gi(_)- '_i _ (4._s)

then using (3.1) we obtain

A --

-G] q2 _3-I I_2 G) "q41
I l^ ^ ^ )

GI")I^qz -ql^ q4 G2" ql q2 ^q3 l,^ ^ I I^
l_q3 -q4 "ql_l l_q4 G3 -qz_l

... (4.16a) ,.. (4.16b)
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I: 3 G4 G;-I I- 4 42-1^ I I^ ^ I
G3" "q4 q " I G4 " * ^ I

I^ ^ ^ I ^
t_qz q2 %_1 I_q2 ql q4_l

... (4.16c) ... (4.16e)

Further define

hl = GiV I (4,17)

Then (4.14) can be written as

YA " A{_)_I " [ b] I h 2 I h 3 ) b4 ] _ql (4.18)

dq2

Idq31
I I

Idq41
I_ _1

Finally, define

Hq - [ _1 I b2 I b 3 I b4 ] (4.19)

then (4.]8) can be written as

_A " A{9)_I " Hqdg (4.20)

Now recall the definition of _A and _I as shown in

(4.3). From these definitions it,s obvious that we may

substitute (4.11) and (4.20) into (4.1). When this is

done and in view of (4.2), we obtain

- Hqdg + MAT,OW T, + MAT,dW T, (4.21)

Note from (4.8) that

l "[_X] (4.22)

therefore (4.21) can be written as

- Hqdg - MAT,[_x]W T, + MAT,dWT, (4.23)

The matrix MAT, is not known to us; however, we do
know MAT. It -is easy to see that using the latter

rather "than the former does not affect the accuracy to

any meaningful degree. For identical reasoning we use

I_ rather than_j,.,,_ When these changes are made'mtehaes order of t cross product is changed in

(4.23), we obtain

I I
l I " Hqdg + MAT[WT,,measX]_ + MATdW T, I (4.24)
( I

While (4.1) indicates how to generate the effective

measurement _ which updates the estimate, (4.24)

indicates the linear relationship between _, the

attitude errors, the misalignment errors of the sensor

whose measurements are being used and dWT,, the total
error generated by the sensor. The derivation of (4.24)

is the first stage in finding the measurement matrix,

H, (defined in (2.8b)) for each of the sensors used

onboard ERBS. In order to conclude the development

which will yield those H matrices, we have to express

dW ,in terms of the error states of e_ch sensor which
co_stitute a part of _ shown in kc_!. . This is done

next.

Fine Sun Sensor _ Measurement Model

The Sun sensor measures the tangents of the two

angles of the vector from the spacecraft to the sun.

These two angles are A and B. Using the measured

quantities (tanA). and (tanB)m , the unit vector
measured by the sens"_r is computed as follows

_T',meas

ITtanA)m I

- [I + (tanA)_ + (tanB)_]-I/2){tanB)m (4.25)
l

I_ ] _I

Let um - (tanA)m and vm = (tanB) m then (4.25) becomes

I um I
I I

_T',meas = (I + Um 2 + Vm2)'1/2 I vm I (4.26)

l I
I ] I

Perturbation of (4.26) yields the following vector of
errors for the measured sun vector.

Idul

dWT,-(1 + urn2 + Vm2)']/2 I dv l

I )

10_1

I-Um2du + UmVmdVl

I I

(1 + Um2 + Vm2) "3/2 UmVmdU + Vm2dV I (4.27)I
I_ UmdU + vmdv _i

Let

Q -(I+ +v )-i/2

WII - Q - Q3u_ Wl2 l -Q3UmV m

W21 - -Q3umV m W22 - Q - Q3v_

W31 - -Q3um W32 - -Q3vm

Then (4.27) can be written as

WI2- I du ll Wz] I I I du-I

I I'-ov-'- l_,v_l
I_W3I W32_1

(4.28)

(4.29)

The measured quantities (tanA)m and (tanB)m can be
written as

(tanA) m - tanA + CAtanA + bA + nA (4.30a)

(tanB) m - tanB + CBtanB + bB + nB (4.30b)

where

CA,C B - scale factor errors

bA,b B biases modeled as Markov states in (3.25a)
nA,n B - white noise

From (4.30) and the definition of um and vm we realize
that

du - CAtanA + bA + n A (4.3]a)

dv CBtanB + bB + n B (4.31b)

When (4.31) is substituted into (4.29) the following is
obtained
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I-CAtanA-I I bA I I-nA-I

d_T' " Wsl ( + Ws I + WSl ]I_CBtanB_l _bB_l I_nB_l

which can be written as

I I tanA 0 -II -II CA
d_T, = IWs II Ws II

I_ _ o tanB_l I _II CB
l
) bA
I
)_bB_l

I nAI
+ Wsl I

I_nB_l

(4.32)

(4.33)

This is then substituted into (4.24)

I- IO ....Ol I
Y" I Hq I 0 .... 0 I MAT[-WT,,measx] [

I_ Io ....01 I

resulting in

)-tanA 0 -II I 0 ...... 0-1

MATWs II MATWs I 0 ...... 0 I_ 0 tanB_ll I 0 ...... 0_1

I nAI

+ MATWs _riB_ (4.34)

Equation (4.34) gives the measurement matrix, H, for
the FSS which is used in computing the gain matrix and
updating the covariance matrix. Since tanA and tanB are
not available to us, we use, respectively, (tanA)m and
(tanB)m instead. Since the measured and the -true
quantities are close, this change practically
introduces no error.

IR Horizon Scanner Measurement Model

The horizon scanner measures the roll and pitch of
the spacecraft with respect to the geodetic coordinate
system (GDS), i.e. it measures the direction of the
nadir vector. The horizon scanner misalignment errors
are assumed to be small with respect to roll and pitch
errors, to be additive to roll and pitch and
indistinguishable from them. The unit vector in the
direction of the nadir in the GDS is given as

Z_DS - [0, O, ]] (4.3S)

In body coordinates this vector is given as

ITcos(r)sln(p)-I
I I

Zbody " I stn(r) I (4.36)
I I
l_cos(r)cos(p)_l

where r is the roll angle and p is the pitch angle.
As mentioned, this is the measured vector; that Is

ITcos(r)sin(P)-I
I I

_T',meas " I sin(r) ] (4.37)
I I
l_cos(r)cos(p)_Imeas

which is equal to the true vector plus error. The error
vector is obtained by perturbing (4.36). The
perturbation yields

I-stn(r)sin(p)dr- cos(r)cos(p)dp-I
I I

dHT, " I cos(r)dr I (4.38)
I I
}:sln(r)cos(p)dr - cos(r)sln(p)dp_)

Let

I- sin(r)sin(p) -cos(r) cos(p)-I
I I

Wh " I cos(r) 0 I
I I
I_-stn(r)cos(p) -cos(r)sln(p) _1

then (4.38) can be written as

d_T, - Wh

(4.39)

I dr*) (4.40)

I ,I
1_dp_l

scanner errors as bias
in (3.25b)) plus white

We characterize the horizon
(n_deled as Markov process
noise; that is,

dr* - dr + nhr (4.4]a)

dp* - dp + nhp (4.4]b)

_ere d. and d. are the roll and pitch biases and n _
and n..'are th_ roll and pitch white measurement noi_
compoRJ_nts. When (4.4]) are substituted into (4.40),
the following is obtained

dWT,,meas , Wh_bh + Wh_nh (4.42)

where J_ is as defined tn (3.Z6) and DhT - [nhr, nbp].
Since II_odv is already in body coordinates, MAT glven
In (4.1) _nd in (4.24) Is the identity matrix. Since
the horizon scanner was assumed not to have
misallgnment error the term containing misalignment
angles In (4.24) Is not needed. The model for the
horizon scanner Is given in (4.43) below. Again _L is
computed using (4.1).

I- I0 .... Ol I 0 ... o-I

Y" I II_Hq 100 .... 0 I0 I Wh I 0...0_1I 0 ... 0 IZ+Whnh (4.43)

Equation (4.43) ytelds the H matrix to be used with IR
horizon scanner measurements. Similarly to the
evaluation of the Sun sensor H matrix, we use the
measured roll and pitch to evaluate Wh in (4.43).

Raanetometer I_lasurement Rode1

The three magnetometers mounted orthogonally to one
another measure the Earth's magnetic field components
along each of their axes. This arrangement oF sensors
I$ identical to the three gyro arrangement which
measure the spacecraft's angular rate. The magnetometer
error sources are also identical to the gyro error
sources which are: scale factor errors, misalignments,

blas (modeled as Markov process) and white measurement
noise. Therefore the magnetometer errors can be
represented by the same model as for the gyros.
Therefore, in analogy to (3.13), we write the following
expression for the errors introduced by the
magnetometers
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l_B_l_mx0 o -ll_x-I I_ _mxyOmx_ll_x-llI ll_m_llI I II II

'dBv"'O'"11 Smy O ),)BYII'÷(gmyx0 +myz))By )+ bay

IdBz NO o Smz))Bz I lgmzx Omzy 0 lIB z I lbmzl
1__1(_ _11 1___1 _11_I I__(

Inmxl
I I

+ nmy (4.44)

Inmzt
t_ _I

where Bx, By and Bz are the magnetometer measurements and

- [Smx, Smy, Smz] (4.45a)

" [Omxy, Omxz, Omyx, Qmyz, Omzx, Omzy] (4.45b)

_b_- [bmx, bmy, bmz] (4.45c)

- [nmx, nmy, nmz] (4.45d)

__m, _m and J_m are the vectors of magnetometer scale
factors, misalignments and biases, and _-m is the white
measurement noise vector. The magnet6meter output
vector i_meascan be written as

ET,meas " BT + dB (4.46)

where _T is the true magnetic field vector in the
assumed magnetometer coordinates (note the difference
between these sensors and the FSS and IR horizon
scanner). We can write (4.44) as follows

laBel TBx 0 0 By Bz 0 0 0 0 I 0-OI I_m_lI I I I I
ldBvl- 0
l "I I0 By 0 0 Bx Bz 0 0 0 1 Ol _+ +, I° ,I
dBz ioo Bz o 0 0 o Bx By 0 0 ]I lnmz)__II_ _I I__I

... (4,47)
where

(4,81
Define the matrix B' as follows

l_x 0 0 ByBzO 0 O 0 ] 00l
t I

B'-I0 By 0 0 0 BX Bz O 0 0 ] Ol (4,491
J I
I0 0 Bz 0 0 0 0 Bx ByO 0 ]l
I_ _I

We may write then (4.47) as

d_ - B'_+ + _ (4.501

Note that dB is not identical to d_T, the way the
latter Is defined in (4.4) since d_ contains the
magnetometer mlsallgnment errors whereas d_T, does not.
For this reason d_ cannot be substituted for d_T, In
(4.24). We have, then, to use the basic defintttonof
as applied to the magnetometer readings in order to

formulate the linear relationship between X )nd themagnetometer errors which constitute . For
magnetometer measurements we formulate our effective
measurement, _, as follows

I IA

l Z " MATBT,meas - A(Q)_I I (4.51)
I .I

Substitute (4.46) into (4.51) and in view of (4.3b)
also substitute (4.20) into (4.511. This results in

I " MATBT + MATd_ - A(QI-VI+ HqdQ (4.59)

Note that the first and third terms on the right-hand
side of (4.5g) cancel one another, lhen when (4.50) is
substituted into (4.59) we obtain the desired result

- HqdQ + MATB'X+ + HAl_m (4.60)

or more explicitly

I Io ............Ol )

- _Hq i!O0............ 0IOI MATB'_ + MATn_m (4.61)

Equation (4.61) yields the H matrix to be used with the

magnetometer measurement updates. As for the previous
sensors, we use the measured magnetometer data to
evaluate B'. Finally, note again that the effective
magnetometer measurements which have to be processed by
the EKE are computed using (4.51) and not (4.1).

Measurement Error

The main component in the magnetometer noise vector,
c_, is the quantization error. Its nature and

aracterlzation is explained as follows. The output of
the magnetometers is received in the telemetry stream
as

NT , [Nx, Ny, Nz] (4.62)

with N in counts. The ith component of N (i-x,y,z) is
obtained from the actual measured components as [g]

Ni - INT(Bi,meas/Ki) (4.63)

where INT means "the integer part of". Obviously, a
certain part of the measured value is lost due to the
INT operation: that is

INT(Bi,meas/Ki) + ni = Bi,meas/Ki (4.64)

The nature of the INT operation is such that n_ can

vary between 0 to I. Moreover, the distribution oP the
chopped off value is uniform over the range 0 to I. It
is then easy to show that

E{ni} - 0.5 (4.65a) Var(ni} - 1/12 (4.65b1

Substituting (4.63) into (4.64) yields

Ni - Bi,meas/Ki - ni (4.66)

It is easy to see why in order to calculate the
magnetometer readings on the ground the following
computation is performed

Bl,comp - KIlNi + 0.6] (4.67)

Substituting (4.66) into (4.67) yields

Bi,comp - Ki[Bl,meas/Ki - ni + 0.5] (4.68)

Define the measurement noise of magnetometer i as

nm,i - Ki(O.5 - hi) (4.69)

then, in view oF (4.65),

E(nm,i} - 0 (4.70a) Var{nm,il - K_/12 {4.70b)

where E denotes the expected value and Var denotes the
variance. From (4.48) and (4.69)
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Bi,comp - Bi,meas +nm, i (4.71)

and in vector form

Bcomp " _rneas + Dm (4.72)

From (4.46), (4.47), (4.61) and (4.72) it is obvious

that the noise vector to be use in (4.61) is the vector

Om as defined in (4.69) whose expected value and
variance are defined in (4.70)

V. OUATERNION NOEMALX_ATION

The quaternion which represents attitude is a normal

one. It was found [6] that forcing normalization on the

estimated quaternion is advantageous since it speeds up

convergence and eliminates the need for filter tuning.

It was found in the present work too that normalization

has these benefits. As shown in [6], normalization of

the quaternion is equivalent to removing a portion of

the estimate. This part that is removed must be

accounted for in the next stage of the filtration. The

handling of the normalization in this work is not

identical to the one in [6] since here the covariance

and state are propagated by solving their respective

differential equations and not by using the state

transition matrix as is the case in [6]. There the part

of the estimate which is removed by normalization is

propagated using the state transition matrix and is

considered at the next measurement update of the state

estimate. Here though the normalization is done in

between measurements. After the state estimate update

by the horizon scanner measurement, the quaternion is

normalized as follows

_R(+) - _IR(+)/I_IR(+)I (5.11

where the subscript IR denotes the fact that the

quaternion estimate being dealt with is at the time

point where the IR horizon scanner measurement are

considered, (+) denotes the a-posteriori estimate and

the superscript * denotes the resultant normal

quaternion. It can be shown [6] that the normalization

^

removes the following part from £1R(+)

d£N - _IR(+)_TR(+)d_IR (5.2)

where d_i R - KIR_IR is the estimate of d_ which is
computed using the kalman gain and the effective

measurement of the scanner. Now when the FSS

measurements are processed next, the estimate of the

quaternion is updated as follows

d_FSS(+ ) - d_N + KFSS[_FS S - HFsSd£N] (5.3a)

_FSS(+ ) ^* ^m glR(+) + dgFsS(+) (5.3b)

^

where _FSS(+) is the quaternion estimate after its
update oy_he FSS measurements. If no normalization is

performed, 91R(+) - QIR(+), d_ - 0 and (5.3) change

A

accordingly. In any event, the quaternion, 9FRR(+), is

used as the a priori estimate of 9 for the magnetometer

update, if available, or else is propagated to the next

time point.

VI. COI_PENSATION

When propagating the state estimate and the

covariance, we use the measured angular velocity. We

know, however, that the propagated values are not

accurate since the gyro outputs contain errors. As we

estimate those errors, we can do better if we correct

the gyro outputs for estimated errors. This operation
is known as calibration.

We also want to compensate the measurements obtained

from the FSS, the IR horizon scanner, and the

magnetometers which are all orientation measuring

devices whose outputs are used to update the filter.

The reason we want to compensate these sensors' outputs

is different in nature than the reason for compensating

the gyro outputs. Rewrite (4.1) and (2.11)

A

- MATWT,,mea s A(_)V I (6.1)

_k (+) " _k(') + Kk_k (6.2)

The term Kk_ k is nothing but the estimate of x defined

in (2.]4) as-

X(tk) = _(-) + x[tk) (6.3)

That is, in (2.]1) we estimate the difference between

the true value of X and its latest estimate, and add

the estimate of the difference to the latest estimate

of X to form its updated estimate. Now let us consider

an error term in one of the sensor measurements, say a

bias. This bias is a part of WT ..... and thus, as

indicated in (6.]), bears i slgnature on _.

Consequently, if certain observability conditions are

met, it is estimated and added to the state estimate as

indicated in (6.3). If no compensation takes place, the

next time the measurements of this sensor will be

processed the bias will again be estimated and added to

the previous estimate of this bias, thus creating a too

large and hence wrong estimate. The correct way, then,

to handle this case is to eliminate the estimate of the

bias from WT, me_s' This way only residual bias which
has not be_n'es_imated yet will be present in _ as

shown in (6.1). Only the estimate of this residual

will, then, be added to the existing estimate of the

bias, which is a part of _, yielding a correction to

the previous estimate. This logic holds for the other

error states too. The way we carried out the

compensation is outlined in the ensuing.

Gvro Compensation

From (3.4)

therefore

Rewrite (3.18)

= _ - d_ (6.4a)

^ ^

- _ - d_ (6.4b)

dw_. [UIWII]I-S_g + ng] (6.5)
I

I

Since U and W are functions of w, and since the noise

vector is of zero mean, a good estimate of dw is

obtained from (6.5) as

d^ ^ __w - [U(w)IW(w)II]I-_I (6.6)
I/I

%

I__1

This estimate can then be used in (6.4b) to yield an

estimate of w which is then used in the propagation
algorithm instead of the raw gyro outputs.

FSS ComDensation

Consider
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^

I " MAT_T,,mea s - A(g)_I (6.7)

and recall (4.3)

_A " MAT_T',meas (6.8a) _A " A(_)_I (6.8b)

As explained earlier, I is a linear function of x which

is the difference between _ and _. We want _ to go

to zero when _ approaches _. Indeed, when _ approaches

X, _ approaches Q and _A computed in (6.8b) really

yields the components of _he unit vector in the Sun's
direction when resolved in body coordinates. However,

even when R is equal to _, W T, meas will not be equal

to WT and therefore WA computed in (6.8a) will not be

equ_T to VA and thusl will not be zero. (This fact
shouldn't _e confused with the fact that _ goes to zero

when the errors themselves go to zero). Only when

_T' _eac goes to WT as R goes to _, will _ go to zero
as (_ s6ould. To a_hievethis use (4.4) to note that

_T " MTT'(_T',meas " d_T') (6.9)

As shown in (4.7), for small FSS mlsalignment angles

MT, T - I + 0 (6.10)

Transposing (6.]0) we obtain

MTT, - I - 0 (6.11)

which when substituted into (6.9) yields

_T " (I - O)(_T, mea s - d_T,) (6.]2)

ThereFore a reasonable estimate of _T is

_T " (I - @)(_T',meas " d_T') (6.13)

Replacin_ HT,meas in (6.7) by _T yields the desired
result

i " MAT(I - @)(_T',meas d_T, ) - A(_)V I (6.]4)

where, in view of (4.32), d_T, is computed as Follows

l-_A(tanA)m- i I-GA- i

d_T, - Wsl^ I+ Wsl^ I (6.1S)
I_CB(tanB)m_l t_bB_l

Note that Inltlally when our estimate of _ is zero,

(6.]4) is reduced to (6.]).

Horizon Scanner _oensatlon

The arguments made in outlining the FSS compensation

are also valid for the horizon scanner only that here

dW T, is different and there are no sensor mlsalignments

(tBey are considered to be a part of the bias errors).

Following (4.42), we compute for the horizon scanner

d_T' " Qh_h (6.]6a)

and
@ - 0 (6.16b)

and substitute them into (6.14). The result is then the
compensated effective measurement of the IR horizon

sensor.

Maqnetometer Comoensation

As shown in (4.5]) which is rewritten below, I is

computed differently for the magnetometer measurements;

namely

= HkT_T,mea s - A(_)V I (6.17)

where

BT,meas " BT + dB (6.18a)
and

dB - B'x + + Dm (6.18b)

(6
Following the rationale behind the FSS and IR horizon

scanner and in view of (6.18), we compensate the

magnetometer readings as follows. Compute

_+T ^T ^T_ - [S___,0__, _T] (6.1ga)

dB - B'_ + (6.19b)

where B' is computed according to (4.49) using the

uncompensated outputs of the magnetometers. Next

compute the compensated magnetometer measurements

BT " BT,meas - d_ (6.1gc)

which are used to compute the effective measurement as

follows

- MATB T - A(_)_ I (6.Igd)

VII. THE _ ERBS EKF ALGORITH_

The models developed in the previous section were

implemented into a program written in Fortran. The

data used in the program is actual spacecraft data

transmitted to Earth by ERBS.

MEASUREMENT UPDATES

The program is set up to compute an update initially

and then propagate. The updates are performed for each

sensor individually, the horizon scanner update is

performed first, followed by the sun sensor, and the

magnetometer. If any sensor data are not available the

program bypasses that sensor and goes on to the next.
In between each sensor update, the updated state and

covarlance are set to the a-priori values going into

the next sensor update. If no sensor data are

available, the a-posteriori state and covarlance are

set equal to the a-priori and are propagated to the

next time point.

Below is a summary of the algorithm and how it is

applied to each update and to the propagation.

IRUodate

Compute H:

I

H - _Hq

Compute _T',meas"

0 .... Ol Io...Ol
o .... o I wh I o... o I
o .... o{ IO...o_I

(7.1)

ITcos(r)sin(p)-I

I I
_T',meas " I sln(r) I

I l
)_cos(r)cos(p)_Imeas

(7.2)
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Compensate _T',meas:

_T " _T',meas " _h _h (7.3)

Compute residual and uncertainty of residual:

" _T - A(q)_I,ir (7.4)

{Ulr)j - ([HP(-)HT + Rir]}j1/2 (7.5)

where the subscript ]r denotes quantities pertinent to

the horizon scanner, _ hieSthe spacecraft-to-earthunit vector obtained d_rt ephemeris and J denotes
the jth element on the main diagonal of the residual
covarlance matrix.

State and Covarlance Update

Compute K:

Update _:

Update P:

Kk , pk(.)HkT[HkPk(.)HkT + Rk]-1 (7.6)

_k(+) = _k(') + KkXk (7.7)

Pk(+) - (I-KkHk)Pk(-)(I-KkHk)T + KkRkKkT (7.8)

SunSensorUodate

Compute H:

i- i o .. o i i )-tanA 0 -[I

_Hq I I IIH- I 0 .. 0 I MAT[WT,,meas x] MATWsI_ 0 tanB IIIo ol

I IO ...... o-I
[ MATWs [ 0 ...... 0 I (7.9)
I Io ...... o_l

Compute _T',meas:

-(tanA)m

_T',meas " {I + (tanA)mZ + (tanB)m2)"1/2 ) (tanB)mII
I_ I _i

... (7.10)

Compensate _T',meas:

Maanetometer Uodate

Compute H:

i- 10 ............ol

H- l_Hq I 0 ............ OIIO ............ OI

Compute BT, ,meas :

IBxl
BT,,meas " I By I

i_Bz_l

Compensate BT,,meas:

J
HATB' l

_)
(7.15)

(7.16)

--^ --

I Sm
^ I ^

BT " BT',meas B'I O_m r (7.17)
i I
i_Bm_)

Compute residual and uncertainty of residual:

X " BT - A(_)-Vl,mag (7.18)

(Umag)j - {[HP(-)HT + Rmag])jl/2 (7.19)

where the subscript mag denotes quantities pertinent to

the magnetometers, V)-.- is a unit vector in the
direction of the mag-n'c_l_'_c9 field obtained from -- 1980
International Geomagnetic Reference Field model
available in a Fortran subroutine and j denotes the jth
element on the main diagonal of the residual covariance
matrix. The state and covarlance are then updated as in
(7.6) through (7.8).

STATE AND COVARIANCE PROPAGATION

After all the sensor updates are performed, the
state and covariance are propagated using a fourth
order Runge-Kutta routine. The state and covariance
are propagated ahead using the gyro data at the time of
the update and the gyro data one second (nominally)
ahead. BeFore propagating, though, the gyro data is
compensated as follows.

__ -__- {UlWll]l @gI (7.20)
I I

_T " (I - _)( _T',meas - Ws -_A(tanA)m-I - Wsl-_ A- )
I I I

l__8(tanB)m_ I__B_I

... (7.11)

State prooa_ation

Covarlance prooaoation

(7.21)

Compute residual and uncertainty of residual: P{t) - F(_(t),t)P(t) + P(t)FT(_(t),t) + Q(t) {7.22)

" _T " A(_)_I,fss (7.13)
VIII. RESULTS

(Ufss} j = ([Hp(.)H T + Rfss])jI/2 (7.14)

where the subscript fss denotes quantities pertinent to . _ Solution

the fine Sun sensor, )I fss is the spacecraft-to-Sun
unit vector obtained fro_ a Solar-Lunar-Planetary file The reference we used for comparison was theattitude solution obtained from the batch estimator
and J denotes the Jth element on the main diagonal of used on the ground for operational attitude
the residual covarlance matrix. The state and
covariance are then updated as in (7.6) through (7.8). determinationsolutions in fortheERBS'GDSandTableuncertainties8"lshows theforattitudethree

different conditions (cases). Case I used sensor
standard deviations of: FSS - 0.002 deg, IR - 0.2 deg,
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MAG - O.S (unit vector). An orbit's worth of data was
used to compute the solution. Case 2 used the same
amount of data as the first but the sensor standard

deviations were: FSS - 0.1 deg, [R m 0.5 deg, HAG - 0.5
(unit vector). Case 3 had the same sensor standard
deviations as the second but only 30 seconds of data

were used. Obviously, the reference solution is not
uniouealthouqhthereal solutionis.

Table 8.1 Ftnal Attitude Solutions

and Uncertainties {deq.)

