

NASA Conference Publication 3057

Software
Reuse
Issues

Edited by

Susan J. Voigt

and Kathryn A. Smith

NASA Langley Research Center
Hampton, Virginia

Proceedings of a workshop sponsored by
NASA Langley Research Center,
Hampton, Virginia, and held in
Melbourne, Florida

November 17-18, 1988

NASN

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
" Information Division

1989

PREFACE

The Workshop on NASA Research in Software Reuse was held November 17-18, 1988, in
Melbourne, Florida. The workshop was sponsored by the Systems Architecture Branch, Infor-
mation Systems Division, NASA Langley Research Center and hosted by Software Produc-
tivity Solutions, Inc., Indiatlantic, Florida. The workshop was held to permit NASA research-
ers in software reuse to share their plans and to learn about other current research activities of
direct interest. Space Station Freedom Software Support Environment project personnel were
also invited to attend to describe their plans to support software reuse in the Space Station
Freedom Program.

Several presentations and demonstrations were given by Software Productivity Solutions, Inc.,
on their work related to Eli, the rcusable software synthesis system under development with
a NASA Small Business Innovative Research contract.

A list of issues was developed during the workshop discussion session,and a few recommenda-

tions were made related to experimentation and data collection within NASA software reuse
applications.

Susan J. Voigt and Kathryn A. Smith
NASA Langley Research Center

PRECEDING PAGE BLANK NOT FILMED

il

CONTENTS

PREFACE o o e i e il
INTRODUCTION . . . o o vt e i e e et e e e e e e e e e e e e e e e 1
SUMMARY OF WORKSHOP PRESENTATIONS 3
AUTOMATED REUSABLE COMPONENTS SYSTEM STUDY RESULTS 5

Kathy Gilroy
KNOWLEDGE-BASED REUSABLE SOFTWARE SYNTHESIS SYSTEM 17

Cammie Donaldson

IMPACT OF DOMAIN ANALYSIS ON REUSE METHODS 33
Kathy Gilroy

CLASSIC-ADATM 41
Lois Valley

PROTOTYPE SOFTWARE REUSE ENVIRONMENT AT GODDARD
SPACE FLIGHT CENTER« o v i v e e e e e e e e e e e e e e e 49
Walt Truszkowski

JPL REUSE PROGRAM o o i i et e b e e e e e e e e e e e e e 55
James W. Brown

JOHNSON SPACE CENTER SOFTWARE REUSE ACTIVITY 61
Steve Gorman

REUSE RESEARCH PLANS AT LANGLEY RESEARCH CENTER 65
Susan Voigt and Carrie Walker

REUSE AT THE SOFTWARE PRODUCTIVITY CONSORTIUM 67
David M. Weiss

SSFP APPROACH TO SOFTWAREREUSE« o o o 89
Peg Snyder

LEVEL II SOFTWARE REUSE STUDY« o« « v v v v v v v oo e 97

Scott E. Herman

AN SSE APPROACH TO REUSABILITY o o v oo v oo e e 105
David L. Badal

SUPPORT FOR LIFE-CYCLE PRODUCT REUSE IN NASA'SSSE 111
Charles Shotton

v PRECEDING PAGE BLANK NOT FILMED

INITIAL ADA COMPONENTS EVALUATION 119
Dr. Travis Moebes

APPLICATION OF REUSABLE SOFTWARE COMPONENTS AT THESEI 135
Robert Holibaugh

TECHNOLOGY TRANSFER IN SOFTWARE ENGINEERING 149
Dr. Peter C. Bishop

ADANET SERVICES 155
Michael Digman

ADVANCED SOFTWARE DEVELOPMENT WORKSTATION PROJECT 159
Daniel Lee

WORKSHOP DISCUSSION o 165

RECOMMENDATIONS, 167

APPENDIX A - PARTICIPANTS o e s 169

vi

INTRODUCTION

NASA Langley Research Center sponsored a Workshop on NASA Research in Software Reuse
on November 17-18, 1988, at the Quality Suites in Melbourne, Florida. The workshop was
hosted by Software Productivity Solutions, Inc. (SPS) and led by Susan Voigt of NASA Lang-
ley. Participation was by invitation only and included representatives from four NASA centers
and headquarters, eight NASA contractor companies, and three research institutes.

The primary purpose of the workshop was to share information and plans for software reuse
research at the four NASA centers participating in the Office of Aeronautics and Space Tech-
nology (OAST) "NASA Initiative in Software Engineering." Other objectives were to identify
areas for cooperative and collaborative research among the NASA centers; to provide NASA
researchers an opportunity to leam about Eli, the reusable software synthesis system designed
by SPS and being developed under a Small Business Innovative Research (Phase II) contract
with Langley Research Center; and to expose Space Station Freedom Software Support
Environment developers to NASA research activities in reuse.

In addition to NASA researchers from Goddard Space Flight Center, Johnson Space Center,
Langley Research Center, and the Jet Propulsion Laboratory, a few representatives from the
Space Station Freedom Program and outside research groups were invited to attend and to
make presentations that would be of interest to the NASA reuse research community. A list of
workshop participants is included in this document. This publication summarizes the presenta-
tions made and the issues discussed during the workshop.

SUMMARY OF WORKSHOP PRESENTATIONS

This section contains a brief summary as well as the viewgraphs of each of the presen-
tations made during the workshop. The order follows that of the workshop agenda.

Talks on related topics which were grouped together include SPS developments,
research activities at the participating NASA centers, plans for software reuse in the
Space Station Freedom Program, and some information about AdaNET. Invited talks
were also given by representatives of the Software Productivity Consortium, the
Software Engineering Institute, and a NASA Johnson Space Center contractor, Infer-
ence Corporation.

The first four presentations were given by members of the Software Productivity Solu-
tions, Inc. (SPS) staff. The company has several activities related to software reuse
including both research and product development. Since SPS had recently completed a
NASA Small Business Innovative Research contract that included a broad survey of
technologies to support reuse and currently is developing several elements of a
software development system incorporating reuse, they were asked to host this
workshop and present their key findings to the NASA research community.

Four NASA centers are participating in the NASA Initiative in Software Engineering
Program under the Office of Aeronautics and Space Technology computer science
research program. The research activities in this initiative are focused on software
engineering for reliable complex systems, and each of the Center programs has an ele-
ment in software reuse with various approaches to reduce complexity or increase relia-
bility. The main objective of this workshop was the exchange of information among
researchers from the four centers.

In the NASA Space Station Freedom Program, the Software Support Environment
(SSE) is a bold step toward software reuse. It is the set of tools and rules to be used
by all developers of software for the Space Station Freedom. The intent is to reduce
life cycle costs of software by avoiding duplication of similar tools needed by many
contractors as well as to make the integration and maintenance of software systems
much easier. As part of its toolset, the SSE will provide library support for application
software reuse. Space Station software representatives were invited to participate in this
workshop to present their plans and requirements to the NASA research community
and to explore ways for research results to help the SSFP.

Software reuse projects are active at both the Software Productivity Consortium, a
software engineering research organization supported by 14 aerospace companies, and
the Department of Defense Software Engineering Institute at Camnegie Mellon Univer-
sity. The approaches being taken in these organizations and the issues they are
addressing were of interest to the NASA research community.

The advanced software development workstation project, funded by NASA, is coupling
reuse support tools with an advanced graphical workstation. Progress and future plans
on this work were summarized for the workshop participants.

AdaNET is an electronic distribution network for software engineering information and
parts exchange. It is partially supported by the NASA Office of Technology Utiliza-
tion. Representatives from the AdaNET project were invited to participate in the
workshop to describe their plans and activities and how these might relate to the
NASA research program.

PRECEDING PAGE BLANK NOT FILMED

N90-14790

AUTOMATED REUSABLE COMPONENTS SYSTEM STUDY RESULTS

Kathy Gilroy
Software Productivity Solutions, Inc.

The Automated Reusable Components System (ARCS) was developed under a Phase I Small
Business Innovative Research (SBIR) contract for the U.S. Army CECOM. The objectives of
the ARCS program were (1) to investigate issues associated with automated reuse of software
components, identify alternative approaches, and select promising technologies, and (2) to
develop tools that support component classification and retrieval. The approach followed was
to research emerging techniques and experimental applications associated with rcusable
software libraries, to investigate the more mature information retrieval technologies for applica-
bility, and to investigate the applicability of specialized technologies to improve the
effectiveness of a reusable component library. Various classification schemes and retricval
techniques were identified and evaluated for potential application in an automated library sys-
tem for reusable components. Strategies for library organization and management, component
submittal and storage, and component search and retrieval were developed. A prototype ARCS
was built to demonstrate the feasibility of automating the reuse process. The prototype was
created using a subset of the classification and retrieval techniques that were investigated. The
demonstration system was exercised and evaluated using reusable Ada components sclected
from the public domain. A requirements specification for a production-quality ARCS was also
developed.

