N

TECHNICAL REPORT

Department of Computer Science
Cornell University
Ithaca New York -

How Robust are Distributed Systems?

K. P. Birman* ﬂ/??-—i':; ~

P PP/
TR89-1014 &= -CA-
June 1989 st 5 /
)58

NAG S -5 73

Department of Computer Science
Comell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA
order 6037, Contract N0014-87-C-8904, and also by a grant from the Siemens Corporation. The views,
opinions and findings contained in this report are those of the authors and should not be construed as
an official Department of Defense Analysis position, policy, or decision.

How Robust are Distributed Systems?
K. P. Birman

Department of Computer Science
Cornell University
ithaca, NY 14853

This is a preprint of material that will appear in the collected lecture notes from
Arctic ‘88, An Advanced Course on Operating Systems, Tromso, Norway, July S5-14,
1988. The lecture notes will appear in book form later this year.

*This work was supported by the Defense Advanced Research Projects Agency(DoD) under ARPA
order 6037, Contract N0O14-87-C-8904, and also by a grant from the Siemens Corporation. The
views, opinions and findings contained in this report are those of the authors and should not be
construed as an official Department of Defense Analysis position, policy, or decision.

ORIGINAL PAGE IS
OF POOR QUALITY

20

How robust are distributed systems?

K.P. Birman

I started writing this chapter in November 1988, shortly after 2 “worm” was
unleashed in the internet; by exploiting network security loopholes it penetrated
and crashed large numbers of machines.! Coincidentally, newspapers were filled
with recrospective analyses of the 1987 stock market crash.? Both events gave rise
to speculation concerning the robustness of contemporary distributed systerns,
and it is to this topic that I address myself.

Before beginning, it is important to recognize that these episodes also touch on
rather deep ethical questions. One can and should ask about the propriety of
writing and running a program that has no constructive purpose, or even of pit-
ting small investors against massive institutions armed with supercomputers.

Personally, I fee] that the running a worm shows a deplorable lack of Jjudge-
ment, and entertain some doubts about the modern stock market. Nonetheless,
these conclusions are debatable, and soongly dependent on questions of taste.
The present discussion focuses on a more technical issue, namely the robustness
of distributed computing systems — against intrusions, but also in the presense of
events that arise commonly in distributed settings, such as failures and overloads.
Becaunthaeisuambasicallytech:ﬁcal,mcanhopetouﬁvenammor
less technical answers to them. To the extent that these lead back to philosophi-
cal speculations, the questions raised concern implications of more technical con-
clusions, and hence one might hope that they will be less conovertial than

7 than intended. [t guined accem to nearly 6000 systems during a 48-hour peniod, overloading and
crashing a large percentage. ' '

? This is in reference o the dramatic stock market declines that occurred during a world-wide flurry
of program-driven trading in October of 1987,

ORIGINAL PAGE IS
"OF POOR QUALITY

464 K. P. BIRMAN

conclusions arrived at wsing, for example, ethical principles that might not be
universally accepted.

20.1. Predicting the behavior of a distributed system

is executing. Such a system will be made up of large numbers of components,
operating asynchronously from one another and hence with incomplete and
inaccurate views of one-another’s state. Moreover, few distributed systemns
operate in a steady state: load Auctuations are common as new tasks arrive and
active tasks terminate, Jointly, these aspects make it nearly impossible to arrive
at detailed predictions.

For example, feedback can arise in an automnated stock trading system
because programmed trade decisions are based on market indexes that change
rapidly to reflect recent trading. If all trading programs operate independently,
this feedback effect is minimal. However, if a condition provokes sell decisions
in large numbers of programs, or exceptionally large sell orders, it can reinforce
itself by driving those indexes down, Triggering waves of sales. Such a sequence
apparently led to the 1987 crash. Whether or not one questions the use of trad-
ing systems in general, it seems obvious that one could question the use of trad-
ing programs subject to such behavior. What is less obvious is that these sorts of
behaviors are unpredictable and can arise from seemingly oivial mechanisms.

