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This research seeks to provide a modern manipulator control strategy for

tracking a desired trajectory over a wide range of flexible manipulator motion and

payload variations. Due to the presence of nonlinearities, uncertainty, and link flex-

ibility in the dynamic model, "Adaptive Control" is proposed to meet these goals.

The signal-synthesis adaptation implemented here results in a robust stability design

which reduces the burden of on-line computation and satisfies the characteristics of

flexibility.

A recursive dynamic model has been derived by the Lagrange-Euler formula

with the assumed mode method and the measurements form the output matrix.

The finite element method is used here to predict system vibrations and assumed

mode shapes. The adaptive controller design is based on asymptotical stability via

the Lyapunov criterion, while the output error between the system and the reference

model is used as the actuating control signal. Computer simulations were carried

out to test the design. The combination of the adaptive controller and estimator

show that the flexible arm should move along a pre-defined trajectory with high-

speed motion and fast vibration setting time.

A computer-controlled prototype two link manipulator, RALF (Robotic Arm,

Large Flexible), with a parallel mechanism driven by hydraulic actuators exists in

the Flexible Automation Laboratory at Georgia Tech. Experiments on RALF were

performed _o verify the mathematical analysis. The experimental results illustrate

that assumed modes found from finite element techniques can be used to derive
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the equations of motion with acceptable accuracy. The robust adaptive (modal)

control is implemented to compensate for unmodeUed modes and nonlinearities and

is compared with the joint feedback control in additional experiments. Preliminary

results show promise for the experimental control algorithm.
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CHAPTER I

INTRODUCTION

The need to improve industrial productivity has over the years greatly moti-

vated the implementation of a variety of forms of automation. Programmable mul-

tifunctionaI manipulators, or industrial robots, have become increasingly important

in this respect. Robot control is one factor which can improve robot performance

by improving robot motion.

One of the major drawbacks of today's robots is that they offer slow response

since the robot motion speed is severely limited by the weight of the manipulator

arm. The excessive arm weight not only hampers the rapid motion and workspace

range of the manipulator arm, but also increases the robot's consumption of energy

and the size of the required actuators.

1.1 Motivation

The reduction of component structural weight has been proposed as one way to

reduce the cost of industrial manipulators while improving high speed performance.

In exchange for a light-weight arm, one must accept an increase in system flexibil-

ity along with the associated difficulty in accurately controlling a flexible structure.

Increased manipulator performance requires a controller which allows for both non-

linear link dynamics and_nk flexibiiityl It is to establish methods of controlling

such light-weight arms that this research has been initiated.

:_.2 Why Advanced Control?

The primary existing schemes of control do not satisfactorily treat both non-



2

linear dynamics and flexibility, although many suggested schemes satisfy one or the

other of these needs. In some research, linear quadratic control design is used to

stabilize the flexibility in a large scale structure and nonlinear feedback is used to

decouple coupling terms in the nonlinear system. A new adaptive control strategy

is introduced here to solve the problems addressed above and to improve the system

performance. Adaptive control is a simple type of nonlinear feedback control, when

there is not a scheme to control the whole nonlinear system globally.

The reasons for implementing an adaptive strategy here for position control of

flexible arms is that it can:

1. eliminate the steady-state error in responses,

2. compensate for the unmodelled modes when the dynamic model adopted is

close to the real one,

3. decouple the nonlinear terms in some respects,

4. be insensitive to the variation of the payload,

5. eliminate the effect of structure disturbances and uncertainties of system pa-

rameters along the working paths,

6. reduce on-line computation and be implemented simply.

1._ Background :

1.3.1 History and Concept of Adaptive Control

The term and the concept of adaptive control were introduced in the 1950's

when the complexity of aircraft led to the need for a more effective control system

for plants whose parameters may vary over a wide range.

A system is adaptive if it makes use of the information on either external

actions, dynamic characteristics of the plant, or its control system, obtained in

the course of operation, to change the structure or the gains of the controller as
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necessary to achieve the required properties of the closed-loop system.

The schemes of adaptive control axe classified into three classes: gain schedul-

ing, model reference control, and the self-tuning regulator [Astrom,1983,1989].

1. Gain Scheduling - The controller is automatically tuned at a number of op-

erating points. The resulting control laws axe then stored away for subsequent use

whenever the corresponding operating condition is indicated by auxiliary measure-

ment (Fig. 1.1) [Goodwin and Sin 1984]. The transition between different operating

conditions will happen when the scheduling variables change along with the vari-

ation of auxiliary measurements. Many applications have been found [Kallstrom,

Astrom, Thorell, Erisksson and Stein 1979].

However, there exist two major drawbacks of this scheme. One is that gain

scheduling is an open-loop compensation, or can be viewed as a feedback control

system where the feedback gains are adjusted by feedforwaxd compensation. The

other is that the design is time-consuming.

2. Self-tuning - This is one approach to the automatic tuning problem. It can

be viewed either as a tuning aid for control laws that axe more complex than PID

but which have fixed parameters, or as a means by which a time-varying process

can be controUed in a consistent way (Fig. 1.2) [Clarke, Gawthrop 1981].

The adaptive regulator can be thought of as composed of two loops. The

inner loop consists of the process and an ordinary linear feedback regulator. The

parameters of the regulator are adjusted by the outer loop, which is composed of

a recursive parameter estimator and a design calculation [Astrom and Wittenmaxk

1987].

Self-tuning was originally proposed by KMman [1955], who built a special-

purpose computer to implement the regulator. Later, the theory was revived and

extended to cover stochastic aspects by Peteka [1970], but it was not until the
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key paper of Astrom and Wittenmark [1973] that the current great interest in the

subject was initiated. One disadvantage is the difficulty of application to the MIMO

(multi-input, multi-output) case. _ .._

3. MRAC (Model Reference Adaptive Control) - This was one of the methods

originally suggested for the servo problem by Whitskew, Yamron and Kezer [1958].

Further work was performed by Parks [1966] on methods using a Lyapunov func-

tion. Hang and Parks [1973], Monopoli [1973], and Landau [1974] also continuously

worked in this area.

The reference model is introduced as a part of the MRAC system shown in

Fig. 1.3. The whole system is described in two loops. The inner loop is an ordinary

feedback loop composed of the process and the regulator. The parameters of the

regulator are adjusted by the outer loop in such a way that the error e between

the process output y and the model output ym become small. The key problem is

to determine the adjustment mechanism so that a stable system which brings the

error to zero is obtained.

........ i.3:2 Adaptive C0ntrol Of Robot Motion .....

The MRAC approach was originally implemented by Dubowsky and Desforges

[1979] on robot control. A linear, uncoupled, constant parameter reference model

was selected for each degree of freedom of the robot arm. For the development of the

control algorithm, the coupling of the system was neglected and nonlinear manipu-

lator dynamics were simplified such that the system dynamics were described in a

linear second order differential equation for each individual degree of freedom. The

position and velocity feedback with adjustable gains were assumed to control the

robot motion. This was based on an adaptive scheme of steepest descent (Gradient,

Search Technique) [Donalsun and Leondes 1963] which minimized the quadratic
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error between the outputs of the plant and the model by commanding a time rate

of change of the feedback gains. However, global stability of this simplified adap-

tive controller is not always guaranteed. The experimental results [Dubowsky and

Kornbluh 1985] were presented with PD and PID feedforward compensation. PID

control is applied as if joints were decoupled to reduce the steady-state error.

Another simple MRAC developed by Takegaki and Arimoto [1981] was applied

in the task-oriented coordinate control of a manipulator when the target trajectory

was planned and expressed in the task-oriented coordinate space. It was assumed

that the effect of gravRy could be compensated and the second and higher-order

terms were neglected in the dynamic system. The perturbed variables method was

introduced to get the linear equation around the nominal points. The control system

needed to complete two jobs. First, the adjustable laws were designed by stability

analysis with a Lyapunov function without an explicit reference model. Second,

the feedforward controller drives the system to the set point and compensated any

unknown disturbance.

Horowitz and Tomizuka [1980] proposed an application of an MRAC scheme

to adaptively compensate the nonlinearities and decouple the joint motions. The

adaptively model parameters can be estimated by applying hyperstability theory

[Landau 1979] so that the computed torque input can cancel the nonlinear terms

and accomplish the decoupling by the feedforward method. Due to the constant

gains chosen which ensure adaptive system stability, the reference model can simply

be a double integrator. As a result, the simple fixed PID type controller closes the

loop.

The robot dynamic equation may be viewed as a class of nonlinear and time

varying systems. When applying hyperstability theory, Balestrino et.al, proposed

a MRAC based on Adaptive Model-following Control [1982] which is a signal syn-



thesis adaptation. In comparison with the control law in the Lyapunov design, the

gain matrices aredivided into an adjustable and a fixed part. The adaptation mech-

anism in the adjustable part makes the system asymptotically stable in the large

if the perfect model following conditions are met [Erzberger 1968]and the linear

compensator [Anderson 1967]and the adaptation matrices are properly chosen.

Although the Lyapunov design presentedabove guaranteesasymptotical sta-

bility, the transient time of the error is not specified. Therefore, large state error

and oscillations may occur in the transient time. To deal with this difficulty and to

improve the speedof convergence,an auxiliary input can be introduced [Lim and

Eslami 1986] _:

It hasbeen proven that the robotic system with PD feedbackis stable [Asada

and Slotine 1986]. The computed-torque method is a common approach in robotic

control research.Therefore, this allowsus to construct a MRAC schemethat makes

full use of known par_eters and only adjusts the estimates of the unknown pa-

rameters [Craig 1987] [Slotine 1987].

If the dynamic equation of a manipulator is represented by a discrete-time

model, systemidentification techniquescanbe applied to sampleinput-output data.

This results in a self-tuning designof robot control usingthe discrete-time dynamic

equation found in most modern controllers [Hsia 1986].

Two major alternatives exist: 1. If the corresponding model of the plant is

known, the controller is designedto achievethe control goal. 2. If the parameters

of the systemcanbeestimated on-fine, then the controller is adjusted alongwith the

estimated parameters. When applying self-tuning methods for simplicity of design,

the model of the robot is usually chosenasa linear and slowly time-varying plant

suchthat the parameter estimation problem canbe solvedby the popular recursive

algorithms [Astrom and Wittenmark 1989] [Goodwin and Sin 1984] [Ljung 1977].
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Koivo and Guo [1983]have considereda performance criterion which gives a

simple control law to minimize the error between the outputs of the system and

referencemodel. Moreover, if the nominal control input can be computed from

the given desired state trajectory, the robot states along this nominal point can

be representedin a linear perturbation form. A self-tuning designbasedon this

linear perturbation discrete model hasbeen investigated by Lee and Chung [1982,

1984]. However,this designheavily dependson the computational speedin real-time

control.

1.3.3 Control of Flexible Systems

In recent years, many algorithms have proposed to control distributed parame-

ter systems [Takahashi 1972] which would include flexible structures also undergoing

rigid body motion. However, applications of those works mostly appear in the field

of the large scale structures of aerospace. A primary example [Andeen 1964] which

was the stabilization of flexible vehicles by considering the rigid-body and elastic-

mode responses independently.

For modal control of distributed systems with distributed feedback, Gould and

Murray-Lasso [1966] presented a linear operator acting on functions of time and

distance separately. To implement the control system, it was assumed that. the

distance dependent part of the output and forcing functions had a finite number of

eigenfunctions. Classical techniques are applied to synthesize the feedback control

system. Therefore, a solution to the problem of controlling a class of linear, time

invariant, distributed parameter system was established.

Vaughan [1968], who applied wave propagation concepts to the control of bend-

ing vibrations, was interested in determining impedance matrices for passive end-

point attachment. This resulted in the method of transfer matrices for analyzing
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the distributed parameter system. Book [1974] used this method to approach the

flexible manipulator arm problem.

Distributed and lumped par.azneter models of various arm components were

combined via transfer matrices to represent the complete arm model and numerical

techniques were used to derive frequency domain information by Book [1974]. These

results were interpreted to in_c_te the limitations_wh!ch the flexibi!ity of a given

arm design imposed on the feedback gains of the joint control assumed. Maizza-

Nero [1974] used assumed modes and the Langrangian formulation of the dynamic

system to perform time domain analysis of flexible arms. To control a linearized

model in state space form, one could propose linear feedback of the flexible system

state variables, if all state variables were measurable. Furthermore, three types of

linear feedback schemes, joint angle and velocity feedback with and without cross

joint feedback, and feedback of flexible state variables, were proposed to show some

results for the models [Book 1975].

Balas [1978] developed a feedback controller for a finite number of modes of

a flexible system. The controllability and observability conditions of the system

necessary for successful operation were displayed. The control and observation

spiUover due to the residual (uncontrolled) modes were examined and the combined

effect of control and observation spillover was shown to lead to potential instabilities

in the closed-loop system. Those results were useful in designing the adaptive

control of large scale systems.

Book, Majette and Ma [1979,1981] continued to develop transfer matrix tech-

niques for the frequency domain analysis of the flexible arms. However, the con-

troller design was via combined state space and frequency domain techniques [Book

and Majette 1983].

Canon and Schmitz [1984] discussed charactistics of a very flexible manipulator
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with an open truss construction. The end-point position was measured by an optical

sensor external to the manipulator system. An LQG approach was used to design

the feedback ControIler.

A truncated modal series was used for modelling and control of flexible manip-

ulator arms by Truckenbrodt [1981]. Linear equations were derived from a llneariza-

tion with respect to a prescribed reference motion or reference position. Unfortu-

nately, the control algorithm is incompletely described. Usoro, Nadira and Mahil

[1984] proposed the concept of Linear quadratic control with a prescribed degree of

stability to linearized versions of a flexible manipulator nonlinear model.

Sangveraphunsiri [1984] applied optimal control methods to obtain controller

design for a single link arm. Stochastic and deterministic steady-state regulators

were simulated with a linear model and the Bang-Bang controller was implemented

to solve minimum time position control problems. Hastings [1986] verified the

regular results through experiments.

An approach based on singular perturbation control theory [Saksena] [Koko-

tovic 1984] was investigated on flexible manipulator control [Siciliano and Book].

The rigid body motion constitutes the slow subsystem, for which ordinary tracking

control can be synthesized, while the flexible motion plays the role of the fast sub-

system, which must be stabilized around the rigid body path. For a flexible beam

treated with a constrained _dscoelastic layer damping treatment, the dynamics was

derived as a modified beam equation [Alberts]. Adding damping moves the poles to

the left in the complex plane and thus improves the stability of the system. Control

of gross and fine motions of flexible manipulators was studied by Centinkunt [1987].