PRECEDING PAGE BLANK NOT FILMED

AUTOMATED REUSABLE COMPONENTS
SYSTEM (ARCS)

Objectives

o Investigate issues associated with automated reuse of software
components, identify alternative approaches and select promising
technologies

— classification criteria
— library organization
— retrieval techniques

o Develop tools to support component classification and retrieval
activities
— develop demonstration system in Phase I
— define the requirements for a production-quality
system to be developed during Phase II

CLASSIFICATION AND RETRIEVAL RESEARCH
Approach

o Research emerging techniques and experimental applications associated with
reusable software libraries

o Investigate the more mature information retrieval (IR) technologies for
applicability to the reusable software problem

o Investigate the applicability of specialized technologies (e.g., expert systems,
semantic networks, fuzzy logic) to improve the effectiveness of a reusable
component library

REUSABLE COMPONENT LIBRARY
SYSTEM ROLES

Classification - the process of entering the component into
the library

Retrieval - the process of finding an applicable component
to meet a perceived need

REUSABLE COMPONENT CLASSIFICATION

. Understand the component

. Certify the component
. Classify the component based upon knowledge of the classification strategy

. Insert the component into the library

REUSABLE COMPONENT RETRIEVAL

1. Access the component by stating the need in terms compatible with the
classification system

2. Understand the component
3. Evaluate the component for applicability and acceptability
4. Adapt the component for the particular application

5. Integrate the component into the baseline system under development

Classification Issues

o Classification criteria - those attributes of components that can be used to
classify, understand and evaluate them.

o Classification organization - the mechanism by which components are
logically organized in the library according to the classification criteria.

Classification Criteria

o Must support both searching and discrimination
o May be static or dynamic
o Classification criteria may be composed of:

- Key words associated with its function, purpose or application area
- Text description

- Characteristics or metrics of interest

- Language or other structured description

Classification Organization

o Enumerative organizations
o Hierarchical taxonomies

o Faceted schemes_

o Semantic nets

o Clustered organizations

Query Logic

o Deterministic logic that retrieves based upon exact matches according to a
Boolean query.

o Probabilistic logic that estimates the probability of relevance of specific
components in the library.

o Fuzzy logic that uses weighted or graded measures to assess whether a
component meets user query criteria.

Query Enhancement

A modification or enhancement of an original query in order to expand or refine
the retrieval

o Query Generalization, required when there are too few finds or when the finds
that are retrieved are "near- misses".

0 Query Specialization, required when user is confronted with too many finds, or
when most of the components that are retrieved are non-relevant.

10

Query Enhancement Application

o Query enhancement experiments in IR have not demonstrated improvements
in retrieval effectiveness, and, in fact, demonstrate degradation in many cases

o A compromise to automated query expansion is to calculate an ordering of
finds and to use the ordering to present the "best fit" or most relevant to the
user first

o Relevance feedback has shown the most promise

Classification and Retrieval Conclusions

No single scheme is best -- employ a number of technologies, adapting and borrowing
from database, information retrieval and knowledge-engineering disciplines

o Classification criteria: All types - key words, text, characteristic-based or
metrics and languages

o Library classification organization: Faceted, later enhanced with clustering
o Query logic: Deterministic, later enhanced with probabilistic or fuzzy logic

Flexibility is important in improving effectiveness!

11

12

ARCS Prototyping Objectives

o Experiment with a faceted classification approach and with supporting
multiple classification schemes

o Evaluate candidate criteria for usefulness in retrieval, evaluation and
understanding

o Prototype the user interface to improve usability of the production ARCS
o Demonstrate the applicability of an Entity-Relationship database approach
o Support the formulation of requirements for the production ARCS

o0 Determine areas where more research is needed

Demonstration ARCS Tool
o Implemented entirely in Ada
o Hosted on YAXstation running VMS
o Employed a number of existing components and subsystems
- WINNIE (windowing/menu system)
- SMARSTAR/Rdb (relational database management system)
- Ada Entity-Relationship Interface to database subsystem

- Numerous low level data management components

ARCS Operations

o View the catalog information stored about a specific component existing in
the ARCS database.

o Add a catalog entry for a new component, and insert its source code and
test cases into the database. This information is then controlled by the
ARCS much like checking-in and checking-out information from a CM

system.

o Update the catalog information for a specific component.

o Delete all information about an obsolete component from the database.

o Extract a specified component from the database. The sources, tests, and/or
catalog information can be copied to a user-specified VMS directory.

o Select (find) components which match search constraints on the values of
component characteristics. The components so selected may then be viewed
or extracted, or the selection criteria may be modified to improve the results of a

subsequent search.

ARCS User Interface

Consistency, on-line help, shortcuts (data entry still a burden)
Menus and forms for component attribute update and query
Supported by windowing and menu organization subsystems
Attribute-based queries supported by simple query language:

and
[not] [qualifier] wvalue { or [not] [qualifier] value)

13

ARCS Database

0 Metaschema subschema defines the "super-structure" for the ARCS
database, representing the ER model itself.

o Component subschema defines the entities, relationships and attributes
containing all of the catalog information about each reusable component.

o Classification subschema defines the entities, relationships and attributes
comprising the means for classifying components in different ways.

Implementation Issues Raised and Evaluation Results
o Attribute/criteria selection
o Population of the classification subschema
o Deferred support for certain policies
o Performance Issues

o Data Entry Issues for Usability

14

CONCLUSIONS

o There are sufficient underlying database, IR and knowledge-based technologies
on which to develop a production ARCS

o The Phase I research successfully derived a flexible, extensible faceted
approach for ARCS and identified promising technologies for further

investigation

o The Phase I demonstration system reinforced the validity of the overall
approach, while pointing out areas for future investigation

o Additional work is needed to determine the specific classification criteria and
classification schemes

o Additional experimentation is needed to address the tradeoffs associated with
ease-of-use, performance, applicability and effectiveness

15

N90;14791

KNOWLEDGE-BASED REUSABLE SOFTWARE SYNTHESIS SYSTEM

Cammie Donaldson
Software Productivity Solutions, Inc.

The Eli system, a knowledge-based reusable software synthesis system, is being developed for
NASA Langley under a Phase II SBIR contract. Named after Eli Whitney, the inventor of
interchangeable parts, Eli assists engineers of large-scale software systems in reusing com-
ponents while they are composing their software specifications or designs. Eli will identify
reuse potential, search for components, select component variants, and synthesize components
into the developer’s specifications. The Eli project began as a Phase I SBIR to define a reus-
able software synthesis methodology that integrates reusability into the top-down development
process and to develop an approach for an expert system to promote and accomplish reuse.
The objectives of the Eli Phase II work are to integrate advanced technologies to automate the
development of reusable components and the use of reusable components within the context of
large system developments, to integrate with user development methodologies without
significant changes in method or leaming of special languages, and to make reuse the easiest
operation to perform. Eli will try to address a number of reuse problems including developing
software with reusable components, managing reusable components, identifying reusable com-
ponents, and transitioning reuse technology. Eli is both a library facility for classifying, stor-
ing, and retrieving reusable components and a design environment that cmphasizes, €ncourages,
and supports reuse. Eli is being developed incrementally and will be released in a series of
builds with progressively more functionality. A related issue, not being addressed by the Eli
project, is how to implement reuse within an organization.

PRECEDING PAGE BLANK NOT FILMED

17

18

Outline of Presentation

Eli Project Background
Problems that Eli Will Solve
Overview of Eli Build Plan
Some Eli Operational Issues

Eli Project Background

« Phase | completed in Fall 1987, objectives were to:

— Define reusable software synthesis methodology that
integrates reusability into the top-down development
process

— Investigate formal languages for specifying reusable
component interfaces, operations and requirements

— Investigate knowledge and database representations
for organizing and storing both components and
knowledge of the application domain and development
process

— Develop approach for expert system to promote and
accomplish reuse

Eli Project Background (Conc)

- Phase Il started in July 1988; objectives are to:

— Integrate advanced technologies to automate the development
of reusable components and the use of reusable components
within the context of large system developments

— Integrate with user development methodologies without
significant changes in method or learning of special languages

— Make reuse the easiest operation to perform

19

Problems That Eli Will Solve

What Reuse Problems Must Eli Address?

20

Developing software with reusable components
Managing reusable components

Identifying reusable components

Transitioning reuse technology

What is Eli?

Library facilities for classifying, storing and
retrieving reusable components

Design environment that emphasizes, encourages
and supports reuse

User Roles

. Eli will support the following user roles:
— Classifier
— Searcher

— Promoter
— System Administrator

Key Qualities of Eli

- Adaptability
. Performance
. Ease of Use

. . Make reuse the easiest operation to perfor

21

How Will Eli Solve Reuse Problems?

