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INTRODUCTION

Whenever we have pursued simple physical descriptions of the inner
workings of the cell we have discovered that nature was there long ago,
genetically programming high-precision macromolecular machinery to
assure the eternal persistence of a particular physical process, such as
maintenance of the internal electrolytes of the cell by a collection of gates and
pumps, maintenance of cell shape with not one or two, but at least three whole
systems of cytoskeletal proteins, assuring the immortality of the genome itself
through a complex system of repair enzymes we have barely begun to
understand, etc. Very little about the cell is left to chance. But nature has

never been given the opportunity to consider the maintenance of the living
cell in the absence of net inertial acceleration and its consequences, such as
hydrostatic pressure, buoyant flow, and sedimentation.

At the inception of space research some 30 years ago, there was concern in
the U.S. and the Soviet Union about the effects of weightlessness on living
things. It needed to be known in particular whether the absence of gravity
had no effect or a catastrophic effect on biological systems under space flight
conditions. It was easy to solve problems introduced by the space environment
by the use of engineering to protect against the lack of an atmosphere and the
presence of radiation, but engineering against weightlessness and its possible
biological effects proved to be extremely difficult. Fortunately, early
experiments indicated that the biological effects of low gravity were certainly
not catastrophic, and the 84-day Skylab mission and substantially longer
Soviet missions succeeded in the absence of a gravitational field. However,
profound physiological changes were noted, and countermeasures are in use
in modem manned space flights.

Current and future research is directed at the basic study of what we
presume to be gravity dependent environmental responses. In other words,
space flight conditions are being made available for basic science
experiments.

Although we know of many biological phenomena affected by gravity,
their connection to molecular and physical processes are poorly understood.
In this sense, the effect of gravity is paradoxical because the cell is the basic
structure of living things, and the organisms' properties depend upon cells.
Yet it is much easier to think of gravity as acting on larger systems as cells are
at the limit of size and mass which is influenced by the gravitational field in
the presence of thermal motion.

Since the beginning of the orbital space flight era in 1957, scientific
experiments on the effects of weightlessness on cells from all five living
kingdoms have been performed (Edwards, 1969; Moskvitin & Vaulina, 1975;
Saunders, 1971; Taylor, 1977; Young and Tremor, 1968 a,b). Opportunities to
perform, let alone repeat, experiments in the microgravity environment of
orbital space flight have been rare. Until recently there has been a tendency
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to generalizeon the basis of a small number of unrepeatedexperiments. Early
negative results (Montgomery et al., 1974) that tended to confirm negative
predictions (Pollard, 1965) were at one time in dangerof becomingdogma. The
field of microgravity cell biology has suffered, not only from a paucity of
reproducible data but from a constrained research paradigm in which an
inadequatevariety of physical phenomenahas served as a resource for
hypothesis testing.

It is the purposeof this article to review a broad rangeof gravity-
dependent physical processes, including interactions among these processes
and to indicate how they might apply at the dimensionsof single cells.

But first, a few definitions may help guide investigations of gravitational
effects at the single-cell level. While all cells on earth evolved in the
presenceof a 1-g field, somedevelopedmechanismsto use this field (root and
shoot gravitropism) while others developed countermeasuresagainst its effect
(muscle, cytoskeleton). The unnatural unloading of this force affects essential
mechanism in the former case and fortuitous ones in the latter.

Correspondingly, the former type of cell (plant, protozoa) r¢_ponds to gravity,
while the latter (animal) is _ffected by gravity. It is now possible to consider

inertial acceleration as a continuous variable - all the way down to amost

zero(10 -6 - 10 -4 x g), so while zero may be considered the rg.zigJ_o_of g as with

any variable, the baseline value is g = 1 (or 9.8 m/sec2). This somewhat
inverted situation tempts one to study "the effect of microgravity" rather than

to "perform g-unloading experiments."

A CORNUCOPIA OF GRAVITY-RELATED PHYSICAL PROCESSES

Inertial accelerations, including gravity, play a role in directly affecting
the motion of masses and by contributing to motion when other forces are

present. A few examples that apply to small particles and fluids are
introduced.

