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Kenneth Birman

Keith Marzullo

Abstract
i

-We discuss the role of order in building distributed systems. It is
our belief that a "principle of event ordering" underlies the wide range
of operating systems mechanisms that have been put forward for build-
ing robust distributed software. Stated concisely, this principle Is that
one achieves correct distributed behavior by ordering classes of dis-
tributed events that conflict with one another. By focusing on order,
one can obtain simplified descriptions and convincingly correct solu-
tions to problems that might otherwise have looked extremely complex.
Moreover, we observe that there are a limited number of ways to obtain
order, and that the choice made impacts greatly on performance.

1 Introduction

Researchers have proposed a variety of mechanisms for building distributed

software within which component programs cooperate to perform tasks con-

currently, maintain replicated data, and respond to failures or recoveries by

dynamically reconfiguring. These mechanisms typically provide guarantees

of "consistent" (correct) behavior, but the precise meaning of consistency

and the methods by which consistency is achieved differ widely. This makes

it difficult to compare the different methods with one another.

This paper is based on the premise that most forms of distributed con-

sistency can be achieved by order generating and preserving mechanisms.

While it is not surprising that consistency should be closely related to or-

dering, we believe that the fundamental nature of this relationship has not

been widely appreciated. Here, we show that the manner in which order

is generated and preserved has significant performance implications, and

observe that dissimilar high-level abstractions are often implemented using

surprisingly similar ordering mechanisms. Abstracted from any particular



system, such ordering mechanisms may provide a suitable base for building

distributed operating systems and programming languages.

2 Relating consistency to order

2.1 Reasoning about consistency

To establish the "correctness" of a distributed system one specifies what we

will call a distributed consistency property and shows that it is maintained

during execution. Such a property takes the form of a predicate on the states

of system components. Because the states of components (and perhaps the

predicate itself) may evolve during computation, one also gives a rule telling
when it should be satisfied.

This raises two issues. The first concerns the meaning of time in a non-

realtime distributed system. Lamport has observed that for such systems,

any mechanism capable of ordering events, giving a way to label them and

providing a way to compare labels can play the role of time [Lain78]. In

fact, although it is common to loosely treat time as synonymous with re-

altime, there is imprecision in the degree to which realtime clocks can be

synchronized in a network. Lamport argues that temporal algorithms for

asynchronous distributed systems should be based on mechanisms such as

logical clock_, which enable a program to determine the order in which events

occurred, without requiring clock synchronization. In the case of consistency

predicates for asynchronous settings, it follows that a rule telling "when" to

evaluate a predicate should be expressed in terms of which events occur

before the predicate is examined and which occur afterwards.

A second issue relates to "inconsistency" that has no operational conse-

quences. If a system is consistent in all observable states, we would argue

that it behaves correctly - even if it passes through unobservable states

that violate consistency. A system can have many sorts of _'obserye_'. The

states on w_-Ol_erations are executed are internally observable. This leads

us to require that the distributed consistency property hold on the process

states a distributed operation reads or modifies. For a system that takes

e_erna/actions, the external world is an observer of system state - and

hence consistency should hold in situations where such an observer might
be able to detect violations.
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Figure 1: Execution of a token-passing algorithm

2.2 A token passing example

How do these issues enter practical problems? Consider the problems of mu.

tual exclusion and resource management. A simple mutual exclusion scheme

might support two operations: ACQUIRE and RELEASE. A distributed system

can implement mutual exclusion with token passing, employing REQUEST

and PASS operations for token transfer. 1 A correct execution will satisfy

many consistency properties: that there is at most one holder of mutual

exclusion at any time, this holder previously did an ACQUIRE, and so forth.

Concerning the token, we would require that the process holding mutual ex-

clusion also holds the token, that there is always exactly one token holding

process, etc.
Now, consider the execution in Fig.l, where q initially holds the token

and passes it to p in response to a request. There are many ways to examine

the state of this system. If we look at p at time T1 and q at time T3, we

would find two tokens, and if we looked at both at time T2 we would find

none. Obviously, the former "state" is observed in an unreasonable way: one

should examine system states at the same time. On the other hand, in the

absence of precisely synchronized realtime clocks, there is no way to take

a simultaneous snapshot: times T1 and T2 may well be indistinguishable

to processes p and q. Now consider the latter system state. This seems

to expose a weakness in our consistency rule, which fails to address the

case where the token is in transit when we look at the system. Yet, it is

l In systems that support lightweight tasks, a process holding the token could use any
correct scheme for _local _ mutual exclusion.



