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Abstract. This report is the second of a series dealing with_;he
determination of optimal trajectories for the aeroassisted flight experiment
(AFE).:;iﬁ;;A?E;refefs to the study of the free flight of an autonomous
spacecraft, shuttle-launched and shuttle-recovered. Its purpose is to gather
atmospheric entry environmental data for use in designing aeroassisted
orbital transfer vehicles (AOTV).

It is assumed that: the spacecraft is a particle of constant mass;
the Earth is rotating with constant angular velocity; the Earth is an oblate
planet, and the gravitational potential depends on both the radial distance

and the 1atitudef:hcweveriiharmonits of order higher than four are ignored?

" the atmosphere is at rest with respect to the Earth.

Under the above assumptions, the equations of motion for hypervelocity
atmospheric flight (which can be used not only for AFE problems, but also
for AOT problems and space shuttle problems) are derived in an inertial system.
Transformation relations are supplied which allow one to pass from quantities
computed in an inertial system to quantities computed in an Earth-fixed system
and viceversa. ! . ‘.-

Keixﬁg}dgjiFlight mechanics; hypervelocity flight, atmospheric flight,
coordinate systems, equations of motion, transformation techniques, optimal

trajectories, aeroassisted flight experiment, aeroassisted orbital transfer,

space shuttle reentry.
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1. Introduction

This report is the second of a series dealing with the determination
of optimal trajectories for the aeroassisted flight experiment (AFE). The
AFE refers to the study of the free flight of an autonomous spacecraft,
shuttle-launched and shuttle-recovered. Its purpose is to gather atmospheric
entry environmental data for use in designing aeroassisted orbital transfer
vehicles (AOTV).

It is assumed that: (a) the spacecraft is a particle of constant mass;
(b) the Earth is rotating with constant angular velocity; (c) the atmosphere
is at rest with respect to the Earth; (d) the Earth is an oblate planet,
and the gravitational potential depends on both the radial distance and the
latitude; however, harmonics of order higher than four are ignored.

Under the above assumptions, the equations of motion for hypervelocity
atmospheric flight (which can be used not only for AFE problems, but also
for AOT problems and space shuttle problems) are derived in an inertial system.
Transformation relations are supplied which allow one to pass from quantities
computed in an inertial system to quantities computed in an Earth-fixed system
(Ref. 1), and viceversa.

Previous Research. Previous research on the topics covered here can

be found in Refs. 2-12. For the general theory of flight paths and coordinate
systems, see Refs., 2-3; for the equations of flight over a spherical Earth,
see Refs. 2-4; for the perturbed motion about an oblate Earth, see Ref. 5;

for AFE problems, see Ref. 6; for reentry problems, see Ref. 7; for methods

of orbit determination, see Refs, 8-9; for the values of the astrophysical
quantities, see Ref. 10; for the values of the characteristic constants of

the oblate Earth, see Refs. 11-12.
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Outline. Section 2 contains the notations, and Section 3 defines the
basic coordinate systems. The relations between coordinate systems are
discussed in Section 4,and the angular velocity (or evolutory velocity)
is introduced in Section 5. The kinematical equations for an inertial system
are derived in Section 6, and the dynamical equations are obtained in
Section 7. Section 8 summarizes the results, and Section 9 presents the
transformation relations which allow one to pass from quantities computed in
an inertial system to quantities computed in an Earth-fixed system, and

viceversa.
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Notations

Throughout the paper, the following notations are employed:
acceleration, m/sec2;

aerodynamic force, N;

drag coefficient;

1ift coefficient;

side force coefficient;

drag force, N;

latitudinal component of the gravitational acceleration,
m/secz;

radial component of the gravitational acceleration,

m/secz;

characteristic constant of the Earth's gravitational field;
characteristic constant of the Earth's gravitational field;
characteristic constant of the Earth's gravitational field;
1ift force, N3

mass, kg;

Mach number;

side force, N;

radial distance, m;

equatorial radius, m;

polar radius, m;

Reynolds numbers;

reference surface area, mz;

thrust force, N;

Earth's gravitational potential, mz/secz;

AAR-239
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velocity, m/sec;

gravitational force, N;

Cartesian coordinate, m;

Cartesian coordinate, m;

Cartesian coordinate, m;

angle of attack, rad;

path inclination, rad;

Tongitude, rad;

bank angle, rad;

Earth's gravitational constant, m3/sec2;

air density, kg/m3;

sideslip angle, rad;

latitude, rad;

heading angle, rad;

angular velocity of the Earth with respect to an
inertial system, rad/sec;

angular velocity of the local horizon system with respect

to the inertial system, rad/sec.

Subscripts

b = body axes system;

e = Earth axes system;

h = local horizon system;

j = inertial axes_system;

w = wind axes system.

Superscripts

. = derivative with respect to time;
+ = vector quantity.

AAR-239
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3. Basic Coordinate Systems

The basic coordinate systems for flight over a spherical Earth are the
inertial axes system Oxiyizi, the Earth axes system Oxeyeze, the Tlocal
horizon system thyhzh, the wind axes system waywzw, and the body axes
system beybzb.

3.1. Inertial Axes System. The inertial axes system Oxiyizi is a

Cartesian reference frame defined as follows. Its origin 0 is the center of
the Earth; the zi-axis is aligned with the axis of rotation of the Earth

and js positive northward; the axes Xssy; are orthogonal to the zi-axis

and are directed radially; the trihedral Oxiyizi is right-handed. In
particular, the plane x,,y; contains the fundamental parallel (the Equator);
and the plane X5sZ; contains the fundamental meridian(the Greenwich meridian)
at a particular time instant, the time instant t = 0. The symbols ?i,Ei,Ei
denote the unit vectors of the inertial axes system; these unit vectors are

time invariant by definition.

3.2. Earth Axes System. The Earth axes system Oxeyeze is a Cartesian

reference frame which is rigidly attached to the Earth. Its origin O is

the center of the Earth; the ze-axis is aligned with the axis of rotation of
the Earth and is positive northward; the axes XgsYo are orthogonal to the
ze-axis and are directed radially; the trihedral Oxeyeze is right-handed.

In particular, the plane Xa2Ya contains the fundamental parallel (the Equator);
and the plane Xa3Zg contains the fundamental meridian (the Greenwich meridian)
at all time instants, The symbols ?E,Ee,Ee denote the unit vectors of the

Earth axes system; these unit vectors are time dependent.

