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Analytical Derivation and Verification of

Zero-Gyro Control for the IUE Satellite

PREFACE

The International Ultraviolet Explorer (IUE) satellite was launched
January 26, 1978 into a geosynchronous orbit over South America. From its stationary
position, the telescope maintains continuous communication with the control centers at
the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight
Center (GSFC) in Greenbelt, Maryland, and at the European Space Agency's (ESA's)
Villafranca del Castillo Satellite Tracking Station in Spain. Since its launch in 1978,
the satellite has gradually lost four of the original six gyroscopes in the Inertial
Reference Assembly (IRA). In August 1985 the fourth of the original six gyros failed
and a two-gyro system developed by NASA-GSFC is ready for use in case of another
gyro failure. In the event that the sixth gyro should also fail, a zero-gyro system is
being developed. The goal of this system is to provide inertial target pointing without
the use of gyroscopes. The satellite has sun sensors to provide attitude information
about two of the three axes. It relies upon the exchange of reaction wheel momenta to

determine angular position and rate of the third axis.
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. Background

The original control concept for the IUE satellite was a control
system based upon momentum exchange. The satellite's roll, pitch
and yaw axes were controlled on a single-axis basis using gyros as
sensors and reaction wheels as torquers. The control system
hardware also included sun sensors, a hydrazine propulsion system,
and an on-board computer.

The reaction wheels are arranged with one wheel on each of
the body axes (see figure 1 for satellite axes) and an extra wheel
skewed symmetrically with respect to each of the other three axes.
The fourth wheel is not necessary for primary control of the
satellite but was added as insurance in case any of the other wheels
should fail.

There are six gyroscopes on IUE; three are necessary for
complete attitude determination and the other three provide for
redundancy. The gyros are positioned so that each has some
component of body rate about each spacecraft control axis so
combining the components of three gyros gives complete attitude
determination.

An inertial reference assembly consisting of fine sun sensors
and fine error sensors is used for inertial star acquisition, hold and
slew maneuvers.

A hydrazine propulsion system was used to adjust the satellite
into its initial orbit. It has subsequently helped maintain orbit
control and will continue to do so for the life of the satellite. It
provides torquing capability for some acquisition modes, delta-V for
orbit adjustment maneuvers, and finally, it is used to counteract
reaction wheel momentum buildup from environmental disturbances.
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Due to the high altitude of the orbit of IUE, magnetic and gravity
gradient unloading techniques could not be used to unload the
reaction wheels, and the hydrazine system provided a good
alternative. The IUE on-board computer is used for the primary
attitude control functions of acquisition, holding and slewing.

Since its launch in 1978, IUE has lost four of its six gyros. A
two gyro control system is currently used for control. In the event
that the fifth gyro fails, a one gyro system has been developed and is
ready for uplink to the satellite. The remainder of this paper
addresses a zero gyro control system concept for the IUE satellite.

Il. Zero-Gyro Design

The goal of the zero-gyro attitude control system for IUE is to
perform sunline and pitch slews to point the telescope boresight to
within +8 arc minutes of an inertial target (see figure 1c) at which
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time the fine error sensor control law takes over. (The fine error
sensor is currently in operation and has a field of view of 16 arc
minutes.) When all gyros aboard the IUE satellite have failed, we
will only be able to rely on the fine sun sensors and fine error
sensor for satellite attitude information. IUE is equipped with two
fine sun sensors to provide angle information about the pitch and

p x s axes (the p x s axis is the cross product of the pitch and
sunline axes, see figure 1a,b) leaving us with no means to measure
angular position along the sunline axis.

