

K. P. Birman*

TR 89-1014
June 1 989

How Robust are Distributed Systems?

//> <,._.- o

-, 7"7 /

/fg

Department of Computer Science

Comell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA

order 6037, Contract N0014-87-C-8904, and also by a grant from the Siemens Corporation. The views,

opinions and findings contained in this report are those of the authors and should not be construed as

an official Department of Defense Analysis position, policy, or decision.

How Robust are Distributed Systems?

K. P. Birman

Department of Computer Science
Cornell University
Ithaca, NY 14853

This is a preprint of material that will appear in the collected lecture notes from

Arctic '88, An Advanced Course on Operating Systems, Tromso, Norway, July 5-14,

1988. The lecture notes will appear in book form later this year.

*This work was supported by the Defense Advanced Research Projects Agency(DoD) under ARPA

order 6037, Contract N0014-87-C-8904, and also by a grant from the Siemens Corporation. The

views, opinions and findings contained in this report are those of the authors and should not be

construed as an official Department of Defense Analysis position, policy, or decision.

ORIGINAL PAGE IS

OF POOR QUALITY

20

How robust are distributed systems?

K.P. Birman

I s_rted writing this chapter in November 1988, shortly after a "worm" was

unleashed in the internet; by exploiting network security loopholes it penetrated

and crashed large numben, d" machines, z Coincident=lly, nc,,wspapers were Filled

with retrospective anaJysea of the 1987 stock market cra._ 2 Both events gave rise

to speculation concerning the rob_ of comemporary d/stributed system.l,

and it is to th_ topic that I addrem myself.

Before beginning, it is important to recognize that these episodes aLso touch on

rather deep ethical questions. One can and should aak about the propriety of

wrifng and runn/ng a program that has no eemmaefive purpcae, or even _ pit-

ring mudl investor, against mature imtitutiom armed with supercompum's.

PersonaUy, I feel that the nmning a worm thows a deplorable Lack of judge-

ment, and entertain some doubts about the modern stock market. Nonethelem,

these concluaiom are debatable, and strt_ly dependent on questiom of taste.

The present discussion focuses on a more technical ia_e, namely the mbusmeu

of diatributed computing syster_ -- agaimt intrmiom, but aim ha the pre_ of

evenla that arise commo_y in _stributed tettin8_ , _ch as failurm and overloads.

Became these i._,_es are basicaJly technical, one can hope to arrive at a more or

lest technical answen to them. To the extent that these lead back to philmophi-

cad speculadom, the queafom raised concern impficatiom of more technical con-

clusiora, and hence one might hope that they will be lem conm_ertial than

i The pna$ram wal deas_xi to lametrate a. many machi:_ as pemible usin_ hap and toog_lm in
UNIX c_nmun_u_m _ rna/i.hamd_ m(tware. Ak_ apparently intended to unokxrtaively

a low level c£ "_," a __ err_ cauaed the _ to replicate mt_.h fa_er

tb.aaa i_. Ic _ aoca_ to nearly 6000 sygema du_-u$ a 68-1_ur period, overload_ a.qd

_ a lart]e fm'centa_.

2 Thia iam n_ercnce to the dramatic stock market declines chat occu.'t_ daris_ a world.wide flurl"y

ff pm_'tm-dr_ve_ mutm_ iv. October ff t987.

4ag'_

ORIGINAL PAGE IS

OF POOR QUALITY

ILp. BUt.MAN

conclusions arrived at using, for example, ethical principles that might not be
universaUy accepted.

20.1. Predicting the behavior of a ted system

Consider the problem of predicting how a distributed system wiLl behave while it

is executing. Such a system will be made up of large numbers of components,

operating asynchronously from one another and hence with incomplete and

inaccurate views of one-another's state. Moreover, few distributed systems

operate in & steady state: load fluctuations art common as new tasks arrive and

active tasks tenninate. Joindy, these aspects make it nearly impoeaible to arrive

at detailed predictions.