3.3. Local Horizon Systém; The local horizon system thyhzh is a

Cartesian reference frame defined as follows. Its origin P is identical with
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the instantaneous position of the spacecraft; the zh-axis is directed
radially (that is, vertical) and is positive downward; the axes x .y,

are orthogonal to the zh-axis (therefore, they are tangent to the spherical
surface through P; they form the so-called local horizon plane); the
trihedral thyhzh is right-handed. In particular, the xh-axis is tangent to
the local parallel through P and is positive eastward; the yh-axis is tangent
to the local meridian through P and is positive southward. The symbols

> > >

ih,jh,kh denote the unit vectors of the local horizon system.

3.4. Wind Axes System. The wind axes system waywzw is a Cartesian

reference frame defined as f0110ws; Its origin P is identical with the
instantaneous position of the spacecraft; the xw-axis is tangent to the
flight path (relative velocity) and is positive forward; the axes y, .z,

are orthogonal to the xw-axis and are such that the trihedral waywzw is
right-handed. In particular, the zw-axis is contained in the plane of
symmetry of the spacecraft and is positive downward for the normal flight
attitude of the spacecraft; the yw-axis is positive rightward for the normal
f1ight attitude of the spacecraft. The symbols ?W,EQ,ZW denote the unit

vectors of the wind axes system.

3.5. Body Axes System. The body axes system beybzb is a Cartesian

reference frame defined as follows. Its origin P is identical with

the instantaneous position of the spacecraft; the yb-axis is orthogonal to
the plane of symmetry of the spacecraft and is positive rightward; the
axes X,z are orthogonal to the yb-axis, are contained in the plane of
symmetry, and are such that the trihedral beybzb is right-handed. In

particular, the xb-axis js positive forward, the yb-axis is positive
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rightward, and the zb-axis is positive downward for the normal flight
> > >
attitude of the spacecraft. The symbols ib,jb,kb denote the unit vectors

of the body axes system.
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4, Relations between Coordinate Systems

In this section, the relationships between the different coordinate
systems are derived; more specifically, attention is focused on the
following system pairs: inertial axes-Earth axes; Earth axes-local horizon;
inertial axes-local horizon; local horizon-wind axes; and wind axes-body axes.

4.1. Basic Relations. In the inertial axes system, a point P can be

described via its Cartesian coordinates Xi’yi’zi or via its spherical
coordinates ri’ei’¢i' Here, r; js the radial distance from the center of
the Earth; ei is the longitude, positive eastward; and ¢i is the latitude,

positive northward. The following relations hold betweenCartesian coordinates

and spherical coordinates:

X; = ricosei cos¢i, (1a)
Y; = rysing; cosé,, (1b)
z; = r;sing.. (1c)

In the Earth axes system, a point P can be described via its Cartesian
coordinates Xgs¥gsZg OF via its spherical coordinates r,68,4. Here, r is
the radial distance from the center of the Earth; 6 is the longitude, positive
eastward; and ¢ is the latitude, positive northward. The following relations

hold between Cartesian coordinates and spherical coordinates:

Xy = rcose coso, (2a)
Yo = rsind cosd, (2b)
z_ = rsing. (2¢)
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Note that the inertial axes system and the Earth axes system coincide at time
instant t = 0. Also note that the Earth axes system rotates with constant
angular velocity w with respect to the inertial axes system. Therefore,

in spherical coordinates, the following transformation relations hold:

ry = s (3a)
0, =6+ wt, (3b)
05 = ¢ (3c)

implying the following inverse relations:

L (4a)
6 =0, - wt, (4b)
6= 950 | (4c)

4.2. Transformation from Inertial Axes to Earth Axes. The Earth axes

system Oxeyeze is obtained from the inertial axes system Oxiyizi by means
of the counterclockwise rotation wt around the zi-axis. Note that the
ze-axis is the same as the zi-axis.

In vector-matrix notation, the transformation leading from the inertial

axes to the Farth axes can be expressed as follows:

T > '1' o - r - -
ie cos(wt) sin{wt) O i
> >
je = |-sin{wt) cos(wt) O ji s (5a)
-+ >
| ke | 0 0 1 | i ki |
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with the implication that

- _ - =
i cos(wt) =-sin{wt) O 1e
is | = sin(wt) cos{wt) O Je (5b)
- >
k 0 0 1 k
1. L .L b e\.

4.3. Transformation from Earth Axes to Local Horizon. The Tocal

horizon system thyhzh can be obtained from the Earth axes system Oxeyeze
by means of the combination of four rotations and one translation. This
requires the definition of four intermediate coordinate systems: the system
Ox1y]z]; the system Oxzyzzz; the system Px3y3z3; and the system Px4y4z4.

The system Ox]y]z] is obtained from the Earth axes system Oxeyeze by
means of the counterclockwise rotation © around the ze—axis. Note that the
z]-axis is the same as the ze-axis, that the axes X1y are contained in the
equatorial plane, and that the axes Xys2Zq are contained in a meridian plane.
The symbols ?],31,11 denote the unit vectors of the system 0x1y]z].

The system 0x2y222 1s'obtained from the system Ox]y]z] by means of
the clockwise rotation ¢ around the y]-axis. Note that the yz-axis is the
same as the y]-axis, that the axes X952y are contained in a meridian
plane, and that the axes Yps2, are contained in a plane parallel to the Tocal
horizon plane. The symbols ?2,32,22 denote the unit vectors of the system
Oxzyzzz. |

The system Px3y3z3 is obtained from the system 0x2y222 by means of
the radial translation r, leading from point O to point P. Since there

is no rotation, the axes X33¥3Z3 are parallel to the axes Xos¥o1Z93

in particular, the axes X3sZ4 are contained in a meridian plane, while
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the axes Yqs25 are contained in the local horizon plane. The symbols

T T 2
13:d37K3
The system Px4y4z4 is obtained from the system Px3y3z3 by means of

denote the unit vectors of the system Px3y3z3.

the counterclockwise rotation m/2 around the 23-axis. Note that the
z4—axis is the same as the 23—axis, that the axes Yq524 3r€ contained in a
meridian plane, while the axes Xgs2Z, are contained in the local horizon plane.
The symbols ?4,34,§4 denote the unit vectors of the system Px4y4z4.
The 1oca1 horizon system thyhzh is obtained from the system Px4y4z4
by means of the clockwise rotation m/2 around the x4-axis. Note that the
xh-axis js the same as the x4—axis, that the axes YpoZy @re contained in a
meridian plane, and the axes Xps¥y are contained in the local horizon plane.
In vector-matrix notation, the successive transformations leading from

one coordinate system to another can be expressed as follows:

- _.) ﬁ  of . ]- - ..?
iy cos8 sing O 1e
-> ->
Ihl-= -sine cos6 O j R (6a)
> +e
| k1 | i 0 0 1 ] ke |
p- _')_ - - ) T i T
12 | cos¢ O sing i
> >
Jz = 0 1 0 j] s (Gb)
K -sing O cosd i
L 2 - . - - 1

and
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12
T T .
'3 2
T _ 7z
33 - 32 H)
> >
L] [*2]
> i T 7]
iy o 1 0 i
- >
14 = /=1 0 O 13
k o 0 1 k
& 4 4 L L 3 i s
-.y b r - " _r g
lh 1 0 O 14
jh = 0 0 -1 j4
>
k o 1 O k
b h - b - { 4 -
Equations (6) imply that
-> b "
12 W cosd cos¢ sind cosd
>
j2 = |-5ind cosH
Ez -c0sH sing -sinb sin¢
- - e
while Egs. (7) imply that
T 7 T TT7T 7
i 0 1 0 iy
-> >
Iy | = 0 0 -1 3y
> >
e kh o L -] 0 0 - k2 -

sing T

0

cos¢

g

— ¥

.
m#
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(7b)

(7c)

(9)
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Therefore, upon combining Eqs. (8)-(9), we see that

> 7 [

i -sin®

>

jh = cosé sing
>

kh -c0sH cosd

with the implication that

T~ T .
'le -S1nd
T _

Je = cosH
-
L] 1°

ro-
cosd 0 i
+

sin® sing =-cosd J
+

-sin® cos¢ -sing k

cos8 sing  -cosb cos¢d

singé sing -sind cosd

1T

-c0sd -sing

AAR-239

(10a)

(10b)

4.4. Transformation from Inertial Axes to Local Horizon. The

transformation leading from the inertial axes system to the local horizon

system requires the combination of five rotations and one translation, as one

surmises from Sections 4.2 and 4.3.

and accounts for Egs. (3), the following result is obtained:

- L -
2 - .
gt = coso, sing,
-

kh | L-cosei oS¢,

with the implication that

cosei 0
s1nei s1n¢i -cos¢i

¢ ey =

a—da

If one combines Egs. (5a) and (10a)

, (11a)
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> T . . TT =+

11 -s1nei cosei s1n¢i -cosei cos¢i 1h

51 _ . . . 1

ii = coso; sing; sing, -sin6; coso; ih (11b)
k_i 1 .L 0 -COSd)_i -S1 n¢_i i .L kh

4.5, Transformation from Local Horizon to Wind Axes. The wind axes

system wa_ywzw can be obtained from the local horizon system thyhzh by
means of the combination of three rotations. This requires the definition
of two intermediate coordinate systems: the system PX5Y525 and the system
Px6y626.

The system PX5Y5Z5 js obtained from the local horizon system thyhzh
by means of the counterclockwise rotation x around the zh-axis. Note

that the zs—axis is the same as the zh-axis, that the axes XgsYg are contained

~in the local horizon plane, and that the axes XgsZp are contained in the

plane (SP,V), where SP js the radius vector connecting the points O and P
and V is the relative velocity vector, namely, the velocity of the spacecraft
with respect to the Earth axes system. Also note that the axis Xg has the
direction of the projected relative velocity vector Vp; this is the projection
of V on the local horizon. The angle x is called the heading angle and is
positive if the projected relative velocity vector VP is directed outward with
respect to the local parallel. The symbols ?5,35,E5 denote the unit vectors
of the system PxgycZc. '

The system Px6y626 is thained from the system szysz5 by means of
the counterclockwise rotation y around the ys-axis. Note that the y6-axis
is the same as the y5-axis and that the axes XgsZg are contained in the

5> >
plane (OP,V). Also note that the x6-axis is positive forward and that the
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26-axis is positive downward. The angle y is called the path inclination
and is positive if the relative velocity vector V js inclined upward with
respect to the local horizon. The symbols ?6’36’26 denote the unit vectors
of the system Px6y626.

The wind axes system waywzw is obtained from the system szyﬁz6
by means of the counterclockwise rotation u around the x6-axis. Note that
the xw-axis is the same as the x6-axis. Also, note that the xw—axis is
positive forward, the yw-axis js positive rightward, and the zw-axis is
positive downward and is contained in the plane of symmetry of the spacecraft.
The angle p is called the angle of bank and is positive if the spacecraft
is banked to the right.

In vector-matrix notation, the successive transformations leading

from one coordinate system to another can be expressed as follows:

T> 7 T . TT2 1
ig cosy siny O iy
-+ ->
j5 = |-siny cosy O jh s (12a)
X 0 0 1 K
dL 5 - L -L uL h -
T3 T [ . 1717 1
ie CcoSY 0 -siny ig
- ->
j6 = 0 1 0 j5 s (12b)
> . >
| k6 l | siny 0 cosy i . k5 |
T r T >
i 1 0 0 i
w 6
> >
jw = 0 cosy  sinu j6 . (12¢)
1 0 i 4
-sin cosy
W L H 41 6 |
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Equations (12) lead to

-

T ] T ; . 1T 7>
Ty COSY COSY cosy siny -siny 1h
e -+
iy | = | sinusiny cosy  sinu siny siny  sinu cosy iy b (13a)
~-COSH S1ny +COSu COSY
-> >
kw cosu siny cosy cosu siny siny COSp COSY kh
i +sinu siny -sinu cosy 1]

with the implication that

T > T " 9 F -

ih COSY COSX sinu sjny €0s¥ cosy siny cosx 1 iw
-cosu siny +sinp siny

- >

jh = cosy siny siny siny siny cosy siny siny jw . (13b)
+COSu COSY -sinu €OSx

- >

kh -siny sinu cosy cosu cosy k-

ES L i1 W &

4.6. Transformation from Wind Axes to Body Axes. The body system

beybzb can be obtained from the wind axes system wa_ywzw by means of the
combination of two rotations. This requires the definition of one intermediate
coordinate system, the system Px7y7z7.