F

reasonable to claim that unless such a state is observable the consistency
rule shouldn't need to cover it.

One solution to this class of problems is to examine only consistent

cuts [CL85]. A consistent cut is any sampling of process states such that if

q is examined after receipt of message m from p, then p must be examined

subsequent to sending m. (A consistent snapshot is a consistent cut in which

channel contents are also recorded). Consistent cuts eliminate the first of

the above problems, but not the second: we would still need to extend the

consistency rule to allow the case where the token is in transit (and hence
there is no holder).

2.3 A resource management example

This specific problem of messages in transit is symptomatic of a larger class
of problems where a complex operation violates consistency while it is in

progress. Consider a set of resource manager processes that cooperate to

control a set of resources accessed by application processes. Overloaded

managers can transfer responsibility for a resource by sending a TRANSFER

message that informs all processes in the system of the new manager. Until

the transfer occurs, a manager continues to handle new service requests;

after the transfer it rejects requests, which the client retransmits to the new

manager. The consistency rule could be that each resource is managed by a

unique process at any given time, and that during a period when a resource

is transferred t times, no request ever needs to be retried more than t + 1
times.

This system can be easily built using multicast primitives to implement

the transfers, such as the ones the ISIS system supports [B387b,B$87a].

Requests can then be performed using conventional RPC. However, such

an implementation will violate the consistency predicate along many pos-

sible consistent cuts. Consider the multicast message corresponding to a

TRANSFER. This cannot be delivered instantaneously, hence there will be

cuts in which some processes have received the message and some have not.

Worse, some multicast protocols transfer messages to their destinations in

a first phase but delay delivery until some other event takes place. For

such a protocol, there will be consistent cuts in which all messages have

arrived, but some have not been delivered. Short of devising a very compli-

cated consistency predicate or modifying the consistent cut algorithm to be

knowledgeable about the way the protocol works, the only thing one can say

is that consistency will hold for those cuts reflecting all-or-nothing message

4



delivery. The same issue would have arisen in the token passing problem if

tokens were passed using a multi-phase commit protocol.

2.4 A conjecture about consistency and ordering

Is there a way to formulate an arbitrary problem so that it is clear when

a consistency property should hold? A consistency property is a predicate

that refer to a distributed state. Complex operations, such as the TaANS_'EI_

operation described above also refers to a distributed state. Clearly, some

precondition over the distributed state should hold prior to doing these sorts

of operations too. Let us refer to distributed operations like these as raeta-

operations.

We conjecture that:

A n_l s_./stem concerned with maintaining consistency must impose

and respect ordering when recta-operations conflict.

Two issues arise. One is how to tell when meta-events conflict and need

to be ordered. This question is highly dependent on semantics, and lies

outside the scope of this paper. The second concerns how to impose and

respect ordering when necessary.

Our conjecture sounds like a serializability constraint on recta--operations.

However, notice that that except for its use of ordering, the problem has lit-

tle in common with transactions that read and write a shared database using

concurrency control and multi-phase commit protocols, which is the tradi-

tional context for serializability arguments. Nor are we trying arguing for

totally ordered multicast protocols or the ISIS virtual synchrony property,

although tiffs paper is certainly motivated by the latter. Our goal is to

understand when one needs to pay for the ordering that protocols such as

these provide; to use them without regard for need would be a costly propo-

sition. Also, multicasting arises in only a subset of distributed systems. By

abstracting away from message passing per-se, one arrives at more general

results. Moreover, multicast based systems typically treat each multicast

as a separate event. It is unclear that results derived for such a setting

apply when such tactics as piggybacking one message on top of another are

permissible.
Let us summarize our observations:

1. One achieves consistency in a distributed system by ordering events
that conflict with one another.

5



2. These eventsinvolvesetsofoperationsthatoccur inmultipleprocesses

but are nonethelessrelated.

3. The type of conflict-basedordering needed to ensure consistencyis

more primitivethan transactionalserializabilityor virtualsynchrony.

