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Abstract

A temperature-compensated resistance static
strain gage with potential to be used to 600°C
was recently developed. Gages were fabricated
from specially developed palladium-13w/o chromium
(Pd-13Cr) wire and platinum (Pt) compensator.
When bonded to high temperature Hastelloy X, the
apparent strain from room temperature to 600°C
was within 400 microstrain for gages with no
preheat treatment and within 3500 microstrain for
gages with 16 hours prestabilization at 640°C.
The apparent strain versus temperature
relationship of stabilized PdCr gages were
repeatable with the reproducibility within 100
microstrain during three thermal cycles to 600°C
and an 11 hours soak at 600°C. The gage
fabrication, construction and installation will
be described. Also, the coating system used for
this compensated resistance strain gage will be
explained. The electrical properties of the
strain sensing element and main characteristics
of the compensated gage including apparent
strain, drift and reproducibility will be
discussed.

Introduction

There has been a continuing interest and
need for resistance strain gages which are
capable of making static strain measurements in
the hot structure of the gas turbine engines,
e.g. combustor, turbine blades and vanes.
Although the search for suitable materials for
high temperature strain gages usage has been
under way since the introduction of the wire
resistance strain gage some 50 years ago, none of
the strain gage system meets all of the desired
characteristics at high temperatures. For
example, all of the iron-chromium-aluminum
systems, including Chinese 700°C and 800°C gages,
Kanthal A-1 gages and BCL3 gages (ref.1-3) have
some order-disorder transition in the temperature
range of 400°C-500°C. Their apparent strain data
show large cycle to cycle nonrepeatability and is
strongly dependent on the heating and cooling
rate of the previous cycle. Care is required in
using these gages in the unstable temperature
region. The commonly used HT-1200 platinum-
tungsten alloy gage, with its high temperature
coefficient of resistance (240 ppm/C) and
internal oxidation, is also limited as a high
temperature strain gage.

Recent work at NASA Lewis Research Center
to develop a high temperature static strain gage
systems has emphasized on a palladium-13w/o
chromium (Pd13Cr) alloy. This alloy was developed
under a contract with United Technologies
Research Center. The Pd13Cr alloy in bulk form
appears to have the desired characteristics such
as having a linear, stable, repeatable resistance
versus temperature relationship up to 1000°C
(ref.4). The contract effort is continuing along
with work at NASA Lewis Research Center with the
objective of developing a thin film or fine wire
high temperature static strain gage system. This
paper will describe the progress of the PdCr wire
static strain gage system.

Strain Sensing Material

Study of the Pd-13Cr alloy in bulk form
(460 micrometer minimum sample thickness)
revealed that this alloy was structurally stable.
It has no phase transformation in the range of
room temperature to 1000°C. It forms an adherent,
self-protective scale of Cr,0; at 1000°C in air
which results in a repeatabie, stable resistance
versus temperature relationship which is
independent of the heating- and cooling-rates
(ref. 4). However, the oxidation protection scale
was found to be thickness dependent. When the
alloy was prepared as a 6.5 micrometer thick
sputtered film, the Cr,0, scale did not provide
sufficient protection %rom oxidation.

Resistance drift at several temperatures of
a 25 micrometer (1 mil) bare PdCr wire drawn in
China was measured after fast cooling from 600°C
to the test temperature at which it was held for
16 hours. These measurements were compared to
measurements made on other strain sensing
materials (data from reference 5) as shown in
Fig. 1. The results show that 25 micrometer PdCr
bare wire has the smallest resistance drift to
about 480°C (900°F) among the gage materials
tested. Its resistance drift at 480°C was 1090
ppm for 16 hours. At temperatures higher than
500°C, resistance drift of this wire becomes too
large to be neglected, The use of an additional
protective overcoating system is therefore
necessary before this 25um PdCr wire can be used
at higher temperatures.

Oxidation protection for PdCr fine wires
was tried by applying a high temperature cement
coating on the wires. Fig. 2 shows the resistance



drift at 800°C of the 25 um PdCr bare wire, wire
coated with alumina base cement (Contronics 901
cement) and wire coated with mixture cement
(Contronics 901 cement with 4 weight percent of
Aremco 516 zirconia base high temperature
cement). It can be seen that with alumina base
cement on the PdCr wire decreased the resistance
drift of PdCr at 800°C by a factor of 1.5,
Addition of 4 wt% of zirconia base cement to the
alumina base cement further decreased the
resistance drift of PdCr by approximately an
order of magnitude. A scanning electron
microscope (SEM) and an energy dispersive
spectrometer (EDS) were used to examine the wires
after testing. The SEM micrographs and EDS
spectrum for the wires with cement coating are
shown in Fig. 3 and 4, respectively. Balls of
palladium and depletion of chromium on the
surface was found on the wire coated with alumina
base cement alone but not on the wire coated with
mixture cement.
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Fig. 1. Comparison the 16 hours resistance drift

of 1 mi1 Pd13Cr with that of other strain sensing
materials. {data from ref. b)

