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FOREWORD 

It is important in the conduct of research and development, as in many other 
human endeavors, to look around and review past and current activities that are 
related to one's own. As Lincoln once aptly put it: If we could first know where 
we are, and whither we are tending, we could then better judge a to do, and 
how to do it. Thus, the main objective of the 3-day workshop was to provide an 
informal forum in which researchers could be brought together to freely review 
and discuss the state of knowledge in various fields related to visual information 
processing. The emphasis was on applications to high-resolution television 
and vision-based telerobotics. 

Visual information processing, as we understand it, begins when the radi- 
ance reflected or emitted by a scene strikes the optics of an image-gathering 
system. And it ends either (1) when the visual information has been recorded in 
the nervous system of human beings (e.g., via television) or (2) when some 
spatial features have been extracted by computer processing for higher-level 
decisions (e.g., for robotics). The intervening chain of processing steps may be 
divided, for the convenience of analysis, into several stages, including image 
gathering, coding, transmission, reconstruction or restoration, display, and 
interpretation. However, if these stages were to be optimized as separate tasks, 
independent of each other, then the end-to-end system performance could be 
impaired unwittingly despite the care and ingenuity bestowed upon the 
optimization of each stage. 

Research in visual information processing started in the early 1930's for 
telephotography and television. This research was concerned mostly with the 
end-to-end performance of image gathering and reconstruction, accounting 
meticulously for the trade-off between aliasing, blurring, and noise in image 
gathering and the trade-off between blurring and raster effects in image 
displays. 

computers. Machine vision began soon thereafter in the 1970's. Both image 
processing and machine vision will grow in importance as the computational 
capacity of computers increases and the goals of these disciplines become 
more ambitious. 

severely constrained by the bandwidth of communication channels and the 
capacity of storage devices. As a direct result, the need for data compression 
has continuously increased during the last 30 years. In retrospect, the "first- 
generation" statistical coding schemes inherited from signal processing have 
been limited to compressions typically ranging from 2 to 10, whereas the 
"second-generation" perceptual coding schemes influenced by models of the 
human visual system have shown compressions up to 100 or so - but only at 
the risk of significant losses in fidelity and visual quality. Furthermore, most 
second-generation coding schemes based on visual perception models require 
extensive processing, some perhaps hours on a supercomputer per image 
frame. In the future, it can be expected that statistical and perceptual coding 
schemes will merge to achieve realistic compromises between desired 

Digital image processing began in the early 1960's soon after the advent of 

Many applications concerned with television and telerobotics have become 

iii 



performance and required processing, and between imaginative concepts and 
practical implementations. 

Whereas the early studies of telephotography and television emphasized end- 
to-end performance of image gathering and display, more recent studies 
emphasize specific tasks, e.g., image coding, image restoration, and feature 
extraction. This approach has led to a number of simplifying assumptions about 
input and output devices that seldom hold in practice. A good example is digital 
image restoration. The design of image-gathering systems allows for signifi- 
cantly insufficient sampling to avoid extensive blurring of the reconstructed 
image, and the design of image displays requires the trade-off between blurring 
and raster effects. Yet the image-restoration algorithms given in the prevalent 
digital image processing literature typically do not account for either of these 
constraints. Nevertheless, if these constraints are correctly accounted for in 
image restoration, then (1) the fidelity, resolution, contrast, and clarity of the 
restored image improves significantly, and (2) the preferred trade-off between 
aliasing, blurring, and noise in image gathering changes towards less aliasing 
at the cost of blurring. Hence, the performance of television and telerobotics 
often may be improved not only by optimizing various processing steps 
independent of each other but also by increasing the awareness of end-to-end 
system optimization. 

Friedrich 0. Huck 
Stephen K. Park 
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Linear Digital Imaging System 

Steve Park 
College of William & 

Fidelity Analysis 

Mary 
Department of Computer Science 

May 30, 1989 

In this paper, the combined effects of image gathering, sampling, and reconstruction 
are analyzed in terms of image fidelity. The analysis is based upon a standard end-to-end 
linear system model which is sufficiently general so that the results apply to most line-scan 
and sensor-array imaging systems. Shift-variant sampling effects are accounted for with 
an expected value analysis based upon the use of a fixed deterministic input scene which 
is randomly shifted (mathematically) relative to the sampling grid. This random sample- 
scene phase approach has been used successfully by the author and associates in several 
previous related papers [ 11-[4]. 

Formulation 

The end-to-end linear model upon which the results of this paper are based is charac- 
terized by three independent system components, an input scene f ( z , y ) ,  an image gath- 
ering point spread function h(x, y), and an image reconstruction point spread function 
r(x,y). All three of these components are referenced to a common orthogonal spatial 
coordinate system (x ,y )  normalized so that the sampling interval in both directions is 
unity. That is, sampling occurs at the integer coordinates (m,  n).  Because of this normal- 
izing convention, when the model is analyzed in the Fourier domain, the associated spatial 
frequencies (p, v) have units of cycles/pixel and the Nyquist (folding) frequency is 0.5. 

For notational convenience two other components are introduced, the pre-sampling 
image g(x, y),  and the reconstructed image f'(z, y). The end-to-end model that relates 
the input scene f to the output reconstructed image f '  is then 

where the * operator denotes 2-d spatial convolution and g(m, n )  is g(z, y)  sampling onto 
the pixel grid. This model is the basis for all the analysis that follows, and, consequently, 
the results of this paper are applicable to the fidelity analysis of any sampled imaging 
system whose performance is characterized by the equation 

where 

m n  

is the conventional 2-d comb function which accounts for sampling. 
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Image Fidelity 

A variety of metrics have been advocated to measure how well one image matches 
another. These metrics include the 1-norm 

the common RMS 2-norm 

which generalizes for p # 2 to the p-norm 

and which approaches the m-norm 

in the limit as p -+ 00. Of these, the RMS norm Ilf - 911 is far and away the most common, 
presumably because it lends itself so well to mathematical analysis. 

The RMS norm squared 

is a measure of image fidelity [ 5 ] .  Specifically, the conventional definition of fidelity is 

I l f  - dI2 
Ilf 1 1 2  

fidelity = 1 - (4) 

The primary purpose of this paper is to illustrate how the method of sample-scene phase 
averaging can be used to derive expressions for the three fundamental “fidelity loss” metrics 

The first of these metrics is a measure of image blur, the common loss of high spatial 
frequencies caused, for example, by defocus [ 5 ] .  The second is sampling and reconstruction 
blur, the loss of fidelity caused by sampling (aliasing) and imperfect reconstruction [l]. The 
third, and most important, metric is the end-to-end blur, the net loss of fidelity caused 
by the combined effects of image gathering, sampling and reconstruction [6], [7] .  Each of 
these fidelity loss terms will be analyzed in order, beginning with image blur. 

4 



Image Blur 

The conventional continuous-continuous model of image formation (image gathering) 
is that the process is both linear and shift-invariant. That is, f and g are related by a 
convolution as 

g(x, Y) = J,,l h(a: - 5’7 Y - Y’)f@‘, 9‘)dz’ dY‘ 

J, h(x, Y)dX dy = 1- 

(54 

where h ( z ,  y) is the image gathering point spread function (PSF) conventionally normalized 
so that 

( 5 b )  

This model is much more easily understood when expressed in the spatial frequency ( p ,  Y) 

where 

( 6 b )  

is the Fourier transform of g and the transforms i, f are defined analogously. 

It is well known that the PSF h typically acts as a low-pass filter. As a result, g is a 
blurred copy of f and the extent of this image blur is 

which can be rewritten, using the energy (Parseval’s) theorem, as 

However, from equation (6a), this last equation can be written as 

Note that if some metric other than the )I [ I 2  norm were used, the energy theorem would 
not be applicable and the corresponding easy transition from a spatial domain integral 
to a corresponding frequency domain integral would not be possible. As the following 
discussion illustrates, this easy transition is a powerful argument in favor of the squared 
RMS metric. That is, the insight provided by equation (7c) is profound. 

0 Both terms in the integral are non-negative. Therefore, 
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0 Image blur is significant e the scene has significant energy I f (p,v) I ’  at spatial 
frequencies ( p ,  v) where the optical transfer function (OTF) k(p,  v) is significantly 
different from 1. 

0 Although the scene energy tends to decrease rapidly with increasing spatial frequency, 
most “natural” scenes have energy at all spatial frequencies. That is, natural scenes 
are not band-limited. 

0 The OTF typically decreases smoothly in magnitude from 1 at low spatial frequencies 
to 0 at high frequencies. Thus image blur is caused by a suppression of moderate to 
high spatial frequencies. 

All these observation are well-known. However, the point is that they follow immedi- 
ately by inspection of the frequency domain integral equation for llf-g11’. This observation 
is the motivation for a search to find analogous equations for llg - f’11’ and [ I f  - f’11’. 
Sampling 

The conventional continuous-discrete-continuous (end-to-end) model of image gath- 
ering, sampling and reconstruction is the convolution equation 

m n  

where f’  is the (continuous) reconstructed image and (as before) g = h * f .  The (d’ iscrete- 
to-continuous) reconstruction process is conventionally assumed to  be both linear and 
shift-invariant. It is therefore completely characterized by the reconstruction point spread 
function r conventionally normalized so that 

This PSF can be thought of as the (continuous) output corresponding to a (discrete) 
sampled input which is 1 at the origin (m = n = 0) of the sampling grid and 0 at all 
other grid points. The reconstruction function is a low-pass filter which accounts for the 
combined effects of all post-sampling operations such as resampling and display. 

The (continuous-to-discrete) sampling process is linear. However, 

sampling is not a shift-invariant process. 

That is, sampling causes the end-to-end system to be shift-variant. This sample-scene 
phase dependence complicates the end- to-end analysis significantly. For example, the end- 
to-end fidelity loss expression that one would write by analogy with equation (7c) is 
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However (except in special cases) this equation is not correct. 

Although the end-to-end model is not shift-invariant, it can be demonstrated that by 
using sample-scene phase averaging the metrics [ I f  - f ‘ 1 I 2  and 119 - f ’ 1 I 2  can be written as 

[ I f  - f ’ 1 I 2  = / / [non-negative] If^(p, v)12 dp dv 
L L ”  

and n n  

119 - f ’ 1 I 2  = / / [non-negative] I& v)12 dp dv. 
P ”  

( 9 4  

Sample-Scene Phase Averaging 

As first established in references [l] and [2], sample-scene phase averaging consists of 
the following steps. 

0 Fix the sampling grid. 

0 Shift the scene a random amount (u, v) relative to the fixed sampling grid 

0 Calculate (in the frequency domain) the corresponding shifted pre-sampling image 

and reconstructed image 
f ’ ( w )  ---$ f‘(z7Y; u74. 

0 Assume that the random u and v shifts are independently and uniformly distributed 
between 0 and 1. 

0 Calculate (in the frequency domain) the expected values 

E [llf - f‘l12] = J’ J’ Ilf - f‘1I2 dudv 
0 0  

and 

0 Observe that the image blur is independent of the sample-scene phase so that 

E [llf - !Ill2] = Ilf - 9112* 

The results of this process are expected value equations consistent with ( s a )  and (9b). 
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Sampling and Reconstruction Blur 

By using sample-scene phase averaging, it can be shown that 

8 

where the double summation is over all (m ,n )  # (0,O). However, an algebraically equiv- 
alent representation provides more insight into the fidelity loss associated with sampling 
and reconstruction. That is 

E [I19 - f'l12] = 6: + 6.2, (W 
where 

and 

These two terms can be interpreted as follows [l]. 

0 The term e: accounts for aliasing caused by undersampling; it measures the loss of 
fidelity caused by the folding of significant image energy I j ( p ,  v)I2 beyond the Nyquist 
frequency into those (low) frequencies where the reconstruction filter response .^( p,  v) 
is not 0. Moreover 

r 1 

L m  n J 

0 The term 6.2, accounts for imperfect reconstruction; it measures the loss of fidelity 
caused by the presence of significant image energy at those (high) frequencies where 
+(p ,  v) is not 1. Moreover 

0 If it were possible to produce a truly band-limited and sufficiently sampled image g, 
and if the reconstruction function was then taken to be r (x ,y )  = sinc(z)sinc(y) then 
these two terms would be 0. (This is the sampling theorem.) 

End-To-End Blur 

In a similar manner, by using sample-scene phase averaging it can be shown that 

[non-negative]If(p, . ) I 2  dp dv J, J, 



where the [non-negative] term is 
r 1 

L m n  J 

and again the summation is over all (m,n)  # (0,O). Also, as before, an algebraically 
equivalent representation provides more insight into the end-to-end fidelity loss. That is 

E [llf - ffl12] = 4 + e: 

I1 - k P ,  N P ,  .>l’lf(P, .>I2 dP dv.  

( 1 3 4  

where E: is the sampling (aliasing) term defined previously and 

(13b) .:=J,1 
This new term can be interpreted as follows. 

0 It accounts for the end-to-end loss of fidelity caused by significant scene energy at (mid 
to high) frequencies where the cascaded response, h ( p ,  v ) i ( p ,  v) is not 1. Moreover, 

,. 

E: = o ++ 11 - ~ ( ~ , v ) i ( P , v ) 1 2 1 ~ ( P , v ) 1 2  = o for all ( :p,  v). 

0 It measures how well the reconstruction filter i is able to “deblur” (restore) those 
spatial frequencies which were suppressed prior to sampling by the image gathering 
OTF i. 
There is an inevitable trade-off here. For a fixed scene f and sampling grid, any 

attempt to decrease €2 by modifying it and i will result in an increase in €2 and conversely. 

Fidelity Loss Budget 

All of the previous analysis can be summarized in a f idelz ty  loss budget given by the 
three sample-scene phase averaged metrics 

( 1 4 4  
P 4 b )  

( 1 4 4  

2 E [IIf - gI12] = E i  

E [Ils - f’l12] = e: + 4 
E [llf - fY2] = €I + 6: 

where 

J p  J u  
1 1  

9 



The four e2 terms can be easily calculated via numerical integration. All that is required is 
a knowledge of the scene energy If”(p, v)I2, image gathering OTF i ( p ,  v) and reconstruction 
filter +(p,  v)-and ready access to a computer with a fast CPU and sufficient memory. 

The four e2 terms are all interrelated and any attempt to minimize one must be 
carefully weighted against the potential increase of the others. Trade-off studies like this 
are the stuff of digital imaging system design. 

References 

[l] S.K. Park and R.A. Schowengerdt 
Image Sampling, Reconstruction, and the Effect of Sample-Scene Phasing 
Applied Optics, 21, 3142-3151, 1982. 

[2] S.K. Park and R.A. Schowengerdt 
Image Reconstruction by Parametric Cubic Convolution 
Computer Vision, Graphics and Image Processing, 23, 258-272, 1983. 

[3] R.A. Schowengerdt, S.K. Park and R. Gray 
Topics in the Two-dimensional Sampling and Reconstruction of Images 
International Journal of Remote Sensing, 5, 2, 333-347, 1984. 

[4] S.K. Park, R.A. Schowengerdt and M.A. Kaczynski 
Modulation- Transfer-Func tion Analysis for Sampled Image Systems 
Applied Optics, 23, 2571-2582, 1984. 

[5] E.H. Linfoot 
Quality Evaluations of Optical Systems 
Optica Acta, 5, 1-14, 1958. 

[6] F.O. Huck, C.L. Fales, N. Haylo, R.W. Samms and K. Stacy 
Image Gathering and Processing: Information and Fidelity 
Journal of the Optical Society of America, A2, 1644-1666, 1985. 

[7] F.O. Huck, C.L. Fales, J.A. McCormick and S.K. Park 
Image-Gathering System Design for Information and. Fidelity 
Journal of the Optical Society of America, A5, 285-299, 1988. 

Bibliography 

[A] P.B. Fellgett and E.H. Linfoot 
On the Assessment of Optical Images 
Philosophical Transactions of the Royal Society of London 247, 369-407, 1955. 

[B] F.O. Huck and S.K. Park 
Optical- Mechanical Line- Scan Imaging Process: Its Inform a tion Capacity and Efficiency 
Applied Optics, 14, 2508-2520, 1975. 

[C] F.O. Huck, N. Haylo and S.K. Park 
Aliasing and Blurring in 2-D Sampled Imagery 
Applied Optics, 19, 2174-2181, 1980. 

~ 

I 10 

t -  



Model-Based Quantification of Image Quality g5-Y 7d$ 
Rajeeb Hazra, Keith W. Miller, Stephen I<. Park 

Introduction 

In 1982, Park and Schowengerdt [l] published an  end-to-end analysis of a digital imaging system 
quantifying three principal degradation components (i) image blur - blurring caused by the acquisition 
system (ii) aliasing - caused by insufficient sampling and (iii) reconstruction blur - blurring caused by the 
imperfect interpolative reconstruction. This analysis, which measures degradation as the square of the 
radiometric error, includes the sample-scene phase as an explicit random parameter and characterizes 
the image degradation caused by imperfect acquisition and reconstruction together with the effects of 
undersampling and random sample-scene phases. In a recent paper Mitchell and Netravelli [3] displayed 
the visual effects of the above mentioned degradations and presented subjective a.nalysis about their 
relative importance in determining image quality. 

The primary aim of the research in this paper is t o  use the analysis of Park and Schowengerdt 
[1],[8] t o  correlate their mathematical criteria for measuring image degradations with subjective visual 
criteria. Insight gained from this research can be exploited in the end-to-end design of optical systems, 
so that system parameters (transfer functions of the acquisition and display systems) can be designed 
relative to each other, t o  obtain the “best possible” results using quantitative measurements. 

Formulation 

In this section we present an  end-to-end model of a digital imaging system. This model was used by 
Park and Schowengerdt [l] t o  derive expressions for the degradation caused by the various components 
of the system. 

The model upon which the results of this paper are based is described in Fig 1. The parameters 
u and w are explicit sample scene phase parameters which have the range of *i for pixels placed at 
unit distance from each other. The action of the imaging subsystem is described by the convolution 
(denoted by * ) of the system point spread function (PSF) h(z,y) with the scene 

The  image is then sampled onto a Cartesian grid. This sampling operation is represented symbolically 
as the multiplication of the image with the comb or Shah function 

m n  

The notation gs (x ,  y; u, v) expresses the fact that  the sampling subsystem is not shift-invaria.nt. 

‘This paper refers to research described in references 1-8. 
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Sampled R e c o n s t r u c t e d  

Scene  Image Image Image 

f (x-u, y-v) g (x-u, y-v) g (x, y;  u,  v )  g (x, y ; u , v )  

- Subsystem 
*r (x ,  y )  

Figure 1: An Imaging, Sampling and Reconstruction System 

We take the point of view that the reconstruction filter r ( z ,  y )  is designed so that  the reconstructed 
image is an accurate reproduction of the output of the imaging system. The reconstructed image is 
compared t o  the image g and not the scene f ;  thus, the reconstruction filter typically does not attempt 
to  perform any restoration. 

Reconstruction is also symbolically modeled as a convolution operation 

g r ( " , Y ; " , 4  = r ( z , y )  * gs(z,Y;U,v) (3) 

Park and Schowengerdt measure the accuracy of reconstruction as the mean square radiometric error 
and define the term 

( 4) 

( 5 )  

2 c o c o  

4 R ( %  4 = 1, s__[d. - 21, Y - 4 - g r ( z ,  Y ;  u ,  43 d z d y  

and analogously 
2 c o c o  

[fb - U , Y  - 4 - g(z - U , Y  - 41 dzdy 2 
= J_, J_, 

where e i R  and €21 measure the sampling-reconstruction degradation and image blur respectively. As 
suggested by the notation, image blur is independent of the sample scene phase due to  the shift 
invariance of the convolution operation. The sampling-reconstruc tion degmdation is not. 

Fourier analysis yields equivalent expressions for e i R  and €21 in the frequency domain. Park et al. 
showed that 

where (vz ,vy)  are spatial frequencies (units of cycles per sampling interval), h(v,,vy) is the ima.ging 
subsystem OTF (optical transfer function) and I f^(vz,v,)  I is the magnitude of the transform of the 
scene. 

The corresponding expression for the sampling and reconstruction degrada.tion is given in terms of 
an ensemble of scenes formed by varying the sample scene phase panmeters uniformly over their entire 
range. Thus, we obtain the expected value of this degradation in the form 
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where the term e2(v,, vY) accounts for the effects of imperfect reconstruction and undersampling and 
is given by 

(8) 
2 

e2(v,, vy> =I 1 - ?(vz, vY) l 2  + I ?(v, - m, vY - I 
(m,n) f (070 )  

where ?(v,, vY) is the reconstruction filter, i.e. the Fourier transform of r ( 2 ,  y).  E ' [ c ~ , , ]  can be written 
as the sum of two terms, 

E[&] = €5 + 6 ;  (9) 

where 

and 

The term €5 accounts for imperfect reconstruction while 6; accounts for aliasing due to  undersampling. 

Analysis and Visual Perception of Image and SR Blur 

Image blur is caused by the non-ideal frequency response of the imaging subsystem. Eq. (6) is a 
mathematical statement of this fact. Almost invariably, the frequency response of a n  imaging system 
approaches zero a t  high frequencies and thus this subsystem acts as a low-pass filter. Image blur alone, 
uncoupled from sampling and reconstruction blur, is perceived as a loss of high frequency detail in the 
scene. 

The average sampling and reconstruction blur, as suggested by Eq. (7) is caused by inadequacies in 
both the sampling and the reconstruction subsystem. The sampling contribution 1.0 this degradation is 
expressed by Eq. (11) which states that  aliasing is caused by the presence of significant image energy 
at frequencies where the energy in the reconstruction filter sidebands 

m,n #O,O 

is not zero. This is illustrated in Fig 2 where the replicas of the image spectrum (formed by sampling) 
overlap and the reconstruction filter cannot isolate a pure version of the baseband spectrum. This 
type of degradation is sometimes called prealiasing [3 ]  and will always be present if the image is not 
sufficiently sampled, even with perfect reconstruction. 

Even when the replicated spectra do not overlap (i.e the image has been sufficiently sampled), image 
quality may suffer due to  poor reconstruction, as illustrated in Fig 3 .  In this case, the response of the 
reconstruction filter is too broad and thus the reconstructed signal includes some (high) frequencies 
not present in the original image. This type of aliasing is sometimes called postaliasing [ 3 ] .  When the 
image spectrum has significant power at frequencies very near the Nyquist (cutoff) frequency (i.e the 
image spectrum and its nearest replica come very close t o  each other), the design of the reconstruction 
filter becomes difficult as the roll-off has to  be very sharp (resulting in a filter with a very large kernel 
in the spatial domain). This problem has been noted by several researchers [2], [ : ' , I .  

Pre- and postaliasing are often perceived as artifacts in the reconstructed scene [ 3 ] .  However, 
i t  should be noted that in general, a n  absence of artifacts does not imply that there is no pre or 
postaliasing. Aliasing can manifest itself as blurring as well (due t o  attenuation of the high frequencies 
in the scene or image spectrum) and is almost impossible t o  differentiate from image blur. 

13 



Sidebands Baseband 

Figure 2: Prealiasing resulting from insufficient sampling 
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Figure 3: Postaliasing resulting from poor reconstruction 
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t 

Figure 4: Baseband attenuation resulting from imperfect reconstruction 

In addition t o  removing the sidebands of the signal spectrum, the reconstruction filter also needs to 
pass the original image spectrum base-band with minimal distortion (Fig 4). Eq. (10) states this idea 
formally. It measures the contribution to  SR blur caused by the presence of significant image energy, 
I h(v,,vy)f(v,,vy) l 2  at frequencies where F(v,,vy) # 1. This type of reconstruction error is known as 
base-bund attenuation. This is analogous to  image blur in the sense that the reconstruction filter acts 
as a low-pass filter resulting in a loss of high-frequency detail in the reconstructed image. 

The problem of designing a good reconstruction filter is made difficult because an “ideal” filter is 
a sinc filter in the spatial domain. The sinc is quasi-ideal in the sense that a signal can be perfectly 
reconstructed from its samples by using sinc-interpolation only if the signal is bandlimited and suffi- 
ciently sampled. However, the sinc is impossible to  realize in practice and finite approximations to  it 
produce an  effect commonly known as ringing. Ringing is perceived a.s rippling patterns radiating from 
high contrast edges [3] and is strongly suggested by the form of the impulse response of the sinc. 

Another problem in designing a reconstruction filter is the problem of sample-frequency ripple. This 
problem can be best understood in terms of a uniformly gray image which is sampled and reconstructed 
t o  yield an  image where the gray-level uniformity is destroyed. This is often perceived as spurious 
patterns on the background in an image. To eliminate this problem, it is necessary to design the 
reconstruction filter F(v,, vY) so that the equation 

m n  

is satisfied. 

An important point t o  note in this discussion is that  even though it  is possible (at least in theory) 
to  minimize image blur and sampling-reconstruction blur individua.lly by suitable filter design, in an 
end-to-end system the subsystems cannot be designed in isolation from one another to  minimize both 
image and sampling-reconstruction blur simultaneously. Eq. (6) suggests that image blur is minimized 
when h(v,, vY) = 1 for all frequencies where there is non-zero scene energy. However, from Eq. (8) we 
see that the average sampling-reconstruction blur will be minimized when h(v,,vy) = 0 a t  all those 
frequencies where the reconstruction filter does not have unit (perfect) response. These are conflicting 
requirements and a compromise has t o  be achieved based on the relative visual importa,nce of the two 
types of degradation. 
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It has been observed [6], [7] that  the response of human viewers t o  various spa.tia1 effects of filters is 
subjective. Filters that  result in some a,liasing and base-band attenuation have sometimes been observed 
t o  yield results which are visually pleasing to  human viewers. There is evidence [GI that  suggests that a 
moderate amount of ringing can “improve” the visual quality of an image by introducing an illusion of 
sharpness (high frequency), although in terms of the amount of degradation (which can be measured 
by Eq. G - ll), this may correspond to  a higher mean squared error. 

In our research, we attempt to  correlate the mathematical criteria for optimal end-to-end processing 
with subjective visual testing for Gaussian transfer functions. There is evidence that people prefer 
some aliasing and ringing (which give an illusion of sharpness), but that  people are sensitive to  high- 
frequency suppression (blurring). The primary motivation of this study is t o  assess the effect of each of 
these individual degradation components on the quality of the reconstructed ima.ge. This research has 
application to  the design of end-to-end imaging systems where the components can be tuned to obtain 
the best possible results. In the next section we describe our models for the various components of the 
system and simulation results. 

Imaging and Reconstruction System Transfer Function Models 

In order t o  simulate an end-to-end imaging system it is necessary to  associa.te a model with the imaging 
(camera) subsystem and the reconstruction (display) subsystem;i.e,we need to assign a functional form 
to  both k(v,,vy) and F(v,,vy). In the discussion that follows, we refer t o  k as the Camera Transfer 
Function (CTF) and i as tlie Display Transfer Function (DTF). In our analysis we have chosen to 
model the C T F  and DTF as Gaussian functions of the form 

(14) e-  [5(4+4)1 

where r is the parameter which controls the spread of the function. It ca.n be shown t1ia.t r is propor- 
tional t o  the standard deviation of the Gaussian function (ov). They are related as 

r = Jza, (15) 

The two-dimensional Gaussian function is separable and its Fourier transform is also a Gaussian. 

In our model, the Gaussian is symmetric in the two dimensions resulting in the filter kernels being 
circularly symmetric. Thus, only a single parameter ( r )  is required to characterize each of the Gaussian 
functions representing the C T F  and the DTF. Thus, due to  the duality of tlie Ga.ussia.n and its Fourier 
transform, a broad frequency response can be achieved by a very small kernel in the spatial domain 
and vice versa. 

The reason for modelling the C T F  and the DTF as Gaussian functions is primarily due to  the its 
popularity amongst designers of optical instruments [4], [5]. Several variations of the pure Gaussian 
(e.g. sharpened Gaussian and the sum of two Gaussians [4]) have been used as models for the transfer 
functions, especially for interpolative reconstruction systems. In our end-to-end model, we have three 
system parameters - the sampling rate and the standard deviations of the Gaussian camera and dis- 
play transfer functions. These parameters can be varied to  influence both image and sampling and 
reconstruction blur. End-to-end simulation using these models for the imaging and reconstruction sub- 
systems thus allows us to  study the interplay between the various degradations discussed in the previous 
section and correlate mathematical results (blur coefficients) with subjective (visual) judgements about 
image quality. The primary goal of this simulation study is t o  identify a relationship between the two 
parameters which will result in the best possible reconstructed image. Such a relationship can then be 
used as a design rule for end-to-end systems employing scanning and interpolative reconstruction. 
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Simulation Results 

The numerical simulation of the imaging system described in Fig 1. has been performed on two images 
- one of cat’s face and the other of the central portion of a dollar bill. The images are 512 x 512 pixels 
in dimension and are quantized to  16 bits/gray-level. For the purpose of display, these images have 
been rescaled into a gray-level range of 0 to  255 (8 bits/gray-level). 

In the simulation of the imaging process, the Fourier spectra of these scenes ha.ve been multiplied 
with a Gaussian C T F  t o  produce the corresponding image spectra. The reverse Fourier transform of 
the image spectra produces the corresponding image in the spatial domain. It is with this image that 
the final reconstructed scene is compared t o  judge the quality of reconstruction. 

The sampling subsystem has been simulated by sub-sampling the 512 x 512 image down to 128 x 
128. A uniform sampling scheme has been chosen primarily due to  its simplicity as well as its popularity 
amongst designers of (digital) optical equipment. 

Finally, the reconstruction process is implemented in a manner similar t o  the imaging process. The 
sampled images have been enlarged to  512 x 512 by zero-filling and their Fourier spectra have then 
been multiplied with a Gaussian D T F  t o  produce the spectra of the reconstructed scenes. The inverse 
Fourier transform is then applied to  these spectra t o  produce the reconstructed scenes in the spatial 
domain. 

The parameter of interest for the transfer functions is T (Eq. 14.), which controls the standard 
deviation of the Gaussian functions used to  model the C T F  and the DTF. In order t o  study the 
degradation caused by these two subsytems, TCTF and TDTF have been varied over a range of values - 
the range selected is standardized with respect t o  the size of the sampled image (128 x 128). 

The reconstructed scenes have been evaluated by about 20 people and the degradation values cor- 
responding t o  their choice of the best possible reconstruction are shown on the corresponding plots. 
The observers were first shown the images after they were passed through the imaging subsystem and 
were then asked to  find the most faithful reconstruction from the collection of processed images for 
different system parameters. The candidate images were displayed in a random order t o  eliminate any 
positional bias that  may have been present. The contrasts of these images were also strictly matched 
to eliminate any contrast bias. 

Fig 5 shows the cat image after being passed through the acquisition phase of an imaging system. 
Figs 6 - 8 show reconstructed images of this acquired image with different display subsystems. Figs 9 
- 14 are plots of the different error components for the dol1a.r and the cat images. These values have 
been calculated using Eq.(6)-(11) and the horizontal axis of the plots refer t o  a fraction of 128 which 
represents the value of TCTF. Figs 15 - 17 show several processed versions of the dollar bill image. 
Fig 15 shows the original dollar bill which serves as the scene in our simuhtions. Fig 16 and Fig 17 
show results from two opposite ends of the processing spectrum - Fig 16. shows the excessive blurring 
introduced by the narrow (frequency domain) transfer functions, while Fig 17 exhibits the characteristic 
sample-frequency ripple associated with a wide (frequency domain) display transfer function. 

The preliminary results of the visual testing have yielded interesting “observations” about the visual 
impact of the different kinds of degradations that are inevitably introduced in a nonideal end-to-end 
imaging system; 18 out of the 20 observers chose the reconstructed image corresponding to  TCTF = 76.8 
(i.e. C T F  FACTOR = 0.6 in Fig 7) as the “best” reconstructed scene for the cat ima.ge. From the 
plot i t  is clear that  these values of the parameters correspond to  a situation where the total degradation 
is dominated by the sampling (or aliasing) blur. This reinforces the belief that  the human eye is more 
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critical of blurring (of any kind) than other types of degradations which introduce some high frequency 
features which are not present in the original image. None of the observers selected those images for 
which the image blur is the dominant degradation term, In particular, the sample-frequency ripple 
effect (which manifests itself as a fine wire mesh over the images ) helped to  a certain extent t o  create 
a n  illusion of feature (edge) sharpness that made the observers select images with a moderate amount 
of this effect as the “best” images. 

The subjective evaluation suggests that  t o  the untrained human eye, image blur (i.e. any supression 
of high frequencies) is often more annoying than sampling artifacts which may create an illusion of 
sharpness. However, much work still needs t o  be done. In planned extensions, we will control viewing 
conditions more stringently t o  eradicate some biases that may be reflected in our current results. We 
plan to  use a digital monitor instead of film since we have experienced a great deal of contrast and 
texture variability with film. There is also the need for more exhaustive testing (more scenes with a 
greater variation in the frequency content etc.) under more controlled conditions. The end-to-end model 
must be improved t o  incorporate more sophisticated models of the acquisition and display subsystems 
as well as physcophysical parameters such as the contrast sensitivity function. The sophistication of 
the human subjects with respect t o  digital image processing fundamentals may also be a significant 
bias factor when testing certain images. Finally, the whole experiment would be incomplete unless an 
end-to-end (initial scene to  the reconstructed scene) simulation is performed a,nd the analytical results 
are correlated with visual testing. 
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Fig. 5 : Original CAT image with 

CTF FACTOR=O.G and no SR degradation. 

Fig G : Reconstructed scene with 

CTF FACTOR=O.G and DTF FL4CTOR=0.3 

Fig 7 : Reconstructed scene with 

CTF FACTOR = 0.6 and DTF FACTOR=O.G 

(chosen as the best reconstruction of 

Fig 5. by selected observers) 

Fig S : Reconstructed scene with 

CTF FACTOR=O.G and DTF FACTOR=0.7 
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Image and SR Degradation vs CTF FACTOR 
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Figure 9: Image and SR Blur vs CTF FACTOR (Dollar) 
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Figure 10: Image and SR Blur vs CTF FACTOR (Dollar) 
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Figure 11: Image and SR Blur vs CTF FACTOR (Dollar) 
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Abstract 

Image restoration can be implemented efficiently by calculating the convolution of the digital 
image and a small kernel during image acquisition. Processing the image in the focal-plane in this 
way requires less computation than traditional Fourier-transform-based techniques such as the 
Wiener filter and constrained least-squares filter. In this paper, the values of the convolution 
kernel that yield the restoration with minimum expected mean-square error are determined using a 
frequency analysis of the end-teend imaging syst,em. This development accounts for constraints on 
the size and shape of the spatial kernel and all the coniponent,s of the imaging system. Simulation 
results indicate the technique is effective and efficient. 

1 Introduction 

The Wiener filter is probably the best known and most widely used restoration tool. Given a few 
assumptions and some knowledge of the system, the Wiener filter minimizes the expected 
mean-square-error (MSE) of the restoration. While h4SE is by no means a perfect yardstick for 
restoration quality, i t  is a useful ineasure and leads to an optimal filter. In many applications, such as 
those requiring television-rate processing (30 images per second), the most serious drawback of the 
Wiener filter is its high computational cost. Small spatial kernels can be applied with much less 
computation. This paper describes tlie design of small restoration kernels that, within the spatial 
constraints, niinimize restoration MSE. 

2 End-to-End Analysis and Wiener Restoration 

Traditionally, Wiener restoration has been based on a model of the imaging process with two 
components: the linear, shift-invariant point-spread function (PSF) of the image acquisition device 
and additive, signal-independent noise. This model ignores the significant impact of sampling and 
display reconstruction on image quality. A recent paper[l] presented a derivation of the Wiener filter 
that  is based on a more accurate model of the end-to-end imaging process. This model is illustrated 
in Figure 1. 

The end-to-end process is described equivalently by equations in either tlie spatial domain or 
frequency domain. The displayed (or resulting) image r is  
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Figure 1: End-to-End Ima.ging and Spatial Restoration Model 

Assuming the scene s is periodic, the equivalent frequency domain expression for the spectrum of the 
result i is 

?[VI = ( v,g03i[v’]ii[v’]& - v’] + i[v] f [ v ] J [ v ]  ) 
where the notation i [ v ]  indicates the spatial frequency v / N ,  v cycles per N spatial units, of the 
Fourier transform of the image T .  

The Wiener filter minimizes the expected mean-square difference between the scene s and the 
resulting image T :  

If the scene s and noise e are uncorrelated, st.ationa,ry processes with power spectra as and @ e  

respectively, the expected mean-square restoration error can be rewritten in a form that is suitable 
for minimization: 

Minimizing the mean-square error with respect to the filter transfer function values f [ v ]  leads to the 
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Figure 12: Reconstruction Blur vs CTF FACTOR (Cat) 
(for DTF FACTOR = 0.3 to 0.6) 

Sampling Degradations for DTF FACTOR = 0.3, 0.4, 0.5, 0.6 
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Figure 13: Sampling Blur vs CTF FACTOR (Cat) 
(for DTF FACTOR = 0.3 to 0.6) 

Image Blur and SR Degradation for DTF FACTOR = 0.3, 0.4, 0.5, 0.6 
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Figure 14: Image and SR Blur vs CTF FACTOR (Cat) 
(for DTF FACTOR = 0.3 to 0.6) 
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Fig 15 : Original Dollar Image with no image 
and SR degradations. 

Fig 16 : Reconstructed Scene with CTF FACTOR=0.3 
and DTF FACTOR=0.3 

Fig 17 : Reconstructed Scene with CTF FACTORd.3 
and DTF FACTOR=0.7 
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definition of the optimal filter: 

00 

@,[v’]Iz*[v’]~[v’]iI[v - v’] 

This is the optimal digital filter given in Equation 26 of [l]. 

The mathematics of the following section is siniplified by rewriting the expression for mean-square 
error in Equation 4 as 

s2 = 5 N (E[v] - i[v]f*[v] - i*[v]f[v] + &[VI If[v]l2) 
.=-m 

where 

i[v] = 2 ~,[v’]~~*[v’]j.[v’]ir[v - v’] 

Then, the optimal filter transfer function f given by Equation 5 is written: 

3 Imposing Spatial Constraints 

In the derivation of the previous section, the Wiener filter is determined by an equation in the 
frequency domain: 

&[v]p[v] = i[v] (11) 

The spatial equivalent of this frequency doma.in product is the spatial convolution: 

1 
AT (12) - a[n - n’]f[n’] = b [ n ]  

nr 

where 

Y 

b[n] = i)[Y]l;v;;n 
Y 
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This convolution is equivalently expressed as a linear system of N equations in N variables (the 
spatial filter values). The system of equations ca.n be expressed in matrix form: 

Af = b 

where the h7 x N coefficient matrix A is 

the N x 1 result matrix b is the array b defined in Equation 14, and f is the N x 1 matrix of digital 
restoration PSF values t o  be deterniincd. 

In the system of equations for the Wiener filter, there are a.s many equations as pixels in the image. 
However, if the size of the spatial restora.tion kcrnel is constrained, the system of independent 
equations caii only be as large as the number of nonzero elements in the spatial kernel. The 
spatially constrained kernel is designed by specifying the sys tem of linear equations whose solution 
will minimize mean-square-error within the constraints. 

The spatial constraint is expressed as a nonempty set of spatial locations, C ,  for which the 
restoration kernel caii be nonzero. The elements that are not in the constraint set must be zero: 

f [ n ]  = 0 if 71 $! C C ( 0 . .  .AT - l} (17) 

If all of the points in the restoration kernel are a.llowed to  be nonzero (i.e., C = ( 0 . .  . N - l}), then 
the optimal spatial kernel is the inverse transform of the Wiener filter (i.e., the solution of 
Equation 12 or 15). 

The expression for MSE is defined in Equation G in terms of the transfer function of the optimal 
filter. Before this expression can be minimized with respect t o  the restoration kernel values, it must 
be expressed in terms of those elements. The filter transfer function expressed in terms of the 
spatially constrained kernel values is 

Substituting this expression into Equation 6 ,  yields the MSE in terms of the constrained kernel values: 



Minimizing with respect to the restoration kernel elements yields 

This is a n  equation with a number of unknowns equal t o  tlie number of non-zero kernel values-ICI. 
There are IC( equations (differentiating with respect t o  each of the constrained kernel elements) in IC( 
unknowns (tlie IC1 kernel values). This system of equations ca.n be written as the matrix equation: 

Acfc = bc ( 2 1 )  

where Ac is the IC1 x IC1 coefficient matrix, fc is the IC1 x 1 matrix of kernel values, and bc is the 
JCI x 1 result matrix. 

Tlie output matrix bc  of Equation 21 for the constrained filter is a submatrix of the corresponding 
matrix b of Equation 15 for tlie Wiener (unconstrained) filter. The elements of the matrix bc are the 
elements of b that  are in the constraint set C. Similarly, Ac is a principal submatrix [2 ]  of tlie 
coefficient matrix A consisting only of the rows and columns of A named in the constraint set C. 

4 Simulation Results 

This section presents restoration results for artificial scenes degraded by simulated imaging devices 
(as described in [3]). Tlie problem design included two variables: the width of the acquisition transfer 
function and the noise level. Three cases for each variable were considered, producing a total of nine 
experimental restoration problems. Each of the nine problems was restored with kernels constrained 
t o  a number of sizes. Then, tlie accuracy of the constrained restorations was compared t o  tlie 
accuracy of the unrestored display and Wiener restoration. 

One-dimensional Fourier scenes were generated by specifying tlie spectral magnitude of a finite 
Fourier series and randomizing phase. Tlie scene spectral magnitude S, was set to 

K e s p  (- (1.1 /CY.,”) if 0 < 1.1 < 2 N  
0 otherwise 

ip[.] = 

with C Y ,  = N/ lG and ps = 0.75. Because the spectral nia.gnitude is zero at tlie origin ( i p [ O ]  = 0), tlie 
resulting ensemble of scenes is zero-mean. The constant K was defined as 0.0704946 so that the 
scenes had unit root-mean-squa.re RhlIS energy. 

The model of the acquisition device transfer functions was suggested by Johnson[4]: 

iLp[.] = esp (- (1.1 / a . h ) P h )  ( 2 3  1 
All three of the transfer functions in this section a.re bell curves ( p h  = 2 ) .  