1.4 Problem Statements

A flexible manipulator arm moves in the operating space. The joint actuactors,
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which are the only control actuation, are used to track the predefined path. The

link rotates around the joint which is the location of the actuator so that oscillations

occur along with the link. The measurements of joint position and velocity and link

strain form the output matrix.

Due to its mass and flexibility, the distributed parameter nature of the link

has to be taken into consideration. Upon applying the control law, the end effector

position and vibration modes of the system need to be adequately controlled. A

main goal of this work is to control the flexible arm to move along a predefined joint

trajectory _th high-speed and fas t vibration-setting time.

The accuracy of the distributed parameter model is essenti_ to success in

achieving accurate control. However, unpredicted disturbances, e.g. Coulomb and

viscous friction of the joint, measurement noise and saturation of the actuators,

are considered=a s uncertainties in the=dynamics such that the feedback system can

be demonstrated to be robust. Experiments with a computer-controlled prototype

of a two-link, non-serial, hydraulically driven manipulator, RALF (Robotic Arm,

Large and Flexible), in the Flexible Automation Laboratory at Georgia Tech are

performed to verify the applicability of the mathematical analysis.
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1.5 Approach

To establish a successful feedback control for a mechanical system, dynamic

modelling is an important prerequisite. An approach based'on Lagrange-Euler is

used in developing the governing dynamic equations for the large and flexible ma-

nipulat0r. The position of every point along each=lii_k is described by a Vector

combination of flexible deflections. The deflection is treated as a finite series of

separable modes which are products of admissible functions and time-dependent

generalized coordinates. The finite element method is used to find the admissi- i
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ble functions since the link is not homogeneous and the boundary conditions are

complicated. Due to the recursive description of link position and velocity, the

manipulator dynamics is derived efficiently.

Before applying the control algorithm, some basic control properties need to

be verified for flexible manipulator dynamics. In this case, the number of degrees

of freedom of the system is much higher than the number of the input variables,

whereas for rigid manipulators every degree of freedom has a corresponding input

variable. Measurements are also limited, representing only some state variables, not

all.

The next step is to provide a modern control strategy for tracking a desired

path with fast vibration-setting time over a wide range of flexible manipulator mo-

tions and payload variations. In order to reduce the burden of on-line computation

and satisfy the characteristics of the flexibility, signal-synthesis adaptation is imple-

mented here to produce a robustly stable design via the Lyapunov criterion. Each

link can be considered as a subsystem of the overall system so that a decentral-

ization technique can be utilized to simplify the control structure. The system is,

therefore, stabilized by local state feedback, while the interconnection terms be-

tween subsystems are considered as one of the uncertainties in the system and are

bounded.

Computer simulations are carried out to test the design. The experimental

results illustrate that assumed modes found from finite element methods can be

used to find improved mode shapes. Adaptive strategies for control of flexible

manipulators are used to compensate unmodeled modes and nonlinearities. They

are compared with the conventional joint, feedback control in experiments.
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CHAPTER II

DYNAMIC MODELING

Much work has been done in the formulation of the dynamic equations of

motion for mechanical manipulators with flexible links. This section describes the

velocity of a point on a link as a linear combination of rigid body motion and

vibratory modes for flexible motion in order to form the kinetic energy. Due to the

distributed character of the flexible links, the total potential energy includes the

gravity as well as strain energy. The total potential and kinetic energy is taken into

account by integrating over the entire system. Therefore, the differential equations

of motion can be formed through Lagrange's equation.

2.1 FIexible Arm Kinematics

A robot positioning task is naturally specified in Cartesian coordinates by a

position vector P and a matrix of direction cosines R. Thus, the position of an

arbitrary point attached to the rigid body can be represented as a 4 × 4 matrix A

in the fixed coordinate system as shown in Figure 2.1.

A[0
In other words, the matrix A is a transformation between two coordinate systems.

In the case of flexible arms, a point along the beam can be described in a fixed

reference coordinate system by two transformations (A_ and El) between the coor-

dinate systems (Figure 2.2) [Book, 1984]. The transformation (A;) relates system

i F, the point before deflection, to system i - 1. The transformation Ei relates system

i to system i'. The combined relation is

zi-1 = AiEizi, (2.2)



where

and

zi-I = [PTI,1]T "- the position of the point in system i - 1,

Ai = transformation for joint i - 1,

Ei = transformation due to llnk deflection,

16

zi = the position of the point in system i.

Considering: the ith consecutive Coordinate transformation along a Serial link-

age, we can derive the location (ri) of a point along the ith coordinate viewed from

the base frame.

ri = Ti 'ri, (2.3a)

Ti = A1EaA2E: "" Ai-aEi-aAi , (2.3b)

where

m

= =

l

g.

w

and 'ri is the position vector related to the ith coordinate before the transformation

due to link deflection Ei.

It is useful to distinguish between undeformed joint and deflection transforma-

tions as follows

= Tj_IEj_IAj =  j_IAj. (2.3c)

With the revolute joint, for example, let zi of the ith coordinate be on the ith link,

Ai can be specified from the Euler transformation (Figure 2.3).

Ai

cos ¢i cos Oi cos ¢i - sin ¢i sin ¢i
sin ¢i cos Oi cos ¢i + cos ¢i sin ¢i

- sin Oi cos ¢i
0

cos ¢i sin 0i !]
sin ¢_ sin 8i

cos Oi
0

- cos ¢i cos 0i sin ¢i - sin ¢i cos ¢i
- sin ¢i cos 8i sin ¢i + cos ¢i cos ¢i

sin 8i sin ¢i
0

(2.4)

w i

m !

l
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The flexible deflection is assumed to be a finite series of separable modes which

are the product of admissible shape functions and time-dependent generalized co-

ordinates. Higher modes are comparatively small in amplitude. With small deflec-

tions, the matrix Ei can then be expressed as

L

rrJ, i

Ei = _ ,Sq
j=l

0 -O:i.i O_,q uij "]
Ozi j 0 --O_ij Vij ]-O_ij O.q 0 wij

0 0 0 0

1

0
+

0
0

0 0
1 0

0 1
0 0

0
0

li '

1

(2.5)

where _Sij is the time-dependent amplitude of mode j of link i; 0_.,, 0_, and 0_., are

the angles of rotation about the zi, yi and zi; ui, vi and wi are the zi, yi and zi

deflection components of mode j of link i; and mi is the number of modes used to

describe the deflection of link i. li is the length of link i.

Ai is a function of the joint displacement (qi) and Ei is a function of link de-

flections (_ij). Transformation equation (2.3a), therefore, illustrates the functional

relationship between the position of a point along the ith link and the displacements

of all the joints and link deflections involved in the kinematic chain.

Taking a simple instance used later where the orientation is only specified by

rotation about one joint axis and no rotation exists due to the deflection, matrices

Ai and Ei can be simplified (Figure 2.4) as

Ai

cos_i sin_i 0 0

-sinBi cos_ 0 0
0 0 1 0
0 0 0 1

, (2.6)

[i00000J]000]'_' 0 0 O 1 0 0

Ei = E _ij -t- 0 1 li
j l= 0 0 0 0 0 1



The position vector 'ri then becomes
mi

',T= Z [u,J,0'0,0]+ [0,0,l,,11.
j=l

: : : : :: - _

2.2 Dyna_cs
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(2.7)

2.2.1 Lagran_an Formulation

The equation of manipulator motion can be derived _rom several techniques

[Greenwood] [Meirovitch], but the Lagrangian Formulation is known for its simplic-

ity and systematical approach. To compare with the:Newt0n-Euler method [Craig],

the Lagrangian is described in terms of work and energy with generalized coordinate

to deve-iop the system dynamlcsso that all the worklhs:S forces and constraint forces

are not necessarily considered. Therefore, the resultant equations are generally

compact and provide a closed form expression by joint torques and displacements.

In the case of flexible _msi_the genera_ coordinate (x) c0ntains all=the joint dis-

piacements and link deflections' The kinetiC energy (KE) for a differential element

is written then integrated over the link. The potential energy (PE) includes the

stored energy due to joint and link deflections and the gravitational effect. Since

the kinetic andp0tential energies are functions of x and $, we can write Lagrange's

formula as

at k. _zi ii cOx, + cOx, - Q'' (2.8)

since the potential energy (PE) is usually not a function of k. Qi is the generalized

force corresponding to zi, such that Qiki is the power input to the system when x,

changes.
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2.2.2 Kinetic Energy

In this section, the expression for the system kinetic energy is developed for

use in Lagrange's equations. First of all, consider the kinetic energy of a point on
w
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the ith llnk:

nki 2 nki \ dt -_ din,
(2.9)

where dr�dr is called the velocity vector.

Taking the derivative of the transformation (2.3a) with respect to time,

dr----ii= T_ iri + T_ _+i. (2.10)
dt

Because of the recursive nature of the transformation chain, it is efficient to

relate the position and velocity of a point transformation in the product. The

velocity 7_i and accelerations Ti are easily derived by straight forward differentiation

- _j__A_ + _j_OA_.
- Oq--_.qj

(2.11a)

Tj = Tj_IAj + 2Tj_aAj + Tj-lftj

_j__ + 2_- OA_" . O_A_.. (2.11b)
Oqj q_ T,-10q_ q3 "

Since Aj is a function of the joint displacement (qj), Tj and Tj can be computed

recursively from Tj-1 and Tj-1. A similar approach is applied to find Tj-1 and its

derivative with the transformation Ej which is a function of link deflection (_j).

%...
Tj = TjEj, (2.12a)

mi

k=l

T_= _jE_+ 2T_Ej+Tj_
m_ rnj

=_Ej + 2fj _ _N_ + T__ _j_,
k=l k=l

(2.12b)

(2.12c)



2O

where

/_jk -----

0 -Ozj_ O_jk ujk
O_jk 0 -O_jk vjk

-O_jk O_jk 0 wjk
0 0 0 0

Differentiating the position vector related to the ith coordinate _r i with respect

to time becomes
ml

i÷i = Z _ij [uij,vij,wij,O] T. (2.13)
j-i

Therefore, the kinetic energy for link i can be derived from (2.9) by integrating over

the linL

KEi- -_ nki( Ti 'ri %TTT + 2Ti iri ii'TTi + Ti i+i ii'TTT )din.

Summing over all n links, one finds the system kinetic energy to be

T_

i----1 nki

where

and

and

n

KE = E Trace( T_B3,7 "T + 2TiB_,T T + T_BliT T ), (2.15b)
i=1 =

7'r/,_ re'/, I . ) : :_ : .:

Bli = E E _ij_ikCikj, (2.15c)
j=l k=l

1 fSnki[Cikj -----_ uik, vik, Wik, O]T [ uij, vij, wij, O ] dm ;

rn,1 "rn i "r'n i

n2i = E _ijCij _- Z E _jk_ijCikj '

j=l 4=1 j=l

1 f_nki[ ]Tc_ = _ 0,0,.-_,1 [u_, v_j,w_j,0 ]dm ;

rnl rnl rai

j=l k=l j=l

(2.15d)

(2.15e)

(2.15f)

(2.15g)
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and

1 9f_ [O,O, zi,1]T[o,O, zi,1]dm. (2.15h)Ci : _ nki

It should be mentioned that the kinetic energy for rigid robotic arms can be

obtained with the same procedure without considering link deflection [Hollerhach],

and the steps leading to these terms axe found in the reference [Book,1983]. With

assumption of separation of variables, the link deflection is described by a product

of generalized coordinates and normal modes. Normal modes can be found by finite

element techniques for irregular link cross sections for given boundary conditions

as will be discussed in the next chapter.

Alternatively, the kinetic energy can be expressed by

,_ 1 ,_ 1 '_ ,_

KE = Zi=_gEi = "_ Zi=l zTMiei = "_ _'= Zk=l Mj_izjxk, (2.16)

where the Mij axe the elements of the inertial matrix M and &j is the velocity

vector including all generalized velocities, for example, qj and _jk.

To equate (2.15b) and (2.16), first let the derivative of T_ with respect to time

be

where

i i--1 rnh

h=l h=l k=l

OAh
Uh--

Oqh

(2.17a)

and
Ti = A1E1A_E2 .." AhEh . .. Ei-lAi

where

= ThEh hTi,

_'h-1 = AlE1 "'" Ah-lEh-I



_Ti = EhAh+l "'" Ei-aAi
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(2.17c)

hTi = Ah+l Eh+l "" Ei-1Ai
:= : :±

In order to derive the inertia matrix in (2.16), it is convenient to define the

following:
rt_ i

Dik = Cik + E cSitCilk , (2.18a)
l=1

mi m_

F, =c, + Z 6,k[(c,k +c5)+ Z _,_c,j_]. (2.1sb)
k=l j=l

Then, through exchanging the trace and sum operation and collecting the terms

along with arranging themfo r efficient computation, the inertia coefficients in (2.16)

are divided into three groups: the joint angles qiqj, the joint angle and link deflection

tji_jk, and the ].ink deflections _ikd}jl.

All occurances of ¢Ji_j are in the first term of the fight-hand side of equation

(2.15b). :

=

M

_=

g

I

I

II

z
W

uu

n i i

2
i----1 ct=l h=l

(2.19a)

However, the inertia coefficients of qi_jk come from the first and second terms

of equation (2.15b) and are shown as

- Trace [ (_%h-lU'h hTi) Fi (T,-,JVa[3 aTi)T]qh_c_13

2 /=1 h=l = =

+ E2Trace[(Th-lUh hTh_,Uh hT_)D,jTT]qh_i i .
j=l

(2.19b)

The three terms of the fight-hand side of equation (2.15b) which include _k_jt

LJ
w

w

w

w
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v

are expressed as follows:

/ i--I rr_h / i--1 rncz
2 i=1 h=l k=l ¢_=1 _=1

"rrl' i '/T/" i /

+ 2Trace[(ThN_k h¢i)DikTTlShkS_j + E E Trace[T_CikjrT]_JS*k
j----'l k=l

(2.19c)

2.2.3 Potential Energy

In addition to the computation of the kinetic energy, we need to find the po-

tential energy in order to derive Lagrange's equations of motion for the dynamic

system. The potential energy of the system arises from three sources as considered

here: joint elasticity, gravity and link deformation. The first term is associated

with joint coordinate qi, thesecond term is a function of position, and the last

term, called the strain energy, results from the energy stored in the link due to de-

formation. Therefore, the potential energy related to the gravity and link deflection

can be derived from integrating over the length of the individual link, and then

summing over all links.

w

2.2.3.1 Elastic Joint Potential Energy

We consider an n-link manipulator with revolute joints, and model the elastic-

ity of the ith joint as an equivalent torsional spring with stiffness Kei since each

kinematic joint is actuated directly with some sort of actuator. However for a linear

actuator used to rotate a revolute joint through the use of a four-bar linkage, the

equivalent stiffness can be found by the corresponding transformation between joint

and measurement spaces [Craig,1986].