I
JYaw
JRo11
IPltchl

I I

I I
Case 1 Case 2 I Case 3 I

............... ' .............. I .............. I

iAttitude Unc. Attitude Unc.l_ Unc.I
I
I

-0.294 0.0135 -0.262 0.0041 -0.731 O.Ol2i

0.400 0.0118 0.421 0.0051 0.316 0.0701
0.650 0.173 0.420 0.004l 0.384 0.0071

I I

Ftlter Solution

Since ERBS is not Inertlally fixed, It is not very

enlightening to see the variation In the quaternlon.
Therefore, in order to compare the filter solution to

the batch solution, the estimated quaternlon was

converted to roll, pitch, and yaw in the GDS. We used
the filter first to estimate attitude only. Figure I

shows the yaw solution in the GDS and Is a typical

example of the behavior when estimating attitude only.

O
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YAW vs TIME
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Figure 2: YAW vs. TIME
Full State
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Figure 1: YAW vs. TIME

No Calibration States

The filter was then run wlth the full state starting

at an a-priori attitude of zero degrees yaw, roll, and

pitch. Figures 2 and 3 show the behavior of the yaw

and pitch. Roll Is slmllar to pitch. Figure 4 shows

the estimation of the Z component of the gyro bias and

Figure S shows an example of the residual behavior,
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Figure 3: PITCH vs. TIME
Full State
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Table 8.2 gives the final attitude solutions and
the various calibration states (after 60 sec of data)
for 2 different sets of initial conditions (which
actually differ only in the FSS and IR bias
uncertainty),

Table 8.2: Attitude and Calibr_tlon States
for Varvlnq Initial Condl_ions

Case 1 Case 2

...................................................

JYaw -0.512 -0.676
JRo11 O.354 O.406
JPitch 0.339 0.253

I ...... .'I ...... , ....................................

I I Value Unc _ Unc

I
IGYRO
I
ISF 0.194E-4 0.01 0.360E-5 0.01
I -0.598E-4 0.00998 3.898E-5 0.00998
I -0.786E-4 0.01 -4.384E-5 0.01
IO (deg) 0.62E-4 0.057 3.2E-4 0.057
i 0.34E-4 0.057 0.50E-4 0.057
I 0.028E-4 0.057 0,013E-4 0.057
J 0.15E-4 0.057 0.046E-4 0.057
I -0.070E-4 0.057 0.052E-4 0,057
I -]4.6E-4 0.057 -10.2E-4 0.057
JBlas -0.0211 1.995 -0.0984 1.995
J(Deg/hr) 0.0094 1.995 -0.0096 1.995
J 0.4381 ].995 0.3037 1.995
l ............................ I ....................... l

r
IFSS
l
J@ 0.0648 0.050 0.0017 0.056
I(Deg) 0.0466 0.054 0.0114 0.056
J 0.0896 0.057 0.0140 0.057
ISF -0.0235 0.00607 -0.00557 0.009
I -0.0177 0.00830 0.00044 0.00954
JBtas 0.1732 0.086 0.077 0.151
I(Deg) 0.0812 0.058 -0.0468 0.0709
l........ I ...........................................

I I
fIR I
l I
JBias I 0.2115 0.032 0.0340 0.0472
J(Deg) J -0.2377 0.033 -0.0840 0.046
I ........ I ...........................................

I
IBias -0.49g 0.699 -0.597 0.698
j(mg) -1.479 0.8]6 -l.237 0.816
I 0.289 0.9]1 0.223 o.gll
I
I (other magnetometer states are negligible)l
l I

Initial Un{ertainties:

Gyro

SF - 3"0.01
0 - 6*0.057 deg

bias - 2,0*3 deg/hr
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FSS

0 " 3*0.057 deg,

SF - 2"0.01

Bias - 2"0.1 in case I,

2"0.316 in case 2

IR

Bias - 2"0.1 in case I,

2*0.3]6 in case 2

MAG
-..

Bias - 3"i mGauss

IX. CONCtUSIONS

The ERBS EKF shows good, quick convergence

properties when estimating only attitude. The filter
is robust in that it can overcome initial attitude

errors of up to 30 degrees (it may even go higher but

30 degrees was the limit of our testing). When the

remaining calibratlon states are added, and the sensor

measurements are compensated for their calibration

states the filter is not very robust. Starting the

filter with a large initial attitude error would be

outside of the linear region and the filter is not

expected to give good behavior in those conditions.

The attitude solutions estimated by the filter show

some oscillation. Since the results presented are from

real spacecraft data the filter would be expected to
follow more closely the oscillations in the data
whereas a batch solution would have these oscillations

averaged out.

We found, when estimating the entire state, that the

results were dependent on the initial uncertainties due

to a lack of observability. The batch solution which

was used as our basis of comparison also was dependent

on initial conditions. It could not be used as a true

reference.

The ability of the filter to quickly converge to an

attitude solution From a large initial error

demonstrates the feasibility of using an EKF for ground

attitude processing in FeD, particularly in a real-time

situation. Since all the states cannot be estimated

simultaneously due to a lack of observabillty, more

investigation into the a-priori uncertainties is

necessary in order to achieve a desired accuracy in the

Final calibration states.

X. FUTURE WORK

In this work, the batch solution served only as a

basis for comparison. It cannot be treated as a true
reference. Simulated data will be used in the future,

which will provide a true reference. From there
further studies of the different calibration states and

the ability of the filter to estimate them can be

determined. At the time of this writing, the runs

using simulated data were still being debugged.

A further enhancement of the Filter state will need

to be made to include more than one sensor of a single

type. Currently the filter only estimates calibration

parameters for the sensors with coverage; no switching

is done when the coverage changes over to another

sensor of the same type.

As mentioned previously, the ability to overcome

large initial attitude errors makes the filter

attractive for real-time operations. A real-time EKF

will be developed which estimates attitude and possibly

gyro calibration states only.
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ABSTRACT

The Flight Dynamics Facility (FDF) at Goddard Space Flight Center

(GSFC) provides spacecraft trajectory determination for a wide variety of

National Aeronautics and Space Administration (NASA)-supported satel-

lite missions, using the Tracking Data Relay Satellite System (TDRSS) and

Ground Spaceflight and Tracking Data Network (GSTDN). To take advan-

tage of computerized decisionmaking processes that can be used in space-

craft navigation, the Orbit Determination Automation System (ODAS) was

designed, developed, and implemented as a prototype system to automate

orbit determination (OD) and orbit quality assurance (QA) functions per-

formed by orbit operations. Based on a machine-resident generic schedule

and predetermined mission-dependent QA criteria, ODAS autonomously

activates an interface with the existing trajectory determination system

using a batch least-squares differential correction algorithm to perform

the basic OD functions. The computational parameters determined during

the OD are processed to make computerized decisions regarding QA, and

a controlled recovery process is activated when the criteria are not satis-

fied. The complete cycle is autonomous and continuous.

ODAS has been extensively tested for performance under conditions re-

sembling actual operational conditions and found to be effective and reli-

able for extended autonomous OD. Details of the system structure and

function are discussed, and test results are presented.

"This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. INTRODUCTION

Operational orbit support for many current National Aeronautics and Space Administra-

tion (NASA) missions involves a well-defined sequence of activities leading up to the

generation and transmission of estimated dynamic states and definitive and predictive

ephemerides for supported spacecraft. These activities can be separated into three stages:

tracking data preprocessing (TDP), orbit determination (OD), and orbit product genera-

tion and transmission (OPGT). Figure 1 provides an overview of this type of orbit support

at the Goddard Space Flight Center (GSFC). Only the OD stage is described in detail. The

TDP and OPGT stages are included to show their relationships with the OD stage. This

paper presents the Orbit Determination Automation System (ODAS), which is designed to

automate activities involved in the OD stage (References 1 and 2). Automation is

achieved in ODAS through replacement of functions that are normally performed by an

analyst. A brief description of the functions involved in OD is useful in understanding the

nature of the automation processes in ODAS and is provided below.

Current trajectory determination systems process tracking measurements and use them in

conjunction with parameterized dynamic models to update the estimate of the dynamic

states of supported spacecraft (References 3 and 4). As a specific example, the Goddard

Trajectory Determination System (GTDS), employed regularly at GSFC, employs a differ-

ential correction (DC) algorithm to fit the tracking measurements to the models and esti-

mate a solution state for the spacecraft orbit. The estimated solution state is used to

generate trajectories and other orbit-related products. In Figure 1, the orbit maintenance

schedule serves to provide information about when spacecraft are due for OD; the track-

ing data base represents the collection of tracking measurements, a subset of which is

used for OD. The operational OD at GSFC involves the following steps, some of which

require intervention by the analyst:

Step I. The analyst scans the orbit maintenance schedule at regular intervals to deter-

mine if an orbit update is scheduled for a spacecraft at a time close to the time of the
scan.

Step II. The analyst appraises the tracking measurements for the particular space-

craft in the tracking data base to establish sufficiency in quantity and distribution.

Step III. The analyst determines initial parameters to be supplied to the trajectory

determination system as control and data information and incorporates the values

into OD control/input data sets (CIDS), which the analyst retrieves from the control

and input parameters data base.

Step IV. The resulting set of OD processing commands sets up the trajectory determi-

nation system in a specific processing mode. The analyst initiates orbit estimation in

this processing mode.

Steps V and VI. If the estimation process converges, a solution state for the spacecraft

is generated by the computational system. The analyst examines the computed re-

sults, including state vectors, other estimated parameters, and ephemerides.
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Figure 1. Orbit Determination Activities

Step VII. The analyst determines the pass/fail condition of the estimation result on

the basis of a comparison of specific quality assurance (QA) parameters available

from reports generated by the trajectory determination system with mission-

dependent QA criteria. This is the QA failure detection process.

Step VIII. In case of QA failure, the analyst determines specific changes in process-

ing modes that might lead to improved orbit estimation. This is the QA failure recov-

ery initiation process.

The analyst modifies the processing modes in which the trajectory determination system is

set up and repeats the OD and QA operations described in steps II through VII as often

as necessary to generate a satisfactory solution. This represents OD QA through a cyclical

recovery process represented by the bold circle in Figure 1.

Since automation of the OD process potentially provides benefits--such as reduced

analyst intervention, reduced demand on system resources, improved operational
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flexibility, improved reliability, automatic accumulation of historical experience, and a

ready source of operational and analytical training--ODAS was developed to create an

autonomous analog of the processing environment depicted in Figure 1. Some of the OD

steps have been previously automated by systems such as the Orbit Production Automa-

tion System (OPAS), which incorporates aspects of steps I, HI, and IV (Reference 5), and

the Automatic Orbit Determination IV (AOD-IV) system (Reference 6), which specializes

in applications of step I]]. However, these systems require analyst intervention for all

other phases of the OD process. The ability of ODAS to sustain autonomous operation of

the entire OD process indefinitely without any analyst intervention is the system's primary

distinguishing feature.

The remainder of this paper concerns the functional and structural aspects of ODAS. The

specific prototype described in this paper was developed within the GTDS environment. In

Section 2, primary functions of ODAS that provide autonomous analogs of the steps in

Figure 1 are discussed. In Section 3, the structural configuration and coordination of the

primary ODAS functions in performing the overall OD process is described. In Section 4,

selected system tests are described and the test results presented to illustrate some of the

operational aspects of the system. In Section 5, the significant conclusions resulting from

this prototyping study are summarized, and directions for future enhancements are dis-
cussed.

2. ODAS FUNCTIONS

The functional objective of ODAS is to provide an autonomous analog of the overall OD

process represented by the boxed area in Figure 1. The eight-step OD process has been

described in Section 1. The functional design of ODAS consists of logical functions that

accomplish tasks corresponding to each of the eight steps in the proper sequence without

any analyst intervention. Additional logical functions in ODAS provide the capability to

perform this autonomous OD continuously for an indefinite period. These functions are
discussed in the remainder of this section.

Table 1 lists all the primary ODAS functions and establishes a mapping between each

ODAS function and an operational step. Each ODAS function is briefly described.

OD Update Scheduling. This function schedules spacecraft for OD. ODAS makes periodic

queries of a generic scheduling data (GSD) file for information related to the update

frequency and processing parameters. OD updates are then performed according to these

specifications.

Tracking Data Sufficiency Checking. The DC process of GTDS operates on tracking meas-

urements from a chosen period denoted as the "data arc" (step IV of Figure 1). Typically

in step II, the analyst considers the number of distinct trackers, the number of tracking

data batches, and the presence and disposition of large periods containing no measure-

ments (gaps) in qualifying the measurement set as sufficient or insufficient for achieving

a reliable OD solution. In case of insufficiency, the analyst can extend the data arc further

back in time (arc retrocession) to access more data or "better" data. In ODAS, the data

arc is specified generically in the GSD file and is converted into a specific data arc.
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Automated data tracking sufficiency checking and arc retrocession capabilities analogous

to step ll are present in ODAS.

Table 1. ODAS Functions and Corresponding Routine Operational Orbit

Determination Steps

ODAS FUNCTION ROUTINE OD OPERATION*

OD UPDATE SCHEDULING

TRACKING DATA SUFFICIENCY CHECKING

CIDS CREATION

ClDS SUBMISSION

DC/STATISTICAL OUTPUT REPORT (SOR) EXTRACTION

I

II

III

IV

V

DC FAILURE DETECTION

DC FAILURE RECOVERY

EPHEMERIS QA

TIME CONTROL

PROCESSING SUSPENSION/RESUMPTION

SYSTEM STATUS REPORTING

VII

VIII, Ill, IV, V

Vl

NR

NR

NR

*NR: NOT REPRESENTED IN FIGURE 1.

CIDS Creation. In close analogy to step HI, the ClDS creation function of ODAS retrieves

a skeleton CIDS, which represents a specific GTDS processing mode from the CIDS file

and incorporates processing information from the GSD file into the data set.

CIDS Submission. This function submits the C1DS to the processing queue of a host com-

puter system to initiate the corresponding DC process. The CIDS submission step is the

automated version of step IV.

DC/SOR Extraction. This function extracts certain parameters, which includes the parame-

ters specified in Table 2, from the DC/SOR output reports for analysis. For several of the

GSFC-supported spacecraft, acceptable limits are specified for these parameters (Refer-

ence 7). In ODAS, several additional quantities are included in the DC/SOR subset be-

cause of their potential values in DC recovery in case of DC failure. The DC/SOR

extraction is analogous to step V.

DC Failure Detection. This function determines whether DC was successful or failed estab-

lished QA criteria. The QA parameters are retrieved from the DC/SOR subset and are

compared with predetermined limits/tolerances from a user-defined QA criteria file. The

current design of ODAS recognizes a fixed set of seven DC failures listed in Table 2.

This function of ODAS corresponds to step VII in Figure 1.

DC Failure Recovery. The last step in the overall OD process is step VIII, for which the

analyst decides whether to repeat the estimation under different processing conditions if a

DC failure is detected. The analyst may implement one or more recovery procedures,
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Table 2. ODAS DC Failures

ODAS NAME DC FAILURE TYPE

F1

F2

F3

F4

F5

F6

F7

NONCONVERGENT DC

FINAL WEIGHTED ROOT MEAN SQUARE (WRMS) OF OBSERVATION RE-
SIDUALS EXCEEDS CRITERION

ESTIMATED ATMOSPHERIC DRAG SCALING PARAMETER (01) OUTSIDE
NOMINAL RANGE

ESTIMATED SOLAR RADIATION PRESSURE SCALING PARAMETER (CR) OUT-
SIDE NOMINAL RANGE

STANDARD DEVIATION OF RANGE OBSERVATION RESIDUALS (OR} EX-
CEEDS CRITERION

STANDARD DEVIATION OF RANGE-RATE/DOPPLER OBSERVATION RE-
SIDUALS (O. ) EXCEEDS CRITERION

R/D

ESTIMATED ABSOLUTE POSITION ERROR IN A PRIORI STATE [AR) EX-
CEEDS CRITERION

involving repeating the estimation under different processing conditions. Typical exam-

ples of recovery procedures are using a different selection of batches of tracking data, a

different range of values for the atmospheric density, or a different convergence criterion.

The choice is dictated by the type of DC failure detected. The overall failure recovery

process may involve more than one recovery procedure. This process is automated in

ODAS by the DC Failure Recovery function. Currently, ODAS provides five distinct re-

covery procedures, which are listed in Table 3. In general, each recovery procedure can

generate a different set of failed criteria and different magnitudes of departures from the

criteria. ODAS computes a weighted sum of the magnitudes to use as an average indica-

tor of the overall degree of failure and implements recommended recovery procedures in

an attempt to reduce this indicator to zero. In addition, the overall recovery process is

controlled through limits on the maximum number of recovery attempts and the minimum

relative improvement in the indicator.

Table 3. Procedures Employed in ODAS to Attempt Recovery
From DC QA Failure

ODAS NAME RECOVERY PROCEDURE

P1

P2

P3

P4

P5

CHANGE HARRIS-PRIESTER DENSITY TABLE

EXTEND DATA ARC BACKWARD

ELIMINATE BIASED OR NOISY BATCHES

INCREASE INITIAL WRMS

USE FINAL ELEMENTS AS INPUT
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Ephemeris QA. Operationally, OD consistency is measured through a point-by-point com-

parison of adjacent overlapping ephemerides. The magnitude of the maximum difference,

]AR_phem[, relative to a tolerance specified in Reference 7 provides the required measure
of OD consistency. This function is included in step V of Figure 1 and is performed in

ODAS using an algorithm that involves extraction of the ephemeris comparison results

from the GTDS reports and the tolerances from the criteria file.

Time Control. The time control function of ODAS is a device for biasing and scaling the

time variable, with respect to actual clock time, to allow the autonomous operations of

ODAS to be performed for arbitrary times (past and present) and to proceed at acceler-

ated schedules. This function is not a replication of any single step in Figure 1 because

routine operational OD is performed in real time.

Processing Suspension�Resumption. To provide continuous operation for indefinite periods of

time, portions of ODAS must be active continuously. The current operational OD support,

on the other hand, involves periods (for tracking measurement accumulation, the TDP

stage of Figure 1) during which OD is not actively performed. A capability is devised to

detect the onset and duration of such a processing mode, suspend activities for the re-

quired period, release resources, and resume processing automatically at the end of the

suspension period. A short suspension mode is also provided to handle lull periods during

a series of clustered OD updates.

System Status Reporting. ODAS generates status reports both for transmitting results be-

tween ODAS components and for informing the analyst who monitors the automated OD

operation. The chronological progress reports data and archival capabilities can be

utilized to support operational analysis.

The functions described above represent the primary building blocks of an OD automa-

tion system. The ODAS prototype discussed in this paper is constructed with the specific

requirements of the GSFC FDF environment in mind, such as compatibility with the

global trajectory computation and orbital products support system. The construction is

embodied in a particular configuration of the functions as components of larger units,

namely subsystems of ODAS, and of the sequential and hierarchical relationships among

the subsystems. This specific configuration of ODAS is the subject of Section 3.

3. ODAS CONFIGURATION

The primary ODAS functions described in Section 2 can be designed in several ways,

depending on the host computational system and operational/development requirements.

At GSFC, operational orbit support is based on background batch processing with pro-

grams that are available in GTDS. "Batch" here is the computational term describing a

noninteractive processing of complete, predefined jobs and must be distinguished from

the batch estimation technique in OD, referred to in Sections 1 and 2. The requirement

for prototype development that greatly influenced the design of the primary ODAS func-

tions in the current version of ODAS was the use of GTDS components as black boxes: no

modifications were made to the GTDS programs. The resulting configuration, shown in

Figure 2, incorporates the DC, Ephemeris Generation (EPHEM), and Ephemeris
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Comparison (COMPARE) programs of GTDS without modifications. One of the promi-

nent features of ODAS, namely the presence of numerous interface input/output (I/O)

files, is a direct consequence of this requirement.

I USER ]

SUBMITZ

SUBMIT
OD JOB

Figure 2. ODAS Configuration

The design of the ODAS prototype consists of the following five coordinated subsystems

and the interfaces between the subsystems as defined in Figure 2:

• The ODAS Driver subsystem

• The DC subsystem

• The DC QA subsystem

• The EPHEM subsystem

• The EPHEM QA subsystem

The user initiates ODAS by submitting the ODAS Driver subsystem, which executes in-

definitely until terminated by the user. The ODAS Driver periodically submits a series of

OD jobs, each consisting of the other four subsystems, for all spacecraft scheduled for

OD update. Figure 2 represents a typical situation in which the ODAS Driver has sub-

mitted two OD jobs, one for the Tracking and Data Relay Satellite (TDRS) and another

for the Solar Mesopheric Explorer (SME). The DC QA subsystem analyzes the DC results

and, in the case of OD failures, communicates the result to the interface output file and

terminates execution. In the case of successful DC, the EPHEM and EPHEM QA subsys-

tems are executed, and the result is communicated to the interface output file. The ODAS
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Driver monitors the output file to determine the status of the OD process and make

decisions affecting subsequent processing. The remainder of this section describes the

logical functions being performed within each subsystem.

ODAS Driver Subsystem. The ODAS Driver is responsible for the overall initiation and

control of the computational functions within ODAS. It resides permanently on the host

system and is designed to be in perpetual execution, monitoring all automation functions,

and effectively synchronizing tasks. The ODAS Driver is functionally separated into five

major components:

• The scheduler component

• The tracking data sufficiency checking component

• The job submission component

• The timer component

• The suspension/resumption component

After scheduling spacecraft for OD for the day, the Driver suspends its activities, resum-

ing at scheduled OD times for each spacecraft. It then checks the tracking data for suffi-

ciency; if the data do not meet the user-defined criteria for sufficiency, the Driver extends
the data arc backward in time to obtain additional data. If arc extension still does not

meet the criteria, the Driver stops processing that spacecraft for that day. If the suffi-

ciency checking passes, the Driver then prepares CIDS for that spacecraft and submits

jobs involving the four ODAS subsystems for OD and QA processing. After submission of

OD jobs, the Driver periodically checks the output file for the results of OD. If the OD

results indicate a DC failure and a directive to reexecute the DC to recover from the

failure, the Driver prepares new CIDS and resubmits the four ODAS subsystems for

another round of OD processing.

DC QA Subsystem. The DC QA subsystem performs quality assurance of DC results and

consists of four components. The DC/SOR subset extraction component extracts subsets

of parameters from the DC reports and the SOR analysis. The failure detection compo-

nent diagnoses specific DC failures, based on computational parameters generated by the

DC processing in the SOR. It determines whether a DC solution has met the spacecraft

acceptance criteria determined by the user. In the absence of DC failure, the DC QA

subsystem terminates and initiates processing of the EPHEM subsystem. In the presence

of DC failure, the DC QA subsystem activates the recovery component. For a specific DC

failure, the recovery component invokes a corresponding recovery procedure, which trans-

lates into system control modifications that have been prescribed by expert analysts. The

results transmission component transmits the decisionmaking information from the DC

QA subsystem to the ODAS Driver subsystem.

EPHEM QA Subsystem. The EPHEM QA subsystem performs QA on the results from the

EPHEM subsystem by comparing the maximum difference between the previous defini-

tive ephemeris and the currently computed definitive ephemeris. The EPHEM QA subsys-

tem consists of three components. The compare extraction component takes the
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computational parameters for a spectrum of different solutions between two sequential

ephemerides and provides the data to the EPHEM QA subsystem for further analysis. The

failure detection component determines if ephemeris comparison results meet specific

mission-dependent requirements. The results transmission component transmits the

decisionmaking information from the EPHEM QA subsystem to the ODAS Driver subsys-

tem.

Certain characteristics of the configuration are crucial to reliable, continual operation of

ODAS. The logical separation of the individual OD jobs from the Driver, for example,

ensures that problems arising during the DC and post-DC processing will not affect any

ODAS Driver functions, thereby enabling processing of the remainder of the OD jobs to

proceed normally. The maintenance of a single interface (see Output File in Figure 2)

between the ODAS Driver and all OD jobs allows efficient monitoring, coordinating, and

scheduling by the ODAS Driver. Of great significance is the generic table-driven nature of

the DC failure detection and recovery components, which allows convenient modification

of the actual choices of recovery algorithms to be associated with particular DC failures.

In this area, ODAS requires continuous evolutionary enhancements, as indeed does any

mode of operational processing requiring complex decisionmaking regarding options for

improving OD.

4. TEST RESULTS AND DISCUSSION

The presence of scheduling, time scaling, and suspension/resumption functions in ODAS

allows extensive system and performance testing in a relatively short time (Reference 8).

All tests involve the automated analog of the OD process of Figure 1. Many tests address

additional ODAS-unique functions, such as extraction of a preselected set of parameters

from the DC/SOR characterizing the measurements and the measurement residuals. The

tests were performed using an ODAS prototype implemented in VS FORTRAN on an

IBM-compatible host computer.

Test results presented in this section are grouped by individual ODAS functions. Only

selected tests that typify test categories are presented in this section. Eight spacecraft

were used in testing ODAS:

• TDRS-E

• SME

• Solar Maximum Mission (SMM)

• Landsat-4

• Landsat-5

Meteorological Observation Satellite (NIMBUS-7)

Earth Radiation Budget Satellite (ERBS)

• Dynamics Explorer (DE)-A
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One or more tests were performed in the course of OD for each of the spacecraft, as

shown in test case matrix entries for each function. Test result summaries are presented
in the remainder of this section.

Initiation. The objective of testing the initiation function was to check the validity of

ODAS response with respect to different system start parameters (see Table 4). The tests

consisted of initiating ODAS as a cold start (first initiation of ODAS), terminating its

processing, and reinitiating it as a warm start (subsequent initiations of ODAS within the

same day) and varying speed ratio as compared to clock time.

Table 4. Test Matrix for the Initiation Function of ODAS

INITIATION TDRS SME SMM
SUBFUNCTIONS

COLD START ODAS • • •

WARM START ODAS • • •

SPEED RATIO • • •

Landsat-4 Landsat-5 NIMBUS-7 ERBS DE-A

ODAS was initiated as a cold start with all eight spacecraft scheduled for OD. After

performing OD for TDRS, execution was halted by the user for a short period and then

reinitiated as a warm start. ODAS resumed processing activities that were continuations

of those interrupted at the time its operation was halted. ODAS was also initiated using a

speed ratio of six (six times faster than normal clock time), where a 24-hour cycle was

compressed into 4 hours of real clock time. All tests were successful.

Scheduler. The goal of testing of the scheduler function was to confirm the ODAS schedul-

ing ability under various conditions (see Table 5). This included transforming the generic

schedule of spacecraft provided by the user through the GSD to a specific schedule for a

given day of ODAS operation.

