

NASA Conference Publication 3057

Software
Reuse
Issues

Edited by

Susan J. Voigt

and Kathryn A. Smith

NASA Langley Research Center

Hampton, Virginia

Proceedings of a workshop sponsored by

NASA Langley Research Center,
Hampton, Virginia, and held in

Melbourne, Florida

November 17-18, 1988

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical
Information Division

1989

PREFACE

The Workshop on NASA Research in Software Reuse was held November 17-18, 1988, in

Melbourne, Florida. The workshop was sponsored by the Systems Architecture Branch, Infor-

mation Systems Division, NASA Langley Research Center and hosted by Software Produc-

tivity Solutions, Inc., Indiatlantic, Florida. The workshop was held to permit NASA research-

ers in software reuse to share their plans and to learn about other current research activities of

direct interest. Space Station Freedom Software Support Environment project personnel were

also invited to attend to describe their plans to support software reuse in the Space Station

Freedom Program.

Several presentations and demonstrations were given by Software Productivity Solutions, Inc.,

on their work related to Eli, the reusable software synthesis system under development with
a NASA Small Business Innovative Research contract.

A list of issues was developed during the workshop discussion session, and a few recommenda-

tions were made related to experimentation and data collection within NASA software reuse

applications.

Susan J. Voigt and Kathryn A. Smith
NASA Langley Research Center

PRECEDING PAGE BLANK NOT FILMED

o°°

111

CONTENTS

PREFACE iii

INTRODUCTION 1

SUMMARY OF WORKSHOP PRESENTATIONS 3

AUTOMATED REUSABLE COMPONENTS SYSTEM STUDY RESULTS 5

Kathy Gilroy

KNOWLEDGE-BASED REUSABLE SOFTWARE SYNTHESIS SYSTEM 17

Cammie Donaldson

IMPACT OF DOMAIN ANALYSIS ON REUSE METHODS 33

Kathy Gilroy

CLASSIC-ADA TM 41

Lois Valley

PROTOTYPE SOFTWARE REUSE ENVIRONMENT AT GODDARD

SPACE FLIGHT CENTER 49

Walt Truszkowski

JPL REUSE PROGRAM 55

James W. Brown

JOHNSON SPACE CENTER SOFTWARE REUSE ACTIVITY 61

Steve Gorman

REUSE RESEARCH PLANS AT LANGLEY RESEARCH CENTER 65

Susan Voigt and Carrie Walker

REUSE AT THE SOFTWARE PRODUCTIVITY CONSORTIUM 67

David M. Weiss

SSFP APPROACH TO SOFTWARE REUSE 89

Peg Snyder

LEVEL II SOFTWARE REUSE STUDY 97

Scott E. Herman

AN SSE APPROACH TO REUSABILITY 105

David L. Badal

SUPPORT FOR LIFE-CYCLE PRODUCT REUSE IN NASA'S SSE 111

Charles Shotton

v PRECEDING PAGE BLANK NOT FILMED

INITIAL ADA COMPONENTS EVALUATION 119

Dr. Travis Moebes

APPLICATION OF REUSABLE SOFTWARE COMPONENTS AT THE SEI 135

Robert Holibaugh

TECHNOLOGY TRANSFER IN SOFTWARE ENGINEERING 149

Dr. Peter C. Bishop

ADANET SERVICES 155

Michael Digman

A.DVANCED SOFTWARE DEVELOPMENT WORKSTATION PROJECT 159

Daniel Lee

WORKSHOP DISCUSSION 165

RECOMMENDATIONS 167

APPENDIX A - PARTICIPANTS 169

APPENDIX B - AGENDA 173

vi

INTRODUCTION

NASA Langley Research Center sponsored a Workshop on NASA Research in Software Reuse
on November 17-18, 1988, at the Quality Suites in Melboume, Florida. The workshop was

hosted by Software Productivity Solutions, Inc. (SPS) and led by Susan Voigt of NASA Lang-

ley. Participation was by invitation only and included representatives from four NASA centers

and headquarters, eight NASA contractor companies, and three research institutes.

The primary purpose of the workshop was to share information and plans for software reuse
research at the four NASA centers participating in the Office of Aeronautics and Space Tech-

nology (OAST) "NASA Initiative in Software Engineering." Other objectives were to identify

areas for cooperative and collaborative research among the NASA centers; to provide NASA

researchers an opportunity to learn about Eli, the reusable software synthesis system designed

by SPS and being developed under a Small Business Innovative Research (Phase II) contract

with Langley Research Center; and to expose Space Station Freedom Software Support

Environment developers to NASA research activities in reuse.

In addition to NASA researchers from Goddard Space Flight Center, Johnson Space Center,

Langley Research Center, and the Jet Propulsion Laboratory, a few representatives from the

Space Station Freedom Program and outside research groups were invited to attend and to

make presentations that would be of interest to the NASA reuse research community. A list of

workshop participants is included in this document. This publication summarizes the presenta-
tions made and the issues discussed during the workshop.

SUMMARY OF WORKSHOP PRESENTATIONS

This section contains a brief summary as well as the viewgraphs of each of the presen-
tations made during the workshop. The order follows that of the workshop agenda.

Talks on related topics which were grouped together include SPS developments,
research activities at the participating NASA centers, plans for software reuse in the
Space Station Freedom Program, and some information about AdaNET. Invited talks
were also given by representatives of the Software Productivity Consortium, the
Software Engineering Institute, and a NASA Johnson Space Center contractor, Infer-
ence Corporation.

The first four presentations were given by members of the Software Productivity Solu-
tions, Inc. (SPS) staff. The company has several activities related to software reuse
including both research and product development. Since SPS had recently completed a
NASA Small Business Innovative Research contract that included a broad survey of

technologies to support reuse and currently is developing several elements of a
software development system incorporating reuse, they were asked to host this
workshop and present their key findings to the NASA research community.

Four NASA centers are participating in the NASA Initiative in Software Engineering

Program under the Office of Aeronautics and Space Technology computer science
research program. The research activities in this initiative are focused on software
engineering for reliable complex systems, and each of the Center programs has an ele-
ment in software reuse with various approaches to reduce complexity or increase relia-
bility. The main objective of this workshop was the exchange of information among
researchers from the four centers.

In the NASA Space Station Freedom Program, the Software Support Environment
(SSE) is a bold step toward software reuse. It is the set of tools and rules to be used
by all developers of software for the Space Station Freedom. The intent is to reduce
life cycle costs of software by avoiding duplication of similar tools needed by many
contractors as well as to make the integration and maintenance of software systems
much easier. As part of its toolset, the SSE will provide library support for application

software reuse. Space Station software representatives were invited to participate in this
workshop to present their plans and requirements to the NASA research community
and to explore ways for research results to help the SSFP.

Software reuse projects are active at both the Software Productivity Consortium, a
software engineering research organization supported by 14 aerospace companies, and
the Department of Defense Software Engineering Institute at Carnegie Mellon Univer-
sity. The approaches being taken in these organizations and the issues they are
addressing were of interest to the NASA research community.

The advanced software development workstation project, funded by NASA, is coupling
reuse support tools with an advanced graphical workstation. Progress and future plans
on this work were summarized for the workshop participants.

AdaNET is an electronic distribution network for software engineering information and
parts exchange. It is partially supported by the NASA Office of Technology Utiliza-
tion. Representatives from the AdaNET project were invited to participate in the
workshop to describe their plans and activities and how these might relate to the
NASA research program.

PRECEDING PAGE BLANK NOT FILMED 3

N90-14790
o° _ _ .

AUTOMATED REUSABLE COMPONENTS SYSTEM STUDY RESULTS

Kathy Gilroy
Software Productivity Solutions, Inc.

The Automated Reusable Components System (ARCS) was developed under a Phase I Small
Business Innovative Research (SBIR) contract for the U.S. Army CECOM. The objectives of

the ARCS program were (1) to investigate issues associated with automated reuse of software

components, identify altemative approaches, and select promising technologies, and (2) to
develop tools that support component classification and retrieval. The approach followed was

to research emerging techniques and experimental applications associated with reusable
software libraries, to investigate the more mature information retrieval technologies for applica-

bility, and to investigate the applicability of specialized technologies to improve the
effectiveness of a reusable component library. Various classification schemes and retrieval

techniques were identified and evaluated for potential application in an automated library sys-

tem for reusable components. Strategies for library organization and management, component
submittal and storage, and component search and retrieval were developed. A prototype ARCS

was built to demonstrate the feasibility of automating the reuse process. The prototype was

created using a subset of the classification and retrieval techniques that were investigated. The

demonstration system was exercised and evaluated using reusable Ada components selected
from the public domain. A requirements specification for a production-quality ARCS was also

developed.

PRECEDING PAGE BLANK NOT FILMED

5

AUTOMATED REUSABLE COMPONENTS

SYSTEM (ARCS)

Objectives

o Investigate issues associated with automated reuse of software

components, identify alternative approaches and select promising
technologies

- classification criteria

- library organization

- retrieval techniques

o Develop tools to support component classification and retrieval
activities

- develop demonstration system in Phase I

- define the requirements for a production-quality

system to be developed during Phase II

CLASSIFICATION AND RETRIEVAL RESEARCH

Approach

o Research emerging techniques and experimental applications associated with
reusable software libraries

O

o

Investigate the more mature information retrieval (IR) technologies for

applicability to the reusable software problem

Investigate the applicability of specialized technologies (e.g., expert systems,

semantic networks, fuzzy logic) to improve the effectiveness of a reusable

component library

6

REUSABLE COMPONENT LIBRARY
SYSTEM ROLES

o Classification - the

the library

process of entering the component into

o Retrieval - the process of finding an

to meet a perceived need

applicable component

REUSABLE COMPONENT CLASSIFICATION

1. Understand the component

2. Certify the component

3. Classify the component based upon knowledge of the classification strategy

4. Insert the component into the library

REUSABLE COMPONENT RETRIEVAL

1. Access the component by stating the need in terms compatible with the

classification system

2. Understand the component

3. Evaluate the component for applicability and acceptability

4. Adapt the component for the particular application

5. Integrate the component into the baseline system under development

Classification Issues

o Classification criteria - those attributes of components that can be used to

classify, understand and evaluate them.

o Classification organization - the mechanism by which components are

logically organized in the library according to the classification criteria.

Classification Criteria

o Must support both searching and discrimination

o May be static or dynamic

o Classification criteria may be composed of:

- Key words associated with its function, purpose or application area

- Text description
- Characteristics or metrics of interest

- Language or other structured description

Classification Organization

o Enumerative organizations

o Hierarchical taxonomies

o Faceted schemes

o Semantic nets

o Clustered organizations

Query Logic

o Deterministic logic that retrieves based upon exact matches according to a

Boolean query.

o Probabilistic logic that estimates the probability of relevance of specific

components in the library.

o Fuzzy logic that uses weighted or graded measures to assess whether a

component meets user query criteria.

Query Enhancement

A modification or enhancement of an original query in order to expand or refine
the retrieval

o Query Generalization, required when there are too few finds or when the finds

that are retrieved are "near- misses".

o Query Specialization, required when user is confronted with too many finds, or

when most of the components that are retrieved are non-relevant.

10

Query Enhancement Application

o Query enhancement experiments in IR have not demonstrated improvements

in retrieval effectiveness, and, in fact, demonstrate degradation in many cases

o A compromise to automated query expansion is to calculate an ordering of

finds and to use the ordering to present the "best fit" or most relevant to the

user first

o Relevance feedback has shown the most promise

Classification and Retrieval Conclusions

No single scheme is best -- employ a number of technologies, adapting and borrowing

from database, information retrieval and knowledge-engineering disciplines

o Classification criteria: All types - key words, text, characteristic-based or

metrics and languages

o Library classification organization: Faceted, later enhanced with clustering

o Query logic: Deterministic, later enhanced with probabilistic or fuzzy logic

Flexibility is important in improving effectiveness!

11

ARCS Prototyping Objectives

o Experiment with a faceted classification approach and with supporting

multiple classification schemes

o Evaluate candidate criteria for usefulness in retrieval, evaluation and

understanding

o Prototype the user interface to improve usability of the production ARCS

o Demonstrate the applicability of an Entity-Relationship database approach

o Support the formulation of requirements for the production ARCS

o Determine areas where more research is needed

Demonstration ARCS Tool

o Implemented entirely in Ada

o Hosted on VAXstation running VMS

o Employed a number of existing components and subsystems

- WINNIE (windowing/menu system)

- SMARSTAR/Rdb (relational database management system)

- A da Entity-Relationship Interface to database subsystem

- Numerous low level data management components

12

ARCS Operations

o Viewthe catalog information stored about a specific component existing in

the ARCS database.

o Add a catalog entry for a new component, and insert its source code and

test cases into the database. This information is then controlled by the

ARCS much like checking-in and checking-out information from a CM

system.

o Update the catalog information for a specific component.

o Delete all information about an obsolete component from the database.

o Extract a specified component from the database. The sources, tests, and/or

catalog information can be copied to a user-specified VMS directory.

o Select (find) components which match search constraints on the values of

component characteristics. The components so selected may then be viewed

or extracted, or the selection criteria may be modified to improve the results of a

subsequent search.

ARCS User Interface

• Consistency, on-line help, shortcuts (data entry still a burden)

• Menus ,and forms for component attribute update and query

• Supported by windowing and menu organization subsystems

Attribute-based queries supported by

mad
[not] [qualifier] value { or [not]

sinaple query language:

[qualifier] value }

13

ARCS Database

o Metaschema subschema defines the "super-structure" for the ARCS

database, representing the ER model itself.

o Component subschema defines the entities, relationships and attributes

containing all of the catalog information about each reusable component.

o Classification subschema defines the entities, relationships and attributes

comprising the means for classifying components in different ways.

Implementation Issues Raised and Evaluation Results

o Attribute/criteria selection

o Population of the classification subschema

o Deferred support for certain policies

o Performance Issues

o Data Entry Issues for Usability

14

CONCLUSIONS

o There are sufficient underlying database, IR and knowledge-based technologies

on which to develop a production ARCS

o The Phase I research successfully derived a flexible, extensible faceted

approach for ARCS and identified promising technologies for further

investigation

o The Phase I demonstration system reinforced the validity of the overall

approach, while pointing out areas for future investigation

o Additional work is needed to determine the specific classification criteria and

classification schemes

o Additional experimentation is needed to address the tradeoffs associated with

easelof.use, performance, applicability and effectiveness

15

N90-14791
KNOWLEDGE-BASED REUSABLE SOFTWARE SYNTHESIS SYSTEM

Cammie Donaldson

Software Productivity Solutions, Inc.

The Eli system, a knowledge-based reusable software synthesis system, is being developed for

NASA Langley under a Phase II SBIR contract. Named after Eli Whitney, the inventor of
interchangeable parts, Eli assists engineers of large-scale software systems in reusing com-

ponents while they are composing their software specifications or designs. Eli will identify

reuse potential, search for components, select component variants, and synthesize components

into the developer's specifications. The Eli project began as a Phase I SBIR to define a reus-

able software synthesis methodology that integrates reusability into the top-down development

process and to develop an approach for an expert system to promote and accomplish reuse.
The objectives of the Eli Phase II work are to integrate advanced technologies to automate the

development of reusable components and the use of reusable components within the context of

large system developments, to integrate with user development methodologies without

significant changes in method or leaming of special languages, and to make reuse the easiest

operation to perform. Eli will try to address a number of reuse problems including developing
software with reusable components, managing reusable components, identifying reusable com-

ponents, and transitioning reuse technology. Eli is both a library facility for classifying, stor-
ing, and retrieving reusable components and a design environment that emphasizes, encourages,

and supports reuse. Eli is being developed incrementally and will be released in a series of

builds with progressively more functionality. A related issue, not being addressed by the Eli

project, is how to implement reuse within an organization.

PRECEDING PAGE BLANK NOT FILMED 17

Outline of Presentation

• Eli Project Background

• Problems that Eli Will Solve

• Overview of Eli Build Plan

• Some Eli Operational Issues

Eli Project Background

Phase I completed in Fall 1987, objectives were to:

- Define reusable software synthesis methodology that
integrates reusability into the top-down development
process

- Investigate formal languages for specifying reusable
component interfaces, operations and requirements

- Investigate knowledge and database representations
for organizing and storing both components and
knowledge of the application domain and development
process

- Develop approach for expert system to promote and
accomplish reuse

]8

Eli Project Background (Conc)

Phase II started in July 1988; objectives are to:

Integrate advanced technologies to automate the development
of reusable components and the use of reusable components
within the context of large system developments

- Integrate with user development methodologies without
significant changes in method or learning of special languages

- Make reuse the easiest operation to perform

]9

Problems That Eli Will Solve

What Reuse Problems Must Eli Address?