A behavior prediction problem also arcse as an issue in the 1988 worm
incident. One way to design a worm would be to write a distributed protocol
that maincains a replicated list of currently infected sites, by having worm pro-
grams communicate directly with one another and monitor one another’s status
to detect failures. Using this approach, one could maintain a very stable popu-
lation of worms, infecting new sites in a highly controlled manner. However, the
protocol would be hard to design — similar problems were discussed in Chapters
14 and 15. An easier problem is to implement such an algorithm given atomic
group addressing and broadcast primitives, but the designer of a worm cannot
(yet) assume that such primitives are available.

In an ill-fated decision, the designer of the 1988 worm evidentdy turned
instead to a random algorithm. Under this approach, each worm independently
makes decisions to infect neighboring sites based on probabilistic mechanisms.
The resulting worm population is influenced by factors that include the current
population, the rate of new infections, the death rate, and the probability of a
successful penetration of a system. For certain values of these parameters, the
worm population might well remain stable and small. However, for other
values, an unstable solution results, whereby the worm population will die out or
grow uncontrollably. The question is thus how to pick parameter values that
will definitely give stable populations. Unfortunately for the designer of the
worm, problems of this sort are often intractable, and this one almost certainly
is. Current mathematics gives little insight into how one might pick the

ORIGINAL PAGE IS
OF POOR QUALITY

20. HOw ROBUST ARE DISTRIBUTED SYSTEMS? 4635

parameters to ensure stability, or even test for stability given particular choices
of parameters. The 1988 worm thus had an intrinisic and probably insurmoun;.
able flaw.

It is striking that whereas the worm provoked much discussion of distributeq
Systems security, and some attention was been given to the ethical implications of
running such a program, rather lirtle was Paid to the broader issue of which the
worm was just a manifestation. Many systems contain feedback mechanisms, for

Undl recently a laboratory rarity, distributed systems have become pervasive,
and our society has come to rely on them over a five-year period. Increasingly,
systems such as these replace humans who cannot provide the sorts of predict-
able realtime responsiveness of a computer. Yet, as these episodes illustrate,
however bright the promsse of distributed computing, the technology is also asso-
ciated with significant risks,

20.2. Technology and social responsibility

I believe that the inventors of a technology assume an obligation to cvercome
flaws in that technology, especially Aaws that could exact a direct human cost,
Too many technologies have been turned loose without adequate consideration
of where they might lead. The more critical a technology, the more important
that its weaknesses be anticipated before they become stumbling blocks. To fail
to confront this issue in the context of distributed computer systems invites
haphazard interconnection of machines using mechanisms capable of interacting

degree needed in the time available, if ever. A good example, strongly depen-
dent on distributed computing technologies, is launch-on-warmning software for
controlling the nation’s strategic weapons systems. These systems have been pro-
posed because human beings cannot function rapidly enough to make launch
decisions in response to a surprise artack. Unfortunately, the proponents of new
weapons technologies have often overlooked weaknesses of a technology, and the
limits on the degree to which it can be perfected. Can one really build a large
disaributed systemn that is sufficiently robust to entrust it to perform such a crtical
task? Based on the arguments that I will advance below, I think the answer is a
negative one. It seems to me that there is an applicable “impossibility” result;

ORIGINAL PAGE 1S
OF POOR QUALITY

466 K. P. BIRMAN

every bit as serious a limitation as any theoretically provable one. And, similar
arguments seem to apply in many other settings. To establish this, however, one
must first ask how robust a distributed System can reasonably be expected to be.

In the case of more mature technologies, such as transportation and power
generation, organizations exist to ensure the safety of systems that enter
widespread use. The measures mandaced in some areas are astonishing in their
pessimism about human potental for error and for asuming that unlikely evenes
will not only occur, but will do so at the worst possible time. For example,
nuclear reactors incorporate the most extreme measures to minimize risk. This
has clearly reduced the potendal for disaster. Yet, incidents continue to occur,
and in many cases the ways in which they occur raise new questions about the
whole assumption that systems of this sort can ever be made safe.

