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Abstract. This report is the first of a series dealing with the

determination of optimal trajectories for the aeroassisted flight experiment
j_

(AFE). The AFE refers to the study of the free flight of an autonomous

spacecraft, shuttle-launched and shuttle-recovered. Its purpose is to gather

atmospheric entry environmental data for use in designing aeroassisted

orbital transfer vehicles (AOTV).

.-r " _ k

It is assumed that: the spacecraft is a particle of constant mass; j

the Earth is rotating with constant angular velocity;;_the Earth is an oblate

planet, and the gravitational potential depends on both the radial distance

=-- --

and the latitude; however, harmonics of order higher than four are ignored;

the atmosphere is at rest with respect to the Earth.

Under the above assumptions, the equations of motion for hypervelocity

atmospheric flight (which can be used not only for AFE problems, but also

for AOT problems and space shuttle problems) are derived in an Earth-fixed

system. Transformation relations are supplied which allow one to pass from

quantities computed in an Earth-fixed system to quantities computed in an

inertial system, and viceversa. " _ _

Key Words. Flight mechanics, hypervelocity flight, atmospheric flight,

coordinate systems, equations of motion, transformation techniques, optimal

trajectories, aeroassisted flight experiment, aeroassisted orbital transfer,

space shuttle reentry.
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I. Introduction

This report is the first of a series dealing with the determination

of optimal trajectories for the aeroassisted flight experiment (AFE). The

AFE refers to the study of the free flight of an autonomous spacecraft,

shuttle-launched and shuttle-recovered. Its purpose is to gather atmospheric

entry environmental data for use in designing aeroassisted orbital transfer

vehicles (AOTV).

It is assumed that: (a) the spacecraft is a particle of constant

mass; (b) the Earth is rotating with constant angular velocity; (c) the

atmosphere is at rest with respect to the Earth; (d) the Earth is an oblate

planet, and the gravitational potential depends on both the radial distance

and the latitude; however, harmonics of order higher than four are ignored.

Under the above assumptions, the equations of motion for hypervelocity

atmospheric flight (which can be used not only for AFE problems, but also

for AOT problems and space shuttle problems) are derived in an Earth-fixed

system. Transformation relations are supplied which allow one to pass from

quantities computed in an Earth-fixed system to quantities computed in an

inertial system, and viceversa.

Previous Research. Previous research on the topics covered here can be

found in Refs. I-II. For the general theory of flight paths and coordinate

systems, see Refs.l-2; for the equations of flight over a spherical Earth,

see Refs. I-3; for the perturbed motion about an oblate Earth, see Ref. 4;

for AFE problems, see Ref. 5; for reentry problems, see Ref. 6; for methods

of orbit determination, see Refs. 7-8; for the values of the astrophysical

quantities, see Ref. 9; for the values of the characteristic constants of

the oblate Earth, see Refs. I0-II.
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Outline. Section 2 contains the notations, and Section 3 defines the

basic coordinate systems. The relations between coordinate systems are

discussed in Section 4,and the angular velocity (or evolutory velocity)

is introduced in Section 5. The kinematical equations for an Earth-fixed

system are derived in Section 6, and the dynamical equations are obtained

in Section 7. Section 8 summarizes the results, and Section 9 presents the

transformation relations which allow one to pass from quantities computed in

an Earth-fixed system to quantities computed in an inertial system, and viceversa.
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Notations

Throughout the paper, the following notations are employed:

acceleration, m/sec2;

aerodynamic force, N;

drag coefficient;

lift coefficient;

side force coefficient;

drag force, N;

latitudinal component of the gravitational acceleration, m/sec2;

radial component of the gravitational acceleration, m/sec2;

characteristic constant of the Earth's gravitational field;

characteristic constant of the Earth's gravitational field;

characteristic constant of the Earth's gravitational field;

lift force, N;

mass, kg;

= Mach number;

= side force, N;

radial distance, m;

equatorial radius, m;

polar radius, m;

Reynolds number;

reference surface area, m2;

thrust force, N;

Earth's gravitational potential, m2/sec2;

velocity, m/sec;
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W = gravitational force, N;

x = Cartesian coordinate, m;

y = Cartesian coordinate, m;

z : Cartesian coordinate, m;

= angle of attack, rad;

y = path inclination, rad;

0 = longitude, rad;

= bank angle, rad;

_e = Earth's gravitational constant, m3/sec2;

p = air density, kg/m3;

a : sideslip angle, tad;

¢ = latitude, rad;

× = heading angle, rad;

= angular velocity of the Earth with respect to an inertial system, rad/sec;

mhe = angular velocity of the local horizon system with respect to the Earth

axes system, rad/sec.

Subscripts

b = body axes system;

e = Earth axes system;

h = local horizon system;

i = inertial system;

w = wind axes system.

Superscripts

• = derivative with respect to time;

+ = vector quantity.
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. Basic Coordinate Systems

The basic coordinate systems for flight over a spherical Earth are the Earth

axes system OXeYeZ e, the local horizon system PXhYhZ h, the wind axes

system PXwYwZw, and the body axes system PXbYbZ b.