For example, feedback can _ in an automated stock trading system

because prograrmmed trade decisions are based on market indexes that change

rapidly to reflect recent trading. If all trading programs operate ind_endy,

feedback effect is mimmaJ. However, if a condition provokes sell decisions

in large numbers of prograrm, or exceptionaUy large sell orders, it can reinforce

h3clfby driving thoseindexes down, triggeringwtv_ of sides.Such a sequence

apparently led to the 1987 craah. Whether or not one questions the use of trad-

ing systems in general, it seems obvious that one cotdd question the use of trad-

ing programs subject to such behavior. What is lea obviom is that these tom of

behaviors are unpredictable and can arise from seemingly trivial mechanisma.

A behavior prediction problem _ arme as an i.ume in the 1988 worm

incident. One way to design a worm would be to write a distributedprotocol

that rnaintaim a replicated list of currently infected sites, by having worm pro-

grams communicate directly with one another and monitor one ariother's statm

to detect failures. Using this approach, one co_d _tain a very stable popu-

lation d wonm, infecting new sites in a highly controlled marm_. However, the

pmtoc.ol would be hard to dmign -- similar problems were disctmed in Chapters

14 arid 15. An easier problem is to implesrumt such art algorithm given atomic

group addreming and broadcast primitives, but the designer of a worm cannot

(yet) amume that such primitives are available.

In an ill-fateddecision,the designer of the 1988 worm evidendy turned

instead to a random algorithm. Under this approach, each worm independem.l F

maims deciaiom to infect neighboring sites based on probabili.,tic mechanisms.

The resulting worm population is influencedby facton chat include the _t

population, the rate of new Infections, the death rate, and the probability of a

suexesfful penetration of a system. For certain valtam of these parametem, the

worm population might well remain stable and small. However, for other

values, an ummbb solution results, whereby the worm population will die out or

grow uncontrollably. The question is thin how to pick parameter value, that

will definitely 8ire stable populations. Unfortunately for the des/gner of the

worm, problems of this sort are often intractable, and this one almost certainly

is. Current mathematica gives Little /might into how one might pick the

ORIGINAL PAGE IS

OF POOR QUALITY

20. HOW ROnUST _ D__ sYs'rz_?

pazaznetm.s to ensure stability, or even test for stability given parr.icular choices
of parameters. The 1988 worm thus bad a.nintrixtm'cand probab|y insurmount-
able Raw.

It iastrikingthat whereas the worm provoked much discussionof distributed

systems security, and some attention was been given to d_ ethic_ h'npticadons of

nmnmg such a program, rather tit'tle was paid to the broader isaue of winch the

worm was just a manifestation. Many sy3team contain feedback mechanisms, for

example in schedulen and in the flow-control mechanisms used by the commun-

ication layer. There is growing interest in applying these sort_ of systems in a

wide range of cridcal settings. How can one be sure that a given system /s

secure and immune to chaodc behavior? Lacking this knowledge, should one

not expect other such incidents, perhaps with catastrophic comequences?

Until recently a laboratoz3- rarity, distributed systerra have become pervasive,

and our society has come to rely on them over a five.year period. Increasingly,

systen.a such as these replace humans who cannot provide the sorts of predict-

able realtime responsiveness of a computer. Yet, a, these episcxies iUmtrate,

however bright the ,ommU¢ of distributed computing, the technology is also a.sso.

ciated with significant risks.

20.2. T_.hnology and social responsih/lky

I believe that the inventors of a technology assume an obligation to overcome

flaws in that technology, especially flaws that could exact a direct human cost.

Too many technologies have been turned kxam without adequate consideration

of where they might lead. The more cridca_ a technology, the more important

that its weaknesses be anticipated before they become stumbling bk_.ks. To fail

to confront this ismae in the context of distributed computer systems invites

haphazard interconnecdon of machines using mecha.ni.m_ capable of interacting

in unanticipated ways. Lacking explicit actiom to the contrary, one must antici-

pate that confidential data will be increasingly of'ran tmpoted to intrusions, that

critical con_l facilities will increasingly cdcen be mbject to disruption, and that

failures of all sorts will be inc_a_ingly common.