The system Px7y7z7 is obtained from the wind axes system waywzw by
means of the counterclockwise rotation o around the zw-axis. Note that the
z7-axis is the same as the zw-axis and that the axes X952 are contained
in the plane of symmetry of the spacecraft. Also note that the axis X5
is positive forward, the axis \ js positive rightward, and the axis z5
is positive downward. The angle o is called the sideslip angle and is

-5
positive if the relative velocity vector V js directed leftward with respect

to the plane of symmetry of the spacecraft.
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The body axes system beybzb is obtained from the system Px7y7z7 by

means of the counterclockwise rotation a around the y7-axis. Note that

the yb-axis is the same as the y7-axis and that the axes x,,z, are contained

in the plane of symmetry of the spacecraft. Also note that the axis X

is positive forward, the axis Yp is positive rightward, and the axis 2y,

is positive downward. The angle o is called the angle of attack and is

>
positive if the relative velocity vector V is directed downward with respect

to the xb-axis of the spacecraft.

In vector-matrix notation, the successive transformations leading

from one coordinate system to another can be expressed as follows:

with the implication that

-5 T -
1 ib coso. COSC  Ccoso Sing

-

jb = |=-sinc c0sg

>

kb L sina coso sino sino
| d

- - -

1 17 W cosg Sino 0 ]
_).
j7 = |-sinc coso 0
4 0 0 1

L 7 o 4 L
> T T . ]
iy cosa O -sina
+
jb = 0 1 0
+
kb sina 0 cosa

L 1 L il

-sina

coso,

~

-y

2P

+

(14a)

(14b)

s (]5&)
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and that
> " r - o > -
1w C0So, COSO  -Sino sina coso ib
+ . . . +
I 1= cosa sino cosao sino sino Iy | - (15b)
K i 0 [4
-sin coso
L W - 3 * ° R X b L

U

e
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5. Angular Velocity

In this section, we compute the angular velocity (or evolutory velocity)
of the local horizon system with respect to the inertial axes system. To
do so, consider the behavior of the spacecraft between the time instants
t and t + dt, and denote by dahi the infinitesimal vectorial rotation of
the Tocal horizon system with respect to the inertial axes system. This

infinitesimal vectorial rotation can be decomposed into partial rotations

as follows:
> - > > - > >
do g = R, + Yy + dgy + Ry, + da,, + dag;» (16)
with
>
., = 0, (17a)
>
dy5 = 0, (17b)
>
d932 =0, (17¢)
> >
de,g =-dé Jy> (17d)
> -
da, = do kg (17e)
> >
da,; = wdt ky. (17F)

Here, do denotes the infinitesimal change of the longitude, d¢ denotes the
infinitesimal change of the latitude, and wdt denotes the infinitesimal
rotation of the Earth axes system with respect to the inertial axes system.

The rotation wdt occurs around the zi-axis and is positive counterclockwise;
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the rotation d6 occurs around the ze-axis and is positive counterclockwise;
and the rotation d¢ occurs around the y]-axis and is positive clockwise.
This explains the difference in the signs appearing on the right-hand
sides of Eqs. (17d), (17e), (17f).

Upon combining Egs. (16)-(17), we see that the infinitesimal vectorial
rofation of the local horizon system with respect to the inertial axes
system can be written as

do

> -+ -
hg = wdt kg + de k, - do Jj. (18)

As a consequence, the angular velocity of the local horizon system with

respect to the inertial axes system is given by

-> L3 *)

> > ?
wpg = A% ;/dt = wky * ok, - ¢Jq- (19)

> >

>
In the light of Eqs. (5)-(11), the unit vectors ki’ ke’ j1 can be expressed

in terms of the unit vectors of the local horizon system as follows:

> - . >

ki = -cosd; Jy, - sing; kh’ (20a)
> > . -»>

ke = -cos¢ J, - sing ki, (20b)
j] = ih’ (20c¢)

so that
> e T L
wpg =9y - (ecosd + wC°S¢i)Jh - (Bsing + w51n¢i)kh‘ (21)

Next, we invoke Eqs. (3),
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Y‘_i =T,
ei = 0+ wt,
¢-i = ¢,

and observe that

-

H

-
-

[as)
n
<D
+
€
-

As a consequence, the angular velocity (21) can be rewritten as

> _ [ —_) . -'y . . ->
Next, Poisson's formulas are employed to compute the derivatives of

the unit vectors of the local horizon system with respect to time:

> -+

> .
d1h/dt = Wpg X s

-+ -+

d.]h/dt = wh'l X Jhs

>
dkh/dt
Upon combining Eqs. (24)-(25), we obtain the relations

dih/dt ='(9151"¢i)jh + (eiC°S¢i)kh’

. (22a)

(22b)

(22c¢)

(23a)

(23b)

(23c)

(24)

(25a)

(25b)

(25¢)

(26a)
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> . - » >
th/dt = (6151n¢1)1h - ¢ikh’ (26b)
> . -> . >
dkh/dt =-(e1.cos¢1.)1h * 933y (26c)

whose vector-matrix form is the following:

T > . . 1T+ 1
lh 0 'eiS1n¢i eic°5¢i 1h
(d/dt) i“ = | o5sing; O -b, ih (27)
kh -6,c0s9, ¢ 0 kh
b - d S 1 L

It is interesting to note that Eq. (27) can also be obtained by taking the

time derivative of Eq. (11a) and using Eq. (11b).
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6. Kinematical Equations

In this section, we derive the scalar relationships corresponding to

the vectorial equation

> >
dOpP/dt = Vi' (28)

>
Here, Vi denotes the velocity of the spacecraft with respect to the inertial
-
axes system and OP denotes the position vector joining the center of the
Earth 0 with the spacecraft position P.

=
First, we observe that the position vector OP is given by

op = -rikh’ (29)

>
where r; js the radial distance from the center of the Earth and kh is

the third unit vector of the local horizon system. As a consequence, the
time derivative of d? can be written as
do0P/dt = -rok; - r.(dk, /dt), (30)
where dEh/dt is given by Eq. (26¢c). Therefore, upon combining Egs. (26¢)
and (30), we obtain the relation

-> . -3

> . ¢ >
doP/dt = ;r.cosp i, - ¢5ridy - rikp (31)

We recall that the relative velocity vector G (velocity of the spacecraft
with respect to the Earth axes system) can be identified via three elements:
the relative velocity modulus V, the relative path inclination v, and
the relative heading angle x (see Section 4.5). Analogously, the inertial
velocity vector Vi (velocity of the spacecraft with respect to the inertial

axes system) can be identified via three elements: the inertial velocity
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modulus Vi’ the inertial path inclination Y50 and the inertial heading
angle Xi+

-+ > > >
Let VP and V1.p denote the projections of the vectors V and Vi on

the Tocal horizon. The relative path inclination y is the angle between
> -+
the vectors V and VP; analogously, the inertial path inclination Y5 is

p* The relative heading angle ¥
>

>
is the angle between the vectors VP and ih; analogously, the inertial heading
-

> ->
the angle between the vectors Vi and Vi

>
angle X; js the angle between the vectors Vip and ih. The conventions used

for the signs of Yi» Xy @re analogous to the conventions used for the signs

of v, X.