• Developing software with reusable components

• Managing reusable components

• Identifying reusable components

• Transitioning reuse technology

What is Eli?

• Library facilities for classifying, storing and
retrieving reusable components

• Design environment that emphasizes, encourages
and supports reuse

2O

User Roles

• Eli will support the following user roles:

- Classifier

- Searcher

- Promoter

- System Administrator

Key Qualities of Eli

• Adaptability

• Performance

• Ease of Use

• • Make reuse the easiest operation to perform • •

21

How Will Eli Solve Reuse Problems?

Identifying Reusable Components

• Flexible component classification facilities

• Flexible browsing and querying facilities

Managing Reusable Components

• Efficient storage and retrieval of large component inventories

• Open architecture to support integration with user environment

° Facilities for tracking and promoting reuse activities

:]2

Developing Software With Reusable Components

° Direct support for Ada components, including adaptation
and integration

• Support for object-oriented design and programming

• Integration of design surface with library facilities

Transitioning Reuse Technology

• Support for defining new types of components, new component
characteristics and new component relationships

• Loose and tight integration capabilities to transition existing
tools and information

23

Overview of Eli Build Plan
Build Plan

Build I Build 1.5 Build 2 Build 3

-- Prototypeof queryand
browsing functions

Basicreuse library
system

Prototypeof advanced
classification andquery
strategies

Prototype of basic
adaptation function for
Ada components and
integrationwith Ada
compiler

Complete reuse library
system integrated with
Ada compiler and
providing basic support
for Ada Component
Adaptation

Prototype of advanced
adaptation mechanisms
and integration of
browse/query functions
with design surface

Product

Basic design and
programmingenvironment
integrated with reuse
library browsing and
querying functions, full
support for Ada
component adaptation
and integration with
compiler

Prototypeof
knowledge-augmented,
user-transparent reuse
assistance

Product

Build 1.5

• This build will provide basic library capabilities:

- Creation and maintenance of libraries

- Creation and maintenance of classification schemes.for
library components

- Classification and storage of components

- Browsing of libraries to find/identify components

- Querying on libraries to find/identify components

- Extraction of classification schemes, components and
component information

- Integration of component classification, storage, query and
extraction functions through a program interface

24

Build 1.5/2

User

Application

Space

Components User
Tools

(classification, certification,

measurement tools I

Open Architecture

External Storage Facility

Components 1

(CM system, deYelopmenl

library, project database)

Build 2

• This build will provide a complete, sophisticated library system:

Import/export of libraries and classification schemes

Enhanced manipulation of classification schemes and
component classifications

- Semi-automated derivation of Ads component characteristics

- Classification support for Classic-Ada components

- Clustering of components and support for "like this" querying

- Enhanced and additional forms of interactive browsing and
querying on component characteristics

- Storage, retrieval and modification of query sessions,
including batch submittal of queries and query sessions

25

Build 2 (Conc)

- Version control on libraries, classification schemes,
components and component information

- Access control to libraries, classification schemes,
components and component information

- Adaptation and integration of reusable Ada components
with user application

- Collection and reporting on library and classification
scheme usage, and component submittal and extraction

- Customization and tailoring capabilities

Build 3

This build will provide an object-oriented design surface with the
following capabilities:

- Integration with Eli library facilities for design-time reuse
assistance

- More automated derivation of component characteristics and
classification of components

- Ordered assessments of components identified as result of
queries

- Advanced support for Ada component adaptation and integration

26

Some Eli Operational Issues

User Roles

Classifier

System
Administrator

,% _/ r
\ -"-_% f-)-,,-

•o_ _u_es'

Promoter

27

Eli "Black Box" View

User

User Development Environment

Eli

Host System Interface

Eli Interface Requirements

Interface Area Principal Eli Focus

• Host Operating System Transportability

• User's Development Environment

Framework
Interoperability

• User's Development Environment

Tools
Interoperability

• User's Development Environment

Policies, Procedures and Methods

Adaptability

28

Eli Host Operating System Interfaces

Approach: Establish localized internal interfaces and
utilize industry standards (e.g. Unix,
XWindows, TCP/IP, Postscript) for
transportability

• Device management

• Process Management

• File Management

• Communications

Eli Interfaces to User's Development
Environment Framework

Approach" Support many levels of interaction including
an open architecture - - procedural access to
internal Eli facilities, published information
schemas/structures, and an ASCII
import/export interchange mechanism.

• Eli invocation

• Import of environment roles, access rights,
procedures, etc.

• Configuration management of components

• Ada library manager

• Environment information management
facilities

• Invocation of other environment
tools/facilities

29

Eli Interfaces to User's Development
Environment Tools

Approach: Provide open architecture - - procedural access and ASCII
import/export facilities to allow users to exchange information
with other tools

• Ada compilation system

• Documentation tools

• Other CASE (i.e. design surface) tools

• Other reuse systems (e.g. libraries, domain analysis tools)

• Project management tools

Eli Interfaces to User's Development Environment
Policies, Procedures and Methods

Approach: Make Eli facilities adaptable to accommodate a wide
spectrum of usage

• User roles and access rights

• Usage scenarios/sequences/work flows

• Configuration management procedures

• Component certification procedures

• Custom component attributes/facets

• Custom classification schemes

• Site/library installations

3O

Eli Distribution Options

Non-distributed library model

Interaction of remote, separately

controlled libraries (e.g.,
interlibrary loan)

Master/branch library (e.g.,
bookmobile)

Partitioned library (e.g., library
system)

Classification Component

Update Classification

(Library Control) & Storage

Local Local

Local Local

Local to master Local to master

library library

Single point or Partitioned

negotiated

Library
Access

Local only

Local plus protocol

or accessing remote
libraries

Accessible across
affiliated branches

Accessible across

library sites

Cooperating, distributed libraries Distributed Distributed All libraries accessible

transparently from any site

Library Interaction Through Design Surface

ORIGINAL PAGE IS

OF POOR OUALITY
31

N90-14792
IMPACT OF DOMAIN ANALYSIS ON REUSE METHODS

Kathy Gilroy

Software Productivity Solutions, Inc.

SPS is performing a study for the US Army CECOM on the impact of domain analysis on

reuse methods. Domain analysis is the first activity that should be performed in the develop-

ment of reusable software. It identifies the commonalities between systems within a given

problem domain (such as navigation systems or database management). In the software arena

these commonalities are implemented as software components that can be reused by new sys-
tems within that application domain. The objectives of the study are to develop an approach

that makes domain analysis practical and effective for the Army, to reinforce the importance of

domain analysis for software reuse programs, and to summarize and coalesce domain analysis

information into a single reference source. Existing methods and tools are being analyzed, crit-

ical issues identified, and key automation issues addressed. Based on these, a methodology

and set of guidelines for domain analysis are being developed. Potential automated tools will

be identified for each activity in the methodology.

PRECEDING PAGE BLANK NOT FILMED
33

Problem Statement

What is Domain Analysis?

The first activity which should be performed in the
development of reusable software

Identifies commonalities between systems within a given
problem domain

Commonalities implemented as software components
reused by new systems within that domain

Little Data Available About Domain Analysis

• Few have been done to date

• Importance only recently identified

• Process is difficult and expensive

• Potential payoff not yet known

• "Bad" analysis decreases ability to reuse

• Well-defined methods non-existent

• "Goodness" criteria non-existent

• Recent ad hoc efforts provided little feedback

• No tools support entire analysis process

34

Objectives

Develop approach that makes domain

analysis practical and effective for Army

Reinforce importance of domain analysis for
software reuse program

Summarize and coalesce domain analysis

information into single reference source

Approach

I
Task A / "

Existing
Methods

Analy, sis

Task B Subtask 1]
Existing Tools

Maalysis

I
I

=Task C Subtask I [

Proposed Methods[
' _[_alysi s

iTask] B Subtask 2

,_.._Proposed Tools

-[Analysis

Task C Sublask 2
Develop Guidelines
Documenl

v

v

v

Task C

Subtask 3

Develop
Final

Technicall

Repor_]

Task Interrelationships

35

Approach

Existing Methods Analysis

• Identify criteria for evaluating

domain analysis approaches

• Survey existing methods for domain

analysis and relate to criteria

• Develop description of desirable

characteristics of a domain analysis

• Identify critical issues and assess
risks involved

Identify Critical Issues

• Development methods

• Development languages

• Development tools

• Development personnel

• Application systems

• Domain analysis techniques

• Evaluation and validation

• Domain maintenance

36

Approach

Address Key Automation Issues

• Expert knowledge acquisition and use

• Domain analysis products standardization

• Data organization, storage and retrieval

• Reusable component library interfaces

• Integration with software development
environments and reuse tools

• Feasibility of automation and/or tool maturity
level

Proposed Methods Development

• Postulate alternative approaches to domain analysis for DoD
Ada applications

• Select one or more approaches for further development

• Provide consistent, cohesive and complete description of

proposed method; address the following:

- strategies and paradigms for domain analysis

- process model for domain analysis

- methods for each identified activity

products of domain analysis activities

- resources required for domain analysis activities

37

Approach

Process Model for Domain Analysis

Within context of three distinct but

integrated processes:

- development of reusable components

- reuse of components

- development of application software

Proposed Tools Identification

For each activity in the proposed methodology:

- identify existing or potential automated tools

- describe how they support the activity

- assess the importance of automating the activity

- assess the feasibility of automation or the maturity level
of existing tools

- make recommendations for acquisition or development

38

Approach

Develop a Set of Guidelines

• Use results of research and analysis of existing
methods and tools

• Develop guidelines for conducting domain analysis

and appIying resuIts during software development;
document will contain:

- recommendations for methodology and tools to

perfom_ domain analysis

- relationship of domain analysis methodology and tools

to overall development methodology and tools

- recommendation for addressing critical issues and risks

in using domain analysis

- recommendations for future R&D in domain analysis

39

CLASSIC-ADA TM

Lois Valley

Software Productivity Solutions, Inc.

N90-14793

The SPS product, Classic-Ada TM, is a software tool that supports object-oriented Ada pro-

gramming with powerful inheritance and dynamic binding. Object Oriented Design (OOD) is

an easy, natural development paradigm, but it is not supported by Ada. Following the DOD
Ada mandate, SPS developed Classic-Ada to provide a tool which supports OOD and imple-

ments code in Ada. It consists of a design language, a code generator and a toolset. As a

design language, Classic-Ada supports the object-oriented principles of information hiding, data

abstraction, dynamic binding, and inheritance. It also supports natural reuse and incremental

development through inheritance, code factoring, and Ada, Classic-Ada, dynamic binding and

static binding in the same program. Only nine new constructs were added to Ada to provide

object-oriented design capabilities. The Classic-Ada code generator translates user application

code into fully compliant, ready-to-run, standard Ada. The Classic-Ada toolset is fully sup-

ported by SPS and consists of an object generator, a builder, a dictionary manager, and a

reporter. Demonstrations of Classic-Ada and the Classic-Ada Browser were given at the

workshop.

PREC_;LD_NG PAGE BLANK NOT FILMED

41

Why Classic-Ada_M?

- Ada Mandate

- Object-Oriented Design is an easy natural
development paradigm

- Ada doesn't support the object-oriented paradigm

- SPS needed a tool that allowed us to think in OOD
and implement in Ada

- Classic.Ada is our answer to that need

What is Classic-Ada_M?

Classic-Ada is:

A design language

A code generator

A toolset

42

Classic-Ada as a
Design Language

ORIGINAL FAGE _

OF POOR QUALITY

Supports object-oriented principles

- Information hiding - hiding the state of software
components in variables visible only within the
scope of that component

- Data abstraction - abstract data types defining an
internal representation plus a set of operations
used to access and manipulate it

- Dynamic binding - determining which operation is
invoked for a specific abstract data type
dynamically at runtime, depending on the object
being manipulated

- Inheritance - enabling the easy creation of objects
that are almost like other objects with just a few
changes

Inheritance and
Dynamic Binding

t SUPERCLASS

I

I

I SUB_LASSES

L

INSTANCES

STA_C _EW .._

DYNAMIC VIEW

LEGEND

] =bt=¢_

(_ In,_=nc*

43

Inheritance Hierarchy

I Vehicle

Aircraft I

I
Jet Fighter

I
F-16 1

I
I Ship

Reusability

• Inheritance enables the creation of
objects that are almost like other
objects with just a few changes

• Generalization promotes the
constant migration to more
general (and more reusable)
objects

• Inheritance enhances code
factoring, i.e. code to perform a
particular task is found in only one
place

• Dynamic bindina increases
flexibility by allowing the addition
of new object classes without
modifying or recompiling existing
code

• Polymorphism, the ability for
different classes to respond to the
same message promotes
interchangeable parts

44

Natural Reuse

"Object-oriented development
integrates reuse into the
development process so well that
developers will find themselves
developing reusable objects and
reusing existing objects without
even thinking about it."

Smaller, Cheaper Solutions

• Solve large problems by making the
solutions smaller

- Typically at least 1/4 the number of
lines of code in an OOPL

- Often as little as 1/10 or 1/20

• Productivity increases because effort per
line of code is about the same as with
procedural HOLs

• Manaqeability improves dramatically

- Software system is easier to
understand

- There are less people to manage

"Managers must reward designers for
doing less - not more."

-- Wilf LaLonde

• As the development converges, the lines
of code will actually decrease as
generalizations further optimize and
compress the code

• You don't have to do programming-
in-the-large to solve large programs if
you make the large program small

45

Large OOP Experiences

500.000 - 1.000.000 LOC ==.-25.000 - 100.000 LOC
Procedural HOL OOPL

• Operating systems

• Workstation / office
automation environments

• CAD/CAE

• Telecommunications

• User interface / application
frameworks

• Object-bases

• Simulations

• Manufacturing, operations
and control systems

• Management information
systems

Classic-Ada TMas a
Design Language

Has added only nine constructs to Ada to
provide this powerful capability. These
constructs are:

- Class

- Superclass

- Instance

- Instantiate

- Method

- Destroy

- Send

- Self

- Super

46

Classic-Ada _Mas a
Code Generator

- Generates user application code

- Generates application executive

- Generates fully compliant, ready to run, DoD
standard Ada

Classic-Ada _Mas a Toolset

Is fully supported by SPS

Consists of the following tools:

- an object generator

- a builder

- a dictionary manager

- a reporter

47

Classic-Ada _ Toolset

Ct DIctl

_2

ompflat[on

Syslem

Classic-Ada _Mas a
Design Language

- Supports natural reuse through its inheritance
capabilities

- Supports incremental development through
inheritance

- Supports code factoring

- Supports Ada, Classic-Ada, Dynamic binding, and
static binding in the same program

- Makes it easy to both generalize and specialize
during development due to the way Classic-Ada is
implemented

- Minimizes the need to compile large portions of code

48

N90-14794
PROTOTYPE SOFTWARE REUSE ENVIRONMENT AT GODDARD SPACE FLIGHT CENTER

Walt Truszkowski

NASA Goddard Space Flight Center

The Goddard Space Flight Center (GSFC) work is organized into four phases and includes par-

ticipation by a contractor, CTA, Inc. The first phase was an automation study, which began

with a comprehensive survey of software development automation technologies. Eight techni-

cal areas were analyzed for goals, current capabilities, and obstacles. The study documented

current software development practice in GSFC Mission Operations and Data Systems Direc-

torate, and presented short- and long-term recommendations that included focus on reuse and

object-oriented development. The second phase, which has been completed, developed a proto-

type reuse environment with tools supporting object-oriented requirements analysis and design.

This phase addressed the operational concept of software reuse, i.e., it attempted to understand
how software can be reused. This environment has two semantic networks: object and key

words, and includes automated search, interactive browsing and a graphical display of database

contents. Phase 3 was a domain analysis of Payload Operations Control Center (POCC)

software. The goal in this phase was to create an initial repository of reusable components and

techniques. Seven existing Operations Control Centers at GSFC were studied, but the domain

analysis proved to be very slow. A lesson leamed from this was that senior people who
understand the environment and the functionality of the area are needed to perform successful

domain analyses. Four reuse paradigms were identified which are appropriate to different pans
of a POCC. Phase 4 is the development of a prototype environment for rapid synthesis of

POCC software. The four paradigms (or views) of software reuse will be prototyped and com-

bined to provide support for POCC software development. These four paradigms are a

dialog-based specification of high-level architecture, a very-high-level-language specification of

the operational database, interface navigation/selection of reusable components, and graphical

programming. Future work includes the design of a knowledge-based reuse environment.