Using a generic schedule for all spacecraft, ODAS created a specific schedule for the

current test day (September 11, 1987) and the next day for all spacecraft. Additionally,

OD for DE-A was rescheduled for September 11, 1987, at 02 hours according to the GSD

entry. ODAS successfully scheduled DE-A for 2 a.m. on the current test day. The timer

component accurately kept track of the ODAS time, and the suspension/resumption

component suspended ODAS activities and resumed at scheduled spacecraft OD times.

All tests were successfully performed.

Tracking Data Sufficiency Checking. The goal of testing the tracking data sufficiency check-

ing function of ODAS was to verify that ODAS would only perform OD when sufficient

tracking data were in the 60-byte metric tracking data base for a given data arc. As shown
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Table 5. Test Matrix for the Scheduler Function of ODAS

SCHEDULER TDRS
SUBFUNCTIONS

SCHEDULE SPACE- •
CRAFT

RESCHEDULE SPACE-
CRAFT

TIMER COMPONENT •

SUSPEND/RESUME •
ODAS

SME SMM Landsat-4 Landsat-5 NIMBUS-7 ERBS DE-A

in Table 6, seven subfunctions were tested, based on the specific parameters defining

sufficiency. The parameters are

• Number of distinct trackers

• Total number of tracking data batches

• The largest gap in data

• The total number of observations

Table 6. Test Matrix for the Tracking Data Sufficiency Checking Function
of ODAS

TRACKING DATA SUFFI-

CIENCY CHECKING TDRS
SUBFUNCTIONS

SUFFICIENCY CHECK •
PASSED

INSUFFICIENT
TRACKERS

INSUFFICIENT BATCHES

DATA GAP TOO LARGE •

INSUFFICIENT OBSER-
VATIONS

ARC RETROCESSION
FAILURE

NO TRACKING DATA

SME SMM Landsat-4 Landsat-5 NIMBUS-7 ERBS DE-A

In addition, the case of an unsuccessful attempt at tracking data improvement using arc

retrocession was also tested.
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To test the case of insufficient trackers, the criterion for minimum number of distinct

trackers for Landsat-5 was set to four. The tracking data contained only three distinct

trackers, which did not satisfy the criterion. ODAS extended the data arc back to obtain

an extra distinct tracker to meet the criterion, then continued with the processing of OD

for Landsat-5. To test the case of insufficient batches, the criterion for the minimum

acceptable number of batches was set to 14 for Landsat-4. The data contained only

13 batches for the given arc. ODAS extended the data arc back to obtain an extra batch

to meet the criterion. To test the case of no tracking data, a 60-byte metric tracking data

base that contained no tracking data for ERBS and DE-A spacecraft was chosen. The

sufficiency tracking function detected this, generated warning messages, and aborted OD

processing for DE-A and ERBS.

Job Submission. The goal of testing the job submission function was to verify that ODAS

did possess the ability to set up and submit GTDS DC, EPHEM, and their associated QA

subsystems. Testing the job submission function of ODAS involved checking the accuracy

of job control language (JCL) and input for all the jobs submitted (see Table 7).

Table 7. Test Matrix for the Job Submission Function of ODAS

JOB SUBMISSION TDRS
SUBFUNCTIONS

CIDS MODIFICATION •

JOB SUBMISSION •

SME SMM Landsat-4 Landsat-5 NIMBUS-7 ERBS DE-A

Using the skeleton CIDS files set up by the user for all spacecraft, ODAS created updated

CIDS files for the specific test day and submitted them for all spacecraft. All tests were
successful.

DC Failure Detection. The goal of testing the DC failure detection function was to verify

the ODAS capability to detect and respond to DC failures (see Table 8). The tests were

performed by setting the failure criteria to unreasonable numbers to guarantee the fail-

ures of certain desired parameters. In Table 5, the subfunctions listed represent all of the

single-failure cases.

ODAS was executed using sufficient data for all spacecraft to test the case of DC conver-

gence. The case of nonconvergent DC was generated by using a small data arc and an

extremely stringent convergence criterion. Divergence of the DC was detected, and a

recovery attempt was initiated. The remaining subfunctions in the table refer to individual

DC failures, all of which were successfully detected.

DC Failure Recovery. The goal of these tests are twofold. The tests described here are

designed to verify whether the recommended recovery procedure would be initiated when

a particular DC failure was detected. However, other tests within this category have a

performance aspect to them for which the ultimate effectiveness of the specific recovery

procedure in resolving that specific failure is to be verified. This aspect of testing relies
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Table 8. Test Matrix for the DC Failure Detection Function of ODAS

DC FAILURE DETECTION

SUBFUNCTIONS TDRS

CONVERGED DC •

NONCONVERGENCE

FINAL wRMS TOO •

LARGE

_ol OUT OF RANGE

CR OUT OF RANGE •

o R TOO LARGE

o. TOO LARGE
R{D

All TOO LARGE

SME SMM Landsat-4 Landsat-5 NIMBUS-7 ERBS DE-A

most heavily on complete decisionmaking processes reliant on qualitative human experi-

ence, requirements which are difficult to emulate in the ODAS-type development environ-

ment. This area properly belongs in the realm of basic research and is not addressed

here. Testing the DC failure recovery component of the DC QA subsystem involved a

complicated set of tests to check the performance of the five ODAS recovery procedures.

It involved creating DC failures and verifying attempts at using the proper recovery proce-

dure(s) to recover from the failure(s) (see Table 9).

Table 9. Test Matrix for the DC Failure Recovery Function of ODAS

DC FAILURE RECOVERY

SUBFUNCTIONS TDRS SME SMM Landsat-4

MODIFY H-P DENSITY

TABLE NUMBER

EXTEND DATA ARC

BACKWARD

DELETE BIASED/NOISY

BATCHES

INCREASE INITIAL WRMS

VALUE

USE FINAL ELEMENTS

AS INPUT

UNRECOVERABLE

Landsat-5 NIMBUS-7 ERBS DE-A
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Testing the recovery procedure to modify the H-P density table number involved the case

of 01 failures. ODAS successfully computed a new density table number to meet the QA

criterion and recover from the failures. For example, performing DC for SME spacecraft

produced a solution with Pl -- -0.724, using H-P density table number 8. This failed the

QA criterion set at an acceptable range of -0.7 to 0.7. ODAS computed a new H-P density

table number 7, reexecuted DC, and obtained a solution with Q1 = -0.645, which passed

the QA criterion.

Testing the recovery procedure to extend the data arc backward involved using TDRS with

a data arc of 34 hours. ODAS successfully extended the data arc backward by half an arc

length (17 hours).

Testing the recovery procedure to eliminate biased or noisy batches involved using TDRS,

SMM, and Landsat-4. For example, a WRMS value of 2.47 was obtained for TDRS, where

the QA criterion was set at 1.45. ODAS used the recovery procedure to eliminate biased

or noisy batches and identified a set of batches that need to be deleted. This successfully

brought the WRMS value to 1.43, which passed the QA test.

Ephemeris QA. The goal of testing the Ephemeris QA function of ODAS was to verify the

successful comparison of mRephem with the criterion for maximum EPHEM overlap dif-

ference (see Table 10).

Table 10. Test Matrix for the Ephemeris QA Function of ODAS

EPHEMERIS QA TDRS SME

SUBFUNCTIONS

PASS COMPARE CRI- •

TERIA

FAIL COMPARE CRI- • •

TERIA

SMM Landsat-4 Landsat-5 NIMBUS-7 ERBS DE-A

For the case of TDRS spacecraft, the ARephem value met the QA criterion. The criterion

was changed, and ODAS reported an EPHEM QA failure. For the initial day of ODAS

execution, all EPHEM QA failed since no previous overlap data arcs were available for

comparison.

ODAS Reporting. The goal of testing the reporting function of ODAS was to verify that

proper information was sent to the designated files, and the ODAS activities could be

monitored (see Table 11). This involved executing ODAS and monitoring the output files.

ODAS successfully processed its output files. The log files contained different levels of

detailed reporting on ODAS activities. The DC/SOR output files contained summaries of

DC results for few executions for each spacecraft.

Miscellaneous Functions. The goal of testing the miscellaneous functions of ODAS was to

validate other embedded functions. These are defined in Table 12.
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Table 11. Test Matrix for the Reporting Function of ODAS

REPORTING

SUBFUNCTIONS

ODAS LOG FILES

DC/SOR SUBSET FILES

OTHER OUTPUT FILES

TDRS SME SMM Landsat-4 Landsat-5 NIMBUS-7 ERBS DE-A

Table 12. Test Matrix for Miscellaneous Functions of ODAS

MISCELLANEOUS

SUBFUNCTIONS

DC/SOR OUTPUT EX-
TRACTION

DIFFERENT DATA

TYPES

CONTINUOUS EXECU-

TION

TDRS SME SMM Landsat-4 Landsat-5 NIMBUS-7 ERBS DE-A

The DC/SOR output extraction function successfully extracted all required output pa-

rameters from the DC/SOR output file for all spacecraft. This involved searching through

the output files, locating the required parameters, and extracting them. ODAS success-

fully processed different data types, e.g., TDRS System (TDRSS) data with TDRS space-

craft, and only Spaceflight and Tracking Data Network (STDN) Ranging Equipment

(SRE) data for NIMBUS-7 spacecraft. ODAS was also executed on a continuous basis for

3 days without any problems to check the durability of the system for long periods on

uninterrupted execution. All tests were successful.

The test results summarized above demonstrate the viability of autonomous routine OD

operation for extended periods of time without analyst intervention. Several types of situ-

ations, e.g., host system failure and unacceptable DC solution (DC failure unrecoverable

by the ODAS DC QA subsystem), will require analyst intervention. It is possible to en-

hance ODAS to extend the range of situations that may be handled autonomously. Feasi-

bility studies of several enhancements are in progress.

5. SUMMARY

The development and testing of a working prototype ODAS has established the feasibility

of reliable continuous autonomous routine operational OD, especially for situations where

successful DC solutions are obtained in the first attempt, representing the major fraction
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of operational situations. In addition, the inclusion of a generic subsystem capable of
accepting direct instructions on specific recovery procedures from an analyst allows
ODAS to stay abreast of current levels of expertise, while providing an archival function
for past expertise on operational OD techniques. As described in Section 4, preliminary
tests of the performance of particular recovery options applied to certain types of DC
failure have already been successfullydemonstrated in an ODAS testbed. Continued re-
finement in this area is in progressand representsa definite future direction for ODAS.

Associated with this concept is the application of artificial intelligence methodologies to

the quality assurance component to exploit the efficient learning algorithms of the latter

(Reference 9). Future concepts also include applications to onboard navigation, particu-

larly of refined recovery procedures to provide improved solution reliability for onboard

processor-based OD.

APPENDIX

This appendix contains brief descriptions of the five ODAS recovery procedures. Detailed

descriptions are available in Reference 2.

Recovery Procedure P1 (Change H-P Density Table). Recovery procedure P1 provides a new

modified H-P atmospheric density table corresponding to a different F1o.7 solar flux. The

H-P atmospheric density model currently used in GTDS consists of 10 numerical tables

specifying minimum and maximum densities as a function of spacecraft height. Each

table corresponds to a specific 10.7-centimeter (cm) solar flux. The recovery procedure

uses the estimated value of Oa, an atmospheric density scaling parameter used during DC

to compute a more appropriate H-P atmospheric density table. The QA criterion for 01 is

a range, i.e.,

_)l,min < _)1 < _)l,max

The P1 algorithm employs an analytical representation of the tabulations to determine a

higher flux table if 01 is larger than Ql,max and a lower flux table if 01 is smaller than

_01 ,rnin.

Recovery Procedure P2 (Extend Data Arc Backward). Recovery procedure P2 extends the

data arc backward in time by one half the current arc length to obtain additional tracking

data.

Recovery Procedure P3 (Eliminate Biased or Noisy Batches). Recovery procedure P3 detects

biased or noisy batches in the tracking data and creates directives to delete these batches

when performing OD. P3 is used to modify the set of observations that is accepted for

input to GTDS DC and uses statistics for the observation residuals from the SOR. Since

the SOR editor has editing criteria that are different than those used in the DC process,

the SOR data are supplemented by additional statistical data. The procedure is based on a

modeled range of acceptable means and standard deviations for individual batches of

tracking measurements and eliminating any that fall outside this range in a subsequent
DC.
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Recovery Procedure P4 (Increase Initial WRMS). P4 modifies the initial WRMS specification

to accept additional observations during DC. During the DC process, a number of itera-

tions are performed that correct a least-squares fit of the observation residuals. Elimina-

tion of observations that correspond to a residual in the first DC iteration that lies outside

a user-specified range (proportional to a user-specified initial WRMS) is a mechanism

used to eliminate certain measurements for DC. P4 operates on the premise that the

user-specified WRMS may have been inappropriately small and computes an increment

based on the fraction of accepted measurements and a simple model for the initial statisti-
cal distribution of the observation residuals.

Recovery Procedure P5 (Use Final Elements as Input). Recovery procedure P5 is a means for

performing further DC iterations in an attempt to achieve better convergence characteris-

tics. The procedure detects the behavior of the WRMS of residuals as a function of DC

iterations to determine if the direction is toward convergence or divergence. If the DC

process is convergent, this procedure recommends additional iterations, starting with the
elements from the last iteration of the earlier DC.
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N90-13435

CALCULATION OF DOUBLE-LUNAR SWlNGBY
TRAJECTORIES: I. KEPLERIAN FORMULATION*

Stephen Stalos

Computer Sciences Corporation (CSC)

ABSTRACT

Scientific satellites may require translunar orbits aligned with the Sun-

Earth line, with most of the period spent in either the sunward or antisun-

ward direction. To maintain alignment, the orbit's line of apsides must

rotate at a rate equal to mean angular motion of the Earth about the Sun.

To maintain this rotation of the line of apsides by use of fuel onboard the

spacecraft is prohibitively expensive. Farquhar and Dunham (Refer-

ence 1) proposed a method for maintaining the desired alignment by gain-

ing momentum at the expense of the Moon during a close approach--a

lunar swingby--as the spacecraft passes beyond lunar orbit, then return-

ing the momentum at the second lunar swingby as the spacecraft returns

within the lunar orbit. The cycle of double-lunar swingbys may then be

repeated. Dunham (Reference 2) presented the orbit parameters neces-

sary to achieve double-lunar swingby orbits which will maintain Sun-Earth

line alignment. The details of the Keplerian approach to calculation of

these parameters are presented. Methods for solution of the necessary

equations for these parameters are presented.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. DEFINITION OF A DOUBLE-LUNAR SWINGBY CYCLE

Consider a Keplerian orbit about the Earth with its line of apsides pointing toward the

Sun. After 3 months, ignoring perturbations, the line of apsides would be perpendicular

to a line drawn from the Sun to the Earth; to maintain its Sun-pointing line of apsides,

this line must rotate about the Earth at a rate equal to the mean angular motion of the

Earth about the Sun. Farquhar and Dunham (Reference 1) described a method to achieve

such an apsidal rotation rate for translunar orbits. The method requires two close lunar

encounters, swingbys, per cycle. The first swingby occurs as the spacecraft, moving away

from the Earth, crosses the lunar orbit with the Moon to its left. This "trailing edge"

swingby increases the energy of the spacecraft's orbit and hence increases the semimajor

axis. We call the orbit with the larger semimajor axis the outer-segment loop or simply

"outer loop," and the original orbit the inner-segment loop or simply "inner loop." The

spacecraft's outer loop orbit period is such that more than one lunar month passes follow-

ing the first lunar swingby before the spacecraft again crosses the Moon's orbit, this time

moving toward the Earth. The second swingby occurs at this crossing, again with the

Moon to the left of the spacecraft. Thus a "leading edge" swingby occurs, removing

energy from the spacecraft's orbit and reducing its semimajor axis to its original length--

the length before the first lunar swingby. Next, slightly less than one lunar month passes,

the spacecraft is now ready for another outward crossing of the Moon's orbit, and the

Moon and spacecraft are at the same relative position as for the first lunar swingby. This

defines one complete "double-lunar swingby" cycle. Note that at the first swingby the

Moon's pull rotated the line of apsides counterclockwise. The second swingby, occurring

as the spacecraft moved toward the Earth, also resulted in a counterclockwise rotation of

the line of apsides. If, then, the sum of these two rotations divided by the time for one

complete cycle equals the mean angular motion of the Sun, the spacecraft's line of

apsides will continue its sunward alignment.

Figure 1 shows one complete double-lunar swingby cycle. The Moon's positions at the

first, second, and third (first) swingbys are shown as $1, $2, and $3. The true anomaly of

the spacecraft at the time of the first swingby is shown as f_ for the inner loop orbit and

fo for the outer loop orbit. Thus the apsidal rotation is 2(fl - fo), and occurs in a time

equal to the time from $1 to $3. We can then write the first necessary condition for a

lunar swingby as

A_b = 2(fi - fo) 2._ = 0

2ta + ts TE

t t
rate of rotation mean angular
of line of apsides motion of Earth
for one double- about the Sun

lunar swingby
cycle

(1)
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Figure 1. A Double-Lunar Swingby Trajectory
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where

T E =

2ta =

t s =

Earth's orbital period

time spent in outer loop from $1 to $2

twice the time from perigee of inner loop to $1, plus one complete

inner loop period

Two more conditions relate the spacecraft's orbital parameters to the Moon's motion:

( r:)}A01 = 2(fl - fo) + 2 - fl

angle traveled by Moon from
$1 to $2 expressed in inner and
outer loop true anomalies

2_
(2ta) = 0

Tm

angle traveled by Moon
(mod 2_) between Sl
and S2 expressed in
outer loop time, 2t.,
from S_ to $2

(2)

A02- {2(zr- f, rk-)}- {2g 2er }Trots = 0 (3)

t t
angle traveled by angle traveled by
Moon from $2 to Moon from S2 to
$3 expressed in 83 expressed in
inner loop true terms of inner
anomaly loop period

where

Am

rm

Tm

These three

= radius of Moon's orbit

= swingby distance of spacecraft from Moon

= Moon's orbital period

equations specify the geometry constraints for a complete double-lunar

swingby cycle.

2. REFORMULATION OF THE NECESSARY EQUATIONS

In this Keplerian formulation, the transfer from the inner orbit segment to the outer orbit

segment is assumed to occur instantaneously when the spacecraft crosses the lunar orbit.
We also assume a circular lunar orbit.
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The three equations may be expressed solely in terms of three variables; ai, Pi, and a,

where

5 bend angle; angle through which velocity of spacecraft is changed

at $1

apogee distance of inner loop

perigee distance of inner loop

The three nonlinear equations may then be solved numerically to determine these three

unknowns. A description of the solution process is given in Section 3. We now show all

the relations which allow Equations (1), (2), and (3) to be expressed in terms of a, ai,

and Pi.

For Equation (1), we require expressions for fx, fo, ta, and t¢ in terms of a, ai, and

Pi.

/-/E = gravitational parameter for Earth

1

az = _- (ai + Pi) -- semimajor axis of inner loop

(ai - ai)
ei - = eccentricity of inher loop

al

COS fl =
el

'sin fI'_ =
fI = ta n-I _._j true anomaly of inner loop at Sl

Vs = E ll)} /2, spacecraft speed at S1, in inner loop

Vm B
2_z Am

Tm
, velocity of Moon in its orbit

Vxm = -V m sin fl "_t
Vy m = +V m COS fl

x and y components of Moon's velocity
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v× = - sin fl

Vy

Vxo = Vxm + (Vxs - Vxm) COS a - (Vy s - Vym) sin a "1

Vyo = Vym + (Vys - Vym) COS a + (V×s - V×m) sin a

rotation of spacecraft

velocity vector with

respect to Moon by

an angle a

Vo = (V2o + V_o) l/e, spacecraft speed, at S,, in outer loop

v2°) -_, semimajor axis of outer loop
/xzJ

E_ = 2 tan -1 . tan , eccentric anomaly of inner loop at S_
+ eiJ

rx = Am COS fl

ry = Am sin fl

h = r x Vyo - ry Vxo , angular momentum of outer loop orbit

f°= tan-I { h(rx vx° + ryvy°))h2_ fie Am , true anomaly of outer loop, at $1

eo = (l
h2 "_1/2-- . , eccentricity of outer loop

/ZE aoJ

Eo = 2 tan -_ 1 + eoJ tan , eccentric anomaly of outer loop, at $1
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2_t a3o/2,period of outer loop
T o =

2_ a_/2, period of inner loop
TI- _¢r_E

1 Eo - eo sin Eo

ta = _- To - 2_t/To
, time from $1 to apogee of outer loop

ts = 2{ E_- e_ sinE_}2_/Tl + TI, one inner loop period plus twice the time from
perigee of inner loop to $1

For Equation (2), we express rm in terms of previously defined quantities.

tim = gravitational parameter for Moon

Vm = {(Vxs - Vxm) 2 + (Vy s - Vym)2} 1/2

rm V2 sin a

2

For Equation (3), all variables have been related previously to a,

3. SOLUTION OF THE EQUATIONS

ai, and Pi.

Writing the equations as

A_ = fl (a, ai, Pi) = 0

A01 = f2 (a, ai, Pi) = 0

A02 = f3 (a, ai, Pi) = 0

or

f fl (_'_ {a 1
_(x-')= f2{_ i' = 0, _ = ai

f3 (x-')J Pi

we use the Newton-Raphson method to find the required solution vector, ft.
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The method is to guess a new iterate, fiN.l, from the previous iterate, _N, by

_N+I = _N

where J (X) is the Jacobian matrix

J(x-) =

f0fl 0fl 0fl

0XI 0X 2 OX 3

0f2 Of2 0f2

0Xl 0X 2 19X 3

Of3 Of 3 Of 3

M.0X1 0X2 0X3

In fact, we define

_N÷I ______ (_N+I _ _N)

and write

j(ffN) _N+I = l_" (_N)

This linear system can be solved for Z N+I once J and l_'are evaluated at fiN. Then _N+I

is found from

_N+I = --7_N+I + _N

The partial derivatives are estimated numerically via central differences

The step size h o

Ofi

0xj 2hij

fi (xj + hij) - fi (xj - h0)

is chosen such that

Ofi ][hij[ _ -- _ Ifil

where e is a machine constant. For IBM double precision, e = 2.2 x 10 -16 . For IBM

single precision, E = 9.5 x 10 -7 .
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4. SAMPLE CALCULATION

Computer output for a sample solution of a double-lunar swingby orbit is shown in the

appendix. First, the initial guess values for the three independent variables are shown.

a = 0.2 radians = 11.46 degrees

ai = 700, O00km

Pi = 40,000km

Next, values for h, used to calculate partial derivatives, are displayed. Then the results of
each iteration are shown in the form

j (x-)_ (3 = F (x-)

After seven iterations, the final values of the independent variables are shown: a =

19.4205 degrees, ai = 549,888 kin, and Pi --- 37,432 km. These results agree with those

given on page 2-2 of Reference 2.

375



APPENDIX -- SAMPLE DOUBLE-LUNAR SWINGBY CALCULATION

The following shows details for a solution of a double-lunar swingby orbit.

PERIOD OF SATELLITE: 27.3217 DAYS,
PERIOD OF PLANET: 365.2600 DAYS,

PLANET GRAV. PARAMETER: 3.986E+05 KMww3/SECwwZ,

SATELLITE GRAV. PARAMETER: ( 3.986E+05 / 81.3700) KH**3/SEC*w2
SATELLITE ORBITAL RADIUS: 384399. KM

INITIAL VALUES FOR X :

Z.OOOOOE-01 7.00000E+O5

ERROR TOLERANCES FOR SUCCESSIVE ITERATES :

1.OOOOOE-06 1.OOODOE-06

4.OOO00E÷O4

1.OOOOOE-06

FROM HSET, H VALUES ARE:

Z.OOOOOE-O6
B.OOOOOE-O7
6.75000E-06

3.5000OE÷OO
4.37500E-01
8.75000E-01

2.02500E÷00
Z.OZBOOE÷O0
4,OOOOOE-Ol

_**** ITERATION NUMBER i *****

THE SOLUTION TO THE FOLLONING MATRIX E@UATION,

I 3.0245ZE-07 -2.30101E-13
I
I -4.53911E÷O1 -4.36BSOE-OS

I 1.13706E+00 1.2487ZE-05

2.ZSO45E-13 I I ZI i ) I
I I I

5.97961E-06 I I ZI Z ) I

2.7ZSOZE-O5 I I Z(3) 1

1-9.61618E-08 I
I f
I-Z.51620E+O0 I
I I
I 1.74578E+00 I

IS Z : -1.44445E-01 2.04596E+0S -Z.36627E+04

ITERATION I, X : 3._4445E-01
F-NORM = 2.6Z3Z6E+OO

4.95404E÷05 6.36627E+04

***** ITERATION NUMBER Z *****

THE SOLUTION TO THE FOLLONING MATRIX E@UATION,

I 5.51903E-07 -3.Z9366E-13
I
I -1.15460E+01 -3.90971E-05
I
I 7.5548ZE-01 1.17568E-O5

3.67081E-13 I I Z(1) I
I I I

2.ZO171E-06 I I Z(Z) I
I I I

2.1872BE-05 I I Z{3) I

I 4.0043BE-08 I
I I
I Z.61698E÷OO I
I I
1-6.28797E-03 I

IS Z : 8.56683E-03 -6.74558E+04 3.56809E÷04

ITERATION 2, X : 3.35878E-01
F-NORM = 8.89039E-01

5.62860E÷O5 Z.79819E+04
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wwww_ ITERATION NUMBER 3 _*_

THE SOLUTION TO THE FOLLONING MATRIX EQUATION,

I Z.35513E-07 -5.67579E-13 6.7Z816E-13 I I Z(1) I I-1.389Z7E-O8 I
I I I I I I
I -3.3ZO48E+01 -6.23036E-05 1.39124E-05 I I Z(g) I = I-7.87616E-01 I
I I I I I I
I 4.51755E-01 1.1036ZE-05 2.66817E-06 I I Z(3} I I-l. OlqZ3E-O1 I

IS Z : -3.444ZOE-03 1.Z4880E+04 -8.908ZZE+03

ITERATION 3, X : 3.393Z3E-O1
F-NORM = 5.10358E-OZ

S.5037ZE+05 3.68901E+04

w_w_w ITERATION NUMBER 4 w.www

THE SOLUTION TO THE FOLLOHING MATRIX EQUATION,

I 2.90579E-07 -S.71015E-13 5.48010E-13 I I Z(1) I
I I I !