The remainder of this paper starts by making the ideas of meta-events

and meta-event orderings more precise, asking how meta-event orderings

come about, and exploring the cost implications that ordering may have

at the application level. Then, we look at how order is used in a variety

of distributed computing systems. The paper concludes by asking what

the implications of a principle of distributed ordering might be for future

distributed systems design efforts.

It is not our goal here to provide a formally rigorous treatment of meta-

events and order. We will also only touch on issues of fault-tolerance and
realtime.

3 Meta-event orderings

In this section, we introduce an event-ordering model that includes meta-

events and discuss what it means for two meta-events to be ordered.

3.1 Events and Event Orderings

We will start with the standard partial-order representation of a distributed

system. At the most primitive level of a distributed system, only certain

types of events can be said to be "ordered". Consider a system of processes

that communicate using messages. 2 Processes execute operatiorts, which are

indivisible units of work: computation, sending a message, or receiving a

message. We use the term e_ent to denote any of these activities.

Event orderings come about when an operation is influenced by (i.e.

reads from) some prior operation, or when the logic of the program delays

the start of one operation until another has finished, or when a message

sent by one process is received in another. It follows that if one stops the

execution of the system at some instant in time, the execution up to that

point can be described by a tuple (P,E,-*), where P is a set of processes, E

is a set of events, and --_ gives the order in which the events occurred.

_The ability to share memory between processes doesn't change things in a fundamental

way, but it would introduce complexity.
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The partialorder _ isactuallydefinedas the transitiveclosureof two

more primitivepartialorders:

1. The internal ordering on operations, defined on a per-process basis.

For events a and b occurring in some process p, a --* b denotes that a

read from b, or was constrained by the logic of the program to execute
after b.

2. The communication ordering, defined on a per-message basis. For

message m sent from process p to q, sndp(m) -, rcvq(m).

3.2 Meta events and meta orderings

Earlier, we discussed the idea of a meta-operation, the execution of which

gives rise to a meta-event. A meta-event is a set of logically related events

at multiple processes. Examples of meta-events include the delivery of a

multicast message to some group of destination processes, the creation of

a snapshot of the distributed state of a system, the detection of a process

failure by the processes that survived, or a transaction on a database.

We model a meta-event by a tuple (i, M) where i is an initiating event

and M is a set of events satisfying Vm E M : i ---* m. We will say that two
meta-events are ordered if their event sets are ordered:

(i,M) --* (j,N) iffVm e M,n e N : m --, n.

No statement is made about the ordering of the initiation events; we want to

allow the case where two meta-events are started concurrently but ultimately

give ordered outcomes.

Notice that a meta-event need not correspond to an invocation of a

multicast or some other communication protocol. That is, we do not require

here that the meta-event be a discrete activity separable from the rest of

the system's execution. The communication that links an initiating event

to the outcome events could be hidden in any of the mechanisms by which

information is transmissible within a distributed system.

It may appear that failure detection by timeout and the detection of

"external" events through sensors give rise to meta-events that lack a single

initiating event. However, if multiple processes try to do these things in

parallel, they may not all observe the same outcome. For example, one pro-

cess might see an overloaded process timeout, while other processes believe

that it remained operational. If internal consistency is needed, a software
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agreement protocol would have to be executed. This converts the physical

timeout events to logical ones, which fit our rule.

3.3 Origins of meta-order

Imagine a distributedsystem in which processp wishes to initiatemeta-

operation(i,M). Say that thisoperationshould be ordered with respectto

certaintypesofmeta-events.The questionishow p can achievethisordering

and how itisconveyed to the processesexecutingthe eventsrn E M. There

are two staticcasesand one dynamic case:

Computational ordering: The first static case is when the meta-events

that should be ordered are initiated within a single computation. That is,

p "knows" about previously initiated meta-events which should terminate

first at any destinations where they overlap with M. Say that (i _, Air_) is such

a prior meta-event. Then it must be the case that i r --* i, because p could

not otherwise know about (i r, Mr). Since --. is transitive, Vm E M, i_ _ m.

In other words, there is a way to pass information about events prior to M

to the places where events in M will occur. As we will see below, this can

be exploited in different ways, but the essential point is that the system has

the ordering information it needs and has a way to get it to where it will be

needed. No additional messages are needed, although some messages will to

be larger since they need to carry some representation of this information

to the places where it will be used.