3.1. Earth Axes System. The Earth axes system OXeYeZe is a Cartesian

reference frame which is rigidly attached to the Earth. Its origin 0 is

the center of the Earth; the Ze-aXis is aligned with the axis of rotation of

the Earth and is positive northward; the axes Xe,Y e are orthogonal to the

Ze-aXis and are directed radially; the trihedral OXeYeZ e is right-handed.

In particular, the plane Xe,Y e contains the fundamental parallel (the Equator);

and the plane Xe,Z e contains the fundamental meridian (the Greenwich meridian).

The symbols le,Je,k e denote the unit vectors of the Earth axes system.

3.2. Local Horizon System. The local horizon system PXhYhZ h is a Cartesian:

reference frame defined as follows. Its origin P is identical with the
c

instantaneous position of the spacecraft; the zh-axis is directed radially

(that is, vertical) and is positive downward; the axes Xh,Y h are orthogonal

to the zh-axis (therefore, they are tangent to the spherical surface through

P; they form the so-called local horizon plane); the trihedral PXhYhZh is

right-handed. In particular, the xh-axis is tangent to the local parallel

through P and is positive eastward; the Yh-axis is tangent to the local

meridian through P and is positive southward. The symbols ih,Jh,k h denote

the unit vectors of the local horizon system.

T

3.3. Wind Axes System. The wi_nd axes system PXwYwZ w is a Cartesian

reference frame defined as follows. Its origin P is identical with the

instantaneous position of the spacecraft; the Xw-aXis is tangent to the

flight path (relative velocity) and is positive forward; the axes yw,Zw
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are orthogonal to the Xw-aXis and are such that the trihedral PXwYwZ w

is right-handed. In particular, the Zw-aXis is contained in the plane of

symmetry of the spacecraft and is positive downward for the normal flight

attitude of the spacecraft; the Yw-aXis is positive rightward for the

normal flight attitude of the spacecraft. The symbols iw,Jw,kw denote

the unit vectors of the wind axes system.

3.4. Body Axes System. The body axes system PXbYbZb is a Cartesian

reference frame defined as follows, its origin P is identical with

the instantaneous position of the spacecraft; the Yb-axis is orthogonal to

the plane of symmetry of the spacecraft and is positive rightward; the

axes Xb,Z b are orthogonal to the Yb-axis, are contained in the plane of

symmetry, and are such that the trihedral PXbYbZb is right-handed. In

particular, the xb-axis is positive forward, the Yb-axis is positive

rightward, and the zb-axis is positive downward for the normal flight

attitude of the spacecraft. The symbols ib,Jb,kb denote the unit vectors

of the body axes system.

=

w
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4. Relations between Coordinate Systems

In this section,the relationships between the different coordinate

systems are derived; more specifically, attention is focused on the

following system pairs: Earth axes-local horizon; local horizon-wind axes;

and wind axes-body axes.

We recall that, in the Earth axes system, a point P can be described

via its Cartesian coordinates Xe,Ye,Ze. Alternatively, P can be described

via its spherical coordinate r, 8, ¢. Here, r is the radial distance from

the center of the Earth; e is the longitude, positive eastward; and @ is

the latitude, positive northward.

4.1. Transformation from Earth Axes to Local Horizon. The local

horizon system PXhYhZh can be obtained from the Earth axes system OXeYeZe

by means of the combination of four rotations and one translation. This

requires the definition of four intermediate coordinate systems: the system

OXlYlZl ; the system Ox2Y2Z2; the system Px3Y3Z3; and the system Px4Y4Z4 .

The system OXlYlZl is obtained from the Earth axes system OXeYeZe by

means of the counterclockwise rotation e around the Ze-aXis. Note that the

zl-axis is the same as the Ze-aXis, that the axes Xl,Y l are contained in the

equatorial plane, and that the axes Xl,Z l are contained in a meridian plane.

The symbolsil,Jl,kl denote the unit vectors of the system OXlYlZl .

The system Ox2Y2Z 2 is obtained from the system OXlYlZl by means of

the clockwise rotation ¢ around the Yl-axis. Note that the Y2-axis is

the same as the Yl-axis, that the axes x2,z 2 are contained in a meridian

plane, and that the axes y2,z2 are contained in a plane parallel to the local

horizon plane. The symbols i2,J2,k2 denote the unit vectors of the system

Ox2Y2Z2 •
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The system Px3Y3Z3 is obtained from the system 0x2Y2Z2 by means of

the radial translation r, leading from point 0 to point P. Since there

is no rotation, the axes x3,Y3,Z3 are parallel to the axes x2,Y2,Z2;

in particular, the axes x3,z 3 are contained in a meridian plane, while

the axes y3,z3 are contained in the local horizon plane. The symbols i3,J3,k3

denote the unit vectors of the system Px3Y3Z3 .

The system Px4Y4Z4 is obtained from the system Px3Y3Z3 by means of

the counterclockwise rotation _/2 around the z3-axis. Note that the

z4-axis is the same as the z3-axis, that the axes y4,z4 are contained in a

meridian plane, while the axes x4,z 4 are contained in the local horizon plane.

The symbols i4,J4,k4 denote the unit vectors of the system Px4Y4Z 4.