The coordinate _i in the joint transformation Ai along with the equivalent

stiffness Kei constitute the elastic joint potential energy which does not involve the
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coordinates associated with link deflections. The formula for this potential energy

is described as

i=l i=1

Note that the coordinate qi is measured from the unstretched position q0i to

qi. In other wordsl the elastic joint potential energy has the positive value relative

to the "basic energy" which is a function of q0i.

2.2.3.2 Gravity Potential Energy

In robotic arms with elasticity, the gravity potential energy for a differential

element on the ith link is

(

dPEgi= -g,T, ,,,din,....... (2.21a)

where the gravity vector g has the form

ff = (2.21b)

Integrating over the link and summing over all links, the gravity potential

energy becomes

where

n 7_ wyg: _?

PEg = _gT E Ti h, , (2.22a)
i=1

mi

hi = mlh_i + E 6ikcik ,
k=l

mi = the total mass of link i, hmi - [ O, O, hzi, 1 ]T

(2.22b)

= a vector to the center of gravity

from joint i (undeformed), and

fO l_ ]Teik = [uik,vik,wi_,O dm. (2.22c)

From the above we know that if the link is homogeneous, the total distance of

the center of gravity is the addition of those of the deformed and undeformed parts.
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However, the gravity potential energy is a function of generalized coordinates, qi

and _ij.

2.2.3.3 Link Strain Potential Energy

The link deflection for a slender beam is assumed to be a linear combination of

the general coordinates gik(t) and mode shapes uik, vik and wik in z, y and z axes

respectively, while the rotational components O_ik of the llnk deflection are taken

into account in the z axis. Compression is not initially included as it is generally

much smaller. With a truncated modal approximation for the ith link deformation,

the equation in the z-direction is shown as

m. i

u_i = _ 'Sikuik. (2.23a)
k=l

v_i is then represented in y-direction and

rr_ i

Oiz _- _ _ikOzik" (2.23b)
k=l

The strain potential energy related to the link deformation which is integrated along

the z_-azds coincident with the link is described as

lff' [ c92u_)2 E_.C9_%i)2 (c90._)_]PZdi= _ EI_(---ffyy 2 + ly('-_z _ + EcJ. -ff_zi " dz,, (2.24)0.. i

where E is Young's modulus of elasticity and Iz and I_ are the area moments of

inertia of the link about an axis parallel to the z and y axes, respectively, and

through the centroid of the cross section. Ea is the shear modulus and J_ is the

polar area moment of inertia of the llnk.

By taking the modal summations (2.23) and its corresponding y-component,

the link strain potential energy of the ith link PEi can also be represented by

summation of the potential energies in z, y and z directions. Those are PEzi, PE_i



and P Ezi.

= - d:i

j=l k----I

1 m. m, ( fOl,
j=l k=l

d2vij d2vi_
EI_ dzi j ,

j=l k=l '-'z

Summing the above equations, PEal in (2.24) then becomes

1 rn_ rn i

PEai = _ E E 6ij6ik ( K,ijk + Kuijk + K:qk ),
j=l k=l

where K, ijk, Kuijk and Kzijk are stiffness coefficients.

l_ d2uij d2uikK, ijk = EL. dz_ dz_ dzl ,

Kyijk, Kzijk = etc.
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(2.25a)

(2.25c)

(2.26)
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Note that the stiffness coefficient must be symmetric, for example, K_k =

K_ikj. The llnk strain potential energy for the total system PEa can therefore be

written as

PEa = _ E 5ij_SikKdijk ' (2.27)
i=l j=] k=l

where Kdijtc -" Kxijk + Kyijk + Kzijk.

It is mentioned that PEa is independent of qi, the joint coordinate. In fact,

equation (2.27) can be made much more general than the initial assumptions re-

garding the link strain energy. Compression strain energy and link forms other than

W

W

w
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beams, for example, can also be represented in this form. The values of coefficients

Kdljk can be determined analytically or numerically, e.g. by finite element methods.

v

2.2.4 Equations of Motion

The Lagrangian formulation (2.8) leads to a compact system of equations which

is appealing from both the dynamic modeling and control engineering points of view.

To continue the development, it is convenient to define all generalized coordinates

as z 0 and let

qi j = 0 2.28zij = 61i j=l,2,...,mi
( )

By collecting (2.193), (2.19b) and (2.19c), the kinetic energy thus becomes

summation of coordinates zijza_ multiplying the inertia coefficient mij,_, which is

analogous to (2.16).

n mi n rrta1

i=1 j=o a=1 8=0
(2.29)

The potential energy for the elastic joint (2.20) is then

1
PEe= Z Ke,  0. (2.30)

i=l

Note that j equals to 0 since the link deflection is not involved in this case. The

gravity energy is a function of position so that it can be represented as

i=l,...,nPEg = PEg(zij) j = O,.-.,mi (2.31)

Furthermore, the link strain potential energy (2.27) which does not involve the

joint coordinate is shown as

i=l j=l k=l
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Now we are going to derive the Lagrangian equation of motion. Since rnij,-,5 is

a function of xij or z.._ in (2.29), the first term in (2.8) is computed as

aT( 0ipq i=1

?rtl _ rtl'i= r ijpq  j + dt xq
i=1 j=0 i=1 j=0

rrt i

-- mijpq_ij + Z Omijpq . .
i=1 j=o i=1 j=o Ox=_ xijxaf_ •

(2.33)

The second term in (2.8) includes the partial derivative of the kinetic energy

given by

cOKE cO 1 Z Z mijc, Z_q:L-._

cOzpq - cOZpq 2 i=1 j=0 _,=a _=0 (2.34)

-- 2 i=1 "= ct=l;3=O cOT,pq Zij_a_ •

Taking the partial derivative of the potential energies of the elastic joint and

the link deflection leads to

cO(PE_ + PEa)

cOT,pq

where

{K_ in (2,20)A_zq = Kdijk in (2.27)

ml

= Z K_,qzp,, (2.35)
/=0

when l = 0
when l # 0 " (2.36)

And the gravity term comes from (2.22) or (2.31).

OPEg _ { _gr E'_=p- or.o_,_hi - gTTpq, q when q # 0OXpq _gT _,i_=p or, hi when q = 0Oz_,q

(2.37)

Note that _z__,_=p 0T, _ _ = 0 when p = n and q # 0 Henceforth, the gravityOz_,q -- Oq,,

term is a function of Zpq and we define G(z) = [Gpq] with elements (2.37).
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Finally, combining (2.33), (2.34), (2.35) and (2.37), we can obtain the equations

of motion for zpq.

rnl

EE
i--1 j=O

n rr_i _ m a

i=1 j----O a=l _=0

rrt, I

+ Kpzqzpz + Gpq = Qpq,
l----0

(2.38a)

where

_ _7'q 10mija_ (2.38b)
Hij,_pq- Oz,_t_ 2 Ozpq

Note that Qpq is the generalized forces which are assumed to act on the indi-

vidual joint. Therefore,

Qpq = 0 when q _ 0. (2.39)

The dynamic equation (2.38) can also be written in Matrix-Vector form as

M(x)_ + H(z, _)_ + Kz + G(x) = Q. (2.40)

In the above equation (2.40), we ignore friction, backlash and other distur-

bances that are called uncertainties, R(z,$). Those will be included when the

feedback control applied. K is known as the stiffness matrix.

2,2.4.1 Some Properties of Coefficient Matri.ces

To compare (2.40) with (2.38a), the inertia matrix M(x) and coupling matrix

H(z,k) can defined as [mqpq] and [Hqpq] respectively, while the element of the

vector z corresponds to zq in (2.38a). In the following, it is illustrated that the

inertia matrix is positive definite as well as symmetric and (/3)/ -2H) is skew-

symmetric.
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From equation (2.10), ri can also be represented as

_i = J_, (2.41)

where Ji is the 4 x [n x (mi + 1)] matrix• Then, the kinetic energy on the ith link

(2.9) becomes

KEi = _ _n i

where Ji'_Ji is symmetric. Summing over all n link,_, one finds the corresponding

equation (2.29) in a scalar form. Therefore, it is again shown that [m_jo,/3] in (2.29)

or [mijpq] in (2.38) is symmetric.

The kinetic energy in (2.29) can be expressed as a quadratic form in the gen-

eralized velocities and is a positive value by physical reasoning. The necessary and

sufficient conditions for this are that the inertia matrix satisfies positive definiteness,

unless the system is at rest.

The coupling element which represents the coefficient in the second term in

(2.38a) has the following relation:

i=1 j=O c_=l

2 i=l j=O
(2.43)

xij

(2.40) and defining the element of the coupling matrix H as

(2.44)
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Defining W = M - 2H, the above (2.44) gives

Wijpq "- - Om"BPq

_----1 _=0 OZiJ

and
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\
] _,_, (2.45a)

Xpq /

WvqiJ = Ozpq Ozij (2.45b)

= -Wijpq

This shows that (._/-2H) is skew-symmetric; i.e., W+W T = 0. By setting m_ = 0

in (2.43), it becomes the case of rigid robotic arms, which was found in reference

[Asada, 1986].

2.3 Summary

A transformation between two coordinates which includes rigid body motion

and deformation has been established in the form of a 4 x 4 matrix. Therefore,

any point on the robotic arm can be described from the base coordinate in terms

of those transformations. The kinetic and potential energies have been obtained by

integrating the velocity and position of a point over the total system. These energies

were used in Lagrangian equations. It is noted that the structures of the equations

of motion for rigid [Asada,1986] and flexible robotic arms are very similar as given

in equation (2.40); while the generalized coordinate variables are different for those

two cases. Additional variables, namely the deflection coordinates/_j, are used to

describe the link deformation so that the stiffness coefficient in (2.40) originates

from the strain energy. Furthermore, the inertia matrix is shown to be symmetric

as well as positive definite and the matrix W = M - 2H is skew-symmetric.

So far, some uncertainties, such as friction, backlash and actuator dynamics

have not been modeled and a revolute joint must connect two links. The flexible

deformation which is valid for small deflection of the link is represented by a product
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of mode shapesand time-dependent coordinates, while the structural damping is

not involved. Nevertheless,the proper mode shape is the determining factor for

dynamics, especially the systemnatural frequency,and will be discussednext.
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CHAPTER III

VERIFICATION OF SYSTEM DYNAMICS

In this chapter, two prototype models of flexible robotic arms are used to verify

the dynamic equations obtained from the previous chapter. The frequency and

time responses are two approaches one can use to demonstrate agreement between

analytical and experimental results. The actuator dynamics will be considered in

this chapter because it is essential from the experimental point of view. However,

a linear case has been adapted for comparing analytical and experimental results,

using sufficiently slow and small motion of the links.

3.1 Two Cases of Experimental Setup

There have been two different experiments established at the Flexible Automa-

tion Laboratory at Georgia Tech. The first experimental apparatus (Figure 3.1) is

a one-link flexible manipulator driven by an electric torque motor. The arm, which

is a four foot aluminum beam with the section oriented so that there is increased

flexibility in the horizontal plane. Two strain gauges mounted at the base and at

mid-length of the beam measure the link deflection. Table 3.1 lists the physical

properties [Hastings, 1986].

The other apparatus is a two link manipulator, RALF (Robotic Arm, Large and

Flexible), with a parallel mechanism (Figure 3.2). Each link is a cylindrical hollow

beam, ten feet long. The parallel mechanism's function is force transmission for the

upper link which is made of rectangular shape. The weight of the robotic structure

is about seventy pounds. More details are given in Table 3.2. The analytical work

involved is more comphcated than the first case.
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3.2 The Case of a One-Link Flexible Manipulator

The process of forming the dynamic model for flexible manipulators has been

discussed in the last chapter. One difference from the rigid manipulator is the ex-

istence of the stiffness term in (2.40) which determines the system vibration due to

the flexible link deflection. Since the one-link beam moves only in the horizontal

plane, the flexible deflection is simply described by an infinite series of separable

modes without regard to the structural damping et_ect. In other words, the deflec-

tions in z- and z-directions of E1 in (2.6) has been ignored and the deflection in

y-direction is given by

(3.1)

However, the first few modes will be accurate enough to describe the flexible deflec-

tion because the amplitudes of higher modes of the flexible link are small compared

to the amplitudes of the lower modesl Here, n is selected to be 2. The transforma-

tion of a rigid-body motion has been expressed as A1 in (2.6). Thus, the equation

of motion can be de ved as presented in Appendix 1.

3.2.1 Comparison jof System Frequencies

The beam, directly driven by the torque motor (which is here considered as a

high bandwidth torque source), is controlled by feedback signals from the joint in the

case of a one-link manipulator. Therefore, the clamped-mass boundary conditions

are imposed such that the mode shapes vi(z) in (3.1) can be derived from the

Bernoulli-Euler beam formulation. Because it is a simple structure, the solution can

be obtained analytically [Sang'veraphusiri]. It should be noted that the numerical

result by finite element methods shows agreement of mode shapes in Figures 3.3-

3.4. Table 3.3 compares the measured modal frequencies (see Figure 3.5) to those

computed from the linear dynamical equations with the mode shapes using the
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analytical and finite element methods.

When a small amount of proportional damping is employed, the simulations

of the dynamic motion with two modes result in the plots shown in Figure 3.6a

for a step change in the desired joint angle. Note that joint feedback has been

implemented in this case. The strain measurement at the base is shown in Figure

3.6b. It can be seen that the model implemented with only the first few modes

produces results that agree with the experimental data [Hastings, 1986]. Therefore,

one concludes that the best mode shape as determined by the boundary conditions

is one of the main characteristics of the system. Obviously, the clamped-mass shape

is acceptable in representing the link deflection in this case.

.3.3 The Case of RAL.F

The total system of RALF should include the actuator dynamics in addition to

the two-link manipulator with a parallel mechanism. Hydraulic actuators are here

employed to drive the structure. Since the actuator has an equivalent stiffness for

its dynamical characteristic, natural frequencies of the total system may differ from

the original static System. Therefore, the hydraulic motors will be discussed first.

_.3.1 Dyn.amic Representation of Hydraulic Motors

The nonlinear model of the hydraulic system is based on the following [Merritt]

[Lai,Nair]

(1) negligible line dynamics and line losses

(2) constant replenishing pressure

(3) negligible external leakage

(4) constant fluid properties

(5) simplified servovalve dynamics



The linearized servovalve flow equation is

where

QL:

Kq:
T, v :

PL:

QL = Kqx, - KcPL ,
° .:- :

4O

(3.2)

load i:Iow,

valve flow g_in_ _::

valve (stroke) position,

valve flow-pressure Coei_cient,

load pressure difference.