1, Sedimentation

Stokes' sedimentation describes the constant velocity of a particle falling

through a fluid, in which gravitational, buoyant, and viscous drag forces are
balanced. Beginning with

F (grav)- F (buoy) - F (drag) = 0 (1)

one finds for a sphere of radius a and density p that the "terminal velocity" is

v = 2 (p - Po) a 2 g/9 11 (2)

where P o is the fluid density, and 1] is the fluid viscosity. It can be seen from

equation (2) that sedimentation rate depends in a sensitive way on particle
radius (squared) and density (from which fluid density is subtracted.)

104



2. Diffusion/Brownian motion

Einstein succeeded in describing diffusion as the consequence of a "random
walk" executed by panicles due to their thermal energy kT (k=Boltzmann's
constant). The surprisingly simple result was

<x2> = 2 D t (3)

where <x2> = mean square distance travelled by a particle having diffusion

coefficient D in time t. D can be derived from the thermal energy kT of a
panicle of radius a undergoing Brownian movement in a fluid with
viscosity 1] :

D = k T / 4_I] a (4)

These relationships give rise to Fick's laws of diffusion, in which the net
unidirectional flux of particles is proportional to the gradient, dc/dx, of the
particle concentration c.

Diffusion is not affected by gravity and occurs in its absence. However,
diffusion and sedimentation velocities are sometimes similar, and their sum

results in gradual settling; and under certain combinations of D, rl, and dc/dx,
the collective behavior of dissolved molecules and/or particles results in
droplet (or zone) sedimentation.

3. Isothermal settling

If the temperature T does not change substantially over the height h of an
ensemble of particles, then the mean kinetic energy kT of all particles is the
same at all heights. The potential energy of a panicle of mass m is usually
expressed as mgh, but if the particles are subject to buoyancy in the fluid the

potential energy becomes V (p-po)gh, if the particle volume is V. From the

famous Boltzmann distribution rule the concentration of panicles at height h
will be established:

c(h) = c(0) exp [-V(p-po) g h/kT]. (5)

This means concentration is an exponential function of height under

isothermal conditions and that large, dense panicles with P.E. >> kT (from

mammalian cells to marbles) will be concentrated at h = 0 and that small

particles, such as certain organelles have values of V and p that lead to

exponential distributions of c(h) (Pollard, 1965).

4. Droplet sedimentation

The diffusion coefficients of small molecules are in the range of 10 -6 to

10 -5 cm2/sec, of macromolecules 10 -7 to 10 -6 , and of whole cells and particles

10 "12 to 10-9 . If a small zone, or droplet, of radius R contains n particles of

radius a inside, whose diffusivity is much less than that of particles outside,
then rapid diffusion of solutes in and slow diffusion of particles out of the
droplet leads to a transient locally increased density of the droplet:
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PD = PO + a3 11(P'Po). (7)

R 3

If PD > Po then the droplet falls down; if PD < Po it is buoyed upward - the so-

called Rayleigh-Taylor instability condition. Droplet sedimentation (or
buoyancy) is a special case of a more general phenomenon--convection.

, Convection

The sedimentation or buoyancy of fluid zones (large or small) often occurs
due to thermal (temperature) gradients that cause lower zones to become less
dense than zones above them. In a sense, motion of the type described by
equation (2) follows, but, depending on the values of dimensionless ratios
(Rayleigh number, Grasshof number), this motion can be spatially patterned
(BEnard cells). In addition to thermal convection, solutal convection can
occur when concentration gradients lead to dense solutions being found abvoe
less-dense solutions, even under isothermal conditions. Owing to the lack of

good quantification of convection at small dimensions, we do not know
whether or not convection inside a single cell is possible. It is quite apparent,
however, that convective forces play a role in early post-nucleation events

during the growth of crystals from solution (Kam et al., 1978).

6. Particle streaming

When solid panicles or droplets of two densities are present, and when one
particle type sediments downward while the other is buoyed upward, a traffic
pattern is established whereby fine streams of alternating upward and
downward fluid motion occur. Batchelor (1986) characterized this motion on

the basis of a follow-the-leader paradigm which seems to be broadly applicable
and represents yet another example of collective behavior of particles
suspended in a fluid.