Locking schemes also fit into the computational paradigm. In these, the

"lock manager" delays granting a lock until after it has been released by

prior holders, establishing a causal relationship in which the new holder's

actions occur after the previous holder's release.

A priori ordering: The second static case occurs when p knows about

some event that will take place elsewhere, but was not initiated prior to

i. That is, the semantics of the operations include the requirement that

Vm E M, rnr E M r, m _ mr. For example, p's operation may be in response

to an earlier operation that concurrently started an operation on q, and we

want the result of q's operation to be ordered before that of p's. Again, p

can pass whatever information it has to the places where the events m E M

will take place. Presumably, the processes that receive this information can

wait if necessary. (Otherwise, p will need to wait until q's event has occurred

before initiating (i, M), but this takes us back to the computational case).



Dynamic ordering: The third caseis the hardest. Here, p does not know

if other meta-events might be initiated elsewhere, concurrent with (i, M).

If some other process has initiated a meta-event that conflicts with (i, M),

the two events should be ordered, although the order will not be known a

gr/or/. On the other hand, if no "conflicting" event is present, (i, M) should

simply be allowed to occur. In the dynamic case, additional information is

needed before the events in M can take place. As we w_ll see below, the cost

of this information (the communication needed to obtain it) is significantly
higher than in the two static cases.

4 The cost of dynamic ordering

How much does dynamic order cost? This problem is well known in dis-

tributed systems.

An extreme case of dynamic ordering arises in algorithms for comput-

ing a consistent snapshot. An example is the method of Chandy and Lain-

port [CL85], which flushes messages from the communication channels using

marker messages; the channels are assumed FIFO, hence messages sent prior

to the snapshot are received prior to the markers. The cost is high: a marker

message flows in each direction between each pair of processes. Moreover,

the only meta-events in the basic algorithm are those related to forming

snapshots. That is, the snapshots are ordered relative to base events, but

might cut through other types of meta-events used in the application. The

cost of forming a snapshot ordered relative to other sorts of meta-events

could be even higher.

Dynamic ordering also arises in multicast protocols that provide ordered

message delivery and in protocols for distributed mutual exclusion. Here,

we will focus on the multicast case. Ignoring failures, a multicast can be

modeled as a meta-event (i, M) in which i denotes the initiation of the mul-

ticast and M the set of message delivery events. Existing atomic multicast

protocols achieve delivery ordering in one of two ways, and mutual exclusion

protocols can generally be classified into the same two categories.

One approach is to implement a rule by which for each pair of con-

current multicasts, some uniquely identified process must pick their order-

ing. For example, this can been done using token passing (the token holder

picks) [CMS?], or with a tree-structured scheme (the least common ancestor

picks) [GMS88]. In sufficiently static settings, this can also be done with a

hashing scheme [CG86].
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The other approach is decentralized. In this scheme, the processes vote

on the ordering they prefer, and any process with the full set of votes can

deduce the ordering rule to use. A two-phase protocol based on this approach

is described in [BJ87b]. The "state machine" approach is similar; it employs

a fully decentralized, fault-tolerant protocol to achieve ordering [Sch86].

There are ordered broadcast protocols that utilize external sources of

order. We would classify these as instances of the first case, where the order

generating "process" is implemented in hardware, or hidden_ within a clock

synchronization algorithm. For example, the Linda S/Net implementation

exploited broadcast communication hardware for this purpose [CG86]. Like-

wise, the Delta-T protocols operate using synchronized clocks and realtime

timestamps; they delay message delivery long enough to compensate for

uncertainties in clock synchronization and transmission time [CAS86].
There are also ordered broadcast protocols that combine some of the

work clone for protocol invocation t with that for invocation t % 1; for exam-

ple, the ISIS failure detection protocol [BJ87b I. Such a strategy may reduce

the overall cost of the protocol, but does not constitute a fundamentally new

way of obtaining ordering.

Notice that dynamic order comes at a high price. In addition to the extra

communication required relative to the two static cases, dynamic ordering

requires that events be delayed, and this latency can directly impact the

application program. That is, there is always some process which prior

to some point in its execution will not be able to"safely" perform certain

actions. It must wait to obtain additional information, and this latency

limits the rate at which the application can make progress.

