
Concurrency Control for Transactions
with Priorities*

Keith Marzullo
?

TR 89-996

May 1989

Department of Computer Science

Comell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA

order 6037, Contract N00140-87-C-8904.

Concurrency Control for Transactions

Priorities*

with

Keith Marzullo t

Cornell University

Department of Computer Science

April 30, 1989

Abstract

Priority inversion occurs when a process is delayed by the actions

of another process with less priority. With atomic transactions, the

concurrency control mechanism can cause delays, and without taking

priorities into account can be a source of priority inversion. In this

paper, three traditional concurrency control algorithms are extended

so that they are free from unbounded priority inversion.

Keywords: Priority inversion, concurrency control, real-time da-
tabases.

In a real-time system, the actions of some process may be more urgent than

those of another. For example, the first process may need to synchronize

with a physical process and sp must must a deadline. If both processes have

access to common resources that cannot be shared, the less urgent process

may delay the more urgent one by holding onto the resource. This situation

*Submitted to the lOth Real-Time Systems Symposium, Los Angeles, December 1989.
tThis work was supported by the Defense Advanced Research Projects Agency (DoD)

under ARPA order 6037, Contract N00140-87-C-8904 The views, opinions, and findings

contained in this report are those of the authors and should not be construed as an official

Department of Defense position, policy, or decision.

is commonly called a priority inversion [7,4]. There are several approaches

to this problem, but the simplest is to simply force the less urgent process

to relinquish the resource in favor of the more urgent process. Priority

schedulers are an example of the implementation of this strategy 1.

In database management systems, the concurrency control mechanism is a

scheduler through which a process may be delayed by the actions of another

process. In this paper, some common concurrency control algorithms are

extended so that priority inversions are detected and broken. Transactions

will inherit their process's priority, and a transaction will be aborted or

delayed if it could delay a more urgent transaction. A transaction is delayed

while a less urgent transaction is aborted; we assume that aborts have a

fixed overhead and can be taken into account when determining the running
time of a transaction.

In this paper, we assume that the transactions submitted by a process are

not known a priori. The schedulers presented here guarantee that the ac-

tions of a transaction cannot be delayed for more than a bounded time by

the actions of transactions with less priority. A transaction, however, may

be starved by the actions of transactions with more priority. In practice,

these kinds of concurrency control algorithms are important for data base

systems that support real-time transactions ([8], [1]). They are also im-

portant for real-time process control problems with concurrently accessed

shared data.

We make the somewhat unusual assumption that priorities are assigned

from a partial order rather than a total order. By doing so, we subsume

the more typical priorities. We also allow more flexibility in specifying the

inadmissible delays; with a total order, we may needlessly constrain the

system. We also assume priorities are statically assigned.

This is not a practical paper, in that we have not implemented the algo-

rithms presented here. Concurrency control algorithms are developed by

making some decisions on what the equivalent serial order should be. Our

goal in this paper is to re-examine these decisions when priorities are also

considered. The amount of complexity some of these algorithms took on is

surprising. There are some comments on the practical application of these

tin this paper, the more urgent process will be said to have more priority than the less

urgent process.

algorithms in the conclusions of the paper.

In section 1, we describe the properties a concurrency control mechanism

must have if it is to support transactions with priorities. In section 2 we

develop a general concurrency control mechanism based on serialization

graph testing algorithms that detects priority inversions. While easy to

understand, such algorithms are complex to implement since a directed

graph must be maintained and updated with each operation submitted to

the scheduler.

There are two popular concurrency control mechanisms where the sched-

uler use a much simpler data structure at a cost of reduced concurrency.

One (two-phase locking) delays operations to ensure serializability while

the other (timestamp order) aborts operations to ensure serializability. In

section 3 we show the typical extension of tw(>-phase locking does prevent

priority inversion when the priorities are drawn from a connected order. In

section 4 we develop a timestamp order mechanism that detects priority

inversion.

In this paper, we follow the notation and system model found in [2].

1 Concurrency Control

Suppose we have a set of processes submitting operations under transac-

tions to a database scheduler. Each process can submit an unspecified

number of transactions.

There exists a partial order _- of priorities over the transactions, where

Pl _ P2 means process 1 has priority over process 2. A transaction T,

submitted by pi has the same priority as p_, so we can also write expressions

like T1 _- T2. The database scheduler knows >--but has no other information

about the transactions any process will submit. A transaction's priority is

static; it cannot be changed by the scheduler or the process submitting the

transaction.