7. Flocculation and coalescence

Flocculation is the attachment of suspended panicles or molecules to one
another when Van der Waals interactions are not counteracted by electrostatic

repulsion (colloid instability). Coalescence is the growth of liquid droplets or
films within or on another immiscible liquid. These two chemically different

phenomena have the same hydrodynamic outcome: the value of a2 in equation

(2) increases, thereby increasing v. Gravity often causes these phenomena to

be non-linear, as the increase in a2 increases the collision cross-section,

thereby further enhancing the flocculation and coalescence phenomena.
While coalescence is due to interfacial (surface) tension, flocculation is related

to electrokinetic properties of molecules or particles. These two phenomena
are independent of gravity and occur in its absence (Van Alstine et al., 1987);
however, inertial unloading can profoundly affect the ability of these forces
to act, and the rate at which they proceed.
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8. Interfacial. or surface, tension

Surface tension is the force per unit length required to maintain a surface
or an interface between 2 phases. Surface free energies for most liquids are
>> kT; when they are not "superfluidity" occurs. Although the cell's plasma
membrane is composed primarily of lipid, the presence of transmembrane
protein reduces its surface tension to less than 1% that of an oil-water

interface (Davson-Danielli, 1951). Low-gravity research has provided a
number of insights into interfacial behavior (Subramanian, 1986) because

large drops and bubbles can be formed and manipulated. The water filling an
entire drinking glass, for example, can, and does, form a perfect sphere. Do
round cells sag on earth, and do flat cells become round in space flight
(Pollard, 1974)? Certain animal eggs can be shown to "sag" when resting on a
surface at specific stages; on the other hand all single-cell types studied in
space to date have been makers of their own destiny. Their shapes have been
determined by their cytoskeleton, the forces of which substantially exceed
inertial and surface forces. Not all cell types are the same, however, and the

polymerization bonds that shape the cell are weaker in some cell types than
they are in others.

9. Particle electrokineties

The surface charge density of suspended particles prevents their
coagulation and leads to stability of lyophobic colloids. This stability is the
backbone of such huge enterprises as paints and coatings, pulp and paper,
sewage and fermentation, etc. The same charges, of course, lead to motion
when such particles are suspended in an electric field. The particle surface

has an electrokinetic ("zeta") potential, _, proportional to t_e, its surface

charge density - a few mV on stable particles, including cells in aqueous

suspension. If the solution has dielectric constant 13, the electrophoretic

velocity is

;E
v = E (8)

6nrl

for small particles, such as molecules, whose radius of curvature is similar to

that of a dissolved ion ("Debye-Htickel particles), and

_E

v = _ E (9)

4_q

for large ("Smoluchowski") particles, such as cells and organelles in an
electric field, E..

10. Streaming potential

If a charged particle moves an electrical potential will be created, and this
potential will impart motion to other charges in the environment, including
dissolved ions. While the _ potential of a stationary particle is only "felt" by
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chargesup to 7 /_ or so away, an electric field spreads over greater distances
when the particle moves. If a particle is caused to move by the acceleration of
gravity (upward or downward) the strength (V/cm) of the electric field
generated is

e (P-9o) g
E = (10)

3 nrl

where K is the Debye-Hiickel constant, measured in cm -1 and is directly

proportional to the ionic strength of the surrounding medium. The force of
this field is counter to the direction of motion of the particle, hence the name

"counter streaming potential" also known as the "Dorn Effect." This potential
could be as great as 20 mV.

11. InI¢ra¢ting fields

In reality, no force acts in the absence of other forces, and to some degree,
from zero on upward, forces affect each other's actions. To deal with this fact,
all types of flow (mass, charge, magnetic flux, etc.) are assumed to be non-
independent, and transport relationships are described by a flow-and-field
matrix. All flows J are caused by a field, generalized as AIX, in proportion to a

coefficient L that relates them:

J=LA_ (11)

For example, J might be the movement of mass falling through a specified

area (kg m'2 sec-1), A_t would then be the inertial force field, in this case the

acceleration of gravity, g over time At. L will convert the inertial coefficient

(mass, in the simplest case) and the amount of material falling

(concentration), or

J m = N m g At (12)

also familiar as Newton's 2nd law. Flow can be generalized on the basis of what

is flowing, Ji, and the fields causing the flow, AIx; more than one type of field
can cause more than one type of flow, so in general one has a matrix type of
field:

J1 = Lll A_tl,+ L12A_t2 + L13Akt3"'"

J2 = L21 Agtl + L22A_t2 + L23Alx3"'"

J3 = L31 Agtl + L32Agt2 + L33AIx3"'"

Or Ji = y_ Lij A_j (13)

J
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This means, for example, electric fields can move chargedmassesand
gravitational fields can move chargesassociatedwith mass. In this example (a
falling charged particle) one can determine the downward mass flux, Jm, and
the electric current I = J e:

Jm = Lll AI.tg+ L12 AI.te (14a)

Je = L21 Al.tg + L22 AlXe (14b)

In most cases, L21 and L12, the cross-term coefficients (the effect of gravity on

a current and the effect of the electric field on sedimentation, respectively)
are considered small compared to Lll and L22. However, most physicists will

point out that, at subcellular dimensions AlXe>> AI.tg, so it may not be possible to
ignore cross terms in subcellular transport. In any case, solution of equations
(14) at equilibrium leads to (Tobias et ai., 1972):

8 1-I O 3 (p.po)2 c g te a 3 (p-po) cE

Jm = + (15a)

27_ 3rl

ea 3(p.po) gc

Je = + k E (15b)

31]

where k = specific conductivity and c = concentration. Each of these terms is
recognizable, from the top, left to right, as Stokes sedimentation (equation (2)),
Dorn-effect electrophoresis (equations (9) and (10)), streaming potential
(equation (10)), and Ohm's law.

12. Work

Whole cells, and presumably their parts, are ultimately positioned
vertically with respect to one another or some marker. In most cases, this

means that each positioned object gained the potential energy associated with
its vertical position h, above the place where it was born, by the performance
of net work W, which is path-independent:

W=V(p -po) gh (16)

SOME APPLICATIONS TO THE CELL

Phenomena to which the above-mentioned principles apply can be
identified.inside every cell and among cells.. A few examples are considered
here.

1. Sedimentation. Eukaryotic chromosome example

If the metaphase eukaryotic chromosome is considered as a compact object,
as indicated in Figure 1, its sedimentation velocity can be estimated to be
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around2 x 10 -7 cm/s -- similar to its rate of poleward migration during

anaphase (Todd, 1977).

2. Sedimentation of oreanelles

If the same treatment is applied to selected organelles (those sufficiently
large and dense to be worthy of consideration(Pollard, 1965; Fawcett, 1966;
Tobias et al, 1972)), the approximate physical properties of each, given in
Table 2, can be used to estimate the sedimentation velocities of each, also listed
in Table 2. The final column in Table 2 indicates caution. Most of these

organelles are anchored in place by cytoskeletal structures (in the case of
chromosomes and the nucleus(Prescott et al., 1972; McNutt et al., 1973)) or
embedded in internal membranes (in the case of mitochondria, plastids, and

dictyosomes(Shen-Miller, 1972 a,b,c,d)), or both see Table 3. Only the motions
of otoliths and amyloplasts (statoliths) are known to be responsive to g and
responsible for a measurable g-response (Audus, 1962, 1964; Gray and Edwards,
1971).

3. Isothermal settling of platelets

Human platelets stored in microgravity have a longer lifetime than their
counterparts on the ground (Surgenor, 1987). Interactions that occur during
settling are among the hypothetical causes of the short life span of the
thrombocyte in vitro. While a certain amount of flocculation occurs during

platelet storage, it is nevertheless reasonable to ask whether single-platelet
suspensions actually settle. First, a Stokes' sedimentation velocity can be
estimated as 0.01 _tm/s (Table 4), which corresponds to about 1 diameter

settling distance every five minutes. Brownian movement will lead to a final
vertical distribution given by equation (5) in which the concentration of
platelets, c(h) is reduced by 1/e every 9 _tm from the bottom of the container.
It thus appers that, with or without flocculation, platelet settling is significant
and cannot be dismissed as being unrelated to their short (a few days) lifespan
in vitro.

4, (_onvection.