Thus, the choice of ordering method can have important practical per-

formance implications. We will see an example of this in section 5.

5 Two token passing implementations

A brief example will illustrate how ordering issues can enter into a higher-

level algorithm. Our goal is to implement the token passing part of the

mutual exclusion scheme described above using a static set of ISIS processes

(the solution can easily be generalized to a dynamic set, but we will not do

so here). The problem was first solved by Schmuck [Sch88]; the treatment

given here follows one in [BJ89].

We need a some detail about two multicast primitives supported by ISIS:
CBCAST and ABCAST.

I0



• CBCAST ensures that if there are two CBCASTs satisfying i _ i',

then delivery order matches the invocation order: (i, M) --, (i I, Mr).

• ABCAST extends CBCAST by also ordering concurrent invocations,

picking an order to use in the concurrent case.

5.1 ABCAST solution

Using ABCAST we can implement a very simple token passing algorithm

(Fig. 2). All operations (PASS and REQUEST with no parameters) are multi-

cast to the entire set of processes. Each process maintains a list of pending

operations. All REQUEST operations are granted in a deterministic order,

and a REQUEST isgranted when a PASS isreceived.Since allsee the same

operationsin the same order,behavior isidentical.

5.2 CBCAST solution

An alternativetoken passingscheme multicastsoperationsusing CBCAST

(Fig. 3. A consequence isthat processesmay receiverequestsin different

orders,and that the requestlistsat two differentprocessesmay not contain

the same requestswhen a given PASS operationisreceived.In thisimple-

mentation, the processdoing a PASS operationfirstpicksthe requestthat it

willgrant (e.g.the firstone on itslistofpending requests),and includesthis

informationas part of the multicast(del_yingthe PASS in the case where

thereare no pending requests).Processesreceivingthe pass operationmust

look up the granted requeston theirlistof pending requests(itiseasy to

show that they willfinditthere)and deleteit. This algorithm isproved

correctin [BJ89],using the observationthat REQUEST and PASS operations

are totallyordered by _ along the path that the token follows.

5.3 Use of order in the two algorithms

How would one pick between these two solutions to the problem? One is

easier to understand than the other, but the the difference in performance far

outweighs any difference in complexity. The ABCAST algorithm is "tightly

synchronous": all processes move in lock-step, and computation advances

slowly because of the costs intrinsic to ABCAST. The CBCAST version is

much faster: all the m_ticasts can be done asynchronously, in which case

computation will be limited only by processor speed and the capacity of

11
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the operating system to buffer multicast requests and perform them in the

background. Using ISIS, these algorithms can be compared experimentally:

for 5 processes running on SUN 3/60 hardware, the performance difference

exceeds a factor of 10, and this grows with the number of processes.

From the perspective of ordering, the algorithms differ in the way that

they obtain the ordering needed to maintain consistency. The former ignores

the invocation order of the operations. It acts as if all operations potentially

conflict with one another, and resolves this by generating a strong, globally

observed ordering that it uses to control execution. The CBCAST version

is more cautious in its use of available ordering. By having the process that

is about to do a PASS decide what request to grant, consistent distributed

behavior is achieved without ever resorting to a costly ABCAST, and the

ordering problem is reduced to the computational case.

We believe this example is demonstrative of the general problem. When

we build distributed systems without attention to the amount of ordering

needed to achieve consistency, and the ways that ordering can be preserved,

we can find ourselves using distributed programs as inefficient and "inele-

gant" as the ABCAST token passing algorithm.

6 Completeness of the model.

Could there not existmany levelsof ordering,likethe ones that CBCAST

and ABCAST provide,but differinginthe preciserulethatthey implement?

In the case ofmulticasts,one can prove that thesetwo types oforderingare

complete (in the sense that these can implement any other ordered prim-

itive)within the problem classesthat they solve. Schmuck does thisfor

CBCAST [Sch88],and Schneiderdiscusseswork on the statemachine ap-

proach which includestype oforderlng achievedby ABCAST [Sch86].The

same resultscan be expected to hold in the caseof meta-event orderings.