Our goal is to devise a concurrency control algorithm that:

1. ensures the resulting execution is serializable, and

3

2. does not delay nor reject an operation of Ti due to the action of Tj

when Ti >-- Tj.

In general, a scheduler can delay, reject or accept operations in order to

guarantee the resulting execution is serializable. Typical schedulers abort

a transaction by rejecting one of its operations. In our schedulers, a transac-

tion will be aborted when an operation is submitted by another transaction

with more priority.

The scheduler will also ensure that properties other than seriMizability are

met by the resulting execution. For example, suppose a transaction 7"2 reads

the value of a variable x written by transaction T1. It is a bad idea to let T2

commit before 7'1 terminates. If T1 decides to abort, 7"2 will have committed

using a value that was not produced by a committed transaction, possibly

leaving the database in an inconsistent state. So, a scheduler should delay

the commit from T_ until T1 decides to commit or abort. The property

preserved by this delaying action is called recoverability.

A more dramatic delay is a cascaded abort. Using the above example, since

T2 has read x written by T_, if T1 decides to abort, then T2 must also

abort. Again, the scheduler can prevent this condition by delaying some

operations. For example, the read of z by I'2 could have been delayed until

it was after the termination of T1.

In both cases, the delay of a transaction (T2) was caused by a transaction

(T_) reading a value from an uncommitted transaction (T1). This is a

priority inversion when T2 >--T1. The priority inversion can be represented

graphically. A reads from graph (or RFG) is a directed graph with all

currently active transactions as nodes. There are two kinds of edges in

a RFG. A priority edge from T_ to T_ is drawn with a dashed arrow, and

indicates Ti >-- T_. A reads from edge from Ti to Tj is drawn with a solid

arrow and indicates there is a value x that was written by Ti and later read

by T). Figure 1 is a RFG showing T2 _- T3, 7"2 has read from T1 and 7"1

has read from 7'3. A cycle in a RFG that that contains one priority edge

represents a potential priority inversion. For example, in Figure 1 aborting

transaction 7"3 will force the abort of 7"2 via T1. We will call such cycles

priority inversion cycles.

The following theorem argues this more formally.

4

Figure 1: Reads-From Graph

Theorem 1 If the RFG of a set of transactions contains a priority inversion

cycle, a priority inversion can occur.

Proof: Suppose we have a RFG that contains such a a cycle. Let the two

transactions with the priority edge between them be Ti to Tj such that

T, _ Tj. By the definition of a RFG, Tj is active. If Ti wishes to commit, it

must delay until T- j commits; otherwise, the resulting execution would

not be recoverable. Additionally, if Tj aborts T_ must (transitively) abort.

Both cases represent a priority inversion, rn

A purely conservative scheduler is a scheduler that never rejects an opera-

tion (thereby aborting the transaction submitting the rejected operation);

it only delays operations until it is safe to execute them. Theorem 1 implies

that there are no purely conservative schedulers that avoid priority inver-

sion. Suppose such a scheduler existed, and it were submitted the operation

wjx where pi _ pj. By theorem 1, if Ti were to submit the operation fix,

it would introduce the possibility of a priority inversion. So, the scheduler

must delay the write operation until it knows that Ti will not submit a fix

before Tj commits. Since the nature of the transactions submitted by pi

are unknown to the scheduler, it must delay wjx forever.

Theorem 1 doesn't give a complete characterization of all priority inver-
sions; it only dealswith thosedue to cascaded aborts. For example, suppose

we have the following history with T, >--Tj:

wix; wix; wjy; c1; wiy

At this point, Ti must abort due to the actions of Tj; otherwise, the execu-

tion will not be serializable. We will say Ti is ordered before Tj in a history

H if, in any serial history equivalent to H, Ti occurs before Tj. Suppose

T; is ordered before Tj where 7"/>-- Tj. If Tj commits before Ti terminates,

T, could submit some operation that confLicts with Tj. This new operation

violates serializability, and since Tj has committed, Ti must abort. To avoid

this priority inversion, the schedulers developed here will generate histories

with the following property.

Definition 1 A history H is priority committed if for all pairs of transac-

tions Ti, Tj in H, if Ti is ordered before Tj and Ti >- Tj, then ci < cj.