The local horizon system PXhYhZh is obtained from the system Px4Y4Z 4 by means

of the clockwise rotation _/2 around the x4-axis. Note that the xh-axis

is the same as the x4-axis, that the axes yh,Zh are contained in a meridian

plane, and the axes Xh,Y h are contained in the local horizon plane.

In vector-matrix notation, the successive transformations leading from

one coordinate system to another can be expressed as follows:

i I cos0 sing 0

.. +Jl : i-sinO cosO 0
kI 0 0 l

..).

I e

Je

k
e

(la)

-)- --

12

J2

k2

cosdp 0 sinqb

0 1 0

-sinqb 0 cos@

Il
-)-

Jl

kI

(Ib)

=
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13 12
4,

• = "

33 32

_ k3 _ J. k2 _

,- _._ --

14
.+

34

0

-1

0

l 0

0 0

0 l

ih 1 0 0
i

.-).

Jh I 0 0 -1
14, = I

Lo o
Equations (1) imply that

i2 cosO cos_
_ :

J2 = -sinO

k2 _ -cosO sin_

while Eqs. (2) imply that

T _ m

ih 0 l 0
4,

• = 0 0 -1
3 h
÷ i

kh I -I 0 0

, 4, •

13

"]3

k 3

Tc '
14
..),.

"14 .
4,

k4

sinO cos@ sin@

cosO 0

-sinO sin@ cos@

"_ - 4, "r

i21
+ I

J2 I"
I 4-

I k2
-- .b

-- 4-

ie

3e
4-

ke

(2a)

(2b)

(2c)

(3)

(4)

w

Therefore, upon combining Eqs. (3)-(4), we see that
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i h -sine

Jh = cose sine

k h -cosO cos¢

cosO 0 i
e

sine sine -cos¢ Je

-sin0 cos¢ -sine k
e

(5a)

with the implication that

i e -sine

Je = cosO

ke 0

cosO sine -cose cos¢ i h

sine sine -sine cos¢ Jh
.-).

-cos¢ -sine kh

(Sb)

4.2. Transformation from Local Horizon to Wind Axes. The wind axes

system Pxw.VwZw can be obtained from the local horizon system PXhYhZ h by

means of the combination of three rotations. This requires the definition

of two intermediate coordinate systems: the system Px5Y5Z5 and the system

Px6Y6Z 6 •

The system Px5Y5Z5 is obtained from the local horizon system PXhYhZh

by means of the counterclockwise rotation × around the zh-axis. Note

that the z5-axis is the same as the zh-axis, that the axes x5,Y 5 are contained

in the local horizon plane, and that the axes x5,z 5 are contained in the

plane (0P,V), where 0P is the radius vector connecting the points 0 and P

and V is the spacecraft velocity vector. Also note that the axis x 5 has the

direction of the projected velocity vector Vp; this is the projection of

V on the local horizon. The angle × is called the heading angle and is

positive if the projected velocity vector Vp is directed outward with respect

to the local parallel. The symbols i5,J5,k5 denote the unit vectors of the

system Px5Y5Z5 o
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The system Px6Y6Z6 is obtained from the system Px5Y5Z5 by means of

the counterclockwise rotation y around the Y5-axis. Note that the Y6-axis

is the same as the Y5-axis and that the axes x6,z 6 are contained in the

plane (OP,V). Also note that the x6-axis is positive forward and that the

z6-axis is positive downward. The angle y is called the path inclination

and is positive if the velocity vector V is inclined upward with respect

to the local horizon. The symbols i6,J6,k6 denote the unit vectors of the

system Px6Y6Z 6 .

The wind axes system PXwYwZw is obtained from the system Px6Y6Z6

by means of the counterclockwise rotation _ around the x6-axis. Note that

the Xw-aXis is the same as the x6-axis. Also, note that the Xw-aXis is

positive forward, the Yw-aXis is positive rightward, and the Zw-aXis is

positive downward and is contained in the plane of symmetry of the spacecraft.

The angle _ is called the angle of bank and is positive if the spacecraft

is banked to the right.

In vector-matrix notation, the successive transformations leading

from one coordinate system to another can be expressed as follows:

-)- ,

15
-3-

J5
-).

k 5

cosx sin× 0

-sinx cosx 0

0 0 1

4 "I

i h
-+

Jh
.+

k h

(6a)

- -9-

16
-+

J6
-9-

k6
,b

cosy 0 -siny

0 1 0

siny 0 cosy

5

J5|'

k5]

(6b)
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W

Jw

k w
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,m

l

-0
I

I °
,&,

0 0 i 6

cos_ sin_ J6
-.).

-sini_ cosla k 6

(6c)

Equations (6) lead to

i
W

Jw

k
W

cosy cos X

sin_ siny cosx
-cos_ sinx

cos_ siny cosx

+sin_ sinx

cosy sinx

sinu siny sinx

+COSH COS X

cosH siny sinx

-sin_ cosx

-siny

sinH cosy

COSH cosy

ih T

Jh

k h

_ 1

(7a)

with the implication that

Ih

Jh

kh

cosy cos×

cosy sinx

sin_ siny cosx

-cos_ sinx

sinu siny sinx

+cos_ cos X

cosu siny cosx

+sin_ sinx

cosp siny sinx

-sinu cosx

-siny sin_ cosy cos_ cosy

iw

..).