With the above understanding, just as the relative velocity vector V
can be written in terms of its components on the local horizon system,
> > > >
V = Vcosy cosy ih + Vcosy siny jh - Vsiny kh, (32)
the inertial ve]ocity vector Vi can be written in terms of its components
on the local horizon system,
> > -> >
V;= Vjcosy; cosx; ih + V,cosy; siny; jh - Visinyi kh’ (33)
‘Fina11y, upon combining Egs. (28), (31), (33), and upon projecting
the resulting vectorial equation on the axes of the local horizon system,

we obtain the following scalar form of the kinematical equations:

0; = Vjcosy; cosxi/ricos¢i, (34a)

9 =-Vicosyi s1nxi/ri, | (34b)

r. = Visiny,. (34c)



.l I PRl
-

(

(z

 HH

I‘ L.
W

t

25 AAR-239

6.1. Relations between Inertial Velocity and Relative Velocity. We

employ the theorem of composition of velocities, which states that the inertial

> >
velocity Vi is the sum of the relative velocity V and the transport velocity

>

Vt’

> > >

Vi =V + Vt’ (35)
with

> > >

Vt =y x 0P, (36)

Owing to the fact that

> -+ -> -+ . >
w = -wcosd J, - wsing kh = -wcosd; Jy - wsing, kh’ (37a)
+ -> -+
0P = -rkh = -rikh’ (37b)
the transport velocity (36) can be rewritten as
> T *
V, = wrcos¢ iy = wricosd; 1. (38)
Therefore, upon combining Eqs. (32), (33), (35), (38), and upon projecting
the resulting vectorial equation on the axes of the local horizon system,
the following scalar equations are obtained:
Vicosy; cosx; - wry COS¢; = Vcosy COSY, (39a)
V;cosy; siny; = Vcosy siny, (39b)
Visinyi = Vsiny. (39c¢)
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Laborious manipulations, omitted for the sake of brevity, lead to the

following transformation relations:

= /[V2 + 2wrVcosy cosy cos¢ + (wrcos¢)2],

Vi =
tanyi = Vsiny//[(Vcosy)2 + 2wrVcosy cosy cos¢ + (wrcos¢)2],
tany, = Vcosy siny/(Vcosy cosy + wrcosé).

Equations (40) imply the following inverse relations:

- 2 2
/[Vi - 2uwr;V.cosy; COsX; COS$; + (wricos¢i) 1,

<
|

_ . 2 2
tany = V151“Yi//[(ViC°sY1) - 2wr;V;cosy; cosyy cos¢; + (mricos¢i) 1,

tany Vicosyi s1nxi/(Vicosyi cosy; - wricos¢i).

AAR-239

(40a)

(40b)

(40c)

(41a)

(41b)

(81c)
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a, =
i

Hence, Eq. (42) is written as
. .
m(dVi/dt).

(44)
We now compute the components of the vectors appearing in Eq. (44) on the axes of
the local horizon system.
7.1.

Aerodynamic Force. The components of the aerodynamic force on
the wind axes are the drag D, the side force Q, and the 1ift L.
the aerodynamic force can be written as

>

Therefore,
_ e > >
A --D1w - QJw - Lkw.

(45)

No special significance is implied in the signs appearing on the right-hand

and the Tift.

side of Eq. (45). These signs merely reflect the conventions adopted in
this report with regard to the positive values for the drag, the side force,

AAR-239
Dynamical Equations
In this section, we derive the scalar relationships corresponding
— to the vectorial equation
® 5 - -> -> > -
_ T+A+W=may = m(dVi/dt), (42)
> -> -
.. where T is the thrust, A is the aerodynamic force, W is the gravitational
force, m is the mass of the spacecraft, and ;i js the inertial acceleration.
fj We consider the case where the engine is shut-off, so that
->
i T=0, (43)
and the mass of the spacecraft is constant.
-+ > >
A+W=m
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In vector-matrix form, Eq. (45) can be rewritten as follows:

r

D 0 O
0 Q O
0 0 L

e

4

Therefore, upon combining Eqs. (13a) and (46), we obtain the relation

The next step consists of rewriting the elements of the matrix in

-~

-Dcosy cosy

-Qsinu siny cosy

+Qcosy siny

-Lcosu siny cosy

-Lsiny siny

-Dcosy

=Qsinu
-Qcosu

-Lcosu
+Lsiny

siny

siny siny
cosy

siny siny
cosy

-Qsinu cosy

-Lcosu cosy

8

Eq. (47) in terms of inertial velocity elements Vi’Yi’Xi’ instead of

relative velocity elements V,v,x .

functions

=
n

=
n

=
n

and

of the inertial velocity elements be defined:
M1(V1’Y1’Xi) = V.cosy, COSX; = WriCos¢;,

MZ(Vi’Yi’Xi) = Vicosy; sin,,

M3(V1’Yi’xi) = V151nYi,

= N] (V'i ’Yi aX-i)

= NZ(Vi’Yi’Xi)

R N N
= /(M1 + M2)//(M1 + M

j

2 2 2
/(M1 + M2 + M3),

2
2

2
+M5),

For this purpose, let the following

AAR-239

(46)

(47)

(48a)

(48b)

(48c)

(49a)

(49b)
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In the light of Egs. (39), the following relations can be established:

and

Therefore, upon combining

o

N3(V13Y19Xi)

= N4(V1’Y19Xi)

-DN,N

N5(V1'Yi’xi)

Vcosy cosy,
Vcosy siny,

Vsiny,

v,

COSY,
siny,
COSYs

siny.