A study of early lattice formation in nucleating protein crystals (Kam et al.,
1978) indicates that critical assembly processes occur at the submicron level.
During lattic formation, the Gibbs free energy of crystallization is released to
the immediate environment as heat, and solute is depleted near the lattic-

forming surface. Both events lead to a local density reduction (Figure 2) with
the potential for convection. The g-unloading of this process should,
therefore, lead to higher quality crystal growth, which, evidently, it does
(DeLucas et al., 1987: Bugg, 1987; Littke and John, 1982). Similarly, the
formation of such self-assembled structures as microtubules (Weisenberg,et al,

1968) might be improved during g-unloading. Preliminary experiments by
Moos et al (1988) indicate a more uniform length distribution of microtubules
assembled during parabolic aircraft flight.
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TABLE I. HYDRODYNAMIC VALUES FOR A METAPHASE CHROMOSOME (SEE

FIGURE 1) USED FOR APPLICATION TO EQUATION (2). CHROMOSOMES HAVE BEEN
EXAMINED HYDRODYNAMICALLY IN ISOLATION (Burki et al., 1973; Schneider &

Salzman, 1970), AND CYTOPLASMIC VISCOSITY HAS BEEN STUDIED BY

PARAMAGNETIC RESONANCE (Keith & Snipes, 1974).

V=2r_r21 = 25 x 10 -2 cm 3

g = 980 cm/sec 2

P'Po = 1.35 - 1.04 = 0.31 g/cm 3

a = (3V/4r_) 1/3 = 2.1 x 10-4 cm

h= 5_+ 2 dyn-sec/cm 2

v = 2 x 10 -7 cm/sec

TABLE 2. PHYSICAL PROPERTIES OF ORGANELLES USED TO CALCULATE

STOKES' SEDIMENTATION VELOCITIES

QRt_ANELLE

VOL p v t x

(ld,_m__3) (g/_g.__3) 9...:_9-0 (cm/sec) (_ (l,t___) FEATURE

0.01-.02 0.1-4x10 -8 103 0.1 Convoluted,

large
structure

MITOCHONDRION 2- 100 1.1

NUCLEOLUS 10- 2 0 1.4 0.3 2 x 10 -7 104 20 Suspended

by
chromatin

CHROMOSOME 5 - 5 0 1.35 0.3

AMYLOPLAST 10 0 1.5 0.4

OTOL1TH 1000 2.0 0.8

DICTYSOME 100 1.2 0.15

Some data derived from Fawcett (1966).

2 x 10 -7 103 2

1 X I0 -6 <-103 10

>lXl0 -5 1 0.1

>3X10 -7 103 2

Suspended

by

txtubules

Real free

particle

Known to

react

Internal

membrane

structure
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TABLE 3. ORGANELLES THAT COULD SEDIMENT

ORGANELLE _, MICRONS

NUCLEUS 5

NUCLEOLUS 1

CHROMOSOME 2

CILIUM 4- 10

DICTYOSOME 2 - 6

ORIGIN QF

TENSILE FQRt_E

10 NM FILAMENTS

CHROMATIN

MICROTUBULES

MICROTUBULES

MICROTUBULES

TABLE 4. STOKES' PARAMETERS FOR THROMBOCYTES IN PLASMA AND
CALCULATION OF THEIR SEDIMENTATION VELOCITY

h=0.5 Ixm d=3.0 ktm

Equivalent Stokes' radius = 0.94 t.tm from a = (3V/4rc) 1/3

Density from Geigy tables

p (platelet) = 1.045 g/cm 3

p (plasma) = 1.0269 g/cm 3

1] (plasma) = 1.10 cp = 0.011 g/sec-cm

Velocity

2 (p - Po) a 2 g

v = = 0.01 I.tm/sec = 1 diameter/ 5 min

9rl
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Figure 1. Balance of forces and dimensions of a metaphase chromosome
sedimenting in free solution.
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Figure 2. Events at the surface of a growing paticle (crystal) that lead to
fluid instability. The free energy of binding (or lattice formation) is released
to the immediate fluid environment thereby raising its temperature and

decreasing its density. At rapid growth rate, adsorption is more rapid than
diffusion and solute concentration drops thereby decreasing the solution

density. Both phenomena could lead to buoyancy of fluid at the growing
surface.
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