Application of thecontln_ty equation to the motor chamber yields the follow-

ing formulation for the displacement of piston (xp).

(3.3)

where

Ap : area of piston_

Cp : total leakage coefficient,

V_ : total volume of fluid in chambers,

3, : effective bulk modulus of system.

Applying Newton's Second Law to the forces on the piston, the resulting force

equation is

Fg = ApPL = M_p + FL, (3.4)

where

Fg : force generated or developed by piston,

Mt : mass of piston,

FL : arbitrary load force on piston.
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Finally, equations (3.2), (3.3) and (3.4) are the three basic equations for the

hydraulic system and may be solved simultaneously by Laplace Transformation:

K__
Ap _,K=,

= , (3.5)
$2

where/_'ce = totM flow-pressure coefficient,

wh - [ iM J = hydraulic natural frequency, (3.5a)

_h -- _4p [ 4V_ J = damping ratio. (3.5b)

Note that the details for the hydraulic system used here are listed in Appendix

2 [Huggins]. The parameter wh is the natural frequency due to interaction of the

inertia with the trapped oil springs and is very important because it establishes

the overall speed of response of the valve-motor combination. Therefore, we can

obtain the hydraulic spring rate kh from wh_ while kh is simply a useful concept in

computing hydraulic natural frequencies and interpreting dynamic response,

kh= (3.6)

In general, the bandwidth of the servovalve and amplifier used as parts of the

hydraulic circuit are much lfigher than that of the motor. The servovalve dynamics

can then be simplified as a proportional gain (Kv) in the feedback control system.

Figure 3.7 shows the block diagram which is applied to an open-loop control.

The actuator is a third order system from the input voltage of the servovalve

torque motor to the piston displacement of the hydraulic motor. In order to find

the hydraulic spring rate ]¢h, one can measure the response of the piston position

to a swept sine input. Figure 3.8 and 3.9 illustrate Bode plots of the experimental
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tests for the joint 1 and 2 actuators respectively without additional load. Note that

an LVDT (linear variable-differential-transformer) attached the piston rod is used

to measure the displacement data.

Curve fitting the measured frequency response data which is the dashed line

in the figure gives a third order transfer function for the motor dynamics block of

Figure 3.7 of each joint.

For Joint 1: _2_ = 5.2i7E3 , (3.7a)
z_ s ( s _ + 3.836E2 s + 7.509E4 )

For Joint 2: z._ _ 3.374E3 . (3.7b)
zs - s ( s 2 + 4.838E2 s + 9.869E4 )

The hydraulic natural frequencies for the actuators at joints 1 and 2 computed

by (3.5a) are approximately 43.6 gz and 50.0 Hz, respectively. Thus, the hydraulic

spring rates are calculated to be 1.54E3 lb/in for joint 1 and 6.03E3 for joint 2.

With assumptions made earlier, the above analysis for the actuator dynamics

is considered acceptable for generating the input force to the robotic structure from

the feedback control viewpoint. The next sections will therefore concentrate on the
....................... ÷=

structure itself without the actuators.

3.3.2 Finite element Method for Modeling RALF

The equation of motion for two serial flexible links has been derived with

clamped-free mode shapes by several researchers [Maizza-Neto] [Centikunt]. How-

ever, this analytical method may not be suitable for complicated structures such as

the RALF mentioned in the previous section. It is easily observed that the major

difference between the RALF and two serial-link arms is a parallel link used to

drive the upper link in the RALF and forming a closed kinematic chain system. So,

finite element methods are used to analyze the system and comparisons are made

between the numerical and experimental results. First, the RALF can be divided
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into small beam elements and the mode shape of each element is described as a

cubic function of displacement that satisfies the boundary conditions [Meirovitch].

By combining discrete elements into the complete structure, one can simultaneously

obtain the natural frequency and its corresponding mode shape for the entire sys-

tem. The essence of the finite element method is to regard the continuous structure

as an assemblage of discrete elements. For this assemblage of discrete elements to

represent the structure adequately, the boundary impedance must be matched. If

the actuators are not attached to the RALF, the boundary in the driving joint in

Figure 3.2 is considered to be clamped.

Table 3.4 shows comparison of the results from experiments and finite element

methods, while the joint angle between the upper and lower links is 90 ° . Exci-

tation consisted of sweep sine wave. Measurements were taken by accelerometers

alternately placed along the links at 10 points along the link.

When the linear hydraulic actuators are attached to the structure, the clamped

boundary condition used previously must be modified. However, the hydraulic

spring rate ka can be thought of as a "dynamic" spring in some sense so that the

boundary condition for the driving joint can be modeled as a concentrated spring

with an equivalent stiffness. The results for natural frequencies are shown in Table

3.5a; and the first two mode shapes for the upper and lower links are shown in

Figures 3.10-3.13. Figures 3.14 and 3.15 illustrate the frequency responses from the

upper and the lower links respectively.

Obviously, natural frequencies of the first few modes are approximately iden-

tical whereas the mode shapes are closely matched. The only deviation occurs in

the mode shapes of the lower link due to measurement errors of complex structures.

Note that the cubic spline of curve fitting is used to connect the values of the dis-

crete displacement obtained from experiments and finite element methods. A third
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order polynomial is the lowest order that can satisfy the Bernoulli-Euler equation

and continuity of bending moments.

With the hydraulic actuators modeled as concentrated springs with equivalent

stiffnesses, the analytical results will compare reasonably well with the experiments.

Furthermore, the parallel link in the RALF has been simplified as a spring so that

the equations of motion as given in (2.45) canbe 0btTained. Thus, the geometrical

constraint imposed by the parallel and upper links can be ignored in the dynamics

so that the application of real-time control is practical.

According to Hooke's law, the compressional stiffness for a beam is

EA
k m --

L
(3.s)

where

E: modulus of elasticity,

A : cross sectional area of the beam,

L : beam length.

By combining the hydraulic spring of the second joint and the link elasticity

in series, the total stiffness becomes 5.8E3 lb/in. Now, we can mathematically

analyze two serial-llnks with elasticity supported by the equivalent springs instead

of a parallel mechanism and the hydraulic motors. Finite element techniques are

once again applied to obtain natural frequencies and mode shapes of the system as

shown in Table 3.5b and Figures 3.10-3.13.

3.3.3.Dy.namical Modeling with the Assumed Mode Method

The finite element analyses are quasi-static analyses, i.e., the system to be

analyzed must be linear (small motion). An assumed modes model does not have

this restriction. To determine the appropriate choice of component mode shapes,

experiments were performed on RALF. On examining the mode shape in Figure
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3.13, the first mode (5.69Hz) appears in the upper link only as a straight-line due

to joint rotation with minimal deflection. In other words, the coordinate transfor-

mation of the upper link deflection associated with the first mode described in (2.2)

is related to the transformation for the joint. Further assumptions are made below

to treat the system as two independent links with proper boundary conditions. As

in the previous chapter, equations of motion can be derived from the Lagrangian

formulation with assumed modes and then verifed by experiments.

The lower link is treated as a pinned-mass beam with a concentrated mass at

the end where the upper link is attached and a concentrated spring at the point

of attachment to the hydraulic actuator. The upper link is treated as a pinned-

free beam with a concentrated spring at the point of the parallel link attachment.

With these boundary conditions, one can obtain the mode shapes for each link to

describe the flexible deflection. With the rigid rotation for the joint and the first

few modes for the link deformation, equations of motion are therefore derived as

(2.45). Ignoring the nonlinear coupling and the gravitational terms results in the

linear case of the dynamics due to small motion. The system natural frequencies

using two assumed modes on each link axe 6.0 Hz and 8.8 Hz, respectively.

The first two frequencies of the experiment are within approximately 7% of

those in the analytical system. The frequency of 30Hz is not present in this dynamics

model since the parallel link is considered as a massless spring.

In addition to the natural frequencies, the modal vectors constitute what is

known in a broad sense as the response of the system. Modal vectors are not

dependent on forcing. They are properties of the unforced system. Physical mea-

surements of the time responses of the forced system can be applied to verify the

analytical results. The foUowing formulation is required to specify the relation
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(e(/1,t)) (C¢_'(11) C¢_l(/1) ...

e(12, t) = 5) ...

C¢ (tm) \

(3.9)

where

: strain,

C : distance from the neutral surface to the measured point, ......

¢ : mode shapes,

_: generalized coordinate for the deflection:

Here, m strain gauge._ are placed on distance Ia, 12 ... l_,, along the link, while n is

the number of modes selected to represent the deflection.

Figures 3.16-3.17 show the strain responses at the mid-point of each link arising

from an impulsive force when the actuators are controlled. It is obvious that the

structural damping should be included in the dynamics. From Figures 3.14-3.15,

the proportional damping ratio of about 0.2 is selected for use in the simulations.

The results =areshown in Figures 3.18-3.19.

The responses from experiments and simulations show similar characteristics.

A frequency of about 5.7Hz for experiment and 6.1Hz for simulation is most appar-

ent in the lower link and a frequency of about 9.12Hz for experiment and 9.18Hz for

simulation is most apparent in the upper link. Furthermore, the sine wave response

can also be used to illustrate a property of the dynamics system. Figures 3.21 and

3.23 show the strain responses of simulations for the lower and upper links, while

Figures 3.20 and 3.22 show the experimental results. Further tuning of the model

might improve the damping ratios of higher frequency modes. : ::
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3.4 Summary

In this chapter, two experimental manipulators existing in the Flexible Au-

tomation Laboratory have been employed to verify the equations of motion devel-

oped in the previous chapter. If one omits the link deformation, the prediction of the

dynamical motion will be the same as that of the rigid robotic arms which is widely

known. Therefore, the emphasis here is on the link deflection which causes the

structural oscillations since it gives the system its characteristic natural frequencies

and modal vectors.

The robotic system cannot be operated without the actuators. Thus, the total

system model should include the links and the actuator systems. The property

of the total system may be different from the component systems, especially in

natural frequencies. From the experimental data, the actuator characteristics can

be determined and then implemented in the mathematical model. Finite element

techniques are applied to find out the link deflection which consists of the mode

shape and the generalized coordinate. Equations of motion can then be derived in

the standard form of equation (2.45).

In order to compare the experimental results of natural frequencies and time

responses measured at the strain gauge with the analytical results, the equation of

motion for the above described analytical modal must be linearized. The excellent

agreement between the analytical prediction and the experimental data is clearly

a result of correct modeling of the system; in particular, the appropriate choice of

boundary conditions.
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Table 3.1 Physical properties of one-link flexible manipulator. u
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Flexible Beam:

Form

Length

Area Moment of Inertia

E1 Product

SYSTEM PARAMETERS
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- Rectangular 3/4 X 3/16 in
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Table 3.2 Dir~ie~lsions of RALF. 

- 
--data of lightweight bracing manipulator 

P. 

stiffness of lower link . EI I= 
(Aluminum tube,outside dia. 141 

stiffness of upper link EI 4= 
(Aluminum tubetoutside dia. 114 

stiffness of actuating link EI = 
( aluminum column. outside wiath 
outside height 44.45mrn.inner h 

the length of lower link 1 = 
the length of connecting link i2= 
the length of actuating link 13= 
the length of upper link 14= 
the length of rigid part of 

upper link le= 
the position length of 

small manipulator Is= 
mass per unit length of 

lower link PI= 
connecting link ~ 2 =  . 
actuating link P3= 

. - 

20992 ~ - r n ~  
101.6~n,inside width 

0.4662111 
3.048m (actual 2. 
3.958rn 

rigid section of upper. 
link Pe= 6.58kg/m - flexible section of 
upper link ~ f =  2.893kg/m 

the lumped mass at the end - of lower link mj= 2kg 
mass of small manipulator mS= 25kg 
total mass of 

lower link 
connecting link 
actuating link 
upper link 

the position length of 
center of gravity of 
lower link 
connecting link 
actuating link 
upper link 
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Table 3.3 Comparison of modal frequencies (Hz) of One-llnk case.
i

Mode Measured Analytical Finite Element
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Table 8.4 Comparison of modal frequencies (Hz) of RALF without actuators at-

tached.

Mode Experiment Finite Element

1 6.37 5.95

2 12.00 12.78

3 37.87 30.19

4 57.37 60.60

5 94.02 95.O5
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Table 3.5a iComparison of structural frequencies (Hz, with actuators attached).

Mode Experiment Finite Element
B

1 5.70 6.08 -------
I

2 9.12 9.12

3 30.00 29.70 _-

4 49.50

g

Table 3.5b Compa_son of structural frequencies (Hz, _th actuators attached).

m
m

I

Mode Experiment Finite Element

1 5.70 5.82

2 9.12 9.18

3 30.00

4 55.70
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Figure 3.1 One-link flexible manipulator.
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CHAPTER IV

THEORY OF CONTROL ALGORITHM

The light weight manipulator is a challenging research topic with potential to

improve performance over today's robot. The main problem with light-weight struc-

tures is the flexible vibrations which are naturally excited as the arm is commanded

to move or is disturbed. Control is one key to efficient use of lighter arms, but its

capability is limited by uncertainties in the arm's behavior and in the environment.

The first step in designing a control system consists of establishing a dynamic

model for the flexible arms. This has already been discussed in the two previous

chapters. In the following, the theory of a control algorithm will be developed. The

application to the flexible manipulator under different conditions is presented in the

next chapter to illustrate its performance.

4.1 MatheInati_al Prelimiary

One great concern in control is the problem of stability of the dynamic sys-

tem. The so-called "second method" of Lyapunov has been applied as the principal

mathematical tool in tackling linear and nonlinear stability problems of the most

varied type, particularly in the theory of control systems. However, the importance

of the Lyapunov method lies primarily in its point of view of system stability rather

than in its application as a design tool. The name "second method" is a philosophy

of approach rather than a systematic method [Kalman].

The intuitive concept of stability is that a dissipative system perturbed from

its equilibrium state will always return to it. In other words, from the energy point

of view, if the rate of change dE(X)/dt of the energy E(X) of an isolated physical
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system is negative for every possible state X, except for a single equilibrium state

X¢, then the energy will continually decrease until it finally assumes its minimum

value E(X,). However, the above expla.nation is based on the physical concept of

energy, and in general there is no natural way of defining energy when the equations

of motion are given in a purely mathematical form. The following statement is

considered as its mathematical equivalent: A dynamic system is stable (in the

sense that it returns to equilibrium after any perturbation) if and only if there

exists a "Lyapunov function," i.e., some scalar function V(X) of the state with the

properties: (a) V(X) > 0, _'(X) < 0 when X # X,, and (b) V(X) = "(/(X) = 0

when X = X,. For instance, let V(X) be a measure of the "distance" of the

state X from the origin in the state space, that is, V(X) > 0 when X # 0 and

V(0) = 0. Suppose the distance between the origin and the instantaneous state

X(t) is continually decreasing as t ---+ oo, that. is, I?(X) < 0. Therefore, X(t) _ 0

[Kaiman I.