! -Z'7836IE+O1 -5"7(*99ZE-OS 9"34668E-06 1 i Z(Z, j =5.00948E-01 1.11918E-05 2oS176SE-OS I Z(3)

I-4.62181E-10 I
I I
I-4.30256E-OZ I

1-8.01032E-03 [

IS Z : 3.71385E-04 4.80824E+02 -5.39298E+OZ

ITERATION 4, X : 3.389SlE-01
F-NORM = 2.36043E-04

6.49891E÷05 3.74Z94E÷O_

wwwww ITERATION NUMBER 5 wwww*

THE SOLUTION TO THE FOLLONING MATRIX EQUATION,

J 2.94573E-07 -5.68936E-13 5.40713E-13 I
I I
I -2.7535ZE+01 -5.71133E-05 9.10926E-06 I
I I
1 5.054Z4E-01 1.1ZO43E-O5 Z.SlO65E-05 J

I Z( 1) I I-3.Z1530E-12 I
I I I I
I Z( 2 ) I = I -Z. 13Z69E-04 I
I I I I
I Z( 3 ) I I-2.277(_2E-05 I

IS Z • -1.49764E-08 3.35773E+00 -Z.40526E+O0

ITERATION 5, X : 3.38951E-Ol
F-NORM = 4.30244E-09

5.49888E+05 3.74318E+04
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w_w** ITERATION NUMBER 6 ww_*_

THE SOLUTION TO THE FOLLOHING MATRIX EQUATION,

I 2.94591E-07 -5.68930E-13
I
I -Z.75337E+OI -5.71117E-05

l 5.ON44OE-02 I.IZO43E-OB

5.40685E-13 I I Z(1) I
I I I

9.10824E-06 I I Z(Z] I
I I I

Z.5106ZE-OS I I Z(3) I

I-4.24080E-17 I
I I
I-3.8Z4ZBE-09 I
I I
I-4.7B174E-lO I

IS Z : Z.49561E-11 4.83695E-05 -4.11348E-05

ITERATION 6, X : 3.36951E-Ol
F-NORM = 1.O1585E-14

5.49868E+05 3.74318E÷04

*w_** ITERATION NUMBER 7 *w_w*

THE SOLUTION TO THE FOLLOHING MATRIX EQUATION,

I Z.94591E-07 -5.68910E-13
I
[ -Z.7B337E+01 -5.71117E-05
I
I 5.05440E-01 1.1ZO43E-05

5.40685E-13 I I Z(Z) I
I I I

9.108Z4E-06 I I ZIZ) I
I I I

Z.51OBZE-O5 I I z(s) I

I-l.05879E-Z: > I
I I
I-8.Z1565E-15 I
I I
I-1.9_'289E-15 i

IS Z : 5.44511E-17 9.810Z4E-11 -1.ZZZ64E-lO

ITERATION 7, X : 3.38951E-01 5.49888E+05
F-NORM = 5.16ZBq. E-15

SOLUTION CONVERGED IN 7 ITERATIONS.

X :
3.38951E-01 5.49888E+05 3. 74318E+04

Z :
5.44511E-17 9.810Z4E-II -1. ZZZ64. E-lO

F :
Z.6q.698E-Z3 3. 99680E-15 1.16573E-15

3.74318E÷04

ALPHA, BEND ANGLE =
APOGEE OF INNER ORBIT =
PERIGEE OF INNER ORBIT =

ECCENTRICITY OF INNER ORBIT =
APOGEE OF OUTER ORBIT =
PERIGEE OF OUTER ORBIT =

ECCENTRICITY OF OUTER ORBIT =
SNINGBY DISTANCE =

19.4205 DEGREES,
5 4968764E+05 KM,
3 7431801E+04 KM,
O 8725334,
8 989Z44SE+05 KM,
I OqZO4IBE+O5 KM,
0 7922417,
2 76389ZgE+04 KH.
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ACTIVE RENDEZVOUS BETWEEN A LOW-EARTH ORBIT
USER SPACECRAFT AND THE SPACE

TRANSPORTATION SYSTEM (STS) SHUTTLE*

H. L. Hooper and J. R. Herrnstein

Computer Sciences Corporation (CSC)

ABSTRACT

This study considers active rendezvous of an unmanned spacecraft with

the Space Transportation System (STS) Shuttle. The paper first discusses

the various operational constraints facing both the maneuvering space-

craft and the Shuttle during such a rendezvous sequence. Specifically, the

actively rendezvousing user spacecraft must arrive in the generic Shuttle

control box at a specified time after Shuttle launch. In so doing it must at

no point violate Shuttle separation requirements. In addition, the space-

craft must be able to initiate the transfer sequence from any point in its
orbit.

The paper then discusses the four-burn rendezvous sequence incorporat-

ing two Hohmann transfers and an intermediate phasing orbit as a low-

energy solution satisfying the above requirements. The general

characteristics of the four-burn sequence are discussed, with emphasis

placed on phase orbit altitude and delta-velocity (AV) requirements. The

report then considers the planning and execution of such a sequence in

the operational environment. Factors crucial in maintaining the safety of

both spacecraft, such as spacecraft separation and contingency analysis,
are considered in detail.

*This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. INTRODUCTION

This report presents the results of an investigation into analysis and mission planning

techniques for unmanned user spacecraft involved in active rendezvous with the Space

Transportation System (STS) Shuttle. During the investigation, a rendezvous computation

program that incorporates these techniques was developed. This software was used to

generate the results presented in the report.

Section 2 presents background information on Shuttle standard rendezvous policies.

These requirements coupled with a desire to minimize fuel expenditures make a rendez-

vous sequence consisting of a series of Hohmann transfers a desirable technique. The

general characteristics of such a rendezvous sequence are discussed in detail in Section 3.

Special attention is given to the cost in terms of Delta-V (AV) of such a maneuver se-

quence.

Section 4 discusses several operational issues confronting unmanned spacecraft rendez-

vousing with the Shuttle. The issues include safety of the Shuttle during the maneuver

sequences, tracking coverage, lighting coverage, and maneuver contingencies. Section 5

presents a summary of the conclusions reached in the report.

2. BACKGROUND -- STS SHUTTLE RENDEZVOUS REQUIREMENTS

This section presents the requirements imposed by the Shuttle on an actively rendezvous-

ing user spacecraft. These requirements were derived from References 1 through 5. Be-

cause many of these policies are still formulative, all the referenced reports are
preliminaries.

The rendezvous sequence is initiated when the "Go for descent" declaration is issued by

mission controllers at Johnson Space Center (JSC). This is done after the Shuttle has

achieved orbit and a systems check has determined that the rendezvous sequence may

proceed. Nominally, this occurs at 5 hours mission-elapsed time (MET), or 5 hours after
launch.

Upon receiving the "Go for descent" declaration, the unmanned user spacecraft (chase

spacecraft) must complete its rendezvous with the Shuttle (target spacecraft) at a prede-

termined time, currently given as 53 hours MET. This rendezvous completion time is

referred to by JSC as the Control Box Start Time (CBST). The rendezvous is considered

complete when the maneuvering spacecraft has achieved the Shuttle control box (Fig-

ure 1) and has ceased all translational maneuvering. As illustrated, the control box is a

region above and ahead of the Shuttle with its origin at the Shuttle. The horizontal compo-

nent measures angular separation along the Shuttle orbit, while the vertical component
measures radial distance from the Shuttle.

Upon achieving the CBST at the completion of the rendezvous, the user spacecraft must

satisfy a semimajor axis and eccentricity requirement limiting the difference in apogee

and perigee altitudes to 14.8 kilometers (km). In addition, a maximum angular separation
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of 0.03 degree (deg) in the orbital planes of the spacecraft is required. The user space-

craft must be capable of absorbing up to approximately 0.1 deg of launch dispersion

errors in the orbit plane of the Shuttle. Finally, the user spacecraft must be capable of

handling Shuttle launch slips of up to 1 hour. This, combined with the possibility of

24-hour Shuttle launch delays, requires that the user spacecraft be capable of completing

rendezvous with the Shuttle from any initial orientation (or phasing) with the Shuttle.

Stated differently, the user spacecraft must possess a 360-deg phasing capability with the
Shuttle.

3. USER SPACECRAFT/STS SHUTTLE RENDEZVOUS SEQUENCE

This section describes a rendezvous sequence that is well-suited to the operational envi-

ronment and that satisfies all the requirements presented in the previous section while

minimizing AV requirements. The section begins with a discussion of the characteristics

of the Hohmann transfer and proceeds to describe a rendezvous sequence consisting of a

series of Hohmann transfers with intermediate phasing orbits. The rendezvous technique

does not require any specific initial orbital conditions. However, to simplify the current

discussion, it is assumed that the user spacecraft begins in a higher orbit than the Shuttle.

3.1 THE HOHMANN TRANSFER

A Hohmann transfer is well-known as the optimum maneuver sequence for transferring

between two circular coplanar orbits. The first burn of such a maneuver places the chase

spacecraft in an elliptic transfer orbit with perigee at the same altitude as the target orbit.

The second burn occurs 180 deg after the first and circularizes the transfer orbit, leaving

the chase spacecraft in the same orbit as the target vehicle.
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If the chase and target orbits are not coplanar, a plane change must be done at some point

in the maneuver sequence. This could be accomplished by executing all the plane change

in either the initial or the final orbit, independently of the altitude change to be per-

formed. However, the transfer AV is optimized by simultaneous execution of the plane-

change and orbital-change maneuvers. Efficiency is further improved by distributing the

plane changes between the two burns. Figure 2 shows the significant AV savings associ-

ated with linking plane and altitude changes by distributing the plane changes between the
two burns of the Hohmann transfer.

300

250

20O

u)
(3
_z
> 150

>

e'_ 100

5O

ALTITUDE CHANGE

1000 KM

0 _ 2 3 4

TOTAL PLANE CHANGE (DEGREES)

Figure 2. Delta-V Savings by Coupling Altitude and Plane Changes

3.2 MULTIPLE BURN TRANSFERS

If two spacecraft

tion, or phasing,

angle is referred
orbits determine

are to rendezvous using a Hohmann transfer, the correct angular separa-

must exist between the spacecraft at the initiation of the transfer. This

to as the Hohmann phase angle (HPA). The relative periods of the two
the value of the HPA.

The synodic period represents the length of time required for spacecraft in different orbits

to return to the same orientation with respect to each other. This is the time between

successive occurrences of the HPA. If the synodic period is greater than the amount of

time allotted for a particular rendezvous scenario, the required HPA may not be achiev-

able for all initial orientations. For a 2-day rendezvous, the synodic period is longer than

the rendezvous duration if the initial user spacecraft altitude is less than 145 km above

the nominal Shuttle altitude of 315 km. For a spacecraft such as the Gamma Ray Obser-

vatory (GRO), which is nominally only 35 km above the Shuttle at the start of the rendez-

vous sequence, additional measures must be taken.
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The required 360-degphasing capability can be achievedwhile maintaining the AV ad-
vantagesinherent in the Hohmann transfer by employing a sequenceconsisting of a series
of Hohmann transfers. Sucha sequence,the four-burn rendezvoussequence,is illustrated
in Figure 3. The four-burn sequenceconsistsof two Hohmann transfers. The first transfer
places the chase spacecraft in an intermediate orbit called the phase orbit. The second
transfer maneuversthe chasevehicle to the target spacecraft.The phaseorbit is computed
such that the HPA betweenthe phaseand target orbits is achieved at the time of the final
transfer. By varying the altitude of the phase orbit, the user spacecraft is capable of
achieving rendezvouswith the Shuttle from any initial relative orientation.

TRANSFER ORBIT FROM

TRANSFER ORBIT FROM
INITIAL ORBIT TO

PHASING ORBIT

TARGET ORBIT i

$ • INITIAL PHASE ANGLE

Figure 3. Four-Burn Transfer Scenario

The concept of linking in- and out-of-plane corrections to save AV is as applicable to the
four-burn scenario as it is to the case of a direct Hohmann transfer. To combine plane

changes and altitude changes, each of the four burns must occur along the relative node

defined by the intersection of the user spacecraft and Shuttle orbit planes at the termina-

tion of the rendezvous sequence.

3.2.1 PHASE ORBIT ALTITUDE

To apply the four-burn sequence, it is necessary to accurately compute the semimajor axis

of the phase orbit, given a set of initial conditions. This is done using the following

equation:

I(/_,]l/2(___g__'_l/zl_._a__(3J _.ap3J J _ztI( ) ( )3/2]
0 = - .T - q_ - 2_ - .ap + ac 3/2 + ap + at.

ap ap
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where

at

ac

ap

T

= Earth's gravitational constant (398600.64 (kma/sec2))

= target spacecraft semimajor axis

= chase spacecraft semimajor axis

= phase orbit semimajor axis

= initial phase angle

= total rendezvous duration

Equation (3-1) is solved iteratively until a value for ap is found which makes the right-
hand side of the equation arbitrarily close to zero.

Figure 4 shows phase orbit altitude as a function of phase angle, _b, for a 3-day transfer

from 350 to 315 kin. The figure demonstrates that two phase orbit solutions exist for each

initial phase angle: one above the target spacecraft and the other below. The solid por-

tions of the curves show the phase orbit solutions having the lower AV requirement for

each specific initial phase angle. The crossover point from the upper to the lower solution

occurs when the solutions require equivalent AV expenditure.
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n

Figure 4.
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Phase Orbit Altitude as a Function of Initial Spacecraft Phase Angle
for a 3-Day, 350- to 315-km Scenario

Further examination of variations in phase orbit altitude with rendezvous time and initial

spacecraft altitudes suggests several noteworthy trends. The phase orbit semimajor axis is
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essentially a linear function of phase angle, with the upper and lower solutions being

nearly parallel. Furthermore, the y-intercept of the upper phase orbit altitude/phase angle

function is the target spacecraft semimajor axis and its slope varies inversely with T, the

rendezvous duration. With these relationships in mind, it is possible to write three analyti-

cal equations that accurately predict the phase orbit altitudes and the crossover point over

the ranges of Shuttle altitudes (300 to 350 kin), user spacecraft altitudes (300 to 500 kin),

and rendezvous durations (2 to 5 days) under consideration:

ap_(O) = ku
T _ + at (3-2)

apt(_) = ktq_ +Ia'- 2:rkilT T (3-3)

v
T / 2nkt

_¢ = kt + k_ [.a¢ - at + T
(3-4)

where

and

apu

ape

= semimajor axis of the upper phase orbit

-- semimajor axis of the lower phase orbit

-- phase angle at which crossover occurs

(3-5)

2Ii " 1T

1/3

(3-6)

The expressions for ku and kt were derived by taking a Taylor series expansion of an

expression for phase orbit altitude based on spacecraft angular rates and assuming only

the linear terms to be significant. Numerical analysis can be performed to demonstrate

that, in agreement with the initial simplifying assumption of a linear relationship between

phase orbit altitude and _, ku and kt do remain essentially constant over the ranges

under consideration. The derivation of kt and ku and the associated numerical analysis

can be found in Reference 6.

387



Equations (3-2) through (3-6) predict phase orbit altitudes to within several kilometers of

the more accurate solutions computed iteratively by Equation (3-1). They can, therefore,

be used to compute quick approximations to the phase orbit altitude.

3.2.2 DELTA-V CONSIDERATIONS

Figure 5 shows the AV associated with the upper and lower phase orbit solutions for a

3-day, coplanar transfer from 350 to 315 km. Figure 6 presents the cost of the less expen-

sive phase orbit solutions for the same transfer with rendezvous durations of 2, 3, and

4 days. The AV saved by crossing over from the upper to the lower phase orbit solution

for phase angles approaching 360 deg is clear. As expected, the maximum AV occurs at

the crossover point. This maximum AV value is critical in rendezvous scenarios with the

Shuttle since a 360-deg phasing capability is required. This means that it is necessary to

budget enough fuel to be able to handle the maximum possible AV.
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Figure 5.
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Delta-V Versus Phase Angle for 3-Day Rendezvous; Upper and Lower
Phase Orbit Solutions

The magnitude of the maximum AV can be determined without solving the rendezvous

problem by computing the orbit with which the target orbit has a synodic period equal to

the rendezvous duration. This orbit can be called the synodic orbit. The cost of a direct

Hohmann transfer from this orbit to the target orbit is equal to the maximum four-burn
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solution AV. These synodic orbit AVs are represented in Figure 6 as dashed horizontal

lines. As anticipated, each of the lines is tangent to the peak of the appropriate four-burn

sequence AV curve.

Figure 6 leads to the intuitive result that as the rendezvous time goes down, the cost of

the most expensive solution goes up. A corollary of this is the conclusion that increasing

the initial altitude of the chase spacecraft has no effect on the maximum AV until the

altitude of the synodic orbit is passed. This is graphically shown in Figure 7. The AV is

shown as a function of phase angle for five different user spacecraft initial altitudes for a

2-day rendezvous sequence. When the initial altitude is equal to the synodic altitude of

459 km, the AV becomes constant at the maximum AV value. Raising the initial altitude

beyond this increases the AV to a still higher value.

Figure 8 demonstrates another important characteristic of AV costs in the four-burn se-

quence. The figure illustrates the standard AV versus _ curve for a 3-day rendezvous

from 350 to 315 km. In addition, Figure 8 includes the AV when an initial coast period of
12 hours is executed before the initiation of the rendezvous sequence while maintaining

the time of rendezvous completion. Figure 8 indicates that the strategy of coasting to a
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more optimal phasing before initiating the rendezvous sequence never saves any AV and,

in fact, raises the maximum AV value. The explanation for this occurrence is that the

benefits of the more optimal phasing are more than countered by the increased cost
associated with a shorter rendezvous duration.

The effect of plane changes on AV is demonstrated in Figure 9. A transfer from 350 to

315 km in 2 days for a coplanar case and for plane changes of 0.1 and 0.2 deg is shown.

As previously described, the four-burn solution minimizes the impact of plane changes by

combining in- and out-of-plane corrections. Because of this, the effect of plane changes

on AV diminishes as the amount of altitude change required increases. Specifically, Fig-

ure 9 shows that the increase in the maximum AV is approximately 3 meters/second

(m/see) for the 0.1-deg plane change. If plane changes were not combined with the orbit
maneuvers, the increase would be about 14 m/see.

Each of the curves in Figure 9 possesses a discontinuity at a phase angle of 180 deg,

which results from the requirement that each of the burns occurs at the appropriate rela-

tive node. In generating the curves shown in Figure 9, the phase angle was varied by

moving the initial location of the chase spacecraft around its orbit while keeping the target
position fixed. For each solution, the chase spacecraft coasts forward to the nearest
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Figure 8. Total Delta-V Versus Initial Phase Angle for a 3-Day
Rendezvous With a 12-Hour Initial Coast

relative node before executing the first transfer and a portion of the plane change. This

coast distance monotonically decreases until the initial position of the chase spacecraft

reaches the first node at a phase angle of 180 deg. At this point, no coast time is re-

quired. The change in coast time is gradual until this point and is thus not discernible.

However, for the next solution, the chase spacecraft starts beyond the first relative node

and must coast a full 180 deg to achieve the next node. This jump in the initial coast

distance from 0 to 180 deg noticeably changes the remaining rendezvous sequence and is,

therefore, discernible in the AV curves as a discontinuity.

4. OPERATIONAL CONSIDERATIONS

This section discusses the actual application of the four-burn sequence to user spacecraft/

Shuttle rendezvous scenarios. The section describes several important considerations rele-

vant to both the premission analysis phase and the actual maneuver-planning phase in

which specific maneuvers are computed.

4.1 PREMISSION ANALYSIS

The maneuver-planning phase of rendezvous with the Shuttle requires the capability to

compute exact solutions that satisfy Shuttle tolerances. To achieve adequate accuracy, it

is necessary to use an integrator that includes detailed perturbation models. This process

can be time consuming since the rendezvous solutions are developed through an iterative

scheme. This lengthy computation time may not be acceptable during the premission

analysis phase of rendezvous with the Shuttle, during which many cases must be con-

sidered and large numbers of solutions computed.

391



G

>

tll

90.00

75.00 -

60.CO-

_.00-

30.00-

15.00

,,'/\',
,'/ \,,

,'/ \',
,'/ \',,

,,/ , \,,
,,'/ \",

// \',,

/,'/ \',,

,' .1 DEG

J/" /" COPI._N,_q

/
j ,,'

//
./

| I I | i I I

0.00 45.00 90.00 135.00 180.00 225.00 270.00 315.00

INITIAL PHASE ANGLE (DEG)

\\ \ ',
_\ "',,,,

\,,

\
\

360.00

Figure 9. Delta-V Versus Phase Angle for Coplanar and Non-Coplanar
Transfers

Thus, to expedite the analysis process, it is necessary to be able to quickly compute large

numbers of acceptably accurate analytic solutions. However, the computation of analytic

results is complicated by the various perturbations confronting spacecraft. Figure 10 illus-

trates the types of along-track, radial, and out-of-plane errors encountered in the final

positions of the user spacecraft and Shuttle when analytic rendezvous solutions that ne-

glect the nonspherical shape of the Earth and the effects of drag are input into an integra-

tor that includes these perturbations. Figure 10 demonstrates that along-track errors of up

to 13 deg, semimajor axis errors of 4.5 km, and ascending node errors of as much as

0.6 deg are generated when these perturbations are ignored.

These errors are dramatically reduced by incorporating into the rendezvous computation

scheme analytic models describing the perturbative forces. Drag is modeled by assuming

a linear relationship between altitude and density, and by employing a series of Harris-

Priester atmospheric density tables that describe density conditions for a range of solar-

flux values. Approximating the effects of the nonspherical shape of the Earth requires

considering both the short period and secular terms of the spherical harmonic expansion

describing the Earth's geopotential field. Specifically, the short-period terms affect

semimajor axis, inclination, and eccentricity, while the secular terms affect ascending

node, argument of perigee, and mean motion.

392



t_
0

tu

,..i

o

E

14.....................................!.................._..........................................................................................
ARGUMENT OF

LATITUDE ERROR

12 /

10

8

6

4

2

0

0 45 90 135 180 225 270 315 360

INITIAL PHASE ANGLE (DEG)

Figure 10. Errors in Analytic Solutions When No Perturbations Are Included

Figure 11 shows along-track, radial, and out-of-plane errors when these perturbation

models are included in the analytic rendezvous computations. Comparison of Figure 11

with Figure 10 illustrates the significant improvement in result accuracy. The improved

analytic results are accurate enough for most analysis applications and can be computed

approximately 100 times faster than the integrated solutions. In addition, by using these

high-quality analytic results as first-guess solutions, the speed with which exact integrated

solutions can be computed for maneuver-planning purposes is greatly increased.

4.2 SPACECRAFT SEPARATION

Ensuring that the user spacecraft maintains adequate separation from the Shuttle during

the entire rendezvous sequence is a crucial element of the rendezvous sequence. Any

initial phase angles that could cause difficulties in this regard must be determined before

the mission and handled appropriately. Of particular concern are phase angles that result

in phase orbits below the Shuttle because for these cases the user spacecraft passes

through the Shuttle altitude twice during the rendezvous sequence. This discussion consid-

ers separation issues relevant to both transfer orbits.

It is possible for the user spacecraft and the Shuttle to collide during the first transfer

down to the phase orbit if the final rendezvous point is in the Shuttle control box and the

initial phase angle is sufficiently small. For example, a phase angle of approximately

0.7 deg (chase leading target) for a 350 to 315 kin, 3-day rendezvous to the center of the

control box results in the two spacecraft passing within a few hundred meters of each

other. This situation is shown schematically in Figure 12.

One method of avoiding the dangers associated with small initial phase angles is to coast

to a larger phase angle before beginning the rendezvous sequence. As Figure 13 shows
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Figure 12. First Transfer Orbit for a 0.7-Deg Phasing

schematically, this initial coast increases the initial phase angle to a value that presents no

danger of contact even if the second burn cannot be performed and extra revolutions are

required in the transfer orbit. For the specific case involving the 0.7-deg phasing

described above, a coast period of 6 hours increases the minimum separation of the
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spacecraft to approximately 1500 km. Such a coast would not increase the maximum AV

of the rendezvous sequence since it would only be performed for phasings near 0 deg.

,.. "_ SPACECRAFT
_.0_. POSITIONS AFTER

C° '%; 6-HOUR COAST

_ - PHASE ANGLE AFTER

\j
/ I / / \ \  '222':

Figure 13. First Transfer Orbit After an Initial 6-Hour Coast

Separation problems are less severe for the second transfer from the phase orbit up to the

Shuttle control box. It can be demonstrated that, irrespective of the altitude of the phase

orbit, the angular separation when the user spacecraft passes through the Shuttle altitude

will always be essentially the same as the final angular separation. This phenomena,

shown schematically in Figure 14, implies that adequate separation during the final trans-

fer can be ensured by simply adjusting the final rendezvous point in the Shuttle control

box.

While the final transfer presents little difficulties under nominal conditions, under certain

off-nominal circumstances, separation problems can arise. Specifically, if unplanned ex-

tra revolutions are necessary in the second transfer orbit, the user spacecraft and Shuttle

may drift closer together. This will occur if the phase orbit is sufficiently close to the

Shuttle orbit such that the period of the transfer orbit is greater than that of the Shuttle.

This will cause the Shuttle to catch up with the user spacecraft during the unplanned extra

revolutions and introduce the possibility of contact. All dangers associated with extra

revolutions in the second transfer orbit are removed by positioning the phase orbit further

below the Shuttle than the final rendezvous point is above. This can be achieved using the

initial coast option described previously.

4.3 BIASING

J2 nodal precession due to the nonspherical shape of the Earth causes initially coplanar

orbits of differing altitudes to become noncoplanar over time. For rendezvousing space-

craft, it is possible to compute an offset angle that when applied to the initial plane of one

spacecraft causes the orbits to precess into the same plane by the termination of the
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sequence. This bias angle can be used to avoid the plane changes that J2 would otherwise

generate. Computation of this bias angle is a critical element in the interface between the

user spacecraft and the Shuttle. Shuttle mission planners will use the computed bias angle
to define the orbit plane into which the Shuttle is to be launched.