Identifying Reusable Components

- Flexible component classification facilities
- Flexible browsing and querying facilities

Managing Reusable Components

- Efficient storage and retrieval of large component inventories
- Open architecture to support integration with user environment
- Facilities for tracking and promoting reuse activities

22

Developing Software With Reusable Components

. Direct support for Ada components, including adaptation
and integration

. Support for object-oriented design and programming
. Integration of design surface with library facilities

Transitioning Reuse Technology

. Support for defining new types of components, new component
characteristics and new component relationships

. Loose and tight integration capabilities to transition existing
tools and information

23

Overview of Eli Build Plan

Build Plan

Build 1 Build 1.5 Build 2 Build 3
— Prototype of queryand — Basic reuse library — Complete reuse library — Basic design and
browsing functions system system integrated with programming environment
Ada compiler and integrated with reuse
~ Prototype of advanced providing basic support library browsing and
classification and query for Ada Component querying functions, full
strategies Adaptation support for Ada
component adaptation
— Prototype of basic — Prototype of advanced and integration with
adaptation function for adaptation mechanisms compiler
Ada components and and integration of
integration with Ada browse/query functions — Prototype of
compiler with design surface knowledge-augmented,
user-transparent reuse
assistance
Product Product

Build 1.5

- This build will provide basic library capabilities:
— Creation and maintenance of libraries

— Creation and maintenance of classification schemes.for
library components

— Classification and storage of components
~ Browsing of libraries to find/identify components
— Querying on libraries to find/identify components

— Extraction of classification schemes, components and
component information

— Integration of component classification, storage, query and
extraction functions through a program interface

24

Build 1.5/2

User
Application
Space

External Storage Facility

Components

{classitication, certitication, {CM system, development
measurement tools) library, project database)

Open Architecture

Build 2

. This build will provide a complete, sophisticated library system:
— Import/export of libraries and classification schemes

— Enhanced manipulation of classification schemes and
component classifications

_ Semi-automated derivation of Ada component characteristics
— Classification support for Classic-Ada components
— Clustering of components and support for "like this" querying

— Enhanced and additional forms of interactive browsing and
querying on component characteristics

— Storage, retrieval and modification of query sessions,
including batch submittal of queries and query sessions

25

Build 2 (Conc)

— Version control on libraries, classification schemes,
components and component information

— Access control to libraries, classification schemes,
components and component information

— Adaptation and integration of reusable Ada components
with user application

— Collection and reporting on library and classification
scheme usage, and component submittal and extraction

— Customization and tailoring capabilities

Build 3

This build will provide an object-oriented design surface with the
following capabilities:

— Integration with Eli library facilities for design-time reuse
assistance

— More automated derivation of component characteristics and
classification of components

— Ordered assessments of components identified as result of
queries

— Advanced support for Ada component adaptation and integration

26

Some Eli Operational Issues

User Roles

Classifier Searcher
System
yS Reuse
Administrator Promoter

27

28

Eli "Black Box" View

User Development Environment

User <e—»

Eli

Host System Interface

Eli Interface Requirements

Interface Area Principal Eli Focus

» Host Operating System Transportability

» User's Development Environment Interoperability
Framework

+ User's Development Environment Interoperability
Tools

» User's Development Environment Adaptability

Policies, Procedures and Methods

Eli Host Operating System Interfaces

Approach: Establish localized internal interfaces and
utilize industry standards (e.g. Unix,
XWindows, TCP/IP, Postscript) for
transportability

Device management
Process Management
File Management
Communications

Eli Interfaces to User's Development
Environment Framework

Approach: Support many levels of interaction including
an open architecture - - procedural access to
internal Eli facilities, published information
schemas/structures, and an ASCII
import/export interchange mechanism.

» Eli invocation

- Import of environment roles, access rights,
procedures, etc.

- Configuration management of components

» Ada library manager

» Environment information management
facilities

« Invocation of other environment
tools/facilities

29

Eli Interfaces to User's Development
Environment Tools

Approach: Provide open architecture - - procedural access and ASCII
import/export facilities to allow users to exchange information

with other tools
- Ada compilation system
- Documentation tools
- Other CASE (i.e. design surface) tools
« Other reuse systems (e.g. libraries, domain analysis tools)
- Project management tools

Eli Interfaces to User's Development Environment
Policies, Procedures and Methods

Approach: Make Eli facilities adaptable to accommodate a wide
spectrum of usage

« User roles and access rights

- Usage scenarios/sequences/work flows
- Configuration management procedures
- Component certification procedures

« Custom component attributes/facets

- Custom classification schemes

- Site/library installations

30

Eli Distribution Options

Classification Component
Update Classification Library
(Library Control} & Storage Access
Non-distributed library model Local Local Local only
Interaction of remote, separately Local Local Local plus protocol

controlled libraries (e.g.,
interlibrary loan)

Master/branch library (e.g. ,

bookmobile) library library
Partitioned library (e.g., library Single point or Partitioned
system) negotiated
Cooperating, distributed libraries Distributed Distributed

or accessing remote
libraries

Local to master

Local to master

Accessible across
affiliated branches

Accessible across
library sites

All libraries accessible

transparently from any site

Library Interaction Through Design Surface

Object Annotate Draw Print Reuse [

Query
Impon From Catalog
Select Libra

Query on Current Calale

Set Search Scope Fil Form

Enter Free Text Select Catalog

Query Session

context. user svoigtgraphics lools bra P

q:window*
por set 1. 22 tinds

function « filter
object = language

Results

tunction = filter 2 finds

uuqrﬂl

object = languages 1 find

function = filter and objecis - language

1 find

qbhsl 1. S/name

CORE windows

Perq System

Sapphire Syslem

Sunshell

XWindows

qlisl Nanguage, ownership

CORE windows/C/linverness Software
Perq System/C/Brown Univ_, public dom
Sapphire Syslem/C/Arcadia project
Sunshell/C/inhouse

Componant Sat

Autlomated Measurement System Filier
AYACC generic liller

/MIT public domain
q:copy CORE Perq Syslem, XWindows

q'set scope language processing tools |i FEE

q:specily facet

qlunction=lilter, objeci=language
component sat 2. 2 hinds

fist /name

l /Eli Library System/delault. = svoigl context of 13 Nov 1988 qraphics tools library

oiveshioodsurtace/ESSOA Strawman Architecture V.2 13 Nov 1988 svoigt '

ORIGINAL PAGE IS
OF POOR QUALITY

31

N99~}4792

IMPACT OF DOMAIN ANALYSIS ON REUSE METHODS

Kathy Gilroy
Software Productivity Solutions, Inc.

SPS is performing a study for the US Army CECOM on the impact of domain analysis on
reuse methods. Domain analysis is the first activity that should be performed in the develop-
ment of reusable software. It identifies the commonalities between systems within a given
problem domain (such as navigation systems or database management). In the software arena
these commonalities are implemented as software components that can be reused by new sys-
tems within that application domain. The objectives of the study are to develop an approach
that makes domain analysis practical and effective for the Army, to reinforce the importance of
domain analysis for software reuse programs, and to summarize and coalesce domain analysis
information into a single reference source. Existing methods and tools are being analyzed, crit-
ical issues identified, and key automation issues addressed. Based on these, a methodology
and set of guidelines for domain analysis are being developed. Potential automated tools will
be identified for each activity in the methodology.

PRECEDING PAGE BLANK NOT FILMED

33

34

Problem Statement

What is Domain Analysis?

« The first activity which should be performed in the
development of reusable software

« Identifies commonalities between systems within a given
problem domain

« Commonalities implemented as software components
reused by new systems within that domain

Little Data Available About Domain Analysis

» Few have been done to date

« Importance only recently identified

« Process is difficult and expensive

« Potential payoff not yet known

« "Bad" analysis decreases ability to reuse

+ Well-defined methods non-existent

« "Goodness" criteria non-existent

« Recent ad hoc efforts provided little feedback

» No tools support entire analysis process

Objectives

e Develop approach that makes domain

analysis practical and effective for Army

¢ Reinforce importance of domain analysis for
software reuse program

¢ Summarize and coalesce domain analysis
information into single reference source

Approach

\

r
Task A

Existing Task C Subtask 1
Methods [| Proposed Methods
Analysis Analysis

Task B Subtask |
Existing Tools
Analysis

Proposed Tools

Analysis

Task B Subtask 2

Task C Subtask 2
Develop Guidelines
Document

vy

A

\

Task Interrelationships

Task C
Subtask 3

Develop
Final
Technical
Report

35

36

Approach

Existing Methods Analysis

Identify criteria for evaluating
domain analysis approaches

Survey existing methods for domain
analysis and relate to criteria

Develop description of desirable
characteristics of a domain analysis

Identify critical issues and assess
risks involved

Identify Critical Issues

* Development methods
* Development languages
* Development tools

* Development personnel

Application systems
» Domain analysis techniques
* Evaluation and validation

« Domain maintenance

Approach

Address Key Automation Issues

[d

Expert knowledge acquisition and use

Domain analysis products standardization

Data organization, storage and retrieval

Reusable component library interfaces

Integration with software development
environments and reuse tools

Feasibility of automation and/or tool maturity
level

Proposed Methods Development

« Postulate alternative approaches to domain analysis for DoD
Ada applications

+ Select one or more approaches for further development

+ Provide consistent, cohesive and complete description of
proposed method; address the following:

strategies and paradigms for domain analysis

process model for domain analysis

methods for each identified activity

products of domain analysis activities

resources required for domain analysis activities

38

Approach

Process Model for Domain Analysis

« Within context of three distinct but

integrated processes:
- development of reusable components
- reuse of components

- development of application software

Proposed Tools Identification

« For each activity in the proposed methodology:

1dentify existing or potential automated tools
describe how they support the activity
assess the importance of automating the activity

assess the feasibility of automation or the maturity level
of existing tools

make recommendations for acquisition or development

Approach

Develop a Set of Guidelines

» Use results of research and analysis of existing
methods and tools

. Develop guidelines for conducting domain analysis
and applying results during software development;
document will contain:

recommendations for methodology and tools to
perform domain analysis

relationship of domain analysis methodology and tools
to overall development methodology and tools

recommendation for addressing critical 1ssues and nsks
in using domain analysis

recommendations for future R&D in domain analysis

39

N90-14793

CLASSIC-ADATM

Lois Valley
Software Productivity Solutions, Inc.