49

Workshop on NASA Research in Software Reuse

Phase 1 (FY '86): Automation Study

• Comprehensive survey of software development automation technologies

Analyzed 8 technical areas: goals, current capabilities, obstacles

- Semi-formal specification, formal specification, reuse, knowledge-based systems,

prototyping, software metrics, performance analysis, work management

• Documented current S/W development practice in GSFC Mission Operations
& Data Systems Directorate

- Methods, tools, perceived strengths/weaknesses

• Short- and long-term recommendations

- Focus on reuse and Object Oriented Development (OOD)

- Revisit CHI and AI around 1990

Phase 2 (FY '87): Prototype Reuse Environment

• Tools supporting object-oriented requirements analysis and design

- Extended Goddard Object Oriented Design (GOOD) methodology to

requirements analysis

- Enhanced IDE Software Through Pictures environment

• Operational concept of software reuse

• Two semantic networks: objects and key words

- Obnet: entity-relationship database of reusable components

- K_.e.y.D._:classification of reusable components

• Automated search and interactive browsing

° Graphical display of database contents

5O

SEMANTX Architecture

Reglstratlon,
Classification

& Management

II

User

Interlace

Oblects

Object
Definition &

Identification

Data/Programs

The RMS KeyNet

has property applies to

keyword

has type

has type

TO OBNET

51

RMSObNct

constrains

has

-omponent

contains

depends on

tested by

FROM KEYNET
tl

Phase 3 (FY "88): Domain Analysis of POCC Software

• Goal: Create an initial repository of reusable components and techniques

• Studied seven Multi-Satellite Operations Control Center (MSOCC) systems
Standard Software

Dynamic Explorer (DE)
- InternationalSun/Earth Explorer (ISEE)
- Earth-Radiation Budget Satellite (ERBS)
- MSOCC ApplicationsExecutive (MAE)
- Gamma Ray Observatory (GRO)
- Cosmic Background Explorer (COBE)

• Determine typical POCC architecture and components
- Classified variations
. Identified obstacles to reuse

• Identified 4 reuse paradigms appropriate to different parts of a POCC
system

52

Phase 4 (FY "89): Prototype Environment for Rapid
Synthesis of POCC Software

• Dialog-based specification of high-level architecture

. Very-high-level language specification of Operational Database
- Automated generation of database Interface procedures

• Interface navigation/selection of reusable components

• Graphical programming
- Specify new combinations of reusable components
- Automated code generation from Object and Functional Diagrams

Four Automation Techniques Combine to Support POCC Software Development

user

/ I
High-level Description I Dialog-based Specification

of | of High-level Decisions

Operational Database |

/ \\I -°,-°?
4 \ _I'-''''ng? I I

New Combinations | Placem e hi?

Tetemetry Paramelefs: of / _

Reusable Components I I Standard /
't i Subsystems

J Co_ers' i \ Automaled Genel*alion /

J -- [\ of System Configuration [

Domain-specific

VHLL

\DIDO, _ema f I I I "-""
\ _, I I I Ohio=e,_Datallow
'%, _ "'-1 J Diagrams

Automated Generation 00(3 -1
ODB Inledace Code J

-- A U_:na_ead ioCnOde

Navigation and

Selection of

Reusable Components

i

Reuse Database

Component

References

J

53

AI Revisited: Design of Knowledge-based
Reuse Environment (FY "89)

• Survey recent efforts
- Determine available technologies
- Develop a knowledge-based reuse concept

° Focus on essential areas not yet explored
- Capturing developer rationales
- Learning from errors (e.g., misused components)

54

JPL REUSE PROGRAM

James W. Brown

Jet Propulsion Laboratory

N90-14795
- A - .

A

The goal of the JPL reuse activity is to develop a quantitative understanding of the factors

which encourage or inhibit software reuse, and of productivity improvements achievable

through reuse. The primary activity is the measurement of parameters relevant to reuse in the
environment of actual projects. The program has three objectives: (1) to develop a model to

allow assessment of competing reuse techniques, (2) to extend reuse from the unit to the sub-

system level, and (3) to expand from specific applications to a broader application domain.

Application domains, which apply to all interplanetary projects, include Mission Operations,

Science Information Systems, Flight Software, and Simulations. The program is targeting all

phases and activities of the life cycle and a full range of software products. The approach will
be both experimental (observe, hypothesize and evaluate) and constructive (introduce new tools

and techniques). The primary target projects are Deep Space Network activities - the Ground

Facilities facility upgrade, the Network Operations Control Center upgrade, and the Signal Pro-

cessing Center. This is the first group of closely related projects being done in Ada at JPL. A
"reuse base" will be developed initially by classifying potentially reusable components from

one project; it will be used and expanded with additional projects.

55

GOAL

GOAL: Improve the software development process by application of advanced
reuse technology

OBJECTIVES: Develop a model to allow assessment of competing
techniques mr reuse

Improve leveraqe by extending reuse from the unit to the
subsystem level

Expand from specific applications to broader application
omam

SCOPE - APPLICATION DOMAINS

Mission Operations (planning, commanding, navigation, tracking and data
acquisition for unmanned spacecraft)

Science Information Systems (data management, level conversion,
visualization, analysis and modeling)

• Flight Software (autonomous spacecraft operation, instrument software)

• Simulations (spacecraft operations, physical processes, command/control
problems)

56

SCOPE - FULL LIFE CYCLE - ALL PHASES AND ACTIVITIES

Investigate impact of reuse on:

• Requirements Analysis

• Design

• Implementation

• . Integration

• Test

• Maintenance

• Inter-project relationships

SCOPE - FULL RANGE OF SOFTWARE PRODUCTS

• Plans and Procedures (e.g. software management plans, configuration
management plans, integration and test plans)

• Requirements and Constraints

• Designs

• Code (e.g. 3GL, 4GL, execution procedures, data tables)

Test cases and test data

Development tools and environments

Run-time data (e.g. file labels, digital maps)

5"/

APPROACH

CHARACTERISTICS

• Experim_ental [observe (exploratory, descriptive), hypothesize,
evaluate]

• Constructive.(introduce new tools and techniques rather than survey
na[ural selecz=on_

STEPS

• Identify currently available reuse technologies

• Select a model that seems likely to improve software development

• Construct a "reuse base" based on the model

• Observe (measure) utilization patterns by actual development projects

• Revise and refine model based on observations

• Recommend tools and techniques for effective reuse

TARGET PROJECTS

Deep Space Network

• Ground Communications Facility Upgrade (GCF)

• Network Operations Control Center Upgrade (NOCC)

• Signal Processing Center (SPC)

Others (TBD)

58

BACKGROUND

Products available from previous work:

• Theoretical model

• Technology assessment

• Metrics evaluation

• Behavioral design for reuse base

SCHEDULE

Phase 1 (FY89)

Determine user needs (GCF); acquire and analyze components

• Design reuse base

• Implement reuse base

• Analyze reuse and report

Phase 2 (FY90-91)

• Determine user needs (NOCC, SPC)

• Identify new suppliers

• Modify reuse base design

Implement modifications

Monitor reuse; add users; add suppliers; adapt reuse base

59

JPL REUSE PROGRAM

I Project1

Units

Pr°ject12

Sub-
_ystems

I Othersources I Project3

Classified
units

Classif.

Reuse
base

1

_lectic
data

Utilization
data Classifi_

subsystems

Reuse
base

2

Model

_estructure

6O

N90-14796 :

JOHNSON SPACE CENTER SOFTWARE REUSE ACTIVITY

Steve Gorman

NASA Johnson Space Center

There is a strong operational interest in reuse and commonality at the Johnson Space Center

(JSC). Although commonality and reuse were not emphasized in the Space Shuttle Orbiter

Project, it is a major goal for Space Station Freedom and the Software Support Environment

(SSE). Research activities at JSC are generally conducted through the Software Engineering

Research Center (SERC) of the University of Houston at Clear Lake. The Life Cycle Model

developed by SERC includes reuse at each phase, but reuse is not a principal theme. The SSE

is a significant entry point for new reuse technology, and the SERC can provide consultation

and possible prototypes. SERC is seen as an interface to other NISE reuse researchers. The
AdaNET is managed at JSC through the University of Houston at Clear Lake for the NASA

Office of Technology Utilization. It may also be a "gateway" for reuse research.

61

JSC MANAGED PROJECTS

• ORBITER PROJECT - COMMONALITY & REUSE NOT EMPHASIZED

• SPACE STATION - WORK PACKAGE 2 & SOFTWARE SUPPORT

ENVIRONMENT (SSE)

- COMMONALITY & REUSE A MAJOR GOAL

- ADA FOR OPERATIONAL SOFTWARE

- MODELS & SIMULATIONS

- SAME SSE ACROSS THE PROGRAM

• AdaNET

- MANAGED AT JSC (THROUGH UHCL) FOR OFFICE OF
TECHNOLOGY TRANSFER

• SOFTWARE ENGINEERING RESEARCH CENTER (SERC) ACTIVITY

- CODE R SUPPORTED

- NOT A PRINCIPAL THEME AT SERC

- ADDRESSED IN LIFE CYCLE MODEL

- CONSULTING & WHITE PAPERS AS REQUIRED

SOFTWARE REUSE IN THE CLEAR LAKE MODEL

"CONCEPTUAL AND iMPLEMENTATION MODELS WHICH SIJPPORT LIFE
CYCLE REUSABIUTY OF PROCESSES AND PRODUCTS IN COMPUTER
SYSTEMS AND SOFq3NARE ENGINEERING"

• "SOLUTION IN THE LARGE"

• SOFTWARE REUSE IS PRESENTED AS SUBSET OF LIFE CYCLE REUSE

• SEVEN LIFE CYCLE PHASES SHOWN - REUSE AT EACH PHASE
ADDRESSED

• REUSE CANDIDATES ARE MUCH MORE THAN CODED MODULES

- REQUIREMENTS

- SCHEDULES

- BUDGETS
- DESIGN

- TOOLS

- METHODS

• CONTRASTS WITH CODE COLLECTIONS AS THE BOOCH OR BERARD

COMPONENTS- SINGLE PHASE ONLY

62

PHASE 1

SYSTEM

ROTS.

ANALYSIS

I REUSE OVER THE SOF'P_ARE LIFE CYCLE I

PHASE 2

DETAILED

RQTS.

ANALYSIS

PHASE 3

PRELIM.

DESIGN

PHASE 4

DETAILED

DESIGN

N
PHASE 5 II PHASE 6

II

CODING II S/W

II COMP.

U INTEG.

PHASE 1

PHASE 2

PHASE 3

PHASE 4

PHASE 5

PHASE 6

PHASE 8

METHODS, SCHEDULES, BUDGETS, DEV. PLANS

METHODS, REQUIREMENTS, INTERFACES

METHODS, DESIGN, TOOLS

METHODS, DESIGN, TOOLS

METHODS, CODE, PACKAGES, STRUCTURE

METHODS, ENVIRONMENT DESIGN, INTERFACES

METHODS, CONFIGURATIONS, TOOLS

META DATA FOR THESE DIFFERENT PRODUCTS

AND PROCESSES WILL BE A CHALLENGE

PHASE 7

OPS. &

SUSTAIN.

ENGR.

JSC SOFTWARE REUSE SUMMARY

• STRONG OPERATIONAL INTEREST IN REUSE & COMMONALITY

• "RUBBER HITS THE ROAD" FOR MANY S/W PROJECTS AT JSC

• SSE IS A SIGNIFICANT ENTRY POINT FOR NEW REUSE TECHNOLOGY

- SIGNIFICANT REUSE IS MAJOR SSFP& SSE GOAL

- STRONG INTEREST IN NEW & BETTER APPROACHES
- SERC AS CONSULTANT & POSSIBLE PROTOTYPER

• SERC AS INTERFACE TO OTHER NISE REUSE RESEARCHERS

• POSSIBLE "GATEWAY" RESEARCH THROUGH AdaNET - BASED
ON CLEAR LAKE MODEL WITH SERC AS CONSULTANT

• CRITICAL FOR JSC TO "STAY ON TOP OF" REUSE TECHNOLOGY

- SERC AS CONSULTANT

- SSE PROJECT AS OPERATIONAL INTERFACE

- AdaNET AS INTERFACE TO LARGER Ada & SOFTWARE
ENGINEERING COMMUNITY

63

h90-14797
A

REUSE RESEARCH PLANS AT LANGLEY RESEARCH CENTER

Susan Voigt and Carrie Walker
NASA Langley Research Center

The reuse activities at Langley have centered on the development of the Eli system by SPS, as

already described. The development of a computer systems design environment at Langley

was described as a target application for the future Eli system. This environment combines
software development tools with an architecture design and analysis tool. Specifically, a

Computer-Aided Software Engineering (CASE) system, under development at Charles Stark

Draper Laboratory for Langley, is being used to generate Aria code for use in architecture

functional simulations using the Architecture Design and Assessment System (ADAS). The Eli

system will be included in this tool set and will be used to organize and promote reuse of the
functional simulation code modules.

PRECFJ::)iNG PAGE BLAN_ N_-TT F!LMFD 65

SYSTEM DESIGN ENVIRONMENT

_--Symbolics

rData Flow 1

'Diagrams

CASE

---=/
I

Ada Code

,...,........... I_

Eli, etc.

Configuration

Management

Rl;! i

/ Design_er __- Directed 1

"_Gra de1
I _ (LibrarylConf. MgmI.)

Functional Graphical

Simulator Simulato_

VaxStatlon 3200
i

66

N90-14798
"" A _.

REUSE AT THE SOFTWARE PRODUCTIVITY CONSORTIUM

David M. Weiss

Software Productivity Consortium

The Software Productivity Consortium is sponsored by 14 aerospace companies as a

developer of software engineering methods and tools. Software reuse and prototyping are

currently the major emphasis areas. The Methodology and Measurement Project in the

Software Technology Exploration Division has developed some concepts for reuse which

they intend to develop into a synthesis process. They have identified two approaches to
software reuse: opportunistic and systematic. The assumptions underlying the systematic

approach, phrased as hypotheses, are the following: the redevelopment hypothesis, i.e.,

software developers solve the same problems repeatedly; the oracle hypothesis, i.e., develop-
ers are able to predict variations from one redevelopment to others; and the organizational

hypothesis, i.e., software must be organized according to behavior and structure to take

advantage of the predictions that the developers make. The conceptual basis for reuse

includes: program families, information hiding, abstract interfaces, uses and information

hiding hierarchies, and process structure. The primary reusable software characteristics are

black-box descriptions, structural descriptions, and composition and decomposition based

on program families. A good methodology has the following properties:

1. It answers the following key questions at any

point in the development process:
a. What should I do next?

b. What output do I produce?

c. What input and resources do I need to produce it?
d. How do I know when I'm done?

2. It is based on a clear set of principles

3. It leads to quantifiable improvements in productivity and quality

4. It is useful to engineers

5. It promotes reuse

6. It supports a sound business approach

Automated support can be provided for systematic reuse, and the Consortium is developing a

prototype reuse library and guidebook. The software synthesis process that the Consortium is
aiming toward includes modeling, refinement, prototyping, reuse, assessment, and new con-

struction. A number of key issues were also discussed.

67

TOPICS

Concepts

- Systematic vs Opportunistic Reuse

- Assumptions Underlying Systematic Reuse

- Underlying Principles

Methodological Considerations

Automated Support

- Reusable Software Libraries

Current Consortium Practice

Direction

- Synthesis

ORGANIZING SOFTWARE FOR REUSE

Opportunistic Reuse - The Garage Sale Approach

- Many individual parts

- Search for part with desired behavior

-- Attributes + Behavioral Description

Systematic Reuse- Systems Approach

- Collections of related parts

- Search for system that meets requirements

-- Attributes + Behavioral Description + Relationships +
Classification

68

ASSUMPTIONS

Redevelopment Hypothesis

- Software developers solve same problems repeatedly

- Solutions are captured as systems

- Variations

-- Devices

-- Algorithms
-- Platforms

-- Functionality

Oracle Hypothesis

- Developer must be able to predict changes

Organizational Hypothesis

Organize according to behavior and structure

Expose structures that make changeable decisions
apparent

Identify common characteristics

69

DESIRABLE SOFTWARE CHARACTERISTICS

Black-box description

- Behavioral approach

• Structural Descriptions

• Composition and decomposition based on collections of parts

CONCEPTUAL BASIS

• Program Families
- Characterize commonalities first

• Inlormation Hiding

- Encapsulate changeable decisions

• Abstract Interfaces

- Behavioral descriptions of modules

• Uses Hierarchy

- Protect subsettability

- Explicit decisions about dependencies

• Information Hiding Hierarchy

- Roadmap for change

• Process Structure

- Performance assessment

- Reconfigurability

70

REUSABLE SOFTWARE CHARACTERISTICS

Black-Box Descriptions

- Behavioral approach, e.g., based on A-7 module

descriptions

Structural Descriptions

- Hierarchical views, based on information hiding and uses

hierarchies

Composition and Decomposition Based On Program

Families

- Families described structurally

- Components of families described behaviorally

- Many shared subfamilies

71

METHODOLOGICAL CONSIDERATIONS

DEFINITIONS

PROCESS

- Set of activities used to produce and maintain software

METHODOLOGY: Answers to the Questions:

- What do I do next?