Jw

kw

• (7b)

4.3. Transformation from Wind Axes to Body Axes. The body system

PXbYbZb can be obtained from the wind axes system PXwYwZ w by means of the

combination of two rotations. This requires the definition of one intermediate

coordinate system, the system Px7Y7Z7 .

The system Px7Y7Z7 is obtained from the wind axes system PXwYwZ w by

means of the counterclockwise rotation o around the Zw-aXis. Note that the

z7-axis is the same as the Zw-aXis and that the axes x7,z 7 are contained

in the plane of symmetry of the spacecraft. Also note that the axis x7
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is positive forward, the axis Y7 is positive rightward, and the axis z 7

is positive downward. The angle o is called the sideslip angle and is

positive if the velocity vector V is directed leftward with respect to the

plane of symmetry of the spacecraft.

The body axes system PXbYbZb is obtained from the system Px7Y7Z 7 by means of

the counterclockwise rotation _ around the Y7-axis. Note that the Yb-axis

is the same as the Y7-axis and that the axes Xb,Z b are contained in the

plane of symmetry of the spacecraft. Also note that the axis x b is positive

forward, the axis Yb is positive rightward, and the axis z b is positive

downward. The angle _ is called the angle of attack and is positive

if the velocity vector V is directed downward with respect to the xb-axis

of the spacecraft.

In vector-matrix notation, the successive transformations leading

from one coordinate system to another can be expressed as follows:

, _). --

17

37
.-).

k 7

I b

3b

kb
_ _,

cos_ sin_ 0

-sin_ cos_ 0

0 0 1

cos_ 0 -sin_

0 1 0

sin_ 0 cos_

i w

Jw
--).

k w

17

37

k 7

, (8a)

, (8b)

with the implication that
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I b

Jb
..).
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and that

I w

J w

kw

COS_ COS_

-sino

sin_ coso

COS_ COSO

cos_ sino

-sin_

cos_ sino

COS_

sin_ sina

-sina

COS_

0

-sinm

0

COS_

- [-T
W l

Jw '
--,. ;
k I

W i
.L _. ,L

m _

sinc_ cosc_

sin_ sina

COS_

1_

1b

Jb "

k b

(9a)

(9b)

m_

--T
w

=

w

=

r

w
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5. Angular Velocity

In this section, we compute the angular velocity (or evolutory velocity)

of the local horizon system with respect to the Earth axes system. To do

so, consider the behavior of the spacecraft between the time instants t and

t + dt, and denote by dQhe the infinitesimal vectorial rotation of the local

horizon system with respect to the Earth axes system. This infinitesimal

vectorial rotation can be decomposed into partial rotations as follows:

dQhe = d_h4 + dQ43 + dQ32 + d_21 + dQle , (lO)

with

--).

d_h4 : O, (lla)

_ d_43 = O, (llb)

L

d_32 = O, (llc)

dG21 71' (lld)

: dE) k . (lle)
d_l e e

Here, dO denotes the infinitesimal change of the longitude and d@ denotes

the infinitesimal change of the latitude. Note that the rotation dE) occurs

around the Ze-aXis and is positive counterclockwise and that the rotation

d@ occurs around the Yl-axis and is positive clockwise. This explains the

difference in the signs appearing on the right-hand sides of Eqs. (lld)

and (lle).

m

w
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Upon combining Eqs. (I0)-(II), we see that the infinitesimal vectorial

rotation of the local horizon system with respect to the Earth axes system

can be written as

d_he = de ke - de jl. (12)

As a consequence, the angular velocity of the local horizon system with

respect to the Earth axes system is given by

mhe = d_he/dt = eke - CJl" (13)

In the light of Eqs. (1)-(5), the unit vectors k e and Jl can be expressed

in terms of the unit vectors of the local horizon system as follows:

.+ --)- --).

ke = -cos@ Jh - sine k h, (14a)

=). .-)-

Jl = ih' (14b)

so that

.-). -_

-_ "÷ ecos¢ j esin¢ kh (15)mhe = -@ih - h - "

Next, Poisson's formulas are employed to compute the derivatives of

the unit vectors of the local horizon system with respect to time:

dih/dt : mhe × ih' (16a)

(16b)
dJh/dt = mhe x jh,

dkh/dt = mhe x kh. (16c)
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Upon combining Eqs. (15)-(16), we obtain the relations

dih/dt :_ (Osinqb)j h + (Ocos@)k h,

dJh/dt : (esin@)i h - @kh,

_). *=)-

= - ih + @Jh'dkh/dt (Ocosqb) -_

whose vector-matrix form is the following:

(d/dt)

w

..

I h

Jh

k h

0 - sinqb Ocos@ ' ih
._).

Osinqb 0 -_ Jh

-Gcos $ o

It is interesting to note that Eq. (18) can also be obtained by taking

the time derivative of Eq. (5a) and using Eq. (5b).

(17a)

(17b)

(17c)

(18)

u
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6. Kinematical Equations

In this section, we derive the scalar relationships corresponding to

the vectorial equation

d0P/dt : V. (19)

Here, V denotes the velocity of the spacecraft with respect to the Earth

and OP denotes the position vector joining the center of the Earth 0 with

the spacecraft position P.