This isnot to say that more complex forms of ordering are not mean-

ingful. In fact,ffone moves to systems that requireordering on setsof

meta-events,more complex algorithmsare definitelyneeded. For example,

the ISISsystem implements a thirdmulticastingprimitive,GBCAST, which

itusesforprocessgroup membership changes. GBCAST providesordering

with respect to more than one classof meta-events,and requiresa more

costly3-phase protocol.

An interestingdirectionto pursue would be a theory about the compo-

sitionof meta-operations and meta-orders. This isdiscussedmore in the

12
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conclusions of this paper.

7 Higher level consistency and ordering.

So far,our examples have been low-levelones. Most distributedcomputing

mechanisms, incontrast,existat a very highlevel:reliablemulticasts,trans-

actionsand 2-phase commit, the ISIS virtuallysynchronous toolkit,virtual

time,the Linda tuple-space,the Psync primitives[Pet87],and soforth.Our

taskin thissectionwillbe to bridgethe gap. In so doing,the relationships

between thesesystems willbecome more clear.

7.1 Who is currently operational?

Agreement on .failure is perhaps the most fundamental problem in a dis-

tributed system. Even the simplest real distributed systems must address

this issue. For example, in a system with two processors connected by a

single communication link, usually two kinds of failures are assumed: pro-

cessors may crash, and the link may suffer from a performance failure (i.e.

it may delay or drop a message). These two kinds of failures are indistin-

guishable by a sending process, yet the results of an inconsistent decision

can be disastrous [Gra79]. As a result, several existing systems structure

their state such that the recovery from both kinds of failures are identical.

For example, in the Sun NFS protocol [SUN86] a connection holds very

little state, so a crash can be treated as a particular kind of performance

failure. Many other protocols "time out", treating performance failures as
crash failures.

When more than two processes are involved, substantial additional com-

plexity arises. For example, transactional concurrency control mechanisms

impose order on read and write operations so that the execution of a set of

concurrenttransactionsisequivalentto a serialexecution.The best known

such mechanism for managing replicatingdata is the availablecopiesal-

gorithm. Ithas been shown that ifallprocessesagree on when a process

fails,serializabilityismaintained. Ifthey do not agree,then a transaction

may not see a the effectsof a conflictingoperationfrom a virtuallyearlier

transaction[BHG87]. Thus, transactionalconcurrency controlmechanisms

must order failureevents relativeto the execution of other operations -

specifically,commit operations.

The ambiguity of crash and performance failuresmakes agreement on

who isoperationaldifficult.Ifthe effectof executing an operation can be

13
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undone, as an abort ofa transaction,then a good way to dealwith apparent

failuresissimply to cause an abort. This issimple and conservative:ifthe

failurewas not real,the onlycostisthatthe transactionmust be redone. On

the other hand, abort isnot always meaningful;forexample, insystems that

take externalactions. Lacking thisalternative,the operationalprocesses

must insteadagreeon which processeshave crashed,forcingthoseprocesses

to crash or rejoin the system if it later turns out that the problem was a

performance failure.

The protocols for agreeing on who is operational are clearly an important

part of any distributed system. Moreover, such protocols bear a strong re-

latlonshipto the orderingand consistencypreservingmechanisms discussed
above.

To see this, consider an application that makes use of a list of the oper-

ational processes. At some point in an execution, process p goes from being

operational to having failed. An application that depends on this informa-

tion may dynamically adapt itself to the failure of p, and it then becomes

important that events initiated after the failure only encounter processes at

which the failure is already known. For example, if q sends s a message that

relates to the failure of p, inconsistency could easily arise if s receives the

message prior to observing the failure. Any messages ordered prior to the

observation of the failure of p must be flushed from the channels, effectively

forming a snapshot. A protocol capable of achieving this handling of process

failures necessarily creates meta-order.

It is not surprising to find that the ISIS system solves this problem using

a multiphase consensus protocol that terminates in two phases after the last

failure [BJ87b]. During the last phase, this protocol does a flush, much like

the transmission of channel markers that occurs in the Chandy-Lamport

consistent snapshot algorithm [CL85]. The ISIS protocol can thus be under-

stood as a mechanism for drawing a line (cut) across the system execution:

events prior to the cut have not observed the failure, all processes observe

the failure "simultaneously" along the cut, and events after the cut all reflect

the failure event. In other words, the ISIS solution works by establishing

meta-ordering. Similar mechanisms appear in other systems ([CM87], for

example). We would argue that while these protocols are necessary, they

have for the most part not been well presented and understood. This seems

to be a problem for which an order-based treatment could lead to significant

simplification. For example, Cristian's solution to the membership problem,

in [CriB8], is notable for a specification that uses ordering properties and for

the simplicity of the algorithms proposed.