- What input do I need to do it.'?

- What output do I produce.'?

- What resources do I need to produce it?

ATTRIBUTES OF A GOOD METHODOLOGY

72

Answers the key questions

- What do I do next?

- What input do I need to do it?

- What output do I produce?

- What resources do I need to produce it?

Based on a clear set of principles

- Information hiding, hierarchical structuring, etc.

Leads to improvements in productivity and quality

- Measurable

Useful to engineers

Promotes reuse

Supports sound business approach

Can be adopted incrementally

OBJECTS SUPPORTING SYSTEMATIC REUSE

• Requirements Specification

• Module Guide

• Abstract Interface Specification

• Allowed-to-Use Hierarchy

• Module Internal Documentation

• Uses Hierarchy

• Process Structure

• Potential Family Members

• Code

• Tests

Design

SOFTWARE EVOLUTION PROCESS

Developers maintain collections of program families

Requirements are identified using families that support:

- simulation, prototyping, modeling, other forms of analysis,

- production of specifications.

Given the requirements for a new system:

- the collections are searched for a family with a member that meets the

requirements,

- modules of the family are adapted and assembled to produce the new

member,

- if no such family exists, a new family is created (rare).

73

AUTOMATED SUPPORT FOR SYSTEMATIC REUSE

• Reuse Library

- Repository for collections of families

• Adaptation Analysis

- Tracing the effects of change

• Construction of specifications

- Editor, browser

- Design representation

• Adaptation Mechanism

- Parameterized module/subset generation

-- Generic, macros

• Modeling

- Performance analysis

• Composition

- System generation

REUSE LIBRARIES

Storage of Life Cycle Objects (LCOs) and their Descriptions

- Requirements

- Module Guide

- Module Interface Specification

- Code

Search Mechanisms

- By Attribute

-- Language, version, author, producing tool, etc.

- By LCO type

- By Relation

-- Hierarchy traversal (uses, information hiding,
composition, etc.)

- By Classification

Object descriptions

Population

74

CURRENT CONSORTIUM PRACTICE

• Guidebook

- Management and Technical Volumes

Reuse Library Prototype

75

Software Technology Exploration Guidebook

Volume 1: Management Guidebook

Table of Contents

August 26, 1988

I. The Sorb_are Technology Exploration Division May 27, 1988

lI S'l l'."Organization and Strategic Plan for 1988 May 26, 1988

III. Consortium Configuration Management (No. 700-1) May 24, 1988

IV. Configuration Management Guidelines for STE May 30, 1988

v. Guidelines for Document Preparation and Distribution May 26, 1988

VI.Guidelines for Writing Project Proposals

VII.Guidelines for Writing Project Reports

viii.Guidelines for Writing Risk Reports

IX.University Grant Programs

X. Division Organization Chart

XI.Gnidelines for Writing Project Activity Reports

May 26, 1988

May 26, 1988

August 15, 1988

May 27, 1988

September 1, 1988

August 15, 1988

Software Technology Exploration Guidebook

Volume 2: Technical Guidebook

Table of Contents

August 31, 1988

Xll.

XIII.

XIV.

XV.

XVI.

X\'II.

How to Read This Guidebook

Principles and Concepts

Process and Products

Verification of Work Products

Techniques

Measuring Process and Products

XVIII. Examples

NlX Glossary

XX. Bibliography

August 31, 1988

July 19, 1988

August 31, 1988

July 19, 1988

August 31, 1988

July 18, 1988

August 31, 1988

June 29, 1988

July 1, 1988

76

DIRECTION

SYNTHESIS: A PROCESS THAT RELIES ON THE

PRODUCTION OF SOFTWARE FROM

MODELS SPECIFICALLY DESIGNED

FOR REUSE

RELATIONSHIPS AMONG MODELS

Executable Code

Other Work Products

77

ASPECTS OF SYNTHESIS

MODELLING

- APPLICATION

- DESIGN

- IMPLEMENTATION

REFINEMENT

- SUCCESSIVE APPROXIMATION OF PROBLEM

- SUCCESSIVE APPROXIMATION OF SOLUTION

PROTOTYPING

- REFINEMENT THROUGH ISSUE RESOLUTION

REUSE

- STANDARDIZED ENGINEERING SOLUTIONS

- SOLUTIONS REPRESENTED IN TERMS OF REUSABLE PARTS

COMPOSITION OF NEW SYSTEMS FROM EXISTING, ADAPTED,
AND NEW PARTS

ASSESSMENT

- QUANTIFICATION OF APPROXIMATION

NEW CONSTRUCTION

78

STEPS IN THE SYNTHESIS PROCESS

• SPECIFY REQUIREMENTS

DIRECTLY, IN TERMS OF PRE-DEFINED DOMAIN

VOCABULARY

ANALOGOUSLY, IN TERMS OF DIFFERENCES BETWEEN NEW

NEEDS AND EXISTING SYSTEMS

• MAKE APPLICATION MODEL

- MODEL CONSTRUCTION

- MODEL ASSESSMENT

• blAKE DESIGN MODEL

- SELECTION OF CANONICAL DESIGN

- ADAPTATION OF CANONICAL DESIGN

- INVENTION OF NEW DESIGN

- ASSESSMENT OF DESIGN

• IMPLEMENT

- COMPLETION OF NEW AND ADAPTED PARTS

- COMPOSITION OF PARTS INTO PROTOTYPES/PRODUCTS

- VERIFICATION

79

SUPPORTING ELEMENTS

• REPOSITORIES

- REUSE LIBRARY

- PROJECT LIBRARY

• R EPRESENTATION TECHNOLOGY

- USER INTERFACE

- SPECIFICATIONS FOR MODELS, DESIGNS, CODE PRODUCTION

• METHODOLOGY

- PROCESS MODEL

- NATURE OF PARTS AND RELATIONS

- MANAGEMENT OF PROCESS

• ARCHITECTURE OF TOOLSETS

- TOOLSET INTEGRATION

80

KEY ISSUES

• HOW TO DO DOMAIN ANALYSIS

- SYSTEMATIC APPROACH

- APPLICATION MODELLING

- RE-ENGINEERING

NOTATIONS AND MECHANISMS FOR MAPPING FROM

APPLICATION MODEL TO SOFTWARE DESIGN

- WHAT NOTATIONS?

- HOW MANY INTERMEDIATE LEVELS?

• HOW TO REPRESENT DESIGNS: PARTS AND THEIR RELATIONS

- WHAT NOTATIONS?

STORAGE, RETRIEVAL, AND SEARCH

RE-ENGINEERING

, HOW TO ADAPT, COMPOSE, AND VERIFY PARTS

- DESIGN PARTS

- CODE PARTS

81

KEY ISSUES (CONC)

• HOW TO ASSESS DESIGNS AND CODE

- PERFORMANCE

- FUNCTION

- DEPENDABILITY

• HOW TO PRODUCE CODE

- PROTOTYPE

- PRODUCTION

• HOW SHOULD THE ENGINEERS INTERACT IN THE PROCESS?

- INTERFACE

- PROCESSING STEPS

- UNDERSTANDING OF CONTEXT

• HOW SHOULD THE PROCESSBE MANAGED?

• HOW SHOULD THE EFFECTIVENESS BE MEASURED?

CURRENT STATE

GUIDE TO IMPROVEMENT

82

PROJECTS

METHODOLOGY, MEASUREMENT, AND MANAGEMENT

DESIGN REPRESENTATION, MAPPING FROM APPLICATION

MODELS, AND COMPOSITION

, DOMAIN ANALYSIS

• REPOSITORIES

• ASSESSMENT

• VERIFICATION

• ADAPTATION

• INTERACTION WITH THE ENGINEERS

PROGRAM FAMILIES

HARDWARE ANALOGIES -- THE IBM 360, DEC PDP-11

• Families of computers

- Same instruction set architecture

(Behavioral description)

- Different implementations

- Same operating system

(Different versions)

• Program family: A set of programs is a program family if

the programs have so much in common that it pays to study

their common characteristics before investigating the special

properties of individual programs.

83

EXAMPLE FAMILY CLASSIFICATION

Tool Families

Process Support

Describing

Composing & Decomposing

Assessing

Retaining

Technology

Data Storage & Retrieval

User Interface

Data Transformation

Configuration

Application Families

Avionics

A-6

A-7

727

737

Communications

Control Systems

Speech Processing

A-7 NAVIGATION FAMILY

r

. • [

Airborne Full. ",, _ //'

alignment navlgauon ,, / navigation \ /,/

] Doppler- / -, ," \
] damped / -- // \
/ inertial [", // \

//1/" ' ' "i

Doppler [/ _,_'_-- ",, \

inteiface ("//" _tei'face "'"1

/.7..__.A.r_i_h etild s.__. "i, ". m._. c _?taty!e 7-'-'-

SINS alignment

SINS
interface

84

INFORMATION HIDING

• Module:

• Interface:

• Abstract Interface:

A decision tha_ is likely to change should be encapsulated in a module

- Changeable decision is the secret

-- data structures

-- algorithms

-- device characteristics

- Basis for Ada packages

An information hiding module is a work assignment

An information hiding module is a black-box

An information hiding module is a set of programs and shared data

An information hiding module is a finite state machine

An interface between two modules is the set of assumptions that the

programmer of one module may make about the other module

An interface that represents many possible actual interfaces

HIERARCHIES AND STRUCTURE

Module Hierarchy

Parts: Modules

Relation: Subsecret

Uses Hierarchy

Parts: Programs

Relation: Uses

Process Structure

Parts: Processes

Relation: Awaits

B is a submodule of A if B's

secret is a subsecret of A's secret

A uses B if A requires the presence of B

A awaits B if A cannot progress until B

progresses

85

A-7 MODULE STRUCTURE

HARDWARE-HIDING MODULE DECOMPOSITION'--"

EXTENDED COMPUTER MODULE

DEVICE INTERFACE MODULE

BEHAVIOR-HIDING MODULE DECOMPOSITION

FUNCTION DRIVER MODULE

SHARED SERVICES MODULE

SOFTWARE DESIGN MODULE DECOMPOSITION

APPLICATION DATA TYPE MODULE

PHYSICAL MODEL MODULE

DATA BANKER MODULE
SYSTEM GENERATION MODULE

SOFTWARE UTILITY MODULE-

EXTENDED COMPUTER MODULE
DATA TYPE MODULE

DATA STRUCTURE MODULE
INPUT/OUTPUT MODULE

COMPUTER STATE MODULE
PARALLELISM CONTROL MODULE
SEQUENCE CONTROL MODULE
DIAGNOSTICS MODULE

VIRTUAL MEMORY MODULE (HIDDEN)
INTERRUPT HANDLER MODULE (HIDDEN)

DEVICE INTERFACE MODULES
AIR DATA COMPUTER
ANGLE OF ATTACK SENSOR
AUDIBLE SIGNAL DEVICE
COMPUTER FAIL DEVICE
DOPPLER RADAR SET

FLIGHT INFORMATION DISPLAYS
FORWARD LOOKING RADAR
HEAD-UP DISPLAY
INERTIAL MEASUREMENT SET
PANEL
PROJECTED MAP DISPLAY SET
RADAR ALITIMETER
S[NS
SLEW CONTROL
SWITCH BANK
TACAN

VISUAL INDICATORS
WAYPOINT INFORMATION SYSTEM
WEAPON CHARACTERISTICS
WEAPON RELEASE SYSTEM
WEIGHT ON GEAR

r FUNCTION DRIVER MODULE
AIR DATA COMPUTER FUNCTIONS
AUDIBLE SIGNAL FUNCTIONS
COMPUTER RADAR FUNCTIONS
DOPPLER RADAR FUNCTIONS

FLIGHT INFORMATION DISPLAY FUNCTIONS
FORWARD LOOKING RADAR FUNCTIONS
HEAD-UP DISPLAY FUNCTIONS

INERTIAL MEASUREMENT SET FUNCTIONS
PANEL FUNCTIONS
PROJECTED MAP DISPLAY SET FUNCTIONS
SINS FUNCTIONS
VISUAL INDICATOR FUNCTIONS
WEAPON RELEASE FUNCTIONS
GROUND TEST FUNCTIONS

-SHARED SERVICES MODULE
MODE DETERMINATION MODULE
STAGE DIRECTOR MODULE
SHARED SUBROUTINE MODULE
SYSTEM VALUE MODULE
PANEL I/O SUPPORT MODULE
DIAGNOSTIC l/O SUPPORT MODULE
EVENT TAILORING MODULE

APPLICATION DATA TYPE MODULE

SYSTEM APPLICATION DATA TYPES
LOCAL APPLICATION DATA TYPES
SHARED APPLICATION DATA TYPES

PHYSICAL MODEL MODULE

EARTH MODEL MODULE
AIRCRAFT MOTION MODULE

86

CHARACTERIZING FAMILIES

By structure

- module hierarchy, uses hierarchy, process structure

By function

- navigation, device control

By application

- avionics, satellite communications

By technology

- relational database, Monte Carlo simulation

By ???

Families composed of modules

Modules characterized by externally-visible behavior

- Black-boxes

- Abstract interfaces specify behavior

87

SUMMARY

• Systematic Reuse Based on Families

• Concepts

- Program Families (1976)

- Information hiding (1970)

- Abstraction

- Behavioral specification (1972)

- Hierarchies

• Examples

- A-7 (1980)

• Relations to other technology

- Ada

- Object oriented programming

- Object oriented design

88

N90-14799
-- _ _°

SSFP APPROACH TO SOFTWARE REUSE

Peg Snyder

Space Station Freedom Program

This talk began by presenting the Space Station Freedom Program (SSFP) definitions of

software commonality and software reuse. Software commonality is the use of identical, inter-

changeable, functionally compatible, or similar software items to satisfy different sets of func-
tionally similar requirements. The Software Support Environment (SSE) and the Data Manage-

ment System (DMS) of onboard computing facilities are examples of SSFP common software.

Software reuse is the use of identical, compatible, or similar software items in either modified

or unmodified form to satisfy development activities at any point in the software life cycle; in

other words, taking an existing item and applying it to another development activity. Software

commonality has been mandated in several critical areas (such as the SSE and DMS) and a

policy directive is under review. A software reuse study group was established in May 1988 to

gather background information (see Level II Software Reuse Study that follows by Scott Her-
man). The SSFP Program Definition and Requirements Document contains requirements for

SSE support in the area of software reuse. The SSE is a collection of tools and rules, and pro-
vides the common environment to be used for the life cycle management of all SSFP opera-

tional software. Operational software includes ALL flight and ground software that either (1)
interfaces with on-orbit elements in real time, (2) is critical to the mission, or (3) is SSE

software. The SSE supports software development in Ada and provides tools for process

management, software production, integration, test and verification, as well as training and

library management. The SSE will provide the mechanisms required to implement SSFP

evolving strategies for software reuse.

89

SPACE STATION FREEDOM PROGRAM (SSFP)
APPROACH TO SOFTWARE REUSE

• Definitions

• Status

• Introduction to the Software Support Environment (SSE)

• Summary

SSFP APPROACH TO SOFTWARE REUSE

DEFINITIONS

Software Commonality: Use of identical, interchangeable,
functionally compatible, or similar software items to
satisfy different sets of functionally similar requirements.

- Common items are from any phase of life cycle
- Items are used without modifications

Software Reuse: Use of identical, compatible, or similar
software items in either modified or unmodified form to

satisfy development activities at any point in the
software life cycle.

- Reusable items already exist
- Reusability is determined by how well the existing item

satisfies requirements or derived attributes of

current development activity

9O

Status

Software Commonality
Has been mandated in several critical areas such as:

-- Software Development (SSE)

-- Onboard data management (DMS)

- Level II Policy directive under review

Software Reuse Strategy

- Level II study group was established May 1988 to gather
background information

Level II sponsored "Reusable Software Flight Certification
Requirements" task

- Level II Policy directive under review

- The Software Support Environment (SSE) is mandated to

support the SSFP reuse strategy

- Participation in this workshop is part of the process

SSFP APPROACH TO SOFTWARE REUSE

The SSFP Level II requirements for SSE support in the area of software reuse
are baselined in SSP 30000 Sec. 11, Rev. A dated October 15, 1988 as follows:

5.3.7 REUSABLE SOFTWARE

The SSE shall provide the capability for identifying and controlling the
use of software components which may be used in mulUple applications
via a controlled library of reusable components. The SSE shall identify,
maintain, and support the dissemination of reusability standards and
reusable software components for SSP operational software.