With ah = 0.75, the transfer function roll off is mostly above the Nyquist limit. This function 
attenuates frequency components within the Nyquist limit only slightly and will therefore cause 
little blurring. However, the transfer function significantly passes components above the 
Nyquist limit and is therefore vulnerable to  aliasing. 

With ah = 0.50, the transfer function rolls off a t  a lower frequency and therefore causes 
somewhat more blurring, but is less vulnerable t o  aliasing. 
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0 With ah = 0.25, the transfer function is nearly zero beyond the Nyquist limit. This function 
virtually eliminates aliasing, but the resulting innges may be blurred substantially. 

Three levels of zero-mean white noise were considered. Signal-to-noise ratio (SNR) is tlie ratio of 
RMS energy of tlie scene to  RMS energy of the noise: 

For the low-noise images (high SNR), SNR=100. For the moderate-noise images, SNR=25. For the 
high-noise images (low SNR), SNR=5. 

Real display devices are a significant component of the end-to-end imaging process but are not 
usually a source of much variability. Therefore, the simulated display function was not varied in these 
experiments-a single display model was used for all of the simulations. Scliade[5] suggested a display 
model consisting of the sum of two Gaussian spots-the nucleus, a strongly-peaked central spot that  
contains most of tlie energy, and a broad flare spot around the nucleus. The composite display 
tra.nsfer function is 

The parameters for the functions are taken from Schade’s results: for the nucleus, D1 = 0.76 and 
cy1 = 0.4301454; for the flare, Dz = 0.24 and o2 = 0.0323514. For practical reasons, the display 
transfer function is cut off a t  twice the sampling rate f 2 N  (the same length as the Fourier series used 
to  generate tlie artificial scenes). The effect of the truncation is insignificant. 

Figure 2 illustrates tlie end-to-end imaging simulation for a representative scene. The top graph is 
the scene. Directly below it  is the image created by applying the acquisition function with medium 
blur ( o h  = 0.50) t o  the scene. The third grapli is tlie sampled image. Next is the sampled scene plus 
moderate noise (SNR = 25). The bottom graph of Figure 2 shows the unrestored display. Acquisition 
blurring, aliasing due t o  sampling, additive sensor noise, and display degradation are all present in the 
output of the system. The goal of restoration is t o  process the noisy digital image shown in the fourth 
graph so that  when it  is displayed, the output (the bottom line) is more like the input (the top line). 

The spatial kernels were constrained to  have zero value a t  all but a n  odd number of locations 
centered at the origin-the smallest kernel, with three elements, was allowed non-zero values only 
where In1 5 1; the nest smallest, with five elements, was allowed non-zero values only where In1 5 2; 
and so on. The largest constrained kernel has ( N  - 1) elements; only the element at n = N/2 was 
constrained t o  0. The next-largest optimal kernel (no elements constrained t o  0) is the spatial kernel 
of tlie Wiener filter. 

The optimal three-point and five-point kernels for the example of Figure 2 and the corresponding 
transfer functions are sliowii in Figure 3. The Wiener filter transfer function and part of the 
corresponding spatial kernel are also illustrated. Only the first few elements of the Wiener kernel are 
shown; the magnitude of the Wiener kernel eleiiieiits beyond G pixels from the origin is less than 
0.01N. Clearly, the optimal sinal1 kernels are quite different than the kernels produced by a 
truncating the Wiener F’SF. As can be seen by comparing the transfer functions, the optimal 
three-point kernel does a fair job of approximating the IViener filter at low frequencies but amplifies 
high-frequency components where SNR is lower much more than does the Wiener filter. The transfer 
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function of the optimal five-point kernel more closely approximates tlie Wiener filter, but is still quite 
different. 

Figure 4 shows the original scene, the unrestored output, the output with three-point restoration, the 
output with five-point restoration, and the output with Wiener restoration. Visual compa.rison is a 
subjective process, but it is c1ea.r that all of the restorations are more like the original scene than the 
unrestored output. It is more difficult to conclude from visual inspection which of the restorations is 
the best. Some of the features seem to be restored best by the three-point kernel; other features are 
best restored by the Wiener restoration. 

Figure 5 presents numeric measures of restoration accuracy as a function of kernel size. Restoration 
accuracy is described by the RhlS difference between the displayed image aiid the scene, relative to 
the RhlS energy of the scene: 

\I c lWI2 
Relative RhlS Error = 

Each of the nine restoration problems was performed 32 times-that is, each execution used a 
different scene from the ensemble and different random noise. The plots show the relative RRIS error 
averaged over all 32 executions. The standard deviations of the relative RhIS error were so small that 
plotting them on these graphs proved impractical. The plots are shown only for kernels with 65 
elements or fewer (radius 32). In all cases, only negligible improvement occurred beyond 19 elements 
(radius 9). (The kernel of the IViener filter has 255 elements, a radius of 128.) 

In many cases, tlie three-point aiid five-point kernels yielded results that are nearly as accurate as the 
Wiener filter. This is particularly true when there is little noise (e.g., SNR=lOO-the leftmost 
column). Small kernels are relatively less successful in low SNR situations (e.g., SNR=5-the 
rightmost column). In low SNR problems, the restoration kernel should suppress noise by local 
averaging, but small kernels are restricted in doing so by their size. 

In the image with medium blur and medium noise (ah = 0.50 and SNR=25)-the middle graph of 
Figure 5-the average unrestored relative Rh4S error was 0.204613. The Wiener filter reduced this to 
0.051149, a decrease of 0.1536464 or 75%. The three-point kernel resulted in an error of 0.091685, a 
decrease of 0.112925 or 55%. The three-point kernel (radius 1) achieved 73% of the improvement of 
the Wiener filter. The five-point kernel (radius 2) reduced the relative RR4S error to  0.053614, a 
decrease of 0.120999 or 59%. This is 79% of tlie improvement of the IViener filter. These small 
kernels achieve a large portion of the iiiiprovement of the Wiener filter with less computation. 

5 Conclusion 

Restoration implemented by convolution with a. small kernel requires less processing than traditional 
Fourier-transform-based techniques such as the Wiener filter. Because convolution with a small kernel 
is a local operation, it is easily applied in parallel on all pixels in the focal-plane during image 
acquisition. The simulation results indicate that the optimal constrained restoration kernel effectively 
restores continuous, one-dimensional functions degraded by blurring, sampling, noise, and 
reconstruction-the types of degradations found in real ima.ging systems. Similar results were 
observed in simulations not presented in this paper using other one-dimensional scenes with different 
statistics. Two-dimensional simulations, and act.ua1 restorations are in preparation. 
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Figure 4: Representative Restoration Results 
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SUMMARY 

Coded-aperture imaging i s  a technique f o r  imaging sources t h a t  
emit high-energy r ad ia t ion .  T h i s  type of imaging involves shadow 
cas t ing  and not r e f l e c t i o n  or  r e f r a c t i o n .  High-energy sources e x i s t  i n  
x-ray and gamma-ray astronomy, nuclear reac tor  fuel-rod imaging, and 
nuclear medicine. O f  these  th ree  a reas  nuclear medicine i s  perhaps the 
most challenging because of t h e  l i m i t e d  amount of r ad ia t ion  ava i lab le  
and because a three-dimensional source d i s t r i b u t i o n  i s  t o  be 
determined. I n  nuclear medicine a radioact ive pharmaceutical i s  
administered t o  a p a t i e n t .  T h e  pharmaceutical i s  designed t o  be taken 
up by a p a r t i c u l a r  organ of i n t e r e s t ,  and i t s  d i s t r i b u t i o n  provides 
c l i n i c a l  information about t he  function of t he  organ, o r  t he  presence 
of l e s ions  w i t h i n  t h e  organ. T h i s  d i s t r i b u t i o n  i s  determined from 
s p a t i a l  measurements of t h e  rad ia t ion  emitted by t h e  
radiopharmaceutical. 

The p r inc ip l e s  of imaging radiopharmaceutical d i s t r i b u t i o n s  w i t h  
coded aper tures  w i l l  be reviewed. Included w i l l  be a discussion of 
l i n e a r  sh i f t -va r i an t  pro jec t ion  operators and t h e  associated inverse 
problem. A system developed a t  t he  University of Arizona i n  Tucson 
cons is t ing  of small modular gamma-ray cameras f i t t e d  w i t h  coded 
aper tures  w i l l  be described. 

INTRODUCTION 

I n  nuclear medicine a radiopharmaceutical i s  given t o  a p a t i e n t .  
The pharmaceutical i s  designed t o  go t o  a p a r t i c u l a r  organ of i n t e r e s t ,  
such a s  t he  bra in ,  t h e  hear t ,  bone, o r  the  l i v e r ,  t o  name a few. The 
three-dimensional d i s t r i b u t i o n  of t he  pharmaceutical provides c l i n i c a l  
information about how well t he  organ i s  functioninq. T h i s  i s  qu i t e  
d i f f e r e n t  than the  type of information provided by  x-ray imaging 
(e lec t ron  d e n s i t y ) ,  magnetic resonance imaging ( M R I )  (proton densi ty  
and magnetization re laxa t ion  r a t e s )  and ultrasound (acous t ic  impedance 
of t i s s u e ) .  The d i s t r i b u t i o n  of t h e  pharmaceutical i s  determined by 
imaging t h e  r ad ia t ion  given off  by t h e  isotope t h a t  t ags  i t .  There i s  
always a concern t o  l i m i t  t he  t o t a l  amount of r ad ia t ion  t h a t  t h e  
pa t i en t  i s  exposed t o ,  so  t h a t  i n  nuclear medicine w e  have a photon- 
l imi ted  s i t u a t i o n .  

33 



The isotopes used i n  nuclear medicine f a l l  i n t o  two broad 
ca tegor ies :  those t h a t  emit s ing le  gamma rays d i r e c t l y  from the  
nucleus, and those t h a t  emit posi t rons from the  nucleus. Three- 
dimensional imaging associated w i t h  t h e  f i r s t  category i s  ca l l ed  s ingle  
photon emission computed tomography (SPECT) ,  and i s  t h e  subject  of t h i s  
paper. I n  t h i s  method t h e  photons mus t  be blocked by a t tenuat ing  
ape r tu re s .  Imaging associated w i t h  t he  second category i s  ca l l ed  
posi t ron emission tomography ( P E T ) .  I n  PET t he  posi t ron t h a t  i s  
emitted by a source nucleus ann ih i l a t e s  an e lec t ron  w i t h i n  1 t o  2 mm of 
t h e  source po in t .  T h i s  annih i la t ion  r e s u l t s  i n  two photons, each of 
approximately 511 K e V ,  t r a v e l i n g  i n  almost opposi te  d i r e c t i o n s .  By 
coincidental ly  de tec t ing  these two photons w i t h  s p a t i a l l y  separate  
de tec tors ,  t he  l i n e  along t h e i r  path which contains t h e  source point 
can be found. T h i s  technique removes the  need t o  physical ly  block the  
photons w i t h  aper tures  t o  determine t h e i r  d i r ec t ion  of o r i g i n .  W i t h  
PET one can obtain extremely good resolut ion by nuclear-medicine 
standards,  on the  order of 5 mm. The disadvantage of PET i s  t h a t  an 
on-si te  cyclotron i s  needed t o  c rea te  the  short- l ived positron-emitt ing 
i so topes .  The expense associated w i t h  t h i s  requirement has l imi ted  the  
number of PET f a c i l i t i e s .  SPECT imaging, on the  other  hand, i s  
r e l a t i v e l y  l e s s  expensive and well es tab l i shed  throughout t h e  world. 
Thus  t he  motivation e x i s t s  t o  continue t o  improve SPECT imaging 
techniques t o  approach t h e  qua l i t y  already a t t a i n a b l e  w i t h  PET.  

Two-dimensional pro jec t ions  of source d i s t r i b u t i o n s  a r e  obtained 
i n  nuclear medicine by e i t h e r  scanning the  source i n  two dimensions 
w i t h  a s ing le ,  coll imated gamma-ray point de tec tor  o r  by forming a t w o -  
dimensional image w i t h  a camera t h a t  i s  capable of measuring the  x and 
y pos i t ions  of t he  incident  gamma rays  and s t o r i n g  them i n  an image 
histogram. 
( r e f . 1 ) .  T h i s  camera can a l so  estimate the  gamma-ray energy. Energy 
est imat ion i s  important f o r  r e j ec t ion  of Compton-scattered rad ia t ion  
from t h e  nuclear-medicine image. A photon t h a t  i s  Compton sca t t e red  by 
t h e  a t t enua t ing  t i s s u e s  between the  source and t h e  de t ec to r  w i l l  s u f f e r  
an energy s h i f t ,  dependent upon the  angle of s c a t t e r .  
nuclear medicine the  energy spectrum of the  usefu l  isotopes i s  
r e l a t i v e l y  narrow, so  t h a t  t he  Compton-scattered photons can be 
i d e n t i f i e d  and removed i f  t h e i r  energy i s  outs ide of t h e  peak 
assoc ia ted  w i t h  t h e  source isotope.  

Such a camera i s  the  Anger camera, named a f t e r  i t s  inventor 

Fortunately i n  

Gamma rays have such a h i g h  energy t h a t  they cannot be 
conveniently r e f l e c t e d  or  r e f r ac t ed .  I n  f ront  of t he  gamma-ray camera 
i s  t h u s  placed a shadow-casting aperture ,  usual ly  made of lead or  some 
o ther  high atomic-number element. There a r e  two bas ic  types of 
aper tures ,  t he  col l imator  and t h e  pinhole.  The col l imator  cons i s t s  of 
a la rge  number of usual ly  p a r a l l e l  holes d r i l l e d  through a th i ck  lead 
p l a t e .  Each hole causes the  s e n s i t i v i t y  of a given de tec to r  element t o  
be confined t o  a narrow penci l  t h a t  i n t e r s e c t s  t h e  source d i s t r i b u t i o n .  
T h i s  narrow penci l  i s  an approximation t o  a l i n e  i n t e g r a l  through the  
source. A l l  of t h e  holes together  form a p a r a l l e l - l i n e  2-D project ion 
of t he  source onto t h e  2 - D  de t ec to r .  The pinhole i s  a s ing le  hole 
punched i n  a r e l a t i v e l y  t h i n  lead p l a t e .  T h i s  aper ture  produces a 
pinhole image of t he  source d i s t r i b u t i o n  on the  2-D d e t e c t o r .  The 
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pinhole image represents  a s e r i e s  of l i n e  i n t e g r a l s  through the  object 
t h a t  converge on t h e  pinhole.  Conventional systems i n  nuclear medicine 
of ten  employ para l le l -hole  col l imators .  T h e  coded-aperture systems t o  
be discussed employ ar rays  of pinholes.  

Tomography i n  nuclear medicine i s  achieved by taking mult iple  
views of t h e  source d i s t r i b u t i o n ,  and reconstruct ing a 3 - D  es t imate  of 
t h e  source from these  views. Conventionally these  views a r e  obtained 
by r o t a t i n g  a la rge  gamma-ray camera f i t t e d  w i t h  a para l le l -hole  
col l imator  around t h e  p a t i e n t .  The camera stops every few degrees and 
takes  a two-dimensional snapshot of t h e  pa t i en t  l a s t i n g  about a minute. 
Each snapshot of t h e  pa t i en t  approximates a s e t  of p a r a l l e l  l i n e  
i n t e g r a l s ,  defined by the  coll imator,  through t h e  source volume a t  the  
p a r t i c u l a r  angle .  Neglecting at tenuat ion of t he  source by t h e  body, 
t h e  s e t  of a l l  of these  snapshots over 180 or  3 6 0  degrees cons t i t u t e s  
an approximation t o  the  Radon transform of the  source d i s t r i b u t i o n .  
The inverse Radon transform ( r e f . 2 )  i s  then appl ied t o  these  
pro jec t ions  t o  form an estimate of t h e  three-dimensional source 
d i s t r i b u t i o n .  T h i s  inverse involves f i l t e r i n g  and then back-projecting 
each pro jec t ion  i n t o  the  reconstruction space, and can be done rapidly 
w i t h  modern equipment. Without modification of t he  inverse Radon 
transform t o  include a t tenuat ion  of t h e  photons by the  body, 
reconstruct ions appear darker f o r  p ixe l s  deeper w i t h i n  t he  tomographic 
s l i c e .  T h i s  a t tenuat ion  problem can be corrected a n a l y t i c a l l y  by the  
a t tenuated  Radon transform ( r e f s .  3 , 4 ) ,  assuming constant a t tenuat ion 
and a known convex a t t enua t ion  boundary. Typical scan t i m e s  f o r  t h e  
rotating-camera approach a r e  3 0  t o  4 5  minutes. Dynamic s tud ie s  of 
pharmaceutical uptake a r e  ruled out because of t h e  required motion of 
t h e  camera about t he  p a t i e n t .  

I n  t h i s  paper we discuss  tomography i n  nuclear medicine w i t h  non- 
moving coded ape r tu re s .  The reconstruction of both 2 - D  and 3 - D  source 
d i s t r i b u t i o n s  w i l l  be addressed. A coded-aperture system f o r  nuclear 
medicine being developed a t  the  University of Arizona w i l l  be 
descr ibed.  

CODED-APERTURE TOMOGRAPHY IN NUCLEAR MEDICINE 

I n  nuclear medicine we a r e  able  t o  observe only a small number of 
photons because the  rad ia t ion  dose t o  the  pa t i en t  i s  kept a s  low a s  
possible  and because the  f r a c t i o n a l  s o l i d  angles of t h e  col l imator  or  
pinhole openings a re  small, on the  order of These openings must  
be small because i n  shadow-casting t h e  a b i l i t y  of t he  aper ture  t o  
resolve two c lose ly  spaced poin ts  i n  t he  source i s  d i r e c t l y  
proport ional  t o  t h e  s i z e  of t h e  openings. Thus we have a fundamental 
trade-off between t h e  signal-to-noise r a t i o  ( S N R )  i n  t h e  nuclear- 
medicine image, which goes a s  t h e  square root of t h e  number of detected 
photons, and t h e  reso lu t ion  of t he  s y s t e m .  T h i s  t rade-off i s  qu i t e  
d i f f e r e n t  i n  focusing systems, such a s  lenses  focusing v i s i b l e  l i g h t ,  
where t h e  d i f f rac t ion- l imi ted  spot s i z e  decreases ( t h u s  improving 
reso lu t ion)  a s  t he  aperture  i s  opened up, allowing more photons i n t o  
t h e  system. 
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There i s  t h u s  s t rong motivation f o r  increasing t h e  number of 
photons i n  a nuclear-medicine image without degrading t h e  r e so lu t ion .  
To t h i s  end coded aper tures  have been developed. Figure 1 shows a 
single-view coded-aperture system. Here a planar source d i s t r i b u t i o n  
i s  projected through an aperture  cons is t ing  of several  pinholes t o  form 
a coded image. T h e  pos i t ion  of the  pinholes represent t h e  code. We 
have t h u s  increased the  number of photons detected by t h e  system, a t  
t h e  p r i ce  of overlap i n  t h e  pinhole views of t he  ob jec t .  T h i s  overlap 
i s  r e fe r r ed  t o  a s  s p a t i a l  "multiplexing", and i s  more ser ious  f o r  
l a rge r  ob jec ts  and denser spacing of t he  pinholes .  Thus we suspect 
immediately t h a t  t he  code should be optimized w i t h  respect  t o  t h e  type 
of object  t h a t  we w i s h  t o  view. 

I n  t h i s  planar case, neglecting radiometry and ob l iqu i ty  f ac to r s ,  
we can wr i te  t h e  coded image a s  a convolution of t he  source w i t h  t h e  
aper ture  : 

where t h e  double prime indica tes  de tec tor  coordinates .  The quant i ty  
g(x" ,yr l )  i s  t h e  coded image, h(x"/M,yn/M) i s  the  scaled aper ture  
function, and f (x"/m,y"/m) i s  the  scaled source d i s t r i b u t i o n .  The 
source sca l ing  m = ( z - d ) / z  and the  aperture  sca l ing  M = d / z ,  where z i s  
t h e  source-aperture dis tance,  and d i s  the  source-detector d i s t ance .  
The two-dimensional convolution operator is represented by **. A s  we 
see, both t h e  source and the  aperture  functions a r e  scaled d i f f e r e n t l y  
i n  forming the  coded image. 

T o  form a reconstruct ion of the  o r i g i n a l  source d i s t r i b u t i o n ,  we 
use the  concept of matched f i l t e r i n g .  A matched f i l t e r  i s  a version of 
t h e  ac tua l  s igna l  t h a t  we a re  looking f o r .  I t  can be shown t h a t  a 
matched f i l t e r  i s  t h e  optimum f i l t e r  t o  be used t o  de tec t  a s igna l  i n  
t h e  presence of noise ( r e f .  5 ) .  I n  t h e  coded-imaging case, t h e  matched 
f i l t e r  i s  a properly scaled,  inverted,  complex-conjugated version of 
t h e  o r i g i n a l  code, so t h a t  t he  reconstruction ? ( x " , y " )  can be wr i t ten  
a s  

? (x"/m, y"/m) = g (x",  y")  ** h* (-x"/M, -y"/M) . ( 2 )  

Equation ( 2 )  can be wri t ten,  using Eq. (l), a s :  

where t h e  bracketed term represents  t h e  ove ra l l  point-spread function 
(PSF) of t h e  data-taking and reconstruction process,  and i s  ca l l ed  the  
au tocorre la t ion  of t h e  code. We mus t  design the  code t o  make i t s  
au tocorre la t ion  function a s  c lose t o  a d e l t a  function a s  possible ,  
simultaneously allowing a s  many openings a s  poss ib le .  Unfortunately, 
these  two requirements work against  each o the r .  Generally t h e  
au tocorre la t ion  has a la rge  cen t r a l  peak surrounded by a background 
w i t h  s t r u c t u r e  t h a t  depends upon the  number of openings. T h i s  
background tends t o  both smear out t h e  reconstruct ion a s  well  a s  
increase t h e  noise i n  t he  reconstruct ion.  

36 



Note t h a t  we a r e  not r e s t r i c t e d  t o  r e a l  and pos i t i ve  functions i n  
our search f o r  optimum codes. Any physical ly  r e a l i z a b l e  code w i l l  be 
r e a l  and pos i t i ve  because of t h e  shadow-casting nature  of t h e  image 
formation from the  incoherent source. Bipolar complex codes can be 
simulated, however, by c rea t ing  4 separate  codes and forming 4 separate 
coded images and su i t ab ly  adding them i n  t h e  computer with proper 
pos i t i ve ,  negative,  and imaginary weights. We pay the  p r i ce  f o r  t h i s  
f l e x i b i l i t y  by increasing t h e  amount of time needed t o  form an image, 
however. 

There has been considerable research i n t o  def ining codes t o  
optimize t h e  SNR of t he  f i n a l  reconstruct ion.  Some of t h e  more well- 
known codes a r e  random pinhole arrays ( r e f .  61, t h e  F r e s n e l  zone p l a t e  
( r e f .  7 ) ,  t he  annulus ( r e f .  8 ) ,  and time-modulated aper tures  ( r e f .  9 ) .  

Much of t h i s  code optimization has been i n  t he  context of single-view 
imaging of a planar  ob jec t ,  however, a s  i n  Fig.  1. I f  we were t o  image 
a three-dimensional volume object  w i t h  t h i s  approach, our 
reconstruct ion of E q .  ( 3 )  would be f o r  a p a r t i c u l a r  plane of t he  
source, depending upon the  sca l e  f ac to r  used f o r  t he  matched f i l t e r .  
The o ther  planes of t h e  source would present a strong background 
superimposed on t h i s  reconstruction, degrading both reso lu t ion  and SNR 
of t h e  plane of i n t e r e s t .  Thus  there  i s  a fundamental l imi t a t ion  of 
t h e  planar  c o r r e l a t i o n  decoding method described above because our 
bas i c  da ta  set cons is t ing  of a s ing le  view i s  not complete enough. We 
must  i n  f a c t  t ake  mult iple  views of a volume object  so  t h a t  we a re  
sampling i t s  three-dimensional Fourier components s u f f i c i e n t l y .  
Combining mult iple  views of t he  object  t o  form a s ing le  volume 
reconstruct ion i s  not obvious w i t h  t h e  planar decorre la t ion  method 
descr ibed.  I n  f a c t ,  we mus t  general ize  our e n t i r e  approach t o  the  
problem and move away from the  sh i f t - inva r i an t  formulations of E q s .  (1- 
3 ) .  

W i t h  a multiple-view system, shown schematically i n  F i g .  2 ,  we 
m u s t  g ive up t h e  convenience of s h i f t  invariance.  Thus  t he  convolution 
operation can no longer be used t o  connect t he  object  t o  the  da ta .  
Instead the  mapping from object t o  data  takes  on t h e  more general  form: 

g (x" ,  y", 2 " )  = I f ( x , y , z )  h ( x " , y " ,  z " ; x , y ,  z )  d3V, (4) 
source 

where g ( ~ " , y ~ ~ , z ' ~ )  represents  a l l  of t h e  coded images (spread out i n  
three-dimensions) , f (x ,y ,  z )  i s  the  three-dimensional source 
d i s t r i b u t i o n ,  h ( x " , y V 1 ,  z " ;x ,y ,  z )  i s  t h e  sh i f t -va r i an t  mapping from the  
source t o  t h e  coded images, and d3V i s  a volume element of t h e  source. 
A l l  of t h e  radiometry and apertEre geometry i s  contained w i t h i n  
h (x" ,  y", z";x, y,  z)  . The d i s t r i b u t i o n  g (x", y", z " )  forms the  da ta  s e t  
from which t o  reconstruct t he  est imate  of t h e  object  ? (x ,  y, z )  . 
Numerically, it i s  necessary t o  map t h e  continuous problem i n t o  a 
d i s c r e t e  formulation by choosing a s u i t a b l e  bas i s  s e t .  W e  can see how 
t h i s  i s  done by a demonstration w i t h  a one-dimensional analog of E q .  
(4) : 
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g ( x " )  = f ( x )  h ( x " ; x )  dx.  
source  

W e  can approximate f ( x )  and g ( x " )  each i n  t h e  fo l lowing  way: 

n=l 

where 

+- 

and 

( 5 )  

- W  

The b a s i s  se t s  Wn(x) and Qm(x") span t h e i r  r e s p e c t i v e  spaces  and a r e  
assumed or thonormal  i n  t h i s  development. Thus  w e  have approximated t h e  
sou rce  and t h e  d a t a  w i t h  N and M d i s c r e t e  c o e f f i c i e n t s ,  r e s p e c t i v e l y .  
An example of  a p a r t i c u l a r  source  b a s i s  set  i s  t h e  " p i x e l "  basis  se t ,  
where t h e  vn (X)  are N non-overlapping s h i f t e d  and s c a l e d  r e c t a n g l e  
f u n c t i o n s .  Another example i s  t h e  F o u r i e r  b a s i s  se t ,  where t h e  v n ( x )  
r e p r e s e n t  complex e x p o n e n t i a l s ,  t h e  e i g e n f u n c t i o n s  of s h i f t - i n v a r i a n t  
o p e r a t o r s .  By t h e  a p p r o p r i a t e  s u b s t i t u t i o n s ,  w e  can now approximate 
E q .  ( 5 )  a s :  

N 

n = l  
gm C hmn f n  

where 

J -- 
- W  

Thus t h e  s h i f t - v a r i a n t  problem of E q .  ( 5 )  is r e p r e s e n t e d  by a m a t r i x  
m u l t i p l i c a t i o n ,  where t h e  nth column of t h e  m a t r i x  H, w i t h  e l e m e n t s  
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hmn, r e p r e s e n t s  t h e  discrete, m-element s h i f t - v a r i a n t  PSF due t o  t h e  
nth expans ion  t e r m  of t h e  s o u r c e .  I n  f a c t ,  i f  w e  choose  t h e  Wn(x) and 
@m(x") c o r r e c t l y ,  dependent  upon h ( x " ; x ) ,  w e  can  have hmn = hm f o r  m = 
n, and  hmn = 0 o t h e r w i s e .  I n  o t h e r  words, H i s  d i a g o n a l  o r  pseudo- 
d i a g o n a l  i f  M i s  n o t  e q u a l  t o  N .  T h i s  c h o i c e  o f  bas i s  leads t o  w h a t  i s  
cal led t h e  s i n g u l a r  v a l u e  decomposi t ion  ( S V D )  o f  H .  

G e n e r a l i z i n g  t o  th ree  d imens ions ,  u t i l i z i n g  basis f u n c t i o n s  such  
as v n ( x , y , z )  a n d  @m(x" ,y" ,z" ) ,  w e  can  w r i t e  E q .  ( 4 )  f o r  a l l  coded 
images i n  a way i d e n t i c a l  t o  E q .  ( 1 0 ) .  T h i s  can  be done by s imply  
o r d e r i n g  t h e  N expans ion  c o e f f i c i e n t s  o f  f ( x , y , z )  i n t o  a one- 
d i m e n s i o n a l  N x 1 vector f and t h e  M expans ion  c o e f f i c i e n t s  of 
g ( x l l , y l l , z l ' )  i n t o  a one-d imens iona l  M x 1 v e c t o r  g: 

g = H f + n ,  (12) 

where w e  have i n t r o d u c e d  t h e  M x 1 zero-mean n o i s e  vector n t o  a l l o w  
f o r  image d e g r a d a t i o n  from e f f e c t s  o u t s i d e  of t h e  d i rec t  mapping due t o  
H .  E q u a t i o n  ( 1 2 )  i s  t h e  g e n e r a l  f o r m  of  a s h i f t - v a r i a n t  imaging system 
t h a t  w e  w i l l  u s e  i n  t h e  subsequen t  d i s c u s s i o n  o f  f i n d i n g  t h e  s o u r c e  
estimate 2. 

I n  g e n e r a l ,  E q .  ( 1 2 )  r e p r e s e n t s  an  i l l - p o s e d  problem, i n  t h a t  one 
o r  more of t h e  f o l l o w i n g  c o n d i t i o n s  o c c u r :  no ^f e x i s t s  t h a t  s a t i s f i e s  
g e x a c t l y ;  f i s  n o t  un ique ;  t h e  s o l u t i o n  2 i s  s e n s i t i v e  t o  s m a l l  
changes  i n  g or  H .  W e  must u s u a l l y  c o n t e n t  o u r s e l v e s  w i t h  a s o l u t i o n  
2 t h a t  a g r e e s  w i t h  g t o  w i t h i n  some l i m i t s ,  and  i f  t h e s e  approximate  
s o l u t i o n s  are n o t  un ique ,  choose  one t h a t  s a t i s f i e s  some independen t  
p r i o r  knowledge a b o u t  f. 
s u c h  as s i n g u l a r  v a l u e  decomposi t ion  (SVD) a l l u d e d  t o  b r i e f l y  above 
( r e f .  lo), Monte C a r l o  methods ( r e f .  ll), l i n e a r  e s t i m a t i o n  t h e o r y  
( r e f s .  1 2 ,  13), and  i t e r a t ive  methods ( r e f .  1 4 ) .  W e  w i l l  f o c u s  here on 
t h e  Monte Carlo method, which w e  have found t o  be a p rac t i ca l  t e c h n i q u e  
f o r  h a n d l i n g  t h e  l a r g e - s c a l e  p s e u d o i n v e r s i o n  o f  E q .  ( 1 2 )  i n  t h e  coded- 
a p e r t u r e  c o n t e x t .  W e  have s u c c e s s f u l l y  s i m u l a t e d  t h e  r e c o n s t r u c t i o n  of 
volume o b j e c t s  f of up t o  32000 s o u r c e  e l e m e n t s  from data  sets  g 
c o n s i s t i n g  of n e a r l y  t h e  same number o f  d e t e c t o r  e l e m e n t s  u s i n g  less 
t h a n  1 0  Mbytes o f  computer memory, i n  CPU t i m e s  unde r  30 m i n u t e s  on a 
VAX 8 6 0 0 .  The r e a s o n  f o r  t h i s  s p a c e  and  t i m e  economy i s  t h a t  t h e  H 
m a t r i x  i s  s p a r s e  i n  coded-ape r tu re  imaging .  O f  c o u r s e  t h i s  s p a r s e n e s s  
i s  reduced  as t h e  number of p i n h o l e  open ings  i n c r e a s e s ,  o r  as  t h e  s i z e  
of t h e  p i n h o l e s  i n c r e a s e s ,  s i n c e  more detectors are b e i n g  i l l u m i n a t e d  
by e a c h  s o u r c e  e l e m e n t .  

A 

There  a re  several  t e c h n i q u e s  f o r  f i n d i n g  2, 

I n  t h e  Monte C a r l o  r e c o n s t r u c t i o n  p r o c e s s  w e  d e f i n e  an  ene rgy  
A 

f u n c t i o n  E t h a t  i s  minimized when t h e  r e c o n s t r u c t i o n  f a c h i e v e s  a 
desired level o f  agreement  w i t h  t h e  data g and  s i m u l t a n e o u s l y  i s  
c o n s i s t e n t  w i t h  any  p r i o r  knowledge a b o u t  t h e  t y p e s  of s o u r c e s  p r e s e n t .  
Such p r io r  knowledge i n  t h e  nuc lea r -med ic ine  c o n t e x t  c o n s i s t s  o f  s o u r c e  
p o s i t i v i t y ,  s o u r c e  boundary,  and  p e r h a p s  c o r r e l a t i o n  s t a t i s t i c s  between 
n e a r b y  s o u r c e  p i x e l s .  One of t h e  c o s t  f u n c t i o n s  t h a t  w e  have  used  i s :  
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where t h e  double bar ind ica tes  magnitude of t h e  vector and t h e  brackets 
i nd ica t e  an averaging process over nearest-neighbor p i x e l s  i n  t h e  given 
est imate  f .  The f i r s t  term of t h i s  expression measures agreement w i t h  
t h e  da ta ,  and t h e  second t e r m  imposes a smoothing cons t r a in t  on f ,  
r e l a t i n g  each p ixe l  of t h e  reconstruction t o  i t s  nearest  neighbors. 
The ad jus tab le  s c a l a r  a weights the  agreement-with-data t e r m  against  
t h e  smoothing term. We begin t h e  reconstruction process w i t h  an 
i n i t i a l  guess a t  f ( a  zero object  o r  a uniform grey-level o b j e c t ) .  W e  
then per turb  each p ixe l  of 3 and ca l cu la t e  AE, the  per turba t ion  t o  E. 
This ca lcu la t ion  i s  r e l a t i v e l y  rapid, because only a few de tec to r s  out 
of t he  hundreds o r  thousands of de tec tors  ac tua l ly  see the  per turbat ion 
t o  2. 
required,  so t h a t  even a 32000 by 32000 matrix can be s tored  i n  a small 
f r a c t i o n  of t h e  space otherwise needed. 

A 

A 

A 

I t  should be mentioned t h a t  only non-zero elements of H a re  

T h e  per turba t ion  i s  always accepted i f  AE <= 0 ,  and i f  AE > 0 ,  it 
i s  accepted according t o  the  Boltzmann probabi l i ty  of s t a t i s t i c a l  
mechanics: 

P(AE) = exp (-AE/kT) (14) 

where k i s  Boltzmann's constant (usual ly  s e t  t o  1 i n  t h i s  context)  and 
T i s  an e f f e c t i v e  "temperature" of t h e  est imate  a t  any given t ime. I f  
T i s  la rge ,  w e  f requent ly  allow la rge  pos i t i ve  AES i n t o  t h e  reconstruc- 
t i o n .  I f  T i s  small, t h e  probabi l i ty  of accepting l a rge  p o s i t i v e  AES 
i s  much reduced. The concept of s t a r t i n g  t h e  reconstruct ion a t  a large 
T and slowly reducing i t s  value a s  E i s  decreased i s  known a s  
"simulated annealing" ( r e f .  1 5 ) .  Such annealing i s  necessary i f  t h e  
energy sur face  E e x h i b i t s  l oca l  minima: t he  occasional u p h i l l  energy 
swings of t h e  reconstruction reduce t h e  p robab i l i t y  of being trapped i n  
a l o c a l  energy m i n i m u m .  For quadrat ic  energy funct ions a s  shown i n  Eq. 
(13 ) ,  annealing i s  not required.  However, i f  E i s  not quadrat ic ,  
perhaps due t o  the  imposition of s t rongly non-linear p r i o r  knowledge, 
annealing may become s ign i f i can t  i n  improving t h e  recons t ruc t ion .  We 
have observed t h e  importance of annealing f o r  cases of very powerful 
p r i o r  knowledge, such a s  binary-object reconstruct ion,  when a p i x e l  i s  
constrained t o  be on or  off  and t h e  r u l e s  weighting i t s  agreement w i t h  
neighboring p ixe l s  a r e  very nonl inear .  

I n  our experience w i t h  t h e  Monte Carlo algorithm, we f i n d  t h a t  we 
can t y p i c a l l y  obtain est imates  '1 t h a t  agree very w e l l  w i t h  t h e  da ta ,  
w i t h i n  a f r a c t i o n  of a percent .  The smoothing cons t r a in t  i s  a very 
important one; without it we get  good data  agreement, b u t  t h e r e  a r e  
la rge  l o c a l  f l uc tua t ions  i n  t he  reconstruct ion t h a t  reduce i t s  v i sua l  
qua l i t y .  T h e  smoothing operation i s  imposed continuously a s  t he  
reconstruct ion evolves permit t ing an ongoing compromise between t h e  
smoothing cons t ra in t  and the  data  cons t r a in t .  
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A n  important aspect of coded-aperture imaging i s  t h e  determination 
of t h e  system operator  H .  T h i s  matrix contains a l l  of t h e  geometry and 
radiometry ( including at tenuat ion,  assuming known source-volume 
a t tenuat ion  parameters) mapping t h e  d i s c r e t e  object  space t o  t h e  
d i s c r e t e  de t ec to r  space. H can be modeled t h e o r e t i c a l l y  a s  i n  Eq. 
(ll), b u t  f o r  an a c t u a l  system it should be found experimentally by a 
ca l ib ra t ion  procedure. Such a procedure cons i s t s  of placing a point-  
source gamma-ray e m i t t e r  i n  a volume a t tenuator  t h a t  approximates the  
expected a t tenuat ing  proper t ies  of t h e  source, and stepping the  point 
source through t h i s  volume one p ixe l  locat ion a t  a t ime. For each 
p i x e l  locat ion,  t he  data  s e t  corresponds t o  a column of t h e  H matrix, 
including the  e f f e c t s  of a t tenuat ion ,  radiometry, aper ture  vignet t ing,  
and de tec tor  e f f i c i e n c i e s .  I t  i s  important t o  have a br ight  enough 
source so t h a t  t he  SNR of t h e  H-matrix e l e m e n t s  i s  high enough not  t o  
degrade t h e  SNR of t he  reconstruct ion.  Reconstructing the  object  u s i n g  
t h i s  H matrix automatically includes the  e f f e c t s  of a t tenuat ion  and 
de tec tor  c h a r a c t e r i s t i c s .  

There a r e  severa l  advantages t o  pinhole coded-aperture imaging as  
compared t o  t h e  conventional ro t a t ing  coll imated gamma-ray camera. The 
a b i l i t y  of a col l imator  t o  resolve two source poin ts  degrades f a s t e r  
w i t h  source depth than w i t h  a pinhole aper ture .  Thus t he  coded-images 
may contain higher spatial-frequency information than the  col l imator  
images. Also, t he  number of photons detected by a coded-aperture w i t h  
many openings i s  g rea t e r  than t h a t  of a col l imator  because t h e  
f r a c t i o n a l  s o l i d  angle of t he  coded aperture  i s  g r e a t e r .  Thus we 
expect t h e  SNR of a coded image t o  be superior  t o  t h a t  of a coll imator 
image. F ina l ly ,  i n  a coded-aperture system cons is t ing  of multiple 
views, no de tec tor  motion i s  required so t h a t  dynamic s tud ie s  a re  
poss ib le .  

There a r e  a l s o  disadvantages t o  the  coded-aperture approach. Even 
though w e  de tec t  more photons, t h i s  advantage i s  o f f s e t  by t h e  f a c t  
t h a t  w e  s u f f e r  from the  multiplexing problem i n  t h e  da ta  s e t s .  These 
two e f f e c t s  a r e  coupled and both together  determine t h e  f i n a l  SNR of 
t h e  reconstruct ion.  An addi t iona l  complication i s  the  need t o  
ca re fu l ly  charac te r ize  t h e  H matrix through t h e  c a l i b r a t i o n  procedure 
described above. For a f ixed  system of modules and a t tenuat ion  
boundaries, however, t h i s  need be done only pe r iod ica l ly .  The 
a t tenuat ion  boundaries can be f ixed by placing t h e  pa t i en t  w i t h i n  a 
water s leeve,  whose outer  dimensions remain f i x e d .  The reconstruction 
of t he  objec t  from a coded-image data  s e t  i s  a l s o  more d i f f i c u l t  i n  
general  than applying the  inverse Radon transform i n  conventional 
tomography, b u t  special-purpose hardware i s  being developed t o  optimize 
t h i s  procedure. 

A set of small, independent gamma-ray cameras a r e  being developed 
a t  t h e  University of Arizona f o r  appl ica t ions  i n  coded-aperture imaging 
( r e f .  1 6 ) .  These cameras use a 1 0  cm by 1 0  c m  NaI c r y s t a l  coupled 
o p t i c a l l y  t o  4 photomultiplier t u b e s  ( P M T s ) .  The outputs of t h e  4 PMTs 
form a 20-bit address t h a t  e x t r a c t s  from a previously defined lookup 
t a b l e  t h e  s t a t i s t i c a l l y  most l i k e l y  x and y loca t ion  of t h e  gamma-ray 
impact point  on t h e  c r y s t a l  f ace .  Each camera, o r  a bank of cameras, 
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has i t s  own coded aperture ,  t h u s  forming a camera module. These 
modules can then be posit ioned about the  pa t i en t  i n  a configuration 
t h a t  w i l l  optimally u t i l i z e  the  detector  a rea .  Figure 3 i s  an example 
of an 8-view system f o r  planar tomography t h a t  i s  cur ren t ly  being 
constructed i n  Arizona t o  be used fo r  hear t  and brain imaging. 