The zero gyro system uses the fine sun sensor to provide
position information for control of the pitch and pxs axes (figure
1d). Note that at beta=90 degrees, the PxS axis is the roll axis. This
sensor information is used to derive standard position and derived
rate control laws. In order to explain our method for controlling the
sunline axis, let us first start with a simple case by aligning the
yaw axis with the sunline. Here a sunline maneuver is confined to
the pitch-p x s plane (see figure 2).

ho

roll & ‘
pXS ¥ control coordinates

= body coordinates

for P=90°
sunline
& yaw (out of paper)
pitch

Figure 2

Thrusters will be used to place a momentum 'anchor’, hg, along

the north ecliptic pole. It is possible to compute the sunline (yaw
axis for p=90°) angle using the satellite wheel momenta information

from the reaction wheels. From the law of conservation of
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momentum it is known that as the satellite rotates, hg will be
transferred from one axis to another (assuming that external
torques are negligible). If the satellite is considered to be
inertially fixed, the satellite momentum is equal to the reaction
wheel momentum; therefore, as the satellite rotates the momentum
is transferred amongst the three wheels.

ROLL AX3S {BORESIGHT)
(2 ;‘x SAXIS

foe i =90 ) LY 3

- X AXIS

FIGURE 3

Looking at the inertial coordinate system, we can see that the
angle psi, rotation about the sunline axis (yaw axis for =90°), lies
in the x-y plane (see figure 3a). For a pure yaw maneuver, the case
where beta is 90 degrees, the transfer of momentum is confined to
the pitch and roll axes. Control computations become more difficult
when momentum transfer involves all three axes (see figure 3b).
The first case to consider is when the spacecraft is positioned with
its yaw axis along the sunline, p=90°. With the yaw axis aligned
along the sunline, the control coordinate system coincides with the
spacecraft coordinate system making satellite control easier to
visualize.

The desired control law is derived from the symbolic block
diagram shown in Appendix A. It uses both the angular position of
the satellite and the angular rate to determine the desired torque.
For sunline (yaw at beta=90 degrees) control, the torque about the

sunline axis, T sunline is:



T sunline = A(y—y, )+ cV (1)

where ¥ = Sunline angle
¥. = Commanded Sunline angle
¥ = Sunline rate
A = position gain = I, @? e
C = rate gain = 2 I, { ®y sunline

The position and rate gain come from the standard proportional-plus-
derivative (PD) controller definitions for the approximation of a second-
order system. Iz is the moment of inertia about the yaw axis, oy is the
sunline control bandwidth, and {is the sunline damping ratio (see appendix
C for values).
Figure 4 shows how the angle psi is defined. From

trigonometry we have the relation tan ¥ = -Hp/Hr, and from that it
is easy to see

¥ = tan-1(-Hp/Hr). (2)

Hp = pitch wheel momentum
Hr = roll wheel momentum

roll
4
o
Hr
¥
<4 >
pitch -Hp
Figure 4
The derivative of psi, the sunline rate, comes from the two relations
Hr= Hocos ¥ and (3a)
Hp = -Ho sin ¥. (3b)

Taking the derivative of equation 3b gives Hp =-Ho cos ‘P\i', and the
S



substitution of Hr from equation 3a results in

Ve i (4)

With the substitutions of equations 2 and 4 and the introduction of
commanded sunline angle (T sunline=T yaw=Tz), the control law in
equation 1 becomes

Tz--A(arctaan ¥o) - 1P p (5)

The small angle approximations explained in Appendix B, can further
simplify the general control law to

Tz= -A(— + tan ¥, )(cos ‘Pc) I:II: (6)

The control law for the pitch axis at =90 degrees is based on
position and derived rate from the fine sun sensor (Tp = T pitch).
( Bpresem‘ Bpast)

Tp = Kp(B-Bema) + K o (7)

where Kp = position gain
Kr = rate gain
A p x s angle of zero degrees is maintained by a position and derived
rate control from the fine sun sensor.