A purely aggressive scheduler is a scheduler that never delays an operation;

it rejects operations that violate its scheduling policy. A practical scheduler

that generates priority committed histories will probably not be a purely

aggressive scheduler. With a purely aggressive scheduler, if Ti were ordered

before Tj, Ti _- Tj, Ti were active, and Tj submitted a commit, a purely

aggressive scheduler would have to abort Tj. This abort could be unneces-

sary; if instead the scheduler delayed the commit until Ti committed, the

history would still be priority committed.

2 Priority Serialization Graph Testing

Serialization graph testing schedulers (or SGT schedulers) [6,2] guarantee

serializable executions by maintaining a serialization graph. This graph

contains nodes for all active and "relevant" committed transactions (de-

scribed below). The scheduler ensures this graph contains no cycles, thus

guaranteeing a serializable history.

6

SGT schedulers are more of theoretical than practical interest. They are

easy to understand and argue correct, but the overhead of maintaining a

serialization graph may not justify any increase in concurrency over other

schedulers. In this section, a SGT scheduler will be extended to avoid prior-

ity inversions. This extension increases the complexity of the scheduler. In

particular, much of the simplicity of SGT schedulers comes from aborting

a transaction only when it submits an operation. As noted in section 1,

this policy cannot be used when avoiding priority inversion.

A SGT scheduler operates as follows. When a transaction Ti submits an

operation piz, the scheduler tentatively adds conflict edges from all vertices

Tj to T_ if there exists an operation qjx executed earlier that conflicts with

p_z. If p_x creates a cycle in the serialization graph, the scheduler aborts

Ti, since the resulting execution would not be serializable. Once aborted,

T_ is removed from the graph along with all edges either into or out of T_.

If p_z does not create a cycle, the tentative edges can be made permanent

and the operation executed.

To ensure the executed instructions are recoverable, the scheduler delays

the commit from T_ until all transactions from which T, read have also com-

mitted. Once T, has committed, T_ can be removed from the serialization

graph when it cannot be involved in any future cycles. Since all operations

after T,'s commit will be ordered after T,, any new edges will be added lead-

ing out of T_. This means T_ can be removed when there are no edges in the

graph leading into T_. We Will assume such transactions are automatically
removed.

A priority serialization graph testing scheduler (or PSGT scheduler) follows

a similar strategy, with the caveats outlined in section 1. In particular, the

rejection strategy of SGT can cause a priority inversion. Instead of aborting

the transaction that submitted the operation, we may have to abort a

transaction with less priority. By generating priority commit histories, we

will always be able to abort such transactions.

However, this strategy complicates the scheduler. If the submitted oper-

ation is a write, it could conflict with several unordered reads. Each new

conflict can create a distinct cycle in the serialization graph. With SGT,

all cycles are avoided by rejecting the new operation; with PSGT, we may

have to abort a different transaction from each cycle.

7

Additionally, the PSGT scheduler will need to avoid priority inversions

caused by cascaded aborts. The scheduler can do so by maintaining a

RFG and checking for priority inversion cycles. Maintenance of a RFG

is not as straightforward as a serialization graph. When a transaction is

aborted, the reads-from relation changes which in turn may introduce new

priority inversion cycles. For example, consider the following history where

To >.- T_, T2, T3.

wlx; w2x; wax; r0x

The only priority inversion cycle is (To, T3). Once 7'3 is aborted, the cycle

(To, T_) is created, and when T2 is aborted the cycle (To, T_) is created.

One way simplify detecting and removing priority inversion cycles is to

augment the RFG. An augmented RFG will contain a vertex for each active

transaction, and three kinds of edges:

1. Priority edges, as in a RFG.

2. Read-from edges, as in a RFG, except that the edge is labeled with
the name of the variable that was read.

3. Write-after edges, also labeled with the name of a variable. When

a transaction Ti writes a variable x, a write-after edge labeled z is

drawn from the last transaction that wrote x (if it is still active) to

When a read-from edge is added to the augmented RFG, the graph can

be traversed to determine which transactions should be aborted. Let the

function Abort(T, v, p) be the set of transactions that must be aborted due

to the read of variable v written by T; p is the priority of the transaction

that submitted the original read operation. The functions read(T, x) and

write(T, x) encode the reads-from and write-after edges; i.e. they are the

transaction from which T read x and wrote x after, respectively. Abort is

recursively defined as follows.