The SPS product, Classic-AdaTM, is a software tool that supports object-oriented Ada pro-
gramming with powerful inheritance and dynamic binding. Object Oriented Design (OOD) is
an easy, natural development paradigm, but it is not supported by Ada. Following the DOD
Ada mandate, SPS developed Classic-Ada to provide a tool which supports OOD and imple-
ments code in Ada. It consists of a design language, a code generator and a toolset. As a
design language, Classic-Ada supports the object-oriented principles of information hiding, data
abstraction, dynamic binding, and inheritance. It also supports natural reuse and incremental
development through inheritance, code factoring, and Ada, Classic-Ada, dynamic binding and
static binding in the same program. Only nine new constructs were added to Ada to provide
object-oriented design capabilities. The Classic-Ada code generator translates user application
code into fully compliant, ready-to-run, standard Ada. The Classic-Ada toolset is fully sup-
ported by SPS and consists of an object generator, a builder, a dictionary manager, and a
reporter. Demonstrations of Classic-Ada and the Classic-Ada Browser were given at the
workshop.

PRECHDiG PAGE BLANK NOT FILMED

4]

Why Classic-Ada™?

— Ada Mandate

— Object-Oriented Design is an easy natural
development paradigm

~ Ada doesn't support the object-oriented paradigm

— SPS needed a tool that allowed us to think in OOD
and implement in Ada

— Classic-Ada is our answer to that need

What is Classic—-Ada™?

Classic—-Ada is:
— A design language

— A code generator
— A toolset

42

Classic-Ada™ as @ or roon quairy
Design Language

Supports object-oriented principles

— Information hiding - hiding the state of software
components in variables visible only within the
scope of that component

— Data abstraction - abstract data types defining an
internal representation plus a set of operations
used to access and manipulate it

—~ Dynamic binding - determining which operation is
invoked for a specific abstract data type
dynamically at runtime, depending on the object
being manipulated

— Inheritance - enabling the easy creation of objects
that are almost like other objects with just a few
changes

Inheritance and
Dynamic Binding

VEHICLE

SUPERCLASS

SUBLLASSES

INSTANCES

— STATICVIEW)

—
I P DYNAMIC VIEW

LEGEND

D object
@_‘ mathod

(Instance
[

43

Inheritance Hierarchy

Vehicle

Aircraft Ship

Jet Fighter

F-16

Reusability

+ Inheritance enables the creation of
objects that are almost like other
objects with just a few changes

+ Generalization promotes the
constant migration to more
general (and more reusable)
objects

+ Inheritance enhances code
factoring , i.e. code to perform a
particular task is found in only one
place

« Dynamic binding increases

flexibility by allowing the addition
of new object classes without
modifying or recompiling existing
code

+ Polymorphism, the ability for
different classes to respond to the

same message promotes
interchangeable parts

Natural Reuse

"Object-oriented development
integrates reuse into the
development process so well that
developers will find themselves
developing reusable objects and
reusing existing objects without
even thinking about it.”

Smalier, Cheaper Solutions

- Solve large problems by making the
solutions smaller

- Typically at least 1/4 the number of
lines of code in ah OOPL

- Often as little as 1/10 or 1/20

- Productivity increases because effort per
line of code is about the same as with
procedural HOLs

» Manageability improves dramatically

- Software system is easier to
understand

- There are less people to manage

"Managers must reward designers for
doing less - not more."

-- Wilf Lal.onde

+ As the development converges, the lines
of code will actually decrease as
generalizations further optimize and
compress the code

+ You don't have to do programming-
in-the-large to solve large programs if
you make the large program small

45

Large OOP Experiences

500,000 - 1,000,000 LOC » -
Procedural HOL OOPL

« Operating systems

» Workstation / office
automation environments

» CAD/CAE
+ Telecommunications

« User interface / application
frameworks

+ Object-bases
« Simulations

« Manufacturing, operations
and control systems

- Management information
systems

Classic-Ada™ as a
Desigh Language

Has added only nine constructs to Ada to
provide this powerful capability. These
constructs are:

— Class

— Superclass
- Instance

— Instantiate
— Method

-~ Destroy

— Send

— Self

~ Super

Classic-Ada™ as a
Code Generator

— Generates user application code
— Generates application executive

— Generates fully compliant, ready to run, DoD
standard Ada

Classic-Ada™ as a Toolset

. Is fully supported by SPS
. Consists of the following tools:
— an object generator
— a builder
— a dictionary manager
— areporter

47

Classic-Ada™ Toolset

Classic-Ada™ as a
Design Language

— Supports natural reuse through its inheritance
capabilities

— Supports incremental development through
inheritance

— Supports code factoring

— Supports Ada, Classic-Ada, Dynamic binding, and
static binding in the same program

— Makes it easy to both generalize and specialize
during development due to the way Classic-Adais
implemented

— Minimizes the need to compile large portions of code

N90-14794
PROTOTYPE SOFTWARE REUSE ENVIRONMENT AT GODDARD SPACE FLIGH"I‘ CENTER

Walt Truszkowski
NASA Goddard Space Flight Center

The Goddard Space Flight Center (GSFC) work is organized into four phases and includes par-
ticipation by a contractor, CTA, Inc. The first phase was an automation study, which began
with a comprehensive survey of software development automation technologies. Eight techni-
cal areas were analyzed for goals, current capabilities, and obstacles. The study documented
current software development practice in GSFC Mission Operations and Data Systems Direc-
torate, and presented short- and long-term recommendations that included focus on reuse and
object-oriented development. The second phase, which has been completed, developed a proto-
type reuse environment with tools supporting object-oriented requirements analysis and design.
This phase addressed the operational concept of software reuse, i.c., it attempted to understand
how software can be reused. This environment has two semantic networks: object and key
words, and includes automated search, interactive browsing and a graphical display of database
contents. Phase 3 was a domain analysis of Payload Operations Control Center (POCC)
software. The goal in this phase was to create an initial repository of reusable components and
techniques. Seven existing Operations Control Centers at GSFC were studied, but the domain
analysis proved to be very slow. A lesson leamned from this was that senior pcople who
understand the environment and the functionality of the area are needed to perform successful
domain analyses. Four reuse paradigms were identified which are appropriate to different parts
of a POCC. Phase 4 is the development of a prototype environment for rapid synthesis of
POCC software. The four paradigms (or views) of software reuse will be prototyped and com-
bined to provide support for POCC software development. These four paradigms arc a
dialog-based specification of high-level architecture, a very-high-level-language specification of
the operational database, interface navigation/selection of reusable components, and graphical
programming. Future work includes the design of a knowledge-based reuse environment.

Workshop on NASA Research in Software Reuse

Phase 1 (FY '86): Automation Study

- Comprehensive survey of software development automation technologies

- Analyzed 8 technical areas: goals, current capabilities, obstacles
- Semi-formal specification, formal specification, reuse, knowledge-based systems,
prototyping, software metrics, performance analysis, work management

» Documented current S/W development practice in GSFC Mission Operations
& Data Systems Directorate
- Methods, tools, perceived strengths/weaknesses

« Short- and long-term recommendations
- Focus on reuse and Object Oriented Development (OOD)
- Revisit CHI and Al around 1990

Phase 2 (FY '87): Prototype Reuse Environment

* Tools supporting object-oriented requirements analysis and design
- Extended Goddard Object Oriented Design (GOOD) methodology to
requirements analysis
- Enhanced IDE Software Through Pictures environment

« Operational concept of software reuse

« Two semantic networks: objects and key words -
- Qbnet: entity-relationship database of reusable components
- Keynet: classitication of reusable components

+ Automated search and interactive browsing

« Graphical display of database contents

50

TW
N
e
User
Intertace

SEMANTX Architecture

Reglstration,
Classitication
& Management

Object
Detinition &
Identification

Data/Programs

Software
Toolset"

The RMS KeyNet

has property

.ke‘ywb_rfd,-

key'vllo’rd :

keywdrd

applies to has type

has type

TO OBNET

51

RMS ObNet

constrains

contains

contains depends on

tested by

FROM KEYNET

Phase 3 (FY '88): Domain Analysis of POCC Software

+ Goal: Create an initial repository of reusable components and techniques

- Studied seven Multi-Satellite Operations Control Center (MSOCC) systems
- Standard Software
- Dynamic Explorer (DE)
- International Sun/Earth Explorer (ISEE)
- Earth-Radiation Budget Satellite (ERBS)
- MSOCC Applications Executive (MAE)
- Gamma Ray Observatory (GRO)
- Cosmic Background Explorer (COBE)

+ Determine typical POCC architecture and components
- Classified varlations
- Identified obstacles to reuse

- Identified 4 reuse paradigms appropriate to different parts of a POCC
system

Phase 4 (FY "89): Prototype Environment for Rapid
Synthesis of POCC Software

- Dialog-based specification of high-level architecture

- Very-high-level language specification of Operational Database
- Automated generation of database interface procedures

- Interface navigation/selection of reusable components

» Graphical programming
- Specify new combinations of reusable components
- Automated code generation from Object and Functional Diagrams