The only modifications needed for the general sunline control
law for B=90° are due to the presence of singularities in the tangent
function. In trying to command various sunline maneuvers from ¥ =
0°to 360° it will be necessary to pass through those singularities.
To combat this problem, sunline control has been broken into four
quadrants (see figure 5) with a modified control law for each
quadrant. The four quadrant sunline control laws are as follows:

Note : at beta=90 degrees , Tq sunline = Tz

H
Quad I: Tq sunline= A(u—}:% + tan ‘l’wm)(cos‘l’wm)z-CIH—‘:1 -45°<Y o m<45° (8a)



Quad II: Tq sunline= -Aﬁg—a - cot ‘Pcom)(sin‘l’com)z-cl% 45°SPom<135° (8b)

Quad III: Tq sunline=AﬁI:I—§ - tan Weom) (c:.)s‘{’com)2 +C|I_I_II——1:1 135°s¥com<225° (8c¢)

Quad IV: Tg sunline=AGHLL + cor ¥eom)(sin¥om)’ +c'1-gl;|- 225°<Woom<315° (8d)

"~ A . ~ A v
PXS axis l PXS axis

¥=45° Y=315°

1 1V

A » ~ A .
pXs axis PXS axis

¥=135° ¥=225°

11
Figure 5
ORIENTATION OF PxS AXIS WITH RESPECT TO MOMENTUM ANCHOR

AS A FUNCTION OF SUNLINE ANGLE

The roll and yaw control laws become more complicated when
the spacecraft yaw axis is no longer aligned with the sunline (B»90°)
because it is necessary to work in two different coordinate frames,
the body coordinates and the control coordinates (see figure 3b).
The control torques are logically computed in the control coordinate
frame where the bandwidth and damping ratio are defined (see
Appendix C). However, the control law is dependent upon body
inertias, which are intrinsic to the body coordinate frame, so the
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reaction wheel momenta must first be expressed in control
coordinates. After the control torques have been determined in the
control coordinate frame it is necessary to convert them to body
frame torques (i.e. commands to the reaction wheels). This requires
several modifications to the original control law.

It is first necessary to express the reaction wheel momenta in
control coordinates. This can be done through a simple coordinate
transformation shown below. With these momenta it is now
possible to compute the control torques in control coordinates
(Tpxs, Tpitch, Tsunline defined on page 12, equations 18, 19, 20).

prs sin B 0 cos B Hroll
Hp |= 0 1 0 [ Hpitch }
H H
° -cos B 0 sin B yaw
control body

In order to implement the necessary control torques they must be
transformed into body coordinates. It is desirable to use a
coordinate transformation to convert control frame accelerations
into body frame accelerations instead of transforming the control
torques (see appendix C for conversion of torque to acceleration).
These accelerations are now transformed into the body frame
through the following transformation.

Aroll sin B 0 -cosP Apxs

{ Apitch } 0 1 0 Apitch
A As

yaw cos B 0 sin B un

body control

Recomputing the body torques from the transformed accelerations
with the familiar relation T=1I« gives the following torques for
quadrant | control:

Troll=sin B[fl;p otrkr d]



Hp 2 Hp  vIoll
-cos B[-A +tan ¥ )(cos¥,) -C ) 9
P (]Hr sin B+Hy cos f} (]Hr sin p+Hy cos f| 1yaw )

Tpitch=kp(B-Be)+kr B (10)
Tyaw=cos B[kp o + kr d]II)r’ZK ‘

. Hp 2 Hp
+sin B[-A ; - +tan W¢)(cos¥.)"-C ). 11

"P (]Hr sin B+Hy cos Bl " (]Hr sin B+Hy cos ﬁl (1)

The control laws for the remaining three quadrants can be developed
with the same series of transformations.

lll. Stability Analysis

After developing the control laws it is necessary to perform a
stability analysis to determine the range of control law gains that
provide stable control of the satellite. [f the nominal gains chosen
are adequately stable, the next step is to determine acceptable gain
margins for slewing and settling. The stability analyses were done
in two stages. The control laws for operation at p=90°, ¥= 0° to
360° were analyzed first (see block diagram in figure 6), and once
working gain margins were established by linear analysis and linear
and non-linear simulations, analysis began on the B#90°, ¥ =0° to
360°, control laws thereby covering stability of the entire
operational range.