Since the nodal precession rate is affected by spacecraft altitude, the bias angle will be a

function of the phase orbit altitude, and, therefore, a function of the initial conditions of

the rendezvous. Figure 15 shows the bias angle for the upper and lower phase orbit solu-

tions for six different sequences in which user spacecraft altitude, Shuttle altitude, and

rendezvous duration were all varied. Figure 15 demonstrates that while the bias angle is a

function of the initial phase angle, _b, it is essentially independent of spacecraft altitudes
and rendezvous duration.

The following equations describing this linear relationship between bias angle, AQ, and

the phase angle can be derived from the analytic equations for phase orbit altitude (Equa-
tions (3-2) and (3-3)):

0fi
AQu= --- kue (4-])

Oa

off od
AQe = --- ke_b + 2:_-- ke (4-2)

Oa Oa
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where

AOt

AQ_

a

= bias angle corresponding to the lower phase orbit

= bias angle corresponding to the upper phase orbit

= nodal precession rate

= user spacecraft semimajor axis during rendezvous sequence

Numerical analysis demonstrates that the partial derivative of the nodal precession rate

with respect to semimajor axis is essentially a constant over the range of altitudes under

consideration (300 to 500 km). This is in agreement with the observed linearity of the

bias angle/_p function.

Equations (4-1) and (4-2) predict the bias angle to within several hundredths of a degree

and thus can be used for quick approximations.

4.4 TRACKING COVERAGE AND LIGHTING CONSTRAINTS

A probable requirement of rendezvous with the Shuttle is the capability to position each

of the burns to satisfy various lighting and tracking coverage constraints. Specifically,

Shuttle lighting requirements may specify that both spacecraft must be in the light at the

termination of the rendezvous sequence. In addition, user spacecraft power and attitude

sensor requirements may demand specific lighting conditions. Finally, Tracking Data and
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Relay Satellite (TDRS) coverage will probably be necessary at each burn. Satisfying each

of these requirements simultaneously can be achieved by adjusting the launch window of
the Shuttle and the times of each of the burns.

It is anticipated that these constraints can be satisfied by using existing software to deter-

mine lighting and coverage characteristics during the proposed time for the rendezvous

sequence. The proper conditions can be met by varying the time and therefore the loca-

tion of rendezvous and by adjusting the coast period before the first burn and the time

spent in the transfer orbits.

4.5 THRUSTER (_ALIBRATION AND (_0NTINGENCY PLANNING

An essential element of rendezvous between user spacecraft and the Shuttle involves

contingency analysis. The sequences developed must allow for orbit determination and

thruster calibration and techniques for recovering from off-nominal burns.

Thruster performance and spacecraft attitude errors in any maneuver must be compen-

sated for in subsequent maneuvers to avoid unacceptably large errors. For example, if the

first maneuver is 10 percent hot and the subsequent maneuvers are not retargeted, the

resulting final along-track errors can be as large as 1300 km for a 3-day rendezvous from

350 to 315 km. Similarly, firing 10 percent hot in the final two burns of an otherwise

nominal sequence can introduce final semimajor axis errors as large as 6.5 km.

Rendezvous sequences with the Shuttle must include techniques for determining and cor-
recting for such errors. One possible technique for error determination and correction is

simply to allow the first two burns to proceed, and then, upon achieving the phase orbit,

to perform orbit determination and thruster calibration, and to recompute a new solution
if necessary.

While straightforward, such a strategy is not desirable because it allows for the possible
execution of two consecutive off-nominal burns with no thruster calibration between

them. This could result in a phase orbit that is off-nominal to the extent that communica-

tions through TDRS will be jeopardized. For example, if burns 1 and 2 are both 10 per-
cent hot, the phase orbit can be as much as 6.5 km below the nominal altitude for a 350

to 315 km scenario. Figure 16 illustrates that this altitude error will result in Doppler

errors in excess of typical user spacecraft maximums (dashed horizontal lines) after only
1.5 revolutions. The maximums shown in this figure are for GRO. In addition, execution

of burns 3 and 4 with no orbit determination between them removes the ability to fine
tune the final transfer orbit.

An operationally better strategy is to incorporate a coasting period in each of the transfer

orbits to provide time for orbit determination, thruster calibration, and any necessary

retargeting. One advantage of such a sequence is that performing corrections after one

instead of two burns lessens the likelihood of errors accumulating and is therefore likely

to reduce Doppler errors. Figure 17 demonstrates that a 10 percent error in the first burn

of a 350 to 315 km 3-day transfer results in more than 5 hours of TDRS coverage in the

off-nominal transfer orbit before Doppler errors exceed the GRO maximums. In addition,

this technique provides the capability to make corrections in the final transfer orbit after
an off-nominal third burn.
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Assuming this second type of rendezvous sequence is utilized, a typical recovery sequence

would proceed as follows. Orbit determination would occur immediately after the first

burn during the planned coast in the first transfer orbit. The user spacecraft thrusters

would be calibrated using the newly determined orbits. If the actual transfer orbit is not

within predetermined tolerances, a new rendezvous solution would be computed and exe-

cuted. Figure 18, which illustrates such a recovery sequence, shows the off-nominal first

burn (burn 0), the planned three-revolution coast period in the first transfer orbit, and the

new four-burn solution from this off-nominal orbit.

47.00

2-DAY RENDEZVOUS TO CENTER OF CONTROL BOX

RENDEZVOUS POINT

ALONG-TRACK
SEPARATION

BURN 3

CROSSTRACK SEPARATION

BURN 2 RADIAL SEPARATION

BURN 3

BURN I

-85.00

0.00 7.00 14.00 21.00 28.00 35.00 42.O0

TIME FROM EPOCH (HOURS)
350 TO 315 KM; J2 ON; INITIALLY COPLANAR; RECOVERY RUN

RENDEZVOUS

I TIME

ll,_BURN 4

/

I
I
I
I
49.00 56.00

Figure 18. Two-Day Rendezvous to Center of Control Box

5. CONCLUSIONS

This paper has considered active rendezvous between a low-Earth orbit user spacecraft

and the STS Shuttle. It demonstrates that rendezvous with the Shuttle requires that user

spacecraft be able to execute coplanar or noncoplanar transfers in a specified amount of

time from any initial orientation with the Shuttle. This general requirement, together with

safety considerations and the desire to minimize AV expenditures, makes a rendezvous

sequence consisting of a series of Hohmann transfers a desirable technique.

The general characteristics of such a rendezvous sequence are described. Specifically,

relationships between phase orbit altitude and AV and the initial conditions of the

sequence are explored in detail. Phase-orbit altitude is demonstrated to be essentially a

linear function of the phase angle, with slope inversely related to the time of the
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rendezvous.The AV of such a sequenceis demonstrated to be a function of the phase
angle, with the maximum value being determined by the duration of the sequenceand the
altitude of the user spacecraft.

The final portion of the document considers relevant issuesassociatedwith the applica-
tion of sucha sequencein the operational environment. Rendezvoussolutions that satisfy
Shuttle tolerances are demonstrated. Techniques for ensuring that adequate spacecraft
separations are maintained at all times are discussed.Bias angles for minimizing the
number of necessaryplane changesand strategies for guaranteeing proper lighting and
coverage characteristics are considered. Finally, two methods for recovering from off-
nominal burns are presented.
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ABSTRACT

A new technique has been developed for the weighting of data from

satellite tracking systems in order to obtain an optimum least-squares

solution and an error calibration for the solution parameters. Data

sets from optical, electronic, and laser systems on 17 satellites in

GEM-TI (Goddard Earth Model, 36x36 spherical harmonic field) have been

employed toward application of this technique for gravity field

parameters. Also GEM-T2 (31 satellites) was recently computed as a

direct application of the method and is summarized here. The method

employs subset solutions of the data associated with the complete

solution and uses an algorithm to adjust the data weights by requiring

the differences of parameters between solutions to agree with their

error estimates. With the adjusted weights the process provides for an

automatic calibration of the error estimates for the solution

parameters. The data weights derived are generally much smaller than

corresponding weights obtained from nominal values of observation

accuracy or residuals. Independent tests show significant improvement

for solutions with optimal weighting as compared to the nominal

weighting. The technique is general and may be applied to orbit

parameters, station coordinates, or other parameters than the gravity

model.
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I. INTRODUCTION

The method of data weighting has been an outgrowth of a

calibration process for the error estimation of gravitational models

that have been derived from satellite data, Lerch et al. (1985 and 1988)

and Wagner and Lerch (1978). The principle of the new technique is to

estimate the weighting of the data so as to produce realistic error

estimates of the solution parameters from subset solutions of least

squares normal equations. Application has generally been with use of a

large set of satellites with inhomogeneous data from tracking systems of

laser, electronic, and camera (optical) data. The gravity model of

GEM-TI (Marsh et al., 1988) using some 17 satellites has been tested

with the new technique and the GEM-T2 (Marsh et al., 1989) solution with

some 31 satellites has been derived with the new process of optimum

weighting of the satellite data sets.

The accuracy estimation of the gravity model is particularly

important for the TOPEX Project (1992 launch) for ocean application of

its altimetry. It requires that the radial orbit error be accurate to

better than 10 cm due to the uncertainty of the gravity field. Hence

the estimation process for the errors, which are based upon the weights

assigned to the data, must be reliable. The accuracy of the solutions,

particularly the low degree field, is also important for the Lageos

orbit. Accuracy is needed for the estimation of baseline motion of

laser tracking sites at the centimeter per year level as part of the

NASA Crustal Dynamics Project.
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2. OBSERVATIONWEIGHTINGANDDATACHARACTERISTICS

Observations obtained from geodetic satellite tracking systems
generally have precision levels, particularly laser systems, muchbetter
than the observation residuals obtained from satellite orbital arcs in

post fit analyses using the best models. This is true even though the
orbital models employed were derived from the samesatellite data and

with the samearc lengths of several days. The problem here is that

there are unmodeled systematic errors (biases) which need to be

accounted for in the weighting system of the solution (Brown, 1988).

In Figure I an exampleof the characteristics of the residuals is

shown for a pass of data from a typical laser tracking site. The

precision error (ao) of the laser data is generally small (centimeter

level) as comparedto the rms (ot) of the residuals for a satellite data

set t. Values of ot are given in Tables IA and IB (GEM-TIand T2 data

sets) for different satellite data types and for laser systems at varies
from 10 cm for Lageos orbits to over 50 cm on GEOS-Iorbital data in
1978.

Note in Figure I that the residuals of a tracking pass with noise

removed fit very closely to a straight line as a function of a bias

offset (bo) and a timing error. The bias offset is the dominant part of

the residuals. If the residuals were randomwith rms equal to at the
weight per observation point should be

2
wt = I/a t ,

but with a constant offset (bo) , say for N=50 points in a pass, the
weight should be degraded by

wt = I/No2t = .02/0_
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The latter case is characteristic of our situation particularly for the

high precision laser data. The bias effects per pass tend to fluctuate

randomly from pass to pass.

In general for a given satellite data type t we have

w t = ftlo_

where ot is the rms of residuals for the satellite data set and ft is a

downweighting factor to account for the bias effects and the correlated

effects of the residuals particularly within the pass. The weighting

technique will obtain wt directly. Note from Table IA (and IB), o as

well as ot is given for each data type where

wt = 1/0 2

hence

ft = (ct/°t)2

which is approximately a constant

ft = .01

for the satellites with the laser data. In Table IB for the Starlette

('86) and AJISAI laser data_f t _ .002 where the data weight rates were 5

times faster (I per second as compared to I per 5 seconds). Note also

for the optical where systems with passive (non-flashing lamps) camera

data_ the degradation(facto_is much less, namely

ft = .20
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which may be expected since the number of points per pass are fewer and

the ratio of noise to bias is relatively more significant than with the

laser data.
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3. LEASTSQUARESMINIMIZATION

The method of solution is a modified least squares process which

minimizes the sum (Q) of signal and noise as follows:

C2 S2 2
+ rit

Q = _ Rim 2 £_m + f _ _ T ft

i,m oR t obs ot
i

(I)

where the signal is given by

C£, m' S&,m:

spherical harmonics comprising the solution

coefficients; and

I 10-5

o£: -- x --

is rms of the coefficients of degree & (a priori

rule) and is introduced to permit larger solu-

tions to degree and order 36x36. This law,

based upon Kaula's rule, has been obtained inde-

pendently from studies of the spectra of the

Earth's gravity field and is used here to repre-

sent the observed power within the geopotential.

and the noise by

rit :

observation residual (observed-computed)
for the ith observation of satellite

tracking data set (type) t; and

ot :

ft :

RMS of observation residuals (generally

significantly greater than a priori

data precision)

downweighting factor to compensate for unmodeled

error effects for each data type t (ideally f=1 for

pure noise)

The optimum weighting method estimates the combined weight

directly, namely
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Wt = ft/o_

Whenminimizing Q above using the least squares method, the normal

matrix equation and error covariance is obtained as follows:

are the normal equations, where x is theNx = R
solution, R is the vector of residuals, and

V = N-I is the approximate form for the variance-covariance error matrix which must be
ZZ

calibrated by adjusting the weighting.

The process of minimizing both signal (Kaula constraints) plus

noise in (I) is also known as collocation by Moritz (1978). With the

normal least squares approach (noise-only minimization) there is a

problem of separability due to the strong correlation between many of

the high degree coefficients. The absence of collocation {GEM-TI without

the Kaula constraint) results in excessively large power in the

adjustment of the potential coefficients. Figure 2 illustrates the

instability of the least-squares solution when collocation is not

used. A satellite-derived gravity solution has been solved without

collocation which is evaluated using a global set of independent gravity

anomalies. An unrestricted high degree field performs poorly due to

excessively large adjustment in the coefficients which is normally

circumvented in the standard least-squares method by solving for a

smaller sized field. Unfortunately, by restricting the size of the

field, one also is requiring the higher degree terms above the field

limits to be constrained absolutely to zero. Figure 2 also shows the

disadvantage of this approach where the smaller sized field (PGS-3067)

contains aliasing in its coefficients and does not perform well. (The

abbreviation PGS stands for Preliminary Gravity Solution.) The aliasing

signal sensed in the data above the field limits is absorbed into the

adjustment of the lower degree coefficients. The best approach is seen

with the least squares collocation {or constrained) solution, GEM-TI,

with a complete solution of a 36x36 field in harmonics.
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4. LEASTSQUARESNORMALEQUATIONS

In matrix form the observation equation is given by, assuming
linearity,

0 - C = r : r - Axo

x:X-X R

(3)

where

r : 0 - C --- residual, observation (0) minus computed value (C)

from solution

x : X - XR--- adjustment of solution (X) from reference value

(XR) (for error analysis X R _ X(true))

--- matrix of partials evaluated at X : XR

r o residuals based upon a priori value XR.

For the gravity field, the linearity of perturbations may be seen for

the spectrum of harmonics in Kaula (1966). The weighted normal

equations are where W is a diagonal weight matrix (Lawson and Hanson,

1974)

ATwr : 0

then from (I)

ATWAx : ATwr (4)
O

For error analysis it is convenient to let the reference value
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XR = X(true)

then from (3) x is the error in the solution X, namely

x : X - X(true)

Hence (4) becomes

ATwAx : ATwe (5)

where

e - r° : 0 - CR

= 0 - C(true)

represents the errors due to all unmodeled systematic effects including

random noise but excluding errors in the adjusted parameters. Instead

these are the errors in x given by the solution to (5). Our solutions

will be represented by the form (5) as we are interested in the
A

difference between two solutions, x and x, namely

^

x - x : [X - X(true)] - [X - X(true)]

=X-X
(6)

The normal matrices for (5) are written compactly as

Nx : R

where
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N = ATwA

R : ATwe

(7)

The normal matrices for each data subset t will be given as

wt Nt = wtA_A t

wtR t = wtA_e t

(8)

where t=O is a special case which corresponds to the signal constraints

where the weight is fixed.
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5. METHOD OF ESTIMATION OF WEIGHTS

The technique for estimating w t for each data set t is based upon

a complete solution (S) with all the data and a subset solution (St)

where data set t is removed. Let the normal equations for the complete

solution x and the subset solution xt be given as in (7) namely

Nx : R (9)

Nxt:R

where from (7)

: Z wjNj Z wjRj
jSt jSt

(10)

N : N + wtN t R : R + wtR t

The covariance (variance-covariance) matrices (V) for the errors x

and xt are obtained as

V(x) = N -I _ E(xx T)

(11)

V(xt ) : _-I _ E(xtx_ )

As in (6)

xt-x : [Xt - X(true)] - [X - X(true)]

: Xt- X

(12)

The covariance of the difference between the solutions is

413



V(xt-x) : E(xt-x)(xt-x)T

: V(xt)-2 E(xtxT)-v(x) (13)

: v(xt) - v(x)

where as shown below

E(xtxT) : V(x) (14)

From (9)

E(xtxT ) : _-I E(R RT) N-I (15)

From (10) and (11)

E(R RT) : E[R(R ÷ wtRt )T]

: E(R _T) : _ V(xt )

:

(16)

since

E(Y R_) : o

The latter result is true as from (10) the data set t is excluded from

the subset solution, making R and R t independent. Hence (14) results

by substituting (16) into (15) and using (11).
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5.1 WEIGHTING ALGORITHM

Using just the gravity parameters in (Xt-X) the

algorithm is given by the calibration factor kt obtained from

(Xt-x)T(xt-x) : (xt-x)T(xt-x) : kt TR V(xt-x)

weighting

(17)

where TR denotes the trace of the matrix and where from (9) through (13)

xt-x = N-IR - N-IR = Xt-X (18)

: _ wjNj (19)
jst

N : N + wtN t

= [ wjRj (20)
jSt

R = R + wtR t

V(xt_x ) : _-1 _ N = V(x t) - V(x) (21)

Since kt scales the error variances it will be inversely

proportional for scaling the weight wt to obtain the adjusted weight

wE, namely

w t : wt / kt (22)

This latter result will be derived more directly below. By iterating on

the solutions xt for each data set t and the complete solution x for all

data sets until

kt = I
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for each t, the weights by (22) will then converge and the error

estimates will automatically be calibrated from (17).

Results are given below to show how the weights and associated

calibration factors converge. Because of the extensive computations for

a large number of data sets a reasonable set of a priori values for the

weights should be available for their refinement in the optimization

process.

The gravity parameters of spherical harmonic coefficients are

calibrated as a set by (17). Calibrations (kt) are also given by

subsets of spectral components from the harmonics of degree _ and order

m. For all satellite data sets t (Lerch et al., 1988) relatively little

variation is seen in the spectral calibrations.

5.1.1 Weighting Adjustment

The relation (18) for the weighting adjustment

W_ : wt/k t

is derived from use of (17) through (21). It is assumed that the data

set t does not significantly change the solutions x and xt beyond first

order effects as follows:

V(xt_x ) : _-I _ N-I : _-I - (_+wtNt)-1

: _-I - (i+wtNt)-1_-1

= wt_-1Nt _-I

(23)

To the same approximation
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xt'x . wt _-I Rt

z i-I E(RtRT) _-IB(xt-x)(xt-x)T = wt

From (8)

T E(ete_ ) AtE(RtRt T) = At

_2
= a t Nt

= Nt/w _

(24)

(25)

A

where at accounts for the unmodeled systematlc effects in et and the

corresponding weighting effect is given as

I 2
w_ = _ = ft/ot

° t

Using (23) and (25) then (2.) becomes

E(xt.x)(xt.x)T wt= w_ v(xt'x)

From (26) and (17)

s

kt : wt/w t

which gives the result (22).

(26)
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6. TESTS AND RESULTS FOR OPTIMUM WEIGHTING TECHNIQUE

Sample tests of the weighting algorithm (22) were made using

GEM-TI plus additional data sets for several satellite data types of

laser, optical, and electronic data. Results are given in Table 2 which

show that the algorithm nearly converges in one step from the a priori

starting weights. Plots of wt vs kt from (17) show a strong linear

relationship from the origin (wt : kt : 0). Hence

W" W

k" - k

and by setting k" : I for calibration the adjusted weight w" should

nearly converge from (22).

The above tests were made in preparing the weights for additional

data sets to GEM-TI that were combined for the GEM-T2 model. The

convergence of these weights for GEM-T2 is shown in Table 3. In

addition to the optimum weights the technique provides an automatic

calibration of the error estimates based upon the satellite data types t

since each of the kt from (17) is required to converge to I.

The data weights in GEM-TI were derived primarily by requiring the

weight for each data type t to give the best overall agreement with

independent mean gravity anomalies (Rapp, 1986) and with the satellite

observation residuals on selected test arcs. The calibration factors

I/2
(kt ) for several of the major data types (Lerch et al., 1988) are

given in Table 4 which show that the weights converge (kt _ I) except

for the Lageos laser data. However, several additional tests were made

in Table 4 for the calibration factor using independent data from Seasat

altimetry (Rapp, 1986) and surface gravity data (Pavlis, 1988). All of

the latter tests show good calibration of the error estimates,

indicating optimum weighting was closely achieved. The last test

deliberately increased the weighting for a subset of laser data by a
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factor of 10 giving a value kt=(2.75) 2. From (22) the adjusted weight

should be reduced by a factor of I/k t which would nearly recover the

original weight in one step of the iteration process. The gravity model

with the increased weight naturally gives smaller error estimates but it

also gave significantly worse agreement with independent surface gravity

anomalies.
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7. SUMMARY

The optimum weighting technique was shown to be important in the

weighting of satellite data, particularly precise laser data where

unmodeled systematic effects require a significant downweighting factor

as shown in Table I. The method of weighting was shown in Section 6.0

to provide realistic error estimates for GEM-TI and T2. These models

were calibrated using subset solutions based not only on data employed

in their solutions but also upon independent data from altimetry and

gravimetry. Because of the important application of the gravity model

to ocean altimetry in the Topex Project, the gravity model errors were

projected on the radial component of the TOPEX orbit and the result gave

10 cm for GEM-T2 which nearly meets the goal of the gravity model.

It was also shown in Section 6.0 that the model with the increased

weight on the data over the optimum weighting gave much poorer agreement

with independent surface gravity anomalies. The optimum weighting

technique based upon the mathematical formulae is general and may be

applied to other than gravitational parameters such as station

coordinates and in particular orbit parameters where knowledge of

accuracy estimation and refined solutions are needed.
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Figure I.

Characteristics of a Pass of Orbital Laser Residuals

at a Tracking Site in Post Fit Analysis
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Figure2

GRAVITY MODEL.COMPARISON WITH 1114

5° X 5° SEASAT GRAVITY ANOMALIES
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DEGREE TRUNCATION IN HARMONICS

Models show three modes of solution. The 25 x 25 field solves GEM-T1 tracking
data without the Kaula .constraint showing misclosure for high degree terms.
PGS-3167 solves GEM-T1 data (with Kaula constraint) to the GEM-L2 size field
(20 x 20), showing no improvement over ourprevious model. GEM-T1 uses the
Kaula constraint with a high degree field (36 x 36) and is free of the above
problems.
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TABLE 1A

SATELLITE DATA

SATELLITE

1 LAG[OS

2 STARLETTE

3 GEOS-3

4 PEOLE

5 BE-C

6 GEOS-1

7 GEOS-2

8 DI-C

9 DI-D

SEHI NAJOR

AXIS (km.)

12273.

7331.

7226.

7006.

7507.

8075.

7711.

7341.

7622.

10 SEASAT

110SCAR-lk

12 ANNA-1B

13 BE-B

14 COURIER-1B

15 TELSTAR-1

16 VANGUARD-2RE

17 VANGUARO-2

7170.

74k0.

7501.

735k.

7k69.

9669.

8k96.

8298.

ECC

,0038

.0204

.0008

.0164

.0257

.0719

.0330

.0532

.0848

o0021

.0029

.0082

.0135

.0161

.2429

.1832

.1641

INCL DATA

DEG TYPE

109.85 LASER

49.80 LASER

114.98 LASER

15.01 LASER

t1.19 LASER

CANERA

59.39 LASER

CANERA

105.79 LASER

CAMERA

39.97 LASER

CAHERA

39.46 LASER

CANERA

108.02 LASER

DOPPLER

89.27 DOPPLER

50.12 CAMERA

79.69 CAMERA

28.31 CAHERA

4_.79 CAMERA

32.92 CAMERA

32.89 CANERA

1

, SIGMA

IN GEM-T1

# or # OF

ARCS OBS

57 14kP27

46 57356

36 42407

6 4113

39 64240

50 7501

_8 71287

43 60750

28 26613

_6 61k03

4 7qSP

10 2712

6 11487

9 6111

14 14923

14 138042

13 63098

30 4463

20 1739

10 2476

30 3962

10 686

10 1299

RMS

RESID.

O
t

lOcm.

20cm.

70cm.

90cm.

50cm.

2 arcsec

70cm.

1 arcsec

80cm.

1 arcsec

150cm.

2 arcsec

100cm.

2 arcsec

70cm.

.Scm/lec

lcm/sec

2 Ircsec

2 IPcsec

2 arcsec

2 arcsec

2 ircsec

2 arcsec

SIGMA*

WEIGHTS
^

° t

112cm.

224cm.

816cm.

816cm.

577cm.

5.6 $rcsec

667cm.

8.9 arcsec

816cm.

8.9 arcsec

816cm.

7.3 arcsec

816cm.

8.9 $rcsec

707cm.

7cm/sec

8cm/sec

4.5 arcsoc

4.5 $rcsec

4.5 $rcsec

4.5 arcsec

4.5 $rcsec

4.5 arcsec
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TABLE 1B

NEW SATELLITE DATA IN GEM-T2 IN ADDITION TO GEM-T1
Ot Ot

SEMI MAJOR INCL DATA # OF # OF RMS SIGMA"

AXIS (km3 ECC DL=G. TYPE ARCS OBS. RESID. WEIGHTS

LAGEOS 12273
'84.'85.'86,'87

STARLETTE 7331
'83,'84

STARLE'I-rE
'86

AJISAI 1500

GEOS-1 '80 8075

GEOS-3 ;80 7226

GEOS.3
GEOS-3:ATS

'75,'76

GEOS-3:ATS
'77,'78,'79

NOVA 1170

LANDSAT.1 900

GEOSAT

OVI-2

ECHO-1 RB

SECOR-5

INJUN-1

TRANSIT-4A

5BN-2

OGO-2

OSCAR-7

MIDAS-4

.0038 109.85 LASER 29 134093 10cm. 112cm.