Four Automation Techniques Combine to Support POCC Software Development

User
P Navigation and

Selaction of
l Asusable Components
Dialog-based Specitication

High-tevel Dascription
of

Operational Dalabase
\ Functions Required?
Leveling?
New Combinations Placement? \

of High-level Decisions

Telemetry Paramelers: of
Reusable Components Standard
- . Subsystems __|
Command Parameters: Automaled Generalion Reuse Database
of System Contiguration

Doma:;;;:feciﬁc Combanent
\ References
A A
Generation ™
ol ODB Schema
Object and Datafiow
i
Automated Generalion o8 Diagrams
of Access
QDB inlerlace Code N package X Is
Automated Code
\'. Generation
end X;

33

54

Al Revisited: Design of Knowledge-based
Reuse Environment (FY "89)

« Survey recent efforts
- Determine available technologies
- Develop a knowledge-based reuse concept

- Focus on essential areas not yet explored
- Capturing developer rationales
- Learning from errors (e.g., misused components)

N90-14795
JPL REUSE PROGRAM _ i

James W. Brown
Jet Propulsion Laboratory

The goal of the JPL reuse activity is to develop a quantitative understanding of the factors
which encourage or inhibit software reuse, and of productivity improvements achicvable
through reuse. The primary activity is the measurement of parameters relevant to reuse in the
environment of actual projects. The program has three objectives: (1) to develop a model to
allow assessment of competing reuse techniques, (2) to extend reuse from the unit to the sub-
system level, and (3) to expand from specific applications to a broader application domain.
Application domains, which apply to all interplanetary projects, include Mission Operations,
Science Information Systems, Flight Software, and Simulations. The program is targeting all
phases and activities of the life cycle and a full range of software products. The approach will
be both experimental (observe, hypothesize and evaluate) and constructive (introduce new tools
and techniques). The primary target projects are Deep Space Network activities - the Ground
Facilities facility upgrade, the Network Operations Control Center upgrade, and the Signal Pro-
cessing Center. This is the first group of closely related projects being done in Ada at JPL. A
“reuse base" will be developed initially by classifying potentially reusable components from
one project; it will be used and expanded with additional projects.

55

GOAL

GOAL: Improve the software development process by application of advanced
reuse technology

OBJECTIVES: - Develop a model to allow assessment of competing
techniques for reuse

- Improve leveraqe by extending reuse from the unit to the
subsystem leve

- Expand from specific applications to broader application
domain

SCOPE - APPLICATION DOMAINS

Mission Operations (planning, commanding, navigation, tracking and data
acquisition for unmanned spacecraft)

- Science Information Systems (data management, level conversion,
visualization, analysis and modeling)

Flight Software (autonomous spacecraft operation, instrument software)

Simulations (spacecraft operations, physical processes, command/control
problems)

56

SCOPE - FULL LIFE CYCLE - ALL PHASES AND ACTIVITIES

Investigate impact of reuse on:

Requirements Analysis
Design
Implementation

- Integration

- Test
Maintenance
Inter-project relationships

SCOPE - FULL RANGE OF SOFTWARE PRODUCTS

. Plans and Procedures (e.g. software management plans, configuration
management plans, integration and test plans)

. Requirements and Constraints

- Designs

. Code (e.g. 3GL, 4GL, execution procedures, data tables)

- Test cases and test data

. Development tools and environments
. Run-time data (e.g. file labels, digital maps)

57

APPROACH

CHARACTERISTICS

STEPS

- Experimental [observe (exploratory, descriptive), hypothesize,

evaluate]

- Constructive (introduce new tools and techniques rather than survey

natural selection)

- Identify currently available reuse technologies

- Select a model that seems likely to improve software development

» Construct a “reuse base" based on the model

- Observe (measure) utilization patterns by actual development projects
- Revise and refine model based on observations

- Recommend tools and techniques for effective reuse

TARGET PROJECTS

Deep Space Network

Ground Communications Facility Upgrade (GCF)
Network Operations Control Center Upgrade (NOCC)
Signal Processing Center (SPC)

Others (TBD)

58

BACKGROUND

Products available from previous work:
Theoretical model
Technology assessment
Metrics evaluation
Behavioral design for reuse base

SCHEDULE

Phase 1 (FY89)
. Determine user needs (GCF); acquire and analyze components
Design reuse base
Implement reuse base
- Analyze reuse and report

Phase 2 (FY90-91)
. Determine user needs (NOCC, SPC)
Identify new suppliers
Modify reuse base design
Implement modifications
Monitor reuse; add users; add suppliers; adapt reuse base

59

60

Project
1

Classified
units

JPL REUSE PROGRAM

Project
2

o\ Sub-
util.
exper\Syst

Utilization
data

Other
sources

ems

Classify

Classified
subsystems

Reuse
base
2

Select

Project
3

N90-14796¢
JOHNSON SPACE CENTER SOFTWARE REUSE ACTIVITY

Steve Gorman
NASA Johnson Space Center

There is a strong operational interest in reuse and commonality at the Johnson Space Center
(JSC). Although commonality and reuse were not emphasized in the Space Shuttle Orbiter
Project, it is a major goal for Space Station Freedom and the Software Support Environment
(SSE). Research activities at JSC are generally conducted through the Software Enginecring
Research Center (SERC) of the University of Houston at Clear Lake. The Life Cycle Model
developed by SERC includes reuse at each phase, but reuse is not a principal theme. The SSE
is a significant entry point for new reuse technology, and the SERC can provide consultation
and possible prototypes. SERC is scen as an interface to other NISE reuse rescarchers. The
AdaNET is managed at JSC through the University of Houston at Clear Lake for the NASA
Office of Technology Utilization. It may also be a "gateway" for reuse research.

61

62

JSC MANAGED PRQJECTS

+ ORBITER PROJECT - COMMONALITY & REUSE NOT EMPHASIZED

* SPACE STATION - WORK PACKAGE 2 & SOFTWARE SUPPORT
ENVIRONMENT (SSE)

- COMMONALITY & REUSE A MAJOR GOAL
- ADA FOR OPERATIONAL SOFTWARE

- MODELS & SIMULATIONS

- SAME SSE ACROSS THE PROGRAM

» AdaNET

- MANAGED AT JSC (THROUGH UHCL) FOR OFFICE OF
TECHNOLOGY TRANSFER

+ SOFTWARE ENGINEERING RESEARCH CENTER (SERC) ACTIVITY
- CODE R SUPPORTED
- NOT A PRINCIPAL THEME AT SERC

- ADDRESSED IN LIFE CYCLE MODEL
- CONSULTING & WHITE PAPERS AS REQUIRED

AR NTH AR

* "CONCEPTUAL AND IMPLEMENTATION MODELS WHICH SUPPORT LIFE
CYCLE REUSABILITY OF PROCESSES AND PRODUCTS IN COMPUTER
SYSTEMS AND SOFTWARE ENGINEERING"

+ "SOLUTION IN THE LARGE"

* SOFTWARE REUSE IS PRESENTED AS SUBSET OF LIFE CYCLE REUSE

SEVEN LIFE CYCLE PHASES SHOWN - REUSE AT EACH PHASE
ADDRESSED

REUSE CANDIDATES ARE MUCH MORE THAN CODED MODULES

- REQUIREMENTS
- SCHEDULES

- BUDGETS

- DESIGN

- TOOLS

- METHODS

» CONTRASTS WITH CODE COLLECTIONS AS THE BOOCH OR BERARD
COMPONENTS - SINGLE PHASE ONLY

REUSE OVER THE SOFTWARE LIFE CYCLE

PHASE 1 PHASE 2 PHASE 3 || PHASE 4 || PHASE 5 || PHASE 6 PHASE 7
SYSTEM DETAILED || PRELIM. |{ DETAILED|]| CODING S/W oPS. &
RQTS. RQTS. DESIGN DESIGN & UNIT COMP. SUSTAIN.

ANALYSIS ANALYSIS TEST INTEG. ENGR.

» PHASE 1 - METHODS, SCHEDULES, BUDGETS, DEV. PLANS
+ PHASE 2 - METHODS, REQUIREMENTS, INTERFACES

+ PHASE 3 - METHODS, DESIGN, TOOLS

+ PHASE 4 - METHODS, DESIGN, TOOLS

« PHASE 5 - METHODS, CODE, PACKAGES, STRUCTURE

« PHASE 6 - METHODS, ENVIRONMENT DESIGN, INTERFACES

» PHASE 8 - METHODS, CONFIGURATIONS, TOOLS

- META DATA FOR THESE DIFFERENT PRODUCTS
AND PROCESSES WILL BE A CHALLENGE

FTWARE REUSE SUMMARY

« STRONG OPERATIONAL INTEREST IN REUSE & COMMONALITY

+ "RUBBER HITS THE ROAD" FOR MANY S/W PROJECTS AT JSC

SSE IS A SIGNIFICANT ENTRY POINT FOR NEW REUSE TECHNOLOGY

- SIGNIFICANT REUSE IS MAJOR SSFP& SSE GOAL
- STRONG INTEREST IN NEW & BETTER APPROACHES
- SERC AS CONSULTANT & POSSIBLE PROTOTYPER

SERC AS INTERFACE TO OTHER NISE REUSE RESEARCHERS

POSSIBLE "GATEWAY" RESEARCH THROUGH AdaNET - BASED
ON CLEAR LAKE MODEL WITH SERC AS CONSULTANT

« CRITICAL FOR JSC TO "STAY ON TOP OF" REUSE TECHNOLOGY
- SERC AS CONSULTANT
- SSE PROJECT AS OPERATIONAL INTERFACE

- AdaNET AS INTERFACE TO LARGER Ada & SOFTWARE
ENGINEERING COMMUNITY

63

N90-14797

REUSE RESEARCH PLANS AT LANGLEY RESEARCH CENTER

Susan Voigt and Carriec Walker
NASA Langley Research Center

The reuse activities at Langley have centered on the development of the Eli system by SPS, as
already described. The development of a computer sysiems design environment at Langley
was described as a target application for the future Eli system. This environment combines
software development tools with an architecture design and analysis tool. Specifically, a
Computer-Aided Software Engineering (CASE) system, under development at Charles Stark
Draper Laboratory for Langley, is being used to genecrate Ada code for use in architecture
functional simulations using the Architecture Design and Assessment System (ADAS). The Eli
system will be included in this tool set and will be used to organize and promote reuse of the
functional simulation code modules.