A. Linear Analysis
The equations of motion for each body frame axis are derived
using Euler's equation and setting the external torques to zero.
H,=-0xH, (12)
It is known that the momentum on each axis is a sum of the
spacecraft momentum and the reaction wheel momentum. The torque

is the derivative of the momentum and can be represented as

H, = Lo, + hy (13a)
Hy = lyoy +hy (13b)
H,=Lo, +h, (13c)

where H = spacecraft momentum, and h = wheel momentum.

9



BLOCK DIAGRAM FOR BETA=90 DEGREES

7 §
N Tr 1 o L o
- TR- s2
Roll
Loop
Kp + 1Kr s
1 K.

Inversion

+ 1
T
B . 3
Pitch
Loop B
B
- D
Figure 6

Expanding the wxH term on the right side of equation 12 above leads

to
@ x Hy = (0yH,-0,Hy)i + (0,Hy-0:Hp)j + (@xHy-0,H)k

which can be combined with the momentum equations 13a-c into
three equations for roll, pitch, and yaw.

0=lx(;)x+ﬁx+wal'mlHy rOH
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0 = Iywy +hy + 0,Hy - o H, pitch

0 = Lo, + h; + o Hy - oyH, yaw
Under the assumption that the spacecraft is inertially fixed, the
first derivatives of the direction angles (alpha, beta, and psi) can be
substituted for the spacecraft rates w,, ®,, and o, in the equations
above. It is also necessary to allow for some initial momentum bias
on each of the reaction wheels. Let h=hg+ Ah on each axis where hg
is the steady-state momentum and Ah is the momentum input from
the reaction wheels. These modifications bring us to the three
equations of motion.

0= Ixa+Ahx+B(Iz\|l+hzo+Ahz) W(IyB+hyo+Ahy) (14)
0= I,B+Ahy+\y(Ixa+h o+Ahy)- a(Iz\V+h otAh)  (15)
0=1I \|I+Ahz+(1(1 ﬁ+hyo+Ahy) B(Ixa+hxo+Ahx) (16)

The control equations for B=90° are developed by using the
torque equations 6 and 7 along with the torque on the wheels.
T = Ah = I(®s/c + Owheel) (17)
The product Io®sc is small enough in comparison with the other term
to be considered negligible, and for practical purposes may be
discarded. Combining the two torque equations 7 and 17 for both the
roll and pitch axes will give the control equations for those axes.
The yaw control torque was explained earlier (equations 1-6) and,
along with the wheel torque leads to the yaw control equation.
Ah =RKp a + RKra roll (18)
A Kp(ﬁ Bo) + Kr B pitch (19)
Ahz=-A(—ﬁ;+tan ¥.) (cos‘Pc)z- —I;—S yaw (20)

The momentum bias on the wheels can be represented in the
same manner as it was for the equations of motion.

At this point linearization is accomplished by setting values
for constants and zeroing other constants depending on what point
we are linearizing about (i.e., at p=90°, ¥=0°, hyo=0, Ahx=0). All six
equations, three equations of motion and three control equations, are
linearized to eliminate all higher order terms. They are represented
below having been transformed into the s-plane.

11



0=I,Bs2+Ahys+yhys (21b)

0=L,ys2+Ah; s+ hy,s-PBhys (21c)

0=Ahy,s-RKpa-RKras (21d)

0=Ah,s-Kp(B-Bc)-KrBs (21e)

0= Ah, heo s + A hyo (cos W) + A Ahy (cos W)’ + A hy, tan ¥, (cos )’
+ A Ah, tan ¥, (cos W)’ + C Ahy s (21f)