Many researchers have found that addition
of zirconia increases the oxidation protection
capabilities of alumina The addition of rare
earth elements to high temperature alloys has
been shown to densify the oxide films, lower the
diffusion of oxygen and therefore slow down the
oxidization process and improve the adherence of
oxide scales (ref. 6-7). The mechanism by which
zirconia addition improves the oxidation
resistance of PdCr is not yet understood. Further
investigation is required to optimum the
oxidation protection of PdCr by addition of
zirconia or some other rare-earth element to the
alumina coating.

Resistance Drift of PdCr
Wires at 800C
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Fig. 2. Comparison the resistance drift at 800°C
for PdCr bare wire, wire coated with alumina
cement and wire coated with mixture cement.
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Fig. 3. (a) SEM micrograph (b) EDS spectrum of
wire with alumina base coating after 16 hours
thermal soak at 800°C.
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Fig. 4. (a) SEM micrograph (b) EDS spectrum of
wire with mixture cement coating after 16 hours
thermal soak at 800°C.
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The resistance changes with temperature to T mil PdCr Wire Coated with Mixture Cement
600°C for PdCr 25um bare wire and wire coated 015 e e e —— - -
with mixture cement are shown in Fig. 5 and 6, j*****gyﬂe } ?909”9
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resistance stability and reproducibility of PdCr o ] 3 O
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Fig. 6. Resistance change with temperature of

Resist Ch T ¢ PdCr wire coated with mixture cement during two
s il Bare Pdor Wire o cycles to 600°C and a 15 hours thermal soak at
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Fig. 5. Resistance change with temperature of 1 shown in Fig.7. The leads are also PdCr wire but
mil bare PdCr wire during two thermal cycles to are 75 pm in diameter. These leads are spot
600°C. welded to the gage wires,
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The PdCr compensated wire gages were wound
and mounted on the Hastelloy X test coupons at
NASA Lewis Research Center. There was one gage on
each side of the coupon. Mixture cement, which
was made of Contronics 901 alumina base cement
with 4 weight percent of Aremco 516 zirconia base
cement, was used both for electrical insulation
under the strain gages and for an oxidation
protection overcoat. The cement should be thick
enough to have sufficient resistance to ground
but thin enough to minimize thermal cracking. The
bonded gage shown in Fig. 8 was cured at room
temperature for 4 hours, followed by oven drying
at 93°C for 2 hours, then fired from 121°C to
371°C in one hour.

On each side of the Hastelloy X substrate
there were also two thermocouples spot-welded to
the plate to monitor the temperature of the gages
and to detect the temperature gradient across the
plate. During the tests, the temperature
difference from top to bottom and from side to

side of the test plate was found to be less than
2°C.

Fig. 7. The configuration of temperature
compensated PdCr wire strain gage.

Fig. 8. PdCr strain gage on Hastelloy X-plate.
Gage were coated and installed with mixture
cement. Two thermocouples were spot-welded on the
plate.
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Temperature Compensation Technique

The temperature compensation circuit,
technique, and some considerations related to the
technique are discussed in the reference 8. The
gage and compensating element are connected to
adjacent arms of a Wheatstone bridge circuit. In
this configuration the compensator will minimize
the effect of temperature change upon the
resistance of the gage. The bridge balance will
be responsive only to the mechanical strain
imposed on the active gage.

A1l the tests were conducted in air and
included apparent strain testing during several
temperature cycles and gage drift at high
temperatures with no load. Gage factor tests at
room temperature and at several high temperatures
as well as several strain levels will be
conducted in the near future. The strain gage lab
is automated to provide computer control of oven
temperatures, imposed strain and data sampling.
This system is described in the reference 9.

Results and Discussion

The compensated bridge was set up based on
the measured resistance and temperature
coefficients of resistance of PdCr gage and Pt
compensator. With the bridge balanced at room
temperature, thermal outputs were measured from
room temperature to 600°C. Fig. 9 and 10 show the
resulting apparent strain for the gage without
any preheat treatment and for the gage after
being prestabilized at 640°C for 16 hours. It is
seen that the apparent strain over the
temperature range to 600°C was within 400
microstrain for gages with no heat treatment, and
was within 3500 microstrain for the stabilized
gages. The apparent strain for the uncompensated
PdCr strain gage would have been approximately
65000 microstrain in the same temperature range.
Values of apparent strain were calculated
assum.ng a gage factor is 2. The leakage
resistance to ground was above 20 Megohms at all
temperatures.
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Fig. 9. The apparent strain versus temperature of
coated PdCr gage with no preheat treatment.
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Fig. 10. The apparent strain versus temperature
of PdCr gage after being prestabilized at 640°C
for 16 hours. Gage were coated with mixture
cement.