_ent can be carried even furtha'. In many _ sober analysis

l(mds m the realization that a technology _mply c_w, ot be perfected to the

degree needed in the time available, if ever. A good example, strongly depen-

dent on distributed computing technologies, i, laumh-on-wammg software for

controlJing the nation's sta-a_egicweapom W,,tem.t. Thtm syst=m have been pro-
Fxamd became hmmm bein_ cannot function rapidly enough to make launch

decisions in retpome to a surprise attack. Unfo_mately, the proponents of new

weapons technologiet have oRen overIookeci weakncssm of a technology, and the

limit= on the degree to which it can be perfected. C.an one really build a large

distributed system that is su/_iciendy robust to entrmt it to perform such a crticad

taak? Based on the arguments that I will advance below, I chink the answer is a

negative one. It seems to me that there is an applicable "impomibility" rmuit;

ORIGINAL PAGE IS
OF POOR QUALITY

every bit _ seriousa Emim_on as any r.heore_caJ/ypmvab|e or_. And, similar

a_,umema seem to apply in many other settings.To establishthis,however, one

must firstask how robusta dbm-_butedsystem can reasonablybe expected tobe.

In the case of more mature technologies, such as cramportadon and power
generation, organizadom exist to ez-xa_ the safety of systenu that enter

widespread use. The meaam_ rna_ated in some areas are a.storksbJ_ in their

about human potendad for error and for assuming that tmIikely events

will not only occur, but will do so at the worst possible time. For example,

nuclear reactors incorporate the meat extreme meuures to minimize risk. This

has clearly reduced the potential for ciisaste_. Yet, incidents continue to occur,

and in many cases the ways in which they oct,at raiae new q_stiora about the

whole assumption that systems of this sort can evea' be made safe.

In contrast, the engineering oE even the moat widdy used dist_1_ated systems
has been fairly informal If tr-a/m crash and nuclear "excursions" (leaks) occur

despite every countermeasure that designers with yeass of experience have

managed to devise, shoukL one not ezpect fi-equem d.Lmaptiom in dim'ibuted sys-
ten_ designed with only minimal attention co robmmem? The mzet common

form of reg_ation for distributed systerna has been through low-Level standards,

aa for the I$O data tramport protocols. Howevea', the probkam identified above

arise at the application level, and co the extent that appLicatiom-level _andarch

have been developed, they have been premature and ovea'ly reatrictive. Clearly,

one cannot define a standard for aspecta of a system that are still experimental.

Yet, it seems eqmdly dear that ignoring these issues only encourages the con-

su'uction of complex, fragile software.

20.3. Principles foe di.m'ibuted computing

One thing that we tack is a set of guiding prineiplm to encourage the develop-

merit of sound solutiom to distributed computing problem. Let me propcae a

setof such principlesnow.

Throe who produce di_eributed computing mftware d'axakJ make every effort to
emm_ that the software ia safe for its intended mode of use and that it can only

be used in the intended way. At.d, we must accept our rmpomibility to apply

the highest gataiards of ethical behavior in our individual research and to

these standards in our students and colleagues.

System should be interconnected to _hieve concrete objectives, not in the

ahatract belief that intere.onnection is a good thing. System that are incapable

of interacting are incapable of compromising one another.

ORIGINAL PAGE IS

OF POOR QUALITY

20. HOW RoBurr Mt_ DL_"R.LBt"TF..Ds_? 467

SuAOor_onlyntcessarX ser_s.

When systems are interconnected, the default should be co support the smallest

pcmible set of services. Services should be enabled _electively and because there

is a good reason to support chem. This minimizes the probability that a loo-

phole in the large (and ever increasing)set ca"communication services could

have widespread consequences. Also, itmakes itmore likelythat the services

that are enabled will be properly maintained.

This is especially important for services implemented anonymously and pro-

vided as executables (without source). For example, the 1988 worm made use of

a bugs in the UNIX remote finger and mail handling utilities. One might ask

just what purTx_ was served by enabling these on the majority of the machines

that were compromised. Many users maintain a primary account on just one of

the machines with which they work, and neither receive mail nor maintain

finger databases on other machines. Many mach/r_, in fact, are used in ways

that preclude reception of mail or finger queades. Yet, the default has been to

enable every pouible service whether needed or not, and su_tantial experfi_ is

often required to selectively d/_ab/_ an unwanted service. _ pursuit of unifor-

mity and flexibility has had a paradoxical outcome: resources are consumed to

run services that are not u._ul, and the _ on which they run are made
len robust.