91

INTRODUCTION TO THE SOFTWARE
SUPPORT ENVIRONMENT (SSE)

• What is the SSE?

Why does Space Station need the SSE?

SSE Implementation Approach

• Who are the SSE Users?

SSE Functionality

Conclusion

WHAT IS THE SSE?

• SSE is a collection of:

Tools (software)
Rules (procedures, standards, s/w production

hardware specs, documentation, policy,
training materials)

• SSE provides the common environment to be used for the
life cycle management of all SSP operational software

• The SSE supports all SSP facilities involved in software
life cycle management. These facilities include:

Work package and KSC Software Production Facilities
The Multi-System Integration Facility (MSIF)
The SSE Development Facility

• The SSE supports and provides mechanisms to enforce
program-wide policies and standards such as:

Standard programming language (Ada)
Common User Interface standards
Software documentation standards

Common software verification approach

92

DEFINITION OF OPERATIONAL SOFTWARE

Operational Software is:

ALL flight and ground software that either

(1) interfaces with on-orbit elements in real time

or

(2) is critical to the mission,
- such as an control center, test, and certification software

- including associated models and simulations

or

(3) SSE software

WHY DOES SPACE STATION NEED THE SSE?

Software is high risk for the SSP in terms of both safety
and cost

- Large amount of software to be developed
- Integration and testing are major issues - multiple

developers are organizationally and geographically
distributed

- Sustaining engineering is a major cost factor in the SSP
software life cycle

SSE provides the means to control SSP software life cycle
costs

The SSE is a single implementation of tools and rules
rather than many
SSE enables consolidation of contractors and skills for

sustaining engineering of SSP software

SSE provides the means to control SSP software quality

- Common program-wide standards and tools will be
utilized for software integration and testing

93

SSE IMPLEMENTATION APPROACH

Single contractor for SSE development - Contract awarded
to Lockheed Missiles & Space Co., Inc. (LMSC)

Contract Start (CSD) - 7/I0/87
Contract Duration is 6 yra with additional 3 yr option
Contract Type - Completion form for Ist year

Level of effort beginning 7110/88
Contractor Location - Houston, Texas

SSE System Project Office is located in the Reston, Va.

Space Station Program Office, Information System
Services Program Group

Supported by Program Support Contractor (PSC) in Reston
Contract management support from JSC Institution, Spacecraft Software
Division

Incremental Development

SSE interim System delivered 9/10/87
- - Used by LMSC to develop the Operational SSE
- - Available to SSP software developers for familiarization, training and early

SSP development act/vities
First Operational SSE Release 11/10/89
- - Integrated Tools
- - No Proprietary Software

Additional Operational Releases each year

WHO ARE THE SSE USERS?

• SSE users include all persons involved in the life cycle

management of SSP software. They include:

Software Project Managers

Requirements Analysts

Software Designers
Software Developers
Testers

Quality Managers

Software Configuration Managers

• The majority of SSE users will be Work Package
Contractors

• Other SSE users will include:

NASA SSP organizations (e.g. MSIF)
KSC and non-prime contractors
Space Station users
International Partners

• The SSE Users Working Group (SSEUWG) provides the

forum for SSE user information exchange and input to the
project

94

SSE FUNCTIONALITY

The SSE supports software development in Ada

- Ada is baseUned as the language of choice for the SSP

- SSE can be expanded to support additional languages if

required

The SSE Ruleset provides software standards, guidelines

and procedures to support software acquisition,

integration, verification and maintenance

The SSE Toolset provides all software tools necessary to

acquire, integrate and deliver SSP operational software

during all life cycle phases. SSE tools encompass the

following functional areas:

- SSE Process Management

Software Management Support
Software Production

Flight Software Integration, Test and Verification

Data Reconfiguration
Training

Library Management

CONCLUSIONS

The SSE provides a single common environment for the

life-cycle management of all SSP operational software

The SSE provides a mechanism for program-wide
enforcement of approved standards and methodologies

SSE support in the critical areas of software integration
and testing will help to maintain SSP safety requirements

Effective use of the SSE will minimize the cost of software

ownership throughout the entire SSP life cycle

95

Summary

The SSFP understands the potential benefits of software

commonality and reuse

Some mandates are in place regarding software commonality

The software reuse strategy is evolving

The SSE will provide the mechanisms required to implement

SSFP strategies for software reuse

96

N90-14800
LEVEL II SOFTWARE REUSE STUDY

Scott E. Herman

Grumman Program Support Contract

The Space Station Freedom Program (SSFP) Level II Software Reuse Study group was formed

by Bob Nelson (NASA SSFP office) from members of the Information Systems Program Sup-

port Contract (PSC) team. The objectives of the study were to identify existing software reuse

libraries, to identify existing reusability processes and experiences, to identify reusability

analysis tools and users, and to provide recommendations for a software reusability process for

the SSFP. To date the following have been delivered (1) definitions of commonality and reuse,
(2) a report on existing software reuse libraries and library management systems, (3) a report

on reuse process and methodology gleaned from software reuse experts, and (4) a report on
software attributes for measuring commonality and reusability. Three implementation altema-

fives for a repository of reusable components were identified: centralized at the SSE Develop-
ment Facility (SSEDF), a distributed approach across the network of Software Production

Facilities, and a directory approach. A number of findings from the reuse study and several
reuse strategy considerations were presented.

97

Study Objectives

Study group was formed by Bob Nelson at SSFP Level II
from members of Information Systems Program Support
Contract (PSC) team including Jim Flynn, Glenn Boyce,
Scott Herman and Tammy Smith to:

1. Identify existing software reuse libraries

2. Identify existing reusability processes and
experiences

3. Identify reusability analysis tools and users

4. Provide recommendations for a software reusability

process for the SSFP.

Accomplishments to Date

Deliverables

1. Definitions of Commonality and Reuse

2. Report on existing software reuse libraries and
library management systems

3. Report on reuse process and methodology from
the software reuse teleconference

4. Report on software attributes for measuring
commonality and reusability

98

Report on Reuse Librarles and Tools

* Provides a list of software libraries and library
management systems

* Report includes for each system:

- Point of Contact
- Users

- Acquisition Requirements
- Description
- Processes and Methodology

Reusable Library and Library Management Systems Investigated

Reusable
S/W Library Library Management Systems
Name

*RSL

(Intermetrics)

*RAPID

RSL (Ford)

GRACE

COSMIC

CAMP/AMPEE

TTCQF

SPC

JSC Ada S/W Library

@ - Denotes Plans

@

@

@

- Identifies Ruben Prieto - Diaz/Peter Freeman Classlfication Approach Implementations

99

Report on Reuse Processes and Methodology From
the Software Reuse Teleconference

* Need an overall model of the SSFP software

development process.

* Domain analysis is very important.

* Identified need for a classification system using

a controlled vocabulary to classify products.

* Good user interface to a software product library
is very important.

* Must define incentives for contractors to build

and use library products.

Report on Software Attributes for Measuring
Commonality and Reusability

* Provides a general discussion of software
classification for reuse

* Discusses domain-sensitive attributes

* Presents a perspective on High-level vs. Low-
level attributes

* Recommends a specific set of classification
Attributes

* Recommends attributes of information to be

included in source code prologues

100

Reuse Study Attribute Sources:

I. Booth Components

2. CAMP

3. Intermetrics

4. RAPID (Reusable Ada Packages For

Information System Development)

5. Ruben Prieto-Diaz (Faceted Classification Scheme)

Repository Implementation Alternatives

O

O

Location Of Actual Software Products

Three Potential Schemes

1). Centralized At SSEDF -

All Life-cycle Products Delivered To And Maintained
At The SSEDF.

2). Distributed Approach -

SSE System Manages And Maintains Life-cycle Products

Throughout The Network (Physical Location Transparent

To The Users).

3). Directory Approach -

Developer Updates Library Mgmt System With

Physical Location Of Life-cycle Product.

101

Findings:

1. Life cycle products from all phases of the
software development process should be included
in the reuse library.

2. Software development products of the SSFP
should be included in a reuse library.

3. Access should be provided to all reusable life

cycle products and notification should be given
to users when new or updated products are added
to the reuse library.

4. Reuse should be considered during each
phase of the life cycle and an analysis of
existing library products should be performed
prior to initiating a new phase of the life cycle
or a new project.

5. A standard taxonomy should be used to describe
attributes of software life cycle products from
each phase of the life cycle.

6. The use of a library management and
classification system which incorporates the
Faceted Classification scheme will meet the
search/storage/retrieval requirements for
software product reuse

102

Findings [conc_

7. Domain analysis should be performed at each
stage of the life cycle to identify attributes of
the required product and to use these attributes
to identify common or reusable candidates.

8. A controlled attribute vocabulary for each phase
of the life cycle will need to be established to
facilitate domain analysis.

9. Maintenance responsibilities should reside with
the developer or modifier. Reusers should be tracked and

notified of errors and anomalies in usage of library

components.

Reuse Strategy Considerations

1. Define a standard attribute vocabulary (similar

to the one done by the U.S. Army) for use in
describing software life cycle products. Such

a vocabulary would facilitate Domain and
Commonality analysis.

2. Continue the study to identify attributes for

software life cycle products; to date, only the
attributes for source code have been defined.

3. Create incentives for software developers: both

for expending the extra effort to develop reusable
products and for saving time and effort by using
existing reusable products from the library.

103

AN SSE APPROACH TO REUSABILITY

David L. Badal

Lockheed Missiles and Spacecraft Co.

N90-14801

The SSE project has engineering analysis and design efforts under way for the development of
the SSE reusability library management system. An ad hoc committee on reuse has been meet-

ing for several months identifying design considerations and learning about Ruben Prieto-Diaz
faceted classification, CAMP domain analysis, SPC activities, SEI activities, and SPS activities.

A standard format was developed for the Aria prologue for reusable components (both

specification and body). The SSE reusability process can be viewed as a transformation pro-
cess with minimized losses and difficulties.

PRECEDING PAGE BLANK NOT FILMED

105

AGENDA

PURPOSE: D. BADAL

DESIGN CONSIDERATIONS: D. BADAL
o AD HOC COMMITTEE
o CLASSIFICATION SCHEMES

o PROPOSED SOFTWARECOMPONENTPROLOG

DESIGN OVERVIEW C. SHOTTON
o AUTOMATION OF REUSEPROCESS
o CURRENTSSE SUPPORT FOR REUSE

o FUTURE SSE REUSE CAPABILITIES

INITIAL ADA COMPONENTS Dr. T. MOEBES

o ELEMENTARY FUNCTION MATH LIBRARY
o IV&V METRICS

PURPOSE

TO PROVIDE INFORMATION ON THE ONGOING ENGINEERING
ANALYSIS AND DESIGN EFFORTS FOR THE DEVELOPMENT OF
THE SSE REUSABILITY LIBRARY MANAGEMENT SYSTEM

- . _

106

DESIGN CONSIDERATIONS

o AD HOC COMMITTEE ON REUSE

LIFE-CYCLE REUSABILITY
OF PROCESSES AND
PRODUCTS

Dr. C.W. McKAY

- TAXONOMY OF TAXONOMIES P. RODGERS

ACTIVITIES AT LANGLEY
RESEARCH CENTER

S. VOIGT

DESIGN CONSIDERATIONS

o CLASSIFICATION SCHEMES

- RUBEN PRIETO-DIAZ FACETED CLASSIFICATION

- CAMP DOMAIN ANALYSIS

- SPC ACTIVITIES

- SEI ACTIVITIES

- SPS ACTIVITIES

107

ADA PROLOG FOR REUSABLE COMPONENTS

PROLOG TO THE VISIBLE INTERFACE (SPECIFICATION) OF ANY
ADA PROGRAM UNIT:

- - COMPONENT NAME:
-- ABSTRACT:
-- DESCRIPTION:

- - REQUIREMENTS TRACE:
- - TESTING TRACE:
-- DISCLAIMER:

-- DISTRIBUTION AND COPYRIGHT:
= =

- - CONFIGURATION MANAGEMENT:
- - SECURITY LEVEL:

- - SUBSYSTEM CLASSIFICATION:
- - KEY WORDS:

- - TRACEABLE PREDECESSOR:

ADA PROLOG FOR REUSABLE COMPONENTS

- - CREATION DATE AUTHOR ORGANIZATION
m I

-- REVISIONS

- - DR# DATE VERSION AUTHOR ORGANIZATION
-- PURPOSE

- - PROGRAMMER'S INFORMATION
- - DESIGN RATIONALE
= =

= m

- - TASKS SPAWNED:
= =

n

- - CONCURRENT ACCESS CONTROL:

- - DYNAMIC MEMORY MANAGEMENT:

108

u

m .

m

n .

u

m .

n

m .

D

I u

m .

Q u

ADA PROLOG FOR REUSABLE COMPONENTS

EXCEPTIONS PROPAGATED:

EXCEPTIONS HANDLED:
KNOWN SIDE EFFECTS:

COMPILER DEPENDENCIES:
LANGUAGE:
VERSION #:
COMPLEXITY:

LINES OF EXECUTABLE CODE:

MACHINE DEPENDENCIES:

ASSUMPTIONS AND LIMITATIONS OF THIS UNIT:

WAIVERS:

ADA PROLOG FOR REUSABLE COMPONENTS

PROPOSED EXTENSIONS AND MODIFICATIONS:

DESCRIPTION FOR REUSERS:

109

ADA PROLOG FOR REUSABLE COMPONENTS

PROLOG FOR THE IMPLEMENTATION (BODY) SECTION OF ADA

PROGRAM UNITS"

m mm

m

m

m

m m

m

m

COMPONENT NAME:

DESIGN RATIONALE:

SPECIAL CONSTRUCTS USED:

TESTING TRACE:

PROPOSED EXTENSIONS AND MODIFICATIONS"

DESCRIPTION FOR REUSERS:

SSE REUSABILITY PROCESS

(TRANSFORMATION PROCESS)

Iw°"K"1
MANPOWER

X

DEVELOPMENT
TIME

(WHAT WE
PAY FOR)

2

Y"= 2 kate-2at _>

[ENTROPY_

LOSSES (DIFFICULTY):

- BLOOD

- SWEAT
- TEARS
- WHEEL-SPINNING

IWORK OUT I

WHAT WE GET

(END PRODUCT)

110

N90-14802

SUPPORT FOR LIFE-CYCLE PRODUCT REUSE IN NASA'S SSE

Charles Shotton

Planning Research Corporation

The Software Support Environment (SSE) is a software factory for the production of Space

Station Freedom Program operational software. The SSE is to be centrally developed and

maintained and used to configure software production facilities in the field. The PRC product

TrCQF provides for an automated qualification process and analysis of existing code that can

be used for software reuse. The interrogation subsystem permits user queries of the reusable

data and components which have been identified by an analyzer and qualified with associated
metrics. The concept includes reuse of non-code life-cycle components such as requirements

and designs. Possible types of reusable life-cycle components include templates, generics, and

"as-is" items. Qualification of reusable elements requires analysis (separation of candidate

components into primitives), qualification (evaluation of primitives for reusability according to

reusability criteria), and loading (placing qualified elements into appropriate libraries). There

can be different qualifications for different installations, methodologies, applications and com-

ponents. Identifying reusable software and related components is labor-intensive and is best

carried out as an integrated function of an SSE.