14



7.2 Creating and Preserving Order

According to the thesis of this paper, consistency-preserving distributed

mechanisms should fall into two categories: those where the meta--operations

are ordered non-dynamically, and those where the meta-operations are or-

dered dynamically. In fact, it was this observation that led us to investigate

ways meta-operations can be ordered.

An example of the use of a/-/or/ordering arises in timestamp-based

concurrency control algorithms [BHG87]. When created, a transaction is

assigned a timestamp from a total order, and the concurrency control algo-

rithm can delay or abort a transaction if it attempts to access a variable in
an inconsistent order. Liskov and Radkin use a similar method in their work

on highly available servers [LL86]. A 2-phase locking algorithm, in contrast,

works by dynamically ordering meta--operations. Any transaction is ordered

either before the lock point of another transaction, or after its commit point.

The meta--operations in this case are the read, write and commit operations,

and perhaps the write-lock operation if locks are replicated.

Quorum-based replicated data algorithms are an example where one can

see the relationship between what we have called dynamic order and com-

putational order. Viewed externally, a quorum write is clearly a case of

dynamic order, generated using a decentralized scheme. Now, consider the

same operation at a microscopic level. Typically, the write will require two

phases: a first phase during which the value to be written is distributed

and the version number to be used is computed, followed by a second phase

during which the update is committed provided that a quorum of responses

was received and aborted otherwise. At this level of abstraction, the first

phase determines an order using a decentralized rule, and the second phase

respects that order. That is, the second phase is computationally ordered
in the sense discussed above.

Given an order, there are many distributed mechanisms for preserving

it. The pessimistic schemes preserve order at all times. In the case of

transactional systems, a pessimistic way to preserve order is to force an

operation to wait until the operations prior to it complete, as for locking.

Above, we mentioned the ISIS CBCAST primitive. CBCAST maintains

ordering information by augmenting the data sent with a message. When

a message m is sent to a site, copies of any messages m * that m is causally

dependent upon are included. (Of course, if the site has already received

m I, it need not be sent a second time).

Another example of such a mechanism is Psync [Pet87]. With this mech-
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anism, the dependencies among messages are available to the programmer.

The order information can be carried as unique message identifiers rather

than by forwarding the whole message as done in CBCAST. It is interest-

ing to note that the architects of Psync chose their model in order to unify

other communication mechanisms. They reasoned that it would be rela-

tively cheap to implement Psync, and then hopefully build other ordering

mechanisms cheaply on top of Psync.

The optimistic schemes for preserving order depend on a mechanism for

detecting order violations and rolling back. We would classify timestamped

concurrency control and Jefferson's work on virtual time into this category.

7.3 Order in Realtime Systems

A realtimesystem isone in which a setof computer processesinteractwith

a setofphysicalprocesses.In general,the meta-operationsof the computer

processesmust be ordered with respectto externalactionsin the physical

processes. Since a computer process can not in general delay a physical

process,the order must in some part be generated by the physicalprocess.

This order is most easilyrepresentedas a totalorder of events with re-

spect to some monotonically increasingphysicalvariable.The most obvious

candidate isthe realtime, but any such physicalvariablecan be used.

Littleof what we discussedabove can be applied directlyto realtime

systems. For example, the CBCAST solutionto the token passing prob-

lem gains a substantialperformance improvement by substitutinga form

of logicalorderingfor the totalordering provided by the ABCAST proto-

col.This logicalordering bears no relationshipto realtime,and hence the

mechanism as presentedabove isinappropriateforuse ina realtimesystem.

The ABCAST solution,on the order hand, could be adapted fairlyeasilyto

a realtimesetting(in fact,one could substituteCristian'sDelta-T atomic

broadcast and use the algorithm without additionalchanges). Yet, some

realtimesystems placedemanding performance requirements on the proto-

colsthey use,and the performance advantages of the CBCAST solutionin

the asynchronous case suggestthat there might alsobe bene_ts to using it

in the realtimecase. The question that thisraises,but which we willleave

open here,iswhether there might existsome modified versionof CBCAST

that could be used to similaradvantage in realtimeenvironments.