Preliminary simulations w i t h  systems s imi la r  t o  t h a t  of Fig.  3 
demonstrate t h a t  s ta te-of- the-ar t  reconstruct ions a re  obtainable w i t h  
data-acquis i t ion times of t he  order of a t h i r d  or  l e s s  than t h a t  of t he  
conventional r o t a t i n g  gamma-ray camera, which a re  t y p i c a l l y  30 t o  4 0  
minutes. T h i s  p o t e n t i a l  data-acquis i t ion time reduction, a s  well  t he  
s t a t i c  nature of t he  s y s t e m  allowing dynamic s tudies ,  may cont r ibu te  t o  
improving the  s ta te-of- the-ar t  i n  nuclear-medicine imaging. 

CONCLUSION 

We have b r i e f l y  described the  p r inc ip l e s  of imaging i n  nuclear 
medicine, and have focused on a p a r t i c u l a r  approach using coded 
ape r tu re s .  The formulation of t h i s  sh i f t -va r i an t  problem was 
developed, and a p a r t i c u l a r  reconstruction algorithm was presented.  A 
coded-aperture system being developed a t  t h e  University of Arizona f o r  
tomographic imaging i n  nuclear medicine was b r i e f l y  described. 
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Figure 1) A single-view coded-aperture system, 

imaging a planar  source.  

Figure 2 )  A multiple-view coded-aperture system, 

imaging a volume source. 
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Figure  3 )  An oc tagona l  coded-aperture  system be ing  used  a t  t h e  

U n i v e r s i t y  of  Arizona f o r  p l a n a r  tomography. 
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ABS TRACT 

Image Reconstruction has been mostly confined to context free linear processes; 
the traditional continuum interpretation of digital array data uses a linear 
interpolator with or without an enhancement filter. In this paper, anti-aliasing 
context dependent interpretation techniques are investigated for image 
reconstruction. Pattern classification is applied to each neighborhood to assign it 
a context class; a different interpolation/filter is applied to neighborhoods of 
differing context. 

It is shown how the context dependent interpolation is computed through 
ensemble average statistics using high resolution training imagery from which the 
lower resolution image array data is obtained (simulation). A quadratic least 
squares (LS) context-free image quality model is described from which the context 
dependent interpolation coefficients are derived. 

It is shown how ensembles of high resolution images can be used to capture the 
a priori spacial character of different context classes. As a consequence, a priori 
information such as the translational invariance of edges along the edge direction, 
edge discontinuity, and the character of corners is captured and can be used to 
interpret image array data with greater spatial resolution than would be expected by 
the Nyquist limit. A Gibb-like artifact associated with this super-resolution is 
discussed. More realistic context dependent image quality models are needed and a 
suggestion is made for using a quality model which now is finding application in 
data compression. 

I. INTRODUCTION 

The work presented in this paper builds upon theory['] that was developed 
further at the Westinghouse Advanced Technology Laboratory and more recent work at 
the Westinghouse Research and Development Center. The goal of this work is to 
develop optimal adaptive methods of  interpretinE image data. By matching the 
interpretation function to the local characteristics of the scene, a context 
dependent interpreter is designed which offers superior performance over context 
independent interpolation functions such as bilinear and cubic convolution. 
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When applied to sampled image data, this context dependent interpolation 
function yields an image which is free of the aliasing artifacts caused by image 
frequency content too high for the sampling frequency. Because of its ability to 
recognize familiar patterns in the sampled data before its interpretation, anti- 
aliasing interpolation selects the interpretation which is most probable given the 
a priori knowledge of context class patterns. This interpretation process is 
sometimes referredto assuper-resolution.[21 The benefits of super-resolution are 

o Provides a method of contextually and artificially increasing the sampling 
frequency from which the known system modulation transfer function can be 
better compensated. 

o Gives a better procedure for image zoom. 

o May lead to adaptive methods of image gathering such as is provided in 
nature through eye movement and neural pre-processing 

In Section 11, a distinction is made between data interpretation vs data 
interpolation. Here, rationale is given for pursuing this work and the basic 
theoretical approach is given. In Section 111, an experiment is described designed 
to show what benefits might be expected from super-resolution. In Section IV, 
results are presented of context dependent interpretation and some of the resulting 
artifacts are discussed. The discussion continues in Section V where a basis for 
future work is provided and a discussion of a more realistic quality model is 
presented. 

11. INTERPRETATION VS INTERPOLATION 

Images are often defined by their fourier content.t3I 

fl d2k 
I(x) = - I, elk-x 

-a (27r)Z 

where x and k are 2-vectors, I(x) is the image and I, is its fourier transform. A 
sampled image data set can be written as the sampling of an image at integer (or 
periodic) valued of x = i. (We select Ax = Ay = 1 throughout this paper.) 

-7r -co 

The sampled "image" generated by frequency k of unit amplitude and that generated by 
k + 27rm for any integer 2-vector m are the same; A fundamental frequency k is 
indistinquishable from any of its aliasing frequencies k + 27rm. A s  a consequence, 
it is really impossible to determine the true frequency content of an image without 
some a priori knowledge. The typical engineering assumption that is made is that 
the true image has no frequencies larger than the Nyquist frequency Ik, I < 7r and 
I ky I  < 7r- 

This assumption is most often wrong and forcing it to be correct by placing a 
smoothing filter in the image gathering process may result in l o s s  of information 
(interpretable spacial resolution). It does simplify the display process, however, 
which is then unambiguous. 



To get a better appreciation of the information loss that is possible, consider 
the images of figures la and lb. Here, a road, pipe, cable or other narrow-object 
illuminates a diagonal set of pixels which if interpreted according to the Nyquist 
assumption would lead to a display (interpretation) consisting of a string of blobs 
one for each diagonal pixel. It is a goal of this work to interpret this data more 
as a human might do as illustrated in Figure lb. What other assumption than Nyquist 
could be used to better accomplish this human-like interpretation of the data? 
Surely it is that almost everywhere in a scene there is some direction of minimal 
spacial frequency, while its orthogonal direction may have a very high frequency 
content; frequencies even higher than the Nyquist frequency. 

By data interpretation,f41 it is meant the generation of  a continuous image 
function I(x) from a sampled subset I(i) taking into consideration the directions in 
the image - data over which there are minimal/maximal changes. Such a process is 
context dependent because the interpolation process depends upon the scene patterns. 
In contrast, by data interpolation it is meant a context free interpolation of the 
data such as is provided by the sinc function interpolation based upon the Nyquist 
assumption. 

I(x,y) = I(i,j)sinc (7rlx-il>sinc(nly-j I ) .  
i , j .  

To implement a context dependent interpretation process, the neighborhood of 
each data sample must be classified into one of many context classes, K. This can 
be done by computing the local gradient and classifying based upon gradient 
magnitude and direction. More complex classes are also possible for images 
containing lines, line ends, corners, etc. For each context class, K, the 
interpolation formula 

I(x,y) = C I(i,j) gK(x-i,y-j) is used where g, is the interpolation 
i 

coefficients (function) matched to the context class. It is anticipated that 
process would be capable of distinguishing the line-like objects of figure 

such a 
1 and 

provide for a more human-like interpretation. The extent to which this is possible 
is the subject matter of this paper. 

111. THE Experiment 

An experiment was designed to determine the extent to which a priori knowledge 
of scene content could be used to improve sampled data interpretability. A real 
high resolution television picture was taken with a CCD camera, digitized to obtain 
a 512x384 digital image, and averaged over sixteen frames to reduce noise. It was 
an image of a white piece of rectangular cardboard tilted by about 30° relative to 
the camera axias (see figure 2). 15x12 blocks of pixels were averaged to obtain 180 
coarse images of the scene, each 32x32 pixels. These 180 coarse images varied in 
the manner (phase) by which the data were averaged from the finer resolution data. 
The scenes were contextually classified as illustrated in Figure 3 ,  and one of the 
coarse images was contextually interpreted to achieve the high resolution image 
shown in Figure 4. The philosophy for deriving the super-resolution interpretation 
functions is subsequently presented. This philosophy uses a least squares image 
quality model which is believed to be at the heart of the Gibb~-like[~’ artifacts 
seen in Figure 4 .  
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The interpreted function for each context class, K, is expressed as 

where N was selected as a 5x5 neighborhood centered at the pixel nearest the point 
X,Y. The fine grid (512x384) was used for discrete points within each pixel. 

The interpolated image was compared to the original (ground truth) data in a 
least squares manner yielding a cost function: 

Here < >K is an ensemble average over all 180 images at all defined context class K 
centers. To obtain the "optimal" interpolation function, we simply take a 
functional variation of C with respect to g, (x-i, y-j) giving a system of normal 
equations which decouple for each subpixel location x,y. The system of normal 
equations is 

For each x,y and K, this is a system of twenty five equations for the contextual 
interpolation coefficients gK(x-i,y-j) to be applied at the 5x5 array in the 
neighborhood of each pixel classified as K to achieve the interpolation value 
I(x,y). The Matrix <I(i,j)I(i',j')> and vector <I(x,y)I(i',j')+ are ensemble 
averages over the 180 processed coarse images and the original fine resolution 
image. 

IV. Results 

The results of this first experiment is shown in Figure 4. A context free bilinear 
interpolated image is shown in Figure 6 .  Clearly, the context dependent process 
retains the translational invariance along the edge and is much "sharper" than the 
context free bilinear interpolator which also shows the staircase aliasing 
artifact. But Figure 4 has a Gibb-like artifact which in itself is a distraction. 
Surely as humans, we wouldn't interpret the coarse data shown in Figure 5 with these 
Gibb-like oscillations! Where do they come from? 

To understand the results of this experiment, all we really need to recognize 
is that the data are noisy. 

A sharp edge discontinuity with a white noise background should have to be 
filtered a-la Weinerf61 if based upon a least squares fidelity criteria. The Weiner 
filter is a very sharp filter and will essentially truncate all spatial frequencies 
whose amplitude is below the noise level while preserving all those above the noise 
level. Figure 7 illustrates the response of an edge function to such a process. 
The high frequency truncation does a best-least squares job but results in the Gibb 
oscillations. It is believed that this Gibb's phenomena is the process at work here 
and results from the implicit assumption that errors near edges are just as 
important as those away from the edge; (least squares criteria). 
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V. Discussion and Future Work 

d@ 

dx 
a2 + h2 - 

The Gibbs artifact can be subdued if a different model to an image quality 
measure is taken. The sharp discontinuity of an edge, together with the least 
squares criteria, places a severe restriction upon the approximating function 
and admits short but large excursions from the edge function. Another image quality 
measure may prove more effective in yielding an edge approximation which is more in 
keeping with a human interpretive approach. It is a quality model which is finding 
application in DPCM data compression. The model considers human toleration to a 
slight "jitter" of the pixel (sometimes called rate distortion). Any error in the 
approximating function is compared not just to the expected noise variance, a 2 ,  but 
to the noise variance plus rate distortion. If @(x) is the approximating function 
to I(x), then (I(x)-@(x))~ must be compared to 

where h is the variance equivalent subpixel jitter. 

>. - 
(I(x) - @ (x)l2 

The modified cost function is then < 
a2 +h2[*)' 

This is a nonlinear functional which in the limit of very low contrast edges (noisy 
edges) leads to the previous least squares measure. But for large contrasts, the 
model compares the error to the slope of the approximating function. In this high 
contrast case, an edge gets approximated by the exponential function @(x) = l-e-"x 
which distributes the representation error uniformly and provides the type of 
solution one might expect a human to choose. This edge function is shown in Figure 
8. It trades off a more uniform transition in exchange for a sharper drop near the 
edge. The solution is forced to be a smooth transition because if 

d @  
- =  0 anywhere, then any error there is given a very large weight. 
dx 
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Figure l b .  Data Interpretation (Display) 

52 



Figure 2. Original TV Image - 

Figure 3. Some Pixels Class i f ied  as Corner-Like 
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Figure 4 .  Contexturally Interpreted Coarse Data 

54 

Figure 5. 32 x 32 Coarse Scene of the Rectangle 



Figure 6. Aliasing Artifacts Caused By Context-Free Bilinear Interpolation 
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Figure 7. Gibb-Like Oscillations Caused By Least Square Error Criteria and Sharp 
Truncation in the Fourier Plane 

Figure 8. Exponential Edge Interpretation Based Upon a Modified Image Quality Model 
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ABSTRACT 

Efficient compression of image data requires the understanding of the noise 
characteristics of sensors as well as the redundancy expected in imagery. Herein, 
the techniques of Differential Pulse Code Modulationl(DPCM) are reviewed and modified 
for information-preserving data compression. 

The modifications include: 
o 
o 
o 
o 
o Feedback control for constant output rate systems 

Mapping from intensity to an equal variance space 
Context dependent one and two dimensional predictors 
Rationale for 
Context dependent variable length encoding of 2x2 data blocks 

noAlinear DPCM encoding based upon an image quality model 

Examples are presented at compression rates between 1 . 3  and 2.8 bits per pixel. 
The need for larger block sizes, 2D context dependent predictors, and the hope for 
sub-bits-per-pixel compression which maintains spacial resolution (information 
preserving) are discussed also. 

Introduction 

T h i s  paper discusses an image data compression technique which has shown great 
promise in studies performed at Westinghouse. The technique incorporates "context 
dependent" and "category encoding" methods. The major steps of the process 
comprise : 

1. equal variance mapping of the input data 
2. 
3 .  nonlinear differential pulse code modulation (DPCM) of the pixel 

4 .  
5. error correction encoding to protect against transmission and storage bit 

context dependent prediction of the current pixel value 

differences 
variable length encoding of blocks of the DPCM deltas 

errors. 

Ref. 1. Azriel Rosenfeld and Avinash C. Kak, Digital Pic.ture Processing, 
Chapter 5, Academic Press, Inc., 1982 
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A block diagram of the basic concept is given in Figure 1. The input data is passed 
through a nonlinear function selected to make the noise variance of the signal 
independent of the absolute signal level. The exact shape of this function is 
tailored to compensate for signal dependent noises; at low signal levels the 
predominant noise is system noise, while at higher levels shot noise or scene noise 
predominate. The equal variance mapping technique renders the DPCM process equally 
effective at all signal levels. 

The context dependent predictor (CDP) applies a set of coefficients to 
neighboring pixels (casual process) to predict the next pixel intensity. The choice 
of coefficients depends upon the pattern classification assigned to the neighborhood. 
The CDP can be either one or two dimensional. The predicted pixel is subtracted from 
the actual pixel data to obtain a "delta". 

DPCM is the third step in the data compression process. A graded, symmetrical 
table of delta is used. The DPCM code keeps the noise of the delta code selection an 
approximately constant percentage of the actual signal gradient, and produces an 
output data set whose probability density function is sharply peaked. This latter 
property makes the output deltas particularly suited to variable-length encoding 
techniques such as Huffman encoding. 

The next step is the variable-length encoding of 2x2 data blocks. The data is 
encoded in blocks of two by two pixels for encoding efficiency. Variable-length 
encoding assigns the output Huffman code to the 2x2 blocks of deltas in such fashion 
that the shortest groups represent the most frequently used delta blocks ,  and the 
longest groups represent the most infrequently used delta blocks. This minimizes the 
number of  bits in the output data stream. 

Because the data compression process removes almost all redundancy from the 
signal, an error in signal transmission can cause a large l o s s  of data. This makes 
it necessary to follow the data compression process with an error-correcting encoding 
process. This process reintroduces a small amount of signal redundancy with high 
efficiency, so that an encoding overhead of only one or two percent suffices to 
reduce bit loss to an acceptably low level. 

Equal Variance Maminp; 

The equal variance mapping function is derived from a noise model. 

The noise model used assumed three independent noise sources: 

1. electronic noise 
2. shot noise 
3 .  scene noise 

Scene noise can be viewed as a fluctuation in scene reflectivity which is not 
considered as containing any significant information. The purpose of the equal- 
variance mapping function is to map the input intensity I into a new variable X such 
that the noise, o x ,  in this new variable is independent of the absolute level X. 
Figure 2 illustrates this property of the function. 
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The noise model expresses the input intensity variance, 

2 
UI2 = 100 I+ fi + I I 

electronic shot scene 
noise noise noise 

In this model, N = I/r, measures the input signal in electrons. In terms of N, 

oN2 = - '+ N + (RN) '  r r " 1  
o0/r is the number of electrons of electronic noise. Some sensor electrometers 

have reduced this noise component down to seven electrons. More realistically, 
electronic noise of hundreds of electrons might be expected. .V/N is the shot noise 
due to the random nature of photon emission. A fraction, R, of the scene signal is 
considered texture or scene noise. Typically, R Z  . 01  is used. The equal variance 
mapping function satisfies the differential equation 

which has solution 

0 0  

13 
X(1) = + l o g  1 o02 + rI + R ~ I ~  + 131 + -- 

2 R  

I".+-) 2 R  

@ is selected so that X(IMAx) = G A X .  We often select &,, = 4095 so as to optimize 
the dynamic range of a 12 bit processor. 

Context DeDendent Predictor 

One dimensional predictors are used mostly because two dimensional ones require 
sensor equalization which makes all of the detectors respond similarly to input 
intensity; many systems cannot afford the luxury of  data equalization. A context- 
free linear predictor is of the form 

=xi + €(Xi -xi- 1) Xi+l 

where E is a constant (E = .75 is sometimes used). A context-dependent predictor has 
the same "form" of this equation, but €(xi - Xi-,) is interpreted as 'la function of" 
(Xi - Xi- l > .  This function is selected to maximize the prediction accuracy and can 
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be determined using scene statistics. The results suggest that an equivalent 
multiplier, E, should be negative for very small differences, E-1 for intermediate 
but significant gradients and E- . 7  for very large gradients. Intuitive rationale 
supports these findings; in uniform regions, small differences should be smoothed 
(negative E), and ~ = l  near large edge discontinuities would overshoot the edge. 

TWO dimensional predictors are currently being inserted into the context 
dependent DPCM image compression software. A l s o ,  the encoding block is being 
increased from 2x2 to 4x4 pixel blocks. The two dimensional predictor uses data from 
a causal neighborhood as shown in Figure 3 .  This data set is used to characterize 
the neighborhood in terms of a context class index, k. The set of  prediction 
coefficients used is dependent upon k but i s  otherwise linear: 

I 

X =  
i, 

The DPCM Processor 

The block diagram of the DPCM processor is given in Figure 4. The input to the 
process is the output of the equal-variance mapper. The predictor functions in this 
mapped space, attempting to predict the next pixel value as accurately as possible. 
The better the predictor, the narrower will be the density function of the resulting 
deltas. The processor includes gain in the forward and reverse paths so that a 
dynamic range adjustment (DRA) can be made by the feedback parameter Q. This 
controls the output bit rate and ensures optimum delta encoding of the data in the 
transmission mode. The delta values are selected from a table of possible deltas 
which has been derived by consideration of data noise and rate distortion. This 
consideration leads to a hyperbolic sine relationship between the actual delta 
difference and the delta code. A typical delta table is given in Table 1. 

Variable-Length Encodim - with Blocking 

The distribution of 6-code values is peaked near zero. If Pi is the probability 
of the ith6-code (relative frequency), then a variable length code (Huffman code) 
having about bi--log, Pi bits for the ith &-code state minimizes the number of bits 
required to encode the image values. Without encoding, the bits per pixel might be 5 
since 6-codes range over -15 <+15; (5 bits per pixel (bpp)). Because Po is 
typically . 7  or s o ,  only 0.5 bits- are allocated to that state. A s  a consequence, an 
encoding inefficiency is incurred whenever a single state occurs with such high 
probability. To avoid this encoding inefficiency, 2x2 blocks are Huffman encoded 
with 2 bits = -10g~(.7)~ assigned to blocks consisting of all zero 6-code states. 

To provide a structure which can be continuously processed, the 2x2 blocks are 
arranged as shown in Figure 5. To further improve the encoding, contextual 
information from neighboring blocks is used to create an adaptive Huffman encoding 
scheme. The sign bits from the delta codes of the pixel on either side of the block, 
taken together with two bits from the adjacent top pixels are used to define 16 
context states. Statistics have been accumulated for all of these states and a 
different Huffman encoding table is used for each context. 



CateEory Encoding. Method 

It is impractical to assign variable length codes to each of the possible 2x2 
block states. Since 5 bit DPCM codes are used, this would require storage for 24x5 = 

220 code words for each of 16 contextual situations. To avoid such a massive table, 
category (cluster) encoding is used. Many of the 220 states which are clustered into 
separate categories include only one of the block states while other categories 
include many of these states. For those categories containing many states, an 
additional resolution code must be supplied in order to identify the specific state 
of the cluster. 

In the schema shown in the Figure 6, a 3-bit pixel category (sub-category) is 
assigned. The eight states correspond to 6-code values +0, +1, 22, +(3, 4 ,  5, 6 or 
7) and IS-code I 2 8 .  The 3-bit pixel categories are used to define a 5-bit a, R pair 
category (1x2 category) according to the strategic table shown. Note that if both a 
and R pixels have 6-code values between +2, the 1x2 category code completely 
determines the state of both pixels; no resolution code need be appended to the 
category. #en the two upper and lower a,R pair 1x2 category codes are brought 
together, each pair contributes five bits to a variable length 2x2 category code 
table. These 10 bits plus the four context bits constitute an address for a single 
16K ROM containing the complete adaptive Huffman encoding tables. This is a thousand 
times less storage than the direct approach! 

Error-Correction Overhead 

Error correction encoding processes operate by the insertion of error correction 
bits into blocks of data before subjecting the data to a noisy process such as 
storage or transmission. After the data is transmitted (or read from storage) a 
mathematical operation on the combined block of data plus error correction bits 
reveals the presence and location of any bits in error, up to a limit determined by 
the number of correction bits and the size of the data block. The quality of the 
code is measured by the maximum number of bits in error, L, that can without fail be 
corrected by the code within a fixed block. The overhead ratio M/K of this process 
is the number of error correction bits M divided by the number of bits K in the 
original data block. This ratio is a function of the ratio L/K. For a fixed value 
of this latter ratio, the bit error rate improves with the block size K in a complex 
manner. A n  analysis of this problem was made assuming an output bit error rate of 

and an overhead ratio of just over 
1 percent (1.14%) was required. Under these assumptions, calculations showed that, 
with a block size of 5000, any 5-bit error could be corrected. This is far better 
performance than needed for any perceived application. 

with an input bit error probability of 

Compression Performance 

The performance of this data compression technique is dependent on the statis- 
tics of the input images. Our experience to date has been with scenes taken in the 
visible spectrum. With this type of input, compression from 2 to 2.5 bits per pixel 
can be achieved with a noise increase of no more than 3 dB. Images compressed to 
1.3 bpp show no loss of information content. Figure 7(b-d) is the compressed data of 
a scene at (1.4, 1.7, and 2.1 bpp). There is little perceptual difference between 
this compressed image and the original, even at 1.3 bpp. Figure 8 (b-d) shows another 
image compressed at 1.5, 2.0, and 2.4 bpp, The two images were courtesy of the 
National Institute of Health, Bethesda, Maryland. 
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Table 1. 5-Bit DPCM Table 

~ Blocking Geometry: 

&Code 
State 

0 

f l  

f 2  

f 3  

f 4  

f 5  

f 6  

f 7  

f 8  

f 9  

f l 0  

f l  1 

f 1 2  

f 1 3  

f 1 4  

f 1 5  

sx -Range 

-3 - -3 

* ( 4 - 9 )  

10 - 17 

18 - 28 

29 - 42 

43 - 62 

63 - 91 

92 - 132 

133 - 192 

193 - 278 

279 - 402 

403 - 582 

583 - 843 

844 - 1220 

1221 - 1765 

1766- QO 

No. of 
x-States 

7 

6 

7 

10 

14 

20 

29 

41 

60 

86 

124 

180 

261 

377 

545 

- 

- 

Context 2-Bits 

I 

6 Value - 
0 

f 6  

13 

21 

33 

50 

73 

106 

154 

223 

323 

46 7 

676 

978 

1415 

2047 

1 Bit 

Figure 5 .  Variable Length Encoder 2 X 2 Blocking Concept 
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Figure 7a. Plane Original. 

- 

Figure 7b. Plane at 2.1 BPP. 
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Figure 7d. Plane at 1.4 BPP. 
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Figure 8a. Building Original. 
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Figure 8b. Building at 2 . 4  BPP 

. .  



Figure 8c. Building at 2.0 BPP. 

Figure 8d. Building at 1.5 BPP. 
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ABSTRACT 

Image gathering and coding are commonly treated as tasks separate from each other and from 
the digital processing used to restore and enhance the images. Our goal in this paper is to develop 
a method that dlows us to 2ssess quantitatively the combined performance of image gathering and 
coding for the digital restoration of images with high visual quality. Digital restoration is often 
interactive because visual quality depends on perceptual rather than mathematical considerations, 
and these considerations vary with the target, the application, and the observer. Our approach is 
based on the theoretical treatment of image gathering as a communication channel [J. Opt. SOC. -Am. 
-42, 1644 (1985); 5,285 (1988)l. Initial results suggest that the practical upper limit of the information 
contained in the acquired image data ranges typically from - 2 to 4 binary information units (bifs) 
per sample, depending on the design of the image-gathering system. The associated information 
efficiency of the transmitted data (i.e., the ratio of information over data) ranges typically from - 0.3 to 0.5 bif per bit without coding to - 0.5 to 0.9 bif per bit with lossless predictive compression 
and Huffman coding. These upper limits of performance are reached when the sampling passband 
of the imagegathering system closely matches the Wiener spectrum of the incident radiance field. 
The visual quality that can be attained with interactive image restoration improves perceptibly as 
the available information increases to - 3 bifs per sample. However, the perceptual improvements 
that can be attained with further increases in information are very subtle and depend on the target 
and the desired enhancement. 

1. INTRODUCTION 

Image gathering and coding are commonly treated as tasks separate from each other and from 
the digital processing used to restore and enhance the images. Ordinarily, image-gathering systems 
are designed to produce good visual quality for conventional image displays, and data-compression 
techniques are developed to reduce, as much as possible, the data necessary to reproduce a faithful 
duplicate of this original image. Image restoration and enhancement, despite the rapidly increasing 
use of digital processing, are virtually ignored in these assessments of image gathering and coding. 

Digital image restoration is often interactive because a single figure of merit for visual quality 
does not exist to formulate a single “best” algorithm. Visual quality is too elusive a concept for 
such a figure to exist. It depends on a number of attributes, such as fidelity (resemblance to the 
scene), resolution (minimum discernible detail), sharpness (contrast between large areas), and clarity 
(absence of visual artifacts and noise). The trade-off between these attributes of image quality still 
must be based on perceptual rather than mathematical considerations, and these considerations 
vary with the target, the application, and the obser-rer. In addition, sometimes the enhancement of 
certain target features is desirable to improve resolution and sharpness, even at the cost of fidelity 
and clarity. 
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In previous papers Huck et a1.192 have shown that image gathering can be treated like a 
communication channel if (and only if) the image-gathering degradations are correctly accounted for 
in image processing. If this is done, then the informationally optimized image-gathering system tends 
to maximize the fidelity and robustness of a variety of optimally restored representations ranging 
from images to edges. It also is possible with interactive image restoration to improve significantly 
on the visual quality produced by the traditional methods employed in digital image gathering 
and r e~ to ra t ion .~1~  These traditional rnethods5-l0 often have failed to improve on the visual quality 
obtained in a simpler and faster way by image reconstruction and interpolation. It is perhaps for 
this reason, at  least in part, that image gathering and coding have not been assessed directly with 
digital restoration and enhancement in the pzst. 

In this paper we extend the information theoretic assessment of image gathering to include 
image coding. Our goal is to develop a method that allows us to assess quantitatively the combined 
performance of image gathering and coding for the interactive restoration of images with high visual 
quality. The major questions we deal with are: How much visual information can be acquired by 
the image-gathering process? How much information is required to restore images with high visual 
quality? And how can this information be transmitted most efficiently? We do not attempt here to 
compare the performance of a variety of image-coding techniques. Instead, we limit our assessment 
to the familiar lossless predictive compression with Huffman coding. 
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2. OUTLINE 

Figure 1 presents the end-to-end block diagram of the image gathering, coding, and restoration 
processes that we analyze in this paper. Our approach is to assess quantitatively the flow of 
information through the image gathering and coding processes, followed by a qualitative assessment 
of the visual quality that can be restored from the transmitted information. 

Radiance Discrete Digital Coded Decoded Processed 
field signal signal signal signal signal Representation 
WY) ,y~~~~~----pr~~lmai,el ~ ( x , y )  

reconstruction + Quanlization Encoding Decoding Processing gathering 

Figure 1. Model of image gathering, coding, and restoration. 

In Section 3 we assess the information density of the data that is acquired by the image-gathering 
process in terms of the Wiener spectrum of the radiance field, the design of the image- gathering 
system, and the dynamic range and quantization intervals of the quantizer. We also introduce the 
concept of information efficiency (i.e., the ratio of information over data) as an additional criterion 
of the effectiveness of image gathering and coding. Our formulations are based on the theoretical 
treatment of image gathering given by Huck et a1.'P2 Following the methods of Shannon" and of 
Fellgett and Linfoot,12 this treatment is constrained by the assumption that the radiance field and 
the noise are wide-sense-stationary Gaussian random processes. 

In Section 4 we assess the effects of image coding on the information efficiency of the transmitted 
data. We use the familiar lossless predictive compression together with Huffman coding. The 
predictive compression reduces the statistical redundancy of the digital data without loss of 
information, and the Huffman coding compresses the data by transmitting the more probable symbols 
in fewer bits than the less probable ones. In addition, we demonstrate that important differences 
exist between the information density of the transmitted data and the entropy that is often used in 
the prevailing digital processing literatures1' to assess data compression. 

In Section 5 we assess the quality of the restored images as a function of the available information. 
We first consider fidelity-maximized restorations. These restorations allow us to perform parametric 
trade-offs in terms of a single figure of merit, namely, the image fidelity. However, the fidelity- 
maximized images exhibit some visual defects such as ringing, aliasing artifacts, and noise. Thus, we 
use the Wiener-Gaussian enhancement (WIGE) filter introduced by McCormick et to suppress 
these defects and improve the visual quality. 
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3. IMAGE GATHERING 

A. Information Capacity 

Let the image-gathering system acquire information about some isoplanatism area A of the 
radiance field L(z ,  y) with the average power ui. Furthermore, let the image-gathering process 
be constrained, like a communication channel, only by the frequency passband 2 and the white 
noise n(z,y) with the power u&. Then the absolute upper limit of the acquired information about 
the area A is defined by the expression 

1 
HC = -IAllSlog2 2 [I + ( ~ ( ~ L / u N ) ~ ]  , 

where KUL/UN is the rms signal-to-noise ratio (SNR) and I( is the steady-state gain of the radiance- 
to-signal conversion in the image-gathering process. The associated information capacity of the 
image-gathering process per unit area A and unit passband B is 

A 

The magnitude of h, may be defined as bifs, binary information units per unit area and passband, 
analogous to bits for the binary units per sample of the transmitted digital data. 

The information capacity h, is plotted as a function of the SNR KUL/UN in Fig. 2. It varies from - 1 bif for I<UL/UN = 2 to - 10 bifs for I(UL/UN = 1000. This is the range of SNRs that is typically 
of interest. SNR’s below this range ordinarily do not permit the restoration of images with good 
visual quality, and SNR’s above this range ordinarily do not improve the visual quality. In practice, 
of course, information is inevitably lost because the Wiener spectrum of random radiance fields is 
not white and band-limited to B and because the image-gathering process introduces aliasing and 
blurring as well as noise. In addition, information ordinarily is lost by the signal quantization that 
is required for digital data transmission and processing. 
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Figure 2. Information capacity h,  versus SNR KUL/UN. The image-gathering process is assumed to be constrained, 
like a communication channel, only by the sampling passband B and the SNR KUL/UN. The radiance field 
spectrum is assumed to be white and band limited to B. 

h 

h 

I 74 



B. Radiance-Field Properties 

We assume that the incident radiance field L ( z ,  y) consists of contiguous rectangles whose 
sides are parallel to some axes (d,y') (see Fig. 3). The transitions along each axis obey the 
Poisson probability-density function with the (expected) mean separation A-', and the radiance- 
field magnitude of each rectangle obeys the zero-mean Gaussian probability-density function with 
the (expected) variance u i .  The resultant autocorrelation of L ( z ,  y) i d3  

ad" ,  Y) = +XP [-V - 4 (14 + IY'I)] 

= +XP [- ( I 4  + IY'I) / P I  

where c is the correlation of the radiance-field magnitudes of adjacent rectangles and, for convenience, 
p = l/A(l- c). If we let the orientation of the (t', y') axes of the rectangles be random with uniform 
probability, then the autocorrelation becomes circularly symmetric as given by 

( 2 4  
2 ad",  Y) = = ULexP (-ld/P) > 

where r2 = z2 + y2. The corresponding Wiener spectrum of L(x,y)  can be closely approximated 
byl-4,14,15 

where p2 = v2 + w2. Figure 4 illustrates the normalized auto correlation @i(z ,  y) = u E 2 @ ~ ( z ,  y) and 
the normalized Wiener spectrum @ i ( v ,  20) = u z 2 @ ~ ( v ,  20). The mean spatial detail of the radiance 
field is conveniently represented by p .  This implies that the correlation is c x 0.3. The exact 
expression for the Wiener spectrum of the target shown in Fig. 3 is given by Fales et  [Eq. (IS)]. 
The Wiener-spectrum curves for that expression are almost identical to those given for the more 
convenient Eq. (2b). 

A 

(a) Target (b) Sampling lattice 

Figure 3. Random radiance field with mean spatial detail p = 3, and the sampling lattice with unit sampling intervals. 
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(a) Autocorrelation (b) Wiener spectrum 

Figure 4. Autocorrelation functions and Wiener spectra of the radiance field for several mean spatial details p .  

C. Image-Gathering Degradations 

Conventional image-gathering systems consist of an objective lens (or lens system) and some 
sort of photon-detection and sampling mechanism. The most common mechanisms are sensor-array 
and line-scan devices. The lens and photosensor apertures are basically low-pass spatial-frequency 
filters. The spatial-frequency response of the image-gathering system, which is the product of these 
two low-pass-filter responses, ordinarily decreases smoothly with increasing spatial frequency until 
the lens diffraction limit is reached. 

Figure 5 presents a model of the image-gathering process that transforms the continuous radiance 
field L ( z ,  y) into the signal sg(z, y) as defined by the expression 

Y) = [ W z ,  Y) * d . 1  Y)] - 111(2l Y) + 4 x 1  Y)l ( 3 4  

where IC is the steady-state gain of the (linear) radiance-to-signal conversion, n(z ,  y) is the (additive, 
discrete) sensor noise, * denotes convolution, and 111(z, y) denotes sampling. Taking the Fourier 
transform of sg(z, y) yields the spatial-frequency representation of the acquired signal 

h 

i g ( w ,  w) = ICZ(v, w).i,(tJ, w) * - III(v, w) + q v ,  w), (3b) 
h 

where L(v ,  w) and h(v, w) are the spatial-radiance and noise transforms, respectively, and . ig(tJ, w) 
is the spatial-frequency response of the image-gathering system. The sampling function is given by 

c o c o  

iil for unit sampling intervals. The term - (w, w) accounts for the sampling sidebands. 
# 010 
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Figure 5. Model of the imagegathering process. 

It is convenient to normalize the sampling intervals to unity, and to define the frequency passband 
5 as the sampling passband given by 

5 = {(v,w), 12rl < 0.5, Iwl < 0.5). (4) 

The corresponding area in the frequency domain is IBI = 1. The low-pass frequency response of 
conventional image-gathering systems can often be approximated by the Gaussian form16 

f g h  4 = exp [-(P/Pc,”] 7 (5) 

where the optical-design parameter pc is the spatial frequency at which f g ( v ,  w) = l / e  = 0.37. 
If we now let the image-gathering process be constrained by the response f,(v, w), the sampling 

passband 5, and the SNR I < C T L / U N ,  then the information density h, of the acquired signal sg(z, y) 
becomes1 

The associated variance ui of the signal is 

03 .. 
.. 

-03 

Figures 6 and 7 illustrate the dependence of the information density h, on the optical-design 
parameter p c  for several mean spatial details p and SNR’s I(UL/UN. These results suggest the two 
following generalizations: 

(1)The information density h, tends to be maximum when the sampling passband most 
closely matches the radiance-field spectrum, regardless of the design of the image-gathering 
system. This occurs, for the target characterized by Eqs. (2), when the sampling intervals 
are approximately equal to the mean spatial detail (i.e., when p M 1). 

This generalization intuitively is appealing when one considers image restoration. One could not 
expect to restore spatial detail that is much finer than the sampling interval, and one ordinarily 
could expect to restore detail that is much coarser from fewer samples. 

(2) The informationally optimized optical design (Le., trade-off between aliasing and blurring) 
is a function of the SNR. 
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Again, this generalization intuitively is appealing when one considers image restoration. In one 
extreme, when the SNR is very low, then the restoration of fine detail is constrained by noise, and 
so it ordinarily would be preferable to avoid substantial blurring (at the cost of aliasing). In the 
other extreme, when the SNR is very high, then the restoration of fine detail is not constrained by 
noise, and so it ordinarily would be preferable to avoid substantial aliasing (at the cost of blurring). 
However, as we will show in Section 5 below, some other constraints may be introduced by the image 
restoration, such as ringing near sharp edges (Gibb's phenomenon). 

Figure 6.  Variation of information density with imagegathering system design. Results are given for several mean 
spatia1 details p and SNR's K U L ~ U N .  
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( a )  Information density ( b ) Frequency response 

Figure 7. Variation of information density with image-gathering system design. The informationally optimized design 
is the design for which the imagegathering response designated by pc is selected to  maximize the information 
density h, for a given SNR l i ' u ~ l a ~ .  

As a consequence of the above two generalizations, we limit the following quantitative inves- 
tigations mostly to the mean spatial detail ,u = 1 but consider three optical designs (see Fig. 7) 
throughout the remainder of this paper. They are (a) the conventional response pc = 0.7 that is 
also informationally optimum for very low SNR's, (b) the response pc = 0.45 that is informationally 
optimum for intermediate SNR's, and (c) the response pc = 0.35 that is informationally optimum 
for very high SNR's. 
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D. Quantization 

Each discrete signal sg(z, y) is quantized into K levels for V-bit encoding, K = 2q. If we divide the 
area A into M by N samples, then the area of A for unit sampling intervals is IAl = MN. Thus, 
the number of distinguishable states in A is K ~ ~ ,  and the amount of data in A is 

Hd = MNlog2 K .  

The associated data density is 

log2 K = V .  Hd 
M N  

hd = - 
It is convenient to let the units of hd be bits even though strictly they are bits per sample. Just 
as the information capacity h, given by Eq. (1) sets a theoretical upper limit on the information 
density h, acquired by image gathering, so the data density hd given by Eq. (8) sets a theoretical 
upper limit on the information density transmitted by digital communication. 

E. Information Efficiency 

Since it ordinarily is desirable to use as few encoding levels as possible, some loss of information 
density is associated with the quantization process. Hence, the information density h, of the 
quantized signal s,(z, y) is closely interrelated with the data density hd. This interrelationship 
suggests the definition of information efficiency as the ratio h,/hd. The units of this ratio are 
bif/bit. This definition of information efficiency is analogous to Khinchin’s definition of “relative 
entropy” as the ratio h/log m, where h is the entropy of the test, and log m is the maximum value 
of h for the m different symbols of the test.17 Another analogy is Jones’s definition of “information 
efficiency” of a light beam as the information capacity per transmitted photon.ls 

To properly interpret the information efficiency h,/hd, we must account for an important 
difference between continuous and discrete entropies. The data density hd is defined for a discrete 
random variable (Le., the quantization levels with a uniform probability density function) for which 
the entropy provides i an absolute measure of randomness. The information density h, is defined for 
a continuous random variable (Le., the continuous magnitude with a Gaussian probability density 
function) for which the entropy provides a measure of randomness relative to an assumed standard. 
It intuitively is satisfying to adjust the ratio h,/hd so that the theoretical upper limit of information 
efficiency becomes unity. This adjustment occurs when (1) the Wiener spectrum $J,(TJ,w) is white 
and band-limited to E, (2) the image-gathering response ?,(VI w) is unity within 2 and zero outside, 
and (3) the quantization intervals are very large compared with the magnitude of the noise. The 
information density h, of the digital data becomes then 

Equation (9) for the information density h, reduces to Eq. (8) for the data density hd when the 
above three conditions are evoked. The final step in this reduction of Eq. (9) to Eq. (8) entails the 
approximation given by 

1 
hq = 7 1Og2(1+ K 2 )  M log2 K = hd. 
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This adjustment of the information density h, leads to a linear encoding of the Gaussian signal 
variation over a dynamic range of -&Kog to &Ko,, which encompasses 92% of the signal. The 
corresponding quantization interval is A = 2&Kog/n. Values of s,(z, y) < S ,  - &ag are assigned 
the value 0 and values of sg(x, y) > 3, + &og are assigned the value K - 1, where S ,  is the average 
value of sg(z, y). 

Figures 8 and 9 illustrate the dependence of the information density h, and the information 
efficiency h,/hd on the optical-design parameter pc, the SNR I<UL/UN,  and the number of encoding 
levels 77. These results suggest the following generalizations: 

(3a)Conventional optical responses (pc = 0.7) limit the information density to h, M 2.2 
bifs. This limit is closely approached when the SNR is I<u~/ap ,~  M 20 and the number 
of encoding levels is 77 M 6 bits. The corresponding maximum information efficiency is 
h,/h,j M 0.53 bif/bit, but with the reduced information density h, M 1.7 bifs as obtained 
with 3-bit encoding. 
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Figure 8. information versus the SNR h'aL/aN for several encoding levels 17. The first row presents the 
information capacity h,  and density h,, the second row presents the lost information h,  - h,, and the 
third row presents the information efficiency h, /hd .  The imagegathering system is characterized by the 
optical-design parameter pc and the SNR KUL/UN. The mean spatial detail p = 1. 
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(3b)Optical responses (pc = 0.45) that are informationally optimized for intermediate 
SNR's limit the information density to h, x 3.6 bifs. This limit is closely approached 
when the SNR is KLTL/UN 80 and the number of encoding levels is r] x 7. The 
corresponding maximum information efficiency is h,/hd x 0.54 bif/bit, but with 
the reduced information density h, x 2.7 bifs as obtained with 5-bit encoding. 