In contrast, the engineering of even the most widely used distributed systemns
has been fairly informal. If qains crash and nuclear “excursions” (leaks) occur
despite every countermeasure that designers with years of experience have
managed to devise, should one not expect frequent disruptions in distributed sys-
tems designed with only minimal artention to robustness? The most common
form of regulation for distributed systems has been through low-leve! standards,
as for the ISO data transport protocols. However, the problems identified above

have been developed, they have been premature and overly restrictive. Clearly,
one cannot define a standard for aspects of a system that are sdll experimenta).
Yet, it seems equally clear that ignoring these issues only encourages the con-
struction of complex, fragile software.

20.3. Principles for distributed computing

Oncdﬁngdutwclackisasctd‘guidingpdnciplatocncoungedmdcvdop-
ment of sound solutions to distributed computing problems. Let me propose a
set of such principles now.

Assume responsibnlssy.

Those who produce distributed computing software should make every effort to
ensum&mt:hcsoftwmissafcforinintendedmodeofusemdthaitcanonly
be used in the intended way. And, we must accept our responsibility to apply
the highest standards of ethical behavior in our individual research and to instill
these standards in our students and colleagues.

Interconnect for good reasons.

Systems should be interconnected to achieve concrete objectives, not in the
abstract belief that interconnection is a good thing. Systemns that are incapable
of interacting are incapable of compromusing one another.

ORIGINAL PAGE |s
OF POOR QUALITY

20. HOW ROBUST ARE DISTRIBUTED SYSTEMS? 467

Support only necessary services.

When systems are interconnected, the default should be to support the smallest
possible set of services. Services should be enabled selectively and because there
is a good reason to support them. This minimizes the probability that a loo-
phole in the large (and ever increasing) set of communication services could
have widespread consequences. Also, it makes it more likely that the services
that are enabled will be properly maintained.

This is especially important for services implemented anonymously and pro-
vided as executables (without source). For example, the 1988 worm made use of
a bugs in the UNIX remote finger and mail handling udlities. One might ask
Just what purpose was served by enabling these on the majority of the machines

Include self-diagnasis and authentication mechanisms

When communication is permitted and a service is supported, authenticate the
onigin and legality of requests. Many current networks make “punning”
(misrepresentation of origin information) too casy, giving the illusion of security
where there is actually none.

Authentication is an issue beyond its security implications. It is widely
accepted that procedures should authenticate their arguments. Large distributed
systems should carry this principle further. Mechanisms are needed by which
whole system components can monitor themselves continuously, actively looking
for inconsistencies and shutting themselves down if problems are detected. The
reasoning here is that although software bugs may be inevitable, if they are
detected rapidly the consequences can often be limited, for example by explicitly
halting and restarting affected programs. This approach has long been used
successfully in electronic circuit switching.

Design for fault-tolerance.

Far too many distributed systems are designed as if failures will not occur, or
give undefined behavior in the presense of failures. This is precisely the converse
of the attitude needed when building software to survive a wide range of com-
munication and hardware disruptions, especially in light of the selfchecking
mechanism proposed above. To build a robust distributed system, one must
assume that failures will occur. The choice is to Ty to survive such events, or to

468 K. P. BIRMAN

detect them and shut down before an inconsistent or erroneous action could
result. : : '
What faults should be treated? It is generally agreed that human behavior
will violate any rules one attempts to impose. Thus, the traditiona] approach in
Systems that must interact with humans is to design for tolerance of the largest
conceivable class of behaviors. In contrast, designers of distributed systems gen.
erally assume independent, benign machine failures, and thae communication
failures involve only packet loss, duplication, unsequenced delivery or partition-
ing — not message corrupdon, forgery, or protocol violations,

Although one can question whether failures are always benign and indepen.

operated simultaneously to perform the task.? Even in exgeme settings, such as
the control of the space-shuttle cargo hold, triple redundancy was felt to be ade-
quate. Few mundane applications can afford adopt the most pessimistic

approach.

ommon to oversimplify issues of fault-tolerance in distributed sys-
tems, questions of scale are aften neglected. Contemporary distributed systemns
become hopelessly difficult to manage when more than a few dozen machines
are interconnected. Systemns that will interconnect hundreds or thousands of
machines will require a completely different design mindset, in which scale is
viewed as a design feature rather than an aspect that can be dealt with as an
afterthought.