16



8 Conclusions

Our fieldhas always searched for principlesto guide the development of

operating systems and distributedsystems. We believethat the principle

of distributedorderingmeets thiscriteria,namely that distributedsystems

achieveconsistencythrough consistentdistributedorderingsof conflicting

events.Insightsinto the fundamental propertiesof order-basedalgorithms

would impact a wide range of distributedand parallelsystems.

Distributedcomputing has long been characterizedby intenseinterestin

performance and robustness.With the increasingfocus on closelycoupled

distributedservices,the sortsof consistencyissueswe raisehere are becom-

ing widely relevant.One implicationof a principleof distributedordering

isthatsuch serviceswillachievethe maximum performance and robustness

only through a carefulunderstanding of theirordering requirements,and

through the development of highlyrefinedoperatingsystem primitivesfor

satisfyingtheserequirements.

Severaldirectionssuggestthemselvesforfuturestudy.

Order-based operating system primitives. An important question re-

lates to how ordering mechanisms should be presented to applications pro-

grammers. Current systems offer a range of high level order-based abstrac-

tions, such as transactions,quorum replicateddata, atomic multicasts,and

virtuallysynchronous processgroups. One cannot help but wonder ifthere

isa more primitiveabstractionfrom which thesehigher levelmechanisms

could be constructed.Such an abstractionwould be particularlyusefulbe-

cause it could support a varietyof these mechanisms at once, while also

addressing the needs of applicationsthat have reason to order other sorts

of operations,such as the execution of piecesof code or actionstaken in

response to externalevents. For example, itwould be possibleto support

a notion of ordereddistributedoperationthat might come closeto directly

implementing our meta-operations,but in which the operation to perform

would be specifiedtotallyabstractly.A differentapproach might focus on

order manipulation primitives,likethose in Psync [Pet87],but augmented

to have a strongernotionofdistributedevent and to reduceany dependence

on message-passing.

Order-based language primitives? The development ofconvenientlan-

guage support fortransactionshas played a major rolein making transac-

17



=
!

tional systems easier to use and popular as a distributed computing method-

ology. It seems natural to ask if we can devise effective language support for

representing and manipulating order. For example, it would be useful to ex-

plore the possibility of supporting classes of ordered distributed operations

in a multiple type inheritance framework.

How much order is needed? The use oforder iscloselytiedto the cost

ofan application.Systematic toolsare needed forfordetermininghow much

order an applicationneeds,and perhaps for using orderingas a complexity

measure under which differentsolutionsto a problem can be compared.

Theory of order composition. We noted in Section6 that a theory is

needed fordescribingthe manner in which meta-orderingscan be composed

to obtain higher level orderings. Such a theory could be a valuable tool for

reducing complexity and improving correctness in higher level systems. It

might also help us to identify limitations on what can be achieved in dis-

tributed systems. For example, we noted that the external world may be

an observer of consistency. We also observed that there are limits on the

degree to which actions can be simultaneous within a distributed system.

This limit does not apply to an external observer, hence one could profitably

ask what constraints an external consistency requirement places on the im-

plementation of a distributed algorithm. The answer would undoubtably be

both deep and of practical value.
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To initiate a pass() or request():

ABCAST('optype');

On receiving a pass() or request():

case(optype) of

'pass':

if(is_empty(request.queue))

wants_request - TRUE;

else

grant(head(request_queue))

'request':

if(.ants_request)

wants_request = FALSE;

else

append(request_queue,

end;

grant(this_request);

this_request);

Figure 2: ABCAST token-passing algorithm
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To initiate a pass() or request():

case(optic) of

'pass':

while(is_empty(request_queue)) wait;

CBCAST('pass', qu_head(request.queue));

'request':

CBCAST(¢request');

end;

On receiving a pass() or request():

case(optype) of

'pass(granted)':

grant(dequeue_request(rsquest_queue, granted))

'request':

append(request.queue, this_request);

end;

Figure 3: CBCAST token-passing algorithm
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