(3c)Optical responses (pc = 0.35) that are informationally optimized for high SNR's 
limit the information density to h, x 4.7 bifs. This limit is closely approached 
when the SNR is I (UL/UN M 240 and the number of encoding levels is r ]  x 8. The 
corresponding maximum information efficiency is h,/hd x 0.55 bif/bit, but with the 
reduced information density hq x 3.7 bifs as obtained with 7-bit encoding. 

The preferred number of encoding levels for information density, ranging from r] x 6 for 
low SNR's to r] M 8 for high SNR's, corresponds closely to those often encountered in practice. 
However, their selection entails some conflict between information density and efficiency. This 
conflict resolves itself with data compression. Furthermore, as these results foreshadow, it is 
the image-gathering system that is designed for highest information density that also provides 
the highest information efficiency with lossless image coding. 
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Figure 9. Information density h, and efficiency h,/hd versus the encoding level 71 for several SNR's. The 
image-gathering system is characterized by the optical-design parameter pe and the SNR K ~ L / ~ N .  The 
mean spatial detail p = 1. 
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4. DATA COMPRESSION 

A. Entropy Versus Information Density 

82 

I t  is common in the prevailing literature5-'' to  consider information density to be 
synonymous with the entropy used t o  assess data  compression. However, entropy, unlike 
information density, does not distinguish between the properties of the scene that  we wish 
to  restore and the degradations of the image-gathering process that  we wish to minimize. 
For example, whereas aliasing and noise subtract from the information density, these same 
degradations add to  the entropy. Since it is not possible to  distinguish quantitatively between 
the desired and undesired components of the signal, it also is not possible to  measure the 
information density of an image. However, it is possible, at least in theory, to  measure its 
entropy. 

be the probability of realizing a particular set of digital data  containing M N  samples and K 

quantization levels per sample. Then the entropy 8, of this data  is defined as the logarithm 
of the probable number of alternate, distinguishable sets given by 

The  entropy of the digital signal s,(z, y) can be determined as follows. Let ~(21, z2, ..., Z M N )  

The entropy Q4 given by Eq. (10) is equal to the information density h, given by Eq. (9) only 
if the undesired components of the signal are negligible. However, since these undesired 
components are ordinarily not negligible, the information density h, seldom reaches the 
entropy 8, (Le., h, < 8,). 

The amount of computation required to find 8, given by Eq. (10) is, in practice, prohibitive. 
An upper boundary for the entropy 8, can readily be found if we assume that  each sample is 
independent of its neighbors, i.e., that  

P(% 2 2 ,  . . . > " M N )  = P ( d P ( Z 2 ) .  ' - P ( z M N ) ,  

where zi = Aki and ki is an integer, 1 5 k1 5 K [Fig. lO(a)]. Letting pi  G p ( z i )  z p ( A k i ) ,  
the upper boundary for 8, is then given by 

Ordinarily, the values pi  are obtained from the probability distribution (histogram) of the 
digital data  sq(z,  y). If we were to  assume that  the probability distribution is uniform so that  
all quantization levels are equally likely, then p ;  = 1 / ~  and the upper boundary 840 of the 
entropy 8, would be equal to  the data  density hd, Le., 

However, neighboring samples ordinarily are not independent. As shown in Fig. 4(a), 
significant correlation exists out to  approximately three neighboring samples (in all directions) 
if the mean spatial detail p = 1, and out to  about 10 neighboring samples if p = 3. Blurring in 
the image-gathering process will further increase the correlation among neighboring samples 
for the fine spatial detail. In practice, it is common to  consider only the nearest samples as 
depicted in Fig. 10. If we consider only the past nearest neighbor [see Fig. 10(b)], then the 



corresponding entropy 0,1 is defined by 

0 . 0 .  0 . 0 .  0 . 0 .  0 . 0 .  

0 . 0 .  
i-l,j+l i,j+l i+l,j+l 

0 . 0 .  0 . 0 .  0 . .  

Y Y Y 1, 

(a) Independent points, ePo (b) Past nearest neighbor, (c) Past nearest neighbors, (d) Nearest neighbors, 
one dimensional, BPI  two dimensional, € 1 ~ 3  two dimensional. 

Figure 10. Samples used to estimate the entropy of the digital data  sq(z,  y). 

The entropies Oq3 and 0,s that include, respectively, the past three nearest samples [Fig. 
lO(c)] and the 8 nearest samples [Fig. 10(d)] are defined similarly. Hence, as we include an 
in creasing number of neighbors, we approach the entropy 0, defined by Eq. (10). 

Figure 11 illustrates the variation of the entropies O,o, O q l ,  Oq2,  and 0,3 with the mean 
spatial detail p.  The zeroth order entropy 0,o does not account for any of the correlation 
that exists among the neighboring samples. It depends solely on the variance of the incident 
radiance field and on the effects of the image-gathering process (including quantization). 
The magnitude of the higher order entropies decreases as more of the correlation among 
the neighboring samples is accounted for. The independence of the higher entropies from 
the properties of the radiance field and image-gathering system are probably limited to the 
informationally optimized designs considered in this paper. 
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Figure 11. Estimates of the entropy 8, versus the mean spatial detail p. The image-gathering process is 
characterized by the optical design parameter pe, the SNR KUL/UN, and the encoding level q.  

Another limitation of these results is that the absolute magnitude of the entropies shown 
in Fig. 11 cannot be compared strictly to the information density h, computed by Eq. (9) 
and shown in Figs. 8 and 9. The reason is that the entropies are obtained from a single 
target, such as shown in Fig. 3, in which the rectangles have a fixed orientation, whereas the 
information densities are computed for a circularly symmetric Wiener spectrum derived with 
the assumption that the orientation of these rectangles is random with a uniform distribution. 
Hence, the estimates of information efficiency given below will err on the high side. The reason 
is that the entropy would be higher for the actual radiance field with random edge orientations 
than for the simulated radiance field with a fixed edge orientation. 
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B. Image Coding 

Figure 12 illustrates the lossless data compression method that we use to assess the effect 
of compression on the information efficiency of the transmitted data. The purpose of the 
compression is to translate the string of quantized data sp(z, y) into an encoded string of data 
Ase(z, y) that is (usually) a compressed version of sq(z,  y). 
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Figure 12. Model of lossless predictive compression that uses the past three nearest neighboring samples [as 
depicted in Fig. lO(c)]. 

The predictive compression reduces the redundancy, or correlation, of the string of digital 
data sq(z,y) prior to the encoding. The system shown in Fig. 12 is often referred to as a 
third-order predictor because it uses the values of the three past nearest neighbors to predict 
the value that is about to be read out. We select the weighting values a l ,  a2, and a3 so 
that the linear mean-square error estimation E { [sg(z, y) - ig(z, y)I2} is minimized. This 
minimization, which is referred to as best linear estimate, is commonly favored because of its 
mathematical tractability even though some improvement in performance can often be gained 
when nonlinear functions are used to form the estimate.’ For the wide-sense stationary input 
radiance field, the correlation between neighboring samples is independent of location and the 
three values a l ,  a2, and a3 can be computed as follows. Let R(m,n) be the (normalized) 
correlation between the samples located at (i - m,j  - n) and (i, j )  [see Fig. lO(c)], then the 
desired predictor weighting values are given by the following three simultaneous equations:’ 

R(0, 0) R(L0) R(1, 1) 
R(1,l) = R(1,O) R(0,O) R(0, l )  ] [3 [ ::::::1 [ R(L1) N O ,  1) R(O, 0) 

where R(0,O) = 1. 
Figure 13 gives the correlation values R(m, n )  and the predictor weighting values a l l  a2, 

and a3 for three radiance fields and three image-gathering systems. The radiance fields are 
characterized by the mean spatial detail p ,  and the image-gathering systems are characterized 
by the optical-design parameter pc, the SNR KUL/UN, and the number of encoding levels 
77. The behavior of the correlation and weighting values appeals intuitively. The correlation 
between neighboring samples increases both as the mean spatial detail becomes larger (i.e., 
as p increases) and as it becomes more blurred (Le., as pc decreases). In the limit, the sum 
of the weighting values (i.e., a1 + a2 + a3) approaches unity, which suggests that the new 
sample will be similar in value to the neighboring ones with increasing probability. It also 
is interesting to observe that the correlation R(0,l)  and R(1,O) of immediately neighboring 
samples lies between 0.84 and 0.92 when the mean spatial detail is p = 3. This result turns 
out to be in close agreement with the observation made by Gonzalez and Wintz6 (pg. 298) 
that, in practice, this correlation typically lies between 0.85 and 0.95 for properly sampled 
images. 

The image coding achieves further compression by transmitting the more probable symbols 
in fewer bits than the less probable ones. The Hugman code5l1’ that we use is derived by 



successively merging the two least probable samples of Asq(x,y) into a new sample which 
is assigned a probability equal to the sum of the former two probabilities. This process is 
continued until exhaustion. The result of this process is arranged as a tree that is used to 
determine the code words for the quantized data. 

Figure 14 characterizes the effects of the data compression. The compression hdlh, is 
given by the ratio of data density hd = 17 without coding to data density he with coding. 
This compression does not vary significantly with either the mean spatial detail or the design 
of the image-gathering system. The compression remains within the range of 1.6 to 1.9, and 
thus approaches the factor of 2 that is often given for lossless data compression. However, the 
information efficiency hqlhe of the encoded data depends significantly on the image-gathering 
system design. These results suggest the following generalization: 

(4) The upper limit of the information efficiency achieved with lossless data compression 
increases from - 0.5 to 0.9 biflbit as the information density of the encoded data 
increases from - 2 to 4 bifs. Thus, high information density is transmitted more 
efficiently than low information density. 

This generalization intuitively is appealing since the encoded data contain less image- 
gathering degradation (e.g., aliasing and noise) when the information density is high rather 
than low. 

0.1 .3 1 3 10 
cr 

(a) pc = 0.7, KCL/CN = 2 0 ,  
7 = 6  

0.1 .3 1 3 10 
cr 

(b) pc = 0.45, KOL/ON = 80, 

q = 7  

0.1 .3 1 3 10 
cr 

(c) pc = 0.35, KoL/oN = 240, 

7 \=8  

Figure 13. Characteristics of the lossless predictive compressor as a function of the mean spatial detail 
p.  Shown are the (normalized) correlation R(m, n) between the neighboring samples and the predictor 
weighting values a. 
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Figure 14. Characteristic of the encoded signal as a function of the mean spatial detail p.  Shown are the 
information density h,, the data  compression hd/h,, and the information efficiency h,/hd and h,/h, 
before and after compression, respectively. 

5. IMAGE RESTORATION 

A. Information and Fidelity 

The data-processing algorithm that maximizes the fidelity of the restored image is given 
by the unconstrained Wiener filter'-4 

If the radiance-field spectrum % i ( v ,  w), the image-gathering response Fg(v, w), and the SNR 
K u ~ / u ~  are exactly accounted for in q ( v ,  w), then the image fidelity f reaches its maximum 
realizable value fm given by'-4 

h 

03 

fm = J J  Z i L ( V ,  w)'is(v, w)ii(v,  w)dv dw. 
-03 

It also is possible, then, to express the Wiener filter G(v ,  w) and the fidelity fm as a function 
of the spectral information density hq(v ,  w) as 
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and 

where kq(v ,  w) is the integrand of Eq. (9) given by 

r 1 

These relationships show that our ability to restore images (restorability) is solely limited by 
the term 2-Rq(w9w). 

Since the restorability depends on the spectral information density hy(v, w) rather than 
on the total  information density h,, it is not possible to directly ascertain whether increases 
in the information density h, will always increase the restorability. Nevertheless, it seems 
reasonable to expect that the restorability of images ordinarily will be correlated positively 
to the available information density. 

B. Fidelity-Maximized Restorations 

Figure 15 presents fidelity-maximized images for the three informationally optimized 
designs characterized in Fig. 14. The change in the visual quality that occurs with increasing 
information density manifests itself mainly as an increase in the resolution, contrast, and 
clarity. Noise and aliasing artifacts disappear almost entirely as the highest available 
information density is approached. However, ringing near sharp edges now becomes a major 
visual defect. This ringing Gibbs phenomenon) occurs because of the steep roll-off in the 

sharpness with neither aliasing nor ringing, all at the same time. Since the latter is least 
acceptable, some aliasing and loss of sharpness must be accepted by using a more gradual 
roll-off in the filter.'' These results suggest the following important generalization: 

( 5 )  Increases in the information density in the fidelity-maximized images is perceived 
mostly as a decrease in image-gathering degradations (Le., aliasing artifacts and 
noise). However, defects (Le., ringing) introduced by the image-restoration process 
become more apparent and may limit the amount of information that is useful for 
image restoration. 

Wiener filter. As Schreiber 5 (pg. 92) summarizes: " ... it is impossible to have maximum 
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Figure 15. Images restored with the Wiener filter for three informationally optimized imagegathering 
systems. The systems are characterized by the optical design parameter pe, and SNR KoL/aN, and 
the encoding level 9. The transmitted data are characterized by information density h,, data density he,  
and information efficiency h q / h e .  The mean spatial detail p = 3. 

Figure 16 illustrates the dependence of the image fidelity fm on the mean spatial detail p for 
the three image-gathering systems characterized by Figs. 14 and 15. As can be seen, the image 
fidelity depends almost solely on the characteristics of the target, even though the resolution, 
sharpness, and clarity of the images restored for maximum fidelity depend perceptibly on the 
available information density. This result suggests the following generalization: 

(6)Image fidelity is not a suitable criterion for assessing the performance of image 
gathering and coding. Not only is it insensitive to the visual flaws of the fidelity- 
maximized images but also to the improvements that are gained in the 
visual quality of these restorations with increasing information density. 

C. Restorations for Visual Quality 

The final step in restoring images for maximum visual quality still must be based on 
perceptual rather than mathematical considerations. For this reason it is necessary to 
introduce some ad hoc modification of the Wiener filter to control adaptively the trade-off 
between the enhancement of spatial detail and the suppression of visual defects. Unfortunately, 
these adaptive controls reduce the quantitative connection between optimum filtering and 
informationally optimized image gathering that we have tried to maintain so far. This seems 
unavoidable as long as visual quality cannot be assessed by some figure of merit. 

The goals of the ad hoc modification of the Wiener filter are to reduce the ringing at sharp 
edges and to enhance the visibility of the fine detail and of the boundaries between areas much 
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larger than those that are barely perceived. To provide these adaptive controls, McCormick 
et introduced the Wiener-Gaussian enhancement (WIGE) filter given by 

g ie (v ,  211) = s ( u ,  211) {exp [ -2 ( rw)2 ]  + ~ ( W r p ) ~  exp [--2(raep)2]} , (15) 

where 6 is the enhancement parameter that controls the relative amount of the synthetic- 
high filtered frequency components in the restored image. The standard deviation ui controls 
the smoothing of the low-pass filtered image, and the standard deviation ue controls the 
smoothing associated with the edge enhancement. Nevertheless, a trade-off remains between 
the enhancement of fine detail and sharp edges and the suppression of ringing. 

1 .o 
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KUL/UN F 

Figure 16. Image fidelity fm versus the mean spatial detail p. The image-gathering system is characterized 
by the optical-design parameter pe, the SNR K a ~ , l u ~ ,  and the encoding level q. 

The preferred values for the WIGE parameters depend on the target., the design of the 
image-gathering system, and the objectives of the observer. For example, if the image- 
gathering system is informationally optimized for high SNRs and the target is the random 
radiance field used here as an example, then the trade-off between the suppression of ringing 
and the loss of sharpness in the fidelity-maximized images shown in Fig. 15 is reasonably well 
resolved with ai = 0.4 and ai = 0.8. The contrast of the fine detail and sharp edges become 
enhanced increasingly as C is increased. However, this enhancement is achieved only at the 
cost of general visual quality as well as fidelity. Depending on the objectives of the observer, 
the preferred value for 6 ranges typically from 0.2 to 0.€L4 

As above, for the fidelity- 
maximized images shown in Fig. 15, the improvement in image quality with increasing infor- 
mation density is perceived mostly as an increase in clarity. Noise and aliasing artifacts dis- 
appear almost entirely as the highest available information density is approached. Moreover, 
ringing near sharp edges now has been suppressed effectively but at some cost in resolution 
and sharpness. A small overshoot still occurs at the boundaries between areas much larger 
than those that are barely perceived. This overshoot enhances the visibility of the boundaries 
and therefore is often preferred; however, it can be suppressed by reducing the enhancement 
parameter C. These results suggest the following generalization: 

(7) The visual quality that can be attained with interactive image restoration improves 
perceptibly as the information density increases to - 3 bifs. However, the perceptual 
improvements that can be gained with further increases in information density are 
very subtle. 

Figure 17 presents images restored with the WIGE filter. 
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(a) pc = 0.7, KuL/UN = 20, 
?=  6; hq = 2, he =3.2, 
hq/h,= 0.62 

Figure 17. Images restored with the WIGE filter for three informationally optimized imagegathering systems. 
The conditions are the same as in Fig. 15. 

The relationship between the available information density and the visual quality of the 
interactively restored images can be expected to depend significantly on the properties of 
the target. Hence, this relationship still must be assessed for a variety of different targets and 
enhancements. 

6. CONCLUDING REMARKS 

The goal of data compression, as it is traditionally stated, is to reduce, as much as possible, 
the number of bits necessary to reconstruct a faithful duplicate of the original picture. The 
effects of data compression are assessed qualitatively by visually comparing the duplicate to 
the original picture. This assessment ignores entirely the degradations that image gathering 
and reconstruction introduce into the original picture. It also ignores the potential capabilities 
of digital processing to reduce the visibility of the degradations caused by image gathering 
and reconstruction and to enhance various features for close scrutiny. 

Our point of view is closer to the one that Schreiber” expressed with the question: 
“For a given channel, what relationship between the original scene and the transmitted 
signal produces the ‘best’ picture?’’ Clearly, this relationship depends on the combined 
performance of image gathering and coding. However, our constraints, aside from the 
communication bandwidth, differ from those of Schreiber. Schreiber was  concerned mostly 
with telephotography and televison. These applications are constrained, for commercial 
reasons, mostly by the cost of the image display. By contrast, we are concerned with 
space activities and planetary exploration. These applications, in turn, are constrained 
mostly by the size, weight, and power limitations imposed on the spacecraft instrumentation. 
The complexity of the digital processing required to restore images and enhance features is 
ordinarily not a critical constraint. The latter situation also arises frequently in military 
reconnaissance and medical diagnosis. 

Thus, the goal of this paper has been to develop a method for assessing the combined 
performance of image gathering and coding in terms of the information density and efficiency 
of the transmitted data. This method is based on earlier findings1t2 that informationally 
optimized image gathering maximizes the fidelity of the images restored by the Wiener filter, 
provided that this filter accounts correctly for the image-gathering degradations. However, an 
important obstacle remains: the fidelity-maximized images exhibit some visual defects such 
as ringing, aliasing artifacts, and noise.3 Therefore, in practice, it is often desirable to reduce 
these defects with interactive pro~essing.~ 

The method for optimizing the end-to-end performance of image gathering and coding for 
interactive restoration that is suggested in this paper is (1) to assess how much information 
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is required to restore and enhance images with sufficiently high visual quality for a particular 
application, and (2) to assess how this information can be acquired and encoded most effi- 
ciently. The preliminary results that we have presented are limited to a single, artificial target. 
However, these results intuitively are attractive and consistent with practical experience. 
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1.0 BACKGROUND 

NASA has undertaken an advanced technology development program in the area of high resolution 
high-frame-rate video imaging to  support microgravity science and applications experiments, with the 
goal of removing constraints on the amount of high speed, detailed data  that can be recorded and 
transmitted. Numerous microgravity experiments have been Space Station Freedom 
and the Shuttle which require a broad range of imaging capabilities. Figure 1 presents survey results 
of user requirements; the chart shows frame rate versus image resolution requirements for many of the 
proposed microgravity experiments. NASA will develop a digital video imaging system that will be 
capable of fulfilling as many of the requirements as is practicable. (Initial survey requirements from 
several of the experiments far exceed state-of-the-art video imaging capabilities. Reexamination of 
those requirements is now taking place.) 

proposed for 

A representative experiment, sponsored by scientists a t  NASA Lewis Research Center, is entitled 
Nucleate Pool Boiling. The experiment involves heating freon locally by mea.ns of passing a large 
current through a thin gold coating on quartz. At some point the freon begins to  boil causing vapor 
bubbles to  form, grow and depart from the surface. Information to  be derived from the experiment 
includes bubble shape, bubble growth, collapse, departure, and motion after departure from the 
surface. To obtain the desired measurement accuracy from the video image data, a minimum 
resolution of 500X1000 pixels is required at a desired frame rate of 1000 frames per second. These 
requirements are typical of the resolutions and frame rates needed in many of the proposed 
microgravi ty experiments. 

The imaging system development will progress in stages starting with a demonstration breadboard 
system which can be upgraded as technology advances. The system will consist of a high resolution 
imaging device (camera/solid state sensor), a high speed video interface, and a mass storage device 
(dynamic RAM/magnetic tape). The Phase 2 imaging device will be a 1024x1024 pixel-addressable 
solid-state sensor with an 80 Mpixels per second multichannel scan rate, providing monochrome 
images with 8 bits gray scale resolution. I t  will be capable of image subframing in order t o  trade off 

t Supported by the NASA Lewis Research Center under grant NAG 3-806. 
1 Supported by the NASA Goddard Space Flight Center under grant NAG 5-916. 
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field of view for frame rate. (For a 1024XlO24 pixel image, the 80 Mpixels/sec scan rate of the sensor 
would allow a maximum frame rate of 76.29 frames per second, however, a subframed image of 
128x128 pixels could achieve a frame rate in excess of 4800 frames per second.) The high speed video 
interface will provide synchronization and routing of data  t o  the mass storage devices. Both high 
capacity magnetic tape and high speed 512 Mbyte dynamic RAM will be available for mass storage of 
image data. 

Video data  compression is scheduled to  be incorporated into the imaging system to  enhance its 
capabilities for data  acquisition, storage and transmission. Researchers a t  NASA LeRC and the 
University of Nebraska-Lincoln are working together t o  develop appropriate compression algorithms. 
The data  compression aspects of the high resolution high-frame-rate video technology (HHVT) project 
will be the focus of this paper. 

2.0 DATA COMPRESSION IN THE H I N T  SYSTEM 

The quantity of image data  that will be generated by most, if not all, of the proposed microgravity 
experiments is so large that data  compression (image processing) will be a necessity in the imaging 
system. Image data  compression can be used to  enhance the capabilities of the HHVT system in at 
least two areas. First, compression that is achievable between the imaging device and the mass storage 
unit directly increases the storage capacity. A two-to-one compression factor would double the amount 
of storable data,  thereby doubling the available experiment time. (The high speed 512 Mbyte dynamic 
RAM can accommodate just 6.4 sec of data  at the full scan rate.) The second area of enhancement is 
with image data  transmission to  Earth. Here, da;ta compression can be used t o  reduce the transmission 
bandwidth and total time required for transmission. (A third area where it may be possible to  apply 
data  compression techniques is in the focal plane, however, this area is not currently under study). 

The data  compression requirements differ depending on where in the system compression is being 
applied. Compression prior t o  mass storage must be kept simple for straightforward implementation 
due to  the high data  throughput rate. The techniques used must work in real-time and, typically, 
should be lossless t o  maintain complete data integrity. (Lossy schemes may be acceptable for some 
experimental data  requirements, however, lossy schemes are generally more complex and hence more 
difficult t o  implement for real-time processing. Additionally, the compression techniques to  be 
incorporated a t  this stage in the system will be hardware based rather than software. I t  may not be 
desirable t o  have multiple algorithms in hardware due to weight constraints, therefore, a single lossless 
technique which is universally applicable would be preferred .) 

Once the data  is in the mass storage device, high speed processing becomes less of a requirement 
on the data  compression system. A much broader range of compression techniques becomes available 
because implementation can be done in software rather than strictly in hardware. Because processing 
speed is no longer as critical at  this stage of the data handling process, different data  compression 
techniques can be applied to  particular experiments in order t o  take advantage of differing end 
requirements among the various experiments. For example, the fidelity criterion is experiment 
dependent. Some experiments may require that quantitative data  be measured from the video record, 
as in the measurement of bubble size. Other experiments may only require qualitative observation of 
experiment progress t o  enable control of activity. In the latter case, image resolution may not be as 
critical as near real-time control. The data  compression techniques selected will most likely be 
experiment dependent and as such will be capable of responding to individual experiment 
requirements. 
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Feature and data  extraction also offer the possibility for significant reductions in data  transmission 
requirements. If sufficient sophistication can be incorporated into the imaging system to  extract the 
required quantitative data  prior t o  downlinking, only the measurement results may need to be 
transmitted. For example, rather than transmitting the high resolution image of a bubble to  
determine its size, only the dimensions would need to  be transmitted if that  information could 
somehow be extracted from the data. While feature extraction is more commonly associated with 
image enhancement rather than data  compression, many of the same techniques may be applicable to  
both areas. 

The remainder of this paper shall address several of the algorithms which have been studied or are 
currently under study for application to  data  compression in the HHVT system. 

3.0 DATA COMPRESSION SCHEMES 

The different algorithms presented in this section are elements in a possible “toolkit” of schemes 
which may be available to  the user. The compression scheme presented in Section 3.1 is a lossless 
coding scheme which is very amenable to  real-time hardware implementation. This scheme is therefore 
a candidate for implementation between the imaging device and the mass stomge unit. The remaining 
algorithms are lossy algorithms and could be used (depending on user requirements) after mass 
storage. 

Several of the lossy algorithms were developed with different applications in mind, but can be 
adapted for use in the HHVT system. A common property of all the lossy systems is their edge 
preserving capability. This capability is especially important for the types of images generated by the 
microgravity experiments, as size and location information is usually derived from edges. 

It should be noted that the algorithms presented in this paper do not constitute all the algorithms 
t o  be investigated for inclusion in the toolkit. This program is in its initial stages and the algorithms 
presented in this paper are simply some of the algorithms that currently look promising. 

3.1 A DIFFERENTIAL LOSSLESS CODING SCHE,ME 

A high resolution image can be viewed as a n  image which has been “oversampled”. This view 
leads directly t o  the inference that there is a high degree of correlation between pixels. The 
oversampling point of view also automatically discards such pathological cases as images of snow on a 
TV screen, which can play havoc with any data  compression scheme. If we assume a Natural Binary 
Coding (NBC) or Folded Binary Coding (FBC) scheme, we can also assert that  a high degree of pixel 
t o  pixel correlation will result in a high probability of the most significant bits of the neighboring bits 
being identical. A similar argument can be used, with some modification, for other binary coding 
schemes. The noiseless coding scheme presented in this section takes advantage of this fact t o  provide 
compression. It has been motivated by an encoding scheme for tree structured vector quantization [l]. 
The algorithm functions by comparing the current pixel (byte) value with a, reference pixel t o  obtain a 
prefix and suffix value for each pixel in the image. The prefix and suffix values comprise the noiseless 
code for the pixel. In the following we describe the details of both the suffix and the prefix. 

The prefix value is the number of MSB (upper bits) in a byte that are identical to the reference 
pixel. For example: 
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reference pixel (previous byte) = 11010110 
current pixel (byte being coded) = 1101 1010 
prefix value = 4 _ _ _ _  (1101) 

I 

Before being sent the prefix value is Huffman encoded. A given prefix value is assigned a 
predetermined Huffman code. A Huffman code is a tree code with varying lengths. Values with higher 
probabilities of occurrence are given shorter binary codes than values with lower probabilities of 
occurrence. The prefix value can range from zero t o  eight. The prefix values zero to eight are assigned 
Huffman codes generated by that image. Currently, a unique set of Huffman codes (for the prefix 
values) is being generated for every image. Some examples of Huffman codes are shown in Table 1. 
Further investigation may be given t o  using standard sets (same set) of Huffman codes for every 
image. Initial investigation indicates that  more than one set of codes would be needed in order to not 
decrease the compression ratio. A set for high, medium, and low correlation would most likely be used. 

The suffix is the bits of the current pixel that are not identical to the reference pixel minus the 
most significant bit (MSB) of the nonidentical bits. The MSB (of the nonidentical bits) is not sent 
because i t  is obviously the opposite of the reference pixel (otherwise it would be the same as the 
reference and be included in the prefix value). 

The actual data  sent for each pixel is the Huffman code for the prefix value and suffix, sent as is 
(bit for bit). In the previous example, if the Huffman code for 4 is 10 the code sent for the current 
pixel given would be 10010. Due to the Huffman code (variable length code) and the fact that  the 
suffix length is directly dependent on the value of the prefix, the compressed code sent is a variable 
length code. 

The next problem is to actually transfer the new code. Data is transferred in bytes (eight bits). To 
get data  compression; the codes must be compacted into full bytes. If a byte is used for each code 
there would be no compression. Therefore, bits are placed into bytes and transferred as soon as a byte 
is filled. 

The decoding is done by reading the bytes bit by bit. The bit(s) are matched against the Huffman 
codes to determine the prefix value. The Huffman code is currently being sent with the encoded 
image. If no match is found, another bit is added to the prefix bits and the new set is matched against 
the Huffman codes. Once a match is found, that  many upper bits of the reference pixel are set in the 
current pixel being decoded. Then the next bit (bit # = 7-prefix value) value is flipped, from that of 
the reference pixel. Then, according to the prefix value, the suffix bits are set. If the prefix value is 
four, then the suffix must contain three bits. For exa.mple, reversing the first example: 

code sent = 1 0 0 1 0 
first bit compared = 1 (no match) 
add bit, compare = 1 0 (matches prefix = 4) 
if, reference pixel = 1 1 0 1 0 1 1 0 
set current pixel = 1 1 0 1 
flip next bit = 1 
set the next three (7-4) bits, suffix = 0 1 0 
current pixel = 1 1 0 1 1 0 1 0 

The next bit read from the code would be the start of the next prefix value. 

The very first pixel of every image is always sent as is and is always the first reference pixel. The 
first line always sets the reference pixel t o  be the previous pixel, t o  the left. For the first pixel on each 
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line the reference pixel is always the pixel directly above the current pixel. These reference pixels are 
always true no matter how the rest of the image is referenced. To determine the reference pixel for the 
rest of the image, three different algorithms have been investigated. The first algorithm, REFLEFT, 
sets the reference pixel, except for the first pixel on each line, t o  be the previous pixel, the pixel t o  the 
left. The second algorithm, REFUP, sets the reference pixel, except for the first line, t o  be the pixel 
directly above the current pixel. The third algorithm, THRESH, combined the first two algorithms. 
The third algorithm flips the reference pixel between above and to  the left depending on the threshold 
value. The threshold value is set at the beginning of the program. If a prefix value drops below the 
threshold value, the reference pixel is switched (from above to  left or vice versa). For example, if the 
reference pixel currently being used is t o  the left and the threshold value is three and the current 
prefix value is two, then for the next pixel, the reference pixel used will be above. 

In Table 1 the compression obtained, using several images, for the three different algorithms is 
presented. For the third algorithm, THRESH, the data  is presented using threshold values of three, 
four, and five. The results obtained by using these algorithms were compared against the 
commercially available compression program PKARC. PKARC compresses files by optimizing between 
Huffman encoding, a static Lempel-Ziv-Welch coding scheme, and a dynamic Lempel-Ziv-Welch 
coding scheme. Thus PKARC provides a good benchmark against which to test this algorithm. Note 
that as the current approach consists of a single algorithm, it is much simpler to implement than 
PKARC. The results are also shown in Table 1. 

As one can see, the new algorithms provide consistently better compression. There is also a direct 
relationship between the validity of the oversampling assumption and the compression obtained. The 
compression obtained for the 384x512 images is in general substantially higher than the compression 
obtained for the 256x256 images. Among the 384x512 images the IBMAD image has the lowest 
compression because of the presence of granular noise in the image. This is evident from the IBMAD 
picture. The granular noise because of its “white” na.ture violates the oversampling assumption. The 
oversampling assumption is also violated in a more direct manner in Images 13 through 15, a.nd 
therefore there is a corresponding drop in compression. Obviously this scheme will perform best for 
the application for which it has been developed, namely, high resolution images. 

As mentioned previously, all our tests have been conducted on relative1.y low resolution images. 
We expect substantial increases in performance when we code high resolution images. Noting that 
going from a 256x256 image to  a 384x512 image approximately doubles the compression efficiency, we 
expect the same kind of performance improvement when going from 384x512 to 1024x1024 images. 

3.2 ENHANCED DPCM ALGORITHM 

An algorithm has been developed which is based on differential pulse code modulation (DPCM) 
for simplicity of implementation, but incorporates performance enhancements which result in 
reconstructed images that are subjectively indistinguishable from the original image at an average rate 
of 1.8 bits per pixel (bpp). A hardware implementation of the algorithm has been developed and is 
presently undergoing testing. The algorithm was developed for use with standard NTSC (National 
Television Systems Committee) video images, and will therefore need to  be modified for application to  
the HHVT imaging system. However, the required modifications should not be major, nor should they 
affect the performance of the algorithm. In addition to the DPCM, the algorithm incorporates a 
non-adaptive predictor value, non-uniform quantization and multilevel Huffman coding to  significantly 
improve upon the performance achievable using a standard DPCM approach. 
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A two-dimensional pixel average is used to generate the predicted value, PV, for determining 
difference values in the DPCM process, as shown in the block diagram in Figure 2. For the NTSC 
signal, sampling is done a t  four times the color subcarrier frequency (14.32 MHz). Neighboring pixels 
having the same subcarrier phasing relationship as the current pixel are used for the prediction. The 
difference value, DIF, is calculated by subtracting both the predicted value, PV, and a non-adaptive 
predictor value, NAP, from the current pixel value, PIX, ( D I F  = PIX - PV - N A P ) .  The function 
of the NAP is t o  improve the prediction of the current pixel. The non-adaptive predictor estimates the 
difference value that would be obtained if just the predicted value were subtracted from the current 
pixel value ( P I X  - P V ) .  The subtraction of the NAP value from PIX - PV causes the resulting 
difference value (DIF) to  be close to  zero. The smaller the DIF, the more efficiently the quantized 
pixel information can be transmitted due to  the use of Huffman coding prior t o  transmission over the 
channel. (Huffman coding assigns variable length codewords based upon probability of occurrence.) 
To reconstruct the pixel, the decoder uses a lookup table to  add back in the appropriate NAP value 
based upon knowledge of the quantization level from the previously decoded pixel. 

The development of the non-adaptive predictor was predicted on the likelihood that the difference 
values of adjacent pixels are similar. The prestored NAP values were generated from statistics of 
numerous television images covering a wide range of picture content. The NAP values represent the 
average difference values ( P I X  - P V )  calculated within the boundaries of the difference value ranges 
of each quantization level for the sample images. The use of the NAP results in faster convergence a t  
transition points in the image, thereby improving edge detection performance. The ra.pid convergence 
also reduces the total data  requirements by increasing the percentage of pixels in the middle 
quantization levels, where the shortest length codewords are assigned by the Huffman coding process. 

The quantizer shown in Figure 2 has thirteen (13) levels. Each level has a quantization value 
associated with a non-uniform range of difference values. The quantizer provides more levels for small 
magnitude differences which would result from subtle changes in picture content. The human eye is 
sensitive to  small variations in smooth regions of an image and can tolerate larger variations near 
transition boundaries where large difference values are more likely to  occur. The non-adaptive 
predictor discussed previously, acts to reduce the difference values thus improving image quality by 
reducing the quantization error. This is because the non-uniform quantizer results in lower 
quantization error for small magnitude differences than for large magnitude differences. 

The final major aspect of the encoding algorithm is the multilevel Huffinan coding process. 
Huffman coding of the quantized data  allows shorter codewords to  be assigned to  quantized pixels 
having the highest probability of occurrence. A separate set of Hiiffman codes has been generated for 
each of the thirteen quantization levels. The matrix of code sets is used to  reduce the number of data 
bits required to  transmit a given pixel. The particular Huffman code set used for a given quantized 
pixel is determined by the quantization level of the previous pixel. As with the NAP, the Huffman 
code trees were generated by compiling statistical data  from numerous images covering a broad range 
of picture content. Probability of occurrence data was compiled for each of the thirteen quantization 
levels as a function of the quantization level of the previous pixel. A separate Huffman code set was 
then generated based on the probability data of “current” pixels falling into each of the thirteen 
quantization levels of the “previous” pixels. There is a tendency for neighboring pixels to fall into the 
same or close to the same quantization level. By recognizing and taking advantage of this fact, the use 
of the multilevel Huffman code sets provides significant reductions in bits per pixel over a single 
Huffman code tree because they allow a greater percentage of pixels to be represented by short length 
codewords. 
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Due t o  the predictive nature of DPCM-based schemes, bit-errors on the channel can effect the 
quality of the prediction of future pixels on a line. This has the subjective effect of producing a visible 
streak across the reconstructed image from the point of the error to  the end of the line. To minimize 
the propagation of such errors, the algorithm employs line and field resynchronization. In addition, 
the University of Nebraska has developed an error detection/correction scheme which is directly 
applicable to  this algorithm and offers significant error immunity for minimal data overhead. 

3.3 EDGE PRESERVING DPCM 

Adaptive Differential Pulse Code Modulation (ADPCM) is a very popular compression technique 
because i t  is easy to implement, has low processing overhead, and relatively good fidelity. However, 
ADPCM image compression is far from ideal. The most obvious drawback is poor edge performance. 
ADPCM cannot track sudden changes in the image statistics, and this causes substantial edge 
distortion in the reconstructed image. Some changes in the basic approach are required to reduce edge 
degradation, while retaining simple, high speed image compression. 

We have developed a modified ADPCM scheme which uses a very simple algorithm to prevent 
edge degradation [2]. The structure of the proposed system is based on the embedded DPCM scheme 
of Goodman and Sundberg [3]. The new system detects edges and sends extra bits containing edge 
information. We have shown that substantial improvements in both the subjective and objective edge 
performance can be obtained using this method [a]. 

Figure 3 shows the general block diagram of a DPCM system. It works much like Delta 
Modulation. In fact the basic concept is the same; only the information that cannot be predicted at 
the receiver is sent. P denotes the predictor and Q the quantizer; s is the value of the k input pixel 
and p is the predicted value. The difference, 

e = s - p  (1) 

is the prediction error. This value is quantized, and the quantized value eq  is sent to  the receiver. The 
quantizer error, q, can be viewed as an additive noise process. 

e ,  = e + c l  (2) 

The quantized error, eq,  is fed back to  the predictor, added to  the current predictor value, 

. G = e , + p  (3)  

and used as input t o  for the next prediction. 

The predictor function f(i, e , )  is discussed in the following section. A corrupted version of e ,  arrives 
a t  the receiver. 

E ,  = e ,  + c ( 5 )  

99 



where c is the channel noise. This is added to  the receiver’s predicted value, and if the predictors at  
the receiver and transmitter are the same, and the channel noise is negligible d and S will be the same. 
Therefore the reconstructed signal, S, and the true signal, s, will differ only by the quantizer noise. 

S = s + q  (6) 

This basic fact has led to  many designs that attempt to  minimize quantizer noise. Most of them 
are application specific, and for the most part they are successful, especially when applied t o  speech 
signals. However, the results are not as impressive when applied to  image data  [4] [5]. The best results 
have been achieved using adaptive quantizers and/or adaptive predictors. Such systems are usually 
referred to  as Adaptive DPCM, or ADPCM [4]. 

The predictor function, f(i, e q ) ,  is chosen so as to  minimize the variance of eq. There are many 
well-known adaptive filter algorithms that can be used t o  adapt the predictor. We have found that the 
simple Least Mean Square (LMS) gradient search algorithm is an effective algorithm for adapting the 
predictor. We have previously shown that edge performance is improved if a pole zero or ARMA 
predictor is used instead of an all pole or AR predictor. Therefore the adaptive predictor used in the 
ADPCM system is an ARMA predictor. Both the AR and MA coefficients are adapted using an LMS 
algorithm. Because of the non-stationary nature of image data, optimization of the gain parameter in 
the LMS algorithm is not possible. The gain should be relatively small t o  insure stability. The 
presence of adaptive zeros also makes the system less susceptible to channel noise. 

The quantizer is a two-bit Robust Jayant quantizer [6] [7]. I t  is a uniform quantizer whose 
stepsize, (k), is adapted based on the previous sample. The stepsize is expanded if the input falls in 
the outer quantization levels while it is contracted if the input falls in the inner quantization regions. 
This algorithm is simple to  implement and requires very little computational overhead. Since DPCM 
is most often used in systems where speed is premium, this method is understandably quite popular. 
It decreases the quantizer noise; however, it doesn’t adapt well enough to  solve the edge distortion 
problem. Simulation results in [a] clearly show the poor edge performance of the ADPCM system. A 
plot of the quantization noise when encoding a simulated edge shows that the magnitude of q is large 
near the edge and slowly dies away as the system adapts. The error imagcs obtained in this study 
clearly show that the quantizer distortion is mainly an edge phenomena. 

The first step to  improving edges is detecting edges. Once this is done, steps can be taken t o  
alleviate the excess noise. Ideally the edge detection would be simultaneously performed a t  both the 
transmitter and the receiver thus eliminating the need for transmitting the edge location. Fortunately 
the Jayant quantizer is well-suited to  this task. The Jayant quantizer is designed to  track the variance 
of the quantizer input by changing its stepsize (k). Since edges are regions where the statistics change 
rapidly, it follows that the stepsize will expand repeatedly when it encounters an edge. This fact is 
made use of in the following rule to  detect edges: 

An edge is detected when the stepsize of the Jayant quantizer expands more than P times in 
succession, P > 1. P should be small to reduce the detection delay; a value of two seems to  work well. 
The output of the edge detector is one when edges are present ( that  is, the Jayant quantizer stepsize 
expands more than two times in succession) and zero everywhere else. This detector algorithm, with 
P = 2, was added to  the ADPCM simulation and tested using a step input. The results showed that 
both the receiver and the transmitter simultaneously detect the same edges. As such, no extra 
information is required to  synchronize the detectors. 