111

SOFTWARE SUPPORT ENVIRONMENT (SSE)

O SOFTWARE FACTORY FOR PRODUCTION OF SPACE STATION
PROGRAM OPERATIONAL SOFTWARE

el

n

im

m

TOOLS
RULES
PROCEDURES
HARDWARE SPECIFICATIONS

O SSE CENTRALLY DEVELOPED AND MAINTAINED

O SOFTWARE PRODUCTION FACILITIES AND THEIR PROJECTS
ARE CONFIGURED FROM SSE

ss= J
DEVELOPMENT i

FACILITY

-Ji
MULTI-SYSTEM

INTEGRATION
FACILITY

I INSTANCE I

SSE SYSTEM ELEMENTS

P

S

C

N

] 't,,_o'°._g,_'

i FACILITY I

I SSP SOFTWARE
PRODUCTION

FACILITY

SgP BOFTWARE II

PRODUCTION
FACILITY

,INSTAl,ICE

112

REUSABILITY DESIGN CONCEPT

il IAnalyzer Ouallficatfon Inlerr0gallon

5 so.y.,..,j i_ _°.,.,.° _,,.,..m
Reusable
Pans end Data

Reusabilil
Oala end

Components

Original Reusabte Pans

Associated

Measures

@
Reusable Pan

Int errelationships

Reusable

Module

INTERROGATION SUBSYSTEM APPROACH

O USE WELL-UNDERSTOOD, EXISTING DATA BASE
TECHNOLOGY, AND TAXONOMIES

o ALLOWS KEY WORD RETRIEVAL OF REUSABLE COMPONENTS

O ALL RELATED COMPONENTS CAN BE IDENTIFIED AND
RETRIEVED

O IMPLEMENTATION WILL BUILD UPON EXISTING AND FUTURE

INDUSTRY TAXONOMIES, TECHNIQUES, AND STANDARDS

113

REUSE OF LIFE-CYCLE COMPONENTS

O REUSE OF NON-CODE LIFE-CYCLE COMPONENTS IS
REQUIRED

o NON-CODE COMPONENTS INCLUDE:

REQUIREMENTS

PRELIMINARY DESIGN PRODUCTS

DETAILED DESIGN (ADA PDL)
TESTS, TEST DATA, AND OTHER TESTING RESOURCES
METHODS AND PROCEDURES FOR LIFE-CYCLE
DEVELOPMENT

TOOLS SUPPORTING DEVELOPMENT

o REUSABLE COMPONENTS CAN BE QUALIFIED FOR SPECIFIC:

INSTALLATIONS

METHODOLOGIES

APPLICATIONS
MISSIONS

114

POSSIBLE TYPES OF REUSABLE LIFE-CYCLE COMPONENTS

o TEMPLATES- OUTLINE FORM OF A COMPONENT

o GENERICS- TAILORABLE FORM OF A COMPONENT

o AS-IS - COMPONENTS REUSED WITHOUT MODIFICATION

REUSING COMPONENTS

O THIS APPROACH IDENTIFIES CANDIDATE COMPONENTS FOR

REUSE SELECTION BY A DEVELOPER

O GENERICS AND TEMPLATES ARE COPIED TO USER'S WORK

AREA FOR MODIFICATION PRIOR TO BEING PLACED UNDER
CONFIGURATION CONTROL

O MODIFIED AND AS-IS COMPONENTS ARE LOADED DIRECTLY
INTO AN SSE CONFIGURED OBJECT DATA BASE FOR

TESTING

115

REUSING COMPONENTS

O RELATED REUSABLE COMPONENTS IN LATER PHASES ARE
LOADED INTO THE SSE PROJECT OBJECT BASE WHEN AN
AS-IS REUSABLE IS SELECTED

O IF AS-IS COMPONENT MUST BE REWORKED FOR THIS

PROJECT, THE SSE MAY REQUIRE ITS DESCENDANTS TO BE
REWORKED

O ALL MODIFIED REUSABLES ARE CYCLED BACK TO
REUSABLE LIBRARIES FOR QUALIFICATION AND LOADING
INTO THE LIBRARIES

QUALIFICATION

o QUALIFICATION OF REUSABLE ELEMENTS REQUIRES:

O

O

ANALYSIS - SEPARATION OF CANDIDATE COMPONENT

INTO PRIMITIVES
QUALIFICATION - EVALUATE PRIMITIVES FOR
REUSABILITY ACCORDING TO REUSABILITY CRITERIA
LOADING - PLACING QUALIFIED ELEMENTS INTO
APPROPRIATE LIBRARIES

MANUAL INTERROGATION ALLOWS FOR INDEPENDENT
ASSESSMENT OF ELEMENTS BEFORE LOADING

QUALIFICATION RULES AND CRITERIA WOULD BE

EVOLVABLE AND DEFINABLE TO REFLECT
SITE/PROJECT/SYSTEM NEEDS

116

QUALIFICATION

O PRIMITIVE PROFILES WILL BE MODIFIABLE TO
ACCOMMODATE NEW DEVELOPMENT TECHNIQUES OR TO

ENFORCE STANDARDS

o CAN HAVE DIFFERENT QUALIFICATION FOR DIFFERENT

INSTALLATIONS
METHODOLOGIES
APPLICATIONS

COMPONENTS (e.g., CODE vs. DESIGN)

QUALIFICATION

Cluaillicat=o_l Faclbfy

Outside

PnmJbves, _ [

Projects Rprotdes I J _ Defer, red _
•_" ,eros • I

Released

Project £)eliverables _

P;oiects

©©©©
Project Object Base

Production Fao_y Reusable Libraries

©©©©
MethodS. Procedures, Components

equeslod Items

117

QUALIFICATION

CONCLUSIONS

o IT WAS DETERMINED THAT, IN SOME CASES, 60% OF THE
SOFTWARE WAS REUSABLE

o IDENTIFYING REUSABLE SOFTWARE AND RELATED

COMPONENTS IS LABOR-INTENSIVE AND IS BEST CARRIED

OUT AS AN INTEGRATED FUNCTION OF AN SSE

o ADA PROVIDES SUPPORT FOR REUSE DURING ANALYSIS

AND IDENTIFICATION, BUT SPECIAL CONSIDERATION MUST

BE GIVEN TO STORAGE AND RETRIEVAL OF REUSABLE ADA

COMPONENTS, INCLUDING THE MAINTENANCE OF

RELATIONSHIPS BETWEEN CODE AND OTHER LIFE-CYCLE

PRODUCTS

o SOME ASPECTS OF AUTOMATING SOFTWARE REUSE,

ENFORCING SOFTWARE DEVELOPMENT STANDARDS, AND

AUTOMATING IV&V FUNCTIONS ARE SIMILAR

o Ai TECHNIQUES CAN BE APPLIED IN HARMONY WITH

"CONVENTIONAL" SOFTWARE WHEN ATTACKING PROBLEMS

WITHIN SSEs

118

N90-14803
INITIAL ADA COMPONENTS EVALUATION

Dr. Travis Moebes

SAIC

SAIC has the responsibility for independent test and validation of the SSE. They have been

using a mathematical functions library package implemented in Ada to test the SSE IV&V pro-

cess. The library package consists of elementary mathematical functions and is both machine

and accuracy independent. The SSE Ada components evaluation includes code complexity
metrics based on Halstead's software science metrics and McCabe's measure of cyclomatic

complexity. Halstead's metrics are based on the number of operators and opcrands on a logi-

cal unit of code and are compiled from the number of distinct operators, distinct operands, and

total number of occurrences of operators and operands. These metrics give an indication of the

physical size of a program in terms of operators and operands and are used diagnostically to

point to potential problems. McCabe's Cyclomatic Complexity Metrics (CCM) are compiled
from flow charts transformed to equivalent directed graphs. The CCM is a measure of the

total number of linearly independent paths through the code's control structure. These metrics
were computed for the Ada mathematical functions library using Software Automated

Verification and Validation System (SAVVAS), the SSE IV&V tool. A table with selected

results was shown, indicating that most of these routines are of good quality. Thresholds for

the Halstead measures indicate poor quality if the length metric exceeds 260 or difficulty is

greater than 190. The McCabe CCM indicated a high quality of software products. The SSE

will include the Ada version of SAVVAS that may be used for computing these code complex-

ity metrics.

119

INITIAL ADA COMPONENTS EVALUATION
MATHEMATICAL FUNCTIONS LIBRARY PACKAGE

o IMPLEMENTED IN ADA BY L. J. GALLAHER, Ph.D

O LIBRARY PACKAGE OF ELEMENTARY
MATHEMATICAL FUNCTIONS

- SIN, COS, SINH, LOG, ETC.

O ROUTINES ARE BOTH MACHINE AND ACCURACY
INDEPENDENT
- ACCURACY DETERMINED WHEN LIBRARY

PACKAGES ARE INTEGRATED INTO USER
PROGRAM

INITIAL ADA COMPONENTS EVALUATION
MATHEMATICAL FUNCTIONS LIBRARY PACKAGE

o SPECIFICATION FOR ELEMENTARY MATH
FUNCTIONS PACKAGE

genetic type real is digiLs < >;

package pacjlfun is --

function exp(x : real) return real;

function In(x : real) relurn real;

function Iogt0(x : real) return real;

function sqrt{x : real) return real;

function cbrl(x : real) return real;

function sin{x ; real) return real;

function cos(x : real) return real;

function atan(x : real) return real;

function cosh(x : real) return real;

Junction sinh(x : real) return real;
function tan(x : real) return real;

function tanh(x : real) return real;

|unclion atanh(x : real) return real;

function asin(x : real) return real;

funclion acos(x : real) relurn real;

function asinh{x : real) return real;

function acosh(x : real) return real;

function alan2(y, x : real) re!urn real;

function (x, y : real) return real;

function rootln integel: y : real) return real:

end pac_cl fun

120

O

O

APPROXIMATIONS CALCULATED DIRECTLY
FROM CHEBYSHEV POLYNOMIALS USING A

METHOD INTRODUCED BY C.W. CLENSHAW,
"CHEBYSHEV SERVICES FOR MATHEMATICAL

FUNCTIONS," "NATIONAL PHYSICS
LABORATORY MATHEMATICAL TABLES," VOL.

5, HER MAJESTY'S STATIONERY OFFICE,
LONDON, 1962

TECHNICAL REPORT ON THE LIBRARY GIVEN BY

L. J. GALLAHER, "A LIBRARY OF ELEMENTARY

MATH FUNCTIONS IN ADA," IRAD R626,
LOCKHEED-GEORGIA COMPANY, MARIETTA,

GEORGIA, JANUARY, 1987

INITIAL ADA COMPONENTS EVALUATION
SSE IV&V CODE COMPLEXITY METRICS

WHAT ARE THE TYPES OF CODE COMPLEXITY METRICS?

O CODE COMPLEXITY METRICS
- HALSTEAD'S SOFTWARE SCIENCE METRICS

- McCABE'S MEASURE OF CYCLOMATIC
COMPLEXITY

O COMPUTED IN SSE IV&V'S SOFTWARE

AUTOMATED VERIFICATION & VALIDATION

SYSTEM (SAVVAS)

121

WHY USE HALSTEAD'S SOFTWARE SCIENCE METRICS?

O

O

COMPILED FROM THE NUMBER OF DISTINCT

OPERATORS, DISTINCT OPERANDS, AND TOTAL
NUMBER OF OCCURRENCES OF OPERATORS AND

OPERANDS

GIVES AN INDICATION OF THE PHYSICAL SIZE

OF A PROGRAM IN TERMS OF OPERATORS AND

OPERANDS. VARIOUS SIZE METRICS ARE GIVEN

o USED DIAGNOSTICALLY TO POINT TO

POTENTIAL PROBLEMS

O HALSTEAD'S SOFTWARE SCIENCE METRICS

BASED ON THE NUMBER OF OPERATORS AND
OPERANDS ON A LOGICAL UNIT OF CODE

OPERATORS INCLUDE ARITHMETIC OPERATORS,
BOOLEAN OPERATORS, DELIMITERS

OPERANDS ARE VARIABLES AND CONSTANTS

- FOR EACH UNIT OF CODE LET:

nl = THE NUMBER OF DISTINCT OPERATORS
n2 = THE NUMBER OF DISTINCT OPERANDS
N1 = THE TOTAL NUMBER OF OCCURRENCES OF
THE OPERATORS

N2 = THE TOTAL NUMBER OF OCCURRENCES OF
THE OPERANDS

122

INITIAL ADA COMPONENTS EVALUATION

SSE IV&V CODE COMPLEXITY METRICS

LENGTH: N= N1 + N2

VOCABULARY: W = n 1 + n2

VOLUME: V = N x Iog2W

LEVEL: L = (2 x n2)/(n 1 xN2)

DIFFICULTY: D = 1/L

EFFORT: E = V/L

ERROR ESTIMATE: B=E2/3/Eo;Eo-=3000

B = NO. OF BUGS IN A PROGRAM

INTERPRETATION OF HALSTEAD'S METRICS

THE LENGTH N SERVES AS A MEASURE OF
MODULARITY. A LENGTH OF GREATER THAN 260
INDICATES POOR QUALITY CODE. THE CODE

SHOULD (PROBABLY) BE REDUCED TO MORE AND
SMALLER MODULES

THE VOLUME V REPRESENTS THE SIZE (IN BITS) OF
A LOGICAL UNIT OF CODE

THE LEVEL L IS A MEASURE THAT RELATES TO THE

EFFORT OF WRITING, PROPENSITY (INCLINATION)
FOR ERROR, AND EASE OF UNDERSTANDING OF A
LOGICAL UNIT OF CODE

123

INITIAL ADA COMPONENTS EVALUATION

SSE IV&V CODE COMPLEXITY METRICS

THE DIFFICULTY D, THE RECIPROCAL OF LEVEL,
INDICATES THE DIFFICULTY IN UNDERSTANDING

AND MAINTAINING THE CODE. A DIFFICULTY

GREATER THAN 190 TENDS TO INDICATE A

POOR QUALITY OF CODE

THE EFFORT E IS A MEASURE OF THE RELATIVE

AMOUNT OF WORK INVOLVED IN PRODUCING A

PIECE OF CODE

THE ERROR ESTIMATE B (BUGS) IS THE
ESTIMATED NUMBER OF ERRORS IN THE CODE.

Operator Parameters

Operator J f 1 , j

; 1 9

:= 2 6

() or BEGIN...END 3 5

IF 4 3

5 3
6 1

7 1

x 8 1

9 1

EXIT 1 0 1

n1=10 N1 =31

124

INITIAL ADA COMPONENTS EVALUATION
SSE IV&V CODE COMPLEXITY METRICS

Operand Parameters

Operand j f 2, j

B 1 6

A 2 5
O 3 3
R 4 3
G 5 2

GEE) 6 2

n2= 6 N2 =21

O

O

O

WHY USE McCABE'S CYCLOMATIC COMPLEXITY METRICS?

COMPILED FROM FLOWCHARTS TRANSFORMED TO

EQUIVALENT DIRECTED GRAPHS, THE NUMBER OF EDGES OF

THE GRAPHS, THE NUMBER OF NODES OF THE GRAPHS AND
THE NUMBER OF SEPARATE PARTS OF THE GRAPH

THE McCABE CYCLOMATIC COMPLEXITY

ASSISTS IN BREAKING UP A SOFTWARE

COMPONENTS THAT HAVE A SMALL CCM <10

METRIC (CCM)
PROGRAM TO

PROGRAMS WITH LARGE CCM SHOULD HAVE MORE ERRORS

DURING DEVELOPMENT

125

WHY USE McCABE'S CYCLOMATIC COMPLEXITY METRICS?

(Continued)

O THE CCM MAY BE USED TO DETERMINE THE MINIMUM NUMBER
OF PATHS NEEDED.

O THE CCM RELATES ONLY TO LOGICAL COMPLEXITY. THE CCM
SHOULD BE USED IN CONJUNCTION WITH OTHER METRICS

McCABE'S CYCLOMATIC COMPLEXITY METRIC

McCABE'S CYCLOMATIC COMPLEXITY METRIC IS A
MEASURE OF THE TOTAL NUMBER OF LINEARLY
INDEPENDENT PATHS THOUGH THE CODES CONTROL
STRUCTURE

TO CALCULATE CYCLOMATIC COMPLEXITY, FLOW-
CHARTS ARE TRANSFORMED TO EQUIVALENT
DIRECTED GRAPHS

126

McCABE'S CYCLOMATIC COMPLEXITY METRIC

(Continued)

COMPLEXITY MEASURE OF A PROGRAM IS A
FUNCTION OF THE NUMBER OF DECISIONS IN A
PROGRAM AND IS GIVEN BY A SINGLE NUMBER
KNOWN AS A CYCLOMATIC NUMBER

COMPLEXITY MEASURE IS INDEPENDENT OF THE
PHYSICAL SIZE OF THE PROGRAM

DEFINITIONS:

A GRAPH IS A TREE STRUCTURE CONSISTING OF

NODES CONNECTED BY BRANCHES

A DIRECTED GRAPH IS A GRAPH IN WHICH A
DIRECTION OR FLOW IS ASSOCIATED WITH EVERY

BRANCH

127

DEFINITIONS: (Continued)

A STRONGLY CONNECTED GRAPH IS A GRAPH THAT
HAS A UNIQUE ENTRY AND EXIT NODE AND EACH
NODE CAN BE REACHED FROM EVERY OTHER NODE

Strongly Connected Not Strongly Connected

EXAMPLE

CONTROL GRAPH G SOME POSSIBLE PATHS

abef

'_ beb,o abea

acfa

adcfa

abefa
!