7

_:=

4.2 Definitior_s of Stability

In the mathematical formulation, the dynamics relates the state X and the

controI function (or forcing function) u of the system. Continuous-time dynamic

systems will be treated here, but the concept of stability is analogous to discrete-

Briefly, the dynamics of systems are given by the vectortime dynamic systems.

differential equation:

dx =
dt

t > O, (4.1)

whereXER '_,uER "_ and f:Rt x R "_ x R '_ ---+R n.

If u = 0 for all t, the form of (4.1) is free (unforced):

-=-X = f(X,t) t > 0 (4.2)
dt - '
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where f : Rt x R '_ _ R '_. Without loss of generality, the equation of (4.2) is used

to illustrate the definition of stability, while the input function u is usually bounded

and does not change the characteristic of system [Jordan & Smith].

It is always assumed that, the function f in (4.2) is sufficiently smooth so that it,

has a unique solution over [0, c¢) and this solution depends on the initial condition

X(0). If an Xo E R '_ is said to be an equilibrium state of the system (4.2), at time

to, then

at : _d-_'Xo(t)= f(Xo,t) = 0 V t >_ io. (4.3)
lim

That,the equilibrium state Xo is set, to be 0 does not result in any loss of generality.

Therefore, the stability of the system (4.2 7 at an equilibrium state X = 0 (the

origin) is defined as follows:

[Definition 4.2.1] The equilibrium state 0 at time to of (4.2) is said to be stable at

time to if, for each e > 0, there exists a _(to, e) > 0 such that

llX(_o)ll< _(_o,,) _ IlX(t)ll <, v _> _o, (4.4)

where ]IX H is called the norm of X.

In graphic representation, it is shown in Figure 4.1 that there exists a radius

for every e such that if a trajectory starts at a point Xo inside the hyperspherical

region of radius g, then it will always remain in the hyperspherical region of radius

Furthermore, in Figure 4.1, if every trajectory starting inside some hyperspher-

ical region in the state space converges to the origin as time increases indefinitely,

an equilibrium state 0 is asymptotically stable (AS).

[Definition 4.2.2] The equilibrium state 0 at time to is asymtoticaily stable at time

to, if (4.2) is stable at time to and there exists a number _(to) > 0 such that

llX(t,,)ll < 6(to) _ IIX(_)ll- o as t -_ _. (4.5)
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Conversely, the system (4.2) is said to be unstable whenever, for some arbi-

trarily large e inside R and any arbitrarily small 6, there is always a starting point

Xo within the hyperspherical region of radius 6 such that the trajectory from Xo

passes beyond the boundary hypersphere of radius e (Figure 4.1).

In the last section, the scalar function V(X) to be called a Lyapunov function

is used to determine the stability of the system. If the system is of nth order, V(X)

may not be identified with energy level. From the definition of stability, another

interpretation of the candidate Lyapunov function V(X) results from a geometric

pattern in the state space. Therefore, we must first define some properties of scalar

functions [Takahashi]. A scalar function V(X) is said to be positive definite when

1. v(0) = 0, and

2. V(X) > 0 in some region of X outside the origin. Let us represent the region

in state space by S. Then

v(x) > o, x e s; x # 0,

r

3. V(X) is continuous in S, and

4. OV(X)/Ozi, i = 1,2,...,n are also continuous.

The partial derivative for condition 4 creates a gradient vector

Oz,

grad V(X)= VV(X) = • . (4.6)

The time derivative dV(X)/dt along any trajectory of a system (4.2) is given

by

?(x(t))- ov(x(t))ot + vv(x(t)) f(x,t). (4.7)
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4.3 The Lyapunov's Direct_ Method

In this section, the stability of systems in the sense of Lyapunov is given. The

proof is not discussed here and has been given in many works [Kalman] [Yoshizawa]

[Vidyasagar]. The theorem is that if there exists a Lyapunov function V(X) in some

region S (say a hypersphericM_bal!) around the or!gin, thenthe origin is stable for

all X contained in S. Therefore, some requirements need to be met before V(X) is

called a Lyapunov function.

Referring;t o the last section, the following theore m is the basic stability theorem

of Lyapunov's direct method with the system (4.2).

[Theorem 4.3.1] The equilibrium state 0 at time to of (4.2) is stable if there exists

a continuously differentiable positive definite function V such that

id(X(t)) < O, V t > to V X E S, for some ballS.

The state is said to be uniformly stable, if V is strictly decreasing in the

theorem. The theorem above provides sufficient conditions for stability but may

not yield necessary conditions. To apply them to a particular system, it is a fairly

simple matter to find a function V satisfying the requirements.

There is a more restrictive definition of stability than the previous one in that

the condition V(X) = 0 is not allowed. This means that a trajectory will not be

allowed to stall on a closed hyperspherical ball of V(X) containing the origin, but

will always be required to approach the origin with a monotonic decrease in V along

the trajectory. Precisely,

m

m
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[Theorem 4.3.2] The equilibrium state 0 at time to of (4.2) is uniformly asymp- -- =

totically stable over the interval [to, _) if there exists a continuously differentiable

decreasing positive definite function such that -_" is a positive definite function. .-
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4.4 Boundedness

The stability properties of the dynamical system have been recognized, under

the conditions mentioned before. However, the time responses are not easily ob-

tained, when the system (4.1) is nonlinear or uncertainty is included. A Lyapunov

function candidate, which is chosen from a Lyapunov function of a stable nominal

system, is utilized for the real system with uncertainties, and a control function

is then obtained such that the Lyapunov function decreases along every possible

trajectory of the uncertain system, at least outside a neighborhood of the zero state

[Chen]. Therefore, two definitions need to be specified [Leitmann] [Yoshizawa].

[Definition 4.4.1] Given a solution X(t): [_o,tl] _ R'_,X(_.o) - Xo, of (4.1), we

say it is uniformly bounded if there is a positive constant d(Xo) < oo, possibly

dependent on Xo but not on to, such that

Ilx(t)ll < d(Xo), Vt

[Definition 4.4.2] Given a solution X(t) : [to,_) _ R'_,X(to) = Xo, of (4.1),

we say that it is uniformly ultimately bounded with respect to set S, if there is a

non-negative constant T(Xo, S) < 0¢_, possibly dependent on Xo and S but not on

to, such that X ( t ) E S for all t > to + T(Xo, S).

Stability properties have been illustrated so that the controller can be synthe-

sized in the following sections to stabilize the system. This is the main task in this

study.

4.5 Decentralized Joint Feedback

In this section, we will explain why decentralized controls can demonstrate

adequate feedback performance for flexible manipulators. Independent linear con-

trollers at each joint, commonly called joint proportional-derivative (PD) con-
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trollers, which are based on the local measurements of joint positions (qi) and

velocities (qi) are described as follows:

m

n

m

"ri = -Kpiqi- K'Diqi, (4.8)

where Kpi and KDi are positive constants, qi = qi - q,.i and _ = qi - q,i, (_ = qi),

while q_i is the reference state and assumed to be constant. Physically, the feedback

system effectively equips each joint with equivalent rotary spring and damper. The

frequency domain approach has been taken with the linearized system in previous

works [Book, 1975], while the case of a rigld-link manipulator has been illustrated

by Asada and Slotine [1986]. A Lyapunov approach is applied here to show the

resulting stability.

Because the torques (r) only act on each joint, the following equality exists,

m

W

m

V

W
I

2rQ = 0r., (4.9) i ;

where X, Q are given in (2.40). qT ._ [ql, ",qn] represents the joint coordinate in

(2.40). r = [rl,..',r,_] T and ri = Qio. In the absence of gravity and uncertainties

such as friction and disturbances, the dynamics (2.40) becomes

glR

m. :

V ;

r "r ",.M(X)2 + II(X,X)X + Kf( =Q. (4.10)

Lemma 4.5.1: Given a proper Lyapunov candidate (V) associated with the system

(4.10) with feedback (4.8), the time derivative of V can be shown to be negative.

Proof: Consider a Lyapunov candidate V associated with the total mechanical

energy of the feedback system [Slotine]:

1 xTMR + XTKX + -_qKpq , (4.11)y(x,R,q) =

m i

W

U

U

W
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where Kp = diag [Kpi] and K is a positive constant matrix. Differentiating V with

respect to time gives,

_- = _TKpq + 2T Mj_ + _._T Mj; + xT K2

= (_Tt(p_ + XT(M_ " + It'X) + _+_'T._/IX", (4.12a)

By substituting (4.8), (4.9), (4.10) and (._/-2H) which is skew-symmetric into the

abOY e

= :Trg+,:_+ Xr(Q - 1-12) + lkrMk
1

= (TTKpq + JCTQ + -_X"(M- 2//)X"

= (TTKpq + ilTr

= --(_TKD(t < O, (4.12b)

where KD = diag[KDi] is a positive matrix.

Now, the system with the local joint PD control is stable. This leads to the

development of an advanced control algorithm using the decentralized scheme which

is restrictive on information transfer from one group of sensors and actuators to

others.

w

4.6 Decentralized System

A system with a great multiplicity of measured outputs and inputs is commonly

characterized as the Large-Scale system. This situation arising in a control system

design may be treated with decentralization techniques. The designer for such

systems determines a structure for control which assigns system inputs to a given

set of local controllers, each of which observes only local system outputs. Figure

4.2 shows a two-controller decentralized system.

The advantages of this approach include'ease in data gathering, computer pro-

gram debugging and geographical separation of system components.
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4.6.! Decentralized Dynamics

In the flexible robot, unlike the conventional (rigid) robot, oscillations due to

link elasticity need to be stabilized in addition to controling the joints. Therefore,

the flexible manipulator system becomes a large scale system. Each link can be

considered as a subsystem of the overall system. :.......

In the absence of actuator dynamics, the system dynamics (2.40) of an n-

link flexible manipulator combined with friction and other disturbances treated as

uncertainties R(¢,_) are given in the following equation:

M(_)_" + H(_,_)_ + K_ + G(_) + R(_, _) = Q. (4.13)

Again, M(¢), the inertia matrix, is square, symmetric and positive definite.

Therefore, one can define a constant matrix _ such that

11 !1 IIM-a( )- 811, (4.14)

U

i

m

m

N

v

l

Q

m

where II II is an induced norm. Note that/3 is usually chosen to have zero elements

corresponding to subsystem coupling.

Equation (4.13) can then be rewritten as

g

m

w

_"= -M-'(_)[H(_,d)_ + K_ + R((, _) + G(_)] + ¢_Q + (M-I(() - _)Q. (4.15)

Now, take each link i as a subsystem and define state variables Zi -- [_i, _i] T,

where (i includes one joint coordinate and mi generalized deflection coordinates for

link i (2.38). Equation (4.15) is divided into n equations for the n interconnected

subsystems. Therefore, each subsystem is described by a first-order differential

equation of the form

_._ = A_zi + biui + F_(X) + fi(X)ui , (4.16)

m i

W
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where i = 1,2,...,n; X T = [xl,x2,...,x,] T and ui - Q_o in (2.39); fi(X)ui = the

coupling terms of (M -a(_) -/3)Q for subsystem i. Ai is a constant matrix which

represents the linear time invariant part of -M -a (_)K.

A_= ( 0 I) (4.17)all ai2 '

while Fi(X) represents the rest of -M-1K and the nonlinear terms of

-M-I(_) [ H(_,_)_ + R(_,_) + G(_)]. b, becomes a vector form with zero elements

on the upper half.

(1) Fi(X) and f/(Z) are assumed to be bounded and are modeled as system un-

certainties assumed to have the properties [Leitmann]

(ii)

y (x) a,f=

defy (x) =

(4.18a)

(4.18b)

where o" E R p represents the system uncertainty and is continuous on R v as

well as the uncertainty bounding set.

(Ai, hi) is controllable.

(iii) Moreover, there exist matrix functions D_( ) and E_( ) such that

(4.19)

= b, , (4.20a)

= (4.20b)

where ]IEi]I < 1 from (4.14).

The dynamic system of flexible links is composed of rigid body modes and

flexible modes, with the linear combination of flexible modes used to specify the

deflection of any point along the arm from the position specified by the assumed
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rigid body modes. If the dominant dynamics is related to the rigid body modes, for

example the one-link flexible arm, then the flexible modes will contribute the most

to the system uncertainties which are assumed continuous and bounded.

The control schemes implemented here assume the satisfaction of the match-

ing conditions (4.20) [Leitman]. These conditions guarantee that the uncertainty

vector does not influence the dynamics more than the control input does [Gutman].

However, the uncertainties (4.18) which do not satisfy (4.20) can be tolerated if

they do not exceed the mismatch threshold [Chen, 1987].

Therefore, the overall system by the above assumptions will take the following

matrix form

= AX + BU + BD(X,o') + BE(X,o')U, (4.21)

where for i = 1,2,...,n

A = diagonal (Ai),

B = diagonal (Bi),

O(X,,,) = diagonal (D_(X,_)),

E(X,a) = diagonal (Ei(Z,o')) and

Ur = [_'1,u2,..., u,_].

4.7 Reference Model

The objective of model reference adaptive control is to eliminate the state error

between the plant and the reference model so that the behavior of the plant follows

the model. Consider the reference model first.

where for i = 1,2,...,n

_, = [&_,_i] r,

_,rni _- Amixrni + brniri , (4.22a)

m
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ri is the reference input;

and let
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(4.22b)

(4.22c)

i-

•= =

where K_i and Kbi are constant matrices with the corresponding dimension.

Also, A,_i which is a stable matrix satisfies the Lyapunov equation

T
AmiPi + PiAmi - -Li , (4.23)

where Pi and Li are positive definite and symmetric matrices.

4.8 Decentralized Robust Control

The signal-synthesis method [Landau] [Balestrino] implemented here seeks to

control the system by adjusting the input ui which is as describedin the following

equation

ui "- KziXi -4- gbiri -4- _'i(ei) , (4.24)

where ei = z,_i - zi is referred to as state error and the function ¢i is the control

input to compensate the system uncertainty. Thus, let ;hi be

b_Piei

ilbrP,_,ll pi(X, ei,ri), when [[brp_e_[[ > ,5_; (4.25)

¢i(ei) = _ p_(X,e,,ri), when libTpieill < gi,

where 8i is a prescribed positive constant and pi is a positive constant which will

be specified subsequently.