Avoud mechanisms that can cascade Sadures.

3 In practice, triple modular redundancy is adequate for most applications. Nonetheless, the Byzan-
tine approach requires that there be at least IT -1 rwoeal participants in any protocol that will
tolerace up o T failures while it is running.

ORIGINAL PAGE 15
OF POOR QUALITY

20. HOW ROBUST ARE DISTRIBUTED SYSTEMS? 469

In many current systems, failures can cascade under heavy load or when plausi-
ble (but unlikely) failure modes occur. For example, recall the realtime proto-
cols discussed in Chapter 14, In these protocols, a failed component may experi-
ence non-atomic broadcast deliveries that corTupt its software state. If such a
program were lter to interact with programs that remained operational, their
states could be corrupted too. Many such protocols include lack mechanisms to
solve this gradual contamination problem, although most some do provide
notification if an obvious error is detected.

A different kind of Cascading can occur when machines are declared faulty
due to overload. If the operational ones oy to take over interrupted tasks, they
risk becoming overloaded themselves. This, in tum, would trigger further
failures. To avoid such problems one must cither design substantial excess capa-
city into a system (which is often too costly to be practical) or detect overload
and react by invoking load-shedding mechanisms. The latter approach is fami-
liar from telephone systemns.

Avoud using “magic”’ mechanisms.

When a large system is built out of large numbers of interacting components, the
superficially simple algorithms they embody can misbehave in surprising ways.
This poses special problems to the designers of distributed systems, where it is
often difficult to predict exactly how a mechanism will behave under real loads.
For example, there is a strong temptation to include scheduling heuristics and
adaptive mechanisms in low levels of a system; my group did this in some parts
the ISIS system for purposes of load balancing. Yet, short of accurately model-

globally good behavior, or simply cause the system to “thrash”. Given the
choice, a simple, well-understood mechanism is always preferable to a fancier
but poorly understood one.

20.4. Future directions

The principles enumerated above raise a tremendous number of questions about
current and future distributed systems. It is interesting to examine some of the
application areas that were covered in the text in this lighe.

20.4.1. Scaling and administration of file systems.

The major focus of recent work on distributed file systems has been on perfor-
mance. Systems like Andrew and Sprite represent major advances over, say, the
SUN NFS, because they make more effective use of network resources and cach-
ing, where effectiveness is typically measured in terms of file ransfer bandwidth,
access latency, and the number of users the file server can support. These are
extremely important issues. But, is it not somewhat narrow to orient file systems

470 K. P. BIRMAN

so strongly towards performance considerations?

For example, consider the problem of scaling and administering a large distri-
buted file system. Whereas current file fystems use a star architecture, furure
distributed systems will contain large numbers of file servers of varying capacity,
and the performance and capacity of local disks will grow so large that using
them just for caching and temporary files will be unacceptably wasteful. Yet, if a
file system is assembled out of multiple servers, current systems provide little sup-
port for management of the ensemble, or for optimizing the assignment of files to
available resources. For example, no existing file system maintains the primary
copy of a file on the disk local to a user’s machine, migrating updates to a
remote file server at periods of low load to permit backups from the server and
for fault-tolerance. While there has been considerable work on file replicadon,
file systems to date have taken a fairly restricted approach to this whole issue.

This problem is not a purely abstract one. The Cornell Department of Com-
puter Science recently placed an order for 25 workstations which are configured
with 350Mbyte local disks. A decision was made to use the local disks only for
swapping, temporary files and storage of immutable binaries, because the avail-
able file systems otherwise require a great deal of human engineering to manage,
and the backup problem would become a major source of overhead. The
administrative group was forced to do this because it lacked the personne! to
support other general purpose uses of the local disks,

In addition to making more effective use of replication, it is likely that furure
file systems will need to look hard at semantic information in order to optimize
the handling of each file based on its usage patterns. For example, current
UNIX-based file systems ignore information about file “type”, which forces dis-
aibuted implementations to guess the best file management policies to use. This
policy dates to a period when the UNIX file System was touted for its simplicity.
One could queston whether simplicity of this sort remains desirable. Most
UNIX applications encode information about file type through standard exten-
sions to file names, and the step from this to genuinely typed files is not a huge
one. Moreover, information about file type is of great value in a dismributed
UNIX file system, since it helps in predicting typical modes of access, the likely
lifetime of a file, the importance of maintaining availability despite failures,
compression methods to use, etc. This list of attributes will surely grow with the
widespread use multimedia systems.