Ir_lud,seif-d_ and auduntic, ation r_amnisms

When communication is permitted and a service is supported, authenticate the

origin and legality of requests. Many cauv_t networks make "punning"

(m/.wepresentation of ori_,'l information) too easy, giving' ",.heiUusion of security

whe_ there is actually none.

Authentication is an ism,_e beyond ira security impllcatiom. It is widdy

accepted that procedurm should authenticate their _ents. Large di,_buted

systems should carry this principle further. Mechanimu a._ needed by which

whole system components can monitor them_lves continuously, actively looking

for inconsistencies and shutting themsdves down if problems are detected. The

reasoning here is that although softwaze bugs may be inevitable, if they are

detected rapidly the con._quences can oRen be limited, for example by explicitly

halting and restarting affected programs. This approach has long been used

successf_y in electronic circuit switching.

Dcsign for f_dt.tol_a_.t.

Far too many di_fibuted systems are designed am if failures will no¢ occur, or

give undefined behavior in the presenae of failures. This is precisely the converse

of the attitude needed when building software to survive a wide ra.n_ of com-

munication and hardware disrupdora, especially in light of the self-checking

mechanism proposed above. To build a robust distributed system, one muat
amume that failures will occur. The choice is to try to survive such events, or to

468 K.P. B_

detect them and shut down before an inconsistentor erroneous action could
result.

What faultsshould be treated? It isgenerallyagreed that human behavior

willviolateany rules one attempts to impose. Thus, the traditionalapproach in

systems that must interact with humam is to design for tolerance of the largest

conceivable class of behaviors. In contrast, designers of distributed systems gtm-
eradly assume independent, benign machine failures, and that communication

failures involve only packet lcm, duplication, unsequencecl delivery or partition-

ing -- not message corruption, forgery, or protocol violations.

Although one can question whether failures are always benign and indepen-

dent, there are practical dit_culfies with using more demanding failure models.
Mc_t wider cta._es of failures turn out to be equivalent to the Byzamim modtl, in

which arbitrary, correlated and even malicious behavior are all treated as plau.

fible. C.,omputadon in this model requirm such ccmly ¢ometmas algorithms as to

preclude the use of these algorithms in all but the meat demanding settings.
Moreover, the model requires that all interactions with the outside world be

through a Byzantine agreement, which is often impractical. For example, if a
system is capable of unlocking a door, the door would have to be controlled at

least in quadruplicate, such that three out of four actuators would have to be

operated simultaneously to perform the task. _ Even in extreme settings, such as

the control of the space-shuttle cargo hold, triple redundancy was felt to be ade.

quace. Few mundane applicadom can afford adopt the most pessimimc

approach.

To stmmmrize, there seems to be little hope for building practical day-to-day

systems capable of tolerating severely incorrect or maliciom behavior on the part

of some components. Yet, if benign behavior h assumed, one mint also consider

the pomibillty that a system will _perie.nce failure modea that violate asaxamp-

tiom, and ask what the impact will be and how damage caa be minimized.

Z_s,_fo, s_. : _:_ - =_:

just as Lt _scommon to _e_i_ M _ fault-tolerance in dim-ibuted sys-
tems, questiora of scaleare often neglected. Contemporary ciismbuted systetm

become hopelessly diffu:ult to manage when_ more than a few dozen machines

are interconnected. Systems that will imezv.ormect hundreda or thoumzxts of

machines will require a completely different design mindset, in which scale is

viewed as a design feature rather than an aspect that can be dealt with as an

a_erthought.

Atoid _t_ t_t c_ _dt faitur_. :::

3 L,t pract/ce.,triple modular r,xtur.dancy ia adeqt_at_ for mare appLir.aziom. Noned_le_ the Byzan-
tine approach r_clu_r_ that tL'mre be at icam 37"- I total partix,i_ m any protocol that wi_

to_"_e up to T f_ wh/Je it _ ttumm_,.