274

-Qsinu N3N4
+Qcosu N5

-Lcosyu N3N4

l -LSinH NS

- 2
= M3//(M] + M

_ 2
= Mz//(M] + M

29

2, 2
2 * M)

_ 2 2
= M]//(M] + M2),

2
2)'

AAR-239

(49c)

(49d)

(49e)

(50a)

(50b)

(50c)

(51a)

(51b)

(51¢)

(51d)

(51e)

Eqs. (47) and (50)-(51), we obtain the relation

—DN2N5 DN3
-Qsinu N3N5 -Qsinp N2
-Qcosu N4

-Lcosyu N3N5 -Lcosyu N2
+Lsiny N4

-

(52)
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7.2. Gravitational Force. Here, we assume that the Earth is an

oblate planet and that its mass has radial symmetry with respect to the

axis of rotation. Because the equatorial radius ra is larger than the polar
radius rp, the gravity force ﬁ has two components: the radial component mg,
directed toward the center of the Earth, and the latitudinal component mf ,
tangent to the local meridian and directed toward the Equator. Therefore,

the gravity force can be written as
> -+ ->
W= meh + mgkh. (53)

The radial component g and the latitudinal component f of the
acceleration of gravity are related to the Earth's gravitational potential

U by the expressions

g = 3U/ary, f = (1/ri)8U/a¢i, (54)
where

U =-(ue/ri)[1+—J2(re/ri)2H2 + J3(re/r1.)3H3 + J4(re/ri)4H4], (55a)

Hy= 1/2 - (3/2)sin,, (55b)

Hy= (3/2)sing, - (5/2)sin%,, (55¢)

Hy=-(3/8) + (30/8)sinZp; - (35/8)sin";. (55d)

Here,ue is the Earth's gravitational constant, r, is the equatorial radius,

0 I3 J4 denote the characteristic constants of the Earth's

gravitational field. Note that the expression for U is approximate, since

and J,, J

harmonics of order higher than four are ignored.
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Upon combining Eqs. (54)-(55), we see that the components of the

acceleration of gravity can be written as

(56a)

(56b)

(56¢)

(56d)

(57a)

(57b)

(57¢)

(57d)

(58a)

(58b)

(58¢)

(59)

2

3 = (/)1 0y (rg/ry )76, + ylrg/ry) 6y + (/) 64

6, = 3/2 - (9/2)sin’e,,

G, = 6sing. - 1Osin3¢

3 i i?

6y =-15/8 + (150/8)sin%; - (175/8)sin"s,
and

fo=(u /re) 0, (r /r )2E, + Jo(r /v )3, + d,(r /v )4 1

Me/ Vi) g ra/Ty) o * 93T/ T/ T3 7 Y4tle/Til 7472
F2 = 3sin¢i cos¢i,
F3 =-(3/2)cos¢i + (15/2)sin2¢1 cosg;,
- . .. 3
Fy =-(15/2)sing, cosd, + (35/2)sin”¢, cosd..
i i i i

7.3. Inertial Acceleration. Let Vixh’ Viyh’ Vizh denote the components
of the inertial velocity on the local horizon system,

Vixh = Vicosyi COSX;s

iyh = Vicosyi sinxi,

ViZh =-Vi51nYi.
With this understanding, the inertial velocity (33) can be rewritten as

> e > o

Vi = VignTn * Vighdh * Viznkne
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Therefore, the inertial acceleration is given by
[ ] -> ] -> L] ->

+
dvy/dt = Voot + Viondn * Viznkn

> -> >
+ Vixh(d1h/dt) + Vi (th/dt) + Vizh(dkh/dt)'

yh
If we combine Eqs. (26) and (34), the time derivatives of the unit vectors

of the local horizon system can be written as

> > >
d1h/dt = -(Vicosyi COSY; tan¢i/ri)3h + (Vicosyi cosxi/ri)kh,
> > >
djh/dt = (Vicosyi COSX 5 ta"¢i/ri)ih + (ViCOSYi sinxilri)kh,
dkh/dt = -(ViCOSYi C05X1/V1)ih - (ViCOSYi sinxi/ri)jh.

Upon combining Egqs. (58), (60), (61), the inertial acceleration becomes

> N 2 2 . 2 . 7
dv./dt = (Vixh + VicosTy, cosy; sinyy tang./r. + Vicosy, siny, cosxi/rihh
+ (Q - V2cos2 cos2 tang./r, + V2cos siny, sinx./r )3

iyh T Y4€0% Yy X /T4 7 V4008 SINYy STIX§/T4 /0y
¥ 2.2 T
+ (Vizh + Vicos Yi/ri)kh.

7.4. Scalar Equations. Next, we combine Eqs. (44), (52), (53), (62).

Upon projecting the resulting vectorial equation on the axes of the Tocal

horizon system, we obtain the following scalar equations:

Vixh = -DNoNg/m + (QNg/m)cosu - (QN3N,/m)siny

(LNs/m)sinu - (LN3N4/m)cosu

2

2 . .
- (Vi/ri)(cos y; cosxy siny; tang; + cosy; siny, cosxi),

(60)

(61a)

(61b)

(61c)

(62)

(63a)
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izh

+

2 2
g - (Vi/r.)cos v

33

= -DN2N5/m - (QN4/m)cosu - (QN3N5/m)sinu

(LN4/m)sinu - (LN3N5/m)cosu

DN3/m - (QNZ/m)sinu - (LN2/m)cosu

2 2 2 . .
f + (Vi/ri)(cos y; Cos"x; tané, - cosy; siny; S1"X1),

AAR-239

(63b)

(63c)

We recall that the components of the inertial velocity on the axes of the

local horizon system are given by [see Egs. (58)]

V1'xh

Viyh

Vizh

Vicosyi COSX
Vicosy; sinx;,

with the implication that

ixh

iyh

<l e <o

and that

T *

V5

iy

cosy CosX;
c . Siny.
osy1 siny;

-sinyi

izh
i

|

L Vicosyixi |

“-s1nxi

1 cosY; COSX;

= -sinyi COSX4

-siny; cosy;

cosy;

CosY; sinxi

—sinyi sinxi

cos);

0

<l e

<Z e

<Ze

ixh

iyh

izh |

(64a)

(64b)

(64c)

(66)
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step consists of combining Eqs. (63) and (66). This leads to

the following scalar form of the dynamical equations:

v,
i

<
<2
1

+

+

Vicosyixi

where

=
{

N

7

Equations

-DN7/m + (DNG/m)cosyi COSX;