PRECEDING PAGE BLANY. NOT FILMED

65

SYSTEM DESIGN ENVIRONMENT

/ 7 DeSignef \ DiTeCted

Symbolics —

Dgta Flow Graph Model
Diagrams
5. o
// \\sun-a
Eli, etc.
(Library/Conf. Mgmt.)
CASE /(///
Reuse
Library
Contiguration ADAS {y

Management
/ @o °
] g § Functional Graphical
@

i Simulator Simulator
Ada Code

_ J

Wil —

VaxStation 3200

System Simulation
&
Performance Analysis

N90-14798

REUSE AT THE SOFTWARE PRODUCTIVITY CONSORTIUM

David M. Weiss
Software Productivity Consortium

The Software Productivity Consortium is sponsored by 14 aerospacc companies as a
developer of software engineering methods and tools. Software reuse and prototyping are
currently the major emphasis areas. The Methodology and Measurement Project in the
Software Technology Exploration Division has developed some concepts for reuse which
they intend to develop into a synthesis process. They have identified two approaches to
software reuse: opportunistic and systematic. The assumptions underlying the systematic
approach, phrased as hypotheses, are the following: the redevelopment hypothesis, i.e.,
software developers solve the same problems repeatedly; the oracle hypothesis, i.e., develop-
ers are able to predict variations from one redevelopment to others; and the organizational
hypothesis, i.e., software must be organized according to behavior and structure to take
advantage of the predictions that the developers make. The conceptual basis for rcuse
includes: program families, information hiding, abstract interfaces, uses and information
hiding hierarchies, and process structure. The primary reusable software characteristics arc
black-box descriptions, structural descriptions, and composition and decomposition based
on program families. A good methodology has the following properties:

1. It answers the following key questions at any
point in the development process.
a. What should I do next?
b. What output do I produce?
¢. What input and resources do I need to produce it?
d. How do I know when I'm done?
2. It is based on a clear set of principles
3. It leads to quantifiable improvements in productivity and quality
4. It is useful to engineers
5. It promotes reuse
6. It supports a sound business approach

Automated support can be provided for systematic reuse, and the Consortium is developing a
prototype reuse library and guidebook. The software synthesis process that the Consortium is
aiming toward includes modeling, refinement, prototyping, reuse, assessment, and new con-
struction. A number of key issues were also discussed.

67

TOPICS

« Concepts
- Systematic vs Opportunistic Reuse
- Assumptions Underlying Systematic Reuse
~ Underlying Principles
« Methodological Considerations
+ Automated Support
- Reusable Software Libraries

o Current Consortium Practice
o Direction
- Synthesis

ORGANIZING SOFTWARE FOR REUSE

 Opportunistic Reuse ~ The Garage Sale Approach
- Many individual parts
- Search for part with desired behavior
-— Attributes + Behavioral Description

 Systematic Reuse - Systems Approach
- Collections of related parts
- Search for system that meets requirements

-— Adlributes + Behavioral Description + Relationships +
Classification

68

ASSUMPTIONS

Redevelopment Hypothesis

Software developers solve same problems repeatedly
Solutions are captured as systems
Variations

—— Devices

—- Algorithms
—— Platforms
~-— Functionality

Oracle Hypothesis

Developer must be able to predict changes

Organizational Hypothesis

Organize according to behavior and structure

Expose structures that make changeable decisions
apparent

Identify common characteristics

69

DESIRABLE SOFTWARE CHARACTERISTICS

Black-box description
- Behavioral approach

Structural Descriptions

Composition and decomposition based on collections of parts

CONCEPTUAL BASIS

« Program Families
- Characterize commonalities first

« Information Hiding
- Encapsulate changeable decisions

» Abstract Interfaces
- Behavioral descriptions of modules

« Uses Hierarchy
- Protect subsettability

- Explicit decisions about dependencies

 Information Hiding Hierarchy
- Roadmap for change

« Process Structure
- Performance assessment

- Reconfigurability

REUSABLE SOFTWARE CHARACTERISTICS

Black-Box Descriptions

- Behavioral approach, e.g., based on A-7 module
descriptions

Structural Descriptions

- Hierarchical views, based on information hiding and uses
hierarchies

Composition and Decomposition Based On Program

Families

- Families described structurally

- Components of families described behaviorally

~ Many shared subfamilies

71

72

METHODOLOGICAL CONSIDERATIONS

DEFINITIONS

PROCESS

- Set of activities used to produce and maintain software
METHODOLOGY: Answers to the Questions:

- What do I do next?

- What input do I need to do it?

—~ What output do I produce?

- What resources do I need to produce it?

ATTRIBUTES OF A GOOD METHODOLOGY

* Answers the key questions

- What do I do next?

- What input do I need to do it?

- What output do I produce?

- What resources do I need to produce it?

e Based on a clear set of principles
- Information hiding, hierarchical structuring, etc.

e Leads to improvements in productivity and quality
- Measurable

e Useful to engineers
e Promotes reuse
e Supports sound business approach

e Can be adopted incrementally

s

N e

A\

OBJECTS SUPPORTING SYSTEMATIC REUSE

« Requirements Specification

« Module Guide)
« Abstract Interface Specification

« Allowed-to-Use Hierarchy

« Module Internal Documentation Design
» Uses Hierarchy

o Process Structure

. Potential Family Members)
o Code
o Tests

SOFTWARE EVOLUTION PROCESS

Developers maintain collections of program families
Requirements are identified using families that support:

- simulation, prototyping, modeling, other forms of analysis,
- production of specifications.

Given the requirements for a new system:

- the collections are searched for a family with a member that meets the
requirements,

- modules of the family are adapted and assembled to produce the new
member,

- if no such family exists, a new family is created (rare).

73

74

AUTOMATED SUPPORT FOR SYSTEMATIC REUSE

.

Reuse Library
- Repository for collections of families

Adaptation Analysis
- Tracing the effects of change

Construction of specifications
- Editor, browser
- Design representation

Adaptation Mechanism

- Parameterized module/subset generation
-~ Generic, macros

Modeling

- Performance analysis

Composition
- System generation

REUSE LIBRARIES

Storage of Life Cycle Objects (LCOs) and their Descriptions

Requirements

Module Guide

Module Interface Specification
Code

Search Mechanisms

By Attribute

-- Language, version, author, producing tool, etc.
By LCO type

By Relation

-— Hierarchy traversal (uses, information hiding,
composition, etc.)
By Classification

Object descriptions

Population

CURRENT CONSORTIUM PRACTICE

Guidebook
- Management and Technical Volumes

Reuse Library Prototype

75

76

[. The Software Technology Exploration Division
11. STE Orpanization and Strategic Plan for 1988
I11. Consortium Configuration Management (No. 700-1)
[V. Conliguration Management Guidelines for STE

V. Guidelines for Document Preparation and Distribution

Table of Contents

August 26, 1988

V1. Guidelines for Writing Project Proposals

VII.Guidelines for Writing Project Reports

VIIL.Guidelines for Writing Risk Reports

IX. University Grant Programs

X. Division Organization Chart

XI.Guidelines for Writing Project Activity Reports

ANIE

XIIT.

NIV,

V.

XV

XVIL

NVIH.