ORIGINAL PAGE IS
OF POOR QUALITY

20. I-low ROab'_" _ DLTTR_UTZZ) sY_=_Ms? 469

In many current systems, failures can cascade under heavy load or when plausi-

ble (but unlikely) failure modes occur. For example, recall the realtime proto-

cois di_ussed in Chapter 14. In these protocols, a failed component may experi-
ence non-atomic broadcast deliveries that corrupt its software state. If such a

progr'am were _ to interact with progTams that remained operational, theh-
states could be corrupted too. Many such protocols include lack mec_ to

solve thia gradual contaminadon problem, although moat some do provide
notification if an obvious error is detected.

A different kind of cascading can occur when machines are declared faulty

due to overload. If the operational ones try to take over interrupted tasks, they

risk becoming overloaded themselves. This, in turn, wouki trigger 6axther

failures. To avoid such problerm one must either deaign substantial excess capa-

city into a system (which is often too costly to be practical) or detect overload

and react by invoking load-shedding mechanisms. The latter approach is fami-

liar from telephone systems.

Avo_ uamg "n=_' msotan/m_.

When a large system is built out of large numhen of interacting components, the

superficially simple algorithms they embody can misbehave in =urpfiKng ways.

Thi= poaes spodal problems to the desJgnm of _buted systems, where it is

often ditticult to predict exacdy how a mechaniam will behave under real loads.

For example, there is a strong temptation to include schedu_g heur_ca and

adaptive mechanisms in low levels of a system; my group did this in some parts

the ISIS system for purpoaes of load balancing. Yet, short of acc_-ateiy model-

ing a system, there is no way to know i/" local opdmization decifiom will yield

globally good behavior, or simply cause the system to "thrash". Given the

choice, a simple, well-underwood mechanism is always prderable to a fancier

but poorly undeamood one.

20.4. Furore directions

The pfi.ndples enumerated above raise a tremendous number of queadom about

current and fiature distributed _r_ten'=. It is intereging to examine some of the

application areaa that were covered in the text in this light.

20.4.1. Scaling and adminim'adon of Kle systems.

The major focm d recent work on distributed file sy_erm has been on perfor-

mance. Sy_en_ like Andrew and Sprite represent major advance, over, say, the

SUN N'_, because they make more effective use of network reso_ and cach-

ing, where effectivenem is typically measured in terms of file tranffer bandwidth,

access latency, and the number of users the file server can support. Th_ are

extremely important issues. But, is it not somewhat narrow to orient file systems

470 X.p. BIR.b,£_

so strongly towa.,xls performance considerations?

For example, consider the problem of scaling and admires" tering a [a.rge distri-

buted file system. Whereas current file systeam use a star architecture, future

distributed systems will contain large numbers of file servers of varying capacity,

and the performance and capacity of local disks will grow so large that using

them just for caching and temporary files will be unacceptably wasteful. Yet, if a

file system is assembled out of mu//ip/t servers, current systems provide Little sup-

port for management of the ensemble, or for optimizing the amigrmaent of files to

available resources. For example, no existing file system maintains the primary

copy of a file on the disk local to a user's machine, migrating updates to a

remote file server at periods of low load to permit backups from the server and

for fault-tolerance. While there has been considerable work on file replication,

file systems to date have taken a fairly restricted approach to this whole issue.

This problem is not a purely a_tract one. The Cornell Deparm_ent of Com-

puter Science recently placed an order for 25 workstations which are configured

with 350Mbyte local disks. A decision was made to use the local disks only for

swapping, temporary files and storage of immutable binaries, because the avail-

able file systems otherwise require a great deal of human engineering to manage,

and the backup problem would become a major source of overhead. The

administrative group was forced to do this because it lacked the personnel to

support other general purpoae uses of the local disk=.

In addition to making more effective use of replication, it is likely that future

file systems ,,rill need to look hard at semantic information in order to optimize

the handling of each file baaed on it= usage patterns. For example, current

UNIX-based file systems ignore information about file "type", which forces dis-

tributed implementations to guem the _ file management policies to use. This

policy dates to a period when the UNIX file system was touted for its simplicity.

One could question whether simplicity of this sort remains desirable. Most

UNIX applications encode information about file type through standard exten-

sions to file names, and the step from this to genumety typed files in not a huge

one. Moreover, information about _ type is of great value in a dimSbuted

UNIX file system, since it helps in predicting typical modes of access, the likely

lifetime of a file, the importance of maintaining availability despite faii_,

compression methods to use, etc. This List of attributes will surely grow with the

widespread u_ multimedia systems.