As a result, the error dynamics of the subsystem is derived from the difference

between equation (4.16) and (4.22a) along with (4.24) and (4.20):

ei = :_mi -- _,i

= Amiei -- bi(_bi + vi), (4.26a)
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where

vi = Di + Ei(K_i_i + Kbiri + ¢i). (4.26b)

Given the boundedness of the state variable zi and the reference input ri,

equations (4.26b) and (4.25) give the following inequality:

ltvitl_ p_(x,e_,_), (4.27a)

where

p_(x, e_,_._)a,f IIDi(X)ll+ [IE_(X)[I(llK_=_xilt+ ]lKw'_l[+ II¢i(e_)ll)• (4.27b)

This definition involves pi on both sides of the equation. The definition of pi in

(4.27b) is valid, i.e., (4.27) can be solved since (4.14) is satisfied. Therefore, we have

p_ = (1 - IlE_ll)-' [lID,It+ liE_ll(llK_llllx_ll+ [IKw'_l])]. (4.28)

Now, consider a closed ball, B(_?), centered at, 0 with radius 77,

[46iPi] 1/2rt= Amin(L_) (4.29)

where Amin represents the minimum eigenvalue. Since Li > 0 from (4.23), one can

define

_(k)'t'd {ei E R m'+' I eTpiei < k}. (4.30)

B

Let

k > k, (4.31a)

k = _max (2°/)77 2 , (4.31b)

where )_max represents the maximum eigenvalue; and let

(4.31c)

U

Q

g

I

m

m

m

!

w

J

l

w

J



Finally, if ei( to ) ¢_e( k ), define

Co a4finf { eT Liei -- 4_hiPi } .
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(4.32)

= =

v

===

L_

L _
_====_

s,,.l=

Theorem 4.8.1: For subsystem i, consider the system (4.16) and the reference model

(4.22) with control (4.24). Conditions (i)- (iv) are met, then given any k > _k, every

solution corresponding to initial condition (ei(t.o),to) E R m'+l × R 1 is uniformly

bounded with

_m=(_'i)

Ile_(O)ll(_,min(P_) )
d(e,(0)) = ( k _,/2

\_=n(P,)] '

1/2
, for e_(¢) ¢ _(k);

for e_(*o)e _(k),
(4.33)

and time T to enter e(k) is uniformly ultimately bounded with respect to e(k) with

{ _-'¢ for e_(_o)¢ _(k);T(e_(¢),_(k)) = 0c° ' for e_(to)e 6(k). (4.34)

Proof:

Since Pi > 0, the function V() : R m'+l --+ R+ given by

v(e) = erPie_ V e_e R='+_ (4.35)

is a Lyapunov function candidate.

To show that it is indeed a Lyapunov function for the system (4.26a) with any

possible uncertainties: one needs to consider the time derivative of the Lyapunov

candidate (4.35) as described before in (4.7).

_z(ei) = _T pie i + eT pi_i . (4.36)

lY(ei)= T T 2eTpibi(¢i vi)e i (A_,Pi + PiA_,)ei - +

= --eTLiei- 2eTpibi(¢i + vi)

_<-er_L,e, - 2[brp,_dT [¢, II_llP'jbTpiei] . (4.37)



With control (4.25), thus

if liffP_eill > _,
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if libTPieill _ _i,

V(ei) < --eT Liei + 4_ipi . (4.38)

Consequently, _r < 0 is a necessary condition to satisfy the Lyapunov function

for all t E R 1 and all ei. Then,

eTLiei - 46ipi > O. (4.39)

From the definition of matrix norm,

(4.40)_,mim(LOlle_ll= _ eTL_e__ _max(L,)lle_ll2 •

Since Li is positive definite, (4.39) and (4.40) give the following inequality:

w

W

"V

N

!

g

_n(L_)lle_ll 2 - 46ipi > O. (4.41)

Therefore, _" < 0 is assured for all t E R _ and all e_ _ B(rl), where r/ is

given in (4.29). Now, consider the boundedness of all solutions for (4.26a). (a) If

ei(to) E ¢(k), then ei(t) E ¢(ko), and (b)if el(to) _ s(k), then ei(t) E ¢(k) for all

t E [to, tl]. The Lyapunov candidate gives boundedness.

o < _.min(P_)tle_(t)ll_< CT.P_,< _T(to)P_e,(*o)< _,m_(P_)tl_,(*o)ll_-, (4.42)

for case (a), which leads to

[Amax(Pi)] 1/_11_(0ii< ll_,(to)ll xmin(p_)J ;

o < _,min(-r:',)lle_(_)ll=_<_T-r'_,_ k

w

W

11

wit

W



for case (b), which leads to

_=n(P_)]
x/2
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This proof shows the uniform boundedness result (4.33).

The ultimate boundedness result also follows conditions (4.38) and (4.39).

If e_(*o) E e(k), it is an immediate consequence of the boundedness result, and

T(ei(O),e(k)) = 0. If ei _ e(k), then V(ei) decreases and ei(t) reaches the bound-

ary Oe(k) of the ball e(k) in a finite time interval. An upper bound of this interval

is obtained by considering

y(,,(t)) <_-Co, (4.43)

where Co is given in (4.32).

Define t' and ei(t') E Oe(k). It means that t' is the time when ei crosses the

boundary of e(k). So,

v(_(,'))- v(,{(to)) <_-Co(,' - to)

k - ko <_-Co(,' - to)

t' - to <_ ko - k d°_fT(,_(to),,(k))
Co

Thenl this is uniformly ultimately bounded with (4.34).
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4.8.1 Physical Interpretation of the Control System

Some fundamental control techniques such as pole placement, optimal control,

state feedback and state estimation require complete information from all system

sensors for the sake of feedback control. However, these schemes are inadequate

for feedback control of large-scale systems. Due to the physical configuration and

high dimensionality of such systems, a centralized control is neither economically

feasible nor even necessary. Therefore, a total decentralization is employed, that is,

every local control is obtained from the local output and possible external input.

In many applications, some degree of restriction, however, needs to be assumed.

The control input here includes the linear and the nonlinear parts. The local and

linear feedback controller is used to stabilize the subsystem when isolated from

the rest of the system. Then, regarding the interactions among the subsystems as

uncertainties, a nonlinear controller is utilized to minimize the coupling effects.

The "matching conditions" embodied in condition (iii) assures that the range

space of the input, BU in (4.21), contains that of the uncertainties. Thus, there is

an input that can cancel the possible uncertainties. The nonlinear controller given

in (4.25) is a type of saturation control and a constant is imposed to determine the

saturated level. However, the feedback gain can generally expressed by

= when I1> ; (4.44)
IE¢i(¢,)IL< when LIb rP,e,lI<

Note that the controller in (4.44) which may be a discontinuous control leads to the

excitation of vibration modes in the case of application in a flexible structure.

Equation (4.14) needs to be satisfied so that condition (iii) is assured. This

means that a given control acts in the desired "direction".

However, as distinct from other decentralized control schemes, the scheme pre-

sented in this chapter attempts to stabilize a large linear system by manipulating
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only subsystem matrices. Besides a considerable saving in the numerical aspects

of control, the presented scheme produces systems which are dynamically reliable

with respect to structural perturbations and which can tolerate a wide class of non-

llnearities in the interactions among the subsystems. As a matter of fact, by this

scheme systems can be stabilized in cases where we have no information about the

actual shape of the nonlinear interactions among the subsystems, and only their

bounds are available to the designer.

In the previous section, the uniform boundedness of each subsystem has been

proven. However, uniform boundedness of individual subsystems does not constitute

boundedness of the total system. Thus, one must consider the total system and

establish uniform boundedness and uniformly ultimate boundedness.

Theorem 4.8.2: The system (4.13) represented by (4.21) is uniformly bounded, if the

reference model (4.22a) of each subsystem is stable and the error dynamics (4.26a)

of subsystem is uniformly bounded with the control input (4.24).

Proof:

Let us assume that a Lyapunov function V/ for the error dynamics (4.26a) of

subsystem i is known and consider the use of a weighted sum as a candidate for the

Lyapunov function of the error dynamics of the total system:

rt

V = Z diVi, (4.45)
i=1

where the coefficients dl,i = 1,...,n, are positive constants. Thus, V = _=1 di_.

From Theorem 4.8.1, _ is negative, if all error states (ei - z,_i - zi) are

outside the ball region of (4.29). To choose the reference model to be stable and its

subsystem as described in (4.22a).

._,n = AmX,,_ + Bmr, (4.46)



94

where Am = diag[A,_a ... A,,,_] and B,_ = diag [b,,_a ...b,,,_]. Then, V < 0 is

assured for all e(t)(e -[ea " "en] T) _ B07), where a closed ball B(z/) centered at 0

has a radius 77,

7/= 4 (di),_min (L/) j

Therefore, the uniform boundedness of the total system is clearly shown.

(4.47)

From Theorem 4.8.2, it should be emphasized the system may become unstable

if stability is not satisfied for any of the subsystems. In other words, the total system

(4.21) is stable, only if the matching conditions are met for all subsystems given by

(4.20).

4.9 Decentralized Adaptive Contrg].

The controller design implemented here has not been specifying the state re-

sponses in the transient time; i.e., large state error and/or oscillation transients

may occur. To overcome this problem and to improve convergence speed, an aux-

iliary input w_(t) is introduced and applied to the input u_ in (4.24). This input is

effectively an integral action. Thus,

ui = K_ixi + Kbiri + ¢i(ei) + wi. (4.48)

!

W

p

u

'IB

L- J

The error dynamics (4.26a) then becomes

ei = A,_iei - bi(_)i + vi + wi),

where vi still has the same form as (4.26b) and is bounded in pi.

The auxiliary signal wi(t) is expressed in the following:

_bi = -cq(t)wi + S[-lbTpiei,

where S, > 0 and

a(t) > (45ipi- , x n(L{)ll  lt 2) V t E R •
- 2Amin(S,)llw, II2

(4.49)

(4.50)

(4.51)
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With the feedback input in (4.48), the stability of the system needs to be

analyzed. The next theorem therefore specifies the result.

Theorem 4.9.1: The error dynamics (4.49) between (4.22a) and (4.16) with control

(4.48) is uniform bounded, if (4.23), (4.25), (4.27) and (4.50) axe satisfied.

Proof:

The proof of this theorem is similar to that of Theorem 4.8.1. The only addi-

tional requirement to be considered is that there exists a Lyapunov function.

Define a candidate Lyapunov function which is positive definite,

V = eTp,.e, + wTSiwi. (4.52)

Taking the derivative of (4.52) along with (4.49) yields

y =-ey( rA,,_iP, + P,A_,)e, - 2eyPibi(¢, + v, + w,) + 2(vySiw,

= -e_L,e,- 2[brp_e,]T(¢, + v_) + [2S,w_- 2bTP_effw_. (4.53)

From Theorem 1 and (4.50), V in (4.53) gives the following inequality:

<_ --eT Liei + 4_ipi -- 2awTi Siwi . (4.54)

_r_

And by satisfying (4.51), one obtains V < 0. Consequently, the system is evidently

uniformly bounded.

The auxiliary signal w,: imposed here is to improve the system performance. In

the Lyapunov synthesis, convergence speed of a dynamic system can be compared

by a positive value 3, = -¢V/V [Kalman]; i.e., the convergence rate in the feedback

system is faster, if the value 7 is larger. Obviously, the system with control (4.48)

has a larger value of 3, than that with control (4.24), if a satisfies the following

inequality.

),(Z_)lle_ll2 - 46ipi

> _(p,)lle_ll= (4._5)
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This can be seen by comparing (4.35) and (4.38) with (4.52) and (4.54). Note

that (4.51) and (4.55) are not conflicting conditions since (4.51) gives a necessary

condition on a(t) for the system with uniform boundedness.

4.9.1 Design Procedure

This section summarizes the procedure for this decentralized adaptive control

design. The inertia matrix can be acquired from the dynamic equation (4.13) so

that/3 is determined from (4.14) to form bi in equation (4.16). Ai is obtained by

linearizing the equation (4.13). According to equations (4.22), the constant feedback

gains K_i and Kbi are calculated and the reference model Ami and bmi can be chosen

to be stable. Pi and Li are obtained from the matrix Lyapunov equation (4.23).

The reference input ri can be directly derived from inverse dynamics of the reference

model with the values associated with the deflection states assumed to be zero; i.e.,

the reference input comes from the "rigid" dynamics only. Finally, the control input

ui is given by equation (4.24) and with an auxiliary signal given by equation (4.49).

Note that pi satisfies the inequality (4.27) and those bounds can be determined from

the workspace domain of robot manipulators and the state region of the reference

model. A case study is provided in Appendix 3 and the block diagram is shown in

Appendix 6.

4.10 Summary

The joint PD controller has been proven to stabilize the system, while the de-

centralized adaptive control with robust stabilization has been proven for motion

control of large structures and flexible manipulators. Under consideration of the

uncertainty for interconnected terms of each subsystem, the dynamic system of the

manipulator motion is illustrated to be bounded, while an auxiliary input with the

update action should have faster convergence rate and sma_er steady-state error.

W

U

m

mm
i

J

z

m
m
w

lml

J

I

m

m

J

m .
m i
m !

W

m

W



97

The possible magnitude of the uncertainty is presumed known, making the statisti-

cal information for a stochastic approach unnecessary. Thus, the feedback systems

are also insensitive to other uncertainties such as friction, backlash, measurement

error, etc.

Without adaptation of parameters, this control has a simple control structure

for reducing real-time calculation. This leads to an attractive option both to address

complex tasks, and simplified high level programming of more standard operations.

The control algorithm has superior performance for high-speed motion, when the

manipulator is light-weight. However, the drawback of the signal synthesis method

which may cause saturation of the control torque will be discussed in the next

chapter. It will be shown that problems caused by such drawback can be eliminated

by choosing a proper input matrix in the control algorithm.
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CHAPTER V

CONTROL IMPLEMENTATION

AND EXPERIMENTAL INVESTIGATION

In the previous chapters, the dynamic model of motion for flexible arms has

been obtained by the recursive method and the control algorithm implemented here

has been proven to be theoretically feasible. Therefore, computer simulations and

physical experiments should be carried out to test the theoretical work. A computer-

controlled prototype of a two link manipulator, RALF (Robotic Arm, Large and

Flexible) driven by hydraulic cylinders is used t_) perform this verification. The

experimental results show promise for the adaptive control algorithm.

5.1 Experimental Apparatus

To establish a point of reference for the following works and to set the phys,

ical scale of the experiment, the experimental facilities need to be described and

illustrated. Chapter Hi has introduced the mechanical components of RALF. This

section will specify measurement sensors, signal conditioning, and the computer

system and its interface involved in the control experiment. Figure 5.1 shows the

block diagram of the control implementation and software program, which is indi-

cated in the dashed llne. Figure 5.2 is the flow chart of the plot used to execute the

computation of the controller.