Developing the control equations for Bx90° differs from the
p=90° case because the body coordinates are no longer aligned with
the control coordinates, and transformations between the two
coordinate systems must be taken into account. The control laws
are discussed with the necessary coordinate transformations in the
previous section. The final control torques are equations 9-11. The
equations of motion, equations 21a-c, remain the same, and the
steps for linearization of the control laws do not change with the
new equations. The resulting control equations for roll, pitch, and
yaw become

0=Ah, s |hyd sin B + Ah, s|hyd cos B - o (sin B)’ |he (RKp+RK s)

I I
-A tan ¥, (cos ‘I’c)2 (cos [3)2 Ahy I—y -Ccos B Ahys I—y
T T

-A tan ¥, (cos ‘I"c)2 (cos [5)2 Ah, II—y - Ccos B Ahy s i—y (22a)
T T

0=Ah,s-KpB-Bo)-Krfs (22b)
0 = Ahy s |h,d sin B + Ahy s |hyd cos B - & cos B (RKp + RKr ) |h,d sin B
- o (cos [3)2 (RKp + RKr s) jhyd + A sin B (cos ‘I’c)z Ahg
+ A Ah, tan P (sin B)” (cos Wo)> + A Ay sin B cos B (cos W)
+ Csin B Ahy s (22c)
Using the linearized equations, root locus plots were made for
several different combinations of beta and psi angles and different
parameters (Kp, Kr, A, C, Kp and Kr, and A and C, [see figure 6]).
From the root locus plots it is possible to determine the stability
margins for the linearized system. These stability margins were
used to help find acceptable operating gain margins for the entire

non-linear system.
The numerical analysis was done using the Interactive
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Controls Analysis (INCA) software package. From the plots it was
possible to determine the gains that would drive the system
unstable (see "boundary crossings" on plots). Appendix D contains
root locus plots for the nominal operation points as well as the
points where instability occurs.

B. Simulations

The gain margins found using the root locus plots represent the
instability points for the linearized system. To find acceptable
operating points for the system, a computer simulation was written
to simulate the actual responses of the satellite to different
commanded angles with the zero-gyro control laws.

Using the simulation it was possible to test the margins found
in the root locus analysis, examine performance and settling time,
adjust the margins slightly and reexamine the results several times.

Appendix E contains plots generated with data from the
simulation. The data included has plots for nominal operating points
as well as instability points. It begins with the linear case and non-
linearities (including reaction wheel torque limits, computer
sampling, wheel tachometer quantization, D/A converter
quantization) are gradually added. Table 1 compares the instability
points found using the root locus plots with the instability points
found in the simulation. For the simulation, results are given for
both the linear and complete non-linear cases.

The simulation is organized into four main parts. It models a
dynamic simulator, attitude sensors, an on-board computer, and
reaction wheels. The sensors take information about wheel and body
momentum from the dynamic simulator and determine the attitude
of the spacecraft in terms of the roll, pitch, and yaw angles. The
current attitude and the commanded attitude are fed into the on-
board computer. The computer uses this information and the control
laws to compute the control torque and command voltage for the
reaction wheels. The reaction wheel model receives a voitage from
the computer and accelerates the proper amount. The dynamic
simulator is responsible for integrating the equations of motion,

13



determining the motion of the body, and converting this to the
attitude sensor information, which in turn feeds the control law.

IV. Results and Conclusions

For the case where B=90 degrees, the linear analysis and
simulation stability points compare favorably, and in some cases the
addition of non-linearities actually gives the system more gain
margin. The linear version of the simulation eliminates as many
non-linearities as possible; however, it was not possible to create a
completely linear simulation. This may account for some of the
discrepancies between the root locus and linear simulation gain
margins. From this analysis it appears that the control laws for
B=90° may be able to provide fine error sensor target capture for the
I[UE satellite. Table 1 gives the stability points for the root locus,
linear and non-linear simulations of the B=90° control laws.