Tremendous advantages could be gained by implementing more sophisticated
file system architectures. An architecture is needed in which the various servers
are knowledgeable about one another and cooperate directly to optimize file dis-
tribution in response to patterns of access. Moreover, since this will require some
amount of distributed state, the solution must be one which is fault-tolerant and
gives well-defined consistency guarantees to file users. Lacking these possibilities,
the extent to which file systems can be scaled is inevitably limited.

ORIGINAL PAGE IS
OF POOR QUALITY

20. HOW ROBUST ARE DISTRIBUTED SYSTEMS? 471

20.4.2, Security and Authentication in Transactional Contexts

Interesting questions of security and authentication arise in a transactional con-
text.

Consider the authentication issue. In addition to conventional problems of
access control and protection, transactional systemns depend on the correct use of
concurrency control by their components. Moreover, the concurrency control
mechanisms must be compatible ones. For example, if 2 module that uses times-
tamped concurrency control is called from one that uses locking, applications
that include calls to both modules may execute non-serializably. The authent-
cation problem that then arises s to detect concurrency control errors and
mismatches in a large system composed of independently developed transactiona]
components.

under the aegis of CAMELOT on a set of databases managed by multiple com-
mercial database systems. Similarly, one can imagine vendors supplying
software packages with transactiona] interfaces.

Not only is the transactional authenticaton problem difficult to solve, it is not
even clear how one can write down concurrency control requirements or
behavior as part of an interface specification. For example, in a module that
implements locking and read/write access to a set of variables one might require
that a caller acquire a write lock before calling write and a read lock before caj-
ling read — except when such locks are not needed because some other lock of
coarser granularity was previously acquired. How can this even be expressed,
much less formally verified?

Next, consider the security problem. Say that a transactional service is
accessed by an anonymously implemented caller. Even given a compile-time
interface check, one must ask what information can be trusted at runtime. A
caller that performs concuwrrency control incorrectly could contaminate any ser-
vice that trusws it, and by indirection any other programs that interact with that
service. One solution to this problem would employ validated concurrency con-
trol and commit “services” accessible over secure RPC. But, one can question
whether this is the most efficient and Practical solution to the problem. Undil
System designers begin to ask these sorts of questions and to build systems that
include mechanisms such as this, major problems will arise in attempts to move
these technologies out of the laboratory.

20.4.3. Replication-Based Systems

Chapter 15 discussed the sorts of group addressing mechanisms and group
broadcast mechanisms needed in systems that maintain replicated state. The
protocols used for this are complex, and bugs in them could crash large numbers

472 K. P. BIRMAN

of machines. It would be hard to envision a failure mode in which a transac-
tonal system might shut down every machine on a network, but jt is fairly easy
to imagine how bugs in a complex protocol could have this effect,

This complexity has several implications. Certainly, work is needed on simpli-
fying the protocols used in replication-based systems. Might there not be a way
to build these up from simple, verifiable mechanisms? Another issue is that to
the extent possible, these protocols should be implemented as part of the operat-
ing system. My reasorung is that if operating systemns lack support for the sorts
of mechanisms needed in applicadon software, those applications either will not
get built, will be built using less than ideal methods or will be forced to individu-
ally reproduce the missing mechanisms. Moreover, security and trust considera-
tons would limit the composition of large systems out of smaller components: it
will be too hard to agree on protocol specifications and implementation details.