Now that  an effective mechanism for detecting edges at  both the transmitter and receiver has been 
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obtained, this information can be used to  improve the edge performance of the ADPCM system. The 
structure used in the current approach is the embedded DPCM structure proposed by Goodman and 
Sundberg [3]. The embedded DPCM scheme employs an additional or “embedded” quantizer to 
transmit the quantized quantization error of the DPCM structure t o  develop a strategy for 
transmission over noisy channels. In the current approach the embedded quantizer is switched on by 
the edge detector and remains active for as long as the edge detector declares the edge to be active. 
During this period the embedded quantizer transmits a quantized version of the ADPCM quantizer 
error q over a “side channel”. This is removed from the ADPCM receiver output S .  Thus during the 
period that the edge detector declares an edge t o  be active the reproduction error is ( q  - q )  instead of 
q. This has the effect of reducing the large quantization error a t  the edges and preventing edge 
degradation. As the edge is detected simultaneously a t  both the transmitter and receiver, the receiver 
knows when to  expect transmission over the side channel and the transmitted quantization error 
values are synchronized with the reconstructed values a t  the output of the ADPCM receiver. The 
issue of exactly how to  configure the side channel is not addressed in this work. However, the ability 
to  easily achieve synchronization seems to  suggest that  configuring the side channel should not be a 
very difficult task. 

The proposed system was simulated using the USC GIRL and USC COUPLE image as the source 
images. A two-bit robust Jayant quantizer and a pole-zero (ARMA) adaptive predictor of the type 
described before was used. There was considerable improvement in the edge performance. This was 
reflected in both objective (SNR) and subjective (perceptual) improvement. The overhead due to the 
side information was less than half a bit per pixel. 

While the use of the Jayant quantizer for edge detection is efficient from the point of view of 
savings on side information, the current definition of an edge is rather ad hoc. Because of this, the 
savings in side information during the edge detection process may be offset by the extra side 
information needed for the edge preserving process. In fact an overhead of itround 0.5 bits/pixel for a 
coding scheme with nominal rate 2 bits per pixel seems rather high. We arc’ currently examining this 
technique from several points of view. The first is t o  get a more exact definition of an edge in terms of 
the Jayant quantizer than the one used in the above study. The second is t o  examine more 
conventional edge detection systems including the IDS system proposed by Cornsweet [8] and Huck 
[9]. These methods would be used to  find and extract the edges from the image. The edges could then 
be coded separately, while the image sans edges could be very efficiently coded using a low rate 
DPCM system. Finally we are examining the possibility of developing multiquantizer ADPCM 
schemes where the switching between quantizers with different rates would be performed based on the 
behavior of the Jayant quantizer. 

3.4 A MODIFIED RUN-LENGTH CODING SCHEME 

The final algorithm presented here is also a variation of the popular DPCM scheme. Again, one of 
the objectives is t o  reduce the excessive edge degradation present in standard DPCM systems. 
Another objective is t o  have a system that can operate under situations where a common 
communication channel is being used by a number of users and thus the available channel capacity 
may vary over the period of a single transmission. Under such situations the system would be able to 
reduce the rate in return for accepting a certain amount of distortion. However, the edge fidelity 
which is the primary objective would still be protected. 

The system block diagram is essentially similar t o  the DPCM diagram of Figure 3 with one 
important modification. The DPCM encoder output forms the input t o  a modified run-length 
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encoder. Of course, the inverse operation precedes the DPCM decoder. This system is a variation of 
the system presented in [lo]. The various elements of the system are presented below. 

The predictor is a one tap “integer” predictor. The output of the predictor is given by 

where 1.J denotes the “floor7’ function. The floor function is used so as t o  force the predictor output to 
be an integer. This was done t o  allow the system to  be used for lossless encoding. 

The quantizer is a uniform quantizer with stepsize A which effectively contains an infinite number 
of levels. This means that the only type of quantization noise present is granular noise. There will be 
no overload noise at the output of the quantizer. If A = 1, the quantizer becomes an identity 
mapping. An infinite number of quantization levels would generally imply an infinite rate; something 
we definitely want t o  avoid. This is done by the use of the modified run-length encoder. 

The modified run-length encoder puts out n bit, fixed length, codewords corresponding to  2n 
output levels of the quantizer. The lowest output level represented is denoted by the symbol LOW 
while the maximum valued output level represented is denoted HIGH. Note that 

(8) HIGH = LOW + (2. - 1)A 

If the quantizer puts out a value corresponding to  the levels between HIGH and LOW, the 
corresponding n-bit codeword is transmitted by the modified run-length encoder. If the output value 
X is greater than or equal t o  HIGH, then the codeword for HIGH is transmitted and X is replaced by 
X - HIGH. If the new value of X is less than HIGH then the corresponding codeword is transmitted, 
or else the codeword for HIGH is transmitted and X is again decremented by HIGH. This procedure is 
repeated until the value of X falls below HIGH. The modified run-length decoder treats HIGH as a 
“concatenation symbol”. Whenever the codeword corresponding to HIGH is received the decoder 
begins accumulating the values until a codeword corresponding to a value less than HIGH is received. 
A similar procedure is used when the quantized value is less than equal t o  LOW. 

The effect of this approach is t o  raise the instantaneous rate whenever the prediction error is high, 
which usually occurs a t  edges. However because there is no overload noise there is none of the edge 
degradation usually associated with DPCM systems. Also by adaptively changing A,  the output rate 
of the coder can be made to  match the available channel capacity. 

The USC GIRL image was encoded using this scheme. Noiseless coding was achieved a t  the rate of 
about 6 bits per pixel. At bit rates above 2.5 bits per pixel there was no perceptual difference between 
the original and reconstructed images. Below two bits per pixel granular distortion was noticeable in 
the quasi-constant regions. However there was no noticeable edge degradation. 

4.0 SUMMARY AND CONCLUSIONS 

In this paper we have attempted to  present the environment and conditions under which data 
compression is t o  be performed for the microgravity experiment. We have also presented some coding 
techniques that would be useful for coding in this environment. It should be emphasised that we are 
currently a t  the beginning of this program and the “toolkit” mentioned is far from complete. 
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TABLE 1 
IMAGE PKARC 

(384 x 512) 
IBMAD 13% 
DERIN 33% 
EWEEK 41% 
PATTY 35% 
KARANNE 26% 
MARILYN 30% 

(256 x 256) 
HAT 7% 
IMAGE01 24% 
IMAGE02 27% 
IMAGE 0 3 13% 
IMAGE04 31% 
IMAGE05 7% 
IMAGE06 42% 
IMAGE13 7% 

REFLEFT 

23.3% 
45.2% 
49.3% 
46.1% 
39.7% 
41.3% 

21.8% 
28.3% 
33.6% 
21.1% 
16.0% 
15.3% 
42.8% 
16.3% 

REFUP 

26.9% 
50.6% 
53.6% 
46.7% 
48.5% 
38.2% 

25.0% 
28.1% 
35.0% 
23.7% 
16.8% 
13.2% 
43.1% 
14.6% 

THRESHOLD 
3 4 5 

26.7% 26.8% 26.5% 
50.8% 50.9% 50.9% 
54.9% 55.1% 55.2% 
47.8% 48.1% 48.1% 
47.5% 47.4% 47.2% 
39.8% 40.0% 40.5% 

23.8% 23.6% 23.4% 
28.5% 
36.3% 
22.5% 
16.7% 
14.8% 
43.8% 
15.8% 
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See appendix I 

Figure 1. User Requirements Survey Results 
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1 Introduction 

We seek a computational framework for detecting boundaries or edges present in gray level 
images. We are guided by two notions from psychophysics espoused by Koenderink and 
van Doorn [l] [2]: 

0 Primate visual function can be modeled by the activities of locally oriented recep- 
tive fields which are the second, third, and possibly fourth order derivatives of the 

Gaussian of scale t ,  4o(t) = 4rt4t . 

by the direction of the gradient of the image smoothed by &,(t). 

- 0) 

0 In the visual system the natural coordinates on the retina, t , q  are locally oriented 

The activities of the receptive fields are given by convolving the image with the set 
of receptive fields at  each point in the image, and from this collection of activities at  
each image point the local geometry is computed. These activities give a convenient 
representation of the image irradiance and are used to formulate an edge detector. 

With the observation that the activities can be related to the Taylor series expansion 
of the image irradiance, I ,  about any point in the image we can then give mathematical 
forms - locally oriented derivatives -for local properties used to model edges and other 
features. 

2 Mathematical Formalism 

The receptive fields are denoted 4 1 ,  d11 ,412 ,  422, 4111 ,  4112 ,  . . ., 4222  and computed by 
4 1  . . . 1 2 . . . 2 ( 1 , ~ )  = &&r$o( f ,q ; t ) ,  where there are m 1’s and n 2’s in the subscript of 4. 

‘National Research Council/Senior Resident Research Associate 
2National Research Council/Resident Research Associate 
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While the receptive fields are defined over the infinite plane in actual use we choose a finite 
support size, W x W ,  large enough so that the receptive field is very small at the window 
edge. In Fig. 1 the receptive fields shown are for t = 2 with W = 21 which give a value of 

or smaller for the ratio of the value at  the window edge to the maximum value over 
the entire window. 

The receptive fields can be used to compute a finite Taylor series expansion of the 
smoothed image at  each retinal cell, called the jet. The subscripts 1 and 2 denote directions 
in the local coordinate system along a level contour and along the gradient respectively 
where the contour direction is given by the convention Et = E, x E1 where Et, E v ,  are unit 
vectors in the direction of increasing t , q ,  I and the cross product follows the right hand 
rule convention. Fig. 2 shows the coordinate convention. The various receptive fields are 
named by their subscripts with the convention that the number of 1's is the order of the 
derivative in the contour direction and the number of 2's the order of the derivative in the 
gradient direction. The total number of subscripts is the order of the receptive field. 

In real images noise and quantitization errors may prevent the Taylor series from being 
well defined of the image at  point (z, y). However, if we use the derived image , I 8 q50, 
given by smoothing the Image with 40, then we may expand about (z, y) to third order to 
get 

where all the derivatives and [I 8 401 are evaluated at  the point (z, y). 

For the convolution operator we have 

where 4 w is shorthand for 41...12...2((,77). This shows that we may compute activities 
of the receptive fields and thereby the Taylor series by performing convolutions with the 
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receptive fields. A t  this point we have made no commitment to the orientation of the local 
coordinates e,  7. 

3 Choosing the Local Coordinates 

Suppose then as it is proposed by Koenderink [2] that the biological visual system makes 
no commitment as to the coordinate system it will use, but rather chooses to use all 
coordinate systems. This it does by measuring the receptive fields activities over many 
directions -T < 8 5 T .  Thus the approximate continuum of quantities (as a function of 8 )  

is available to the low level vision system. Here w is the receptive field name and Re(-) 
is an operator that rotates its argument through an angle 8 .  Assuming the image varies 
smoothly, the maxima and zeroes of these activities define locally meaningful directions. 
For example, at  a particular image point, the angle 8 for which urt((e) is a maximum 
defines a local direction with respect to the image x direction that is along the contour, 
the 1 direction, at that image point. Note for this angle that u;Ot(8) = 0. Similarly, at  a 
particular image point, the angle 8' for which u;"'((e') is a maximum defines a local direction 
with respect to the image z direction that is along the gradient, the 2 direction, at that 
point. 

The activities of the receptive fields incorporate the local geometry and provide a 
useful representation in terms of which to formulate edge detectors. Unlike biological 
vision, machine vision is typically presented with a much sparser set of activities - those 
activities of receptive fields defined by derivatives along the image x and y directions. We 
make contact with biological vision by defining the local coordinate 2 to be in the direction 
810c = tun-'(I 8 &rjo/I 8 &50) and we then compute the activities of the receptive fields 
in this particular choice of local coordinates: 

4 Edge Detection and Local Features 

A simple edge detector finds candidate edges points as those points where the gradient is 
a local maximum. The Canny edge detector [3], [4] in doing this pays particular attention 
to accurately finding the direction of the gradient at each pixel and then to doing a careful 
interpolation of the change in gradient along this direction so as to find its local maximum. 

If the image varies smoothly this is equivalent to locating the zero crossing in the change 
of the gradient along the gradient direction. In local geometry this is upt = 0, ar t  > 
0, u&* = 0, which means respectively: align 1 along the contour direction, consider only 
points with nonzero gradient, locate the edge at  the zero crossing of 
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For comparison, the Marr-Hildreth edge detector seeks zero crossings of the Laplacian 
of a Gaussian [5 ]  and is given by u;:' + u;;' = 0. This is rotationally invariant indicating 
that it contains less local geometry than the Canny detector and thereby can be expected 
not to perform as well as the Canny detector. 

Besides exploiting properties in the gradient direction we can compute properties along 
the contour direction. Any contour of the Image irradiance satisfies implicitly the equation 
I ( x ,  y )  18 40 = Io, where Io is value of the smoothed irradiance that defines the contour. 
Along the contour in image coordinates we have 

Since 1 @I 4 0  is constant on the contour we have ( &lc)nI @I 4 0  = 0, for all n . In particular 
we have for n = 1 and n = 2, respectively 

If we take the local coordinate system so that the contour lies along the 1 direction, then 
XIc dt7 = 0, art  = 0, and PIc d2 11 = -u; f /uy t  which is the curvature along the contour. 

Another useful result is obtained by setting $ I c  = 0 in &[.I I8 4 0  = 0 which leads 
to u ; ~ ~ u y t  - a;itu;it = 0, a result given by Koenderink and van Doorn [l]. Points that 
satisfy this criterion are called ridges and can be identified with corner points along edge 
directions. 

5 Accuracy of the Representation 

In accordance with the notion that the local geometry accurately represents the local image 
structure we expect it should be possible to locate edges to sub-pixel resolution. This 
approach uses the local geometry to model a smoothed representation of the image. Thus 
the gradient directions are not quantitized by the original pixel lattice (angles quantitized 
to fall into multiples of 0 < 8 5 7r/4), but are accurately given to a fraction of a degree. 
Similarly we expect that the location of zero crossings to be given to a finer resolution 
than an individual pixel. 

We have tested this hypothesis by locating a zero crossing along a given direction using 
an interpolation given by Canny [ 4 .  In Fig. 3 a discretely sampled function h, with 
o < 8 < 7r/4 is given by values h(i , j  I , h(i + l,j), and h(i  + 1,j + 1) with h(i , j )  < 0, and 
h(i + l,j), h(i + 1,j  + 1) > 0. The value hint = (1 - tanO)h(i + 1 , j )  + tanBh(i + 1 , j  + 1) 
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is the linear interpolation of h in the direction 8, and the zero crossing is located at  a 
distance d = -h( i , j ) ( l  + tan28)i/(hint - h(i , j ) ) .  Note in this case the zero crossing falls 
outside the pixel (i,j). Similar interpolation formulas hold for other directions of 8. 

In what follows we calculate for each candidate edge pixel the values 8 and d. To display 
the sub-pixel location of the edges we have found, the pixel in which the zero crossing point 
falls is dilated by a factor of 5 so that each original pixel is equivalent to 25 sub-pixels. 
The edge is then drawn as a digital line so as to pass through the zero crossing at an angle 
perpendicular to 8. The digital line marks only those sub-pixels that contain the line. We 
do not extend the line outside the original pixel which contains the zero crossing. This 
we consider a crude approximation, but the results below bear out the claims of sub-pixel 
accuracy. 

6 Results 

We have constructed the local geometry of a simple synthetic image of a rectangle, of 
step edge with additive Gaussian noise, and of a SAR image (substantially subsampled to 
remove speckle) taken from SEASAT of ice floes. 

Synthetic Image of a Rectangle 

For the synthetic image in Fig. 4 the various activities of the receptive fields locate local 
properties in the image. The zero crossings of the activities of the receptive fields 
where aiot > 0 can be seen to locate the edges of the object while the zero crossings of 

With so little structure in the 
image it is difficult to give further meaning to the other receptive field activities. The 
edges found lie to  sub-pixel accuracy exactly along the rectangle sides while at the corners 
they are rounded reflecting the effect of the smoothing by convolution with 40. 

arotarot - arotarot 12 
11, the ridge detector locate the corners. 111 2 

Noisy Step Edges 

We created synthetic noisy step edges by adding Gaussian random noise of zero mean and 
variance one to step edges of varying height. Images were then scaled to the grey scale 
range of 0 to 255. Defining the signal to noise ratio (SNR) [6] as the ratio of the square 
step height to the variance of the Gaussian noise we have found, see Fig. 5, that for SNR 
5 1 the edge becomes broken while for SNR > 1 the edge is continuous. Here the window 
size and receptive field sizes are, W = 21, and t = 2. In addition zero crossings of a22 are 
considered only if the values of a2 exceed 0.1 max(a2). 

As can be seen the edge wanders about the true edge but remains smooth and contin- 
uous. Roughly then , when the SNR excceeds 2, we expect this edge detector to perform 
reasonably. 
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Ice Image 

The ice image in Fig. 6 is a 256 x 256 grey scale image dilated in size from a 128 x 128 
original image. This was processed using receptive fields of size W = 21 and t = 2. The 
dilation was done to reduce numerical errors that would have resulted from using receptive 
fields of size W = 11 and t = 1 on the original 128 x 128 image. As for the noisy step 
edges, zero crossings of a22 are considered only if the values of a2 exceed 0.1 max(a,). 

Fig. 6 shows I ,  I @ +,,, ay t ,  in the top four images and edges located to one 
pixel accuracy in the lower left. In the lower right are shown the values of d, the distance 
of the zero crossing from the center of the found edge pixels, coded by intensity with 
high intensity corresponding to larger d. The large variation in d suggests that the local 
geometry contains more information that can be used to locate the edge, indeed to sub- 
pixel accuracy. 

To examine the sub-pixel accuracy we have enlarged the upper quadrant of the ice image 
in Fig 7. As can be seen, the edges found form a smooth almost continuous boundary to 
the butterfly shaped island and other regions in the image. We take this as evidence that 
the local geometry contains sufficient information to locate edges to a sub-pixel accuracy 
that increases resolution by a factor of five. 

7 Summary 

We have described a new representation, the local geometry, for early visual processing 
which is motivated by results from biological vision. This representation is richer than is 
often used in image processing. It extracts more of the local structure available at each 
pixel in the image by using receptive fields that can be continuously rotated and that 
go to third order in spatial variation. Early visual processing algorithms such as edge 
detectors and ridge detectors can be written in terms of various local geomtries and are 
computationally tractable. For example, Canny’s edge detector has been implemented in 
terms of a local geometry of order two, and a ridge detector in terms of a local geometry 
of order three. 

The edge detector in local geometry was applied to synthetic and real images and it 
was shown using simple interpolation schemes that sufficient information is available to 
locate edges with sub-pixel accuracy (to a resolution increase of at  least a factor of five). 
This is reasonable even for noisy images because the local geometry fits a smooth surface 
-the Taylor series - to the discrete image data. 

Only local processing was used in the implementation so it can readily be implemented 
on parallel mesh machines such as the MPP [7]. We expect that other early visual alg- 
rithms, such as region growing, inflection point detection, and segmentation can also be 
implemented in terms of the local geomtry and will provide sufficiently rich and robust 
representations for subsequent visual processing. 
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ORIGINAL PAGE 
BLACK AND WHITE PHOTOGRAPH 

Figure 1: Receptive Fields with W = 21 (window size) and t = 2 
arranged according to: 

Figure 2: The local coordinates J , q  (also named 1 2) of the image at  a point x,y. The 
surface shown is the image irradiance versus versus x, y. 
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Figure 3: The interpolation scheme use to  locate zero crossing. 
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Figure 4: Activities of the receptive fields for the rdctangle image, where the size of the 
rectangle is 64 x 44 pixels, and window size W = 21, t = 2 according to: 
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Figure 5:  Synthetic noisy step edges on the left and edges found on the right. Upper pair 
is for SNR = 1 and lower pair for SNR = 2. 

Figure 6: Results for the ice floe image according for W = 21, t = 2 according to: 
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Figure 7: Enlarged view of ice image and edges found. 
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ABSTRACT 

The digital representation of an image requires a very large number of bits. This number is even 
larger for an image sequence. The goal of image coding is to reduce this number, as much as possible, and 
reconstruct a faithful duplicate of the original picture or image sequence. Early efforts in image coding, 
solely guided by information theory, led to a plethora of methods. The compression ratio reached a plateau 
around 1O:l a couple of years ago. Recent progress in the study of the brain mechanism of vision and 
scene analysis has opened new vistas in picture coding. Directional sensitivity of the neurones in the visual 
pathway combined with the separate processing of contours and textures has led to a new class of coding 
methods capable of achieving compression ratios as high as 1oO:l for images and around 3oO:l for image 
sequences. This paper presents recent progress on some of the main avenues of object-based methods. 
These second generation techniques make use of contour-texture modeling, new results in 
neurophysiology and psychophysics and scene analysis. 

INTRODUCTION 

Every image acquisition system, be it high resolution microdensitometer or TV camera, produces 
pictorial data by sampling in space and in time, and quantizing in brightness, analog scenes. A digital 
image is thus an N by N array of integer numbers or picture elements (pixels) requiring N2 B bits for its 
representation where B is the number of bits per pixel. This array is commonly referred to as the canonical 
form of digitized pictures. Generally, the canonical form requires a very large number of bits for its 
representation. For example, with a 512 by 512 raster and 8 bits per pixel, 2.106 bits are needed, a rather 
large number! For a 3 minute image sequence, at a rate of 25 images per second, the data rate becomes 
50.106 bits/sec. The goal of image coding is to reduce (to compress), as much as possible, the number of 
bits necessary to represent and reconstruct a faithful duplicate of the original picture or image sequence. 
How high a compression can be achieved when a saturation has been reached within the framework of 
information theory and coding theory ? By simply going out of this framework with the so-called second 
generation methods [ 11. A view of the difference between the techniques of the first and the second 
generation is the following. Image coding is basically carried out in two steps: first, image data is converted 
into a sequence of messages and, second, code words are assigned to the messages. Methods of the first 
generation put the emphasis on the second step, whereas methods of the second generation put it on the 
fist  step and use available results for the second step. The very end of almost every image processing 
system is the human eye. Although our visual system is by far the best image processing system one can 
think of, it is also far from being perfect. So, if the coding scheme is matched to the human visual system 
and attempts to imitate its functions, at least for the known part of it, high compressions can be expected. 
An image can be described in terms of several possible entities such as pixels of the canonical form, a 
group of pixels in small blocks, Fourier or other transform coefficients, linearly predicted values or 
derivatives, energy measures within a certain frequency band, etc. With the continuous progress in visual 
pattern recognition and scene analysis, another possibility is to describe an image in terms of contour and 
texture [2]. Two main avenues are followed in this paper. The first one imitates some neuronal processing 
using directional decomposition. The second is based on the segmentation of an image into regions so that 
region borders fit as much as possible contours of the objects, using either region growing or split and 
merge. 
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DIRECTIONAL DECOMPOSITION BASED CODING [3] - [5]. 

Directional filtering is based on the relationship between the presence of an edge in an image and its 
contribution to the image spectrum. It is largely motivated by the existence of direction sensitive neurones 
in the human visual system. A filter whose frequency response covers a sector or a part of a sector in the 
frequency domain is called a directional filter. To make edge detection with these filters easier, high-pass 
filtering along the principal direction is introduced. Areas of the Fourier domain corresponding to these 
filters are shown in Fig. 1. The entire frequency plane is thus covered with n directional filters and one 
low pass filter. The ideal frequency response of the i-th directional filter is given by 

I 1 if fli)ltan(q<fli+l) and f 2 + g 2 l p ?  f 
H ( f g )  = 0 otherwise 

with f l i )  = A, 6(i+l) = i+l andlfl, lg1<0,5 
2 K  2K 

where f and g are spatial frequencies,& isthe cutoff frequency of thelow-pass filter and wherea unity 
sampling step size is assumed. Accordingly, a directional filter is a high-pass filter along its principal 
direction and a low-pass filter along the orthogonal direction. Because of the Gibbs phenomenon, the ideal 
frequency response of the directional filters should be modified by an appropriate window function. The 
purpose is to avoid oscillation around zero crossings corresponding to real edges. One of the most 
appropriate window functions for this purpose is the G,aussian window. After windowing the filters and 
filtering, the superposition of all the directional images and the low pass image, lead to the original image. 
Thus, the directional filtering, as defined, is an information preserving transformation. There are two 
parameters involved in the directional filters: their number and the cutoff frequency of the low-pass filter. 
The number of filters is directly related to the minimum width of edge elements that is accepted a priori in 
the image. Therefore, a direct way to define the number of filters (directions) is obtained by fixing the 
minimum length of accepted edge elements. From a physiological point of view [6] ,  it seems that the 
quantization of the directions is made by 20 to 30 different groups of cells, each one specialized to a limited 
interval of directions. The choice of the cutoff frequency influences only the compression ratio and the 
quality of the decoded image. 

The messages to be coded are the directional images and the low-pass image. Note that the 
following scheme is not information lossless and that a certain quality degradation is assumed when 
coding. The main objective is to achieve the highest compression for a given degradation. High frequency 
images will be used for detecting and coding edges. The loss of information comes from the inevitable 
choice between weak and strong edges. If the compression ratio is set to high rates, very weak edges must 
be eliminated. On the other hand, the indirect approximation of the edges by line segments, as assumed by 
the definition of the edge elements, introduces some degradations at the locations of high curvature. Edge 
detection in the directional images is based on the high pass character of the directional filters along their 
principal direction. Filtering a signal with a high pass filter gives zero crossings at the locations of abrupt 
changes (edges). Accordingly, edge detection in the directional images is performed by searching the zero 
crossings along the principal direction of each image. The strength of the edges to be retained is controlled 
by setting a threshold on their slope. Each directional image is represented by the positions and the 
magnitudes of the zero crossings. The positions are coded with run length coding using the Huffman 
code, requiring an average of 4.5 bits per position. The magnitudes of zero crossings are coded with three- 
bit code word. 

The low frequency image can be coded in two equivalent ways. Since the maximum frequency of 
this component is much lower, it can be resampled using the two-dimensional sampling theorem and the 
resulting pixels can be coded by a standard procedure. The alternative is transform coding. The choice of 
the transform technique is directly dictated by the filtering that was used. The locations of the Fourier 
coefficients are known from the characteristics of the filter, and the importance of all these coefficients 
exclude any elimination by thresholding. This falls, therefore, in the category of zonal coding. After 
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experimenting with several possibilities such as logarithmic quantization, bit allocation plane etc, the 
coefficients are quantized linearly. Fixed length words are used to code the phase and variable length 
words, as attributed by the Huffman code, are used to code the magnitudes. 

In order to reconstruct the original image, all the components have to be decoded and added. The 
low frequency component is obtained by inverse transforming the coded coefficients. The high frequency 
component is obtained by synthesizing the directional images from the zero crossings. The synthesis of 
edge profiles from the zero crossing information and the interpolation between the columns of the 
normalized directional images, are the most critical procedures for the quality of the decoded image. An 
edge model [ 11 offers the theoretical basis for the synthesis of the one dimensional signals along the edge 
directions. This model requires two parameters : the magnitude A of zero crossings representing the contrast 
of the edge and the standard deviation CJ related to the steepness of the edge's slope. As the magnitude of 
zero crossings is coded, the only unknown parameter is the standard deviation. Experimental results 
indicates that a linear variation of the standard deviation with the contrast gives more realistic edges. The 
prototype wavelet which was adopted for approximating the profiles of zero crossings is the following: 

where u is the distance from the zero crossing at u = 0, A the magnitude and k a constant. Once the 
synthesis of zero crossing profiles is carried out at coded locations, the whole directional image is 
reconstructed by interpolation between the columns of the subsampled images. For a perfect interpolation 
between the columns of these images, the fact that the edge elements assumed by the presence of each 
zero crossing may have any direction within this interval must be taken into account. The interpolation 
algorithm consists in looking for a neighboring point not only on the same line but also on the two 
previous or next lines. A first series of decoded images with low compression ratio are shown in Fig. 2. 
The average compression ratio is around 50 to 1 and the quality of the picture is quite high. By decreasing 
the cutoff frequency and increasing the zero crossing detection threshold, a second series of results are 
obtained with higher compression ratios as shown in Fig. 3. 

A new step can be made to decrease the redundancy of information by relating the directional 
images or edges to a prediction model [7]. The goal of this approach is to code the prediction coefficients 
and errors with less bits than the original information, which implies a good choice of the prediction 
structure. The study of the computational problems related to the solution of large linear systems for 
prediction error minimization leads to the conclusion that a synthetic model of the information in the 
directional image must be built to perform the prediction to avoid tremendous computation. Since in 
directional images the main information is concentrated in edges, a 2-D linear prediction is chosen. A vector 
is associated to each edge element, including its position and local profile parameters (magnitude and 
width) as its components. Then, the prediction model operates on these vectors and estimates edge 
position and parameters within a prediction structure defined on a set of connected edges. 

SEGMENTATION BASED CODING[8]-[ 111. 

In the first stage of this method, the image is segmented to classifv its pixels into contour pixels and 
texture pixels. This procedure partitions the image into a set of adjacent regions under the constraint that 
the variation of the grey level within the region does not contain any sharp discontinuities, i.e. contours. 
Segmentation is carried out in three steps: preprocessing, region growing and elimination of artifacts. The 
preprocessing is intended to reduce the local granularity of the original image without affecting its contours, 
so that not too many small regions are obtained after region growing. The mechanism of region growing is 
the following. Regions to be extracted must be characterized with some property in the first step. The 
property might be, for example, the grey level of a pixel, the variation of the grey level, or the energy within 
a given frequency band. The selection of this property plays a very important role in the complexity of the 
method and in the exactness of the contours obtained after segmentation. Then, starting with a given pixel 
in the picture, its neighbouring pixels are examined to see whether they share the same property. If this is 
the case, that pixel is included in the region, and in turn, its neighbouring pixels are examined, and so on. 
When there are no more pixels left, connected to the region and sharing the same property, the procedure 
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stops and restarts at any other pixel which is not included in the f i s t  region. The segmentation is complete 
when all the pixels of the picture are assigned to some region. The property used in our first attempt was 
very simple: it was a fixed grey level interval. Although it has a constant width, this interval is made 
adaptive by moving it up and down on the grey level scale in order to intercept the maximum number of 
pixels. This displacement is constrained, however, so that previously intercepted pixels always remain in 
the region. Unfortunately, because of the simple property used, the number of these contours is much 
higher that that of the objects in the original image. Two possibilties are available to overcome this problem : 
introduction of some distortions by eliminating insignificant regions and their contours, or the use of a 
more refined property. The first alternative relies on two heuristics: elimination of the small regions and 
merging weakly contrasted adjacent regions. Statistical analysis indicates that roughly 70 per cent of the 
regions have less than 15 pixels. To avoid the creation of holes in the image, these regions are included in 
one of their adjacent regions. To minimize the corresponding distortion, the enclosing region is chosen as 
the adjacent region whose mean grey level is the closest to that of the small region to be included. By 
observing areas of constant luminance gradient in the pictures, it can be noticed that they are subdivided 
into regions even though there is no real contour. This is due to the property used in region growing which 
divides the image into regions of fixed grey level dynamic range. The second possibility to decrease the 
number of regions is thus to merge together adjacent regions whose contrast is below a certain level. The 
contrast between adjacent regions is defined as the mean grey level difference calculated along their 
common border. 

Contours obtained after segmentation are a part of the messages to be coded. A precisedescription 
of contours is essential for the human visual system. In this technique contour coding is carried out as 
follows. Since regions are closed, contour points along the border of two adjacent regions are described 
twice, once for each region. Prior to coding, these points are removed from one the regions to be described 
and coded only once. A new and refined code [12] is used requiring about 1.3 bits per contour point. 

The missing part of the messages after contour coding is texture coding. It is carried out in two 
steps. In the first step, the general shape of the grey level in each region is approximated by a two- 
dimensional polynomial function. The order of the polynomial is determined as a function of the 
approximation error and of the cost involved in coding polynomial coefficients. A three dimensional view 
of these approximations is shown in Fig. 3. In this particular case, the best ('cheapest') approximation is 
obtained with a first order polynomial function. In the second step, the granularity removed with 
preprocessing is added back in the form of a pseudo-random noise to render the image more natural and 
less 'painted by numbers'. Fig. 4 shows the final stateof the decoded pictures with compressions ranging 
from 26: 1 to 44: 1. 

Unfortunately, the straightforward generalization of the above described region growing with a 
more complex property (higher order approximations) is very cumbersome. For this reason a different 
approach is introduced to achieve the segmentation. It is based on adaptive split-and-merge [13]-[15]. In 
the first step, the original image is divided iteratively into a set of squares of various sizes. Image data are 
approximated over each square. The procedure stops when a quality criterion is reached. In the second step, 
adjacent squares are merged if their joint approximation is satisfactory. 

For each region on which the best approximation in the least square sense will be evaluated, two 
indices of quality are extracted. The first one is a global measure represented by the least mean square error 
over the region, whereas the second is based on the measure of errors at contour locations within the region 
of interest. These locations are extracted from the original image using a valid edge operator, whose result is 
a control image used to control the overall segmentation process. Assuming a power of 2 dimension for the 
original picture, the split is performed as follows. Starting with the original image, its I2 approximation is 
evaluated with a set of 2-D approximating functions. Whenever the values of the quality indices are beyond 
their respective acceptance threshold, the initial square is split into four squares of identical size. The same 
procedure is iterated for every subsquare until the quality measure becomes satisfactory. After the 
segmentation procedure, the 2-D signal is represented by the location of the different segmented regions 
and the approximation within each region. In this split process, the shapes of the segmented regions are 
squares of different size. By taking into account geometrical constraints, the structure of the split graph can 
be reduced to a quadtree representation [16]. 

The merge process is used to associate different regions obtained by the split operation in order to 
obtain a more efficient segmentation of the original image. Any segmentation algorithm requires the 
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definition of an appropriate data structure in order to effectively access and relate the different regions. The 
data structure chosen to merge various squares obtained by the split algorithm is the Region Adjacency 
Graph (RAG). This is a classical map graph with each node corresponding to a region and links joining 
the nodes representing adjacent regions. Only contiguous regions are considered as these should be 
associated first to insure the connexity of the final segmented regions. The basic idea of the merge algorithm 
corresponds, first, to assign to every link in the graph a value representing the "degree of dissimilarity" that 
exists between regions (nodes) that this link connects. This degree of dissimilarity constitutes a quality 
measurement of the approximation. In a second step, the link that exhibits the lowest degree of dissimilarity 
is removed and the regions (nodes) it connects are merged into one. The procedure is iterated until a 
termination criterion is verified. At each merging step, the values associated to the links that previously 
connected the two nodes to the rest of the graph are recomputed. An example of this operation is presented 
in Fig. 5. These images are segmented into 49 regions with compression ratios ranging from 42: 1 to 68: 1. 
Two termination criteria were considered to stop this part of the segmentation: 1) the minimum number 
of regions of the segmented image and 2) the maximum acceptable dissimilarity between the original image 
and the approximated one. 

As post processing, a smoothing technique can be used to enhance the quality of the segmented 
image in case of polynomial approximation. This procedure can be used after the split-and-merge. Due to 
the structure of polynomial functions, the approximated signal between adjacent regions may be 
discontinuous. This may create "false contours" at the boundaries of some adjacent regions. Between two 
consecutive crossing points of the region frontiers, just one bit is necessary to represent whether this 
portion of border corresponds to a false contour or not. Once, it has been established which contours do 
not correspond to real edges in the original picture, a smoothing algorithm is applied to both sides of this 
"false contour". The width for which the approximated signal is smoothed with respect to each region is 
linearly dependent on the number of points of the considered region. 

IMAGE SEQUENCE CODING BY SPLIT AND MERGE 

Ideally, in object-based image sequence coding one should first determine all the objects in the first 
frame of the sequence. Then, events like motion, enlargement, modification and the disappearance or 
appearance of new objects need to be detected and analyzed. There are several techniques that could be 
employed to try to accomplish these tasks. Segmentation has been successfully used in static object-based 
coding. It can be obtained in many ways: contour extraction, split and merge, region growing, etc. All these 
methods do not, of course, give the same results, but they all attempt to extract regions whose frontiers 
match the borders of the objects in the scene. On the basis of the high performance obtained in the static 
case, split and merge is applied to image sequences in our current work. Past experience suggests that the 
coding method be matched to the nature of the data, i.e. to its 3-D character. Therefore, a 3-D split-and- 
merge algorithm is investigated for low bit rate image sequence coding. 

The data we are aiming at compressing result from a digital image sequence, where each image is 
256x256 pixels in size, and the images are transmitted at 25 imagedsec. There is thus a tridimensional data 
space (x,y space + time). In the method to be described below, the sequence is divided or segmented into 
various regions. A region is a set of contiguousvolume elements,or voxels,which share one or several 
properties. In our current work, we define a region as a regular domain in the image sequence, over which 
the grey level variation can be approximated within a specified error, by a 3-D polynomial. A region can 
thus be represented by the coefficients of its approximating polynomial and by the description of its 3-D 
border. To find these regions, we use a 3-D split and merge algorithm, which consists of starting from an 
initial region space and then merging these regions according to the properties they share. 

To get the initial region space, from which the final regions will be grown, the 3-D data space can be 
split into regions such that the luminance in each region is closely approximated by a 3-D polynomial. The 
initial regions are obtained in the following way: First, we consider the entire image sequence, trying to 
approximate it by a single polynomial. As the image sequence does not usually have a homogeneous 
luminance, its approximation by one polynomial is not usually acceptable, because the resulting 
approximation error is very high. In that case, the entire data space is split in the three directions (x,y and 
time) to get 8 smaller volumes. Then, the approximation is performed on each one of those volumes. If the 
approximation error is too high for a given volume, the volume is split again, and so on. The process stops 
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when the approximating error on each sub-volume is lower than a predefined value. Finally, at the stop 
level, each sub-volume will be considered as an initial region. 

Once the initial region space has been obtained, the most similar regions must be merged together. 
For that, a region adjacency graph is used as before. As shown in Fig.6, a region adjacency graph (RAG) is 
a graph in which each node represents-a region and each branch represents an interconnecting link between 
two neighboringregions. A cost is assigned to each branch of the RAG to indicate the similarity of 
neighboring regions. The more similar the regions are, the lower the cost is. Merging the regions sharing 
similar properties is performed with a priority order. The regions whose interconnecting cost is minimum 
are merged first. In this way, we assure that the growth will be homogeneous and isotropic. By iteratively 
repeating the merge of the most similar regions, we reduce the redundant information contained in the 
various region attributes. The merge process stops when no more regions should be merged, either because 
the interconnecting cost is too high, indicating high dissimilarity of the regions, or because a predefined 
minimum of regions has been reached. 

In our application, the grey level variation over a region is approximated by a polynomial function. 
The interconnecting error of neighboring regions Ri and Rj is the error that results from the approximation 
of the image over the joint region Ri D Rj. We have chosen to calculate the approximating error in the least 
mean squared sense. As regions can have any size, any shape and any grey level variation, the 
approximating error can, in general, take a large range of different values, from less than 10-3 to more than 
108. To have a smaller range of the possible values for the interconnecting cost, the cost will be defined as a 
logarithmic function of the approximating error. 

The function which has been chosen to approximate the image over each 3-D domain is a polynomial 
of first degree in x and y and of degree 0 in t. This choice can be justified because the grey level variation in 
the timedirection is often not very significant between two successive frames. The first degree in x and y 
allows the representation of linear grey level variations over the object. Thus, the interpolation polynomial Q 
is given by Q(x,y,t) = c + ax + by, where a, b and c are the coefficients which must be determined in order 
to have the best approximation of the image for a given region. 

To code the borders of the regions, a pyramidal structure is used, composed of a set of 
parallelepipeds of various sizes. The domain of each region can be thus represented by a set of 
parallelepipeds of appropriate dimensions (fig. 7). To represent the border of a region as well as possible, 
the set of the parallelepipeds must match exactly the region that it defines. By setting some constraints on 
the dimensions and on the positions of the parallelepipeds in the pyramidal structure, it is possible to get a 
compact code to describe the borders of all regions. 

To obtain the most compact pyramidal structure representz.tion, the pyramid is obtained by splitting 
the data volume along three different directions: x=constant, y=constant and time t=constant. As each cut 
performed on a volume give rise to two new sub-volumes, the set of the cuts which are performed on the 
sequence can be represented using a binary tree, where each branch in the binary tree indicates a subdivision 
in the x,y or time direction. 

To get the shapes of the regions, we have to determine which parallelepiped belongs to which 
region. For that, a label is assigned to each region, such that two neighboring regions do not have the 
same label. The parallelepipeds will be labeled according to the region to which they belong. Thus, two 
neighboring parallelepipeds will have the same label if, and only if, they belong to the same region. It has 
been shown that 8 different labels are enough to properly label a tridimensional graph. However, although 
it is theoretically possible to get this minimum of 8 colors, the computer time that would be spent to obtain a 
maximum of 8 colors could be extremely large. The labeling method we have used does not attempt to 
reduce the number of the colors to its absolute minimum, but it has the advantage of being very fast. Despite 
the fact that we do not seek an absolute minimum, the number of colors used is still quite small and has 
never exceeded 13. Thus, 3 to 3.5 bits in average will be enough to code the label of a parallelepiped. 

The coefficients of the approximating polynomials are coded in a straightforward manner, using 16 
bits: 5 bits are used for coefficient a and b, and 6 bits are used for the c coefficient. The c coefficient, 
representing the average grey level, is judged more important than the coefficients a and b, representing the 
grey level variation along the x and y coordinates. For this reason, the c coefficient has been coded with 
more precision than the other coefficients. 

Tests of the proposed algorithm have been performed using standard imagesequences. Image 
sequences 256x256 pixels in size, transmitted at 25 imageshec have been compressed by a factor of 
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approximately 200 to 300, thus allowing transmission through a 48 to 64 kbits/sec channel. The quality of 
the restored images is reasonably good. However, additional work is required to remove some side effects 
of the split and merge and reconstruction processes. The main quality defects are the artifacts located at the 
border of two regions which have been formed by the merge of large initial regions (large cubes). Another 
defect in the image quality is the imprecision of the borders of the objects in a scene. This is principally due 
to the size of the smallest possible initial region, which has been fixed at 2 x 2 ~ 2  voxels, to avoid 
indetermination, while performing approximating error calculation, in the least-mean-squared sense. 