(QN4N6/m)sinu sinyi + (QNG/mNz)cosu cosy; sinxi

(LN4N6/m)cosu siny; - (LN6/mN2)sinu cosy, siny;

fcosYi sinxi - gsinyi, (67a)
(DN6/m)sinYi cosx;

(Q/mNz)sinu cosy; - (QN6N7/mN2)sinp sinzyi cosy; - (QN6/mN2)cosu sinyi sinxi
(L/mNz)cosu cosy; - (LN6N7/mN2)cosu sinzyi cosy; + (LNG/mNZ)sinu sinyi sinxi
fsiny; siny, + (V?]ri - g)cosyss (67b)
==(DNg/m)siny;

(QN6N7/mN2)sinu siny; siny; - (QN7/mN2)cosu cosy; *+ (QNG/mNz)cosu CoSX;

(LN6N7/mN2)cosu siny; siny; + (LN7/mN2)sinu cosy; - (LN6/mN2)sinu cosx;;

fcosxi + (V?/ri)coszyicosxi tand., (67¢c)
= wr;cos /Ny, (68a)
Vi/Nl' (68b)

(67) can be rewritten as
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V. =-DN7/m + (DN6/m)c05y1 COSX;
- (QN4N6/m)sinu siny; + (QN6/mN2)cosu cosy; siny,
- (LN4N6/m)cosu siny, - (LN6/mN2)sinu cosy; siny;

+ feosy, sinxi - gsinyi, (69a)

Y =-(DN6/mVi)sinYi cosx;
+ (Q/mNZVi)sinu cosy; - (QN6N7/mN2Vi)sinu sinzyi cosy; = (QNG/mNZVi)cosu siny; siny,
+ (L/mNZVi)cosu cosy; - (LN6N7/mN2Vi)cosu sinzyi cosy; * (LN6/mN2Vi)sinu sinyi siny.
- (f/Vi)sinYi siny; + (Vi/ri - g/Vi)cosYi, (69b)

X5 =-(DN6/mVi)sinxi/cosyi

- (QN6N7/mN2Vi)sinu tany, sinxi - (QN7/mN2Vi)cosu + (QN6/mN2Vi)cosu cosxi/cosyi

- (LN6N7/mN2Vi)cosu tany; sinxi + (LN7/mN2Vi)sinu - (LN6/mN2V1)sinu cosxi/cosyi

+ (f/V5)cosx,/cosyy + (V,/r;)cosy; cosx; tand,. (69c)



.

(-

I

W

17

i

36 AAR-239

8. Summary of Results

In this report, we have derived the equations of motion of a spacecraft
under the following assumptions: (a) the spacecraft is a particle of constant
mass; (b) the Earth is rotating with constant angular velocity; (c) the
atmosphere is at rest with respect to the Earth; (d) the Earth is an oblate
planet, and the gravitational potential depends on both the radial distance
and the latitude; however, harmonics of order higher than four are ignored.

An inertial axes system has been used, and the following kinematical

and dynamical equations have been obtained:

8; = V,cosy; cosx;/ricosé,s (70a)
$; =Vscosy; siny;/rys (70b)
ry = V.siny,, (70c)

and
01 = -DN7/m + (DNG/m)cosyi CoSX; '

- (QN4N6/m)sinu siny; + (QNs/mNz)cosu cosy; sinx,

- (LN4N6/m)cosu S'inyi - (LNG/mNZ)sinu COSY; sinx;

+ feosy; siny; - gsiny., (71a)
Qi =-(DN6/mVi)sinyi cosx;

+ (Q/mNV 5 )sinu cosy; = (QNgN,/mNV;)sin sinfy; cosy; - (QNg/mi,V;)cosu siny, sin
+ (L/mNZVi)cosu cosy; - (LN6N7/mN2Vi)cosu sinzyi cosy; + (LN6/mN2V1)sinp siny; sim

- (f/Vi)sinyi sing; + (Vi/ri - g/Vi)cosyi, (71b)
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ii =-(DNg/mV, ) siny;/cosy;
- (QN6 N7/mN2Vi)sinu tany; sinxi - (QN7/mN2Vi)c05p + (QN6/mN2Vi)cosu cosxi/cosy_i
- (LN6 N7/mN2Vi)cosu tany; sinxi + (LN7/mN2Vi)sinu - (LN6/mN2Vi)sinp cosxi/cosyi
+ (f/Vi)cosxi/cosyi + (Vi/ri)COSYi cosy; tang,. (71c)

In the dynamical equations (71), the quantities Ni depend on the inertial

velocity elements Vi’ Yis Xj and are given by

_ 2 2 2
Ny = /(M] M 4 M3), (72a)
_ 2 2 2 2 2
Ny = /(M] + M, )//(M1 + M, + M3), (72b)
_ 2 2 2
N3 = M3//(M] + M2 + M3), (72¢)
N, = M /(M + M2) : (72d)
4 1 1 27? .
N = M/V(ME + M) (72e)
5 2 1 27°
N6 = wricos¢i/N], (72f)
with
My = V,cosy; cosx; - wr;Cosé. 5 (73a)
M2 = Vicosyi sinxi, (73b)
My = Visinyi. (73c)
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8.1. Aerodynamic Force. In Egs. (71), the drag, the side force,

and the 1ift are given by

- 2 2.2 2
D = (1/2)CDpS(V1 - 2wrV,cosy; COSX; COSh; + wrjcos ¢i)’ (74a)
Q@ = (1/2)C pS(V? - 2wr,V.cosy. cOSY. COS¢. + w2r20052¢.) (74b)
Q i itd i i i i i’
L = (1/2)C pS(V2 - 2wr,V.cosy,; COSY. COS¢. + w2r2c052¢ ) (74c)
LYY 119375 ©O5X; i i i’

where CD is the drag coefficient, CQ is the side force coefficient, CL
is the 1ift coefficient, p is the air density, and S is a reference surface

area. In turn, the aerodynamic coefficients are functions of the form

CD = CD(a,O,M,Re), (75a)
CQ = CQ(a,G,M,Re), (75b)
C, = CL(a,c,M,Re), (75¢)

where o is the angle of attack, ¢ is the sideslip angle, M is the Mach

number, and Re is the Reynolds number.