XIX

XX,

Software Technology Exploration Guidebook
Volume 1: Management Guidebook

May 27, 1988
May 26, 1988
May 24, 1988
May 30, 1988
May 26, 1988
May 26, 1988
May 26, 1988
August 15, 1988
May 27, 1988

September 1, 1988

August 15, 1988

Software Technology Exploration Guidebook

Volume 2: Technical Guidebook

Table of Contents

August 31, 1988

How to Read This Guidebook
Principles and Concepts
Process and Products
Verification of Work Products
Techniques

Measuring Process and Products
Examples

Glossary

Bibliography

August 31, 1988
July 19, 1988
August 31, 1988
July 19, 1988
August 31, 1988
July 18, 1988
August 31, 1988
June 29, 1988

July 1, 1988

DIRECTION

SYNTHESIS: A PROCESS THAT RELIES ON THE
PRODUCTION OF SOFTWARE FROM
MODELS SPECIFICALLY DESIGNED
FOR REUSE

RELATIONSHIPS AMONG MODELS

Application Models Design Models Executable Code

Other Work Products

7

78

ASPECTS OF SYNTHESIS
MODELLING
- APPLICATION
- DESIGN
- IMPLEMENTATION

REFINEMENT

- SUCCESSIVE APPROXIMATION OF PROBLEM
- SUCCESSIVE APPROXIMATION OF SOLUTION
PROTOTYPING

- REFINEMENT THROUGH ISSUE RESOLUTION

REUSE
- STANDARDIZED ENGINEERING SOLUTIONS
- SOLUTIONS REPRESENTED IN TERMS OF REUSABLE PARTS

- COMPOSITION OF NEW SYSTEMS FROM EXISTING, ADAPTED,
AND NEW PARTS

ASSESSMENT

- QUANTIFICATION OF APPROXIMATION

NEW CONSTRUCTION

STEPS IN THE SYNTHESIS PROCESS
s SPECIFY REQUIREMENTS

- DIRECTLY, IN TERMS OF PRE-DEFINED DOMAIN
VOCABULARY

- ANALOGOUSLY, IN TERMS OF DIFFERENCES BETWEEN NEW
NEEDS AND EXISTING SYSTEMS

e MAKE APPLICATION MODEL

- MODEL CONSTRUCTION

- MODEL ASSESSMENT

e MAKE DESIGN MODEL

- SELECTION OF CANONICAL DESIGN

ADAPTATION OF CANONICAL DESIGN

INVENTION OF NEW DESIGN

ASSESSMENT OF DESIGN

e IMPLEMENT

- COMPLETION OF NEW AND ADAPTED PARTS

- COMPOSITION OF PARTS INTO PROTOTYPES/PRODUCTS

- VERIFICATION

79

80

SUPPORTING ELEMENTS
REPOSITORIES
- REUSE LIBRARY
- PROJECT LIBRARY

REPRESENTATION TECHNOLOGY

- USER INTERFACE

- SPECIFICATIONS FOR MODELS, DESIGNS, CODE PRODUCTION

METHODOLOGY

- PROCESS MODEL

- NATURE OF PARTS AND RELATIONS
- MANAGEMENT OF PROCESS
ARCHITECTURE OF TOOLSETS

- TOOLSET INTEGRATION

KEY ISSUES

HOW TO DO DOMAIN ANALYSIS

- SYSTEMATIC APPROACH
- APPLICATION MODELLING

- RE-ENGINEERING

e NOTATIONS AND MECHANISMS FOR MAPPING FROM
APPLICATION MODEL TO SOFTWARE DESIGN

- WHAT NOTATIONS?

- HOW MANY INTERMEDIATE LEVELS?

e HOW TO REPRESENT DESIGNS: PARTS AND THEIR RELATIONS

- WHAT NOTATIONS?
- STORAGE, RETRIEVAL, AND SEARCH

- RE-ENGINEERING

e HOW TO ADAPT, COMPOSE, AND VERIFY PARTS

- DESIGN PARTS

- CODE PARTS

81

82

KEY ISSUES (CONC)

HOW TO ASSESS DESIGNS AND CODE

- PERFORMANCE

- FUNCTION

- DEPENDABILITY
HOW TO PRODUCE CODE

- PROTOTYPE

- PRODUCTION

HOW SHOULD THE ENGINEERS INTERACT IN THE PROCESS?

- INTERFACE

-~ PROCESSING STEPS

- UNDERSTANDING OF CONTEXT

HOW SHOULD THE PROCESS BE MANAGED?

HOW SHOULD THE EFFECTIVENESS BE MEASURED?

- CURRENT STATE

- GUIDE TO IMPROVEMENT

PROJECTS

e METHODOLOGY, MEASUREMENT, AND MANAGEMENT

e DESIGN REPRESENTATION, MAPPING FROM APPLICATION
MODELS, AND COMPOSITION

« DOMAIN ANALYSIS
¢ REPOSITORIES

e ASSESSMENT

e VERIFICATION

e ADAPTATION

e INTERACTION WITH THE ENGINEERS

PROGRAM FAMILIES
HARDWARE ANALOGIES -- THE IBM 360, DEC PDP-11

« Families of computers

— Same instruction set architecture
(Behavioral description)

— Different implementations

- Same operating system
(Different versions)

« Program family: A set of programs is a program family if
the programs have so much in common that it pays to study
their common characteristics before investigating the special

properties of individual programs.
83

84

EXAMPLE FAMILY CLASSIFICATION

Tool Families

Process Support Technology
Describing Data Storage & Retrieval
Composing & Decomposing User Interface
Assessing Data Transformation
Retaining Configuration

Application Families

Avionics Communications
A-6 Control Systems
A-7 Speech Processing

727
737

A-7 NAVIGATION FAMILY

———— o — — — —

A Y
Al
. , l
A}rborne Eull. Partial 7/ | l
alignment navigation navigation /7 SINS alignment |
|
// I
d |
g |
|
|
Doppler- !
damped . |
inertial . :
velocity . !
- !
. !
4) [
71 |
/ ! |
Doppler e Inertial SINS |
i interface [
interface // Platform |
/ interface |
l .
|
|

INFORMATION HIDING

e A decision that is likely to change should be encapsulated in a module
- Changeable decision is the secret
—— data structures
—— algorithms
—-— device characteristics
- Basis for Ada packages

e Module: An information hiding module is a work assignment
‘An information hiding module is a black-box
An information hiding module is a set of programs and shared data
An information hiding module is a finite state machine

Interface: An interface between two modules is the set of assumptions that the
programmer of one module may make about the other module

Abstract Interface: An interface that represents many possible actual interfaces

HIERARCHIES AND STRUCTURE

Module Hierarchy

Parts: Modules

Relation: Subsecret B is a submodule of A if B’s

secret is a subsecret of A’s secret

Uses Hierarchy

Parts: Programs

Relation: Uses A uses B if A requires the presence of B
Process Structure

Parts: Processes

Relation: Awaits A awaits B if A cannot progress until B

Progresses

85

86

A-7 MODULE

HARDWARE-HIDING MODULE DECOMPOSITION™
EXTENDED COMPUTER MODULE =
DEVICE INTERFACE MODULE

BEHAVIOR-HIDING MODULE DECOMPOSITION __J-

FUNCTION DRIVER MODULE
SHARED SERVICES MODULE

SOFTWARE DESIGN MODULE DECOMPOSITION
APPLICATION DATA TYPE MODULE
PHYSICAL MODEL MODULE
DATA BANKER MODULE
SYSTEM GENERATION MODULE ™|
SOFTWARE UTILITY MODULE ™

STRUCTURE

EXTENDED COMPUTER MODULE
DATA TYPE MODULE
DATA STRUCTURE MODULE
INPUT/QUTPUT MODULE
COMPUTER STATE MODULE
PARALLELISM CONTROL MODULE
SEQUENCE CONTROL MODULE
DIAGNOSTICS MODULE
VIRTUAL MEMORY MODULE (HIDDEN)
INTERRUPT HANDLER MODULE (HIDDEN)

DEVICE INTERFACE MODULES
AIR DATA COMPUTER
ANGLE OF ATTACK SENSOR
AUDIBLE SIGNAL DEVICE
COMPUTER FAIL DEVICE
DOPPLER RADAR SET
FLIGHT INFORMATION DISPLAYS
FORWARD LOOKING RADAR
HEAD-UP DISPLAY
INERTIAL MEASUREMENT SET
PANEL
PROJECTED MAP DISPLAY SET
RADAR ALITIMETER
SINS
SLEW CONTROL
SWITCH BANK
TACAN
VISUAL INDICATORS
WAYPOINT INFORMATION SYSTEM
WEAPON CHARACTERISTICS
WEAPON RELEASE SYSTEM
WEIGHT ON GEAR

FUNCTION DRIVER MODULE
AIR DATA COMPUTER FUNCTIONS
AUDIBLE SIGNAL FUNCTIONS
COMPUTER RADAR FUNCTIONS
DOPPLER RADAR FUNCTIONS
FLIGHT INFORMATION DISPLAY FUNCTIONS
FORWARD LOOKING RADAR FUNCTIONS
HEAD-UP DISPLAY FUNCTIONS
INERTIAL MEASUREMENT SET FUNCTIONS
PANEL FUNCTIONS
PROJECTED MAP DISPLAY SET FUNCTIONS
SINS FUNCTIONS
VISUAL INDICATOR FUNCTIONS
WEAPON RELEASE FUNCTIONS
GROUND TEST FUNCTIONS

== SHARED SERVICES MODULE
MODE DETERMINATION MODULE
STAGE DIRECTOR MODULE
SHARED SUBROUTINE MODULE
SYSTEM VALUE MODULE
PANEL IO SUPPORT MODULE
DIAGNOSTIC 1/0 SUPPORT MODULE
EVENT TAILORING MODULE

b APPLICATION DATA TYPE MODULE
SYSTEM APPLICATION DATA TYPES
LOCAL APPLICATION DATA TYPES
SHARED APPLICATION DATA TYPES

— PHYSICAL MODEL MODULE
EARTH MODEL MODULE
AIRCRAFT MOTION MODULE

CHARACTERIZING FAMILIES

By structure

~ module hierarchy, uses hierarchy, process structure
By function

~ navigation, device control

By application

~ avionics, satellite communications

By technology

~ relational database, Monte Carlo simulation

By 777

Families composed of modules

Modules characterized by externally-visible behavior

- Black-boxes

- Abstract interfaces specify behavior

87

88

SUMMARY

Systematic Reuse Based on Families
Concepts

Program Families (1976)
Information hiding (1970)
Abstraction

Behavioral specification (1972)
Hierarchies

Examples

A-7 (1980)