A Micro Vax II running the VMS operating system is used to provide hlgh-speed

calculation during real-time control. The data acquisition and control signals use the

analog to digital (A/D) and digital to analog (D/A) boards with 12-bit resolution.

The control program is written in Fortran. It results in sampling and calculation
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time of 7 ms. When the adaptive control algorithm is applied, computation time

is increased by approximately 1 ms to a total of 8 ms. However, this sampling rate

is feasible to control the RALF since the bandwidth of both hydraulic actuators

is above 45 Hz and the lowest two frequencies of the RALF are 5.69 Hz and 9.12

Hz, while the higher mode frequencies are hardly measurable. The actuating llnk's

slowest response is about 30 Hz, which cannot be controlled.

The measurement of the piston position is used for feedback instead of the joint

angle. A linear variable differential transformer (LVDT) is the transducer. Because

the LVDT is located at the same position as the actuator, the non-collocation prob-

lem existing in the feedback control of flexible structures may be avoided [Balas].

However, the transducer mounted at the joint reflects the flexible motion, while

the LVDT does not reflect the flexibility of the link. Figure 5.3 shows the time

responses of the angular transducer and the LVDT of both links.

Strain gages mounted near the base and midpoint of each link provide mea-

surements of the link deflections. The relationship between strain gage and link

deflection has been described in Chapter III. Bridge circuitry and amplification are

used to augument the strain signal. The servo valve of the hydraulic actuator is

driven by a power amplifier based on the voltage signal.

In this experiment, only the equivalent joint angle that is calculated from LVDT

reading (Appendix 4) and the link strain are measured (Appendix 5). However, the

control design applied here requires that all states be available; i.e., the joint angular

velocity and the strain rate must be obtained. The estimator technique, however,

may not easily be implemented due to the characteristic of the controller and the

dynamical uncertainty. A low-pass digital filter is utilized as a pre-filter in the

control program such that all feedback signals are not subject to sudden changes.

Therefore, the difference of the angular position and the strain directly give their
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rates. The low-pass digital filter design technique implemented here is such that an

ideal low-pass filter in the s-plane with a cut-off frequency 0.3_" is mapped to the

z-plane by means of the bilinear transformation [Oppenheim]. A third order filter

is used in this experiment and described as follows:

0.12460(82 ÷ 1.3040) (5.1)
H(s) = (0.6498s + 0.2448) (s 2 + 0.2521s + 0.4313)"

A phase lag results, but it is small compared to the dominant frequencies of the

RALF such that the feedback signals of all states are not wrapped and applicable
.... : -. 57

to control the system.
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5.2 Computer Simulation ::

A computer simulation has been conducted to evaluate the performance of the

control schemes developed in the last chapter, which include joint PD feedback,

decentralized control (with strain feedback) and adaptive control (also decentral-

ized, with strain feedback). The detailed dimensions of flexible manipulators have

been described in Chapter III. A one-link flexible manipulator which is considered a

"quasi-linear" case has been studied by many workers so that it will not be discussed

in this thesis. The control of RALF which represents a multi-link flexible manip-

ulator operating in the gravitational field should lead to more contribution from

the practical and theoretical points of view. Since the bandwidth of the hydraulic

actuator is much higher than the first two frequencies of RALF, the dynamics of

the actuator is assumed to be a constant. To compare the analysis with the ex-

periment, time responses are simulated with payloads of 0 lb and 30 lb, while one

flexible mode on each link is assumed. The controller design is carried out assuming

no payload on the end and the configuration of the RALF at "home" position; i.e.,

the first joint of 35 ° and the second joint of 109 °. Without modification of the

controller and by adding a 30 lb payload to the configuration, one can illustrate the
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robustness of the feedback system through the simulation.

Different sets of simulations have been carried out with point-to-point and

trajectory tracking control of joints. The Runge-Kutta method using sampling

time of 0.1 ms is utilized to solve the nonlinear dynamics. First, the control gains

are derived from the LQR (Linear Quadratic Regulator) technique with a prescribed

degree of stability (a) for the linearized dynamics. From the experimental results

of Chapter III, the constants for the first and the second actuators are 5238 and

3374 respectively• In order to reduce the joint angular errors, the weighting matrix

is selected to be diag [ 1Ell, 1, 1Ell, 1, ..., 1 ] and the joint torque penalty matrix

is an identity matrix of order 2. Therefore, the gains associated with the joint

positions and velocities turn out to be the joint PD controller as follows:

=

2.8161E7 O. ) (5.2a)gp = O. 3.0015E7 '

KL,= ( 2.SO 1Z5 O. ) (5.2b)• 7.7616E4 '

The decentralized controller given in (4.24) is then obtained as

K_I = (-2.8161E7 -1.3518E4 -2.8031E5

and

Kz2 - (-3.0015E7 -1.0065E4 -7.7616E4

-1.1384E3 ) , (5.3)

-268.2405). (5.4)

W

Equation (4.14) needs to be satisfied in deriving bi such that/3 -1 is here chosen as

the inertia matrix with the interconnecting terms of zero. Therefore, bl and b2 are

(0)bl = 0. (5.5a)
0.002

-0.2589

6
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and

(o)b2= 0. (5.5b)
0.0373

-5.2673

By equation (4.22), the reference model is

/ 0 0 0/Am, = 0 0 0 1 (5.6)
-6.6489E4 29.2705 -573.9691 -2.3310 '
8.4057E6 -6.0265E3 7.2562E4 294.6916

and

0 0 1 0 )
0 0 0 1 (5.7)

Am2 = -1.1877E6 151.1719 -2.8961E3 -10.0089

1.6765E8 -2.8189E4 4.0883E5 1.4128E3

Substituting the above into (4.23) with Li = diag[1Eg, 1E4, 1, 1], the Lyapunov

equation gives

/'1.7177 0.0084 0.0111 0.0001
[ 0.0084 0.0001 O. O. )P1 = _ 0.0111 0. 0.0006 0. x 1.E7, (5.8)
\ o.oool o. o. o.

and

 01 9435°°143°°°°9ii)[0.0143 0.0001 O._=/0.00¢_ o 0.0003 ×_-_, (_3
• O. O.

The value of pi in (4.25), which is determined by (4.28), is here set to be 3.0E5 from

the engineering viewpoint; and the value of _i is then 2.0. For the decentralized

adaptive controller, Si, is chosen to be 3.33E-3, while ai is simply set to zero.

The various simulation conditions are outlined in Table 5.1. First, the end point

of each link is moved about 8.5 inches in 0.4 seconds for joint point-to-point control.

Figures 5.4a and 5.4b show the typical position and velocity profiles of the reference

joint angle. Without payload, time responses are illustrated for three different

controllers (PD, Decentralized and Adaptive) in Figures 5.5a-d. It is noticed in
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Fig. 5.6a-d that the system with payload has lower vibrational frequency on the

upper and lower links. Obviously, the decentralized adaptive control results in the

best performance in joint position tracking as well as link flexibility, while the joint

PD control expresses the stability of the feedback system. Figures 5.6a-d show the

results of each state for the case of a 30 lb payload but using the same controllers

as in Fig. 5.5. The state responses of the decentralized control are convergent, but

worse than those of the case of no payload due to nonadaptive action. Therefore,

it is noted that all of the three controllers demonstrate the robustness with the

addition of the payload.

For a longer travel, the reference joint position and velocity are shown in Figures

5.7a-b. The tip ends of both the lower and the upper links are moved approximately

24.3 inches in 1 second. Therefore, the nonlinear effect and the inertia variation have

more impact on the dynamical system. But the joint angle change is still smail.

Figures 5.8a-d show the time responses of the feedback system with no payload,

while Figures 5.9a-d show those of the system with 30 lb payload. Note that better

tracking and fast vibration-setting time of each link still occur with adaptation but

that the llnk oscillations damp out slowly for the joint PD and the decentralized

controls when the system has the payload on the tip. Some variations between

experiment and simulation are expected since some vibrational energy is absorbed

by the hydraulic actuators but not included in the simulation model.

For the tracking control of a joint trajectory, the reference signal for both

joints is a sinusoid with the magnitude of 0.0167 radian and the frequency of 3

Hz, which is close to the first structural frequency of the system with payload.

Error responses for both joints with and without payload are as shown in Figure

5.10. Time responses of the strain without and with payload are demonstrated in

Figures 5.11a-b and Figures 5.12a-b respectively. The joint PD controller results in

L
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the least accuracy in the path tracking of each joint and the greatest amplitude in

the oscillation of each link among three controllers applied here. The decentralized

adaptive control shows its adjustability to different conditions.

5.3 Experiments

In order to verify the effectiveness of control schemes implemented on flexible

manipulators, several tests which are roughly parallel to the simulations have been

carried out. The experimental conditions are outlined in Table 5.2. The control

program has been discussed in Section 5.1. The values of the joint angle are con-

verted from the measurements of the LVDT instead of the noisy signals measured

directly from the joint. Due to the dimension of the hydraulic actuators and size

of the valves, the speed of the manipulator will have some limit before saturating

the actuators. This results in comparatively small oscillations on each link so that

only one strain gage needs to be used in the experiments. However, the A/D range

is -4-10 Volts and may saturate on the strain signal with a constant saturation value

substituted for the true one. The outputs from the reference model are off-line

calculated and stored in computer memory. If the reference model has stability of

a high degree, the reference outputs can be substituted by the states of the tracked

path without increasing real-time computation. Again, the actuator is treated here

as a constant signal-gain from the practical point of view.

The first set of plots (Figures 5.13a,b) show time responses of the strain from

the lower link without and with the decentralized control, when an impulse force

suddenly pushes the lower link. The strain responses of both links are then shown

in Figures 5.14 and 5.15 for a step reference input to each joint. Obviously, the link

osciliations damp out slowly if the system does not have strain feedback; i.e., the

joint PD control. Figures 5.i6a,b show the control inputs to the actuators.
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Figures 5.17a,b demonstrates the pistons of both actuators moved one inch in

0.4 seconds. The case of the decentralized control with no adaptation is excluded

in this experiment. Figures 5.18a,b and 5.19a;b show the results from strain gages

with the joint PD control and the decentralized adaptive control respectively. Note

that no payload is added to the manipulator. Figures 5.20-5.22 are for the case of

the pistons being moved 3 inches in 1 second. In the decentralized adaptive control,

the overshoot occurs when traveling longer dlstances_ while the steady-state errors

are reduced. It is noted that the gravitational effect provides the partial reason for

the steady-state error in the joint PD control.

With 30 lb payload, two cases of motion described above have been executed.

The plots of the resulting responses are given in Figures 5.23-5.28. The decentralized

adaptive control always provides more accuracy on the joint tracking and much

faster vibration-setting time, although the overshoot may appear on the end point of

travel due to the different adaptive gain implemented. From these experiments, one

can also conclude that the adaptive control is robust and self-adjustable so that it is

insensitive to variations in the payload. Figures 5.29a-d show the strain responses

from both llnks_ when the manipulator moves several points in the workspace.

Figures 5.30a-d_ and 5.31a-d illustrate the responses of the strains when the

manipulator is controlled by the joint PD and when the decentralized adaptive

scheme is utilized to follow a sinusoidal reference actuator position of 0.3 inches and

3.33 Hz. Note that frequencies other than 3.33Hz appears in the strain response of

the upper link if the system is controlled by the joint PD scheme.

5.4 Summary_

The work done in this chapter emphasizes verification of the control algorithms

developed for the RALF by simulation and experiments. The experimental facility
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has been introduced taking into account its equivalently mathematical value and

restriction. Several cases have been studied to compare the results. Conditions

similar to the experiments are imposed in simulations of the feedback system.

The results from simulation, which are based on the theoretical work, are com-

pared with the experiments to illustrate agreement, while the cases of point-to-point

and trajectory tracking are common in robot controls. Due to transducer limita-

tions, the piston motion responses in the experiments need to be converted into the

corresponding joint angle responses in the simulations. The conversion between the

LVDT and the joint angle is shown in Appendix 4 and the strain calibration from

the measurement voltage is found in Appendix 5 [Huggins]. However, the fact that

the simplified model used in the simulation may cause small deviation from the

measured experimental data is expected and acceptable from the engineering point

of view.

By applying positive gains on individual joint position and velocity feedbacks,

the system is shown to be stable. This agrees with the theoretical conclusion. The

decentralized algorithm results in much improvement. To achieve insensitivity to

variations of the payload and to large motion, the adaptive scheme of control is

superior. Therefore, the fact that the interconnected action between subsystems is

bounded and comparatively small also agrees with assumptions made in this work.
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Table 5.1 Table of simulation conditions considered.

Move the end-point of each link 8.5 inches in 0.4 sec.

Figures 5.4ai5.4b -. : Reference profiles

Figures 5.5a-5.5d ... Without payload

Figures 5.6a-5.6d ... With payload

Move the end-point of each llnk 24.3 inches in 1 sec.

Figures 5.7a-5.7b ... Reference profiles

Figures 5.Sa-5.8b ... Without payload

Figures 5.ga-5.9b ... With payload

Track a sinusoid of a 0.0167 radian amplitude with 3Hz frequency.

Figures 5.10a-5.10d -.. Error responses

Figures 5.11a-5.11b ..- Strain responses (without payload)

Figures 5.12a-5.12b -.- Strain responses (with payload)
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Table 5.2 Table of experimental conditions considered.

w

w

w

V

w

- +

m

Impulse excitation.

Figure 5.13a -.. Without control

Figure 5.13b .-. With control

Step responses.

Figure 5.14 --. Lower link

Figure 5.15 ... Upper link

Figures 5.16a-b ... Control inputs

Move the rod of the actuator 1 inch in 0.4 sec.

Figures 5.17a-5.19b ..- Without payload

Figures 5.23a-5.25b ... With payload

Move the rod of the actuator 3 inches in 1 sec.

Figures 5.20a-5.22b ... Without payload

Figures 5.26a-5.28b ... With payload

Move multiple points in the workspace.

Figures 5.29a-d

Track a sinusoid of 3.33 Hz frequency.

Figures 5.30a-d ... Without payload

Figures 5.31a-d ... With payload
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The principal contributions of this thesis consist of two areas. One is that the

recursive dynamic model has been derived by the Lagrangian-Euler formula with

assumed mode method, which tremendously reduces calculation time and errors

during the computation process. Especially, due to the recursive nature, the math-

ematically symbolic program (e.g. Macysma, SMP) is easily implemented to model

multi-link manipulators. The other is that a modern control Strategy has been de-

veloped for tracking a desired trajectory over a wide range of flexible manipulator

motion and payload variation. This controller compensates the interactive forces

between links and damps out flexible oscillations: The experimental results demon-

strate agreement with the theoretical work, while the feedback system has been

proven stable. However, several requirements are necessary for the derivation of

the system dynamics and controls. This chapter provides the final conclusions and

gives recommendations to further research studies.