8.2. Gravitational Force. In Egs. (71), the radial component and the

latitudinal component of the acceleration of gravity are given by

g = (/P20 0, /e )26, + 3(rg/r )6y + 94 /r) ey, (762)
6, = 3/2 - (9/2)sin2¢i, (76b)
6y = Bsing; - 1051n3¢i, (76¢)
6, =-15/8 + (150/8)sin2¢i - (175/8)sin4¢i, (76d)
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and
f =(pe/r§)[az(re/ri)2F2 + J3(re/r1.)3F3 + J4(re/ri)4F4],
F2 = 351n¢i oS, »
F3 =-(3/2)cos¢i + (15/2)sin2¢i CoSds s
F, =-(15/2)sing; cos¢; + (35/2)sin3¢1 coSd, .

8.3. Physical Constants. The major physical constants appearing in

the system (70)-(77) have the following values:

w = 0.729211595 E-04 rad/sec,
u, = 0.39860064 E+15 m/sec’,
J, = 0.10826271  E-02,

J, =-0.25358868  E-05,

J, =-0.1624618  E-05,

r, = 0.6378164  E+07 m,

ry = 0.6356755  E+07 m.

Here, w is the Earth's angular ve1ocity;ue is the Earth's gravitational

(77a)

(77b)

(77¢)

(77d)

(78a)

(78b)

(78c)

(78d)

(78e)

(78f)

(78g)

constant; Jz, J3, J4 are the characteristic constants of the Earth's gravitational

field; re is the Earth's equatorial radius; and rp is the Earth's polar radius,

Note that the Earth's sea-level radius g varies with the latitude ¢i

according to the relation
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-
"

o = (1/2)(rg + rp) + (1/2)(r, - rp)c05(2¢1). (79)

8.4, Spacecraft Data. For the AFE vehicle, it is assumed that

m = 0.16782918 E+04 kg, (80a)
S = 0.14314  E+02 m?, (80b)
& =0.17000 E+02 deg, (80c)
C, =-0.370696 E+00, (80d)
¢, = 0.131452  E401. (80e)

Here, m is the spacecraft mass at atmospheric entry; S is the reference

surface area; a is the angle of attack; CL is the 1ift coefficient; and CD

is the drag coefficient. Note that, for the aeroassisted flight experiment,

the angle of attack is kept constant; the aerodynamic coefficients are assumed
to be independent of the Mach number and the Reynoids number; and the spacecraft

is controlled via the angle of bank.
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9. Transformation Relations

In this section, we summarize the transformation relations which allow
one to pass from (i) quantities computed in an Earth-fixed system to
(i) quantities computed in an inertial system, and viceversa.

9.1. Spacecraft Position. Let r, 6, ¢ denote the spherical coordinates

of the spacecraft P in the Earth-fixed system Oxeyeze. Let ris ei, ¢i
denote the spherical coordinates of the same spacecraft in the inertial
system Oxiyizi. Assume that the axes of the Earth-fixed system coincide
with the axes of the inertial system at time instant t = 0. Then, the

following transformation relations hold:

Y‘_i=\",
81 = 8 + wt,
¢1=¢’-

Equations (81) imply the following inverse relations:

r = Y',i,
8 = ei - wt,
¢ = ¢..

i

9.2. Spacecraft Velocity. Let V, v, x denote the velocity modulus, the

path inclination, and the heading angle in the Earth-fixed system 0xeyeze.
Let Vi’ Yis X denote the velocity modulus, the path inclination, and the
heading angle in the inertial system Oxiyizi. The following transformation

relations hold:

(81a)

(81b)

(81c)

(82a)

(82b)

(82¢)
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= /[V2 + 2wrVcosy cosy cosd + (wr cos¢)2],

Vi =
tany, = Vsiny//[(Vcosy)2 + 2wrVcosy cosy cos¢ + (wr cos¢)2],
tany; = Vcosy siny/(Vcosy cosy + wrcosd).

Equations (83) imply the following inverse relations:

- 2 2
vV = /[Vi - 2ur;V cosy; COSX; COS¢; + (wricos¢i) 1,
tany = Visinyi//[(vicosyi)2 - 2wr1-V1.cosyi cosy; COS¢; + (wricos¢i)2],
tany = V,cosy; sinxiﬂvicosyi cosy; - wricos¢i).

9.3. Cartesian Coordinates. After the spacecraft position is known

in spherical coordinates, the corresponding Cartesian coordinates can be

computed. The following transformation relations hold:
X_ = rcosé cos¢,
Yo = rsing cosé,
z_ = rsing,

and

X; = r;C0s8; COSd;,

¥y = risinei cosd; s

z; = rysing..

(83a)

(83b)

(83c)

(84a)

(84b)

(84c)

(85a)

(85b)

(85¢)

(86a)

(86b)

(86¢c)
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9.4, Cartesian Velocity Components. After the spacecraft velocity

elements V, v, x oOr Vi’ Yis Xy are known, the Cartesian velocity components

ie’ Yg» Zg OF ii’ &1, ii can be computed. The following transformation

relations hold :

ie =-Vsind cosy cosy + Vcos® sing cosy siny + Vcosé cos¢ siny, (87a)
ie = Vcos® cosy cosy + Vsin® sing cosy siny + Vsine cos¢ siny, (87b)
ie =-Vcos¢ cosy sinx + Vsing siny, (87¢)
and

ii =-V.sing, cosy; cosx; + V;cos6; sing, cosy, siny,

+ Vicosei cosd; sinys, (88a)
&i = V,cos6, cosy; cosx; *+ V;sing; sing; cosy; sin;

+ V151nei coso, sinyi, (88b)
ii =-V,cos¢, cosy; sinx; + Vising; siny,. (88¢c)
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10. Conclusions

This report is the second of a series dealing with the determination
of optimal trajectories for the aeroassisted flight experiment (AFE). The
AFE refers to the study of the free flight of an autonomous spacecraft,
shuttle-launched and shuttle-recovered. Its purpose is to gather atmospheric
entry environmental data for use in designing aeroassisted orbital transfer
vehicles (AOTV).

It is assumed that: the spacecraft is a particle of constant mass;
the Earth is rotating with constant angular velocity; the Earth is an
oblate planet, and the gravitational potential depends on both the radial
distance and the latitude; however; harmonics of order higher than four are
ignored; the atmosphere is at rest with respect to the Earth.

Under the above assumptions, the equations of motion for hypervelocity
atmospheric flight (which can be used not only for AFE problems, but also for
AOT problems and space shuttle problems) are derived in an inertial system.
Transformation relations are supplied which allow one to pass from quantities

computed in an inertial system to quantities computed in an Earth-fixed system,

and viceversa.
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