Tremendous advantages could he gained by implementing more sophisticated

file system architectures. An architecture is needed in which the various servers

are knowledgeable about one another and cooperate direcdy to optimize file dis-

tribution in response to patterns of access. Moreover, since this will require some
amount of distributed state, the solution must be one which is fault-tolerant and

gives well-defined comistency guarantees to file users. Lacking these possibilities,

the extent to which file systems can be scaled is inevitably limited.

ORIGINAL PAGE IS

OF POOR QUALITY

20. HOW ROBUST _ OWr_U_UTF.O SYSTF.J_? 471

20.4.2. Security and Authentication in Tractional Contexts

Interestingquestion:of securityand authenticationaxitein a tra.nm_tiorudcon-
text.

Consider the authentication issue. In addidon to conventional problems of

accem control and protection, u'amactional s3_tems depend on the correct use of

concurrency control by the/r components. Moreov_, the concurrency control

mechanisms must be compatible ones. For example, if a module that uses times-

tamped concurrency control is called fi-om one that uses locking, applications
that include calh to both modulm may execute non-_riafizably. The authenti-

cadon problem that then arises is to detect concurrency control errors and

mismatches in a large system composed of independendy developed _tiomd

components.

In current n'm'=_ct.ion_ systems, these issues do no¢ arise because components

share a common concurrency mechanism. However, in the future, one can

ea.tily envmon large-scale transactional svster_ in which no single component

provides this function. For example, one may wish to perform transactions

under the aegis of C.A2vfELOT on a set of databases marmged by multiple com-

mercial database systema. Similarly, one can imagine vendors supplying

software packages with transactional interfaces.

Not only is the transactional authentication problem difficult to solve, it is rmt

even clear how one can write down concm-rtrmy control requirements or

behavior as part of an interface specification. For eaample, in a module that

implements locking and read/write access to a set of variables one might require

that a caller acquire a write lock before calling write and a read lock before c.al-

l:mg read -- txeept when such locks are no¢ needed became some other lock of

coarser granularity was previously acquired. How can thi= even be exprested,

much lest formally verified?

Next, consider the security problem. Say that a tramactional service is

accessed by an anonymously implemented caller. Even given a compile-time

interface check, one must ark what information can be trmted at runtime. A

caller that performs concurTency control incorrectly could contaminate any ser-

vice that trusts it, and by iaxiirecuon any other programs that interact with that

service. One solution to this problem would employ validated concumr,.cy con-

trol and commit "services" accemible over secure KPC. But, one can question

whether this is the moet effident and practical solution to the problem. Until

system deaigners begin to ask these sorts of questiom and to build systems that

include mechan/sms =uch aa thit, major problem= wil/arise in attempts to move

these technologies out of the laboratory.

20.4.3. RepIJcm_n-B_=d System=

Chapter 15 _ the sorts of group addressing mechanisms and group

broadcast mechanisms needed in systems that maintain replicated state. The

protocols used for this are complex, and bugs in them could crash large numbe_

472

of machines. It would be hard to envision a failure mode in which a transac-

tional system might shut down every machine on a network, but it is fairly easy
to ha_agine how bugl in a complex protocol could have this effect.

This complexity has several implications. Certai_y, work is needed on simpll.

lying the protocols used in replication-based systems..Might there not be a way
to build these up from simple, verifiable mechanimas? Another isle is that to

the extent possible, these protocols should be implemented as part of the operat-

hag system. My reasoning is that if operating systerra Lack support for the sorts

of mechanisms needed ha application software, those appllcatiom either will not

get built, will be built using less than ideal methods or will be forced to individu-

ally reproduce the miuing mechanisms. Moreover, security and trust comidera.

tiom would limit the composition of large systems out of smaller components: it

will be too hard to agree on protocol specifications and implementation details.

It is clear that a substantial number of applications will need replication.

Given this situation, it seems that one would be better off providing such services

in a standard way. If individual application builders are asked to take on an

effort of this scale, a large amount of duplicated effort will surely result, leading

to application software that is less robust, less portable, and harder to maintain
than desired.