8

Abort(T, v, p) a_.,f

if p >.- T _{T} U Abort(write(T, v), v, p)

[] p _ T _V variables w read by T:

Uw Abort(read(T, w), w, p)

fi

Figure 2 shows an example, where write-from edges are drawn as doubled

arrows. When TI submits rlx, the function Abort(T2, x, T1) is evaluated,

yielding {Ta, T4}. T2 will also be aborted as a cascaded abort.

y X

Figure 2: Abort(T2, x,T1) = {T3, T4}

A PSGT scheduler executes as follows. Let Ti be a transaction that has

submitted an operation p_x to the scheduler.

• If pi is a read or write operation:

1. Add the operation to the serialization graph as described above.

Let C be the set of cycles created by adding the new edges. If

]C[= 0, skip to step 3.

9

2. If Ti can be aborted without introducing a priority inversion; i.e.

3c E C : VTj E c : T_ _ T)

then reject the submitted operation, abort transaction T_ and

await the next submitted operation. Otherwise, choose a set of

transactions from the cycles in C that, when aborted, will remove

all cycles (the selection process will be described shortly); abort

these transactions, and proceed with step 3.

3. Add the appropriate edge to the augmented RFG. If the oper-

ation is a read, determine the set of transactions to abort, and

abort them. The transaction that must be aborted are those in

Abort(read(Ti, z, Ti).

• If p_ is a commit operation, the scheduler must ensure the history is

priority committed. The commit operation is delayed until all trans-

actions ordered earlier than Ti in the serialization graph are either

committed or of less or incomparable priority.

PGST maintains serializability in the same way SGT does; by maintaining

an acyclic serialization graph. PGST avoids priority inversion by the (as yet

unspecified) method used to select transactions to abort, described next.

Not all of the cycles in C need to be distinct; there can be cycles cl, c2 such

that cl Nc2 D {T_}. Note that if cl C c2, c2 is broken when cl is broken, and

ci must be broken. In order to reduce the number of aborted transactions,

the scheduler should examine the cycles in order of ascending length. The

scheduler accumulates a list of transactions A to abort; if, when examining a

cycle c, it is found that Anc # 0, the scheduler need not select a transaction

from c to abort. Otherwise, the scheduler can choose any active transaction

from c; by the property of priority committed histories, any one with less

priority relative to Ti is still active.

Some issues have been glossed over for brevity. For example, the aug-

mented RFG must be updated when transactions from C are aborted, and

a transaction must be able to find the value of a variable after a cascaded

abort.

10

3 Preemptive Two-Phase Locking

If we assume _ is connected (i.e. all processes have comparable priorities),

two-phase locking ([3], [2]) can be easily extended to detect and eliminate

priority inversion. Basic strict two--phase locking uses the following rules:

1. A transaction Ti acquires a lock on a data item before referencing the

item. These locks are typically read or write locks (also called share

and exclusive locks) depending on the submitted operation. T, delays

until the required lock is available.

2. All locks held by 7'/are released after Ti commits.

In order to avoid priority inversion, a preemptive version of two-phase lock-

ing (P$PL) cn be used. When Ti tries to acquire a lock, it waits until either

the lock is free or all processes holding the lock with conflicting access have

less priority. In the latter case, the scheduler then aborts the transactions

holding the lock and gives it to Ti. Since all committed transactions follow

the original two-phase rules, P_PL generates serializable histories. Ad-

ditionally, while 2PL is susceptible to deadlock, P2PL limits deadlock to

occur only among transaction with the same priority. If a set of deadlocked

processes have different priorities, there must exist a priority inversion, and

P2PL will detect it and remove it.

P_2PL does not have cascaded aborts, so it cannot generate priority inversion

cycles in the RFG. A transaction T, reads from another transaction Tj only

after Tj commits, and only active transactions are in the RFG, so the RFG

will contain no reads-from edges.

P2PL generates priority committed histories without additional delays at

commit. If T_ is ordered before Ti, either there exists two conflicting

operations pix _ qjX or there exists a transaction Tk such that Ti is or-

dered before Tk and Tk is ordered before Tj. For strict two-phase locking,

(p_x < qjx) =_ (c_ < c_), and since the commits form a total order, if

(Ti ordered before T)) =_ (ci < c3). This simplicity comes at a cost, how-

ever. For example, consider the submitted history w2x; wlx; c2; cl where

2'1 _-- T2. Under PSGT, the commit from T2 is delayed until after the

commit of 2"1; under P2PL, T2 is aborted by the write from T1.