Linear analysis has been completed for quadrant | only of the
B=90° control laws. Linear simulations done for this operating range
have compared favorably with the linear analysis. Operation of the
B#90° control law in the range where B is 90 degrees also compares

Table 1
Gain Margins Found with Root Locus and Simulations

for the p=90° Control Laws

Low Fidelity Simulation

Parameter Angle Psi  Root Locus Linear Non-linear
degrees _dB dB dB

Kp +/- 45 -23.35 <-30

Kr +/- 45 -15.92 -15.9

A +/- 45 20.79 21.9

C +/- 45 22.54 22.6

Kt* 0 -25.73 <-30

Pitch loop 0,+/- 45 -26.28 <-30 -26

Yaw loop 0,4/- 45 19.71 17.7 22.9

(note: the pitch parameters have a lower gain margin; yaw
parameters have an upper gain margin)
14



favorably to the results of the B=90° control laws. However,
problems do exist. The full operational range of the IUE satellite is
not stable with nominal gains chosen for the B=90° control law.
These gains will be changed based on the root locus plots and the
whole process will be iterated until the entire operational envelope
is stable. Table 2 shows the stability points of the root locus,
linear and non-linear simulations for the B#90° control laws as well
as regions where nominal stability does not exist. For the regions
where nominal stability does not exist, fine adjustment of the gains
will be necessary to produce operational stability. Some of the
numbers in Table 2 do not represent complete instability; however,
the settling time at this point is so large that it would not be
practical.

Table 2
Gain Margins Found with Root Locus and Simulations
for the B=90 Control Laws
using Nominal =90 Gains

Low Fidelity Simulation

Angles Pitch or Yaw Root Locus  Linear Non-linear
degrees dB dB dB
B=90,¥=0 Pitch -20.87 -20 <-30

Yaw 21.03 13.44 19.0
B=90,¥=44 Pitch -21.03 -20 <-30

Yaw 20.50 19.55 22.28*
B=90,¥=-44 Pitch -21.25 -20 <-30

Yaw 20.50 19.55 22.28*
B=45¥=0 Pitch -22.53 -20 <-30

Yaw 21.04 13.62 9.54
B=45¥=44 Pitch Unstable using B=90 Gains

Yaw Unstable using p=90 Gains
B=45¥=-44 Pitch Unstable using p=90 Gains

Yaw Unstable using =90 Gains

*Values where system is stable, but settling time is very large.
15



Currently, analysis and simulations are in progress to achieve
global stability of the IUE zero-gyro control system. Full non-linear
simulations of all operational scenarios will follow and will be
documented in another technical memorandum.

The authors would like to credit Henry Hoffman and Dr. Thomas
Flatley of the Guidance and Control Branch of the NASA Goddard
Space Flight Center (GSFC) with the development of the zero-gyro
concept. Credit also goes to Mr. James Donohue, also at NASA GSFC
for the beginning linear analysis and gain selection work which
provided the foundation on which this paper is based. Technical
consultants included Mike Femiano (GSFC), Dr. Thomas Flatley, Henry

Hoffman, and several Bendix employees at the IUEOCC at GSFC.
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Appendix A
Symbolic Block Diagram for Yaw Axis Control Law

Ycom TY

PQ A+Cs I,*s2

Ty = A(¥ com-¥) - C ¥

wheel torque = - spacecraft torque

Ty=A(Y-¥ om) + CP

where

Ty = torque exerted by the reaction wheel onto
the spacecraft

Tw= torque command to reaction wheel

A1






Appendix B
Small Angle Approximations for the Yaw Control Law

The yaw control law was simplified using some trigonometric
identities and small angle approximations. In order to prove the validity
of the simplifications, it is necessary to show that

-H 2 H
arctan(—Hrl) - ¥eom= - (cOSW¥eom) (ﬁrE + tan Weom)-

After taking the tangent of both sides the following identity is helpful

tanx ttany
tan xty=————— -

Hp
- H - tan "Pcom Hp 2
L = tan (- (cos(=— + tan Weom)) )
Hp Hr
- ﬁr— tan \pcom

Using the small angle approximation tan x = x on the right-hand side of the

equation we are left with

2

.