2beb abea

128

DEFINITION:

THE CYCLOMATIC NUMBER V(G) OF A GRAPH G

WITH n NODES AND e BRANCHES AND p CONNECTED
COMPONENTS IS

V(G)=e-n+2P;

IN THE EXAMPLE CONTROL GRAPH G:

NUMBER OF NODES = 6
NUMBER OF BRANCHES = 10

V(G) = 10-6,2(1) = 6

GRAPH EXAMPLES:

CONTROL

SEQUENCE

IF THEN ELSE

WHILE

STRUCTURE CYCLOMATIC COMPLEXITY
V=e-n+2p

V=1-2+2=1

V=4-4+2=2

V=3-3+2=2

129

GRAPH EXAMPLE WITH p = NO. OF COMPONENTS = 3

SUPPOSE A PROGRAM M AND TWO CALLED
SUBPROGRAMS A AND B HAVE THE
FOLLOWING CONTROL STRUCTURE:

©
\/

()

THEN G = MUAUB AND p = 3
THEN V(G) = V(MUAUB) = 13-13+2x3 = 6
NOTE: V(MUAUB) = V(M)+V(A)+V(B)

PROPERTIES OF THE CYCLOMATIC COMPLEXITY

1. V(G)_>I

2. V(G)IS THE MAXIMUM NUMBER OF (LINEARLY)

INDEPENDENT PATHS IN G; IT IS THE SIZE OF A

BASIS SET (i.e., ALL COMBINATIONS OF PATHS IN

THE CODE ARE MADE UP FROM PATHS IN G)

INSERTING OR DELETING FUNCTIONAL STATEMENTS

TO G DOES NOT AFFECT V(G)

G HAS ONLY ONE PATH IF AND ONLY IF V(G)=I

.

•

130

PROPERTIES OF THE CYCLOMATIC COMPLEXITY

(Continued)

5. INSERTING A NEW EDGE IN G INCREASES V(G) BY
UNITY

6. V(G) DEPENDS ONLY ON THE DECISION STRUCTURE
OFG

V(G) ASSISTS IN BREAKING UP A SOFTWARE
PROGRAM TO COMPONENTS THAT HAVE A

SMALLER COMPLEXITY NUMBER. McCABE

RECOMMENDS THAT EACH COMPONENT G HAS A

V(G) LESS THAN 10

O

SAVVAS-ADA-McCABE'S CCM

COUNT THE NUMBER OF "CASE" STATEMENT BRANCHES

AND SET THIS NUMBER EQUAL TO m I

CASE TODAY IS

1) WHEN MON => OPEN ACCOUNTS;
COMPUTE_INITIAL BALANCE;

1) WHEN TUE..THU => GENERATE REPORT (TODAY);
1) WHEN FRI => COMPUTE_CLOSING_BALANCE;

=> CLOSE ACCOUNTS:

1) WHEN SAT/SUN => NULL

4 END CASE;
4 BRANCHES

131

O COUNT THE NUMBER OF "IF STATEMENT" BRANCHES AND

SET THIS NUMBER TO m2

1)

1)

1)

m

3

IF WEATHER CONDITION = RAIN THEN
COMPUTE_RAINFALL;

ELSIF WEATHER CONDITION = SUNSHINE THEN
COMPUTE HUMIDITY:

ELSE

COMPUTE_PRES;
END IF;

3 BRANCHES

COUNT THE NUMBER OF "LOOP BRANCHES" AND SET

THIS NUMBER TO m3

1)
1)

FOR I IN 1..10 LOOP
FOR J IN 1..20 LOOP

IF A(I,J) = 0 THEN
M:=I ;
N:=J;
EXIT FIND;

END IF;
END LOOP;

END LOOP FIND;

2 LOOP BRANCHES 1"IF STATEMENT" BRANCHES
3 BRANCHES

CCM=LOG2 ml+m2+m3

132

INITIAL ADA COMPONENTS EVALUATION
SAVVAS CCM RESULTS APPLIED TO ADA

MATHEMATICAL FUNCTIONS LIBRARY

UNIT NAME McCABE HALSTEAD's HALSTEAD's

V(g) Length Metric Difficulty Metric

(260) (190)

Average

In

tanh

t aux fun

pac_aux_fun
remainder

pac el fun

3 82 16.018

1 32 5.25

3 74 16.7

1 163 25.84

1 21 5 32.045

4 90 34.833

1 868 19.989

O

O

O

O

INITIAL ADA COMPONENTS EVALUATION

SUMMARY

CCM DIRECTED IV&V APPLIED TO THE SSE ADA

MATHEMATICAL FUNCTION LIBRARY PACKAGE INDICATED

A HIGH QUALITY OF SOFTWARE PRODUCTS

IN HALSTEAD'S SOFTWARE SCIENCE METRICS, A LENGTH

OF GREATER THEN 260 OR DIFFICULTY GREATER THAN

190 TENDS TO INDICATE POOR QUALITY CODE

McCABE HAS SUGGESTED THAT A CYCLOMATIC

COMPLEXITY OF 10 SHOULD BE THE UPPER LIMIT FOR V(G)

(CYCLOMATIC COMPLEXITY MEASURE FOR A GRAPH G)

THE ADA VERSION OF SAVVAS MAY BE USED FOR

COMPUTING CODE COMPLEXITY METRICS

133

N90-14804

APPLICATION OF REUSABLE SON'WARE COMPONENTS AT THE SEI

Robert Holibaugh

Software Engineering Institute

Robert Holibaugh of the Software Engineering Institute described a project which is studying

the application of reusable software components. The primary goals are to gain practical
experience with state-of-the-art reusable components, methods, and tools and to capture the les-

sons learned in the application of reuse technology. In addition the project will assess the

impact of reuse on the software development process and products and will identify and vali-

date the information that facilitates software reuse during system development. The project

includes two tasks - a reuse experiment and a redevelopment effort. The reuse experiment will

define a life cycle and a methodology for reuse-based development, and define and implement
a data collection mechanism for measuring the development. The redevelopment effort will

construct a reuse test bed and will redevelop and realistically test subsystems from an embed-

ded mission-critical real-time application. The reuse experiment will produce several products

including a tested real-time application, reuse-based components and tools evaluation, a reuse-

based development method, a framework for data collection, a framework for measuring pro-

ductivity, and lessons learned data. Successful development with reusable components will

require a rich set of components and an integrating methodology. The Tomahawk Land Attack

Missile system is the application for the redevelopment effort. A number of goals and ques-

tions relating to the reuse experiment were presented. The project environment included

several types of workstations, target hardware, and a number of software support tools.

Several reports from the project are already available.

PRECEDING PAGE BLANK NOT FILMED
135

Agenda

Project Goals

Reuse Experiment

Project Environment

Project Status

Goals

• Gain practical experience with state-of-the-art
reusable components, methods, and tools; and
capture lessons learned in the application of reuse
technology

• Assess the impact of reuse on software
development process and products (in particular,
on design)

• Identify and validate the information that facilitates
software reuse during system development

136

Project Tasks

• Reuse Experiment

- define life cycle and a methodology for reuse-
based development

- define and implement data collection
mechanism for measuring the development

• Redevelopment Effort

- construct reuse test bed

- redevelop and realistically test subsystems from
an embedded MCCR application

Reuse Cycle

Feedback

Results

truct

&

Build Systems

137

Reuse Experiment Motivation

• Motivation: Integrate and improve the application
of reuse

• Purpose:

• Value:

Investigate impact of systematic reuse
on 'real' development

Establish empirically supported
guidelines for reuse

Reuse Experiment Products

• Tested real-time application

• Reuse-based components and tools evaluation

• Reuse-based development method

• Framework for data collection

• Framework for measuring productivity

• Lessons learned/development data

138

Reuse Position

Given sufficiently rich and powerful set of reusable

components, methods, and tools for an application

domain, and a (integrating) methodology for

systematically applying reuse

THEN successful development will:

• require significant effort for reuse related tasks

• encounter new problems

• benefit from reuse over multiple projects

Subsystem Redevelopment

• Application - Tomahawk Land Attack Missile
(TEAM)

- Acquired domain-specific reusable components
- CAMP

- Acquired domain expertise - Raytheon

Acquired interested DOD program office - Cruise
Missile Program Office

• Acquired the original requirements, functional
specification, and design

139

Subsystem Redevelopment (con)

• Develop and test the subsystems under
constraints "similar" to MCCR contractors (e.g.
2167A and ISP)

. "Monitor" the development of the subsystem
(Basili86)

Experiment Goals

. Describe the impact of software reuse on process
and products (specifically design)

. Describe the use of reuse-based resources:
components, methods, tools

• Identify information (through applications,
documentation, reports, etc.) that will facilitate
reuse

• Capture and disseminate lessons learned

140

Questions

• Reuse extent & ° Impact on quality(Q6)
frequency(Q1)

• Integral concept(Q7)
• Training, experience,

& support(Q2) °

• Relative contribution
of reuse(Q3) °

° Related reqs & design
decisions(Q4)

Effectiveness of
CAMP(Q8)

U.Md/NASA standard
data(Q9)

• Properties of the
System(Q5)

Metrics

• Document the capabilities of development staff

• Instrument the development process

• Evaluate the development products

• Evaluate the reusable components, methods, and
tools

141

• Hardware:

Project Environment

- VAX Cluster provides a workstation for each
developer

- Symbolics 3670 supports AMPEE

- IBM PC-AT supports Asset Library System

- Motorola 68020 Target Hardware

• Software:

- VAX Ada Tool Set (editors, compiler, debugger,
configuration manager, etc.)

- Statemate

- ADADL (Ada PDL tool set)

- Interpretative Simulation Program (ISP) from NWC

142

ARSC Reusable Software

• Component libraries

- Common Ada Missile Packages

- Booch Abstract Data Types

- EVB Abstract Data Types

- Ada Software Repository

• Ada Missile Parts Engineering Expert (AMPEE)

• GTE Asset Library System

GTE Asset Library System

• Uses 'faceted' approach to Reusable Software
classification

- Missile operational parts

- Kalman filter and math parts

- General purpose parts

• Runs on IBM PC AT

• GTE has assisted in facet identification and parts
classification

143

Testing Considerations

• Required to verify/validate performance of
software

• Required to verify accuracy of experiment results

• Realistic to project scope

• Credible to external reviewers

Testing Options

• Code Inspections

• Unit testing on VAX

• Simulation on VAX

• Simulation on VAX with target machine(Motorola
68020) in loop

• Simulation with hardware in loop

• Flight test

144

Transition

• Work with GTE on evaluation of ALS and report
findings

• Work with Raytheon/??? on evaluating the system
attributes

• Report on software experimentation and data
collection mechanisms

• Report on reuse-based methodology

• Report on lessons learned from the experiment

Project Reports

• Phase I Test bed Description: Requirements and
Selection Guidelines
(C M U/S EI-TR-88-013)

• Subsystem Redevelopment: Analysis
(C M U/S EI/TR-88-014)

• Perspective on Software Reuse
(CMU/SEI-TR-88-022)

• Experiment Design Report: High Level Design
(CMU/SEI-TR-88-32)

• Experiment Planning for Software Development
(Dec 1988)

145

• Software Methodology in the Harsh Light of
Economics
(Dec 1988)

• Experiment Design Report: Detailed Design
(Dec 1988)

• Reusable Software Component Construction
(SEI Affiliates Symposium, Jun 1989)

Planned Project Outputs

° Project Reports

- Reuse Life Cycle and Methodology Report
(Feb 1989)

- Classification of Reusable Components
(Apr 1989)

- Final Project Report
(Dec 1989)

• Project Presentations

- Reuse, Where to Begin and Why
(Feb 1989)

146

i Classification of Reusable Components
(Mar 89)

i=l CAMP Training
(Apr 1989)

i Reusable Requirements
(May 1989)

i CAMP Users Workshop
(Jun 1989)

Completed Tasks

• Jul 87 - Testbed definition

• Sep 87 - Domain selection

• Nov 87 - Raytheon affiliate

• Dec 87 -Installation of Vax Cluster & Symbolics

• Jan 88 - Experiment review

• Apr 88 - Software Development Plan

• Aug 88 - Requirements analysis

• Oct 88- Software Specification Review

147

N90-14805

TECHNOLOGY TRANSFER IN SOFTWARE ENGINEERING

Dr. Peter C. Bishop

University of Houston-Clear Lake

The University of Houston-Clear Lake is the prime contractor for the AdaNET Research Pro-

ject under the direction of NASA Johnson Space Center. AdaNET was established to promote

the principles of software engineering to the software development industry. AdaNET will
contain not only environments and tools, but also concepts, principles, models, standards,

guidelines and practices. Initially, AdaNET will serve clients from the U.S. government and

private industry who are working in software development. It will seek new clients from those
who have not yet adopted the principles and practices of software engineering. Some of the

goals of AdaNET are to become known as an objective, authoritative source of new software

engineering information and parts, to provide easy access to information and pans, and to keep
abreast of innovations in the field.

PRECEDING PAGE BLANK NOT RLMED

149

Mission

AdaNET is an electronic distribution network

(the electronic marketplace)

for software engineering

where those in the field

can exchange information and engineering parts.

AdaNET will also

promote the principles of software engineering

to the rest of the software development industry

as a way to increase the scope of its network.

150

Contents

AdaNET will contain the following information and parts:

pts Principles

Clients

AdaNET will serve clients

from U.S. government and private industry

who are working in software development.

AdaNET will seek new clients

from the software development industry

who have not yet adopted the principles and

procedures of software engineering.

AdaNET will initially concentrate on clients

in manufacturing and administrative (MIS)

computer systems.

Goals

AdaNET will maintain the highest reputation for quality

in its research, its products and its services.

AdaNET will become known as an objective,

authoritative source of new software engineering
information and parts.

AdaNET information and parts will be easy to obtain

and easy to use.

AdaNET will be continually changing

to keep abreast of innovations in the field.

151

Success

AdaNET will provide its clients

demonstrated benefit

at reasonable cost.

AdaNET will stress

how effectively and

how efficiently
it fulfills its mission.

AdaNETwill support itself

through the sale of products and services and

through continuing research contracts,

_Henry Clarks _

1

RoyB,vinsj t
PROJECT CONTROL r

BOARD__ I

Robert I

MacDonald [

Glen

Houston

Peter

Bishop

Michael

Digman

ORGANIZATION

LEAD AGENCY

NASAFFU

- - AJ_PO

__ _ DOC/OPTI _r
Dept of ArmyL l

LEAD CENTER
NASA

Johnson Space Center

l PRIME CONTRACTOR Technical Advisory Board_i_ University of Houston-Clear Lake--Bu_in __sAdvisory Boa_

RIClS j _ a_agemeni-_on_-ot_s-

Related Projects

Working Group

DEVELOPER

MountainNET, Inc.

Morgantown WV

__[Development Contractors !

152

Milestones

September 1987

October 1987

August 1988

October 1988

HISTORY

Unsolicited proposal submitted

Revised proposal accepted

Final draft report submitted

NASA briefing to sponsors

Work begins under new WBS

153

N90-14806

ADANET SERVICES

Michael Digman
MountainNet, Inc.

MountainNet is a small finn which serves as a distribution center for AdaNET Services. These

services include providing host systems and telecommunications for AdaNET, developing and

supporting AdaNET Information Services, and developing a dynamic software inventory.

AdaNET hosts are a Data General MV80001I and DEC VAX. Telecommunications are pro-

vided via the MountainNet private network and the Telenet public access dial network. Ini-

tially, the AdaNET Information Services will include software repositories, user communica-

tions and forums, software engineering information, bibliographic and library services, and an

educational directory. The dynamic software inventory, which will become available in Janu-

ary 1990, will contain software engineering code and parts.

PRECEDING PAGE BLAIqK NOT FILMED

155

AdaNET Services

• Host Systems &
Telecommunications

• AdaNET Information
Services

• Dynamic Software
Inventory

Host Systems
Telecommunications

AdaNET Hosts:

• Data General MVS00011
• DEC VAX

Telecommunications:

• MountainNet Private Network
• Telenet Public Access Dial Network

156

AdaNET

Information Services

(AIS)

Prototype (Version 1.0)

• Software Repositories (ASR, CAMP)

• User Communications & Forums

• Software Engineering Information

• Bibliographic & Library Services

• Education, Training, & Resources
Directory

Dynamic
Software Inventory

(DSI)

Prototype (available 1/90)

. Software Engineering Code & Parts

• Not Only Ada

• Verification & Validation

157

AdaNET Contacts

(304) 296-1458

Project Director
Michael Digman

Administration
Linda K. Braun

Library Services
Rebecca Bills

Market Development
James Ra utner

Prototype Development
Dom] PMlpot

Strategic Planning
Kevin Dyer

Systems & Te/ecomm.
_,]a,rcus Ham(ten

User Services
Pearly Later

RMD

LKB

RBILLS

JWR

DPHILPOT

DYER

MARCUS

LACEY

158

N90-14807
ADVANCED SOFTWARE DEVELOPMENT WORKSTATION PROJECT*

Daniel Lee

Inference Corp.