11

As it currently stands, PgPL does not detect priority inversions with non-

connected orders. Let T1, T2, 7'3 have priorities T2 _- 7'3, and let T3 acquire

an exclusive lock on x and TI acquire an exclusive lock on y. If T1 attempts

to acquire the lock on z it will block since T1 _ T3. If 7'2 then attempts to

acquire the lock on y it too will block since T2 _ 7'1. We now have T2 transi-

tively blocked on T3, which is a priority inversion. Extending P2PL to work

with partial priority orders complicates the algorithm; it must examine the

owner of all locks held by processes transitively blocking the request.

4 Priority Timestamp Order

Timestamp order (TO) schedulers ([9], [2]) operate by assigning transac-

tions a timestamp when they start. The timestamp, typically an integer,

places the transaction in a total order with respect to all other transactions.

The scheduler ensures operations occur in an order consistent with the total

timestamp order. Since the transactions are totally ordered, the history is

serializable. The scheduler typically assigns timestamps in the order the

transactions start, but this is not necessary; the scheduler guarantees the

operations respect any order assigned by the timestamp allocation rule.

Associated with each variable x in the data base is a read stamp x.r and a

write stamp x.w. These stamps are the timestamps of the last transaction

to read and write x respectively. When Ti with timestamp si submits an

operation to a TO scheduler:

1. If it is a read operation: if si < z.w then the read is too late and Ti is

aborted; otherwise, z.r is set to si and the read is executed.

2. If it is a write operation: if si < x.r then this write is too late and Ti

is aborted; otherwise, the write is executed if si > x.w, and z.w is set

to si.

3. If it is a commit operation, it is delayed until all transactions that

Ti has read from have committed. There are several ways to achieve

this property ([2]).

A timestamp concurrency control algorithm that detects priority inversion

(PTO) allocates timestamps such that priority inversion cycles in the RFG

12

cannot occur. A timestamp si for Ti is uniquely allocated from a total order

such that it meets the following two conditions:

1. For all committed transactions Tk, si > sk.

2. For all active transactions Tj: if Tj >.- Ti then si > sj and if Ti _- Tj

then sj > si.

The first condition is the same as for typical TO schedulers: to do otherwise

implies the later transaction must appear to have run before a committed

transaction. The second condition guarantees that the RFG will contain

no priority inversion cycles: a reads from edge cannot go from a transaction

with less priority to one with more priority. Since the timestamps have a

total order, there can be no reads from path from a transaction with less

priority to one with more priority.

It is not difficult to generate timestamps that obey the above two conditions.

If a timestamp is represented as a number, the number space must be dense.

Consider transactions T i with timestamp sj and Ti _- Tj with timestamp

si < sj. For any n, if n new transactions start with priority between T, and

Tj, n timestamps with values si < s < sj must be assigned. In practice this

shouldn't be a real problem, and in extreme cases the scheduler can abort

T,.
PTO must use a different comparison rule than TO. With TO, a transaction

is aborted if it submits its operation too late: that is, it has too low a

timestamp. Under PTO the transaction with more priority could be the

one that is late, so the transaction that acted too early should be aborted.

Like PSGT, there can be several such transactions that acted too early. For

example, consider the history w2x; rsx; wxx where 7'1 >--T2 >-- T3. The first

two operations happened too soon, and 7"2 and T3 are aborted. Instead of

associating a single read and write timestamp with a variable, a list of read

timestamps and write timestamps must be kept. For recoverability, each

list must contain at least one timestamp from a committed transaction.

This lists can grow arbitrarily long, but in practice this shouldn't be a real

problem. A timestamp can be removed from a list if the list contains a larger

timestamp of a committed transaction. In extreme cases, the scheduler can

abort the active transaction with the largest timestamp; e.g. transaction

Tj in the example above.

13

Since it is necessary to store lists of timestamps, the value of a write can

also be stored with its timestamp. By doing so, fewer aborts will occur

since a write can never be done too early. A database that stores histories

of variables is called a multiverison database ([2,5]).

When T; with timestamp s_ submits an operations, PTO uses the following
rules:

I. If it is a read operation: si is entered into x.r. The largest entry s in

x.w such that s < s_ is found, and the value written at that time is

returned.

,

°

If it is a write operation: si is entered into x.w along with the value

being written. Let s be the smallest timestamp in x.w greater than

si, or c¢ if si is the largest timestamp. All transactions Tk in x.r that

have timestamps in the range si < s_ < s are aborted (there may be

no such transactions), as they read x too early.

If it is a commit operation, it is delayed until all transactions with

timestamps less than si have committed. Once the transaction suc-

cessfully commits, for each variable x in Ti's read (cf. write) set, the

timestamp lists x.r (cf. x.w) can be truncated: all timestamps less

than si can be removed.