.024 49.80 LASER 38 40041 20cm. 224cm.

LASER 73 411102 20cm. 500cm

.0006 50.0 LASER 36 156021 16cm. 316cm.

.0719 59.39 LASER 30 54129 32cm. 258cm.

.0008 114.98 LASER 50 54526 25cm. 224cm.

LASER 26 17027 70cm. 816cm.
SST 9 19074 .4¢m/sec 7.1cm/sec

SST 17 8326 .2cm/$ec 3.2cnvsec

.0011 89.96 DOPPLER 16

.00i2 99.12 DOPPLER 10

73238 .4cm/$ec 2.6cm/sec

26426 1.5cm/sec 10.5cm/sec

800 .0008 108.0

8317

7966

8151

7316

7322

7462

7341

7411

9995

DOPPLER 13 549141 1.3cm/sec 4.5crrvsec

•0184 144.27 CAMERA 4

.0118 47.21 CAMERA 32

.0793 89.22 CAMERA 13

.0079 66.82 CAMERA 44

.0076 66.82 CAMERA 50

.0058 89.95 CAMERA 17

.0752 87.37 CAMERA 16

.0224 89.70 CAMERA 4

.0112 95.83 CAMERA 50

973 2 arcsec 5.8 arcsec

4482 2 =rcsec 8.2 arcsec

726 2 imsec 5.8 srcsec

3310 2 arcsec 8.2 srcsec

3832 2 amsec 8.2 arcsec

820 2arcsec 8.2 arcsec

1207 2 arcsec 8.2 arcsec

1862 2 arcsec 5,6 arcsec

31779 2 nrcsec 8.2 arcsec
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TABLE 2

TEST FOR OPTIMUM WEIGHTING TECHNIQUE

WITH GEM-TI AS SUBSET SOLUTION

(TWO ITERATIONS)

wt
W _

t kt

GEM-TI + kt wt w_

1980 GEOS-I LASER .49 .05 .10

(30 ARCS) .88 .10 .11

STARLE_I_fE LASER .46 .020 .043

(73 1986 ARCS) .78 .043 .055

NOVA DOPPLER 1.60 .I .062

(16 ARCS) 1.02 .062 .O61

9 NEW OPTICAL SATS. 3.2 .2 .063

(230 ARCS) .97 .O63 .065

LANDSAT S-BAND .60 .0025 .0042

(10 ARCS) .98 .0042 .0043
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TABLE 3

DATA WEIGHTS AND CALIBRATION OF GEM-T2

SUBSET PGS3429
SOLUTION CAUBRATION PGS3429

PGS3454
PGS3454 CAMBRATION

PGS3480 GEM-T2 (2)

PGS3480 CALIBRATION GEM-T2 CALIBRATION
FACTORS _HTS_-rrs F_crons wtaGm_'s _WBG_ F_"TO_

(1)
1.28 .4 .3 1.21 .2 1.29 .1 .79

1.29 .8 .8 1.00 .8 1.11 .8 .87

1.04 .2,.2,.04 .2,.2,.04 1.01 .2,2,04 .96 .2,.2,.04 .96

1.02 .015 .015 1.00 .015 .96 .015 1.01

.59 .01 .015 .66 .035 .75 .05 .81

(3)
.68 .015,.1,.02 .015,.05..02 .73 .015,J.,.02 .66 .015,1,02 .66

.82 .07 .075 .83 .1 .83 .15 .90

.90 .0075 .0075 .90 .009 .92 .009 .92

•86 .1 .15 .91 .2 .97 .2 .96

_TA,SET

AJISAI

LAGEOS

STARLETrE

4-LASER"

GEDSAT

GEOS-3:ATS

LASER,SST

NOVA

LANDSAT

1980 GEOS-3
LASER

1980 GEOS-1

LASER

OPTICAL*

SEASAT

O_AR

3-LASER*

.87 .1 .15 .97 .15 .99 .15 1.05

.95 .05,.06 .05,.06 .95 .05,.06 .94 .05,.06 .92

.02 .02 1.02 .02 .97 .02 .94

•015 .015 1.47 .007 .95 .007 1.13

.015 .015 .82 .015 .83 .02 .87

.

2.

3.

UNDERUNED WEIGHTS ARE THE ADJUSTED ONES IN THE n'ERATED SOLUTIONS

CAUBRA1X)N FACTORS ARE CONSERVATIVE BUT St,FFICEN_Y COPNB:_IED

ATS SST WEIGHT DELIBERATELY UNDERWEIGHTED BASED UPC_ COMPARISION WITH
SEASAT ALTIMETER ANOMALIES

4-LASER dataset is laser data from GEOS-1. GEOS-2. GEOS-3 end BE-C satellites
3-LASER dataset is laser data from DI-C. DI-O. and PEOLE sateHil_
OPTICAL dataset Is the camera data from 20 satellites shown in TABLE IA and 1B
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TABLE 4

SUMMARY OF RESULTS FOR ERROR'CALIBRATION

CALIBRATION

FACTOR
GEM-T1 vs. GEM-T1 minus DATA SUBSET

4-LASERS (GEOS 1,2,3, BE-C) ............. 1.06

STARLETTE LASER ..................... 1.10

OSGAR + SEASAT DOPPLER ............. 1.09

OPTICAL ( 11 SATS ) ................... 0.84

LAGEOS LASER ....................... 1.45

GEM-T1 vs. GEM-T1 + SURFACE GRAVITY ........ 0.95

GEM-T1 vs. GEM-T1 + SURFACE GRAVITY +
SEASAT ALTIMETER ............... 0.94

GEM-T1 vs. SURFACE GRAVITY + SEASAT

ALTIMETER ................... 0.99

GEM-T1 minus LAGEOS vs. LAGEOS +
SURFACE GRAVITY + SEASAT ALTIMETER 0.95

Weighting Factor f=0.2
10 TIMES DATA WEIGHTOF GEM-T1
GEM-T1 vs. GEM-T1 minus 4-LASERS 2.75
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The Controllability of the Aeroassist Flight Experiment

Atmospheric Skip Trajectory

by

R. Wood-Engineer/AFE, Mail Code T5L, Phone 280-1500

McDonnell Douglas Space Systems Co.-Engineering Services Division

Houston, Texas

The Aeroassist Flight Experiment (AFE) will be the first vehicle to

simulate a return from geosynchronous orbit, deplete energy during an

aerobraking maneuver, and navigate back out of the atmosphere to a low

earth orbit. It will gather scientific data necessary for future

Aeroassisted Orbital Transfer Vehicles (AOTV's). Critical to mission

success is the ability of the atmospheric guidance to accurately attain

a targeted post-aeropass orbital apogee while nulling inclination

errors and compensating for dispersions in state, aerodynamic, and

atmospheric parameters. In trying to satisfy mission constraints,

atmospheric entry-interface (El) conditions, guidance gains, and

Earth-atmosphere modeling were investigated for effects on the

trajectory. This paper presents the results of the investigation;

emphasizing the adverse effects of dispersed atmospheres on

trajectory controllability.
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THE CONTROLLABILITY OF THE AEROASSIST FLIGHT EXPERIMENT

ATMOSPHERIC SKIP TRAJECTORY

1.0 OBJECTIVES

The Aeroassist Flight Experiment (AFE) will be the first vehicle to simulate a return from geosynchronous
orbit (GEO), deplete energy during an aembraking maneuver, and navigate back out of the atmosphere to a low
earth orbit (LEO). The objective of this study was to evaluate the controllability of the atmospheric skip
Irajecu3ryand investigate the relative contributions of the factors detrimental to that control.

2.0 BACKGROUND

2.1 Mission Purpose & Definition

The AFE is to serve as the precursor for future missions involving Aeroassisted Orbital Transfer Vehicles
(AOTV's). AOTV's will someday be the combination wrecker/taxi that will transport people and machines back
and forth between LEO and higher orbits, and will eventually be used for lunar and mars journeys. Aerobraking
is advantageous when decellerationg from a high energy slate (such as a geosynchronous or lunar-to-earth
transfer orbit) to a low energy state (such as a LEO). The decelleration can be performed in either of two ways.
The first way is to fire engines, but large amounts of fuel are needed for this type of maneuver. The other way
to decellerate is to plunge through a planetary atmosphere and let the aerodynamic drag do the work. This
technique is to be used with the AFE.

The AFE mission will consist of many phases (Ref. I). First, the vehicle will be transported to LEO by the
Space Shuttle in the mid 1990's. Once deployed, the AFE will ignite a sofid rocket motor (SRM) and accelerate
to a state that simulates a craft retm'ning from GEO. The SRM casing will then be discarded and allowed to
re-enter. The AFE vehicle will perform trim burns to properly position itself for atmospheric entry
(app_0timately 400kft, called "entry interface" or "El"). The atmospheric guidance will then assume control and
guide the vehicle through the atmosphere while targeting a pre-selected exit orbit. During the aeropass, onboard
experiments and instruments will sample the flow and record measurements. This datawill be later used to

verify compu_etional fluid dynamics (CFD) codes. After exiting the atmosphere, and reaching apogee, orbital
maneuvers will be performed to correct for errors and circularize the orbit for subsequent rendevouz and retrieval
by the Shuttle. Figure 2.1-1 illustrates the basic mission profile.
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Figure 2.1-1 - Basic AFE Mission Profile
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2.2 Vehicle Configuration & Characteristics

The basic design of the AbE vehicle consists of three components: the aerobrake, the carrier vehicle, and the

main propulsion unit. Figure 2.2-1 shows a schematic of the AFE flight article.

RIGID BRt._

(RAin CONF.) SENSORANO REUSABLETPS TILES

_AIN P_L_ 10N

Figure 2.2-1 - AFE Schematic

The aerobrake is a raked cone which provides an aerodynamic component of lift during the aeropass (nominal

L/D is 0.28) which can rotate about the velocity vector via reaction control system (RCS) jets. By rotating the

lift vectm', the vertical (or "in-plane") component of lift can be adjusted in flight so that the pre-selected exit

apogee is attained. The position of the lift vector is measured in terms of the bank angle.._ horizontal (or
"out-of-plane") component of lift is constantly causing the orbital plane to change. The diffc 'ce between the

desired and actual orbital planes is called the "wedge angle." The wedge angle is controlled by iodically

reversing the side of the vertical plane on which the bank angle is being modulated. This is do,e by simply

changing the sign of the bank angle and is called a "roll-reversal." The brake is a fixed-geometry slrucmre

coveted by thermal protection system (TPS) tiles like those on the Shuttle. Data-gathering sensors are
positioned in the files to support the onboard experiments.

The primary structure of the system is the carrier vehicle. It is the link between the aerobrake and the

propulsion system. It will house the computer systems as well as many experiment packages. The carrier
vehicle will also contain a strapdown inertial measurement unit (IMU) for navigation.

The remanining component is the main propulsion system. It consists of a SRM that will deriver the vehicle

to its simulated retum-from-GEO conditions. The SRM is jettisoned prior to EI by way of a large spring
system between the SRM casing and the carrier vehicle.

The atmospheric guidance to use for the mission is still undecided. Currently, several algorithms are undergoing

testing. For this study, C. J. Cerimele's HYPAS guidance routine (Ref. 2) was used. The HYPAS guidance

separates the aeropass into two phases: the equifibrium glide phase and the exit phase. During the first phase,
the logic attempts to gradually null the altitude acceleration while controlling the loads the vehicle is

experiencing and ensuring sufficient capture. Once a particular decelletatlon has occurred, control is Wansferred

to the exit phase logic. The exit phase uses an analytic prediction/correction technique to attain a targeted exit
apogee altitude.
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3.0TRAJECTORY SIMULATION TOOLS

The three degree-of-freedom (DOF) Descent Design System (DDS) simulation program, originally developed for
the Space Shuttle program, was modified to simulate the AbE trajectories. A fourth DOF was added to model

the balancing of the pitching moment. DDS is fast and efficient for performing nominal lrajectory simulations.

For dispersion analyses, tbe3-DOF shuttle-based LAND montecarlo program was upgraded to 4-DOF and

renamed the Aembraking Montecarlo Analysis Program (AMAP) (Ref. 3). AMAP models dispersions in state,

aeroynamic, atmospheric, and navigational parameters. Finally, dispersed atmosphere profiles (for use in

AMAP) were created using the stand-alone version of the 1986 Global Reference Atmosphere Model (GRAM86)
program (Ref. 4).

4.0 INVESTIGATION METHOD & RESULTS

McDonnell Douglas Space Systems Company (MDSSC) supports the Mission Planning & Analysis Division

(MPAD) of NASA at the Johnson Space Center. MPAD directed MDSSC to optimize the AbE trajectory. The
key parameters in the optimization were: (1) the peak heat rate experienced during the aeropass, and (2) the

post-aeropass change in velocity (AV) required to circularize the orbiL In effect, the ability to control and

manipulate the trajectory was examined (Ref. 5). The current contraints were that the mean (average) peak heat

rate be under 40.3 Btu/ft^2 s and, if possible, the mean plus 3sigma peak heat rate to be under 40.3 Btu/ft^2 s.

Also, the mean plus 3sigma post-aeropass AV had to be less than 400 fps.

4.1 Transfer Orbit Perigee and Guidance Gain Variation

The first step in the study was to vary guidance gains and the wansfer orbit perigee. The gains altered were the

equih'brium glide phase altitude rate and dynamic pressure terms: GHDOT and GQ respectively. Varying the

gains simply alters the reaction of the guidance algorithm to different situations. For instance, increasing

GHDOT increases the sensitivity of the guidance to altitude-rate variations. Varying the transfer orbit perigee

translates into entering the atmosphere at a varied flight path angle (Gamma). Aside from perigee and gain

variations, all other conditions were held constant and 100-case montecarlo trajectories flown using AMAP.

This meant that the guidance was subjected to 100 sets of dispersion combinations for each gain and perigee

adjustment. The statistical results were tabulated in terms of the mean and the mean plus 3sigma values.

Figures 4.2-1 and 4.2-2 show plots of the statistical results of the mean peak heat rates and the mean plus
3sigma post-aeropass AV's for the gain and gamma combinations.

As expected, the region of mean plus 3-sigma AV of less than 400 _ (mission constraint) has a generally
higher peak heat rate than do the regions of larger AV'S. The figures show the nominal heat rate for

lift-vector-up trajectories (i.e. the best possible heat rates) when AV conslraints are ignored. The AbE heat rate

¢onswaint of 40.3 is also shown. It is clear that the mean heat rate constraint of 40.3 is possible to meet while

maintaining a AV of less than 400 fps. However, meeting a mean plus 3sigma of 40.3 was not possible for
perigee and gain variation alone.
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Figure 4.2-1 - Effects of Gain Variation on Mean Peak Heat Rate & AV for Gamma = -4.4 Degrees
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Figures4.2-3and4.2-4show thatgamma variationoutsidethe-4.4to-4.5rangeresultsinincreasedpeakheat
ratesand/_AV's.
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4.2 Transfer Orbit Apogee Variation

The next step in the study was to vary the transfer orbit apogee to try to attain a mean plus 3sigma heat rate of

less than 40.3 Btu/ft^2 s. The transfer orbit apogee was added to the list of parameters to be varied. This

translates into altering the inertial velocity at EI. Of course, altering this parameter means deviating from the

overall mission objective of simulating a GEO-return. For instance, lowering the transfer orbit apogee (i.e.

lowering EI velocity) signifies returning from a Iower-than-GEO. The optimal gains for each flight path angle
(found from the previous section) were used while the transfer orbit apogee was scanned. Figures 4.3-1 and
4.3-2 show the results.

I

_!_ INCREASING
:: II -o i

He0

14O0

-1
lm

lm

ooo

400

o Y//_,"//_9'/h'Y///A _,
$0 |l 40 41 44 41

MEAN, 311PEAKTOTALHEATRT_E_

Figure 4.3-1 Heating Vs. AV for Varying Transfer Orbit Apogee & Perigee
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Both figuresshow that,inordertosatisfytheAV and heatrateconstraints,boththetransferorbitapogeeand

perigeehad tobe significandyaltered.Also,when a consuaintwas added tosadsfytheconditionsnecessaryfor

the flow conditions to be sampled (relative velocity at 279000 ft • 31660 fps), Figure 4.3-2 revealed only a very

small region of acceptabih'ty (shaded area).

4.4 Relative Contributions of Individual Dispersion Sources

Knowing that lowering the transfer orbit apogee is highly undesirable, the next step in in the study was to

investigate the relative contributions of the individual dispersion sources in order to define which ones (if any)

were dominating the commilabUity of the wajectory. Dispersion sources were all deactivated and only a single

source m-activated. This was done for each dispersion source in turn so that the effects of a single source could

be statistically analyzed. Figures 4.4-1 and 4.4-2 show the effects of the single dispersion som-ces on the

3-sigma peak toed heat rate and post-aeropass AV.

In both figures, it is clear that the dominating factor influencing the peak heat rate and post-aempass AV is the

dispersed atmosphere set. When compared to the other dispersion sotur.es, the effect of the atmospheres is

completely dominanL
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Figure 4.4-1 - Effects of Single Dispersion Sources on Peak Heat Rate
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The GRAM mean monthly atmosphere, as well as the plus/minus 3-sigma boundaries, is shown in Figure

4.4-3. The 0% horizontal line on the plot indicates no deviation from the 76 standard atmosphere. A density
above the 0% line indicates a thicker atmosphere (at a certain altitude) than the "76 standard, while below the line

indicates a thinner atmosphere than the "76 standard. It is clear that the GRAM mean and the "76 standard

al_nosphere Ixof'fles are not significantly diffe_em over the altitudes that the AFE vehicle will Waverse (236kft to
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In the AMAP montecario simulations however, the vehicle does not experience the mean atmosphere. Instead,
the vehicle is subjected to GRAM-supplied deviations to the mean as a function of altitude. The deviations

model density shears as well as overall thick and thin atmospheres. A sample dispersed aunc_phere profile is
shown in Figure 4.4-4.
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The exuemely jagged profde indicates the necessity of the guidance to react to density dispersions. It is
imporumt to realize that guidance has no way of predicting the atmospheric conditions it will encounter. In

oth_ words, the aunosphere is an "unknown" dispersion. Attempts are made dtu'mg the flight to estimate the

actual density (derived from navigation-supplied parameters such as drag acceleration and relative velocity), but
the estimated density can be inaccurate. In addition, although knowing the current density is beneficial, it is not

nearly as advanmgeons as knowing the upcoming density. In other words, guidance would like to prepare for a
density shear or a completely thick or thin atmosphere prior to encountering iL Since guidance has no such

knowledge, the effects of the corrections it does command (Le. changes in bank angle) lag behind the actual
density changes.

Currently, the guidance always predicts that the upcoming aunosphere it encounters will be the '76 standard.

Indeed, if the density shears are short-period and relatively symmetric about the 0% line (See Fig. 4.4-5), then

guidance's "/6 standard model of the atmosphere will approximate the average of the dispersed profile and
satisfactory trajectory performance is likely.

On the otl_r hand, ff the shears are long-period or the overall atmosphere is generally thick or thin, guidance's

model becomes inaccurate and poor performance often results. It is especially critical that the guidance model is

accurate during the region e_passing minimum altitude. In this region, the vehicle is transitioning from a

negative altitude rate to a positive one. This means that a pseudo-constant altitude is being held for a relatively

long period of time (See Figure 4A-6). Also, this phase of constant altitude is the most critical region for

control. Since the dispersed density is a function of altitude only, the vehicle may experience a thicker or
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thinner-than-expecteddensity for a long period of time and in the critical portion of the trajectory. Of course,

inaccurate modeling of the aunosphere by guidance during this time often results in poor performance. An

example of an aUnosphere posessing a large density deviation (from '76 standard) during minimum altitude is

shown in Figure 4.4-7. During testing, it has consistently caused significant difficulties for the guidance
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Figure 4.4-6 - Altitude Vs. Time for a Typical AFE Trajectory
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Figure 4.4-7 - "Bad-C.asc" Atmosphere Profile

S.O CONCLUSIONS

Under the conditions of this study, the results indicate that mission constraints of a mean peak heat rate of 40.3

Blxl/ft^2sec and a mean + 3sigma post-aeropuss AV of le_s than 400 fin can be satisfied if the guidance gains and

transfer orbit perigee are chosen properly. However. due to the sensitivity of the trajectory parameters to gain and
perigee changes, the regions of constraint satisfaction are very small.

Attempting to further minimize the peak heating and attain a mean plus 3sigma peak total heat rate of 40.3

Btu/ft^2sec proved successful but only through large decreases in transfer orbit apogee. But, varying the transfer

orbit apogee fxom GEO is inconsistent with mission objectives and is highly undesirable.

Investigation of the relative contribution of factors detrimental to control revealed the domination of the dispersed

atmospheres in determining the regions of controllability (i.e. constraint satisfaction). Although decreasing the

magnitude of other dispersion sources should improve performance, without advm-r,ed knowledge of the actual density

profile or an accurate model of it. guidance has great difficulty compensating in real-lime for atmospheric

dispersions. These dispersions, especially during the constant-altitude phase, can be sufficiently deviated from

guidance's atmosphere model that large errors result in the post-aeropass orbiL In general, a trade must be made

between post-aempass AV and the peak heat rate. To minimize the atmospheric dispersion effects on AV, the vehicle
must "dig deeper" into the atmosphere. Doing this, however, results in an increased heat rate.
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ABSTRACT

Although solar activity prediction uncertainty normally dominates decay

prediction error budgets for near-Earth spacecraft, the effect of drag

force modeling errors for given levels of solar activity needs to be consid-

ered. This paper reports an analysis of the ability of two atmospheric

density models, the modified Harris-Priester model and the Jacchia-

Roberts model, to reproduce the decay histories of the Solar Mesosphere

Explorer (SME) and Solar Maximum Mission (SMM) spacecraft in the

490- to 540-kilometer altitude range. Historical solar activity data were

used in the input to the density computations. The period covered was

January 1982 to June 1988.

For each spacecraft and atmospheric model, a drag scaling adjustment

factor (i.e., a calibration) was determined for a high-solar-activity year,

such that the observed annual decay in the mean semimajor axis was

reproduced by an averaged variation-of-parameters (VOP) orbit propaga-

tion. The SME (SMM) calibration was performed using calendar year

1983 (1982). The resulting calibration factors differ by 20 to 40 percent

from the predictions of the prelaunch ballistic coefficients.

The orbit propagations for each spacecraft were extended to the middle of

1988 using the calibrated drag models. For the Jacchia-Roberts density

model, the observed decay in the mean semimajor axis of SME (SMM)

over the 4.5-year (5.S-year) predictive period was reproduced to within 1.5

(4.4) percent. The corresponding figure for the Harris-Priester model was

8.6 (20.6) percent.

Detailed results of this study and conclusions regarding the importance of

accurate drag force modeling for lifetime predictions are presented in the

paper.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. INTRODUCTION

A principal area of interest for mission planners and orbit analysts is the prediction of

orbital decay. Accurate prediction of atmospheric density is the major challenge for long-

term orbit decay predictions. The primary source of error in decay prediction for near-

Earth spacecraft is the uncertainty in atmospheric density caused by solar activity

prediction uncertainty. Even if the solar flux uncertainty is removed, the modeling of the

atmospheric density remains a significant contributor of uncertainty to orbital decay pre-

dictions. The effect of atmospheric density modeling itself can be isolated from the solar

activity prediction uncertainty by studying the past behavior of spacecraft for which meas-

ured solar activity can be substituted for uncertain predictions.

This paper compares two major atmospheric density models with regard to their ability to

reproduce the decay histories of two representative near-Earth spacecraft. The atmos-

pheric density models considered are the Jacchia-Roberts model (References 1 and 2) and

the modified Harris-Priester model (References 3, 4, and 5). The spacecraft considered

are the Solar Mesosphere Explorer (SME) and the Solar Maximum Mission (SMM).

The SMM orbit, during the period of study (January 1, 1982, to June 18, 1988), had an

inclination of 28.5 degrees, a mean semimajor axis that decayed from 6914 to 6858 kilo-

meters, and a mean eccentricity ranging from 3 x 10 -4 to 7 x 10 -4 • The SMM space-

craft is three-axis stabilized in a solar-oriented attitude, and thus has a drag cross-section

that varies throughout an orbit. The orbital average cross-section depends on the season

and the nodal precession. The SME orbit, during the period of study (January 4, 1983, to

June 26, 1988), had an inclination of 97.5 degrees, a mean semimajor axis that decayed

from 6903 to 6886 kilometers, and a mean eccentricity ranging from 1 x 10 -3 to

1.5 x 10 -3. SME spins about an axis perpendicular to its orbit plane and thus presents an

effectively constant drag cross-section.

For each of these spacecraft and atmospheric density models, a drag-force calibration

factor was determined for the year with the highest available solar activity. The calibra-

tion factor was adjusted until the observed decay in the mean semimajor axis was accu-

rately reproduced by an averaged variation-of-parameters (VOP) propagation of the mean

equinoctial elements. The SMM calibration was performed for calendar year 1982, and

the SME calibration was performed for calendar year 1983. The calibrated drag coeffi-

cients were then used in orbit propagations of several years duration. The amount of

decay measured by the decrease in the mean semimajor axis at the end of the propagation

was compared with that determined from operational orbit determination solutions for the

two spacecraft. The calibration process was repeated for a year of low solar activity

(1986) to test calibration consistency.

Section 2 of this paper discusses the VOP propagator, the atmospheric density models

and solar activity data, the iterative drag coefficient calibration process, and the methods

of obtaining definitive mean orbital elements for comparison with the calculations. Sec-

tion 3 describes results of the calibrations and long-term decay predictions. Section 4

presents the conclusions. Modeling details are discussed in Appendix A.
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2. METHODS OF ANALYSIS

This section describes the analytical methods for this study. Section 2.1 presents the orbit

propagation methods, including all factors affecting force modeling such as solar activity

and atmospheric density modeling. Section 2.2 describes the conversion of operational

orbit solutions from osculating Cartesian elements to mean equinoctial elements compara-

ble to our theoretical calculations. Section 2.3 details the procedures for calibrating drag
constants.