CONCLUSIONS 

In this paper a brief overview is given of image coding techniques using the contour-texture model. 
The compression ratio achievable with these techniques may reach very high values. In contrast with 
conventional methodsusinga signal processing approach in  the selection of the messages to be coded, they 
are based on scene analysis features. These new methods put heavy emphasis on the selection of the 
messages to be coded. In this context, signal processing approaches are not as successful as pattern 
recognition or artificial intelligence approaches. The coding is done in the classical way. It is clear that the 
methods we have presented need several improvements to produce better quality images at the same 
compression ratio or to reach higher compression ratios for the same quality. More detailed results can be 
found in [ 171. 

Because of computer memory limitations, the split and merge algorithm has not been tested on 
sequences longer than 32 frames. By performing the segmentation algorithm on a longer sequence (a few 
seconds in length), the compression ratio could be considerably increased, because of the redundant 
information contained in successive frames. This remark is valid only if the movements in the scene are not 
too large, and if the border on the time axis is constrained to the same scene. The compression ratio could 
also be increased by improving the coding of the polynomial coefficients, by using vector quantization 
coding rather than fixed length coding. 

The goal to be reached is to segment the image into regions corresponding to the real objects of the 
scene, without missing small ones and without introducing false objects and hence false contours. 
Powerful representations should be designed to describe the grey level evolution within each region. 
Recent efforts in texture analysis and synthesis will be of great value to image coding to render the natural 
look when added to the representation of regions. It is hoped that image coding will remain a center of 
interest for researchers and that even higher compressions will be obtained. 
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Fig. 1. Sectors of the Fourier domain covered by directional filters. 
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Fig. 2. Directional decomposition based coding results. The compression ratios are 57:l 59: 1 and 
49: 1 respectively. 

Fig. 3. Directional decomposition based coding results. The compression ratios are 118:1, 86:l and 
84: 1 respectively. 

Fig. 4. Region growing based coding results. Compression ratios are 44:1, 38:l 
respectively. 
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Fig. 5. Result of merge process. Each image is segmented into 49 regions. The compression ratios 
are 42: 1 with third order polynomials (a), 53: 1 with first order polynomials (b) and 68: 1 with zero order 
polynomials. 
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Fig. 6. Region space and its corresponding region adjacency graph (bidimensional representation) 
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Fig. 7. a) Pyramidal structure defined in the entire data space.b) Region built from a set of 
parallelepipeds belonging to the pyramidal structure. 
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IMAGE PROCESSING BY INTENSITY-DEPENDENT SPREAD (IDS)? 

Tom N. Cornsweet 
University of California, Iwine 

SUMMARY 

As retinal illuminance is lowered, the human visual system 

f 
15 

~~ 

integrates the effects of photon absorptions over larger areas and 
longer times. 
changes is called Intensity-Dependent Spread (IDS). Each input point 
gives rise to a pattern of excitation that spreads to a region of 
output points, each output point delivering a signal proportional to 
the total excitation it sees. The unique aspect of the theory is the 
assumption that, although the amplitude of the excitation pattern at 
its center increases with input illuminance, its width decreases in 
such a way that its volume remains constant. 

displays a number of unexpected and potentially useful properties. 
Among them are edge enhancement and independence from scene 
illumination. 

A theory of the process that might underlie these 

Application of this theory to image processing reveals that it 

INTRODUCTION 

During the last several years, some of my colleagues and I have 
been working with an interesting image processing technique called 
Intensity-Dependent Spread, IDS (ref. 1,2). The things I will say 
here are the result of my working with Jack Yellott, Steve Reuman, 
and Greg Reese and of discussions with a lot of other people, George 
Westrom, Fred Huck, and Ellie Kurrasch to name a few. I would like 
to discuss some of the basic properties of IDS here: some of the 
papers that follow this one will present specific implementations and 
applications of the technique. 

important phenomena in human brightness perception and it has turned 
out to do remarkably well at relating a number of phenomena that had 
always before been considered quite independent of each other. But 
it quickly became evident that the theory had potential as a useful 
computer image processing algorithm too and, although I will hint at 
some of the relevant phenomena of human vision in this paper, the 
following discussion will largely be confined to IDS as an image 
processing technique. 

IDS was originally developed as a theory to explain some 
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SOME PRELIMINARIES 

The IDS model, that is, the principles underlying IDS as an 
image processor, can be stated very simply. However, for those who 
are intimate with standard image processing techniques, there are 
some pitfalls to understanding it that need attention. 
image processing procedure, for example convolving an input image 
with a difference of Gaussians to achieve "edge enhancementtg, the 
value at each output pixel is determined by operating on a set of 
corresponding input pixels, in this example applying a weighing 
function and then adding up the results. Although one can correctly 
understand the IDS procedure in that same way, I think it is much 
easier to understand it and to avoid pitfalls if one imagines the 
process as we think of optical image formation. That is, each point 
in the input (scene) delivers its signal (light) to some region of 
the output (image). This spread of signal in the image plane from a 
unit point in object space is called the Point Spread Function (PSF) .  
The image can then be considered the summation of the images of all 
the points in object space, that is, the convolution of the PSF and 
an ideal image. 

In a typical 

Now I want to introduce a new term. The PSF is the distribution 
of light in the image of a point of unit intensity. If two point 
sources are imaged and one source is twice as intense as the other, 
although it can be said that the PSF's are the same, the actual 
distributions of light in the two images are different, one being 
twice as intense as the other at every image location. To talk about 
IDS, we need a term that permits that differentiation. Here I will 
refer to the actual distribution of signal that corresponds to a 
particular input point as the Signal Spread, S S .  The S S  and the PSF 
for a given input point are only the same when the point happens to 
have unit intensity. 

In an ordinary image, the volume of the S S  equals the total 
flux emitted by the corresponding object point multiplied by a 
constant representing the proportion of emitted light captured by 
the imaging system. 

I will write that in the following peculiar way: 

(1) 
V = k*Q1 

where V is the volume of the S S ,  
Q is the number of quanta emitted by the point and 
K is the proportion of light captured by the imaging 
system. 
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THE MODEL 

The diagram at the top of Figure 1 schematizes the IDS model. 
The input is represented as a distribution of values in an array of 
input pixels. Each input pixel delivers a signal to a network, where 
the signal spreads laterally. Finally, there is an array of output 
pixels each of which simply sums all the signals that arrive in its 
vicinity from the network. In our new terminology, the SSs are 
developed in the network and the output array sums them. Further, in 
the version of the IDS model to be discussed here, the SS's are 
everywhere positive. 

If the S S ' s  were simply, say, Gaussians whose amplitudes were 
proportional to the corresponding input intensities, then this model 
would just describe ordinary linear low-pass filtering, for example, 
as would result from diffraction at the pupil of the imaging system. 
The linear model would be appropriate if all of the energy in the 
output distribution were to come directly from the input, as in an 
optical image, or perhaps with local amplification, as is true in a 
photographic image or, in effect, with a standard television image. 
The IDS model is based on a different physical notion, that the 
energy at each input point modulates the corresponding SS, and 
specifically, that the input does not determine the energy in the SS 
but instead affects the degree to which it spreads. 

Now we can state the central feature of the IDS model. Although 
the mathematical form of the SS is constant, for example, it is 
always Gaussian or conical or cylindrical, etc., its width changes 
inversely with input intensity. Specifically, in IDS processing, the 
height at the center of the SS increases when the input intensity 
increases and its width decreases in such a way that the volume of 
the SS is constant. An example for an SS of conical shape at two 
input intensities is shown at the bottom of Figure 1. The following 
equation expresses this relationship. 

(Equations (1) and (2) are written this way partly to clarify an 
important aspect of the relationship between IDS and a linear 
system, but it is also meant to suggest that it would be interesting 
to look at the consequences of using exponents other than 1 and 0.) 

That is the entire IDS model. I will just fill out two 
details. First, the height at the center of the SS is taken as some 
power function of the corresponding input strength. The simplest 
such function, which will be used in the following examples, has a 
power of one, that is, the center height is linear with input 
intensity. Second, although the specific details of the results are 
somewhat affected by the particular spread shape chosen, e.g., 
Gaussian E cylindrical, all of the general properties I will discuss 
here apply for spread functions of any shape. 



GENERAL CHARACTERISTICS OF IDS-PROCESSED IMAGES 

Applying the IDS model or process to images produces some 
Figures 2a and 2b summarize a group of results that are surprising. 

important characteristics of IDS processing. IDS is inherently a 
non-linear process (because the Point Spread Function varies with 
local intensity, superposition is not obeyed), but the curves in 
Figures 2a and 2b can be interpreted as close relatives of the MTF of 
a linear system. Here we will call these curves Contrast Sensitivity 
Functions (CSFs). Consider just one curve first, say the one labeled 
v v l O v v  in Figure 2a. This curve shows that, at a mean intensity of 10 
arbitrary units, the system acts as a bandpass filter. Therefore, 
for a step input the output will be a spatial transient, as plotted 
in Figure 3. 
enhancementvv. This is surprising because IDS involves no 
subtraction. The PSF's are everywhere positive. (If the system 
were linear, low frequency attenuation could only be achieved with a 
PSF containing some negative regions.) 

That is, IDS does what is often called "edge 

Figure 2a also shows that as the mean intensity of the input 
changes, the CSF changes, a result that can only occur in a non- 
linear system. When the mean intensity increases, the entire CSF 
shifts toward higher spatial frequencies. Specifically, when the 
center peak height of the SS is linear with input intensity, the CSF 
shifts (on a log frequency plot) in direct proportion to the square 
root of the mean intensity (2). 

The consequences of this shift are interesting. What the 
system does is automatically adjust its smoothing and spatial 
resolution in accordance with local photon noise. Suppose, for 
example, that there is a region of an optical input image that has a 
low mean irradiance, so that quantal fluctuations in that region 
render the image noisier there than in another, brighter, region. 
The SSvs in the dark region will be larger, the CSF's there will be 
shifted toward lower frequencies, and each output pixel will summate 
signals coming from a larger input region. That is, photon 
detections will be summated over a larger region of the image, 
causing increased averaging or smoothing there. 
property to have, because if a region of the image is noisy, it is 
not possible to achieve high scene resolution there anyway. High 
resolution in the processing system just reveals the noise, not the 
details of the scene. 

That is a good 

If, onthe other hand, a region of the image has a high 
irradiance so that the photon statistics support high scene 
resolution, the IDS process automatically delivers narrow PSFs there 
and thus achieves high resolution. 

The curves in Figure 2a plot the behavior of IDS for 
deterministic inputs. 
Poisson statistics of photon-matter interactions are taken into 
consideration, the result is as plotted in Figure 2b. 

When the input is an optical image and the 

At extremely 
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low intensities the I D S  process acts as a linear low-pass filter. 
This low-pass behavior is not exactly a consequence of the model 
itself, but rather will occur only when the probabilistic aspects of 
the input are extreme, as with photon-limited detection of extremely 
low light level images, and I won't discuss it further here. 
(See ref. 3 for a complete discussion). 

Figure 4 demonstrates this property of IDS graphically. 
Imagine a simple scene consisting only of two adjacent regions one 
with a reflectance of 10% and the other of 15%, the scene being 
illuminated and imaged. 
4a is a plot of the irradiance in the image of the scene when the 
scene illumination is 100,000 arbitrary units, and the upper right- 
hand curve is the resulting IDS output. The curve on the left, the 
input curve, is computed assuming that the illuminating light follows 
Poisson statistics, as all light does, and that the sensing system 
noise is negligible. Thus, the jaggedness in the left curve is the 
result of quantal fluctuations. Some of this noise is transmitted to 
the output image on the right. 

The jagged curve at the upper left in Figure 

The pair of curves in Figure 4b show what happens when the 
illumination on the scene is reduced by a factor of ten. The mean 
image irradiances on the two sides of the edge are reduced by a 
factor of ten (note that the vertical axis scale is magnified by ten 
relative to the upper left curve) and the effect of photon noise is 
relatively increased (by the square root of 10). The corresponding 
IDS output distribution is broader but not noisier. (Note that the 
vertical scale of the output signals is increased. The fact that 
the amplitude of the edge response is not changed will be discussed 
below. ) 

Moving to the curves in Figure 4c, d, e and f each successive 
curve shows the result of another ten-fold decrease in scene 
irradiance. At the lowest irradiances, individual photon detections 
are noticeable. Although the S/N of the input images obviously 
increases with decreasing scene irradiance, the noisiness of the IDS 
output does not. In fact, the S/N remains exactly constant for the 
IDS outputs, as measured either by the ratio of the mean edge 
response amplitude to the RMS value of the output away from the edge, 
or by the variance in the location of the zero crossings.[i]. Thus, 
the IDS process yields a constant S/N for images or regions of images 
whose local S/N ratio varies as a consequence of quantal 
fluctuations. 

Note that no parameters of the model were adjusted between the 
curves in Figure 4. With regard to the output S/N, there is only one 
parameter to adjust, the width of the SS at some signal input 
intensity. This value determines the S/N that will appear at the 
output. 

Figure 5 shows the IDS outputs to a series of step inputs 
similar to those in Figure 4 but where noise is negligible. 
input steps are of increasing amplitude, and any linear system will 

The 
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give output responses that correspondingly increase in amplitude. 
However, the ratios of values on the two sides of all the input steps 
in this figure are equal, 2:1, and the figure illustrates another 
important property of IDS for step inputs. 
depends exclusively on the ratio of the values across the input step. 

Now imagine that the input patterns in Figure 5 are actually 
plots of the intensity distributions in the images of a step between 
two areas, one having twice the reflectance of the other, the 
different plots corresponding to different scene illuminations (as in 
Figure 4 ) .  It is then clear that, when the amplitudes of the edge 
responses are considered, the IDS responses to edges in a scene are 
independent of the level and the uniformity of the illumination on 
the scene. 
reflectances in the scene. This property, independence from scene 
illumination, can be extremely useful when the physical properties of 
the surfaces in the scene are of interest. 
important application of this property, we can show theoretically 
that the spectral reflectances, or more loosely the "actual colors", 
of objects in a scene can be determined regardless of the color of 
the illuminant, by applying IDS processing to each of a set of 
multispectral images. We are currently working on ways to exploit 
this IDS property in processing actual multispectral images. 

The response amplitude 

They depend only on the relationships among the 

In perhaps the most 

A FEW S P E C I F I C  EXAMPLES O F  I D S  PROCESSING 

Figure 6 illustrates the action of IDS on a television image. 
Because edges produce responses of equal magnitude whether in direct 
light or deep shadow, the output image has a much larger visual 
dynamic range than the unprocessed image. 

An extreme case is shown in Figure 7. The input is a standard 
television image of a simulated space scene, using a model spacecraft 
and astronaut and simulating the intense shadows of space by careful 
baffling of the illumination. A disadvantage of IDS processing, the 
broadening of edge responses at low light levels, is also clearly 
illustrated here. Other examples of IDS processing will be given in 
other papers in this collection. 

A MODIFICATION TO PERFORM TEMPORAL PROCESSING 

In the IDS model, signals spread laterally from each input 
point. Suppose we add the postulate that this signal spread is not 
instantaneous, but rather that the signals propagate laterally with a 
constant velocity, as they might if they were carried by neurons, for 

c 1 1  These are not really zero-crossings but "base levell' crossings, 
the base level being non-zero, dependent upon an arbitrary choice of 
a particular parameter of the model, and not important. 
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example. If the propagation velocity is taken to be very high 
compared with the processing rate, then all of the resulting outputs 
are as described above. Similarly, if the input image is stationary 
and the output is displayed only after the system has reached 
equilibrium, the results will be as above. However, if it is assumed 
that the lateral spreading of the signal occurs within a time scale 
of the same order as the time to process an image, then an 
interesting set of temporal properties are manifested. 

Figure 8 plots temporal responses of the system when the input 
is a step change in the irradiance of a spatially uniform field. 
different curves are for different step amplitudes. 
suggest temporal band-pass filtering and show that, when propagation 
velocity is included, the temporal properties of IDS are closely 
analogous to its spatial properties, these curves being the temporal 
analog of the spatial edge responses in Figure 3 .  In fact, a plot of 
the response of the system to inputs of zero spatial frequency 
(spatially uniform fields) that are modulated temporally at various 
frequencies and with various mean irradiances looks very much like 
the corresponding spatial result shown in Figure 2. The system is a 
temporal band-pass filter that shifts toward higher frequencies as 
the mean irradiance increases. Thus, merely by adding the assumption 
that the signal spread occurs over time, the system then not only 
trades spatial resolution against spatial smoothing but also trades 
temporal resolution for temporal smoothing. That is, as light 
levels are reduced, the signals are automatically integrated over 
both larger areas and longer times. 

The 
The curves 

CONCLUDING REMARKS 

Certain properties of the human visual system change as the mean 
light level changes. In particular, as the light level is reduced, 
the human visual system sums the effects of detected photons over 
larger areas of the retina and over longer time intervals. The 
usefulness of that behavior in a quantum-limited detection system 
like the eye is clear. High system resolution in both the spatial 
and temporal domains is obviously useful at high light levels, but it 
is useless at low light levels because fine spatial and temporal 
detail are obscured at the input by photon statistics. To maintain a 
constant ability to detect an object over variations in illumination 
level, one must integrate over larger temporal or spatial regions, or 
both, as the illumination is lowered. 

Intensity-Dependent Spread is an algorithm that automatically 
adjusts its spatial and temporal areas of integration in inverse 
relation to the local image irradiance in such a way that, for 
quantum limited detection, the S/N is constant and independent of 
image irradiance. The same algorithm also results in band-pass 
filtering and edge wwenhancementll, and produces responses to edges 
whose amplitudes are proportional to the ratios of irradiances on the 
two sides of the edge. It thus yields an output image of a scene 
that is relatively independent of the intensity and uniformity of the 
light illuminating the scene. 
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Figure 1 A schematic representation of the components of the IDS 
theory. 
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Figure 2 (a) Contrast sensitivity functions for IDS at various mean 
irradiances, assuming deterministic inputs. (b) Contrast 
sensitivity functions for IDS when photon statistics are 
included in the simulation. The lowest mean irradiances 
are such that the probability that a pixel will detect zero 
photons is significantly greater than zero. 
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Figure 3 The I D S  response to a step or edge. 
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CONVENTIONAL IMAGING 
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Figure 4 Each curve on the left is a plot of the relative irradiance 
in the image of a scene. The scene consists of two regions 
having reflectances of 10% and 15%. The image irradiances 
are computed on the basis of Poisson statistics. The curves 
on the right are the corresponding IDS responses. In (a), 
the scene irradiance is assumed to be 10,000 arbitrary 
units, and it is reduced by a factor of ten for each 
successive pair of curves. 
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Figure 5 IDS responses to a set of deterministic step inputs, the 
ratio of image irradiances across the step being 2 : l  in all 
cases. 



Conventional imaging IDS imaging 

Figure 7 An image from a standard television camera of a scene 
simulating deep shadows in space and the 
processing. 

I 

result of IDS 

Figure 8 The responses of I D S  to a spatially uniform field 
undergoing temporal step changes in irradiance of various 
amplitudes. 
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A local change in intensity (edge) is a characteristic that is preserved when an image 
is filtered through a bandpass filter. Primal sketch representations of images, using the 
bandpass-filtered data, have become a common process since Marr proposed his model for 
early human vision. In this paper, we move beyond the primal sketch extraction to the 
recovery of intensity and reflectance representations using only the bandpass-filtered data. 

Assessing the response of an ideal step edge to the Laplacian of Gaussian ( 0 2 G )  filter, 
we have found that the resulting filtered data preserves the original change of intensity that 
created the edge in addition to the edge location. Using the filtered data, we can construct 
the primal sketches and recover the original (relative) intensity levels between the boundaries. 
Similarly, we found that the result of filtering an ideal step edge with the Intensity-Dependent 
Spatial Summation (IDS) filter preserves the actual intensity on both sides of the edge, in 
addition to the edge location. The IDS filter also preserves the reflectance ratio at the edge 
location. Therefore, we can recover the intensity levels between the edge boundaries as well 
as the (relative) reflectance representation. The recovery of the reflectance representation is 
of special interest as it erases shadowing degradations and other dependencies on temporal 
illumination. 

This method offers a new approach to low-level vision processing as well as to high data- 
compression coding. High compression can be gained by transmitting only the information 
associated with the edge location (edge primitives) that is necessary for the recovery process. 

1. INTRODUCTION 

Primal sketches have become an important method of image description for low-level 
vision. One approach commonly used to produce these sketches is to bandpass filter the 
image data and then use the antisymmetrical signals created around intensity transitions 
(edges) to find their boundary location. We call the antisymmetrical signal a Mach-band 
pattern because it resembles the visual perception of an edge known as Mach-bands.’ In this 
paper, we show that the Mach-band patterns contain more information about the original 
target than just the edge location. This additional information allows us to move beyond 
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the extraction of primal sketches to the recovery of intensity and reflectance representations. 
Figure 1 demonstrates the recovery process of the intensity representation from the bandpass- 
filtered data for both a computer-generated target and a sampled image (e.g., image that 
is degraded by aliasing, blurring, and noise). The bandpassed images (b) of the targets 
(a) exhibit the familiar Mach-band patterns around the intensity transitions. Using the 
information contained in the Mach-band patterns we can recover the locations of the intensity 
transitions and extract the primal sketches (c) together with the actual change of intensity 
there. The recovery process uses this additional information to recover the original target 
(a), using only the bandpassed data (b) as is illustrated in (d). 

The conditions that allow us to recover a signal from partial information and specifically, 
the relationship between signals and their zero crossings, have been of considerable interest 
in the past. Logan2 has set the conditions under which one-dimensional bandpass signals 
are uniquely specified by their zero crossings. Curtis et set the conditions under which 
real, continuous, periodic, band-limited two-dimensional signals are specified from the zero- 
crossing locations of the real part of their Fourier transform. They applied their results to 
recover simple images from their threshold crossings. Independently, Yuille and P ~ g g i o , ~  
and Hummel' showed that in the absence of image-gathering degradations, a target could 
be uniquely recovered from the information contained in its second derivative. 

In this paper we assess the response of an ideal step edge to two models for retinal 
processing in human vision. We have found that the Mach-band pattern that results from 
filtering an ideal step edge with the v 2 G  filter6 preserves the original change of intensity that 
created the edge, in addition to the edge location (the zero-crossing location). Therefore, 
we can construct the primal sketches and recover the (relative) intensity levels between 
the boundaries. Similarly, we have found that the Mach-band pattern that results from 
filtering an ideal step edge with the IDS filter7 preserves the actual intensity on both sides 
of the edge in addition to the edge location (the one crossing location This filter also 
preserves the reflectance ratio (Weber fraction) at the edge location. k h  erefore, we can 
recover the intensity levels between the edge boundaries as well as the (relative) reflectance 
represent at ion. 

Our recovery method is local and uses the information contained in each edge element 
explicitly, recursively and independently. Therefore, this recovery process is quick and 
practical, with no need for extra memory, other than the storage for the recovered image 
itself, nor any extra calculations or processing. 

2. PFUMITNE EXTRACI'ION FROM THE LAPLACIAN 
OF GAUSSIAN FILTER 

A. The v2G Filter 

The model of lateral inhibition in early human vision processing and the assumption of 
white stationary Gaussian noise as a model for the natural noise source motivated Marr and 
Hildreth' to develop the spatially invariant v2G operator 
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where r2 = x2 + y2 and a is the standard deviation of a normal distribution (Fig. 2). It 
is convenient to normalize the spatial variables relative to the sampling interval. Thus, for 
a = 1, the standard deviation of the Gaussian is equal to the sampling interval. 

The Gaussian is the only filter that guarantees a nice scaling behavior of the zero and 
level crossings of the linear differential  operator^.^ It also is localized simultaneously and 
optimally in the spatial and spatial-frequency domains. The v2G operator is a linear 
isotropic bandpass filter that inherently satisfies the proper sequence of smoothing and 
differentiating for ill-posed differentiation problems (i.e., differentiating noisy data), and 
it assures smooth and stable zero-crossing curves. 8 

B. Step Edge Response 

an ideal step edge. The response of this edge to the v2G filter, as given by 
Isotropic filters allow a one-dimensional change of intensity from I to I+AI to simulate 

is the familiar Mach-band pattern around the edge boundary that crosses zero exactly at the 
location of the change of the intensity. The corresponding peak and trough are symmetrically 
located at x = a and x = -a taking the values of 

The corresponding change of intensity becomes 

&a2[Su(a) - Sg(-a)] 
2 

AI = (4) 

Consequently, we have shown that the bandpassed data preserves the edge location and 
the change of intensity across it for spatial details that are at least 3a wide (ideal case). Thus, 
when the bandpassed data Su(z, y) is the only information available, the change of intensity 
associated with each edge element may become part of the image primitives in the low- 
level processing. The low-level processing consists of (1) detecting the zero-crossing location 
(xo,yo), (2) estimating the local ed e direction 8 ,  (3) measuring the values of Su(x,y) at 
the points (x0+ B sin 8 ,  yo f a cos 87, and (4) recovering AI using Eq. (4). The primitives 
(xo,yo), 8 ,  and A I  are used later to recover the (relative) intensity of the original image. 

For the nonideal case, where a detail is insufficiently coarse relative to the spread of 
the filter, or where two edges cross each other or form a corner, it may often be possible 
to approximate AI. This approximation is achieved by measuring Sg(x,y) at the points 
(xo f rsin0, yo f rcos 8 )  where r 5 a. Eq. (4) then takes on the form 

147 



when S ( r )  and S(-r)  are available and are approximately antisymmetrical and 

&a3Su(--r) 

-r exp (-&) 
or A I =  &a3 sa ( r ) 

r exp (-5) A I  = 

when only Su(r)  or Su(-r) can be reliably measured. 

C. Normalized Response 

The Mach-band patterns at different scales (different a) differ from each other not only 
by their spreads but by their amplitudes as well. The bandpass filter can be normalized 
in such a way that the response of an ideal step edge to the v 2 G  filters at different scales 
will have the same amplitude and will differ only in their spreads. The scale Su for which 
the amplitude of the Mach-band pattern is exactly A I  [;.e., AI = S(Sa)  - S(-Sa)] can be 
obtained from Eq. (4) as 

1/4 
Sa = ($) E 0.69. 

To maintain constant amplitude A I  , regardless of the operator size (;.e., the choice of 

shows the response of the different operator sizes to an edge after normalization. The 
amplitude of the Mach-band pattern is exactly A I  for all the responses. The only difference 
between them becomes the distance between the peak and trough and the zero crossings. 

normalized bandpassed data, S, by the relationship 

S,), the bandpassed image should be multiplied by the normalization factor a 2 2  /ao. Figure 3 

Consequently, for the ideal case, we can extract the change of intensity A I  from the 

A I  = S(a)  - S(-a). 

Similarly, for the nonideal case, we can extract A I  from the relationship 

2 
b 

A I  = -S(-r)exp 

(7) 

where b = a / r ,  and r = u refers to the ideal case. 
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The recovery of edge primitives obtained for the continuous and normalized response of 
an ideal edge to the v2G filter is in practice constrained by the sampling interval. This 
constraint is part of the imaging system and the inevitable transformation from continuous 
targets to their corresponding digital representations. It is interesting to observe that the 
scale bo corresponds to the size of the smallest scale with which edges can be reliably detected 
relative to the sampling interval of the image-gathering system. Therefore, a, determines 
the resolution of the recovery process. According to Marr et the smallest operator has 
a standard deviation o= 0.69 relative to a normalized sampling interval. Furthermore, Huck 
et a1.l0-l2 have demonstrated that the resultant trade-off between aliasing and blurring in 
the image gathering for this response maximizes the acquired information density for high 
signal-to-noise ratios. The resolution of the recovery is constrained mostly by the sampling 
interval and not by the Gaussian blur represented by a,. In practice, it is preferable to let u 
be 0.75 instead of 0.69. This slight increase in size appreciably reduces aliasing degradations 
for some signals. 

D. The Recovery Process 

The edge primitives extracted by the low-level processing just described, associated each 
edge point (zco,yo) with its local edge direction 8 and its local change of intensity AI. In 
this section we present a method for recovering the (relative) intensity representation of the 
original image from these primitives. At first, we assign one of the regions of the image 
with an arbitrary initial intensity value I,. From this region onward, we spread the values 
of I + A I  and I toward the peak and trough of the Mach-band pattern, namely, in the 
(z, f r sin 8, yo f r cos 8) directions. Spreads from different edge points toward the same 
region are averaged. Consequently, the image is recovered constructively, starting from one 
of the regions of the image. Each edge point joining the process provides a step towards 
the final representation of the recovered image. Theoretically, one estimate per region is 
sufficient to recover its relative) intensity. However, we use estimates from all the ideal edge 

to a shift constant that is a function of the difference between the initial value I ,  and the 
true intensity that corresponds to this starting region. The recovery process is quick and 
practical. It does not need high-order polynomial representations to describe the imagej3y4 
nor does it need any extra calculations after the primitives (z,, yo ,.8, and A I  are obtained. 

edge elements are represented with their associate extra information 8 and AI . 

elements to attenuate t h e local error of each estimate. The recovery can be correct only up 

The only memory needed for the recovery is that of the recovere d image itself in which the 

Our methodology extends the conditions for detecting stable edge curves from v2G- 
bandpassed data set by Torre and Poggio.' They added to the zero detection from S(z,y) 
the requirement that I S(z, y) I # 0 for the detected zero elements. Thus, a detector designed 
to extract zero crossings as edge elements from bandpassed images should also include 
information about the gradient of the bandpassed data near the detected zero crossings 
(usually referred to as slope). This additional information enables the detection of smooth 
and connected edge curves, defines corners in the image, and thresholds the noisy and 
disconnected elements from the true edge elements. In our low-level processing we changed 
the slope evaluation of the Mach-band pattern to its amplitude measurement. This slight 
change made the difference between the recovery of only the primal sketch description to the 
recovery of the intensities between these boundaries as well. 
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E. Accuracy and Stability 

Inaccuracies in extracting the edge primitives introduced into the recovery process, 
even for an ideal case, are caused by the digital implementation of the (mathematically) 
continuous process. Further errors are introduced, in practice, by the image-gathering 
degradations (aliasing, blurring, and noise). It is necessary to choose the interval of 
processing (discretization interval) to be sufficiently small relative to both the sampling 
interval and a, in order to minimize the inaccuracies of measuring S(z, y; a) and to assure 
st able estimates. 

A recovery process that is based on estimates obtained from Eq. (7) or from Eq. (8) 
seems, initially at least, to be the same. However, estimating A I  from Eq. (8) is like 
estimating it from S’(x, y) (the gradient of S(x, y ), as opposed to the amplitude of S(x ,  y), 

H ~ m m e l , ~  especially when the estimate is made for r << a. The instability occurs because 
S’(x, y) = AI.v2G reaches its maximum at the edge location (zo, yo) which is near to where 
we measure S(x, y) to approximate A I  from Eq. (8) [Fig. 4(a)]. By contrast, S’(x, y) is zero 
at (xo f a sin 0,. yo f a cos e) ,  where we measure S(x ,  y) for the approximation obtained from 
Eq. (7). Small inaccuracies in measuring S near the edge location, where the gradient is the 
steepest, are amplified as a function of A I  and result in large local errors when estimating 
A I  (unstable recovery). On the other hand, small and local inaccuracies in measuring S 
near r = u are insignificant in the overall recovery (stable recovery). 

as we do in Eq. (7). The former estimation ten d s to be unstable, as was also observed by 

The relative error in estimating A I  from the Mach-band pattern is 

112 == A I  [ ( 1 - $ ) 2 + $ + ( b + ; ) 2 ]  (1-;) (9) 

where b = a / r ,  and r denotes the distance from the edge location to the location where 
S was measured. Fig. 4(b) illustrates the relative error C A ~ / A I  as a function of 1 - l / b  
and a. As expected, the relative error is zero for 1 - l / b  = 0 (;.e., at r = a). Stable 
estimates can be obtained if the peak and trough of the Mach-band pattern are at a distance 
of at least three intervals of processing from the edge location (;.e., 3Ax = a and Ax 
denotes the interval of processing, Ax 5 1). Hence, the relative error is stable up to 
1 - l / b  = Ax 2a,Ax/2a = 1 6, (;.e., a - r 5 Ax/2 and 3Ax = a), and diverges when 
1 - l / b  > Ax I 2a. A value of x/2a = 1/6 results in an interval of processing that assures 
smooth discrete representation of the continuous v2G. For such an interval of processing, 
the local relative error in estimating AI is smaller than 30% [see Figs. 4(c) and 4(d) for an 
actual a], and can be controlled by averaging all the estimates for a given region. 

Therefore, for a stable recovery, we recommend (1) implementation of filtering and 
processing with a discretization interval Ax 5 1 that also obeys Ax/% 5 1/6, a 2 a. 
and (2) the use of the estimates of A I  obtained by Eq. (7). Eq. (8) may be used only when 
the actual peak or trough location falls between two discrete intervals of processing. After 
the entire image is recovered and a region remains with no estimate at  all for its (relative) 
intensity, only then is it recommended to use the estimates of Eq. (8) to complete the 
recovery process (optional second stage of recovery). That way, the relative) intensity of 
some small spatial details might be inaccurate, but the error will be i oca1 with no further 
propagation. 
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3. PFUMITIVE EXTRACTION FROM THE INTENSITY-DEPENDENT 
SPATIAL SUMMATION FILTER 

A. The IDS Filter 

Adaptive response to the intrinsic noisiness of light (photon noise) in early human vision 
processing motivated Cornsweet and Yellott7 to develop the IDS filter. The IDS model 
consists of nonnegative, spatially homogeneous, circularly symmetric spread functions (SF) 
K ,  with unity volumes. The SF's differ from each other by their spreads, which are inversely 
dependent on the local intensity I(s, y) as given by 

where r2 = z2 + y2. Thus, the effect of the input intensity is to rescale the SF's, leaving 
their basic form unchanged [Fig. 5(a)]. The image response to the IDS model is the sum of 
the SF's [Fig. 5(b)]: 

The IDS operator is an isotropic spatially variant bandpass filter that exhibits the 
following properties: 

(1) Its response to a nonzero uniform scene is unity 

(2) Its response is invariant under translation and rotation 

(3) Its response to an input intensity cl(z,y)c > O is 

That is, the height of the SF is increased by the factor c while its width is decreased by the 
factor I/& (scaling property). 

In the discrete digital implementation, c is chosen so that the diameter of the SF for the 
highest intensity of the image overlaps with at least seven discrete image data. The distance 
between these data is then assumed to be l/& It can be interpreted as the physical 
separation between the sampled data (i.e., the sampling interval , or as the discretization of 
the continuous IDS model given by Eq. (11) (;.e., the interval o 2 processing). 

B. Step Edge Response 

For the recovery purpose, we restrict ourselves to the family of feasible SF's for the IDS 
filter that are also separable. Similar to the response of an ideal step edge to the v2Gfilter, 
the edge response to the IDS filter, as given by 
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S(x ;  I ,  AI) = 1 + . / K(z)dz - 1 K(z)dz = S (6; 1, W )  , (12) 
0 0 

is a Mach-band pattern around the edge boundary. W = A I / I  denotes the Weber fraction 
or the reflectance ratio. The Mach-band pattern crosses the value of one exactly at the edge 
location. The corresponding peak and trough are located symmetrically at  a distance p that 
satisfies the equation 

where p‘ = fi, and they take on the value S(p’; 1, W ) .  The range of the amplitude of the 
Mach-band pattern is dictated by the unity volume condition of the SF’s and is given by 
1 - 0.5 < S ( f i ;  1, W )  < 1 + 0.5. The amplitude reaches its limits 1 > 0.5 when I + m. 
The IDS response has a constant amplitude for a constant reflectance ratio W ,  while its 
spread is also a function of the original intensities I and I + A I  (Fig. 6). 

The IDS-bandpassed data S ( x ,  y; I , .AI)  retains information about the original image. 
Thus, the original intensities on both sides of the edge and the reflectance ratio associated 
with each edge element may become a part of the image primitives in the low-level processing. 
The reflectance ratio is recovered by measuring the amplitude of the Mach-band pattern and 
deriving W from Eq. (12). The original intensities are recovered by measuring the distance 
from the peak and trough locations to the onecrossing location. Substituting these distances 
and the estimation of W in Eq. (13) and solving it, we extract the I and I + A I  primitives 
needed for the recovery. 

C. Recovery From the Cylindrical IDS Response 

The cylindrical function is a feasible SF for the IDS-recovery process. Its definition is 

while its corresponding line spread function is 

o < x g / J .  
1/2 

K ( x )  = 
l o  ‘ elsewhere 

We have chosen to analyze the IDS recovery process with the cylindrical SF for the 
following reasons: 

(1) The cylindrical SF has a finite support. Therefore, the spread of the corresponding IDS 
operator is finite with a radius of ( r I ) - l l 2 .  Finite support assures accurate integration in the 
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discrete implementation of Eq. (12). SF's with an infinite support, such as the Gaussian, 
typically would require more than twice the processing to approach the same numerical 
accuracy, due to the larger support necessary for the integration. Accurate integration is 
mandatory to a stable recovery process, as we will show in subsection E. 

(2) The primitives can be extracted explicity from the cylindrical-IDS Mach-band pattern, 
Le., through a direct relationship between the Mach-band amplitude and the primitives. 
Primitives can be extracted only implicity from the Gaussian-IDS Mach-band pattern, i.e., 
through look-up  table^.^ 

from the one crossing (edge location) to the peak location in the Mach-band pattern as 
Substituting the cylindrical SF in Eq. (13), and solving it for p ,  we have the distance 

p = [ w I ( 2  + w)]-'12. (144 

The corresponding peak value derived from Eq. (12) takes on the value of 

Consequently, the low-level processing consists of estimating the local edge direction 8 at 
the one-crossing location (x0,yq), and measuring the peak and trough values S(p)  at their 
corresponding locations ( x o f p  sin 8, y o f p  cos 8). We can then recover the original ideal edge 
parameters ed e primitives) W = A I / I ,  I, and AI, using the bandpass signal information 
(;.e., p and Q k  ( p  ) from the relationships 

2 sin q5 
1 - sincj' 

W =  I = [2p2(W + 2)]-', A I  = WI 

where = w [ S ( p )  - 13 for the peak measurements and q5 = w [ l  - S(p)]  for the trough 
measurements. The primitives (zo,yo), 8, W, and I are used later to recover the (relative) 
reflectance and the intensity representations of the original image. 

D. The Recovery Process 

The recovery process from the IDS-bandpassed data is similar to the recovery process 
described for the v2G-bandpassed data. The initial low-level processing associated each edge 
point (xo, y d  with its local edge direction 8,  local reflectance ratio W ,  and local intensities 
I and I + I. Spreading these primitives onto their corresponding region in a similar 
process described in Section 2.D would result in the original intensity representation and the 
(relative) reflectance representation. The latter representation can be correct only up to a 
constant factor that relates to the initial reflectance that started the spread processing. 
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E. Resolution Accuracy and Stability 

Resolution 

The discrete display elements of the input data I xi,yi) determine the discretization 
intervals of the discrete IDS-bandpassed output image B (xi, yi). The scaling property of the 
IDS helps us understand the transformation between the continuous representation of the 
IDS model and the discrete representation of the image data. We choose the scaling c so the 
diameter of the smallest spread of the IDS operator (e.g., at the highest intensity) will overlap 
at least seven discrete image elements. Thus, the distance between two discrete elements Ax 
(smaller or equal to the sampling interval) has a physical distance of Ax = l/&. Therefore, 
when we measure the distance p in terms of intervals of processing, we should multiply it by 
l/& to be able to use Eq. (15) that was derived from the continuous representation of the 
IDS model. We do the same when we assess the resolution of the image recovery process. 

The distance pa,  between the edge and peak locations in terms of intervals of processing 
is [lr Ax 1(2 + W)]-lj2.  For images that are sufficiently sampled, features larger than 2 p ~ ,  
can be reliably recovered with the primal sketch description, along with the recovery of the 
(relative) reflectance or intensity representations. Spatial features smaller than 2pAx are 
blurred by the filter. Fig. 7 illustrates the resolution of the recovery for each intensity as a 
function of the scaling parameter c for a given reflectance ratio W .  

Accuracv 

The accuracy with which the reflectance ratio W can be recovered depends on the 
accuracy with which the peak and trough values of S (x ,y )  are measured: 

- 7r(W + 2 ) r n € S ,  
21r cos 4 

q 7  = 2 %  - (1 - sin 4) 

where 4 = x [ S ( p )  - 11. The peak and trough curves of the Mach-band pattern are parallel 
to the edge curve. Therefore, a small error in estimating the local edge direction 8, which 
determines the search direction for the peak and trough, does not affect the value S(p).  
Moreover, if for an accurate 8, the actual peak or trough falls between two intervals of 
processing, then one of the neighboring elements is often a better measurement that can 
be obtained easily. Therefore, the error cs depends mostly on the quantization used in the 
digital implementation of the IDS (8 bits in our case) and is less than 30% for 0.2 < W < 128 
(on the [0,255] range), assuring a stable recovery [Fig. 8(a)]. 

The recovery of the original intensity, on the other hand, depends strongly on the accuracy 
with which the distance p is measured. The dual relationship between I and p as given by 
xIp2(2 + W )  = 1, leads to the relative error E I / I  in estimating I. For a measured distance 
p and an estimated W through a measurement of S(p)  the relative error is 
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where 6; 5 1/4c [Figs. 8(b) to 8(d)]. The second term of C ~ / I  is the dominant one. It can 
become high for orientations 8 that do not agree with the rectangular lattice or parameters c 
that are not high enough. On the other hand, choosing a higher c would further blur the fine 
details so they would be unrecoverable. The scaling parameter c, which sets the limitation 
on the resolution of the recovery clearly demonstrates the usual trade-off between higher 
resolution (smaller c) and the accuracy of the recovery that can be obtained by increasing c 
[Figs. 7 and 81. Accurate intensity recovery depends strongly on the type of the original scene 
and on the digital implementation of the IDS operator. Initial inaccuracy in the integration 
will further degrade the estimates of I due to errors in determining the one crossings and 
the distortion of the symmetry of the Mach-band pattern around it. 