First, we observe that the position vector OP is given by

OP : -rk h,

where r is the radial distance from the center of the Earth and kh is

the third unit vector of the local horizon system. As a consequence, the

time derivative of OP can be written as

(2o)

mm

w

d0P/dt = -rk h - r(dkh/dt),

where dkh/dt is given by Eq. (17c).

and (21), we obtain the relation

(21)

Therefore, upon combining Eqs. (17c)

-)- -)- J --)- e-_

dOP/dt : ercos@ ih - ¢rjh - rkh. (22)

Next, we observe that the velocity vector V is given by

V = Vi
W'

where V is the velocity modulus and iw is the first unit vector of the

wind axes system. In the light of Eq. (7a), the unit vector i w can be

written as

(23)
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iw : cosy cosx ih + cosy sin× Jh - siny kh.

Therefore,upon combining Eqs.(23) and (24), we obtain the relation

V = Vcosy cosx ih + Vcosy sinx Jh - Vsiny kh.

Finally,upon combining Eqs.(19), (22), and (25), and upon projecting

the resulting vectorial equation on the axes of the local horizon system,

we obtain the following scalar form of the kinematical equations:

= Vcosy cosx/rcos@,

(24)

(25)

(26a)

=-Vcosy sinx/r, (26b)

r = Vsiny. (26c)

m

m
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7. Dynamical Equations

In this section, we derive the scalar relationships corresponding

to the vectorial equation

.-). .-). --). .-).

T + A + W = ma i, (27)

where T is the thrust, A is the aerodynamic force, W is the gravitational

force, m is the mass of the spacecraft, and a i is the inertial acceleration.

We consider the case where the engine is shut-off, so that

T : O, (28)

and the mass of the spacecraft is constant.

A + W = ma i.

Hence, Eq. (27) is written as

(29)

Because of the theorem of composition of the accelerations,the inertial

acceleration can be written as the sum of the relative acceleration dV/dt

(acceleration with respect to the Earth), the Coriolis acceleration 2_ x V,

and the transport acceleration m x (_ × OP):

..). -). -@- -_. -@. _

ai : dV/dt + 2m x V + _ x (m x OP).

Here, m is the angular velocity of the Earth with respect to an inertial

,

system. Note that m is constant and is aligned with the axis of rotation

of the Earth. Therefore, upon combining Eqs. (29)-(30), we obtain the

vectorial equation

A + W = m[dV/dt + 2m × V + m x (m × OP)].

(30)

(31)

w

L
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We now compute the components of the vectors appearing in Eq. (31) on the axes of

the local horizon system.

7,1. Aerodynamic Force.The components of the aerodynamic force on the wind

axes are the drag D, the side force Q, and the lift L. Therefore, the

aerodynamic force can be written as

A =-Di w - QJw - Lkw" (32)

No special significance is implied in the signs appearing on the right-hand

side of Eq. (32). These signs merely reflect the conventions adopted in

this report with regard to the positive values for the drag, the side force,

and the lift.

In vector-matrix form, Eq. (32) can be rewritten as follows:

I - -_ T

ooo I
=- 0 Q 0 Jw I" (33)

0 0 L kwl

Therefore, upon combining Eqs. (7a) and (33), we obtain the relation

A=

u

-Dcosy cosx -Dcosy sinx Dsiny ih

-Qsin_ siny cosx -Qsinu siny sinx -Qsinu cosy Jh
+Qcosu sinx -Qcosu cosx

-Lcosu siny cosx -Lcosu siny sinx -Lcosu cosy kh

-Lsinu sinx +Lsinu cosx

(34)
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7.2. Gravitational Force. Here, we assume that the Earth is an oblate planet

and that its mass has radial symmetry with respect to the axis of rotation.

Because the equatorial radius r e is larger than the polar radius rp, the

gravity force W has two components: the radial component mg, directed toward

the center of the Earth, and the latitudinal component mf, tangent to the

local meridian and directed toward the Equator. Therefore, the gravity

force can be written as

W = mfj h + mgk h. (35)

W

w

w

w

W

w

r

W

w

W

The radial component g and the latitudinal component f of the

acceleration of gravity are related to the Earth's gravitational potential

U by the expressions

g : BU/Br, f = (I/r)BU/B@, (36)

where

U =-(_e/r)[l+J2(re/r)2H 2 + J3(re/r)3H3 + J4(re/r)4H4 ], (37a)

H2:I/2 -(3/2)sin2@, (37b)

H3= (3/2)sin@ - (5/2)sin3@, (37c)

H4=_(3/8 ) + (30/8)sin 2 _ - (35/8)sin4@. (37d)

Here,_ e is the Earth's gravitational constant, r e is the equatorial radius,

and J2' J3' J4 denote the characteristic constants of the Earth's

gravitational field. Note that the expression for U is approximate, since

harmonics of order higher than four are ignored.
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Upon combining Eqs. (36)-(37), we see that the components of the

acceleration of gravity can be written as

g : (_e/r2)[l + J2(re/r)2G2 + J3(re/r)3G3 + J4(re/r)4G4 ], (38a)

G2 = 3/2 - (9/2)sin2_, (38b)

G3 = 6sin@ - lOsin3@, (38c)

G4 = -15/8 + (150/8)sin2@ - (175/8)sin4@, (38d)

and

f :(Pe/r2)[J2(re/r)2F2 + J3(re/r)3F3 + J4(re/r)4F4],

F2 : 3sin@ cos@,

F3 :-(3/2)cos@ + (15/2)sin2@ cos@,

F4 =-(15/2)sin@ cos@ + (35/2)sin3@ cos@.