It is clear that a substantial number of applications will need replicadon.
Given this situation, it seems that one would be better off providing such services
in a standard way. If individual applicadon builders are asked to take on an
effort of this scale, a large amount of duplicated effort will surely result, leading
to application software that is less robust, less portable, and harder to maintain
than desired.

20.5. Changing the Way People Think about Distributed Computing

Not long ago I met with a vice president of a major corporation who expressed
wnterest in ISIS. This individual explained that within his company, known pri-
marily for its mainframe systems, a perception had arisen that we need to
“change the way people think about distributed computing.” This comment is
intriguing at several levels: how people think about diseributed computing?
Why change this? And how?

For too long, distributed computer systems have been viewed primarily in
terms of interconnection. We have tended to think about such systems a3 a way
to run a program on one machine that uses resources on another and to send
mail to our colleagues, and have generally treated workstations as if they were
terminals connected to a mainframe. The benefit of a using a workstation is
often seen primarily in terms of its ability to offload computation from a central-
ized resource.

Perhaps the time has come to recognize that centralized servers and wan-
sparent distribution are not always good things. It seems clear that the real
advantages to distributed systems come about only when one begins to treat the
fact of distribution as a pasitive element that can contribute to the solution of an
application, rather than as an annoyance that should be concealed. This does
change the requirements that one places on the communication support of the
operating system, but the problems that arise can be solved. It is endrely possi-
ble that the future successes of distributed computing will be in applications
where decentralization, autonomy, fault-tolerance and cooperative behavior are

ORIGINAL PAGE IS
OF POOR QUALITY

20. HOW ROBUST ARE DISTRIBUTED SYSTEMS? 473

critical. Whereas many of these applications are today viewed as either too
difficult or too costly to solve, the technology for building such systems is finally
at hand.

Recall Fredrick Hayes-Roth'’s comments, quoted in Chapter 14. Like Dorothy
who steps out of her aunt’s house and suddenly sees the world in color, the revo-
lution in thinking that awaits us is enormous, The potendal to solve new prob-
lems and take on new applications that this will enable staggers the imagination.

In accepting the challenges offered by these new applications, however, one
must be honest concerning just how robust technological solutions to problems
can possibly be. And, in situations where analysis of the technical barriers to a
solution reveals that the available technology is not adequate to the task, it is
necessary to accept the reality of these limitations. Blind faith in technology can
simply no longer be justified in the face of the increasingly long list of technical
failures that the world has compiled. Those who create these technologies must,
for their part, accept the responsibility to do all that they can to ensure that
their products will be used in appropriate and reasonable ways.

The era of distributed computing is just beginning. In writing this textbook, a
group of us have come together to survey the field and point in some of the
directions that it has to offer. In rereading the material that we have produced,
it is encouraging to see both by the progress that has been made throughout the
field and the accelerating rate of progress. At the same time, a remendous range
of problems remain to be solved. In this respect, distributed computing seems to
be special within computer science as a whole. Whereas many other areas have
Howered rapidly only to stagnate rapidly, new directions keep opening up in dis-
tibuted systems, and revolutions keep occurring in even the most “traditional”
areas of the field. Meanwhile, more and more applicadons depend on some
form of distribution, and these also pose new challenges. The potential applica-
tions of distributed computing technology have hardly been tapped. Provided
that this is done in a careful, considered manner, distributed computing could
change the way that we deal with computer systerns in a profound and
beneficial way.

It is unfortunate that the potential for abuse of this technology is a real as for
any other technology that civilization has devised. Nonetheless, that potential is
real, and will have increasingly important consequences. Our field must accept
the responsibility for this technology: even as we create these new forms of com-
puting, it falls upon us to control them through new and more demanding ethi-
cal standards.

20.6. Acknowledgments

I am grateful to Robert Cooper, Ajei Gopal and Barbara Simons for comment-
ing on drafts of this material. [also feel that an apology is due to the authors of
papers and books germaine to this discussion. I could certainly have cited
relevant technical material, but felt that this would be inappropriate given the

474 K P. BIRMAN

theme of the chapter. And, I know of little material on cthics in relation to
technologies of this sort. I would be grateful for any references that readers
knowledgeable about the subject might care to recommend.