20.5. Changing the Way People Think about Distributed Computing

Not long ago I met with a vice president of a major corporation who expressed

interest ha ISIS. This individual explained that within his company, known pri.

marily for its mainframe systems, a perception had arisen that we need to

"change the way people think about distributed computing." This comment is

intriguing at several levels: how do people think about distributed computing?

Why change _ And how?

For too long, distributed computer systezm have been viewed primarily in

terms of intercormection. We have tended to think about such systerns as a way

to run a program on one machine that usm resources on another and to send

mail to our colleagues, and have g_nerally treated workgatiom as if they were

terminals connected to a _e. The benefit of a using a woriatation ij

often seen primarily in terms of its ability to o_oad computation from a central.
ized resource.

Perhaps the time has come to recognize that centralized servers and u-a.n-

sparent distribution are not always good thin_. It seems clear that the real

advantages to distributed systems come about only when one hegira to treat the

fact of distribution as a positive element that can contribute to the solution of an

application, rather than as an annoyance that should be concealed. _ does

change the requirements that one places on the communication support of the

operating system, but the problems that arise can be solved. It is entirely pc_i.

ble that the future successes of distributed computing will be in applications

where decentralization, autonomy, fault-tolerance and cooperative behavior are

ORIGINAL PAGE IS

OF POOR QUALITY

20. aow itoBuer Dmuuau'rr svs'ra ? 473

critical. Whereat many of these appllcatiom are today viewed at either too

di/_cult or too coedy to solve, the technology for buildingsuch systems is finally
at hand.

Recall Frech'ick Hayes-Roth's comments, quoted in Chapter 14. Like Dorothy

who step, out of her aunt's hou,e and suddenly see, t._ world in color, the revo-

lution in thinking that awaits us is enormous. The potential to solve new prob-

lems and take on new appLicatiom that this will enable staggers the imagination.

In accepting the challenges offered by these new applicadom, however, one

must be honest conce._ng jmt how robust tedmologicai soludonJ to problems
can pebbly be. And, in situations where analy_ of the tecimical barriers to a

solution reveals that the available technology it no¢ adequate to the task, it is

necessary to accept the reality of these llmitadom. BLind faith in technology can

simply no longer be jusdfied in the face of the iacreasL, agly long [Lst ot" technical

failures that the world has compiled. Thoee who create these technologies must,

for their part, accept the respomiT_lity to do all that they can to emure that

their products will be used in appropriate and rea_nable wa D.
The era of disaributed computing is j_t beginning. In writing _ textbook, a

group of us have come together to survey the field and point in some of the
directions that it has to offer. In rereading the material that we have produced,

it is encouraging to see both by the progress that has been made throughout the

field and the accelerating rate of progress. At the same time, a u'emendous range

of problam remain to be solved. In this respect, distributed computing seerra to

be special within computer science as a whole. When_as many other areas have

flowered rapidly only to stagnate rapidly, new directiom keep opening up in dis-

tributed systen_, and revolutions keep occurring in even the mint "traditional"

areas of the field. Meanwhile, more and more applicadora depend on some

form of distribution, and these also pose new challenges. The potential applica-

flora of distributed computing technology have hardly been tapped. Provided

that this is done in a careful, considered mann_, dLm.ibumd computing could

change the way that we deal with computer systems in a prdound and
beneficial way.

It is unfortunate that the potential for abuae of this technology is a real as for

any other technology that dvilization has d_. Nonethelem, that potential _r

real, and will have ira:rea_gly important con.mquences. Our field must accept

the responsibility for tl_ techsmlogy: even as we cz_te these new forms of com-

puting, it falls upon us to control them through new and more demanding ethi-

cal standards.

20.6,Acknowtedgnm ts

I am grateful to Robert Cooper, Ajei C,opal and Barbara S/morn for comment-

ing on dra_ of this material. I also feel that an apology is due to the authors of

papers and books germaine to this discussion. I could certainly have cited
relevant technical materiaJ, but felt that this would be inappropriate given the

474

cherne _ the chapter. And, I know of little materiel on eric3 m relation to
tedmolol_es of d_ sort. I would be grateful for any references that readers
knowledgeable about the subject might care to recommend.