7.3.

(39a)

(39b)

(39c)

(39d)

Relative Acceleration. Let Vxh, Vy h, Vzh denote the components of

the relative velocity on the local horizon system,

Vxh = Vcosy cosx, (40a)

Vyh = Vcosy sinx, (40b)

Vzh =-Vsiny. (40c)

With this understanding, the relative velocity (25) can be rewritten as

V = Vxhi h + VyhJ h + Vzhkh • (41)



_- AAR-23824

w

Therefore, the relative acceleration is given by

dV/dt = Vxhi h + VyhJ h + Vzhkh

+ Vxh(dih/dt) + Vyh(dJh/dt) + Vzh(dkh/dt).

If we combine Eqs. (17) and (26), the time derivatives of the unit

vectors of the local horizon system can be written as

(42)

w

._=_

dih/dt : -(Vcos¥ cosx tan@/r)j h + (Vcosy cos×/r)k h,
(43a)

dJh/dt : (Vcosy cos× tanq_/r)ih + (Vcosy sinx/r)k h,
(43b)

dkh/dt = -(Vcosy cosx/r)i h - (VcosT sinx/r)j h. (43c)

Upon combining Eqs. (40), (42), (43), the relative acceleration becomes

dV/dt = (Vxh + V2c°s2y cos× sin× tanqb/r + V2cosy siny cos×/r)i h

+
yh

V2cos2T cos 2 ÷- X tan@/r+ V2cosT siny sinx/r)j h

2 2 -_
+ (Vzh + V cos y/r)k h. (44)

7.4. Coriolis Acceleration. The angular velocity of the Earth with respect

to an inertial system is given by

-). -_

: mke. (45)

Here, ke is the third unit vector of the Earth axes system, which is given

by [see Eq. (5b)]

ke = -cosap Jh - sin@ k h.
(46)
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w

Hence, Eq. (45) becomes

.-). -). .-)-

= -_cos@ Jh - msin@ kh. (47)

Next,we recall Eq. (25),

..). --)- .-)- .+

V = Vcosy cosx ih + Vcosy sinx Jh - Vsiny kh. (48)

Therefore, the Coriolis acceleration becomes

2m x V = 2mV(siny cos@ + cosy sinx sin@)i h

- 2mVcosy cos)< sin@ Jh + 2mVcosy cosx cos@ kh.
(49)

7.5. Transport Acceleration. We recall that the vector connecting the center

of the Earth with the instantaneous position of the spacecraft is given by

[see Eq. (20)]

OP = -rk h. (50)

We also recall that the angular velocity of the Earth is given by [see Eq. (47)]

ii

=_

._). --)- -_

= -_cos@ Jh - msin@ kh. (51)

Therefore, the transport acceleration becomes

+ + + -_2r + _2rc°s2@ _hx (_ x OP) = cos@ sin@ Jh + " (52)

7.6. Scalar Equations. Next, we combine Eqs. (31), (34), (35), (44), (49),

(52). Upon projecting the resulting vectorial equation on the axes of the

local horizon system, we obtain the following scalar equations:

=
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w

w

w

L

Vxh : -(D/m)cosy cosx + (Q/m)(cos_ sinx - sin_ siny cosx)

- (L/m)(sin_ sinx + cos_ siny cosx)

- (V2/r)(cos2y cosx sinx tan@ + cosy siny cosx)

- 2mV(siny cos@ + cosy sinx sin@),

Vy h = -(D/m)cosy sin× - (Q/m)(cosu cosx + sinu siny sinx)

+ (L/m)(sin_ cosx - cos_ siny sinx) + f

+ (V2/r)(cos2y cos2x tan@ - cosy siny sinx)

(53a)

_=

w

w

Vzh :

2wVcosy cosx sin@ + m2rcos@ sin@, (53b)

(D/m)siny - (Q/m)sin_ cosy - (L/m)cos_ cosy + g

(V2/r)cos2y - 2_Vcosy cos× cos@ - m2rcos2@. (53c)

We recall that the components of the relative velocity on the axes of the

local horizon system are given by [see Eqs. (40)]

Vxh = Vcosy cosx,

Vy h = Vcosy sinx,

Vzh =-Vsiny,

(54a)

(54b)

(54c)

with the implication that

L ,

w
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[Vxh cosy cosx
• I

Vyh = ] cosy sinx

Vzh l-siny

"' F
-siny cosx -sinx

-siny sinx cosx , Vy

-cosy 0 ' Vcosy
I

(55)

m_

L

w

z

w

w

w

m

W

w

and that

V

Vcosy

cosy cosx

= -siny cosx

-sin×

'' '' V i

cosy sinx -sin', xh

-siny sinx -cosy Vy h

cos× 0 Vzh

,L

The final step consists of combining Eqs. (53) and (56).

to the following scalar form of the dynamical equations:

V = -D/m - gsiny + fcosy sinx

Vcosy X :

+ 2mV(cosy sine + siny sinx cos_) + m2rcosx cos¢ sin@,

This leads

+ m2r(siny cos2@ + cosy sinx cos@ sin@),

(L/m)cosu + (Q/m)sinu + (V2/r - g)cosy - fsiny sinx

+ 2mVcosx cos¢ + m2r(cosy cos2@ - siny sinx cos@ sin@),

(L/m)sin_ - (Q/m)cos_ + (V2/r)cos2y cosx tan@ + fcosx

which can be rewritten as

V =-D/m - gsiny + fcosy sinx

+ m2r(siny cos2@ + cosy sinx cos@ sin@),

(56)

(57a)

(57b)

(57c)

(58a)
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= (LlmV)cosp + (qlmV)sinp + (Vlr - g/V)cosy - (f/V)siny sinx

+ 2mcosx cos@ + (m2r/V)(cosy cos2@ - sin¥ sinx cos@ sin¢), (58b)

X = (L/mV)sin_/cosy- (Q/mV)cos_/cos¥

L

+ (V/r)cosx cosx tan@ + (f/V)cosx/cos Y

+ 2m(sin@ + tany sinx cos@) + (m2r/V)cosx cos@ sin@/cosy. (58c)

L =

r

W

W
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8. Summary of Results

In this report, we have derived the equations of motion of a spacecraft

under the following assumptions: (a) the spacecraft is a particle of constant

mass; (b) the Earth is rotating with constant angular velocity; (c) the

atmosphere is at rest with respect to the Earth; (d) the Earth is an oblate

planet, and the gravitational potential depends on both the radial distance

and the latitude; however, harmonics of order higher than four are ignored.

An Earth-fixed system has been used, and the following kinematical

and dynamical equations have been obtained:

= Vcosy cosx/rcos@, (59a)

=-Vcosy sinx/r, (59b)

r = Vsiny, (59c)

and

= -D/m - gsiny + fcosy sinx

+ m2r(siny cos2@ + cosy sinx cos@ sine), (60a)

: (L/mV)cos_ + (Q/mV)sinu + (V/r - g/V)cosy - (f/V)siny sinx

+ 2mcosx cos@ + (m2r/V)(cosy cos2@ - sin¥ sinx cos@ sin@), (60b)

X = (L/mV)sin_/cosy - (Q/mV)cos_/cosy

+ (V/r)cosy cos× tan@ + (f/V)cosx/cosy

+ 2m(sin¢ + tany sinx cos@) + (_2r/V)cosx cos@ sin@/cosy. (60c)
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8.1. Aerodynamic Force.

lift are given by

D = (I/2)CDPSV2, (61a)

= (I/2)CQpSV 2, (61b)Q

L : (I/2)CLPSV 2, (61c)

where CD is the drag coefficient, CQ is the side force coefficient, CL

is the lift coefficient, p is the air density, and S is a reference surface

area. In turn, the aerodynamic coefficients are functions of the form

In Eqso (60),the drag, the side force, and the

w

_J

w_

ffi J

_a

L _

CD : CD(m,o,M,Re) , (62a)

CQ : CQ(m,o,M, Re), (62b)

CL = CL(m,o , M,Re) , (62c)

where m is the angle of attack, o is the sideslip angle, M is the Mach

number, and Re is the Reynolds number.

8.2. Gravitational Force. In Eqs. (60), the radial component and the

latitudinal component of the acceleration of gravity are given by

g = (Ue/r2)[l +J2(re/r)2G2 + J3(re/r)3G3 + J4(re/r)4G4 ],

G2 = 3/2 - (9/2)sin2@,

G3 = 6sin@ - lOsin3@,

G4 =-15/8 + (150/8)sin2@ - (175/8)sin4@,

(63a)

(63b)

(63c)

(63d)
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w
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m

and

f =(_e/r 2) [J2(re/r)2F2 + J3(re/r)3F3 + J4(re/r)4F41,

F2 = 3sin@ cos@,

F3 =-(3/2)cos_ + (15/2)sin2@ cos@,

F4 =-(15/2)sin@ cos@+ (35/2)sin3@ cos@.

8.3. Physical Constants. The major physical constants appearing in

(64a)

the system (59)-(64) have the following values:

= 0.729211595 E-04

_e = 0.39860064 E+I5

J2 = 0.10826271 E-02,

(64b)

(64c)

(64d)

rad/sec, (65a)

m3/sec 2 , (65b)

J3 =-0.25358868 E-05,

(65c)

(65d)

J4 =-0.1624618 E-05, (65e)

r = 0.6378164 E+07 m, (65f)
e

rp 0.6356755 E+07 m,

Here, m is the Earth's angular velocity;_e is the Earth's gravitational

(65g)

constant; J2' J3' J4 are the characteristic constants of the Earth's gravitational

field; r e is the Earth's equatorial radius; and rp is the Earth's polar radius.

Note that the Earth, s sea-level radius _S_ varies with the latitude @ according

to the relation
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w
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w

rsc = (I/2)(r e + rp) + (I/2)(r e - rp)COS(2@).