2.1 ORBIT PROPAGATION MIni'HODS; AND MODEL R.

The averaged VOP propagator (AVGVOP) of the Goddard Mission Analysis System

(GMAS) was used for long-term orbit propagation. GMAS (Reference 6) is a collection of

computer programs used mainly for mission planning. AVGVOP is designed to efficiently
compute moderately accurate values for the long-term motion of satellites. Since

AVGVOP propagates mean equinoctial elements without including the short-term periodic

perturbation effects, it can be used with far larger integration step sizes than an osculating

element propagator (Reference 7). AVGVOP performs the numerical integration of the

mean-element VOP equations of motion using a 12 th -order Adams-Bashforth-Moulton
method.

In Table 1, column 2 lists the parameters and options for the averaged VOP propaga-

tions. Those options that need explanation are described below. Detailed justification for

the choice of options and values of the parameters is provided in Appendix A.

Sectorial and tesseral harmonics of the gravitational geopotential were excluded from the

force model. Their long-term effects on the mean elements of the orbits considered are

small, including those of the resonant tesseral harmonic of order 15.

An integration step size of 1 day was used. Since the drag-force model (see below)

sampled at this rate is somewhat noisy, discretization was considered a potential source of

error. Comparison tests (see Appendix A) using smaller step sizes demonstrated that the

effect of discretization error on change in the mean semimajor axis is less than 0.5 per-
cent at the end of a year.

The modified Harris-Priester atmospheric density model contains a term proportional to a

power of the cosine of the angle between the radius vector and the direction of maximum

densities, located 2 hours east of the Sun. Following the standard operational practice at

Goddard Space Flight Center's (GSFC's) Flight Dynamics Facility (FDF), the power' of

the cosine used was 2 for the near-equatorial orbiting SMM and 6 for the near-polar
orbiting SME.

An enhanced implementation (Reference 8) of the Harris-Priester atmospheric density

model was used in this study. The standard modified Harris-Priester model uses density

tables for only 10 values of the 10.7-centimeter solar flux, ranging from 65 to 275

(10 -22 watts per meter 2 per hertz). This enhanced implementation uses special density

tables, one for each integer value of the solar flux, constructed by interpolation among the
standard Harris-Priester tables at each tabulated altitude. For each evaluation of the force
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Table 1. Parameters and Options for Orbit Propagation

LONG-TERM MEAN ELEMENT
OPTION/PARAMETERS PROPAGATION CONVERSION

Integration Type Averaged VOP Fixed-Step Cowell

Integration Step Size 86400 seconds 60 seconds

Geopotentlal Model GEM-9 (21x0) GEM-9 (21x21)

Drag Force Included Excluded

Coefficient of Drag, CD 2.2 N/A

Cross-Sectional Area, SMM: 17.5 SMM: 17.5

A (square meters) SME: 1.129 SME: 1,129

Spacecraft Mass, SMM: 2315.59 SMM: 2315.59
m (kilograms) SME: 415.50 SME: 415.50

Atmospheric Density Model Harrts-Prlester or N/A
Jacchia-Roberts

Power of Cosine In SMM: 2 N/A

Harrls-Prlester Model SME: 6

Solar/Lunar Gravity Included Included

Solar Radiation Force Included Included

Solar Reflectlvity Constant. CR 1.2 1.2

Notes: GEM-9 = Goddard Earth Model-9

N/A = Not Applicable

model, the solar flux, obtained by linear time interpolation between fluxes tabulated at

discrete times, is used to select the interpolated Harris-Priester density table for the near-

est integer flux value. In the current application, the solar flux tables were identical to the

daily measurements obtained from the National Geophysical Data Center, Boulder, Colo-

rado, without subsequent smoothing or averaging. For the purposes of the current work,

smoothing additional to that automatically accomplished by the integration of the laws of

motion was considered to be unnecessary.

A standard implementation of the Jacchia-Roberts model was employed. In particular, the

daily solar flux input values were the same as those used with the Harris-Priester model.

The geomagnetic indices needed for the Jacchia-Roberts model were those obtained from

the International Service of Geomagnetic Indices of the Institutfur Geophysik, West

Germany.

Drag coefficient calibration was performed for both a high solar activity year and a low

solar activity year for each spacecraft and atmospheric density model. Calendar years

1982 and 1986 were used as the high and low solar activity years, respectively, for SMM.

Calendar years 1983 and 1986 were used as the high and low solar activity years, respec-

tively, for SME. The year of minimum solar activity in the last cycle was 1986; monthly

average fluxes ranged from 68 to 84. The year 1982 had high solar activity; monthly

averaged fluxes ranged from 145 to 214. A nominal high-activity year (1983) was used for
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SME (becauseof temporary unavailability of operational solutions for 1982); monthly
solar fluxes ranged from 93 to 142.

2.2 MEAN ELEMENT CONVERSION METHODIC;

To initialize the averaged VOP propagations and to provide mean semimajor axes for

comparison with decay predictions, osculating elements corresponding to definitive opera-

tional orbit solutions were converted to mean equinoctial elements. These definitive solu-

tions had been generated and archived in the FDF during operational navigation mission

support. The conversion of these osculating elements to mean elements is described in

this section. Mean elements for each spacecraft were obtained at the beginning and end of

each year studied and at approximately 3-month intervals over the period studied.

The GMAS mean elements conversion (AVECON) process was used to numerically aver-

age (using 96-point Gaussian integration) the osculating equinoctial elements propagated

from the definitive solution epoch. The time span of integration was 15 orbits centered on

the epoch. The methods used in this propagation were distinct from those used in the

longer propagations, as indicated in the last column of Table 1. The fact that atmospheric

drag was omitted from the force model for these propagations did not produce a signifi-

cant effect. Tests show that the effect of this omission on the converted mean semimajor
axes is less than 1 meter.

2.3 DRAG CALIBRATION PROCEDURES

The drag force is calculated from the expression

F = 20v 2(1 + 0_)CD Am
(1)

where

0

v

CD

A

m

QI

= modeled atmospheric density

= relative velocity of the spacecraft with respect to the atmosphere

= a priori drag coefficient

= a priori drag cross-sectional area

= a priori spacecraft mass

= drag scaling adjustment parameter

The product of the last four factors in Equation (1) is known as the ballistic coefficient.

The role of the factor involving Q1 is to compensate for all effective variations of Q, Co,

A, and m from the nominal.

Calibration consists of finding a drag scaling adjustment factor, 01, that makes Equa-

tion (1) agree with the definitive orbital information for the spacecraft, as described be-

low. This could alternately be described as the determination of an effective drag
coefficient or as determination of the ballistic coefficient.
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For each calibration, a 1-year averaged VOP orbital propagation was performed with one

of the atmospheric density models. The propagations were initialized, at an epoch on or

near the first day of the year, with mean elements converted from operational solutions as

discussed above. The calculated decay in the mean semimajor axis at (or near) the end of

the calendar year was then compared with the definitive equivalent. A new drag-scaling

adjustment parameter, 01, was chosen and the process repeated until the final yearly

decay was reproduced to within 0.2 percent. The definitive decay history, as sampled

every few months throughout the year, was then plotted against the predictions of the

final VOP propagations.

Finding the unique 01 that duplicates the definitive decay in the mean semimajor axis at

the end of the year amounts to solving a numerically defined equation in one unknown.

The solution was performed by open-loop iteration of the method of the regula falsi. Initial

values of 01 were obtained in a variety of ways. The second endpoint for the initial regula

falsi was obtained by assuming no decay for 01 = -1. The entire year's propagation was

repeated for each new 01. Convergence to within 0.2 percent of the amount of mean

semimajor axis decay was obtained on the third iteration.

3. RESULTS

This section reports and interprets the results of the analytical procedures described in the

previous two sections. Section 3.1 presents the results of the drag force calibrations and

the consistency tests between the different years. Section 3.2 presents the results for the

long-term (5- to 6-year) decay prediction studies using the calibrated drag force models.

3.1 (_ALIBRATION RI_$ULT$

Altogether, eight calibrations were performed, one for each of the two spacecraft, the two

atmospheric density models, and the two annual time spans. The results are summarized

in Table 2. Decay curves (graphs of the mean semimajor axis versus time) are plotted in

Figures 1 through 4 together with definitive points obtained as described in Section 2.2.

The exact fit of the decay curves to the first and last definitive points occurs by design of

the calibration process.

For each spacecraft and density model, results of three propagations are summarized in

Table 2. The first uses the final converged 01 for the high solar activity year (1982 or

1983), the second applies this same Q1 to the low solar activity year (1986) as a consis-

tency check, and the third uses the final converged Q1 for 1986. The predicted yearly

decay in column 5 is the total decrease in the mean semimajor axis from the beginning to

the end of the 1-year propagation. Column 6 gives the corresponding quantity derived by

converting the definitive elements. Column 7 gives the maximum difference between the

definitive and propagated mean semimajor axes during the year (sampled as shown by

the definitive points in the figures).

The tabulated maximum yearly discrepancy is a measure of how well each final Q1 value

fits the definitive data in the mean semimajor axis and therefore is a measure of the
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Table 2. Results of Calibration and 1-Year Consistency Tests

SPACECRAFT

SMM

SME

ATMOSPHERIC
DENSITY
MODEL

Jacchla-Roberts

Harrls-Prlester

Jacchia-Roberts

Harrls-Prlester

YEAR

1982

1986
1986

1982

1986
1986

1983

1986
1986

1983

1986
1986

QI

-0.2120

-0.2120"
-0.2790

-0.3527

-0,3527*
-0.5960

+0.2325

+0.2325*
+0.2230

+0.3762

+0.3762*
÷0.0726

PREDICTED
YEARLY DECAY

IN THE
SEMIMAJOR

AXIS
(KILOMETERS)

20.629

3.259
2.976

20.609

4,850
2.984

5.292

1.418
1.408

5.291

1.806
1.403

DEFINITIVE
YEARLY DECAY

IN THE
SEMIMAJOR

AXIS
(KILOMETERS)

20.651

2.982
2.982

20.651

2,982
2.982

5.292

1.408
1.408

5,292

1.408
1.408

MAXIMUM
DISCREPANCY

IN THE
SEMIMAJOR

AXIS
(KILOMETERS)

0.470

0.301
0. 023

0,871

1.868
0. 134

0.228

0.090
0,082

0.319

0,621
0.-133

*Value for the earlier year applied to the current year (not a calibration result).

adequacy of the one-parameter calibration. The Jacchia-Roberts model performs better in

this regard than the Harris-Priester model, by a factor of 2 for SMM and a factor of 1.5

for SME. It is also apparent in Figures 1 through 4 that the one-parameter calibrations

were more effective at duplicating the annual decay curve for the Jacchia-Roberts model
than for the Harris-Priester model.

Two results reflect the degree of consistency of each atmospheric density model among

different years. One is the agreement between the final Q1 solutions. Another is the

accuracy of the prediction of the 1986 decay using the Q1 value from the earlier year.

Both of these are again markedly better for the Jacchia-Roberts atmospheric density

model than for the Harris-Priester model and are somewhat better for SME than SMM.

3.2 LONG-TERM DECAY PREDICTION RESULTS

For each spacecraft and atmospheric density model, AVGVOP orbit propagations were

performed extending from the initial epoch of the high solar activity year to June 1988.

The calibration factors for the high solar activity years were used. SMM was propagated

from January 1, 1982, to June 18, 1988. SME was propagated from January 4, 1983, to

June 26, 1988. The parameters and options used in these propagations are those shown in

column 2 of Table 1. Definitive mean semimajor axes with an epoch at the end of the

long arc were converted and compared with the long propagation results for each space-
craft.

Table 3 summarizes the results of the comparisons between the predicted and definitive

decay in the mean semimajor axis. Columns 4 and 5 give the decay in the mean semi-

major axis over the period from the end of the initial calibrated year to the end of the
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propagation interval, i.e., over the truly predictive interval. As in Section 3.1, the

superiority of the Jacchia-Roberts model, demonstrated by the smaller percentages of

discrepancy in the decay (column 6), is apparent. Once again, greater success in repro-

ducing definitive semimajor axes was achieved with SME than SMM.

Table 3. Results of Multlyear Decay Prediction Tests

SPACECRAFT

SMM

ATMOSPHERIC
DENSITY
MODEL

Jacchla-Roberts

Harrls-Prlester

QI

-0.2120

-0.3527

PREDICTED
DECAY
tN THE

SEMIMAJOR
AXIS

(KILOMETERS)

33.54

42.33

DEFINITIVE
DECAY
IN THE

SEMIMAJOR
AXIS

(KILOMETERS)

DISCREPANCY
IN THE
DECAY

35.08 4.4%

35.08 20.6%

11.62 1.5%Jacchla-Roberts +0.2325 11.45

SME
Harrls-Prlester +0.3762 12.62 11.62 8.6%

4. CONCLUSIONS.

The on-orbit calibration of the drag force model, performed in Section 3.1, was crucial to

the relative success of the decay predictions of Section 3.2. The magnitudes of the drag

scale adjustment factors, QI, demonstrate that conclusion. This may raise concern over

the accuracy of prelaunch decay predictions made with uncalibrated ballistic coefficients.

While drag scale adjustments reflect a combination of errors affecting both atmospheric

density model normalization and the ballistic coefficient, the pattern observed in this

study suggests that ballistic coefficient error (caused by errors in the estimates of the drag

coefficient, cross-sectional area, and/or mass) played a major role. Calibration results

obtained with both atmospheric density models agree that the prelaunch ballistic coeffi-

cient was high for SMM and low for SME. The competing explanation is that both atmos-

pheric density models are too dense over the tropics (SMM) and too rarified at higher

latitudes (SME).

The mean ballistic coefficients suggested by the calibration results for the high solar

activity year with both atmospheric density models are 28 percent below nominal for

SMM and 30 percent above nominal for SME. If the factor (CD A/m) in Equation (1) is

adjusted to equal these mean ballistic coefficients for each of the spacecraft, new values

of Q1 are required to give equivalent drag. Table 4 shows these adjusted Q1 values corre-

sponding to each calibration in Table 2. These values are less than 10 percent, except for
the 1986 Harris-Priester calibrations. Most of the observed drag scaling adjustment seems

to have been a product of error in the a priori drag constants for the spacecraft.

The basis for the adopted operational values of CD, A, and m is not well documented.

Accurate theoretical calculation of Co and A is nontrivial and requires some
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Table 4. Calibration Results With Adjusted Ballistic Coefficients

SPACECRAFT

SMM

SME

ATMOSPHERIC
DENSITY YEAR Q1
MODEL (ADJUSTED)

Jacchla-Roberts

Harrls-Prlester

Jacchla-Roberts

Harrls-Prlester

1982

1986

1982

1986

1983

1986

1983

1986

+0.098

QI

(UNADJUSTED)

-0.212

+0.005 -0,279

-0.098 -0.353

-0.437 -0.596

-0,055 +0.232

-0.062 +0.223

+0.055 +0,376

-0.178 +0.073

compromise, in view of the contrasting uses to which such values may be put. (The effec-

tive values of these quantities are not necessarily the same for long-term decay prediction

and short-arc definitive orbit determination, for example.) This is especially so for irregu-
larly shaped, near-inertially oriented spacecraft such as SMM. Yet the state of the art of

such calculations has undoubtedly advanced since the generation of the values for the

spacecraft used here. It may not be necessary to assign a full measure of the observed

20-to 30-percent errors in a priori drag force normalization to the error budgets for

prelaunch decay and lifetime predictions, even though such predictions cannot have the

benefit of on-orbit calibration. Certainly, careful analysis of drag constants is a prerequi-

site for accurate decay and lifetime predictions.

There are several possible explanations for the apparently more consistent decay of SME,

compared with SMM. The altitude range covered is twice as big for SMM as for SME and,

since SMM was calibrated in a period of higher solar activity than SME, that calibration is

required to serve over a larger range of solar activities. The previously noted differences

between the configuration, orientation, and orbital inclination of these spacecraft all must

have had their impact. In general, the expected effect is to make SMM decay more diffi-

cult to forecast. One consequence .of the orbital inclination difference, however, should

have had the opposite impact: the SME orbit is nearly, but not exactly, Sun-synchronous.

While the orbital orientation with respect to the atmospheric diurnal bulge changes rapidly

(eight cycles per year) for SMM, it changes slowly (11 degrees per year) for SME. Thus

the high degree of calibration consistency between 1983 and 1986 observed for the

Jacchia-Roberts atmospheric density model reflects both that model's accurate mean solar

activity dependence and its apparently realistic diurnal bulge.

The Jacchia-Roberts atmospheric density model performed better than the Harris-Priester

model in both the 1-year calibration tests and the long-term propagations. This is based

on comparisons in four areas: (1) consistency of the final calibrated Q1 values for the

high and low solar activity years, (2) agreement between the calculated and definitive
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mean semimajor axes sampled quarterly throughout each calibration year, (3) prediction

of the annual decay for 1986 using the calibration from the prior year of high solar

activity, and (4) the discrepancy between the long-term predicted decay and the definitive

decay.

The Jacchia-Roberts atmospheric density model substantially exceeded the Harris-Priester

model in the consistency of calibration between the years of high and low solar activity

and in its ability to fit the time dependence of the orbital decay during each year. The

former model produced much better agreement between the final 01 values of the high

and low solar activity years for both SMM and SME. When the Jacchia-Roberts model was

used, the difference between the 01 values was -0.07 for SMM and 0.10 for SME. When

the Harris-Priester model was used, the difference between the final 01 values was -0.24

for SMM and -0.30 for SME.

The percentage discrepancy of decay in the long-term propagations was much smaller

using the Jacchia-Roberts model than using the Harris-Priester model. The propagations

using the Jacchia-Roberts model had discrepancies of 4.4 percent for SMM and 1.5 per-

cent for SME. The propagations using the Harris-Priester model had discrepancies of

20.6 percent for SMM and 8.6 percent for SME.

Solar activity forecasting will continue to dominate the error budget for lifetime prediction

of low-altitude spacecraft. This study demonstrates that ballistic coefficient prediction

error can also be significant. For the altitude range studied in this paper, use of the

calibrated Jacchia-Roberts density model reduces the error due strictly to atmospheric

density modeling to between 2 and 5 percent.
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APPENDIX A

This appendix presents a justification of the modeling choices given in Table 1. In some

cases, these choices have an impact on the accuracy of the results, as discussed below.

A step size of 1 day was used in both the 1-year calibrations and the long-term propaga-

tions. The use of a 1-day step size has been found to be generally satisfactory for long-

term propagation (Reference 9). It was used in this study to reduce computer resource

utilization and improve job turnaround time.

Tests of the 1-day step size were performed for the 1982 Jacchia-Roberts calibration and

the 6-1/2-year Harris-Priester propagation for SMM. The tests used a one-orbit step size.

In the Jacchia-Roberts calibration, the mean semimajor axes differed from the 1-day step

size results by 76 meters at the end of the year and 63 meters in the root-mean-square

(RMS) throughout the year. This error is 0.4 percent of the total yearly decay and could

change @1 by at most 0.004.

For the Harris-Priester propagation, the differences between the two step sizes were still

less. The difference in the mean semimajor axis peaked at 44 meters (RMS = 12 meters)

in 1982 and, for the entire arc, peaked at 53 meters (RMS = 27 meters). The difference

was 16 meters at the calibration fiducial point at the end of 1982 and 33 meters on

June 18, 1988; thus, the effects of discretization on the calibration and the total decay

prediction were less than 0.1 percent for the Harris-Priester model.

Only zonal harmonics of the geopotential have been used in AVGVOP propagations. The

effects of nonresonant tesseral and sectorial harmonics on the averaged VOP equations of

motion are very small and are routinely neglected in such calculations (References 7 and

9). The effect of the 15th-order resonance has been investigated (through degree 21)

using the AVGVOP implementation in the Research and Development version of the

Goddard Trajectory Determination System (R&D GTDS). The effect on the mean semi-

major axis is less than 3 meters, even for SMM when it approached exact resonance in

June 1988. Some earlier GMAS calculations in which 15th-order resonance was included

were found to have erroneously large resonant oscillations. As a result, resonant potential

effects have been removed from all final results.

The modified Harris-Priester atmospheric density model simulates the diurnal bulge as a

function of _, the angle from the spacecraft radius vector to the vector of maximum

densities. The latter vector is displaced from the Sun vector by an adjustable amount

(30 degrees throughout this study) in the right ascension. Densities are tabulated at

= 0 degrees and _ = 180 degrees, with interpolation for intermediate values assumed

to be linear in cos N (_/2) where N is a chosen integer. Standard practice at the FDF has

been to take N = 2 for near-equatorial orbits and N = 6 for near-polar orbits; that tradition

has been accepted in the present work.
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ABSTRACT

This paper describes lifetime prediction techniques developed by the

Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD).

These techniques were developed to predict the Solar Maximum Mission

(SMM) spacecraft orbit, which is decaying due to atmospheric drag, with

reentry predicted to occur before the end of 1989. Lifetime predictions

have also been performed for the Long Duration Exposure Facility

(LDEF), which was deployed on the 1984 SMM repair mission and is

scheduled for retrieval on another Space Transportation System (STS)

mission later this year. Concepts used in the lifetime predictions have

been tested on the San Marco spacecraft, which reentered the Earth's

atmosphere on December 6, 1988. Ephemerides predicting the orbit evo-

lution of the San Marco spacecraft until reentry were generated over the

f'mal 90 days of the mission when the altitude was less than 380 kilome-

ters. The errors in the predicted ephemerides are due to errors in the

prediction of atmospheric density variations over the lifetime of the satel-

lite. To model the time dependence of the atmospheric densities, predic-

tions of the solar flux at the 10.7-centimeter wavelength (F107) are used

in conjunction with Harris-Priester (HP) atmospheric density tables.

Orbital state vectors, together with the spacecraft mass and area, are

used as input to the Goddard Trajectory Determination System (GTDS).

Propagations proceed in monthly segments, with the nominal atmospheric

drag model scaled for each month according to the predicted monthly

average value of Fi0.7. Calibration propagations are performed over a

period of known orbital decay to obtain the effective ballistic coefficient.

Propagations using -4-2 o" solar flux predictions are also generated to esti-

mate the dispersion in expected reentry dates. Definitive orbits are com-

pared with these predictions as time elapses. As updated vectors are

received, these are also propagated to reentry to continually update the

lifetime predictions. Noted trends can be used to infer the accuracy of

initial and subsequent predictions of the reentry dates.

"This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard

Space Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. INTRODUCTION

This paper describes analysis performed by the Goddard Space Flight Center (GSFC)

Flight Dynamics Division (FDD) to predict the reentry of the Solar Maximum Mission

(SMM), San Marco, and Long Duration Exposure Facility (LDEF) spacecraft. An over-

view of the mission and orbit characteristics is given in Table 1.

Table 1. Spacecraft Mission and Orbit Characteristics

MISSION
AND ORBIT

CHARACTERISTICS SAN MARCO

3124188

SPACECRAFT

SMM

2/14/80

LDEF

4/7/84LAUNCH DATE

INITIAL ALTITUDE 447 574 482
(KILOMETERS)

INCLINATION 2.5 28.5 28.5
(DEGREES)

ECCENTRICITY 0.007 0.001 0.001

MASS 237 2315.59 6820
(KILOGRAMS)

AREA 1.0 17,5 74.3
(SQUARE METERS)

MISSION OBJECTIVE DRAG SOLAR WEATHERING
STUDIES STUDIES IN SPACE

REENTRY DATE 12/6/88 PREDICTED PLANNED FOR
FOR LATE RETRIEVAL
1989

SMM reentry support commenced in 1986 using the Rapid Orbit Prediction Program

(ROPP) (References 1 and 2). Development of the present modeling for decay analysis

using the Goddard Trajectory Determination System (GTDS) (References 3 and 4) began

in 1987, and the SMM baseline reentry prediction was established in February 1988.

Monthly update reporting began in August 1988. The San Marco lifetime analysis was

performed from August 1988 to January 1989. Current activities include LDEF and SMM

lifetime modeling.

For SMM, definitive altitude data and orbit solution initial state vectors for orbit propaga-

tion are obtained from daily orbit determination operational support provided by the

FDD. For San Marco and LDEF, operational support is not provided by the FDD, and

orbit solution state vectors were provided in the form of North American Aerospace De-

fense Command (NORAD) two-line elements. These are converted to Cartesian elements

for use in ephemeris propagation, and they are also converted to Brouwer mean elements

for the altitude representation. In this paper, orbital altitude is expressed as the mean

_ltitude, which is the Brouwer mean semimajor axis minus the mean equatorial radius of

the Earth (6378.14 kilometers).
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For SMM, orbital lifetime estimatesare important for planning science operations. For
SanMarco, reentry estimates were requested to coordinate SanMarco measurements
with sounding rocket measurementsscheduled in November 1988. For LDEF, lifetime
estimatesare important for planning a SpaceShuttle retrieval mission later this year.

Lifetime prediction techniques developedby the FDD employ a drag force calibration
using historical data, followed by a GTDS lifetime prediction ephemeris propagated in
monthly segments.In each segment,the Harris-Priester atmospheric density table and a
drag force scaling parameter, Q1, are changed to accommodate variations in the drag
force model due to predicted monthly average variations of the solar flux at the
10.7-centimeterwavelength (Flo. 7).

Section 2 of this paper provides background information about the orbit propagators
(ROPP and GTDS) and the aerodynamic drag models (Harris-Priester and Jacchia-
Roberts) used in this analysis. Also discussedare the actual solar flux data and several
predicted solar flux models, which drive the atmospheric density model. Section 3 pre-
sents the reentry analysis results for SMM, including the early ROPP results, the GTDS
drag model calibration, and SMM lifetime predictions based on the various solar flux
models. Section 4 describes the San Marco reentry analysis, and Section 5 presents the
LDEF reentry analysis. Section 6 summarizesthe key points of this study.

2. BACKGROUND

ROPP is designed to perform long propagations efficiently where high precision is unnec-

essary. It uses an eighth-order Adams-Moulton integrator with a Runge-Kutta starter, inte-

grates in mean elements, and ignores short-period gravitational perturbations. The ROPP

drag model allows for direct input of F1o.7 data and geomagnetic (Kp) data.

GTDS uses a 12th-order Cowell integrator with an iterative starter. The geopotential

model is the Goddard Earth Model-9 (GEM-9) with terms up to order and degree 21. For

SMM, this is truncated to maximum order and degree 16 and includes resonant harmon-

ics above order and degree 16. For San Marco and LDEF, the GEM-9 is truncated to

maximum order and degree 8 and also includes higher order resonant harmonics.