The resistance drift at 600°C was very
small for the stabilized gages. The
reproducibility of apparent strain with
temperature between thermal cycles were within
100 microstrain even after an 11 hour thermal
soak at 600°C, as shown in Fig. 11. The sigma
deviation of all the apparent strain data points
from the curve drawn through the average of the
data points at each test temperature was about 26
microstrain over the temperature range. Note that
the bridge was not rebalanced to zero between
cycles. The reproducibility of apparent strain
and drift of the PdCr gages was improved by
prestabilized the gages.

Deviation of Apparent Strain
Between Cycles for PdCr Gage
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Fig. 11. The deviation of apparent strain between
3 cycles of heating and cooling to 600°C and a 11
hours thermal soak at 600°C.



Care should be taken during the
prestabilization process, owing to the fact that
oxidation of PdCr occurs at high temperatures,
which results in changing the contents of
chromium. Hence, the resistance and the thermal
coefficient of resistance of PdCr as well as the
linearity of the resistance versus temperature
relationship are altered. The higher the
temperature and the longer the time of the
prestabilization process, the more the alteration
occurs, The optimum prestabilization process for
PdCr compensated strain gages is being
characterized in order to get the best thermal
output characteristic.

The cemented gages delaminated from the
Hastelloy X substrate after six cycles to 600°C
and a 27 hour thermal soak at 600°C. Poor
adherence between cement and substrate may be due
to the oxidation of the Hastelloy X substrate or
the difference in thermal coefficient of
expansion between that of the substrate and the
basecoat cement. Adherence can be improved by a
graded coating system in which a second Tayer
provides a transition, in terms of thermal
coefficient of expansion, between the Hastelloy X
and alumina cement.

Preliminary apparent strain cycle tests to
700°C were also taken despite the fact that gages
had been partially detached from the plate just
to get an idea of the gage behavior at 700°C. The
results are shown in Fig. 12. It can be seen that
the apparent strain versus temperature curves
follow the same track as that of the 600°C cycle
tests. The apparent strain from room temperature
{0 700°C was within 4000 microstrain. However
drift in resistance of the gages was noticeable
at 700°C, and the reproducibility of apparent
strain with temperature between thermal cycles to
700°C was not as good as that of the 600°C cycle
tests.
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Fig. 12. Preliminary results of apparent strain
versus temperature test of PdCr compensated gage
during 2 thermal cycles to 700°C.

Oxidation protection of the compensated
PdCr strain gages tested was not good enough
mainly due to the poor adherence of basecoat to
the Hastelloy X alloy. The temperature
coefficient of resistance of the gage itself
increased and resistance decreased after cycling.
This indicated the loss of chromium. The
linearity of the resistance versus temperature
relationship also altered, which results in
higher values of apparent strain than expected.
Development of the resistance static strain gages
to be used above 600°C is continuing at NASA
Lewis.

Conclusions

I. A special Pd-13w/oCr temperature
compensated wire strain gage has been tested over
a temperature range to 700°C. The thermal output
from room temperature to 600°C was less than 400
microstrain for gages without any heat treatment
and within 3500 microstrain after gages being
stabilized at 640°C for 16 hours, The apparent
strain from room temperature to 700°C of the
stabilized gages was within 4000 microstrain.

2. An addition of small amounts of zirconia
to the alumina cement coating attributed good
oxidation protection to the PdCr gage system. The
effects of amount of zirconia and other rare
earth oxide addition (e.g. Y,0,, Hf0) on the
oxidation protection of PdCr gage system are
being studied.

3. The resistance versus temperature curve
of PdCr tends to be stable after prestabilization
at 640°C for 16 hours. This can be done in an air
furnace. However, the optimum procedure of
prestabilization for PdCr wire strain gage is
still under investigation.

4. The apparent strain versus temperature
relationship of coated and stabilized PdCr gages
were repeatable between cycles. The
reproducibility of apparent strain with
temperature between cycles were within 100
microstrain even after an 11 hour thermal scak at
600°C. PdCr compensated wire strain gage provides
the best apparent strain repeatability between
thermal cycles among the existing gages used over
this temperature range.
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