Stability 

For each edge element that we recover from the IDS-bandpassed data we have two 
estimates for both the reflectance ratio W and the original intensity I [Eq. (15 1. One 

one is from measuring p and S(p)  at the trough of the Mach-band pattern. We consider an 
estimate of W or I to be stable when the estimation through the peak and trough are about 
the same. The estimation that we use for the recovery process is the average of the two. 
Unstable estimates may occur when: 

estimate is from measuring p and S(p) at the peak of the Mach-band pattern, and t h e other 

(1) The feature that we try to recover is smaller than 

(2) Two Mach-band patterns interfere (corners, crossings, etc.) 

(3) Edge orientation causes large inaccuracies in measuring p 

(4) The reflectance ratio W is too high 

For a stable recovery we go through a process that is similar to the V2Grecovery. We 
begin recovering the original image using only the stable estimates obtained from the IDS- 
bandpassed data. After the entire image is recovered and a region remains with no estimate 
at all for its reflectance or intensity (depends on which representation we wish to recover), 
only then do we use the unstable estimates to complete the recovery process. For images 
that are sufficiently sampled, regions with no stable estimate are minimal. While all we need 
is one stable estimate to recover a feature without using unstable estimates, we actually have 
stable estimates (that are averaged for smooth appearance) from most of the edge elements. 
The intensity recovery, although stable for images that are sufficiently sampled, tends to 
be less accurate than the (relative) reflectance recovery due to the inevitable discretization 
process. 

4. rnSULTs 

In this section we characterize the images that are recovered from both the v2G and IDS- 
bandpassed signals without the use of any other data. The original image data are either 
computer-generated or obtained from a mock setup in space. Together these targets present 
a variety of different scene characteristics. These results combine the accuracy and stability 
assessments for a full recovery and the trade-offs for cases when only partial recovery can be 
obtained. 
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Figure 9 summarizes the recovery of image characteristics from the bandpassed data. The 
original targets are computer generated targets with features that are coarse enough relative 
to the sampling interval. The bull’s-eye target that simulates staircase edges allows us to 
examine how constant change in the edge direction affects the quality of the recovery. The 
square target which is tilted 30 relative to the lattice allow us to examine how this tilt affects 
the recovery. The square and the random rectangles targets also allow us to examine how 
corners and crossings in a full range intensity image affect the recovery process. The spread 
of the v 2 G  filter used herein was controlled by u = 1.0 and the spread of the cylindrical 
IDS was controlled by c = 6000. 

Using only the bandpassed data, the first stage in the recovery process is to extract the 
location of the intensity transitions (edges) through the zero crossing of the v2G-bandpassed 
data or the one crossings of the IDS-bandpassed data. The resulting primal sketches are 
illustrated in Fig. 9(b). The recovery of the (relative) intensity representation from the 
v2G-bandpassed data is illustrated in Fig. 9(c). The quality of the recovery is measured by 
the cross correlation p between the original target and the recovered one. The recovery of the 
intensities and the (relative reflectance representations from the IDS-bandpassed data are 

the quality of the (relative) reflectance recovery is better than the IDS intensity recovery. 
The high correlations between the original targets and the recovered ones suggest that the 
recovery process may be used as a decoder for a coding scheme in which only the edge 
primitives are transmitted. 

illustrated in Figs. 9(d) an d 9(e), respectively. As expected from the accuracy assessment, 

Figure 10 illustrates a particularly important characteristic of the IDS filter, namely, the 
robustness of its reflectance re resentation to local variation in illumination (e.g., shadow). 
The recovered target [Fig. 1 0 6  ] resembles the original [Fig. lO(a)], and not the shadowy 

seen in t e modest loss of accuracy in the actual transition as the illumination decreases. 
[Fig.. lop)], which is the one t h at was filtered. Traces of the shadow degradation can be 

Figure 11 illustrates the capability of the recovery process with an experimental setup 
that simulated imaging conditions in space. The target examines the recoverability of targets 
with a wide dynamic range of intensities, in particular, the recoverability of spatial details 
under direct illumination or in deep shadow. As can be observed from the edge recovery 
representation [Fig. ll(b)], many important features of target, including features in deep 
shadow, could be recovered. The recoveries from the v2G (with u = 3.0) are illustrated in 
Fig. ll(c), and those from the IDS (with c = 6000) are illustrated in Fig. l l ( d  
These recoveries resemble a slightly blurred version of the original target 
could be expected from the accuracy and stability analysis, features that were relatively small 
produced inaccuracies as well as features with abrupt and steep changes in the intensities. 
Nevertheless, in most of the cases, these inaccuracies were contained within their regions 
with no further propagation. 

5. CONCLUDING RJ3MARKS 

Assessment of the response of an ideal edge to a bandpass filter reveals that most of 
the target’s characteristics are preserved. For applications that use bandpass signals, the 
recovery of those characteristics exhibits new dimensions to image understanding. Minimal 
extra processing is required, beyond that is needed for the primal sketch extraction process. 
The processing is based on the existing bandpassed data information and on the same 
storage needed for the recovered image itself. The potential for high data compression 
applications, transmitting only the information associated with detectable edge boundaries 
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(edge primitives), might be helpful when high data rate transmission is required. In light 
of our results and the stability assessment, we feel that the edge primitives information 
extracted from the bandpassed image is a good form of representation for images that are 
sufficiently sampled and properly processed. 
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(a) Target (b) Bandpassed image (c) Primal sketch (d) Recovered tar 

Figure 1: The recovery process from the bandpassed representation to the original image 
represent ation. 
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Figure 2: Normalized v2G response for three standard deviations 0. 

158 
ORfGfNAL PA'GE 

BLACK AtVD WHITE PIiOTOGRAPH 



25 

-25 
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Figure 9: The recovery process for computer-generated targets. 
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Figure 11: Feature extraction for an experimental image that simulates imaging conditions 
in space. 
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Eleanor Kurrasch 
Odetics, Inc. 

1515 S .  Manchester Ave. 
Anaheim, CA 

INTRODUCTION 

The theory of the IDS model was discussed earlier by Dr. Tom 
Cornsweet (ref. 1). This Intensity-Dependent Spread algorithm 
originated with Dr. Tom Cornsweet and with Dr. John Yellott. They 
introduced this concept of a spatially variant image processing 
technique that is like the human visual system (ref. 2). Odetics 
furthered this research by applying the IDS model to some very 
interesting applications. 
istics, as described elsewhere, and is a nonlinear spatially adaptive 
bandpass filter that is locally adaptive and robust to signal noise. 
Odetics' research was to evaluate the IDS model for processing at 
video rates. The approach was to develop a prototype of a VLSI video 
rate version and apply IDS to machine vision. IDS could provide very 
significant bandwidth reduction in the transmission of information 
from a remote sensor. The IDS concept seems to explain the 
apparently complicated and unrelated visual phenomena exhibited by 
the human retina. 
processing system with the human retina. 

In Figure 2 some of the typical problems with digitized images 
are listed. The IDS model offers a solution to these types of 
problems. Odetics developed the research which consisted of a 
detailed performance analysis of the IDS model and a feasibility 
study of a hardware design and implementation, one in analog and one 
in digital. The analog approach is similar to a neural network with 
analog processors at each pixel. 

The photograph in Figure 3 illustrates the output of the 
prototype 9x9 analog system f o r  a simple T-shaped image. 
implementation of the IDS model has 81 pixel fiber optic inputs, 81 
analog processor circuits, and an LED display. The analog circuits 
limited the dynamic range of the output and worked well enough to 
prove the feasibility of this concept. 
digital implementation of the IDS model that would execute at video 
rates. Odetics developed a detailed design during the Phase I 
research for LaRC. 

This model has some unique character- 

Figure 1 shows the comparison of a typical image 

This analog 

The next approach was a 

---------- 
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The results of the performance analysis conducted on the IDS 
model during the research demonstrated significant advantages for 
both high bandwidth and low intensity scenes over small kernel 
operators such as Sobel and spatially invariant large kernel 
operations such as Marr-Hildreth. The research verified the 
predicted performance of the model with both simulated and actual 
images and showed that IDS could provide the edge enhancement 
necessary for machine vision systems. IDS would also provide 
significant bandwidth reduction. The most exciting result was the 
development of digital design approach for a general purpose large 
kernel digital convolver which can implement spatially variant IDS 
spread functions as well as common spatially invariant ones. Our 
results showed the feasibility of implementing the convolver to 
perform IDS processing on a 512 x 512 pixel image at video rate. 
Results are contained in the Phase I NASA final report reference 
(ref. 3). 

convolver where each output pixel is the result of the simultaneous 
processing of 32 x 32 or 1024 input spread functions. This operation 
is performed in about 100 nanoseconds per pixel. In Figure 5 we show 
the results of Phase I and the proposed results of Phase I1 and the 
deliverables. In Figure 6 we describe the proposed detailed 
characteristics of the prototype of the IDS VLSI image processor. It 
will operate at video rate with 512 x 512 8-bit video format and be 
capable of handling a 32 x 32 spread function. It has a 16-bit 
internal representation for intensity mapped pixels. An interim 
prototype was developed on 1 PC board which operates at 4 seconds per 
frame. The video rate version is under development. To increase the 
dynamic range an advanced version is being designed using 12 bit 
video input data, operating on a 64 x 64 or even 128 x 128 spread 
functions. The objective of this advanced version is a video rate 
operation in VLSI and space qualification. Figure 7 shows the 
interim near-real-time version which operates at 4 sec/frame. Figure 
8 illustrates two video input images taken in the laboratory under 
very low light. The top left is a small tank and the top right is 
the PC board layout of this interim IDS processor. In the lower left 
we see the result of the IDS processing and the edge enhancement of 
the tank and the lower right shows the IDS performance on the PC 
layout board design. 

Figure 4 illustrates the fundamental concept of the 32 x 32 bit 

Figure 9 illustrates the Vision Workstation which we are 
delivering to LaRC. It consists of a SUN 3/260C computer and a 
Datacube pipeline video processor. The IDS processor will consist of 
a board set that is designed for the Datacube architecture. 

Odetics is under contract to NASA at the John Stennis Space 
Center which exploits a very exciting characteristic of the IDS model 
which may be used in what is termed color constancy. Color vision 
is characteristic of a small number of living species. These 
creatures have used color to adapt and survive in the world around 
them. When a person is asked to identify objects in a scene or in a 
color photograph of a scene, he or she may use any of a large number 
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of possible cues. 
color of an object. In this paper we refer to the term, ggcolorgg as 
spectral reflectance. 
recognition or determination that a particular region of a scene is 
an object. This is defined as object segmentation. Many objects 
have a relatively uniform color that is different from the background, 
and in those cases, color can provide important input for segmen- 
tation. All contiguous pixels, within some given area, can then be 
grouped together and labeled as a single object. Object segmentation 
is performed effortlessly by the human visual system, but creating 
computer vision that takes an image as input and performs object 
identification on the basis of color runs into difficulties. 
Automatic identification is difficult enough when the conditions of 
illumination on the scene are precisely known, but as an example in 
images acquired by satellites, several unknown aspects of the light 
illuminating the scene can seriously interfere with the use of color 
in object identification. The color of an image depenas not only on 
the physical characteristics of the object 
wavelength composition of the incident illumination. 
the image of an object, particularly when there is a large distance 
between the object and the imaging system, is also strongly affected 
by the spectral transmission and the scattering characteristics of 
the air that lies between the object and image. Those 
characteristics in turn depend on the amounts of moisture, dust, 
smoke, etc., that are suspended in the air. For these reasons, the 
colors of the images of objects do not directly indicate the colors 
of the objects themselves, and the use of image colors in the 
segmentation and identification of objects is severely compromised. 
The fact that human vision is much less affected by changes in the 
color of the illumination than television or photographic image 
recording systems has been known in the human vision literature for 
a long time and is called color constancy. This term means that the 
color of an object is relatively constant in spite of changes in the 
color of the illurninant. 

One of the most salient and useful cues is the 

The identification of an object requires prior 

but also on the 
The color of 

I D S  processing provides the extraction of edges and of 
reflectance changes across edges, independent of variations in scene 
illumination. 
video rate in the camera and that only the information actually 
transmitted from the camera to a receiver were the locations of each 
edge pixel and the ratio of reflectance across the edge. 
image of the objects in the scene could then be reconstructed at the 
receiver. For most scenes, that process would provide very 
significant band-width reduction while performing useful feature 
extraction (relative reflectance, independent of illumination) at the 
same time. I D S  yields edge responses whose amplitudes are 
independent of scene illumination and depend only upon the ratio of 
the reflectances on the two sides of the edge (ref. 4 ) .  

Suppose then that IDS processing were carried out at 

A useful 

The color constancy test process is shown in Figure 10. In the 
Phase I contract we applied the I D S  concept to multispectral scenes 
in order to demonstrate the capability to determine the correct color 
of objects and patterns in the scene independent of the color of the 
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illumination on the scene. 
the IDS output to reconstruct the reflectance image. We are also 
developing a color constancy testbed as shown in Figure 11 which will 
use the IDS video rate processors with a SUN workstation and 
Datacube processor. Here we will be able to test and evaluate 
outdoor images using the IDS concept. Figure 12 shows four mondrian 
images. In the upper left is the original input image. In the upper 
right is an earlier attempt at developing the reconstruction 
algorithm which shows much interference at the corners. In the lower 
left is a later attempt that assumes that there is a relationship 
such that the peak-to-trough amplitude and step functions are the 
same at both ends and that the step size is linear. The lower right 
has a further modification of this algorithm. The objective Odetics 
has for this Phase I1 research is to design and build a multispectral 
camera testbed to generate color constant images in near-real-time 
and perform color reflectance image reconstruction. A product which 
may be developed by Odetics in the future is a CCD camera containing 
an advanced IDS ( V L S I )  processor that will exhibit the features we've 
discussed here and be used for object recognition. Figure 13 shows an 
artist's sketch of the camera. 

In the Phase I1 contract, we are using 
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SPECIFICATIONS 

- CIRCUIT LAYOUT 
- IC LINE WIDTH 

- NUMBER OF GATES 
- RESOLUTION (PIXELS) 

- POWER CONSUMPTION 
- SYSTEM VOLUME 

TOTAL WEIGHT 

TYPICAL IC 

2-DIMENSIONAL 

- 1-3 MICRONS 

- APPROX. 1,000,000 
- 2048 X 2048 

- 200 - 300 WATTS 

- APPROX. 10,000 CU. IN. 
- 20,000 - 50,000 G 

RETINA 

- 3-DIMENSIONAL 

* 0.1 - 1.0 MICRON 

- APPROX. 25,000,000,000 
- 10,000 x 10,000 

- 0.001 WATTS 

APPROX. 0.0003 CU. IN. 

* < 1 G  

Figure 1 Comparison of Typical Image Processing System 
with the Human Retina 
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Figure 2 Typical Problems with Digitized Images 
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Figure 3 A 9x9 Analog Implementaticn of IDS 
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DELIVERABLE 
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PROTOTYPE PROCESSOR WITH: 

Spatially invariant filtering (conventional) 
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Figure 5 Phase I Phase I1 Deliverables 
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Figure 6 I D S  VLSI Image Processor (Convolver) 
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Figure 7 was unavailable at time of publication. Upon written request, 
interested parties can procure a copy from Odetics at a later date. 