Two options for the GTDS atmospheric density model are applicable to the current analy-

sis. The modified Harris-Priester (HP) atmospheric density model provides tables of den-

sity versus altitude corresponding to each of 10 discrete levels of F1o.7. The tabulated

values are the global minimum and maximum density values (Pmi, and Qraax) of the

diurnal density variation cycle for each altitude. The density, Q, is a function Of the angle

between the spacecraft and the apex of the diurnal bulge, which is at a point 30 de-

grees east of the subsolar point. The diurnal bulge is modeled by

Q = Qmln + (Qmax - Qmin) cosn l;) (1)



The spatial shape of the diurnal density bulge is adjustable in GTDS by varying the

power, n, of the cosine term. Both n = 6 and n -- 2 have been used operationally, but

n = 2 is preferred for low-inclination orbits.

The Jacchia-Roberts (JR) 1971 atmospheric density model includes effects correlated with

the geomagnetic index, Kp, in its calculation of the exospheric temperature. It also re-

quires 40 days of Flo.7 values beyond the day of analysis to accommodate an input for

the 81-day F1o.7 average. Therefore, it is most reliable for use in past and near-current

times, where F10.7 and Kp data are known. The use of predicted FlO.7 and Kp data in

the Jacchia-Roberts model is necessary for orbital lifetime predictions. The preliminary

attempts described in this paper have resulted in limited success.

The definitive Flo.7 and Ap data used in this analysis are reported monthly by the

National Geophysical Data Center. The solar flux data are determined each day from

observations of the Sun. The Kp data are approximately logarithmic measurements made

at 3-hour intervals around the world. The daily equivalent planetary amplitude, Ap, is

derived by converting the Kp value to a linear index and averaging over 1 day. The F10.7

and Ap data spanning the time period 1979 through 1988 are illustrated in Figure 1.

The principle source of predicted solar activity data for this analysis has been the GSFC

Laboratory for Atmospheres (GSFC Code 610). Three sets of 1-year smoothed monthly

F1o.7 predictions by Dr. Kenneth H. Schatten (References 5, 6, and 7) of GSFC are illus-

trated in Figure 2. Figure 3 illustrates the Schatten predictions in comparison with the

actual solar flux activity. Each updated prediction supercedes the previous prediction.

Early analysis used predictions from the Marshall Space Flight Center (MSFC) (Refer-

ence 8). The MSFC data include a best estimate and 97.7-percent, 50-percent, and

2.3-percent probability intervals. The current work uses the Schatten predictions from

February 1988, August 1988, and January 1989, hereafter referred to as SH 2/88,

SH 8/88, and SH 1/89, respectively. These predictions include a nominal value, a +2o.

probability (high) value, and a -2o" probability (low) value, hereafter designated by ap-

pending a plus or minus sign, for example, (SH 2/88+) or (SH 2/88-).

The method for incorporating solar flux information into long-range GTDS ephemeris

propagations using the Harris-Priester density model is described using San Marco as an

example. Each monthly mean F10.7 value is converted to a corresponding prediction of

the atmospheric density represented by a Harris-Priester (HP) table number and a value

of the drag scaling adjustment parameter, Q1, which also depends on the spacecraft alti-

tude. Using Q_, the model of the atmospheric density is varied smoothly with the F_o.v

level between the HP tables. (In the discussion that follows, refer to Table 2.)

For an altitude of 380 kilometers, the minimum and maximum density values are re-

trieved from HP tables 3 through 7. The average density over one diurnal cycle is then

determined by taking the arithmetic mean of the minimum and maximum values. The

interpolation scheme for adjusting the HP table densities to solar fluxes between tables

depends on the ratio of the average densities for the adjacent HP tables. This ratio is

obtained by determining the Q_ value that scales the lower table to the upper table value

(see Table 2a, column 6) or scales the upper table to the lower table (see Table 2a,
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Figure 1. Solar Flux and Geomagnetic Index Profiles for 1979 Through 1988
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column 7). For example, the 01 required to obtain the same density using HP table 3 as
would be obtained for HP table 4 is 0.4223, because the average density for HP table 4

(4.688) is 42.23 percent greater than the average density for HP table 3 (3.296). In the

other direction, the 01 needed to approximate HP table 3 from HP table 4 is -0.2969,

because 3.296 is 29.69 percent less than 4.688.

Table 2. Drag Model Parameters for Cosine-Squared Diurnal Bulge

a. ATMOSPHERIC DENSITY AND INTERPOLATING VALUES OF Ql FOR

SAN MARCO AT 380 KILOMETERS ALTITUDE

F10.7

HP (10- 22 watts/

TABLE meter 2 /
NO.

hertz)

100

125 2.094

150 3,274

175 4.313

200 6.205

ATMOSPHERIC DENSITY

(grams/kilometer 3)

Omin Omax 0avcra|e

1.382 5.210 3.296

7.282 4,688

9.955 6.615

12.41 8.362

15.60 10.903

01 FOR SHIFT OF
ONE HP TABLE NO.

UP DOWN

0.4223 N/A

0.4109 -0.2969

0.2641 -0.2913

0,3039 -0.2089

N/A -0,2331

NOTE: N/A = NOT APPLICABLE

b. MONTHLY AVERAGE SCHATTEN SOLAR FLUX PREDICTIONS AND

ASSOCIATED Q1 VALUES USED IN THE SAN MARCO LIFETIME RUNS

SOLAR

FLUX

MODEL
MONTH(S)

9/88
10/88

11/88

12/88

F10.7

( 10 - 22 watts/
meter 2 /

hertz)

159

163

167
171

SH 8/88

9/88 180

10/88 185
SH 8/88+ 11/88 190

12/88 197

9/88- 12188 120
SH 8/88- 1/89- 2/89 130

HP

TABLE
NO.

LOI

0.0951

-0.1003
-0.0668

-0.0334

0.0608

0.1216

-0.0932

-0.0280

-0.0594

0.0822

Once the Q_ value to shift between adjacent tables has been obtained, the predicted F1o7

level is compared with the standard tables, and the closest HP table is selected to approxi-

mate the density. Then, the _01 value required to adjust the HP table to the intermediate
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F1o.7 value is determined by linear interpolation relative to the value determined for a

shift of one table. For example, the SH 8/88 solar flux model predicted a level of 159 for

September 1988. The HP table 5 (F10.7 = 150) is the closest table. A shift to HP table 6

(FIo.7 = 175) can be accounted for by a 01 value of 0.2641. The tabulated value of

0.0951 is obtained by taking 9/25 times 0.2641.

For other altitudes, the same procedure is used, but the numbers are different. Thus, the

Q1 values are fixed quantities that fine-tune the Harris-Priester drag model to the pre-

dicted Flo.7 level for each month of a propagation.

3. SMM REENTRY ANALYSIS

For SMM, two events are of interest: reentry and decay of the orbit to an altitude corre-

sponding to loss of attitude control. The loss of control is modeled to occur when the

spacecraft's angular momentum management system cannot compensate for the effects of

atmospheric torques. The adopted altitude for this is 370 kilometers (200 nautical miles)
(Reference 9).

3.1 EARLY ROPP ANALYSIS

Early analysis using ROPP to predict the SMM reentry date utilized the technique of

matching the observed orbital decay up to the date of the analysis to determine the ballis-

tic coefficient (CD A/m), where

CD = drag coefficient

A = spacecraft cross-sectional area

m = spacecraft mass

The ballistic coefficient determined by this approach was 0.01262 square meter per kilo-

gram, which was somewhat lower than the value calculated from available spacecraft

data, 0.01496 square meter per kilogram. Using this value, propagations to the reaction

wheel saturation altitude (370 kilometers) and to reentry were performed. Starting with an

orbital state vector determined for June 1, 1986, and using MSFC solar flux predictions

(MSFC 4/86), the first prediction of the SMM reentry date by the FDD was for
December 3, 1990.

3.2 GTDS CALIBRATION

SMM orbit solutions from launch through October 1987 were analyzed to establish that

the atmospheric density variations, as measured by GTDS during orbit determination,

were well correlated with observed solar flux variations (Reference 10). The drag model

was then calibrated by adjusting the drag coefficient, Co, to match the predicted and

actual orbital decay over the history of the SMM mission. For the calibration runs, HP

tables and Ol values were determined for each definitive monthly mean F10.7 value in

the manner previously described. Then, for each year of the mission, the value of the CD

was adjusted to obtain agreement with the actual orbital decay. Year-to-year variations

J

/
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were noted and were attributed to errors in the Harris-Priester atmospheric density model

associated with different F10.7 levels. For example, during the period of solar minimum

(1984 through 1987), SMM orbital decay was very moderate and Co estimates were

atypically low. For solar flux levels in the range 150 to 200 during the declining portion of

solar maximum period number 21 in 1981 and 1982, a Co of 1.38 gave the best fit. This

value was adopted since solar flux levels expected for the interval before reentry were in

this range. The corresponding ballistic coefficient is 0.01043 square meter per kilogram,

20 percent lower than the value obtained in the ROPP calibration analysis.

3.3 SMM PREDICTION RESULTS FROM DIFFERENT SOLAR FLUX MODELS

Orbit decay predictions were performed using the most current solar flux prediction

model available at the time. When a new model or an update to an old model was ob-

tained, the prediction modeling switched. Overall, six models were used: three versions of

the Marshall Space Flight Center (MSFC) model and three versions of the Schatten

model. Reentry predictions for these models are summarized in Table 3.

Table 3. Summary of FDD Reentry Predictions for SMM

SOLAR FLUX
MODEL

MSFC 12/87
BEST ESTIMATE

DATES

EPOCH REENTRY

12/31/87 2/14/90

LOSS OF
CONTROL

11/7/89

MSFC 4/88 4/1/88 4/22/90 1/9/90
BEST ESTIMATE

MSFC 6/88 7/2/88 6/3/90 2/15/90
BEST ESTIMATE

SH 2/88 12131/87 7/24/90 4/18/90

SH 8/88+ 10/2/88 12/9/89

SH 1/89+ 2/1/89 10/7/89

9/21/89

8/3/89

3.3.1 DECAY PREDICTIONS WITH MSFC SOLAR FLUX MODELS

The first set of GTDS reentry predictions for SMM was based on the MSFC 12/87 solar

flux predictions. Starting from an orbital solution vector of epoch December 31, 1987, the _

MSFC best estimate gave a reentry date of February 14, 1990, and loss of control on

November 7, 1989. MSFC predictions are updated every 2 months, though subsequent

MSFC models were used only for the purpose of comparison.

3.3.2 DECAY PREDICTIONS WITH THE SH 2/88 SOLAR FLUX MODEL

After completion of the work described in Section 3.3.1, the FDD adopted the Schatten

solar flux predictions for all subsequent reentry predictions. The SH 2/88 solar flux
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model was used for a propagation starting from an epoch of December 31, 1987. This

resulted in the prediction of loss of control on April 18, 1990, and reentry on July 25,

1990. Because a period of constancy in solar flux prediction models occurred after

February 1988, this propagation was established for reporting purposes as the FDD base-
line reference.

The trend in these first predictions toward later reentry dates for later starting epochs is

consistent with the fact that the later MSFC models and the first Schatten model predicted

lower solar flux levels than the first MSFC models. Later updates to the Schatten model

predicted higher solar flux levels, and the corresponding predicted reentry dates were
earlier.

Following the establishment of a baseline prediction, comparisons were made between the

mean altitude of the predicted and actual trajectories to monitor and report the orbit

evolution and to assess trends in the actual orbit decay. Figure 4 shows the actual SMM

mean altitude data from operational orbit determination in 1988 and also shows some of

the predicted trajectories, including the baseline. Another trajectory is based on the defini-

tive mean Flo.7 value for each month. These predicted trajectories are in close agreement

until June 1988, when the actual F1o.7 values began to exceed the SH 2/88 model. The

change in the decay rate for the actual SMM altitude data occurs 2 to 3 months later. At

the end of 1988, the observed SMM orbital decay and the orbit predicted with the HP

density table driven by the actual F10.7 levels showed close agreement, in spite of dis-

crepancies for several earlier months.

3.3.3 ANALYSIS USING THE JACCHIA-ROBERTS DENSITY MODEL

Subsequent work with the Jacchia-Roberts model resulted in a propagation that correctly

predicted the shape of the orbital decay throughout 1988. Definitive F10.7 and geomag-

netic index (Kp) data were used as input up to December 1, 1988, after which predicted

values from the SH 8/88 model were incorporated. A calibration performed using the

interval from 1/1/88 to 12/1/88 requires a drag coefficient, CD, of 3.35 to produce agree-

ment. The fit to the anomalous downturn in the definitive SMM altitude data is quite

good. By including the Kp data and incorporating the 81-day average F1o.7 into the

density calculation, the Jacchia-Roberts model predicted the detailed time dependence of

the definitive data. The Jacchia-Roberts model begins to show sizable discrepancies as

soon as the definitive F_o.7 and Kp data run out and the predicted solar flux data begin.

The cause of this is being investigated.

3.3.4 DECAY PREDICTIONS WITH THE SH 8/88 SOLAR FLUX MODEL

The SH 2/88 predictions were updated in August 1988 to accommodate the observed

early rise to the solar maximum. The SH 8/88 predictions agreed well with the observed

solar flux for several months, until the observations again increased beyond the

predictions. The monthly mean Fxo.7 value was 200.5 for December 1988, and 236.4 for

January 1989, both above the SH 8/88 +2 a levels. The original baseline propagation for

SMM shows large differences with recent definitive data because solar activity has been

much higher than the SH 2/88 model on which it was based. Month-by-month
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Figure 4. SMM Orbital Altitude for 1988

comparisons to the baseline reference ephemeris are given in Table 4. The angular differ-

ence between the predicted and actual spacecraft position now amounts to several orbits.

The number of days that orbital decay is ahead of schedule is determined by noting when
the predicted altitude will reach the .current definitive altitude.

In January 1989, estimates of the SMM orbital decay trajectory were made using the
SH 8/88 solar flux predictions. The epoch was set at October 2, 1988, since this was after

the noticeable change in the decay rate. The definitive altitude data indicated that SMM

closely followed the trajectory based on the +2 cr solar flux values and not the trajectory

based on the nominal values. This is consistent, as the actual F1o.7 values were closer to

the +2tr predictions than to the nominal predictions. Based on the SH 8/88+ model,

reentry was predicted to occur on December 9, 1989, and loss of control was predicted to

occur on September 21, 1989.

3.3.5 DECAY PREDICTIONS WITH THE SH 1/89 SOLAR FLUX MODEL

A second update to the Schatten predictions, dated January 1989, differs from the

SH 8/88 model by a shift of the F10.7 levels upward by 10 units. The first entry is for

February 1989; therefore, analysis with the SH 1/89 model is in the preliminary stages at

this writing. There is evidence for another increase in the decay rate of the definitive
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Table 4. Summary of the Predicted and Actual SMM Orbital Decay
in Reference to the FDD Baseline Prediction

EPOCH
DATE

12/31/87

8/1t88

8131188

9/30/88

11/1/88

1211188

12/31/88

2/1/89

3/1/89

MEAN
ALTITUDE

(kilometers)

485.383

477. 597

475.990

473.458

469.299

465.574

460.832

454.067

448.830

OBSERVED
ORBITAL

DECAY
(kilometers)

7.786

9.393

11.925

16.084

19.809

24.551

31.316

38.553

PREDICTED
ORBITAL

DECAY
(kilometers)

7.583

9. 074

10,732

12.671

14.425

16,677

19. 099

21.587

OBSERVED
MINUS

PREDICTED
(kilometers)

.203

.319

1.193

3.413

5. 384

7,874

12+217

16.966

OBSERVED
MINUS

PREDICTED
(percent)

2.7

3.5

11.1

26.9

37.3

47.2

64.0

78.6

OBSERVED
MINUS

PREDICTED
POSITION
(degrees)

53.0

59.5

84.9

180.8

345.7

582.2

N/A

N/A

OBSERVED
ALTITUDE
DECAYIS

AHEAD BY
(days)

21

52

71

91

122

150

SMM altitude data near January 10, 1989. The observed orbital decay exceeds the pre-

dicted decay using the SH 1/89+ model with CD = 1.38. For February 1989, the monthly

mean F]0.7 was 222.8, very close to the SH 1/89 +2<7 predicted value of 221. Matching

the actual February orbital decay to predictions using the SH 1/89+ model requires

CD = 1.64. The corresponding ballistic coefficient is 0.01240 square meter per kilogram,

which is close to the value obtained in the early ROPP calibration analysis. Using this CD

with the SH 1/89+ model and starting with a solution vector on February 1, 1989, reentry

occurs on October 7, 1989 and loss of control is on August 4, 1989.

4. SAN MARCO REENTRY PREDICTIONS

In August 1988, the FDD was requested to predict the future orbital evolution of San

Marco. Preliminary work had been done periodically during the mission using a drag

model based on solar flux levels fixed at the value current at the prediction epoch. Pre-

dicted reentry dates changed uniformly with the later starting epochs, since the solar flux

was steadily increasing during 1988. The consistency of the results was improved when

the monthly solar flux variations were included in the propagations.

The results of the calibration runs for San Marco for the Jacchia-Roberts atmospheric

model and two versions of the Harris-Priester atmospheric model are listed in Table 5.

The interval for this propagation spanned from March 26, 1988, to September 1, 1988.

Harris-Priester runs used the SH 2/88 solar flux model, since the actual solar flux levels

closely matched this model over the calibration interval. Agreement between the predicted

and actual orbital aecay was quite good for n = 6; therefore, this bulge model was used
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Table 5. Drag Model Calibration Runs for San Marco

DENSITY MODEL,
BULGE MODEL,

AND DRAG
COEFFICIENT

HARRIS-PRIESTER
n=6
CO = 2.17

BEGINNING
OF

CALIBRATION
INTERVAL

MEAN ALTITUDE

447.206

HARRIS-PRIESTER
n = 2 447.206
CD = 2.17

JACCHIA-ROBERTS
CD = 1.67 447.206

(kilometers)

END OF
CALIBRATION INTERNAL

PROPAGATED DEFINITIVE

ORBITAL DECAY
(kilometers)

PROPAGATED DEFINITIVE

PREDICTION
ERROR

(percent)

384.855 384.148 62.351 63.058 - 1.12

369.504 384.148 77.702 63.058 +23.2

384,494 384.148 62.712 63.058 -0.55

with the drag coefficient (CD = 2.17) that was supplied with the spacecraft modeling
parameters.

Reentry predictions for San Marco using the Harris-Priester models SH 2/88 and SH 8/88

nominal, +2cr, and -2a solar flux levels are given in Table 6. Predictions using both

n = 6 and n = 2 diurnal bulge models were performed for the starting epoch of
September 1, 1988.

Table 6. San Marco Reentry Predictions

STARTING
EPOCH

AUGUST 15, 1988

SEPTEMBER 1, 1988

DIURNAL
BULGE
MODEL

n=6

n=6

n=2

SOLAR
FLUX

MODEL

REENTRY DATE

SH 2/88 JANUARY 9, 1989

SH 2/88+ DECEMBER 14, 1988

SH 2/88- FEBRUARY 21, 1989

SH 8/88 DECEMBER 12, 1989

SH 8/88+ NOVEMBER 27, 1988

SH 8/88- JANUARY 23, 1989

SH 8/88 DECEMBER 2, 1989

SH 8/88+ NOVEMBER 19, 1988

SH 8/88- JANUARY 7, 1989
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The actual reentry was earlier than the predictions from the August 15 epoch because the

actual solar flux was higher than the SH 2/88 model predictions. The September 1 predic-

tions using SH 8/88+ and SH 8/88- models and a diurnal bulge model with n = 6 show a

reentry envelope that brackets the actual reentry date. The actual F10.7 levels in this

timeframe closely matched the SH 8/88 model.

As propagations using the n = 6 diurnal bulge were repeated for subsequent NORAD

vectors, there was a trend toward earlier reentry dates. The n = 2 diurnal bulge model

resulted in increased consistency and eliminated the trend toward earlier reentry dates.

Since these runs used CD = 2.17, the calibration runs are called into question. In effect,

this approach amounted to a recalibration by trial and error. The comparison of the de-

finitive altitude data and the September 1 (SH 8/88; n = 2) predicted reentry trajectories

is given in Figure 5.

380
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Figure 5. San Marco Orbital Altitude History

Another procedure was tried for San Marco. The drag model was calibrated by using a

series of 5 to 10 NORAD vectors, spanning an interval of roughly 1 week, as input to a

GTDS differential correction. The estimated solution state included the drag scaling pa-

rameter, tg]. Propagations to reentry were performed with the same HI) table and the

solved-for value of _o1. These results (listed in Table 7) were less consistent than those
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Table 7. Differential Correction Reentry Predictions

EPOCH
DATA
ARC

NO. OF HP
NORAD TABLE

VECTORS NO.

911/88 911 - 916 5

9/16188 9116 - 9/22 8

10/1/88 10/1 - 10/7 5

10/8/88 1018 - 10/13 8

10117188 10/13 - 10/18 7

FI0.7

(10-22 watts/ REENTRY
Q1 meter z / DATE

hertz)

-0.0416 146.6 12125188

+0.0645 155.8 12/19/88

+0.0274 177.0 12/7/88

+0.2029 190.1 11/28/88

+0.0795 180.9 1213188

described above. This is as expected, since this procedure ignores FI0.7 variations due to

the 27-day rotation of the Sun and the gradual rise towards the solar maximum.

Reentry occurred on December 6, 1988, near 0130 coordinated universal time (UTC),

with no visual confirmation. The last telemetry was received as San Marco passed over

Kenya just prior to this time. Predictions made within 6 weeks of reentry were accurate to

within 24 hours. Predictions made the day of the reentry were accurate to approximately

one orbit. Five days before reentry, on December 1, the 2 tr extremes of the atmospheric

density model predicted reentry times within 24 hours. Figure 6 shows a plot of predicted

reentry dates versus the prediction epoch.

When the calibration and reentry prediction were repeated using the Jacchia-Roberts

model with definitive FIO.7 and Kp values, a markedly lower value of Co = 1.67 was

needed to match the observed decay for the calibration interval. The Harris-Priester

model with n -- 2 required CD = 1.76 for agreement over this calibration interval. The

predicted reentry date (December 16) using the Calibrated Jacchia-Roberts model was late

and was near the date for the Harris-Priester model with n = 2 and CD = 1.76. During

the calibration time interval, solar flux levels were in the range of 100 to 125; during the

time interval until reentry, solar flux levels were in the range of 175 to 200. Similar

inconsistencies in the Harris-Priester model dependence of the density on Flo.7 for widely

different values of the solar flux were also noted in the SMM analysis.

5. LDEF LIFETIME ANALYSIS

Calibration runs for LDEF were performed using NORAD two-line elements spanning

October 18, 1988, to January 24, 1989. The calibration was done twice, once with actual

monthly mean values of F10.7 and once with the SH 8/88+ solar flux model. For both

solar flux models, agreement was obtained with CD = 0.66, corresponding to a ballistic

coefficient of 0.00719 square meter per kilogram.
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Figure 6. San Marco Reentry Dates Versus the Prediction Epoch

This effective ballistic coefficient was then used to predict the LDEF orbital evolution and

the reentry date. Using an orbital state vector for February 1, 1989, and the SH 8/88+

solar flux model, the LDEF reentry is predicted to occur on February 16, 1990. SMM,

though currently in a higher orbit than LDEF, is decaying more rapidly and will move

lower than LDEF in June 1989 as it proceeds toward reentry. At the time of the planned

retrieval in November 1989, the altitude of LDEF is predicted to be in the range of 370 to
350 kilometers.

Repeating the analysis with the SH 1/89+ solar flux model yields different results. A

calibration over the month of February produced agreement with CD = 0.74. When this

propagation is extended forward in monthly segments based on the SH 1/89+ solar flux

model, LDEF reentry is predicted for December 25, 1989. The margin for error is small

if LDEF is to be successfully retrieved. A moderate increase in the solar flux beyond

currently predicted values could easily threaten the planned November retrieval.

6. SUMMARY

Methods and results for spacecraft orbital lifetime prediction implemented in the GSFC

FDD have been described. The procedure relies on a calibration of the ballistic coefficient

over an interval of known orbital decay and solar activity. The calibration is followed by

propagations to reentry, based upon a time-dependent atmospheric density driven by pre-

dicted F]o.7 models and starting with the most current orbital state.
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As expected, the accuracy of the reentry prediction is strongly dependent upon the accu-

racy of the predicted solar flux model. The following additional observations can be
made.

For long-term predictions, the use of the GTDS Harris-Priester atmospheric density model

offers simplicity in the operational procedures and provides sufficient consistency and

accuracy. This may occur because the calibration over the orbital decay intervals compen-

sates for the limiting aspects of the Harris-Priester atmospheric density model. In particu-

lar, this model does not internally accommodate effects from the 81-day averaged F1o.7

value representing the solar disk radiance and the short-term geomagnetic index vari-

ations. Calibrations performed over intervals of the solar cycle similar to those expected

in the propagation period may account for these limitations in the average sense.

Furthermore, the San Marco analysis and results provided an opportunity to practice for

SMM and LDEF. When reentry is several months away, the present procedures are ade-

quate. A baseline reference trajectory is established and used until comparisons with

actual altitude data indicate that a modification is necessary. For the last few months of

orbital decay, improved results can be obtained by repeating the propagations frequently

and adjusting the drag model to obtain consistent reentry dates. For longer propagations,

this is less practical, due not only to the longer computation time but also to the fact that

errors in the predicted solar flux models dominate the uncertainties in reentry time.

Preliminary efforts to apply the Jacchia-Roberts atmospheric density model to orbital de-

cay prediction led to mixed results, indicating that more work is necessary in this area.

Good results were obtained in the calibration propagation for SMM in the 1-year interval

of 1988. Less success was obtained in predicting the San Marco reentry and in predicting

the SMM reentry in 1989. A successful implementation of an atmospheric density model

based on the Jacchia-Roberts model should and did yield an intrinsically more accurate

orbit prediction in comparison with the historical evolution where the solar flux data are

well known. However, procedures are yet to be developed that are operationally simple

and that can be used with predicted solar flux models.

Finally, based upon the analysis as of this writing and upon the current tendency for solar

activity to often exceed the +2 o levels of the F]o.7 predictions, SMM will reenter before

December 1989 and LDEF could reenter as early as late December 1989.
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