H
-1(-H—f+tan >

H
1- H—r:tan WYeom

H
= -(cos(—% + tan Yeom))

The term -l(gr—p+tan ¥ will cancel from both sides and the remaining

expression is

1 = (cos ‘I’Com)z.

H
1- ﬁgtan Yoo

From here, cross multiplication and the substitution of

sin ¥ H
tﬁn q‘co[“:—qur“_ and tan \Ilconlz = ’H—p
cos Weom r

will yield

Bl



(cos Woom)” + (sin Weom) = 1 .

Therefore the simplifications made in the yaw control law from equation
5 to equation 6 are valid.
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Appendix C

Control Constants

Axis Bandwidth (rad/sec) Damping
pxs 0.2 0.076
piteh 0.2 0.076
suniine 0.015 0.076

SPACECRAFT CONTROL CONSTANTS
109.3 slug-ft?
211.5 slug-ft?
242.9 slug-ft?

Kt = reaction wheel torque constant = 0.012 ft-lb/volt

3
"

<
"

N
]

+/- 2.5 volts full scale

1 = reaction wheel time constant = 640 seconds
hro = initial roll wheel momentum for beta=90 degrees, psi=0 degrees in linear analysis model

= 0.26 ft-Ib-sec

CONTINUED ON NEXT PAGE
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Conversion from Control Frame Computed Torque to Acceleration:
let [Iv] = body frame inertias ; [Lc] = inertias represented in control frame ;
[R] = body frame to control frame transformation ; [R] T = control frame to body frame
transformation ; Tc = computed torque in control frame ;
ot = control frame acceleration ; Otb = body frame acceleration
PROOF :
ac= (k] HTe = o= (RIBLIRITHTe > @Bw=[R]Tac
b =[R] T(R] ) -1({T]) 1R -HTe = &b =((R] T[R]Te] I[R]TYTe
ap = ((I6] I[RITTe ™ o = ((Ib] -1)Tc assuming no products of inertia
Therefore, acceleration in the control frame can be computed by taking the torque computed
in the control frame and dividing by the body inertias.
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Appendix D
Root Locus Plots

The following pages contain root locus plots for the linear analysis
of both the p=90 and B=90 control laws with psi angles of 0 and 45

degrees. Included are root loci of the pitch and yaw loop gains. The
plots include root loci for the following control laws and angles:

B (deg) ¥ (deg)

D1 B=90 control law pitch loop 90 0
D2 PB=90 control law yaw loop 90 0
D3 B=90 control law pitch loop 90 45
D4 B=90 control law yaw loop 90 45
D5 B#90 control law pitch loop 90 0
D6 B#90 control law pitch loop 90 45
D7 B+#90 control law pitch loop 45 0
D8 B#90 control law yaw loop 90 0
D9 B#90 control law yaw loop 90 45

D10 PB=#90 control law yaw loop 45 0
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Appendix E
Simulation Plots

The following pages contain plots of the performance of the IUE
satellite in response to various slew maneuvers using the zero-gyro
control laws as predicted by the low-fidelity simulation. The plots
represent the movement of the satellite in terms of its three
rotation angles, alpha, beta, and psi. In some cases, the rate of
rotation about the sunline is examined instead of the psi angle (this
is labelled psi rate) due to the difficulty in computing the actual
angle psi within the simulation itself. The plots represent the
following control laws and commanded angles:

B (deg) ¥ (deg)
E1 B=90 linear control law 91 0 ‘
E2 PB=90 linear control law 90 44
E3 B=90 non-linear control law 90 5
E4 B=90 non-linear control law 90 44
E5 PB=#90 linear control law 91 0
E6 PB=90 linear control law 90 44
E7 B#90 linear control law 45 0
E8 PB=90 non-linear control law 91 0
E9 B#90 non-linear control law 90 44

E10 PB=90 non-linear control law 45 0
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