:_.1 Conclusions

Dynamic Modeling - Kinematics of the rotary joint motion and the link de-

formation, which are described by 4 x 4 transformation matrices in the flexible

manipulators, is an efficient, complete and conceptually straight forward modeling

approach. The deflection transformation is represented in terms of a summation

of time-dependent amplitudes and mode shapes. Due to the recursive nature of

the transformation chain, the Lagrangian formulation of the dynamics is derived

as efficiently as that has been done in the rigid-link case. The inertia matrix is
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shown to be positive and symmetric and a condition of skew-symmetry exists in

the equations of motion that is useful in Lyapunov stability proofs. The equations,

which represent the dynamical state, are free from assumptions of a nominal mo-

tion, and do not ignore the interation of angular rates and deflections. However, the

link deflection is assumed to be small compared to joint motion and only rotational

joints are allowed. It is worth mentioning that there exists a stiffness term in the

equations of motion, which is not present in the case of rigid-link manipulators.

The system frequency deduced from the analytical formulation is highly de-

pendent on the mode shapes of the link deflection, while the mode shapes deter-

mined by boundary conditions are illustrated in the experiment. The application

of feedback control to the flexible manipulators also impacts the resultant flexible

vibration modes. With the correct dynamical equation obtained in symbolic form,

the choice of reasonable modes will result in the correct prediction of dynamic re-

sponse. In the case of a one-link flexible manipulator, clamped-mass modes are

selected mode shapes under the control action, while the manipulator may have

pinned-mass modes without any feedback control. RALF provides a more thorough

and complicated case to show verification of the analysis. The dynamics of the ac-

tuator needs to be considered if the bandwidth of the actuator is not large enough

to be ignored; i.e., the dynamics of the actuator with low bandwidth contributes

to the boundary conditions. To eliminate the constraint force effect, the parallel-

driving link can be simplified as an equivalent spring and the kinematic constraints

enforced through a modification of one matrix of the serial chain of transformation

matrices. Therefore, the finite element method is used to derive the desired modes

without restriction on the geometric shape and conditions. With the experimental

results and the numerical results, frequency and time responses show reasonable

agreement. The comparisons nevertheless, is furnished with small motion, while
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equations of motion are assumed to be consistent with large motion.

Control Algorithm - The dynamics equation which has been derived from flex-

ible manipulators is considered as a large-scale system compared to rigid-link ma-

nipulators, since the link deflection is modeled as a linear combination of shapes

with time-dependent amplitudes. Therefore, the practical controller should have

the capability to compensate for interaction forces, Stabilize oscillations during the

feedback process, and then travel a pre-defined trajectory precisely. The signal-

synthesis adaptation implemented here results in a robustly stable design which

reduces the burden of real-time computation and satisfies the characteristics of the

flexibility. The Lyapunov function is implemented here to demonstrate the stability

of the controlled system.

The flexible manipulator system with an independent PD joint feedback has

been proven stable. Each link is then treated as a subsystem of the overall system.

A decentralized scheme is therefore imposed to determine the control structure

which deals with inputs and outputs in the same subsystem, while the interation

between subsystems is included within the uncertainty of the system. A nonlinear

controller is designed to take care of the uncertainties. In order to improve the

speed of convergence to the desired state, an auxiliary integral action is introduced.

However, it is necessary that all states be available in this controller design.

To confirm the theoretical system, RALF has been chosen as the test case.

In the numerical simulations, a spring constant substitutes for the hydraulic ac-

tuator. The system is assumed to be noise-free, but the gravitational effects are

considered. The joint PD controller makes the system stable but oscillations of the

link occur and then are damped out eventually. The decentralized adaptive con-

troller gives better results on the variation of payload and alternative travels. In the

experiments, time responses show compatibility with the theoretical analysis and
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simulations. The differential values of measurements are used as the angular and

the strain rates that are not accessible in this case. A low-pass filter is, therefore,

added to smooth the signal. The system with an adaptive action obviously demon-

strates faster oscillatlon-setting time and smaller steady-state error than without

that, although the overshoot happens in the response. The deviation between the

experiments and simulations should be tolerable due to implementing the simpli-

fied system. Conditions which are assumed to be bounded and comparatively small

on the interconnected terms between subsystems do not conflict with the physical

system.

6.2 Recommendations

Dynamic Modeling - The position of any point along the link with respect

to the origin can be obtained by transformation matrices; and then the velocity

term is obtained when the kinetic and potential energies are established to derive

the equations of motion using the Lagrangian method. An alternative method

called the Newton-Euler Formulation, which is based on the Newton's Second Law

of Motion, can be used to find the dynamics of flexible manipulators, but it is a

complicated algorithm due to the effect of link deflection. The Kane's method may,

however, be expedient for acquiring the dynamics, with new coordinate based on

velocity in terms of position chosen to describe the system.

The assumed-mode technique is utilized to describe the link deflection in this

work. The more modes the system has, the more accurate the dynamics is. How-

ever, this will increase the dimension of the dynamical equation and make numerical

calculation complex. The experimental method may be the best way to determine

the number of modes to be implemented. On the other hand, it is possible that

alternative methods can be used to provide close approximations of the physical sys-

=
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tem. However, the viscoelastic character of flexible manipulators cannot be modeled

by the assumed-mode method clue to difficulty in the formulation of dynamics.

In fact, the location of the actuator needs to be taken more carefully in flexible

manipulators than in rigid-link ones. Because the boundary conditions can be

affected by the actuators, mode shapes composed of the link deflection are deduced

from those conditions. The finite element method is therefore suggested to be an

numerical tool to obtain the correct modes. In the case of RALF, simulations and

controls in this work have been obtained with the simplified equation of motion,

which has equivalent stiffness on the parallel link but excludes its dynamics. The

accuracy of dynamical prediction should be improved by adding the dynamics of

the parallel link. However, it may increase difficulty in dynamical modeling and

control, since there exist geometric and force constraints between the upper and

the parallel links.

Controls - A simple and less time-consuming controller has proven to be robust

and stable in the analysis and to be feasible in the experiments. The full states

which are available, and not necesarily measured, are the essential condition. By

the theory of the Lyapunov function, the positive system can be achieved by adding

a dynamic filter to measured outputs, and then the filter output becomes a feedback

signal. The differential states which are implemented in this experiment, e.g., the

strain rate, can be abandoned due to the noisy value. An alternative is to design an

observer to estimate the unmeasured state. Moreover, a matrix _ which need satisfy

(4.14) does not mean a fixed constant, but may be changed when manipulators move

to a different position. Therefore, a search in deciding _ is suggested in the future.

The value of pi in (4.28) needs to be specified and the prescribed positive constant

6i in (4.25) should have more than one value.

Because mode shapes in flexible manipulators are strongly influenced by feed-
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back controls, different motions and working conditions, the character of dynamic

responses is not uniform so that the controller should be time-varying. For future

work, new control techniques such as the auto-tuning and learning control perhaps

provide better approaches to improve the system performance, although the results

of the controlled system developed in this thesis have been outstanding.

From the experimental result, the reference command is also one of the fac-

tors affecting the system vibration. The smoother reference trajectory is, the less

oscillation occurs. This is used to select the desired trajectory, especially when

oscillation is not allowed in certain working condition. If the end point of flexible

manipulators travels along a pre-deflned path and the llnk oscillation is not con-

cerned, the output measurements may require the end point sensor instead of strain

gages as implemented here. The two measurement methods are not in conflict, but

are complimentary. The property of observability exists in both cases.

In the case of RALF, the hydraulic actuator designed to derive the system has

much higher stiffness than electric drives. This leads to higher loop gain capabil-

ity, greater accuracy, and better frequency response. Also, the hydraulic actuator

gives smoother preformance at low speeds and is direct-coupled to the load without

the requirement for intermediate gearing. However, the hydraulic system is highly

nonlinear and increases complexity in analysis. Electric motor drives may be more

appropriate from the experimental point of view.

i
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Appendix 1 : Dynamic Description for Equation of Motion
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Appendix 2 : Hydraulic Components 

HYDRAULIC COMPONENTS 

P o w e r  Unit 

Size: 
Pump: 
Model: 
Company: 

Valves 
hIo del: 
Serial Nos.: 
Company: 

Cylinders 
Model: - - 
Serial So.: 
Bore: 
Stroke: 
Seals: 
Rod Diameter: 
Piston Diameter: 
Weight: 
Company: 

Slodei: 
Serial So.: 
Bore: 
Stroke: 
Seals: 
Rod Diazlet.er: 
Weight: 
Cornpan?: 

Delco Electric Motor 
25 hp., 230 volts. 60.8 azlips. 17-55 q m  
Vickers Variable Volume Pistor. P a x p  - 20 g?m 

Parker Haanifin Corp. 
Aurora, 5'Y 

i3-102.A Two Stase Servordves - 3 gpm i 2 ,  
147, 153 
Moog, Inc. 
East Aurora. SY 

32C - 3.335 x 40 Cylinder 
jC820.5-065- ! B 
3.25 in. 
40 in. (modified to 17 in.) 
Buna-2; 
-I . 1. r .3 In. 

2.25 in. - -~ 

52 lbs. 
Hydroline blfg. Co. 
Rockford, IL 

H-PB-2 Cylicder 
3'7781-J 
2 in. 
20 in. 
Teflon 
1.00 in. 
35 lbs. 
Xtlas Cylinder Cor?. 
Eugene. OR 
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Appendix 3 : Case Study of Decentralized System

In the following, a case study is performed for the first step to design the

decentralized control system, which is applied to the two-link rigid robotic arms.

Dimension of the robot structure is the same as that of the RALF, but the link

flexibility is excluded in the equations of motion [Yuan and Book 1988].: :

To simplify the analysis, the cylindrical sleeves at the connection of the lower

link and the upper link are modeled as concentrated masses. In SI units_ the lower

and the upper links are ml (=12kg) and rn2 (=13kg), while the point masses at

each end of the links are mu (=30kg) and me (=20kg). This system is assumed to

have motion in the vertical plane.

The equations of motion are as follows:

rn21 m22 0_ + h21 + g21 g = v2 '

where :

=-- ,2/3 _ ,2/3 m,,)l_ m,,l_ 2m,,)lll2cosO,mll "°1"1 +"_2'2 + (ms + me + + + (m2 +

_1_ = ,_l]/_ + m,,l_+ (1/2m_+ m,,)l_z_cos8_,
= _ 12/3m_l ,._,_ + ,_.z_ + (1/2m_+ ,_.)llz_ cosO_,

m22 m2l_/3 + m,,l_,

h,1 = 1/2(m_+ mu)llZ50_sin05+ (2mu+ r_5)11120105sin02,
h_l = (1/2m_+ _n_)lll_0_,

gll = (1/2-_1+ -_ + -_ + r_.)I_cos01+ (1/2m_+ m.)t_ cos(el+ 05),
g_l= (U2m_ + m_)l_cos(0,+ 05).

01 and 0_. are joint angles; _rl and 7"2 are torque forces. Using symbolic terms to

represent (A3.1)"

M(O)O + H(O,O) + a(o) = T, (A3.2)
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The inertia matrix M has eigenvalues between 37.6 and 1805.4. Therefore,/3a

and/32 (/3 = diag [/3a/32]) are chosen as 0.001 satisfying the inequality(4.14). Then,

(A3.2) can be rewritten as:

= -M -a [H + G] +/3T + [M -a -/3] T, (A3.3)

Now, one can consider each joint j as a subsystem of the overall system (A3.3).

Defining state variable X T = [Oi 0i] and a control input ri = ui, equation (A3.3)

is divided into two equations for two interconnected subsystems (note: i = 1,2).

Each subsystem is described by a first order differential equation of the form:

J(i = AiXi + biui + Fi(X) + fi(X)ui, (A3.4)

where

i=1,2

x T= [xT

Ai = (0olo)

Fi(X) are the coupling terms of -M-a [H + G] for subsystem i and fi(X) are the

coupling terms of (M -1 -/3) for subsystem i.

Fi(X) and fi(X) are assumed to be bounded, are modeled as system uncer-

tainties and have the properties:

Fi(X) def Fi(X,o') -- bi Di(X,o')

fi(X) de_ .f/(X, o') -- bi Zi(X,o'), (A3.5)
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where _ E R v represents the system uncertainty and is continuous on R p as well as

the uncertainty bounding set. Also, ItEill < 1 is from (4.14).

Therefore, the overall system takes the following matrix form

.,f( = AX + BU + BD + BE, (A3.6)

where for i = 1,2,

A = diag (Ai),

B = diag(b i),

D = diag (Di),

E = diag (Ei),

Vr = u2].

applied to the above equation (A3.4 or A3.6) without exception.

The decentralized control algorithm, which is described in Chapter IV, can be

First, choose a

stable reference model,

and let

J(,ni -- A,.,,iX,_i + bmiri, (A3.7a)

bmigzi - A,.,,i - Ai , (A3.7b)

bgbi = bmi . (A3.7c)

Given a positive definite and symmetric matrix Li, a matrix Pi can be obtained by

satisfying the Lyapunov equation,

T
A,-,,iPi + PiA,,i = -Li. (A3.8)

Therefore, the input control ui is described as

ui = KziXi + Kbiri + _bi(ei), (A3.9)

where ei = grai - Xi and _bi is the nonlinear control expressed as in (4.25).
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w Appendix 4 : LVDT Calibration
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Appendix 5 : Strain Gage Calibration
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Appendix 6 : Block Diagram of the Decentralized Adaptive Control 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I 
I 

I CONTROL FOR SUBSYSTEM i 
I 
I 
I 

I 
I 
I 
I 
I 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I . . . . . . . . . . . . . . . . . . . . . . . . .  
I 
I : REFERENCE MODEL 
I 

I 
I 
I 
I 

I 
I 
1 
I 
I 
I 

I 
I 
I 
I 
1 
I 
I 

I 
I 
I 
I 
I 
I 

I 
1 
I 
I 
I 
I 
I 

I 

SUBSYSTEM j 



176 

VITA 

Bau-San Yuan was born in , on . He received the B.S. 

degree from National Taiwan University in 1979, and the M.S. and Ph.D. degrees 

in Mechanical Engineering from the Georgia Institute of Technology in 1984 and 

1989 respectively. 

From 1983 to 1988, he worked as a research assistant at Georgia Tech. Since 

January, 1989, he has been a Senior servo engineer at the American Semiconductor 

Equipment Technologies, Woodland Hills, California, where he has contributed to 

the design of control systems in the submicron motion. His current research activ-

ities include light-weight manipulator dynamics and robust adaptive controls, and 

micro-motion control. 

-

.. 

.. 
--
-
-

-
-

-

-
• 