When a transaction T) is aborted, its timestamps are removed from all

variable timestamp lists. Additionally, transactions that read from Tj must

also be aborted. For each variable x in Tj's write set, let s be the smallest

time stamp in x.w that is larger than sj, or o¢ if no such timestamp exists.

All transactions Tk in x.r such that sj < sk < s read from Tj, so they are
aborted.

PTO ensures serializability by using timestamps from a total order, and

ensures there are no priority inversions for recoverability by its timestamp

generation rule. The main weakness with PTO is the delay in the commit

rule. Suppose a transaction only wishes to update x but is started at

the same time a long-running transaction with more priority is active.

Even if the two transactions never reference the same variables, the shorter

transaction must wait for the longer running transaction to complete. With

both PePL and PSGT, the shorter transaction will be able to complete

14

without delay. For PTO to do similarly, it must either maintain the actual

reads from relation as PSGT does, or know more information about the

transactions (such as a transaction's read set and write set).

5 Discussion

This paper examined three common concurrency control algorithms and

showed how each could be extended to avoid priority inversion. The results
are mixed:

Without some knowledge of the transactions that will be submitted,

there are no purely conservative concurrency control schedulers nor

any practical purely aggressive concurrency control schedulers that

avoid priority inversion.

Traditional aggressive schedulers, like serialization graph testing and

timestamp order schedulers abort a transaction by rejecting an op-

eration when submitted. This method cannot be used when priority

inversion must be avoided. Instead, a transaction that submitted its

operation earler must be aborted, so the more urgent transaction can

continue. This policy increases the complexity of aggressive sched-

ulers. In the case of serialization graph testing, it isn't clear that

the increased concurrency would ever compensate for the increased

complexity, given a reasonable workload.

The traditional conservative scheduler, two phase locking, can be eas-

ily extended to avoid priority inversion when the priority relation is

connected. The extension for nonconnected priorities is somewhat

more complex.

Timestamp order schedulers, when extended to avoid priority inver-

sion, suggest using a multiversion concurrency control algorithm. The

extended algorithm is not much more complex than a traditional mul-

tiversion timestamp order algorithm. However, transactions with less

priority can be needlessly delayed unless read sets and write sets are

declared when a transaction starts.

15

The algorithms presented here have not been implemented, and their rela-

tive performance has not been examined in any detail. Additionally, only

the priorities of transactions has been to schedule or abort operations.

Other information could be used, such as the remaining running time of a

transaction ([1]). It isn't clear what kind of information would be useful

for the more aggressive schedulers.

These algorithms were developed as part of the Cornell RR Project, where

which we are developing both theory and tools for building real-time reh-

able systems. Part of this project is the development of a process control

system, which will eventually contain a database--hke component. Our

next step with the algorithms in this paper will be to evaluate them in the

context of the RR project.

Acknowledgements This work profited from many discussions the au-

thor had with Ozalp Babao_lu and Fred Schneider, as well as with Jacob

Aizikowitz, Ken Birman, Robert Cooper and Pat Stephenson.

References

[1] Robert Abbot and Hector Garcia-Molina. Scheduling real-time trans-

actions. SIGMOD Record, 17(1):71-81, March 1988.

[2] Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-

rency Control and Recovery in Database Systems. Addison-Wesley, 1987.

[3] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of

consistency and predicate locks in a database system. Communications

of the ACM, 19(11):624--633, November 1976.

[4] Ozalp Babao glu, Keith Marzullo, and Fred Schneider. Priority inver-

sion. In preparation.

[5] David Reed. Implementing atomic actions on decentralized data. A CM

Tran._actions on Computer Systems, 1(1), February 1983.

[6] G. Schlageter. Process synchronization in database systems. ACM

Transactions on Database Systems, 3(3):248-271, September 1978.

16

[7] Lui Sha, Ragunathan Rajikumar, and John P. Lehoczky. Priority in-

heritance protocols: An approach to real-time synchronization. Tech-

nical report, Carnegie Mellon University Departments of CS, ECE and

Statistics, May 1988.

[8] John A. Stankovic and Wei Zhao. On real-time transactions. SIGMOD

Record, 17(1):4-10, March 1988.

[9] Robert H. Thomas. A majority consensus approach to concurrency

control for multiple copy databases. A CM Transactions on Database

Systems, 4(12):180-209, June 1979.

17