The Advanced Software Development Workstation Project, funded by Johnson Space Center, is

investigating knowledge-based techniques for software reuse in NASA software development

projects. Two prototypes have been demonstrated and a third is now in development. The
approach is to build a foundation that provides passive reuse support, add a layer that uses

domain-independent programming knowledge, add a layer that supports the acquisition of

domain-specific programming knowledge to provide active support, and enhance maintainabil-

ity and modifiability through an object-oriented approach. The development of new application

software would use specification-by-reformulation, based on a cognitive theory of retrieval

from very-long-term memory in humans, and using an Ada code library and an object base.

Current tasks include enhancements to the knowledge representation of Ada packages and

abstract data types, extensions to support Aria package instantiation knowledge acquisition,

integration with Ada compilers and relational databases, enhancements to the graphical user
interface, and demonstration of the system with a NASA contractor-developed trajectory

simulation package. Future work will focus on investigating issues involving scale-up and

integration.

* Funded under NASA Contract NAS-9-17766.

159

The Software Reuse Process
(from [Prieto-Diaz and Freeman 87])

begin

retrieve matching components

if identical match

then use matching component

else

begin

end

from catalog

select best matching component

modify matching component

end

ASDW Technical Approach

• Build a foundation that provides passive reuse support (catalog

retrieval and parts composition).

• Add a layer that uses domain-independent programming knowledge
to provide interactive support (syntactic constraint checking and

code generation),

• Add a layer that supports the acquisition of domain-specific

programming knowledge to provide active support (semantic
constraint checking).

• Enhance maintainability and modifiability through an object-oriented

approach.

160

n

Application Development Using the ASDW

y Ada code library

X_ Object base

Specification-by-reformulation

• A generic user interface architecture for task support.

• Based on a cognitive theory of retrieval from very-long-term

memory in humans.

• A specification-by-reformulation environment consists of:

o A specification language.

o A mechanism for providing feedback to the user about the

current specification.

o A mechanism for performing actions on specifications.

• Using specification-by-reformulation for software parts
composition:

o Domain object descriptions and library package specifications

form an application-specific specification language.

o Constraint propagation provides feedback.

o Specialization and generalization of specifications and code

generation are actions,

161

The Specification-by-reformulation Process

ASDW Project: Work in Progress

• Current tasks:

o Enhancements to the knowledge representation of Ada

packages and abstract data types.

o Extensions to support Ada package instantiation knowledge

acquisition,

o Integration with Ada compilers and relational databases.

o Enhancements to the graphical user interface.

o Demonstration of the system with a NASA contractor software

library (trajectory simulation package).

• Third prototype demonstration: 2/89.

162

ASDW Project: Future Work

• Goal: Investigate issues involving scale-up and integration.

• Tasks:

1. Develop and integrate associative retrieval algorithms for use
with large software libraries.

2. Develop and integrate conceptual clustering algorithms for
automatic taxonomy generation.

3, Integrate prototype with NASA software development
environment.

4. Conduct prototype evaluation in conjunction with an ongoing
NASA contractor Ada development project.

• Fourth prototype demonstration: 10/89.

163

WORKSHOP DISCUSSION

Several common themes emerged clearly from the workshop. One prominent theme was

the need for systematic methods of reusing software. Central to all approaches for reuse is

the reusable software library; the descriptions of the requirements for such libraries showed

considerable commonality. In particular, libraries were assumed to contain different types of

objects, including requirements, design, and code. Objects were assumed to have attributes

and to be categorized according to some classification scheme. In addition, relationships

between objects need to be represented and identified for the library user.

A second theme was the need for experimentation to understand how a reuse-based software

development process would work. Of particular interest was quantifying the results of

the experimentation in some way, i.e., collecting and analyzing data that would aid such

understanding. Some unanswered questions were "What data should be collected on these

empirical studies?" and "What should be measured?" It was suggested that we need a

theory or model of the software reuse process. Many participants thought that we already
knew how to produce reusable software, but that we didn't know how to reuse it very well.

A third theme was the need for economic models of reuse that would quantify the cost
trade-offs involved in reuse. We wish to know how cost-effective reuse can be and what

factors affect this significantly. For example, given parameters such as the cost per part
to produce a reusable part, such models would allow calculation of the number of times a

part would have to be reused in order to realize a payoff.

The Space Station Freedom Project presentations clearly indicated an immediate concern

for what could be done now to achieve a payoff for Space Station that would not require

a research investment. The project is looking for ways to reuse software (over a long

lifetime and by geographically distributed contractors) which could be implemented from

the beginning of software development and yet still be useful in later years.

A list of issues was generated during a lively discussion period, and these have been

organized into three categories: technical, managerial, and legal.

TECHNICAL ISSUES

Experimentation
• Need experimentation and empirical studies.

• Need information concerning how to measure reuse, what data should be collected,
and how these data should be classified.

• Need economic models and cost/benefit studies related to software reuse.
• Need feedback from users and to capture user experience.

Engineering for reuse

• When is something reusable?

• What functions have high potential for reuse?
• At what level should reuse be supported? specifications, design, code.

• Which parts of the lifecycle would benefit most by reuse? specifications, design,
maintenance.

• What standards are needed for reuse?

terminology, interfaces, taxonomies.

PRECEDi[_G _AGE _LA;_K ?,i0_" FILMED
165

• What processshouldbeusedto producereusablesoftware?
• What processis thebest to supportreuseof parts?

Reuselibraries
• What shouldsearchstrategies/querylogicbe?Howeffectivearethey?
• What is aneffectiveknowledgerepresentation?
• Howshouldreusablepartsbestored?Shouldtheybestoredin onelargelibrary or

manysmalllibraries?
• What is the optimumsizefor a library?

- Manysmallpartsversusfewlargeparts.
- Restricteddomain(scale/sizeof library).
- Howto limit library parts to usefulones.

Technologytransfer
• Shouldapproachto reusebeevolutionaryor revolutionary?
• Howcanreusebe introducedgraduallyandbecomemorewidelyusedovertime?

MANAGERIAL ISSUES
Policies/decisions.

Costeffectivenessof designingfor futurereuse.
Amountof adaptationof reusablecomponentbeforerebuilding.
Rewardsystemto encouragereuse(individualsandcontractors).

Commitment.
Risk.
Quality Assurance,Certification.
Technologyinsertion.

LEGAL ISSUES
What softwareis in the publicdomain?
Howeffectiveis softwarereusewith proprietarysoftware?
If proprietarysoftwareis put into a "public" library for reuse,whois liable if it does
not performasexpected?
What aretheliability, warranty,andownershipresponsibilities?

166

RECOMMENDATIONS

One of the goals of this workshop was to identify areas for research direction and col-
laboration among the NASA Centers. The list of technical issues provides potential
areas for further work to be pursued. There was consensus that it is premature for
NASA to establish policies and procedures for software reuse at this time.

Some specific recommendations were also developed at the close of the workshop:
Experimentation and data collection and analysis are needed to evaluate the
effectiveness of reuse approaches, and systematic methods for reuse of software com-
ponents are needed.

First, NASA should encourage experimentation and data collection in ways to reuse
software. Such experimentation should probably start on a small scale and move to
larger scale experiments as workable reuse processes are found. Furthermore, such
experimentation should be cooperative across NASA centers so that projects such as
the Space Station Freedom Program (SSFP) will be able to take advantage of the
results. The space station Software Support Environment (SSE) could provide an
unparalleled opportunity to collect large quantities of data (representing the develop-
ment and long-term maintenance of millions of lines of code) under reasonably well-
controlled conditions (uniform environment and life cycle model). This could be a
tremendous opportunity for software engineering in general (not just reuse). It is
important that NASA software researchers determine what kinds of data would be
important to collect and that the SSE incorporate the ability to collect such data with
minimum possible overhead. We need a Memorandum of Understanding (MOU)
between the Information Systems Division in OAST (NASA Office of Aeronautics and

Space Technology) and the SSE project to facilitate such activities. We also need to
do some schedule coordination so we will know when SSE will be able to absorb such

requirements and when NASA researchers will be able to generate and validate them.
The MOU should address issues such as:

1) SSE will accept and implement requirements to collect automatically
certain types of statistical data and make these available to NASA
researchers;

2) OAST will conduct a long-term (e.g., 30 years - to match SSFP time
scale) research program which will have, as one class of outputs,
experimentally validated and calibrated advice and technologies
back to SSFP.

Since many of the concepts underlying reuse libraries seem to have been worked out,
there should be considerable effort expended in establishing such libraries. This could
and should be done in conjunction with reuse experimentation. In particular, attention
should be paid to means of populating the libraries efficiently.

As the techniques for reusing software become better known, policies to promote them
should be established. These policies could vary from the use of technical standards,
for example for establishing uniform design representations to be stored in reuse
libraries, to strategies for adopting reuse techniques incrementally, to incentives for
reusing software. In particular, the Space Station Freedom Program is already strug-
gling with standards for the use of reuse libraries and the distribution of reusable parts.
Support for the project, perhaps by helping to define an acceptable policy across
NASA centers, could lead to the collection of data on the efficacy of the policy.

167

Working groupsandotherNASA meetingsshouldbeheldto follow upon this interest
in softwarereuse,suchas SoftwareManagementand AssuranceProgramworkshops
andSSEUser'sWorking Groupmeetings.

168

David Badal

(713)282-6587

Peter Bishop
(713)488-9300

James W. Brown

(818)354-3614

Wayne H. Bryant
(804)864-1692

Edward Comer

(407)984-3370

Michael Digman

(304)296-1458

Cammie Donaldson

(407) 984-3370

Kathy Gilroy
(407)984-3370

Steve Gorman

(713)483-5272

Lionel Hanley
(713)488-8806

Scott Herman

(703)438-5255

Robert Holibaugh
(412)268-6750

Tim Kaufman

(818)354-4404

Bob Kirkpatrick
(412)268-7634

APPENDIX A
PARTICIPANTS

LMSC
1150 Gemini Ave.

Houston, TX 77058

UH Clear Lake

2700 Bay Area Blvd.
Houston, TX 77058

JPL 301-440
4800 Oak Grove Dr.

Pasadena, CA 91109

NASA LaRC
MS 478

Hampton, VA 23665

Software Productivity Sol.
P. O. Box 361697

Melbourne, FL 32936

MountainNet
P. O. Box 370

Dellslow, WV 26531-0370

Software Productivity Sol.
P. O. Box 361697

Melbourne, FL 32936

Software Productivity Sol.
P. O. Box 361697

Melbourne, FL 32936

NASA/JSC
FR3

Houston, TX 77058

GHG Corp.
1300 Hercules Suite 111
Houston, TX 77058

Grumman PSC
P. O. Box 4650

Reston, VA 22090

Software Eng. Inst.
Carnegie-Mellon Univ.
Pittsburgh, PA 15213

JPL 301-440
4800 Oak Grove Dr.

Pasadena, CA 91109

Software Eng. Inst.
Carnegie-Mellon Univ.
Pittsburgh, PA 15213

NASAMAIL and/or
Internet Address

PETERBISHOP

JWBROWN

WBRYANT

wayne@uxv.larc.nasa.gov

ecomer@aj po.sei.cmu.ed u

cdonalds@aj po.sei.cmu.edu

kgilroy@ajpo.sei.cmu.edu

SGORMAN

LGHANLEY

SHERMAN

rrh@sei.cmu.edu

rjk@sei.cmu.edu

169

DanielLee

(213)417-7997

Travis A. Moebes

(713)282-6455

Allen Nikora

(818)354-9694

Dolly Perkins
(301)286-6887

Lawrence Prevatte

(447)799-3117

Charles Shotton

(713)282-6444

Kathryn Smith
(804)864-1699

Peg Snyder
(703)487-7165

Don Sova

(804)453-2154

Walt Truszkowski

(301)286-8821

Lois Valley
(407)984-3370

Susan Voigt
(804)864-1711

Carrie Walker

(804)864-1705

Inference Corporation
5300 W. Centry Blvd.
L. A., CA 90045

SAIC
1150 Gemini Ave.

Houston, TX 77058

JPL 301-476
4800 Oak Grove Dr.

Pasadena, CA 91109

NASA/GSPC
Code 522

Greenbelt, MD 20771

MDAC-KSC F932
P. O. Box 21233

Kennedy Space Center
Cape Canaveral, FL 32815

Planning Research Corporation
1150 Gemini Avenue

Houston, TX 77058

NASA Langley
M/S 478
Langley Research Center
Hampton, VA 23665-5225

Space Station
Program Office
Reston, VA

NASA Headquarters
Washington, D.C.

NASA/GSFC
Code 522.3

Greenbelt, MD 20771

Software Productivity Sol.
P. O. Box 361697

Melbourne, FL 32936

NASA Langley
M/S 478
Langley Research Center
Hampton, VA 23665-5225

NASA Langley
M/S 478
Langley Research Center
Hampton, VA 23665-5225

trwrb!smpvaxl!sdl
@ucbvax.berkley.edu

DPERKINS/GSFCMAIL

LPREVATTE

kas@csab.larc.nasa.gov

PSNYDER

DSOVA

WTRUSZKOWSKI/GSFCMAIL

SVOIGT

suev@csab.larc.nasa.gov

carrie@csab.larc.nasa.gov

170

RobertWaterman
(301)231-1409

David Weiss

(703)742-8877

Vitro Corp.
14000 Georgia Ave.
Silver Springs, MD 20906

Software Productivity Con.
2214 Rock Hill Road

Herndon, VA 22070

RWATERMAN

weiss@software.org

171

8:30-9:00

9:00-11:50

11:50-1:00

1:00-2:00

2:00-2:30

2:30-3:00

3:00-3:20

3:20-3:30

3:30-4:30

4:30-5:30

APPENDIX B
AGENDA

FOLLOWED AT
WORKSHOP ON NASA RESEARCH IN SOFTWARE REUSE

NOVEMBER 17-18, 1988
Melbourne, FL

Thursday, November 17

Opening Remarks & Workshop Goals
Introduction of Participants

Software Reuse Activities at SPS

Lunch

SPS Software Reuse continued

Reuse Research Plans at GSFC

Reuse Research Plans at JPL

Reuse Research Plans at JSC

Reuse Research Plans at LaRC

Reuse Projects at the SPC

Discussion

Susan Voigt

Kathy Gilroy
Cammie Donaldson

Kathy Gilroy
Lois Valley

Walt Truszkowski

Jim Brown

Steve Gorman

Susan Voigt
Carrie Walker

David Weiss

Susan Voigt

i:

173

8:30-9:20

9:20-10:15

9:40-11:45

11:55-1:30

1:45-2:25

2:25-3:05

3:05-3:30

3:30-4:15

4:15-4:30

Friday,November18

Plansfor ReuseandCommonality
in theSpaceStationFreedomProgram

SSFPCommonalityandReuseStudy

SSEPresentationon Reusability

LunchandDemonstrationsat SPS
ARCS, Classic-Ada,DesignER,
DOCGEN,ALICIA, FastFind

SSEPresentationcontinued

ReuseProjectsat the SEI

AdaNET

JSC/InferenceWorkstationProject

WorkshopConclusion

PegSnyder

ScottHerman

DaveBadal
ChuckShotton

SPSStaff

TravisMoebes

Bob Holibough

PeterBishop
MichaelDigman

Daniel Lee

SusanVoigt

174

Report Documentation Page
Nabonat Aeronauticsand

Space Admlnlstrabon

1. ReportNAsANO.cP_3057 12. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

Software Reuse Issues

7. Author(s)

Susan J. Voigt and Kathryn A. Smith, Editors

9. Performing Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. Report Date

December 1989

6. Performing Organization Code

8. Performing Organization Report No.

L-16667

10. Work Unit No.

505-65-11-02

11. Contract or Grant No.

13. Type of [Report and Period Covered

Conference Publication

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

NASA Langley Research Center sponsored a Workshop on NASA Research in Software

Reuse on November 17-18,1988 inMelbourne, Florida,hosted by Software Productivity

Solutions, Inc. Participants came from four NASA centers and headquarters, eight

NASA contractorcompanies, and three researchinstitutes.Presentationswere made on

softwarereuse researchat the four NASA centers;on Eli,the reusable software synthesis

system designed and currently under development by SPS; on Space Station Freedom

plans for reuse;and on other reuse research projects.This publicationsummarizes the

presentations made and the issues discussed during the workshop.

17. Key Words (Suggested by Authors(s))

Software reuse

Reuse libraries

19. Security Classif.(of tiffsreport)

Unclassified

NASA FORM 1626 OCTSS

18. Distribution Stateme_at

Unclassified-Unlimited

20. Security Classif. (of this page)Unclassified

Subject Category 61

A09

NASA-langley, 1989

For saleby the National Tedmical Information Service, Springfield, Virginia 22161-2171

|

|