8.4. Spacecraft Data. For the AFE vehicle, it is assumed that

(66)

m = 0.16782918 E+04 kg, (67a)

S = 0.14314 E+02 m2 (67b)

= 0.17000 E+02 deg, (67c)

CL =-0.370696 E+O0, (67d)

CD = 0.131452 E+OI. (67e)

Here, m is the spacecraft mass at atmospheric entry; S is the reference

surface area; _ is the angle of attack; CL is the lift coefficient; and CD

is the drag coefficient. Note that, for the aeroassisted flight experiment,

the angle of attack Is kept constant; the aerodynamic coefficients are assumed

to be independent of the Mach number and the Reynolds number; and the spacecraft

is controlled via the anqle of bank.

w

T_
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9. Transformation Relations

In this section, we supply some transformation relations which allow

one to pass from (i) quantities computed in an Earth-fixed system to

(ii) quantities computed in an inertial system, and viceversa.

9.1. Spacecraft Position. Let r, O, @ denote the spherical coordinates of

the spacecraft P in the Earth-fixed system OXeYeZ e. Let r i, 0 i, @i

denote the spherical coordinates of the same spacecraft in the inertial

system OxiYiZi . Assume that the axes of the Earth-fixed system coincide

with the axes of the inertial system at time instant t = O. Then, the

following transformation relations hold:

=

ri = r,
(66a)

T Z

r _

w

8i = 0 + mt, (66b)

¢i = ¢"

Equations (66) imply the following inverse relations:

r= ri ,

(66c)

(67a)

e : 0 i - mt, (67b)

9,2,

(67c)

Spacecraft Velocity. Let V, y, × denote the velocity modulus, the

path inclination, and the heading angle in the Earth-fixed system OXeYeZ e.

Let Vi, Yi' ×i denote the velocity modulus, the path inclination, and the

heading angle in the inertial system OxiYiZ i. Let V denote the velocity

vector in the Earth-fixed system; and let Vi denote the velocity vector
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w
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in the inertial system.

We employ the theorem of composition of velocities, which states

that the inertial velocity Vi is the sum of the relative velocity V

and the transport velocity _ x 0P,

Vi = V + m x 0P.

The vectors appearing in Eq. (68) can be written in terms of their

components on the local horizon system PXhYhZ h as follows [see Eqs. (48),

(50),(51)] :

Vi = Vic°sYi c°sxi ih + Vic°sYi sinxi Jh- VisinYi kh'

V : Vcosy cosx ih + Vcosy sinx Jh - Vsiny kh,

mx0P = mrcos@ ih,

(68)

(69a)

(69b)

(69c)

with the implication that

VicosYi cosxi : Vcosy cosx + mr cos¢,

VicosYi sinxi = Vcosy sinx,

VisinYi = Vsiny.

Laborious manipulations, omitted for the sake of brevity, lead to the

following transformation relations:

Vi = _[V2 + 2mrVcosy cosx cos@ + (mr cos@)2],

(70a)

(70b)

(70c)

(71a)

N
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w
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tanYi : Vsiny/7[(Vcosy) 2 + 2mrVcosy cosx cos¢ + (mr cos¢)2], (71b)

tanxi = Vcosy sinx/(VcosT cos× + mrcos@). (71c)

Equations (71) imply the following inverse relations:

V = W[V# - 2mriVicosYi cosxi cos@i + (mricos¢i)2], (72a)

tany = Visin_i/W[(VicosYi )2- 2mriVicos¥ i cosxi cos¢i + (mricos¢i)2], (72b)

tanx = Vicosy i sinxi/(Vicosy i cosx i - mricos¢i). (72c)

9,3,

coordinates, the corresponding Cartesian coordinates can be computed.

following transformation relations hold:

xe = rcose cos_ = r_cos(e i - mt)cos@ i,

Ye = rsine cos@ = risin(e i . mt)cos¢i,

ze = rsin¢ = risin¢i,.

Equations (73) imply the following inverse relations:

xi = ricose i cos¢i = rcos(e + mt]cos¢,

Yi : risinei c°s@i = rsin(e + mt)cos¢,

zi = risin¢i = rsin¢.

Cartesian Coordinates. After the spacecraft position is known in spherical

The

(73a)

(73b)

(73c)

(74a)

(74b)

(74c)
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I0. Conclusions

This report is the first of a series dealing with the determination

of optimal trajectories for the aeroassisted flight experiment (AFE). The

AFE refers to the study of the free flight of an autonomous spacecraft,

shuttle-launched and shuttle-recovered. Its purpose is to gather atmospheric

entry environmental data for use in designing aeroassisted orbital transfer

vehicles (AOTV).

It is assumed that: the spacecraft is a particle of constant mass;

the Earth is rotating with constant angular velocity; the Earth is an oblate

planet, and the gravitational potential depends on both the radial distance

and the latitude; however, harmonics of order higher than four are ignored;

the atmosphere is at rest with respect to the Earth.

Under the above assumptions, the equations of motion for hypervelocity

atmospheric flight (which can be used not only for AFE problems, but also

for AOT problems and space shuttle problems) are derived in an Earth-fixed

system. Transformation relations are supplied which allow one to pass from

quantities computed in an Earth-fixed system to quantities computed in an

inertial system,and viceversa.
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