Relations to other technology

Ada
Object oriented programming
Object oriented design

N90-14799

SSFP APPROACH TO SOFTWARE REUSE

Peg Snyder
Space Station Freedom Program

This talk began by presenting the Space Station Freedom Program (SSFP) definitions of
software commonality and software reuse. Software commonality is the use of identical, inter-
changeable, functionally compatible, or similar software items to satisfy different sets of func-
tionally similar requirements. The Software Support Environment (SSE) and the Data Manage-
ment System (DMS) of onboard computing facilities are examples of SSFP common software.
Software reuse is the use of identical, compatible, or similar software items in either modified
or unmodified form to satisfy development activities at any point in the software life cycle; in
other words, taking an existing item and applying it to another development activity. Software
commonality has been mandated in several critical areas (such as the SSE and DMS) and a
policy directive is under review. A software reuse study group was established in May 1988 to
gather background information (see Level II Software Reuse Study that follows by Scott Her-
man). The SSFP Program Definition and Requirements Document contains requirements for
SSE support in the area of software reuse. The SSE is a collection of tools and rules, and pro-
vides the common environment to be used for the life cycle management of all SSFP opera-
tional software. Operational software includes ALL flight and ground software that either (1)
interfaces with on-orbit elements in real time, (2) is critical to the mission, or (3) is SSE
software. The SSE supports software development in Ada and provides tools for process
management, software production, integration, test and verification, as well as training and
library management. The SSE will provide the mechanisms required to implement SSFP
evolving strategies for software reuse.

SPACE STATION FREEDOM PROGRAM (SSFP)
APPROACH TO SOFTWARE REUSE

Definitions

Status

Introduction to the Software Support Environment (SSE)

¢ Summary

SSFP APPROACH TO SOFTWARE REUSE
E

DEFINITIONS

Software Commonality: Use of identical, interchangeable,
functionally compatible, or similar software items to
satisfy different sets of functionally similar requirements.
- Common items are from any phase of life cycle
- Items are used without modifications

Software Reuse: Use of identical, compatible, or similar
software items in either modified or unmodified form to
satisfy development activities at any point in the
software life cycle.
- Reusable items already exist
- Reusability is determined by how well the existing item
satisfies requirements or derived attributes of
current development activity

90

Status

* Software Commonality
- Has been mandated in several critical areas such as:

-- Software Development (SSE)
-- Onboard data management (DMS)

- Level II Policy directive under review

* Software Reuse Strategy
- Level I study group was established May 1988 to gather
background information
- Level Il sponsored "Reusable Software Flight Certification
Requirements" task
Level II Policy directive under review
The Software Support Environment (SSE) is mandated to
support the SSFP reuse strategy
Participation in this workshop is part of the process

SSFP APPROACH TO SOFTWARE REUSE

The SSFP Level Il requirements for SSE support in the area of software reuse
are baselined in SSP 30000 Sec. 11, Rev. A dated October 15, 1988 as follows:

5.3.7 REUSABLE SOFTWARE

The SSE shall provide the capability for identifying and controlling the
use of software components which may be used in multiple applications
via a controlled library of reusable components. The SSE shall identify,
maintain, and support the dissemination of reusability standards and
reusable software components for SSP operational software.

91

92

INTRODUCTION TO THE SOFTWARE
SUPPORT ENVIRONMENT (SSE)

What is the SSE?

Why does Space Station need the SSE?
SSE Implementation Approach

Who are the SSE Users?

SSE Functionality

Conclusion

WHAT IS THE SSE?

e SSE is a collection of:

- Tools (software)

- Rules (procedures, standards, s/w production
hardware specs, documentation, policy,
training materials)

*+ SSE provides the common environment to be used for the
life cycle management of all SSP operational software

+ The SSE supports all SSP facilities involved in software
life cycle management. These facilities include:
- Work package and KSC Software Production Facilities
- The Multi-System Integration Facility (MSIF)
- The SSE Development Faclility

* The SSE supports and provides mechanisms to enforce
program-wide policies and standards such as:
- Standard programming language (Ada)
- Common User Interface standards
- Software documentation standards
- Common software verification approach

DEFINITION OF OPERATIONAL SOFTWARE

Operational Software is:
ALL flight and ground software that either

(1) interfaces with on-orbit elements in real time

or

(2) is critical to the mission,
- such as all control center, test, and certification software
- including associated models and simulations

or

(3) SSE software

WHY DOES SPACE STATION NEED THE SSE?

¢ Software is high risk for the SSP in terms of both safety
and cost
- Large amount of software to be developed
- Integration and testing are major issues - multiple
developers are organizationally and geographically

distributed
- Sustaining engineering is a major cost factor in the SSP

software life cycle

* SSE provides the means to control SSP software life cycle
costs
- The SSE is a single implementation of tools and rules

rather than many
- SSE enables consolidation of contractors and skills for

sustaining engineering of SSP software

* SSE provides the means to control SSP software quality

- Common program-wide standards and tools will be
utilized for software integration and testing

94

SSE IMPLEMENTATION APPROACH

Single contractor for SSE development - Contract awarded
to Lockheed Missiles & Space Co., Inc. (LMSC)
- Contract Start (CSD) - 7/10/87
- Contract Duration is 6 yrs with additional 3 yr option
Contract Type - Completion form for 1st year
Level of effort beginning 7/10/88
Contractor Location - Houston, Texas

SSE System Project Office is located in the Reston, Va.
Space Station Program Office, Information System
Services Program Group

Supported by Program Support Contractor (PSC) in Reston
Contract management support from JSC Institution, Spacecraft Software
Division

Incremental Development

SSE Interlm System delivered 9/10/87
-- Used by LMSC to develop the Operational SSE
-- Available to SSP software developers for familiarization, training and early
SSP development activities
First Operational SSE Release 11/10/89
Integrated Tools
-- No Proprictary Software
Additional Operational Releases each year

WHO ARE THE SSE USERS?

SSE users include all persons involved in the life cycle
management of SSP software. They include:

- Software Project Managers

- Requirements Analysts

- Software Designers

- Software Developers

- Testers

- Quality Managers

- Software Configuration Managers

The majority of SSE users will be Work Package
Contractors

Other SSE users will include:

- NASA SSP organizations (e.g. MSIF)
- KSC and non-prime contractors
Space Station users

International Partners

The SSE Users Working Group (SSEUWG) provides the
forum for SSE user information exchange and input to the
project

SSE FUNCTIONALITY

¢ The SSE supports software development in Ada

- Ada is baselined as the language of choice for the SSP
- SSE can be expanded to support additional languages if

required

¢ The SSE Ruleset provides software standards, guidelines
and procedures to support software acquisition,
integration, verification and maintenance

e The SSE Toolset provides all software tools necessary to
acquire, integrate and deliver SSP operational software
during all life cycle phases. SSE tools encompass the
following functional areas:

SSE Process Management

Software Management Support

Software Production

Flight Software Integration, Test and Verification
Data Reconfiguration

Training

Library Management

CONCLUSIONS

The SSE provides a single common environment for the
life-cycle management of all SSP operational software

The SSE provides a mechanism for program-wide
enforcement of approved standards and methodologies

SSE support in the critical areas of software integration
and testing will help to maintain SSP safety requirements

Effective use of the SSE will minimize the cost of software
ownership throughout the entire SSP life cycle

95

96

Summary

The SSFP understands the potential benefits of software
commonality and reuse

Some mandates are in place regarding software commonality
The software reuse strategy is evolving

The SSE will provide the mechanisms required to implement
SSFP strategies for software reuse

N90-14800

LEVEL I SOFTWARE REUSE STUDY

Scott E. Herman
Grumman Program Support Contract

The Space Station Freedom Program (SSFP) Level II Software Reuse Study group was formed
by Bob Nelson (NASA SSFP office) from members of the Information Systems Program Sup-
port Contract (PSC) team. The objectives of the study were to identify existing software reuse
libraries, to identify existing reusability processes and experiences, to identify reusability
analysis tools and users, and to provide recommendations for a software reusability process for
the SSFP. To date the following have been delivered (1) definitions of commonality and reuse,
(2) a report on existing software reuse libraries and library management systems, (3) a report
on reuse process and methodology gleaned from software reuse experts, and (4) a report on
software attributes for measuring commonality and reusability. Three implementation alterna-
tives for a repository of reusable components were identified: centralized at the SSE Develop-
ment Facility (SSEDF), a distributed approach across the network of Software Production
Facilities, and a directory approach. A number of findings from the reuse study and several
reuse strategy considerations were presented.

97

98

Study Objectives

Study group was formed by Bob Nelson at SSFP Level II
from members of Information Systems Program Support
Contract (PSC) team including Jim Flynn, Glenn Boyce,
Scott Herman and Tammy Smith to:

1.

2.

4.

Identify existing software reuse libraries

Identify existing reusability processes and
experiences

. Identify reusability analysis tools and users

Provide recommendations for a software reusability
process for the SSFP.

Accomplishments to Date

Deliverables

1. Definitions of Commonality and Reuse

2. Report on existing software reuse libraries and

library management systems

3. Report on reuse process and methodology from

the software reuse teleconference

4. Report on software attributes for measuring

commonality an