Figure 7 Interim Near-Real-Time Version of FPPJr. 

~~~~~~~~ ~ 

Figure 8 Tank and PC Layout Board 
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Figure 12 Four Mondrian Images 

ORIGINAL PAGE 
B U C K  AND WHiTE PHOTOGRAPH 



(VLSI) 
Cards 

Lens \ \ CCD 
Imager 

Figure 13 IDS Camera (VLSI) 

175 



ISOLATING CONTOUR INFORMATION FROM ARBITRARY IMAGES 

Daniel J. Jobson 
NASA Langley Research Center 

Hampton, Virginia 

Abstract 

Aspects of natural vision (physiological and perceptual) serve as a 
basis for attempting the development of a general processing scheme for 
contour extraction. Contour information is assumed to be central to visual 
recognition skills. While the scheme must be regarded as highly preliminary, 
initial results do compare favorably with the visual perception of structure. 
The scheme pays special attention to the construction of a smallest scale 
circular difference-of-Gaussian (DOG) convolution, calibration of multiscale 
edge detection thresholds with the visual perception of grayscale boundaries, 
and contour/texture discrimination methods derived from fundamental assump- 
tions of connectivity and the characteristics of printed text. Contour 
information is required to fall between a minimum connectivity limit and 
maximum regional spatial density limit at each scale. Results support the 
idea that contour information, in images possessing good image quality, is 
contained largely if not wholly in the highest two spatial frequency channels 
(centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial 
frequency channels appear to play a major role only in contour extraction 
from images with serious global image defects. 
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Introduction 

The goal of sophisticated machine vision capabilities requires that 
attention be paid to the semantic content of images together with intrinsic 
image characteristics such as contrast, noise, blur, and sampling. The 
visual task of recognition and interpretation is of paramount interest. Here 
the first step toward a more general approach to machine vision recognition 
is defined as a set of methods for transforming arbitrary images into contour 
or schematic line drawing information. This set of methods was fashioned 
from natural vision concepts (physiological and perceptual) coupled with 
image acquisition processes. Emphasis is placed on the smallest scales of 
the image. An abbreviated pyramid of circular difference-of-Gaussian (DOG) 
convolution operators forms the first stage of image processing. In 
particular the nontrivial problem of constructing a smallest scale DOG 
operator from discrete image samples is of special interest. Edge detection 
and contour extraction processing is then performed for each scale of 
operator. Multiscale contour information is then merged in an hierarchical 
manner with priority being given to the information from the smallest scale. 
Larger scale information is only added to spaces not already occupied by 
smaller scale information. 

The set of methods can be viewed as a progression starting with the 
image and proceeding through "seeing" to significance. The processing 
scheme, which must be regarded as preliminary, is described together with the 
ideas behind the scheme. Results are given for a series of image processing 
experiments designed to provide a partial demonstration of the overall 
consistency of the scheme with the visual perception of structure in images. 
While conciseness of either the processing or the resulting information was 
not a major goal, it is noted that processing is reasonably simple and the 
contour information is intrinsically concise (and can be made more compact by 
the addition of coding schemes). 

Construction and Resiliency of Smallest Scale Operator 

Previous work by Huck et al. (Ref. 1)  demonstrated that a well-behaved 
smallest scale DOG operator could be constructed for one case of a specific 
amount of image blur and a particular spacing of the square grid sampling 
lattice. Subsequently this work was extended to show that this well-behaved 
operator will result from the same set of weighting coefficients even for 
significant changes in blur or sampling lattice spacing (Ref. 2 ,  Figs. 1 
and 2). 
the image samples is then equivalent to applying a small DOG operator to the 
original scene radiance distributions. Less attention was paid to the 
construction of larger operators (in this case about 3 times and 6 times 
larger) and the larger functions used were merely formed from discrete values 
of the desired size of DOG function. The spatial spread of image edges after 
convolution was checked as a rough verification that the desired scale 
operator was achieved. 

The two-dimensional convolution of these weighting coefficients with 

Multiscale Two-Dimensional Edge Detection and Representation 

A fully two-dimensional edge detection method was found to be necessary 
(Ref. 2). Likewise an edge representation space magnified by a factor of two 
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over the original image space was also a requirement (Figs. 3, 4 ,  and 5). 
Edge detection is based on zero-crossings (Ref. 3); however, the determina- 
tion of thresholds for "zero" for edge detection could not be determined from 
fundamental considerations. In particular, noise-limited edge detection 
produced edge representations with a wealth of textural detail which seemed 
inconsistent with the subsequent goal of contour extraction. Therefore, the 
performance of visual perception was examined for guidance in determining 
multiscale contrast sensitivities. To this end, the perception of grayscales 
edges and bar patterns was examined. 

The Disparity Between Grayscale and Bar Pattern Perception 
at Scales Larger than the Visual Acuity Limit 

The perception of both grayscale and bar patterns (Fig. 6) seemed 
suitable to the calibration of contrast sensitivity versus image scale. 
One aspect of grayscale edge perception is noteworthy. For equal step 
intervals in the grayscale and decreasing angular size, a point is reached 
where almost all edges vanish at once. The exceptions are the lowest and 
highest steps which vanish at slightly larger angular sizes. Therefore for a 
particular angular size, edge detection in grayscales seems to be an almost 
linear process with constant threshold value. 

While a consistent result for grayscale edges and bars was expected, 
actual results were quite different. A striking disparity occurred between 
the perception of grayscale edge and bar patterns at 3x and 6x the visual 
acuity limit (Fig. 7). This led to the use of the grayscale sensitivities 
for edge detection and the formation of a hypothesis that contour information 
exists as a higher contrast subset of information within the full range of 
visual phenomena (Fig. 8 ) .  It should be noted in these spatial frequency 
diagrams that higher contrast at a given scale is a necessary but not 
sufficient requirement for visual phenomena to be contour information. That 
is, some higher contrast phenomena may still prove to be textural or 
otherwise not relate to overall contour description of a scene. Contrast 
sensitivity versus scale must now be related to edge detection zero-crossing 
thresholds by considering noise, blur, edge contrast, and most importantly 
sampling effects. 

Edge Detection Threshold-Calibration to Contrast Perception 
Considering Sampling, Noise and Blur 

Sampled edge convolution signals exhibit considerable chatter compared 
to the characteristic analog signal (Fig. 3). Therefore, capture of extended 
edges in a test image at each scales' contrast sensitivity was calibrated for 
intrinsic sampling errors coupled with reasonable values of noise and blur. 
The existence of reasonably low noise (S/N > 50) and modest blurring 
(Gaussian u = 0.6 of the sampling lattice spacing) was checked. This 
calibration (Table 1) was performed in two stages. A set of convolution 
samples on extended edges at threshold contrast was used to make an estimate 
of edge detection threshold. Since this relatively small sample might not be 
highly accurate, some image processing experiments were performed. Edge 
detection thresholds were adjusted until the bulk of extended straight edges 
at minimum contrast were detected. 
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Contour Extraction Methods (Semantic Reference Points1 

To this point only the "seeing" of edges has been considered. The 
isolation of contour information now necessitates a step beyond this into the 
semantic content of contour information. The question is namely - can we 
find a fundamental characteristic of contour information on which further 
processing can now be based? Contour information subjectively seems to 
always steer between "too little" and "too much", so we can look for ways to 
establish quantitative criteria for these subjective limits. Connectivity 
was investigated as a "too little" criterion while regional spatial density 
of events was used for a "too much" criterion. The following two approaches 
to minimum connectivity were investigated: 1) the minimum feature of printed 
text - the period, or more fundamentally 2) connectivity across the space 
occupied by the original DOG operator. The latter proved to be the most 
perceptually consistent. Printed text characteristics were also investigated 
to establish a region size and a maximum number of spatial events allowed. 
This hypothesis arose from the idea that printed text is engineered by man 
for possibly maximum information throughput. The resulting quantitative 
criteria are summarized in Table 2 .  

Results, Discussion, and Conclusions 

As a partial demonstration of generality, the computational scheme is 
applied identically to diverse images. The original image is shown at the 
correct size to place each image pixel at about the visual acuity limit f o r  a 
normal reading distance (Fig. 9). However, perceptual comparisons with these 
reproduced images are not particularly accurate because the contrast rendi- 
tion of the original image cannot be maintained in publication. Only results 
for the lx and 3x combined scales are shown since this appears to be 
sufficient for good quality images. Addition of 6x scale information appears 
to be unnecessary in this case and comes into play for images with global 
defects (weak contrast, severe blur or noise). The handling of defective 
images is the subject of an on-going investigation and seems to require a 
graceful shift to a pair of larger scales as one or more smaller scales 
produce insufficient information in some global sense. 

In an overall sense, these results support the idea that a general 
scheme for contour extraction is possible and can be based mostly on a 
pairwise selection of two scales of edge detection and representation. These 
two scales should be the smallest two for most normal imagery and shift to 
pairs of successively larger scales only when globally defective images 
occur. 
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TABLE 1. - EDGE DETECTION THRESHOLDS FOR THE THREE SMALLEST 
I M A G E  SCALES ( l X ,  3X, AND 6X V I S U A L  A C U I T Y  L I M I T )  

SCALE 

1x  

3x 

6X 

SCALE 

1x  

3x 

6X 

DES I R E D  
CONTRAST THRESHOLD 

50% 

15% 

5.5% 

E S T I M A T E D  
EDGE DETECT I ON 

THRESHOLD 

19% 

7.0% 

1.2% 

ACTUAL 
EDGE DETECT I O N  

THRESHOLD 

16% 

5.5% 

1.2% 

T A B L E  2. - CONTOUR PROCESSING C R I T E R I A  
( I N MAGN I F  I ED EDGE REPRESENTAT I ON SPACE) 

C O N N E C T I V I T Y  

6 

1 8  

36 

NUMBER OF EVENTS REGION S I Z E  

75 25 x 25 

260 50 x 50 

350 75 x 75 
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m i c e  spacing 

F i g u r e  1. C o n s t r u c t i o n  of S m a l l e s t  S c a l e  Edge Opera to r  
f o r  Square L a t t i c e  Image Space 

Magnitude 
of group 
response 
for nine 

weighted 
Gaussians 

1 .o 
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.8 

.6 Top view of 
Gaussian group 

.4 

Individual Gaussian 
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.2 
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Radial distance, r 

pj 
b a b  

Weights 
(a = -0.1820) 
(b = -0.0675) 

F i g u r e  2 .  R e s i l i e n c y  of Opera to r  t o  V a r i a b l e  Sampling L a t t i c e  
Spacing ( o r  E q u i v a l e n t l y  V a r i a b l e  B l u r )  
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Arbitrary 
sampling 

cross section - 

I 

F i g u r e  3 .  

Sampled image 

Minimum number of samples 
in local 3 x 3 neighborhood 

required to define edge 
structure in image space. 

D i s c r e t e  Samples of Convo lu t ion  of 
Edge wi.th DOG O p e r a t o r  

Convolution 
operator 

- Sampling 
grid 

Convolution 
distribution 

/ 

\ 
Two-dimensional 
edge detection 
and magnified 
representation 

F i g u r e  4. I l l u s t r a t i o n  o f  t h e  Requirement f o r  a Magni.fied 
Edge R e p r e s e n t a t i o n  Space 
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F i g u r e  5. Zero-Crossing Comparisons Used i n  Edge D e t e c t i o n  
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scale of input 

F i g u r e  6 .  P e r c e p t u a l  Determi n a t i  on of C o n t r a s t  
S e n s i t i v i t y  Versus Image S c a l e  
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Figure 7. Disparity in Grayscale Edge and Bar Pattern Contrast 
Sensitivities for Scales Above Visual Acuity Limit 
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Figure 9. Image P r o c e s s i n g  Results 
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Figure 9 .  Concluded. 
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Biological image processing strategies and algorithms are of interest to NASA because of 
their potential for practical application. Of special interest is an algorithm of Cornsweet.[9,10] 
This Intensity Dependent Spatial Summation (IDS) algorithm is correlated with a number of 
quantitative, empirical aspects of vision.[ 111 The spatial scale of the associated point spread 
function is intensity dependent. Lower intensities are associated with a broader range of spatial 
integration. There is an interesting similarity between intensity dependent spatial integration 
and spiketrain coding of intensity in which the integration time is longer for lower intensities. 
Extended spatial integration and extended temporal integration are both strategies tradeoffs 
appropriate to coping with low intensity signal-to-noise problems.[ 121 

The Cornsweet algorithm is of interest in connection with edge detection, the identification of 
contours of objects and the specification of an image in terms of reflectance ratios. The temporal 
analog of a reflectance discontinuity at an edge is a step function intensity transient. One 
vision-system-like mode of transient sensing has already been demonstrated in our approach. [ 131 
Implementation of the Cornsweet algorithm is a more subtle and interesting problem than 
transient sensing, although some insights may emerge from the similarity between spatial and 
temporal integration. 

A parallel asynchronous hardware implementation of the Cornsweet algorithm would repre- 
sent an interesting application of our approach. The ultimate and most challenging application 
would be real time, high frame rate, high resolution image processing. Hardware implementa- 

ELECTRONIC OR OPTICAL INPUTS 

Si wafer 

Figure 4: Schematic illustration (cross- 

si wafer tern through a 2-D parallel asynchronous 
processor consisting of stacked silicon 

Si wafer 
P sectional side view) of the signal flow pat- 

P wafers. Parallel asynchronous fire-through 
" si wafer is a key t o  propagation o f  pulsed signals 

P 

" Si wafer 

P through chips. Injection pulses are associ- 
P ated with current-flow between the n- and Si wafer 

" p-l a yers . 
P 

1 1 1 3 1 1 1 1 1 1 1 1  
OPTIONAL LED OUTPUT ARRAY 
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5 
10 

Figure 5: Experimental data points [6] and the calculated (MINUIT)  
fit. The output dynamic range is slightly less than the input dynamic 
range corresponding to sublinear current-to-frequency conversion. The 
model gives an extremely good fit which ranges across 7 decades. 

1 2  10' lo6 lo5 1612 l o l o  

CURRENT (AMPERES) 

tion of the Cornsweet algorithm is an unusually interesting area of research because the relevant 
retinal and neural mechanisms have not yet been identified.' On the other hand, a great deal is 
known about the connectivity of the retinal neural network, so that biological plausibility might 
be invoked as a broad, qualitative constraint on network architecture. For applications, it is of 
course not necessary to be unduly constrained by biological analogies and differehces will surely 
appear in a silicon device approach. However, a point which is frequently made in connection 
with neural network research is that, at our present level of understanding, there is probably 
much to be gained from a reverse engineering analysis of high performance biological systems. 

2 Devices For Parallel Asynchronous Processing 
Previous studies[6] of current driven p+-n-n+ diodes led to the discovery of input current 
dynamic ranges up to lo7. The corresponding output pulse rate range was sometimes less than 
the input range. See Fig.5. We have developed a model for spontaneous firing during current-to- 
frequency conversion (I-to- f conversion) and used the model to analyze the data shown in Fig. 5 
using a program developed at CERN called MINUIT[14]. A key feature which is explained is 
that the slope of lnf vs 1nI is not always unity. The data in Fig. 5 correspond to f cc Il-'. A 
simple picture with an equal amount of charge transfer in each impulse would explain f cc I. 
However, more detailed device modeling was required to understand sublinear f cc Il-' behavior. 

2.1 Sensors and Sensor-Processor Interfacing 

This section describes experimental work on sensors and sensor-processor interfacing. Results 
have been obtained for reverse biased p-i-n photodiodes which are useful in the visible, ultraviolet 
and near infrared regions and for infrared detectors which are useful in the far infrared region. 
The most dramatic results in terms of dynamic range came from visible light measurements 
with reverse biased p-i-n photodiodes where the dark current reduction associated with cooling 
led to the enormous dynamic range shown in Fig. 6. 

'T. Cornsweet, private communication. 
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Cllh. 

Figure 7: Schematic representation of the primate retina.[l7] 
T h e  light sensitive rods and cones pass signals t o  horizontal 
cells where lateral inhibition may occur. Signals then pass 

,,.ti ”,W,,,W.*l through bipolar cells t o  the highly interconnected plexiform 
Lhp.,.,, layer. From the plexiform layer, signals are transmitted to 
LI.ll I\m.,<,,nl. the ganglion cells which connect t o  fibers o f  the optic nerve. 

Reproduced with the permission of Sinauer Assoc. Inc. 

LL.I i  

LA”CI,.~” 
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The relevant output from the IDS algorithm conveys information in the neighborhood of an 
edge, so it’s not strictly one-dimensional. Besides edge contour information, there is additional 
information in the IDS algorithm output, namely, intensity-ratios or reff ectance-ratios associated 
with the two regions on either side of the edge. If we assign one normalized reflectance to each 2- 
D subregion (plaquette) within a closed contour revealed by edge detection, then the IDS output 
data could be compressed into a “sketch” displaying 1-D edge contours (plaquette perimeters) 
and a set numbers (normalized reflectances), one for each 2-D plaquette. 

2.5 

Our parallel asynchronous processing strategy, our neuronlike information coding and our in- 
trinsically 2-D data flow all suggest a close analogy with natural vision systems. In addition, 
our approach preserves the geometrical relationship of neighboring channels as is the case in 
natural vision systems. A key aspect of processing in natural vision systems is lateral inter- 
action between neighboring or nearby processing channels. It thus appears that our hardware 
approach is well suited to implementation of image processing schemes which parallel those of 
natural vision systems. 

Lateral interaction between nearby processing channels is associated with vision system 
spatial filtering. Lateral interactions determine the receptive fields of neuron processing elements 
and the point-spread functions of individual photoreceptors. In natural vision systems, neurons 
mediate lateral interactions as shown in Fig. 7. In the retina chip of Mead and Mahowald, lateral 
interactions are incorporated via a resistive network. [ 161 However, no spiketrain generation and 
no intensity-to-frequency conversion occur as in the retinas of natural vision systems. See Fig. 
8. 

In our approach, neuronlike spiketrain generation is used. An artificial neuron circuit and 
the analogy with real, stereotypical neurons is illustrated in Fig. 9.[5] 

Similarity with Image Processing in Natural Vision Systems 
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Figure 8: Waveforms recorded from various cells in the vertebrate 
retina when a small stimulus spot i s  shown on retina photorecep- 
tors, and when a large spot that includes surrounding elements 
is used. The stimuli l as t  about 1 second, and the responses are 
up to  30 mV in amplitude. OPL and IPL refer to  outer and inner 
plexiform layers and NF refers t o  the nerve fibers. [18] Reproduced 
with the permission of Cambridge University Press. 

, ,  OUTPUTS 

TRANSMISSION LINE 

Figure 9: A ) :  Features of a typical neuron from Kandel and Schwartz [is] and B):  our artif icial neuron, which exhibits 
the summation over synaptic inputs and fan-out. The input and output capacitive couplings are useful in conjunction 
with spiketrains. The darkened diode is a p-n junction device used for pulse height discrimination. The other diode i s  
a p+-n-n+ diode used for spiketrain generation. 
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Figure 6: T h e  graphs show that the pho- 
tocurrent output of a reversed biased p-i-n 
photodiode (left graph) in response t o  vis- 
ible light overlaps the large dynamic range 
of p+-n-n+ devices (right graph). This im- 
plies that such photodiodes could be directly 
interfaced t o  a parallel asynchronous proces- 
sor based on p+-n-n+ devices. Such in- 
terfacing would preserve the high dynamic 
range. 
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2.2 Two-Dimensional Data Transfer 
We have performed experiments in order to examine means of 2-D parallel data transfer without 
multiplexing. The idea is that neuronlike spiketrains could be used to drive arrays of LEDs for 
2-D optical data transfer. The LED firing pattern could be recorded using a video camera or 
received by a photodiode array. 

In our experiments, a p+-n-n+ diode drives a LED which is also inside a cryogenic envi- 
ronment. When a pulse from the p+-n-n+ diode goes above the threshold voltage of the LED, 
the LED starts conducting and emitting light. The LED inside the dewar can be viewed from 
outside the dewar. This is convenient and avoids a heat load. While the p+-n-n+ diode pulse 
is greater than the threshold the LED will be on. The pulse will decay according to the cir- 
cuit parameters, i.e., the time constant. The speed of data transfer will be limited by the RC 
time constant. Optimal performance corresponds to dissipation of power in the LED rather 
than in the load resistor so that the RC decay is undesirable from the point of view of power 
considerations as well as avoidance of pile up at high pulse rates. 

2.3 Ultralow Power Requirements 
Massive processing tasks, operation in space and cooling for high performance (low dark current) 
operation are all factors which point to the benefits of low power operation. Von Neumann’s 
estimate of the power consumption of the brain was 10-25 watts [15] which is remarkably small 
for a system with - lo1’ neurons, i.e. - 100 picowatts/neuron. It has been argued that arrays 
of small p+-n-n+ diodes could offer comparably low (or even lower) power consumption.[5] 
Scaling down the device size will scale down the power requirements per device. For p+-n-n+ 
diodes, we have observed pulses with energy dissipation down to 4 picojoules/mm2/pulse and 
a quiescent power dissipation of 10 picowatts/mm2. Considering the thermodynamic efficiency 
of cooling, these numbers correspond to 290 picojoules/mm2/pulse and 710 picowatts/mm2 at 
room temperature. For comparison, we note that the retina chip of Mead and Mahowald[lG] 
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has a power dissipation of 4 microwatts/mm2. 
The range of p+-n-n+ diode action potential pulse heights observed to date is from about 

20 millivolts to 50 volts with the low end of the range corresponding to the low power figures 
reported here. The low end of this range of pulse heights is comparable to action potential 
pulse heights of real neurons. Our device physics modeling of spiketrain generation could lead to 
further power reductions if necessary. Low power dissipation would permit substantial processing 
to be performed at or just behind a focal plane array of detectors which are normally cooled to 
achieve high performance. 

This electronic approach is remarkably well suited to neural network emulation and parallel 
asynchronous processing. Such hardware offers the possibility of 2-D parallel image processing 
in conjunction with image acquisition in much the same way as image acquisition and early 
processing are performed in natural vision systems. This is of interest because it is generally 
acknowledged that many image processing tasks are performed by natural vision systems with 
noteworthy speed, even in comparison with the fastest available systems employing conventional 
electronics. 

We have identified certain image processing algorithms (IDS and pyramid) as being (A) 
especially well suited to our 2-D parallel approach and (B) of special relevance to potential NASA 
applications. The ultimate system which could emerge from our research would be a real time, 
high resolution, high dynamic range, low power integrated (single package) focal plane array- 
2-D parallel processor. The processor would be hard-wired to implement particular algorithms. 
Successive processing levels could perform a succession of processing tasks. For example, one 
might want to perform further parallel processing on the output of an IDS algorithm stage. 

Detected Features 
Set of point targets 

Set of edges 
Full optical data flow 

Input + Output Dimensionality 
2D + OD 
2D + 1D 
2D -, 2D 
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Abstract 

A new hardware approach to implementation of image processing algorithms is described. 
The approach is based on silicon devices which would permit an independent analog processing 
channel to be dedicated to every pixel. A laminar architecture consisting of a stack of planar 
arrays of the devices would form a two-dimensional array processor with a 2-D array of inputs 
located directly behind a focal plane detector array. A 2-D image data stream would propa- 
gate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems 
would integrate image acquisition and image processing. Acquisition and processing would be 
performed concurrently as in natural vision systems. The research is aimed at implementation 
of algorithms, such as the intensity dependent summation algorithm and pyramid processing 
structures, which are motivated by the operation of natural vision systems. Implementation 
of natural vision algorithms would benefit from the use of neuronlike information coding and 
the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network 
framework for implementation of natural vision algorithms, a 2-D parallel approach could elimi- 
nate the serial bottleneck of conventional processing systems. Conversion to serial format would 
occur only after raw intensity data has been substantially processed. An interesting challenge 
arises from the fact that the mathematical formulation of natural vision algorithms does not 
specify the means of implementation, so that hardware implementation poses intriguing ques- 
tions involving vision science. 
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1 Introduction 
Spontaneous generation of neuronlike action potential pulses in voltage or current driven silicon 
p+-n-n+ diodes at liquid helium temperatures has been studied extensively.[ 1,2,3,4,5,6] A simple 
circuit used to generate these pulses (Fig. 1) consists of a p+-n-nf diode and a load resistor, 
capacitances and a current source. 

In Fig. 2, we show how an optical sensor can be embedded in the circuit of Fig. 1. Such 
a circuit permits single stage coding of optical information into neuronlike spiketrains. The 
simplicity of the coding circuit would permit fully parallel, asynchronous processing of a two 
dimensional array of signals as would emerge from a 2-D array of photodetectors, i.e. a focal 
plane array. See Figs. 3 and 4. 

DC S PI K ETRAI N 
INPUT OUTPUT 

Figure 1: A circuit used t o  generate spontaneous neuronlike pulses. 
The  only active circuit element is a p+-n-n+ diode. Q T E F m  - 

- 

Parallel asynchronous spiketrain signal processing would occur as in neural networks. The 
recent upsurge of interest in neural networks is an encouraging sign that the means of processing 
discussed here may be closely connected with significant new trends in signal processing and 
information processing. 

By fully parallel processing, we mean one processing channel per pixel. This point is easily 
appreciated when one considers possible NASA image processing applications involving arrays 
of 1000 by 1000 pixels at 1 kilohertz frame rates. A fully parallel approach requires kilohertz 
processing in each channel while a fully serial approach would require processor speeds on the 
order of gigahertz. Processed output data may be much more condensed than raw input intensity 
data, so that conversion to a serial data stream after parallel processing is a very good strategy 
for many applications. 

1.1 Hardware Implementation of Image Processing Algorithms 
The above observations strongly suggest that our approach would be especially advantageous as 
a means of implementation of image processing schemes which are biologically motivated. An 
example of such an approach is given in the work of Marr and Hildreth[7] on edge detection and 
related general discussion of the computational viewpoint is given in M a d s  influential book on 
vision. [8] 

SPIKETRAIN 
INPUT DC $$ OUTPUT Figure 2: DC coupling of the current from a photodetector 

t o  a circuit which generates neuronlike output pulses. In the 
case of infrared illumination, a silicon impurity band detec- 
tor is typically employed while in the case of near infrared, 
visible or ultraviolet illumination a reverse biased silicon p-i-n 

- photodiode is employed. 
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2.6 Hardware Implementation of the IDS Image Processing Algo- 
rithm 

Our approach to circuit design and hardware implementation is guided in part by the fact that 
the IDS algorithm was intended to be in accord with several key features of natural vision 
systems. Thus, the algorithm or a close approximation to the algorithm is being implemented 
by biological neural networks whose general structure is known. See Figs. 7 and 8. On the 
other hand, no direct link between the IDS algorithm and retinal neural network architecture 
yet exists. Understanding this link would be of direct significance to circuit designs for parallel 
asynchronous neuronlike implementation of the IDS algorithm and, in addition, would be of 
significance in the field of vision. 

A hardware implementation of the IDS algorithm need not have an exact retinal neural 
network analog. Therefore, a clear-cut conceptual advance in relation to retinal implementation, 
although desirable, is not a necessary condition for IDS hardware implementation. However, 
even without detailed understanding of retinal processing, circuit design efforts can benefit from 
knowledge of the general features of retinal neural network architecture, such as those apparent 
in Figs. 7 and 8. 

To illustrate our approach, we show in Fig. 10 a preliminary strategy for implementation of 
the IDS algorithm which possesses some architectural similarity to retinas. 

A key feature of the implementation concept is a 2-D array of constant current sources, in 
one-to-one correspondence with the photodetectors. The lateral spreading of this current is 
associated with the IDS point-spread function. Pulses associated with the spiketrain coding 
of the photodetector outputs gate the forward flow of current from the current sources. High 
intensities provide more rapid gating and more forward current flow which competes with and 
limits lateral spreading of the current. Thus, higher intensities diminish lateral spreading as 
in the IDS algorithm. On the other hand, the constancy of each current source and current 
conservation during spreading produce a constraint that the integrated output current must also 
be constant, despite its intensity dependent spreading. This is analogous to the IDS constant 
“volume” constraint, i.e. constant intensity x area.[g] 

A key aspect of the circuit involves capacitive couplings as in Fig. 9 which permit information 
transfer, but no net time-averaged current flow, i.e. no dc component. This permits light 
intensity to play a role but the photocurrent does not add to the dc current coming from the 
constant current sources. 

The output is again coded into spiketrains for further processing or for output typically via 
an LED array. Note that retinal outputs to the brain are coded into spiketrains by the ganglion 
cells. 

It is very likely 
that further considerations will be needed to produce quantitative agreement with the intensity 
dependence of IDS spatial scaling associated with the point-spread function from the input point 
(x,y) to the output point (p,q) 

The implementation concepts described here are preliminary concepts. 

where the non-negative real function S is normalized by: 
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c Figure 10: Functional description of a pre- 
liminary circuit concept for implementation 

Intensity Dependent of the IDS algorithm. 
Spreading 

Pixel or detector size and the spatial sampling period (or frequency) are important issues 
in connection with fundamental image processing. This idea has been emphasized in the 
work of Huck, Fales, McCormick, Park, Halyo, Samms and Stacy.[20,21,22] The issue is not 
dealt with in the continuum formulation of the IDS algorithm.[9] 

Furthermore, there is an issue with respect to circuit architecture which is similar to an issue 
raised by Cornsweet2 in connection with retinal implementation. This concerns implementing 
IDS point-spread functions (one for each input) on a shared network structure. For linear point- 
spread functions, this is easy to envisage. However, with the nonlinear intensity dependence of 
the IDS algorithm, one worries that nonlinear spreading associated with one photoreceptor will 
interfere with the spreading associated with another photoreceptor if spreading occurs over a 
shared network. Non-shared spreading networks would solve this problem but would be more 
complex (higher parts count) and would contradict the impression that retinal neural networks 
(as shown in Figs. 7 and 8) are shared. This issue deserves further study. 
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and Invariant  Image Recognit ion 

Sheldon Gardner 
Naval Research Laboratory 

Washington, DC 

SUMMARY 

An approach t o  invar ian t  image recognition [ 1 2 R ] ,  based upon a 
model of b io log ica l  v i s ion  i n  t h e  mammalian v i sua l  system [MVS], i s  
descr ibed.  The complete 1 2 R  model incorporates severa l  b io log ica l ly  
insp i red  f ea tu res :  exponential mapping of r e t i n a l  images, Gabor s p a t i a l  
f i l t e r i n g ,  and a neural  network assoc ia t ive  memory. I n  t h e  1 2 R  model, 
exponentially mapped r e t i n a l  images a r e  f i l t e r e d  by a h i e ra rch ica l  s e t  
of Gabor s p a t i a l  f i l t e r s  [GSF] which provide compression of t he  
information contained w i t h i n  a pixel-based image. A neural  network 
a s soc ia t ive  memory [AM] i s  used t o  process t h e  GSF coded images. We 
descr ibe a l - D  shape function method f o r  coding of s ca l e  and 
r o t a t i o n a l l y  invar ian t  shape information. T h i s  method reduces image 
shape information t o  a per iodic  waveform su i t ab le  f o r  coding a s  an 
input vector  t o  a neural  network AM. T h e  shape function method i s  
s u i t a b l e  f o r  near t e r m  appl ica t ions  on conventional computing 
a rch i t ec tu re s  equipped w i t h  V L S I  FFT chips t o  provide a rap id  image 
search c a p a b i l i t y .  

INTRODUCTION 

Neural networks o f f e r  a p o t e n t i a l  f o r  technology innovation t o  
provide t h e  next generation of on-board processing [OBP]  c apab i l i t y  i n  
space-based sys t ems  f o r  s t r a t e g i c  defense and surve i l lance  a s  well a s  
o ther  non-military space appl ica t ions  such a s  remote sensing of t h e  
environment. The da ta  co l l ec t ion  c a p a b i l i t i e s  of space-based imaging 
sensors a re  expected t o  continue t o  improve dramatical ly ,  fu r the r  
outstripping the ability of operators to exploit image data in real 
time. One of t h e  goals of t he  Image Processing Research [ I P R ]  Program 
a t  t he  NRL Naval Center f o r  Space Technology i s  t o  develop appl ica t ions  
f o r  neural  network-based invar ian t  image recognition [ 1 2 R ]  [ l - 4 1  . 

T h e  encoding of images by t h e  mammalian v i sua l  system [MVS] i s  a 
subject  which has challenged v is ion  researchers  f o r  cen tu r i e s .  I n  the  
pas t  severa l  years s i g n i f i c a n t  progress has been made by Daugman and 
o thers  towards an understanding of how images a r e  processed w i t h i n  the  
MVS [5-123. The bas i c  a rch i t ec tu re  f o r  invar ian t  image recognition i s  
shown i n  Figure 1. We assume t h a t  t he  MVS performs a sequence of space 
and space-time mappings which w e  c a l l  scale-space transformations [SST] 
[ 1 , 2 ] .  The f i r s t  SST t o  occur i n  t he  MVS i s  a logarithmic s p a t i a l  
mapping which occurs i n  t h e  r e t i n a  i n  t he  v i c i n i t y  of t he  fovea. T h i s  
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mapping, which we c a l l  t h e  LZ-SST, produces sca l e  and r o t a t i o n a l  
invariance i n  t he  foveal image [14,15].  A second SST, which we c a l l  the  
c o r t i c a l  f i l t e r  SST, o r  CF-SST, occurs throughout t he  l a t e r a l  
geniculate  nucleus and the  s t r i a t e  cor tex.  The function of t h e  CF-SST 
i s  t o  provide a coded representat ion of t he  image f o r  a s soc ia t ive  
memory processing which takes  place i n  higher c o r t i c a l  a r e a s .  We have 
suggested t h a t ,  among o ther  operations,  t he  CF-SST includes a 
h i e ra rch ica l  network of Gabor f i l t e r s  t o  map the  r e t i n a l  image i n t o  a 
four-dimensional function of two s p a t i a l  var iab les  and two s p a t i a l -  
frequency va r i ab le s .  Functionally, t h i s  mapping i s  equivalant t o  
computation of t he  4-D Cross-Wigner Dis t r ibu t ion  [CWD][1,12,13]. These 
complex s p a t i a l  f i l t e r i n g  operations occur w i t h i n  t he  t h e  second block 
shown a t  t he  top  of Figure 1. T h e  encoded image fea tures  a r e  t h e n  
processed by t h e  neural  network assoc ia t ive  memory [AM] a s  shown i n  
t h e  t h i r d  block of Figure 1. 

I n  t h e  next sect ion we descr ibe the  shape function method f o r  
coding of s ca l e  and r o t a t i o n a l l y  invariant  shape information i n t o  a 
s c a l a r  waveform. T h i s  method can reduce l i n e  object  shape information 
t o  a s c a l a r  waveform su i t ab le  f o r  processing by a V L S I  FFT a r r ay  o r  for  
coding a s  an input vector  t o  a neural  network AM. 

CODING OF SHAPE FUNCTIONS 

Motivated by t h e  proper t ies  of t he  M V S ,  we can represent  a s t a t i c  
image by means of a h i e ra rch ica l  r e l a t i o n a l  graph [ H R G ] [ 4 ] .  A t  each 
l e v e l  of t h e  h ie rarchy ,  w e  constructed a set  of nodes (simple o b j e c t s ) ,  
and a r e l a t i o n a l  graph (complex o b j e c t )  based upon t h e  r e l a t i o n s  
between t h e  nodes. A t  t h e  next lowest l e v e l  i n  t he  hierarchy ( f i n e r  
r e s o l u t i o n ) ,  each node i s  t r e a t e d  a s  a complex objec t ,  composed of i t s  
own s e t  of connected simple objec ts .  Although, w e  descr ibe t h e  HRG 
s t r u c t u r e  i n  a top-down manner, i n  t h e  MVS data  flow a c t u a l l y  takes  
place i n  a bottom-up manner, s ince image information i s  f i r s t  processed 
i n  t h e  v i s u a l  co r t ex ,  t h e n  s e n t  t o  higher  a r e a s  of t h e  b r a i n ,  such a s  
t h e  cerebra l  cor tex .  Recognition of a face can be used a s  a simple 
example of t h i s  process.  S t a r t i ng  w i t h  t he  placement of f ea tu re s  ( e . g .  
eyes, nose, e t c . )  w e  recognize a face a s  a complex objec t  composed of 
simple objec ts  ( f e a t u r e s ) .  On t he  next h i e ra rch ica l  l e v e l  w e  examine 
individual  f a c i a l  f e a t u r e s .  Fig.  2 i l l u s t r a t e s  t h e  h i e ra rch ica l  
representa t ion  of object  shape. The complex object  F 1 [  - 1 ,  shown i n  
Figure 2 ,  can be represented i n  t e r m s  of a three-level h i e r a r c h i c a l  
notat ion F1 [ G I  [ H I ] ,  G 2  [ H z l l .  

Figure 3 i l l u s t r a t e s  a two-step process which can be used t o  
obtain t h e  shape f ea tu res  of a broad-band mult i - level  image. The 
nonlinear t r a c e  operation shown i n  Figure 3 ( b )  converts a bit-mapped 
image i n t o  a s e t  of ob jec t s .  An example of t h i s  type of t r a c e  operation 
can be found i n  commercial microcomputer software ( e . g .  D ig i t a l  
Darkrooma ) .  

Shape information can be used i n  t h e  construct ion of ob jec t  
f ea tu re s  vectors  useful  f o r  object recognition. We i l l u s t r a t e  how, 

I a f t e r  p o s t e r i z a t i o n  and t r a c i n g  between f ixed  grey leve ls ,  shape 



information can be coded i n t o  a s c a l a r  shape function which 
charac te r izes  a l i n e  ob jec t .  For high speed appl ica t ions  which require  
spec ia l  purpose hardware, such a s  V L S I  a r ray  processors implementing 
FFT algorithms, t hese  shape functions can be processed w i t h  
conventional computers (e .g  a Hypercube@ or  a Connection Machine@). I n  
t h e  fu ture ,  when massively p a r a l l e l  neural  network computers become 
ava i lab le ,  shape functions can be coded i n t o  f ea tu re  vectors  f o r  input 
t o  a neural  network AM. 

A s  an i l l u s t r a t i o n  of t he  shape function process, an a i r c r a f t  
l i n e  object  i s  shown i n  Figure 4 ( a )  together  w i t h  t he  corresponding 
shape function shown i n  Figure 4 ( b ) .  To compute the  shape function, we 
f i r s t  s e l e c t  a s u i t a b l e  cent ro id  w i t h i n  the  object  boundary. The shape 
function i s  then defined a s  the  dis tance from t h i s  cen t ro id  t o  the  
object  contour measured a s  a function of d i s tance  around t h e  object  
perimeter.  Figure 4 ( b )  i s  a p l o t  of t h e  a i r c r a f t  shape function 
measured from t h e  nose ( t o p ) .  Individual fea tures ,  such a s  t h e  engines, 
can be c l e a r l y  i d e n t i f i e d .  Figures 5 and 6 show l i n e  objec ts  and shape 
functions f o r  two o ther  a i r c r a f t  of d i f f e r e n t  types.  Figures 7 and 8 
show t h e  data  f o r  two of t he  a i r c r a f t  w i t h  a 1 0  db S / N .  The ident i fy ing  
f ea tu res  of each a i r c r a f t  a r e  s t i l l  c l e a r l y  v i s i b l e  i n  t h e  shape 
funct ions.  I n  p rac t i ce ,  a sequence of noisy images w i l l  usual ly  be 
ava i l ab le  f o r  processing. I f  t h e  s p a t i a l  noise background between 
images i n  t h e  sequence i s  uncorrelated,  an improvement i n  S / N  w i l l  
occur when averaging over multiple frames. 

CONCLUDING REMARKS 

A model f o r  invar ian t  image recognition, based on t h e  proper t ies  
of t he  MVS, has been described. The model includes a h i e ra rch ica l  
representat ion of shape information f o r  complex ob jec t s .  Each l eve l  i n  
t h e  hierarchy i s  represented by a co l l ec t ion  of l i n e  o b j e c t s .  Through a 
nonlinear t r a c i n g  operation the  p ixe l  image of each objec ts  i s  
converted t o  a shape contour. T h i s  contour i s  then represented by a 
s c a l a r  shape function defined a s  the  dis tance from a cent ro id  w i t h i n  
t h e  object  t o  t h e  contour expressed a s  a function of d i s tance  around 
the  object  per imeter .  T h i s  s c a l a r  shape waveform uniquely represents  
object  f ea tu re s  and can be processed with conventional FFT hardware. 
Simulations a r e  used t o  demonstrate t h e  v i a b i l i t y  of t h e  approach. 
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F i g u r e  5 (a )  A i r c r a f t  2 l i n e  object 
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Figure 5 (b)  A i r c r a f t  2 s h a p e  f u n c t i o n .  
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Figure 8 ( a )  Ai rcraf t  2 l i n e  object  (10 db S/N) 
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KNOWLEDGE-BASED IMAGING-SENSOR FUSION SYSTEM? 

George Westrom 
Odetics, Inc. 

1515 S .  Manchester Ave. 
Anaheim, CA 

INTRODUCTION 

This paper describes an imaging system which applies knowledge- 
based technology to supervise and control both sensor hardware and 
computation in the imaging system. It includes the development of an 
imaging system breadboard which brings together into one system work 
that we and others have pursued for LaRC for several years. 
(Refs 1,2,3). The goal is to combine Digital Signal Processing 
(DSP) with Knowledge-Based Processing and also include Neural Net 
processing. 

The system is considered a smart camera. Imagine that there is 
a microgravity experiment on-board Space Station Freedom with a high 
frame rate, high resolution camera. All the data cannot possibly be 
acquired from a laboratory on Earth. In fact, only a small fraction 
of the data will be received. Again, imagine being responsible for 
some experiments on Mars with the Mars Rover: 
kilobits per second for data from several sensors and instruments. 
Would it not be preferable to have a smart system which would have 
some human knowledge and yet follow some instructions and attempt 
to make the best use of the limited bandwidth for transmission? 

the data rate is a few 

This paper will describe the system concept, current status of 
the breadboard system and some recent experiments at the Mars-like 
Amboy Lava Fields in California. 

SYSTEM OVERVIEW 

The system architecture concept is shown in Figure 1. The four 
areas shown are sensors, focal plane processor, knowledge-based 
supervisor/controller and image processors. Inputs to the system are 
supervisory commands, channel capacity and other mission data. The 
output is edited, classified and coded data, as well as other 
feature and range information. 

Internal communications are provided so that sensors and 
processing can be supervised and controlled by the knowledge-based 
system. Rules, knowledge, data and researcher's expertise are 
contained in the Knowledge-Based Supervisor/Controller XBSC. 

+This work was supported by the following NASA contracts: 
NAS1-18816 and NAS1-18664. 
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The data from multiple sensors are simultaneously processed and 
combined by the KBSC. 

Signal and image processing will be performed both in the focal 
plane processor and with the image processor. 

The parallel asynchronous processor and the KBSC and image 
processing hardware are described in other papers (Refs. 2, 3 ) .  The 
laser ranger system and goals of the KBSC system will be discussed 
here. 

Figure 2 is a different view of the knowledge-based image/ 
sensor fusion breadboard in that it segments the knowledge-based and 
signal processing in the manner in which it is implemented in the 
breadboard system. The knowledge base is hosted on a SUN computer 
and the real-time signal/video processing is on the Datacube 
pipeline image processor. The sensors are CCD cameras, IR sensors 
and laser ranger. 

INTEGRATED LASER CAMERA 

The integrated laser camera combines range data from the laser 
with the spatial reflectance data from the CCD camera. The concept 
is to provide a sensor which has both high spatial resolution and 
accurate range to specific objects in the scene. Table 1 summarizes 
the limitations of either sensor separately and the potential of 
fusing the data from each to give both range and spatial detail. 

Table 2 lists the function of the ILC. The range may be 
provided at a single point or a range image may be generated by 
scanning the ranger over an area. Several display functions are 
available such as a contour map and an artificial grid to provide 
the concept of depth and range to any object in the scene. Camera 
control functions such as focus and zoom can be performed from the 
range output. Combining the range with high frequency spatial data 
can achieve rapid and very reliable camera focus. 

Combining range and spatial data has many applications in image 
analysis, such as segmentation, distinguishing objects from shadows, 
obstacle avoidance, etc. 

LASER RANGER 

There are basically two types of lasers, pulse and continuous 
wave. 
it takes a laser pulse to travel to the object and back to the 
receiver. A continuous wave (CW) laser ranger normally compares the 
phase shift between the transmitted and received wave. A discussion 
of the merits of CW vs. pulse is beyond the scope of this paper 

Pulse laser rangers operate on the basis of measuring the time 
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except to say that pulse laser rangers require less computation for 
range and generally are better for long-range imaging, for example, 
beyond 200 meters. 
using a CW laser ranger. 

Range ambiguity also needs to be resolved when 

We selected a pulse laser shown in Figure 3 with the 
specifications shown in Table 3 .  Range, accuracy and firing rate 
were all important in selecting the laser ranger. The 2000 firings 
per second makes it quite feasible to generate small range images. 
An accuracy of about 5cm to lOcm can be achieved by averaging over a 
number of firings on a single object. 

Figure 4 shows the block diagram implementation of the 
1- 

integrated laser/CCD prototype system. The laser ranger is mounted 
on a precision p_an/tilt platform. The platform is controlled by the 
SUN either to point to a specific object or to scan an area to 
generate a range image. The camera focus and zoom will be controlled 
by the laser ranger in the breadboard imaging system. The video rate 
Datacube processor generates a graphics overlay on the video image 
such as the laser beam location. 

Figure 5 shows the platform design for the ILC. The azimuth 
motion is provided with a rotary stage platform on which is mounted a 
goniometer for the elevation motion. The platform has a repeat- 
ability of about 0.17mR about each axis. The laser ranger will be 
bore sighted with the camera axis. 

KNOWLEDGE-BASED SUPERVISOR/CONTROLLER 

The objective of the KBSC is to provide a robust, flexible 
monitoring and control system which provides sensor control, 
processing and image coding control, outputs edited, classified and 
coded data based on an internal knowledge-base and data base, sensor 
input, and supervisory command. 

Figure 6 shows some of the input, outputs and control functions 
of the KBSC system. The inputs to the KBSC can be from image 
processors such as the spatial frequency, histogram or other computed 
characteristics of the image. It may be a previously identified 
object or area so as to designate a small region of interest (ROI). 
Edge information and segmentation may be used to identify specific 
features in the image. The color or more generally the spectral 
response of the image may be used to identify regions or objects. 

From the laser ranger, range and reflectance data may be used 
with the spatial data to identify features. Laser reflectance values 
may be used to determine the reliability of the range data and to 
determine the reflectance of the target at the laser frequency. The 
field of view (FOV) may be important when selecting processing 
algorithms. Sun angle, available bandwidth, and other priorities 
will be used to select processing algorithms and image coding 
methods. 

217 



In addition to sensor control such as focus, the KBSC will also 
be useful in applying the user's knowledge to select the information 
and data which is important. 

AMBOY DATA COLLECTION 

Some of the features of the breadboard imaging system are 
implemented in the Odetics Mobile Imaging Laboratory. Figures 7, 8, 
and 9 show the Mobile Imaging Laboratory platform with infrared and 
CCD cameras and platform with the laser ranger. Figures 10 thru 16 
are samples of a set of images taken with the Mobile Imaging Lab at 
the Amboy Lava Field in the Mohave Desert which looks very much like 
Viking pictures of Mars. Figures 10 and 11 are CCD and laser scan 
images respectively of approximately the same area. Some of the very 
black lava in the lower right band corner did not reflect enough 
signal for the range computation. The bush in the center of the 
scene is clearly visible. (The black and white print was made from a 
pseudo color range image (Figure ll), causing the ranges at 50-60 
meters to appear closer.) 

Figures 12 and 13 are photographs of Amboy terrain which looks 
remarkably like the Mars Viking pictures except for a few bushes. 

Figures 14 and 15 are infrared images (8-12pm) of the Amboy 
crater taken when the temperature was about 110°F. The white areas 
in the IR image are hot. 

Figure 16 shows a panoramic scene of the Amboy Lava Field taken 
with a series of images with a narrow field-of-view camera on the 
pan/tilt platform. Figure 17 is an artist conception of how a Mars 
Rover camera might assemble narrow field-of-view pictures into a 
panorama. The image was digitized from an actual Mars Viking 
photograph. 
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TABLE 1 

INTEGRATED LASER RANGERICAMERA SYSTEM 

Problem: 
Existing robot vision systems do not provide both range and high 
resol ut ion. 

Extracting range from the image data of CCD cameras is 
extremely computer intensive and provides poor 3-D contour data. 

Laser rangingkcanning systems provide range and 3-D contour 
data, but image detail is poor. 

Solution: 
Provide intelligent fusion of high resolution CCD camera data and 
laser ranging data. 

Use an expert system for determining how the data from different 
sources will be used to extract scene data. 

TABLE 2 

ILC FUNCTIONS 

Range to any point in scene 

Range image of any area in scene 

Display (range image, contour map) 

Display depth grid 

Display range to any point 

Focus camera 

Combine range and reflectance data 
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TABLE 3 

501 LASER RANGER SPECIFICATIONS 

Range 

Accuracy 

Resolution 

Beam divergence 

Measurement rate 

Weight 

Power 

10-500 m 

.2m 

.1 m 

2.5 mR 

1 -2000/sec 

3 Kg 

3 A @  12V 
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Parallel asynchronous 
processor 
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- Intensity-dependent 
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High-resolution image coding 
Feature extraction 
Multispectral data editing 
and classification 
Laser range and defocus 

Figure 1 Knowledge-Based Image/Sensor Fusion System 
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Figure 2 Knowledge-Based Imaging/Sensor Fusion System 
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Figure 3 Rangefinder 501/SX 
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Figure 7 Odet ics  Mobile Imaging Laboratory 

Figure 8 Sensor Platform with In f r a red  C a m e r a  



Figure 9 Sensor Platform with Laser Ranger 

Figure 10 CCD Image Amboy Lava Field 
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Figure 11 Laser Ranger Image of CCD Image (Figure 10) 

Figure 12 Photograph of Mars-Like Amboy Lava Field 



Figure 13 Photograph of Mars-Like Amboy Lava Field 

Figure 14 Infrared Image of Amboy Lava Field and Crater 
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Figure 15 Photograph of t h e  same a reas  as In f r a red  Image, 
(Figure 14). 

Figure 1 6  Panorama of Narrow Field-of-View Image of Amboy Lava 
Fie ld  
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Artist's Conception of Mars Panorama Using Actual 
Viking Mars Image. 
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INTRODUCTION 

A simple knowledge-based approach to the recognition of objects in man-made 
scenes is being developed. Specifically, the system under development is a proposed 
enhancement to a robot arm for use in the space station laboratory module. The system 
will take a request from a user to find a specific object, and locate that object by using its 
camera input and information from a knowledge base describing the scene layout and 
attributes of the object types included in the scene. 

In order to use realistic test images in developing the system, we are using 
photographs of actual NASA simulator panels, which provide similar types of scenes to 
those expected in the space station environment. Figure 1 shows one of these photographs. 

In traditional approaches to image analysis, the image is transformed step by step into 
a symbolic representation of the scene. Often the first steps of the transformation are done 
without any reference to knowledge of the scene or objects. Segmentation of an image into 
regions generally produces a counterintuitive result in which regions do not correspond to 
objects in the image. After segmentation, a merging procedure attempts to group regions 
into meaningful units that will more nearly correspond to objects. 

instead use a knowledge-directed approach to locate objects expected in the scene. 
Constraints on the spatial relationships among objects and on attribute measurements of 
object types are used in obtaining a matching between regions of the input image and 
object descriptions in the knowledge base. 

Section 2 describes the knowledge-based approach to scene analysis. Section 3 
discusses the categories of knowledge used in our system. The remainder of the paper is a 
step by step description of the system under development. 

Rather than taking this approach, we avoid segmenting the image as a whole, and 

KNOWLEDGE-BASED APPROACH 

The use of a knowledge-based approach to object recognition is a growing area of 
research in image analysis. Use of knowledge improves recognition accuracy. We seek to 
avoid embedding this knowledge in the code, in order to create a more flexible system. 

1 This research is being supported by NASA Contract NCC8-16. 
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Knowledge of objects is traditionally used in the later stages of image analysis to match 
regions of an image with known objects. We are exploring the use of knowledge at earlier 
stages of the processing to help guide the search for objects. 

A goal of our work is to provide a flexible system for locating objects, which could be 
updated for new scenes by simply adding to the knowledge base. The knowledge of scenes 
and objects is stored explicitly, rather than being embedded in the system’s code. Objects 
and scenes are described in a general way, so that the system will not be overly sensitive to 
changes in the camera position or illumination. It is desirable to avoid exact models of the 
objects of interest. Some of the objects on the panels may be difficult to describe with a 
precise geometrical model. For example, the panel in Figure 1 contains switches that are 
enclosed in protective brackets. Because of their complicated structure and the existence 
of shadows, objects such as these will show up in the gradient image as a tangle of lines, 
easy to recognize but difficult to model geometrically. 

There are many systems designed to match regions of an image to descriptions of 
objects stored in a knowledge base. McKeown’s SPAM (System for Photo interpretation of 
Airports using M A P S )  is one example [l]. This system takes the result of a traditional 
region-growing segmentation and attempts to group segments into meaningful objects. 
Levine and Shaheen describe a system in which segmentation is based on color, and 
regions are merged to form objects based on a long list of constraints on attribute measures 
of different object regions [2]. 

CATEGORIES OF KNOWLEDGE 

For our application, the following categories of knowledge are used: 
Knowledge of primitive, scene-identifying features 
Measurement ranges of attributes of object types 
Knowledge of spatial layout of scenes 

In the first category, information about features consists of a list of procedures to be 
used to find the features, and parameters for these procedures. The scenes are described 
as lists of features that are present and absent from them. The information in this category 
was obtained through experimentation with input images. There is a need to develop an 
automated method for finding discriminating features for any new scene presented to the 
system. 

The second category of knowledge consists of object types and ranges of acceptable 
values for attributes of those object types. The attributes used will preferably be invariant 
to scale or illumination changes and relatively insensitive to rotation. Such attributes as a 
texture measure, circularity, rectangularity, or ratio of length to width are good 
possibilities. A significant, but manageable, programming project would be to automate 
the gathering of these object attribute ranges, using a teacher to draw windows around 
several objects of a given type, and having the system automatically make and record 
measurements. 

The third knowledge category contains information that aids in finding the starting 
points of probable objects. It contains the layouts of regions of the scenes to which input 
images will be matched. The knowledge in this category can help resolve ambiguities in 
the classification of objects by using spatial constraints. In other systems, this category 
could be expanded to include other types of constraints on the relationships among objects, 
such as adjacency or inclusion. 
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STRATEGY 

The steps of the processing in our system are shown in Figure 2. The user indicates 
an object of interest. The system first verifies that the input image is a view that should 
contain that object. In the knowledge base, inclusion lists specify what panel contains each 
of the possible objects of interest. From this, we can determine which panel should be 
present in the input image. There is also a list of primitive features and parameters for 
procedures to find them listed in the knowledge base. The second step is then to identify 
which scene, or panel, is represented by the input image. The image is searched for 
distinguishing features to determine which scene is present. If the input image contains the 
scene of interest, we proceed to locate the object of interest. If not, the camera would be 
relocated to find the desired scene. 

Qnce the proper scene is present, we find a region of interest within the scene. This 
region will contain the object of interest. The region of interest can be found relative to 
the location of the features found in the image in the scene identification step. Once the 
region is found, the camera can be made to zoom in on this area. 

Within the region of interest, probable starting points to locate objects are found. 
Then, the boundaries of probable objects are found by searching windows around these 
starting points. Attributes of these probable objects will be measured. The knowledge 
base will list attributes of the different object types that are easy to recognize and identify. 
For each probable object in the region of interest, we obtain a list of object types for which 
the attribute measures match. Then, a matching between the input image and the scene 
layout described in the knowledge base must be found. 

Although the actual procedures used for finding seed points, measuring attributes, 
and matching objects are specific to our application, these three steps could provide a 
useful starting point for other applications. For other image types, there could be other 
procedures developed for performing essentially the same three steps. 

Preprocessing and Scene Identification 

The first step in our processing is to obtain an edge image using the Sobel edge 
operators. This is done to facilitate locating boundaries of objects. 

In our application, it is not likely that any significant rotation of the image will occur, 
since the camera will be mounted on a robot arm attached to a rail that runs the length of 
the module. Since the robot can know which end is "up," rotation is not a problem. In 
other cases, a system may need to deal with this possibility. For images of man-made 
objects such as control panels, a possible approach is to search Hough transform space for 
lines of maximum intensity. In scenes of controI panels these are generally horizontal and 
vertical lines. Knowledge of the expected scene could also be used to determine at what 
angle the lines of maximum intensity should appear in the input image. This can be used to 
rotation-normalize the image. 

Next, we identify which scene is present. We are assuming that an input image will 
contain one of a number of separate scenes. If the image contains parts of more than one 
scene, the process will generally not produce useful results. This goes along with the 
assumption that a camera attached to a robot arm could be positioned at a number of 
discrete, although approximate, positions along the length of the space station lab module. 
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To identify the scene, the system searches for primitive distinguishing features. The 
presence or absence of the features in the input image is matched with lists of features 
present for each scene in the knowledge base. Presently, a scene must have features that 
match exactly with one of the scenes in the knowledge base. It would be possible to allow 
for closest matches by computing the string distance between a binary string denoting 
presence and absence of features in the input image with the strings in the knowledge base, 
and assume the scene to be the one with the closest match. 

The features used for scene identification are sets of lines in the gradient image with 
certain characteristics. These lines correspond to edges in the original image. A line in our 
system is defined in terms of a merit measure which is a linear combination of average 
intensity and average difference between successive pixels along the line. A row of pixels 
of high intensity and low average difference is a “good” line. The characteristics of intensity 
and average difference can be useful taken separately. The average difference measure 
provides a good measure of texture which is easy to compute. Some of the features used 
for scene identification are lines of high average difference. 

Figure 3 depicts the scene identification process for the panel of Figure 1. In this 
example, lines of high texture, as measured by high average difference, are found through 
the columns of an array of lights, and also through a row of switches. The diagonal line and 
the set of lines in the upper left corner of the image represent the best matches for two 
additional features that are present on other panels but not on this panel. 

We use primitive features to keep processing for scene identification to a minimum, 
but any features could be used, as long as the process for finding them could be listed in the 
knowledge base. 

Object Seed Points 

Given the location of features in an input image, it is possible to compute coordinates 
for a region of interest of the scene that contains the desired object. 

Once an image of the region of interest of the scene is obtained, we find starting 
points of probable objects. In scenes consisting of well-separated blobs on a background, a 
method that has proven useful is to search for a specified number of horizontal and vertical 
lines of high texture, with some minimum spacing between them. Figure 4 shows the result 
of this process on one of our regions of interest. Most of the intersection points pass 
through objects on the image. There are some false lines, since there is some printing on 
the control panels that results in high-texture lines. 

The minimum spacing chosen is large enough to prevent the appearance of more 
than one line in the same direction through the same objects. Only a minimum is given so 
that the object seed points may be found for images that are translated or scaled 
differently. 

of images, other methods for finding seed points of objects could be used. If an object’s 
color is known, the image could be searched to find a patch of that color as a starting point 
for a region-growing routine. Likewise, any other attribute of an object, such as intensity or 
texture could be used to find a patch from which to start a region-growing routine. This 
may be better than performing a global segmentation and growing all possible regions in 
the image, which probably do not correspond to objects. 

The intersection points of lines found are possible object locations. For other types 
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We are experimenting with methods of finding object boundaries within windows 
centered on the seed points. The use of these seed points can reduce coniputation by 
limiting the search area for objects. 

Measurement of Attributes 

The control panels contain instances of a finite number of object types, e.g. switches, 
buttons, knobs, etc. For each object type, the knowledge base contains an acceptable range 
of values for each attribute. The attributes used may differ depending on the object type. 
For example, circularity may be a good attribute to use for knobs, but texture may be better 
for switches enclosed in brackets. Since the possible objects in the input image may be 
processed in parallel, it may be worthwhile to measure all attributes, even though some 
results may be not be used. Once the attribute measures have been determined, the 
knowledge base is consulted to determine for each possible object the set of object types 
consistent with its measurements. For example, Object 1 may "look like" a switch or a 
button. Some possible objects will not match to any object types. 

The result of this process is a grid showing the possible objects which could be located 
at each point. 

Matching Scene Layout 

Our system will match the input image with a grid layout of the region of interest in 
the knowledge base. The points on the grid correspond to intersection points of lines 
passing through the objects. Some points will not correspond to any object, but pass 
through empty space. 

Figure 5 shows examples of knowledge base and input grids. The input image will be 
processed to produce a grid layout of what is found. The matching routine will find a 
consistent match between the knowledge base grid and the input grid. In general, the input 
grid may have more rows or columns than the knowledge base grid. There may be 
non-object points in the input that happen to look like a certain object type based on their 
attribute measures. The constraint of the layout given in the knowledge base will help to 
find a consistent matching. In theory, there could be more than one consistent matching 
for a given scene, but the fact that both attribute measures and scene layout constraints are 
used will reduce the chance of an incorrect matching. 

We are producing a deterministic matching routine, but this may be expanded to find 
a closest match, thus enabling the system to handle partially occluded objects or problems 
with glare. 

The constraint of scene layout, meaning left-right, above-below relationships is not 
the only constraint that could be used to find a consistent match. There are other scene 
attributes that can be represented in graph form that constrain the interpretations of the 
scene. Adjacency and inclusion relationships are two examples. 

There has been some work done to develop a theoretical basis for graph matching. 
Shapiro and Haralick [3,4] have developed a graph theoretic method of partial matching, 
using distances between graphical descriptions of input images and those on file for known 
images. They apply this approach to matching relational descriptions of objects with their 
descriptions stored in a knowledge base. The same idea can be applied to matching 
relational descriptions of scenes in which the objects are stationary. This is a promising 
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approach for handling problems of missing or occluded objects or variations due to noise. 
More flexibility is provided by the matching of attributed graphs. Sanfelieu and Fu [5] have 
described a distance measure between attributed graphs which may be useful. Their work 
is applied to syntactic recognition of objects, but could also be applied to graphical 
descriptions of scenes. 

CONCLUSION 
A system that uses knowledge of scenes and objects to aid in segmentation and 

location of desired objects is being developed. The system is not based on any geometrical 
modeling of objects or on precise measurements of object location. A goal was to make the 
system relatively insensitive to changes in camera position and illumination, taking into 
account the fact that a robot’s positioning system will not be perfect. The approach used is 
most applicable to scenes in which objects are stationary and well-spaced, such as control 
panels. 

The usual approach to object recognition is to segment the entire image and then try 
to make sense out of all the segments by matching them to known objects. In our approach 
we eliminate needless processing of segments that do not correspond to known objects. 
We change the focus of attention of the system based on information about the scene 
layout, to match up only objects that will assist in finding the object of interest. Once we 
have a consistent mapping of areas of the image to known objects, we have completed 
processing. Other features in the image are ignored. 

Although this system is designed specifically to process man-made scenes such as 
control panels, in which objects are usually well-separated on a background, the basic idea 
can be generalized to other applications. In any application in which the scenes consist of 
fixed objects or regions, knowledge of scene layout can be used to direct the segmentation 
process and to constrain possible interpretations of the objects found in the scenes. 
Different approaches can be found for determining object seed points, and then for 
growing regions from points identified as being likely parts of objects of interest. Different 
attributes of these regions can be measured for different applications. Constraints on 
relationships among objects other than the simple spatial layout can also be used. 
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Figure 1: One of the scenes used as a realistic test image for the system. 

Get 
Image 

Gradient + h a g e  

Figure 2: The steps in the object recognition process. 
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Figure 3: The scene identification process performed on the gradient image of the panel in 
Figure 1. 

Figure 4: Determination of likely starting points for objects, performed on a sub-panel of 
Figure 1. 
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Figure 5: A hypothetical grid representing possible object layout in an input image, and a 
grid from the knowledge base to be matched to it. 
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Abstract 

This paper describes a programmable image compression system which has the necessary flexibility 
to address diverse imaging needs. It can compress and expand single frame video images 
(monochrome or color) as well as documents and graphics (black and white or color) for archival or 
transmission applications. Through software control the compression mode can be set for lossless or 
controlled quality coding; the image size and bit depth can be varied; and the image source and 
destination devices can be readily changed. Despite the large combination of image data types, 
image sources, and algorithms, the system provides a simple consistent interface to the programmer. 
This system (OPTIPACTM) is based on the TI TMS320C25 digital signal processing (DSP) chip and 
has been implemented as a co-processor board for an IBM PC-AT compatible computer. The 
underlying philosophy however can readily be applied to different hardware platforms; and by using 
multiple DSP chips or incorporating algorithm specific chips the compression and expansion times 
can be significantly reduced to meet performance requirements. 

Introduction 

The goal of image data compression is to squeeze out the redundancy in a digitized image (B 
bits/pixel) such that the compressed image can be represented by b < B bitdpixel, but can later be 
expanded to give an output image containing B bits/pixel. The ratio B/b is called the compression 
ratio (CR) and the challenge is to maximize the CR given a set of constraints. Typical constraints 
are: IossIess fully reversible compression so that the output and input images are bit for bit identical; 
a fixed maximum execution time; a minimum subjective output quality level. 

Image data compression has become an integral part of imaging systems despite improvements in 
transmission and storage capacities. This is because imaging systems continue to use higher 
resolution sensors and the size of image data bases is growing rapidly. In some cases it is 
economically attractive to incorporate compression into an imaging system, while other times its use 
is mandatory to achieve the overall system specifications. 

In this paper we describe a compression and expansion system which is rapid but does not operate at 
real-time rates. We have previously reported a compression system suitable for real-time TV and 
videoconferencing applications [ 11. The current system processes each frame without reference to 
any other frame and is therefore an intrafmme, or single frame, coder. Single frame imaging 
applications include: telemetry, remote surveillance, image databases, picture ID systems, medical 
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imaging, law enforcement, electronic publishing, digital mapping, insurance claims, parts catalogs, 
point of sale systems, etc. [2]. Each application has different requirements and even within a single 
application there is often the need to handle multiple image data types, sources, and compression 
modes. Image data types might include monochrome with 8, 10, or 12 bits per pixel; color with 16 or 
24 bits per pixel; and binary images which can only take one of two values. Image sources are also 
diverse and images could come from computer files, frame grabbers which can capture a single video 
frame, image scanners, and communication links. Finally the application might require a lossless 
compression mode, or this constraint might be relaxed to allow small differences between the output 
and original images to increase the CR. In this controlled quality case there is a tradmff to be made 
between the output image quality and the CR. In either case the mode can be further specified as 
being high speed or high compression ratio. In the former case the algorithm is kept simple so as to 
achieve a high speed compression or expansion. In the second case the emphasis is to achieve the 
highest CR possible and as expected this will take longer. 

It is clearly desirable to have a single system which can handle multiple image data types (binary, 
gray scale, color) at multiple resolutions and provide different compression modes (lossless, 
controlled quality). The overall system requirement is then to provide all of this flexibility via a 
consis tent interface. 

OPTIPACTM Hardware Specifications 

A system has been built to provide this capability in a PC environment. It is a co-processor board for 
an IBM PC/AT compatible computer and is built around the TMS 320C25 DSP chip operating at a 
40MHz clock speed. Local memory consists of 32 or 64 kbytes of high speed static RAM with no 
wait states. The memory is used to store the current compression application and provide a data area 
where the current image window can be processed. The memory is dual ported so that it can be 
accessed by both the DSP and the AT host. The AT downloads the appropriate compression or 
expansion application code at the beginning of a session and then compresses an image, a window at 
a time, by repeatedly loading image windows and unloading compressed data blocks. For more 
exacting requirements, multiple OPTPACT% can be operated in parallel, within a single system, to 
reduce the overall execution time. 

Software Requirements 

The major requirement was to provide a consistent interface which would be independent of the 
compression algorithm, the image data type, and the image source and destination device types. A 
second important requirement was to allow algorithms to be selected via descriptive terms such as 
controlled quality, level 6 rather than "optimal adaptive widget coding with a threshold of 32.452 
followed by customized variable length coding". This has the obvious advantage of not requiring a 
user to be a coding expert, but it also provides one level of indirection so that different algorithms can 
be substituted at a later time without changing high level application code. 
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Indirect Algorithm Selection Table (IAST) 

To implement the descriptive approach to algorithm selection, we created an Indirect Algorithm 
Selection Table (IAST). This table translates descriptive terms plus the image data type into a 4-bit 
index which then maps into a specific algorithm. By combining this table with the DSP application 
code, algorithms can be changed or updated without recompiling any of the user's application code. 
All that is required is a new DSP application file which can readily be distributed to existing users. 
The current IAST is shown in Table 1 and the algorithms which have been implemented are 
characterized as follows [3]: 

A10 - Lossless high compression ratio algorithm for monochrome or RGB color images. Based on 
predictive and variable length coding. 

A20 - High speed lossless coding algorithm for monochrome or RGB color images. This is also 
based on predictive and variable length coding, but uses simpler versions to increase the speed. 

A30 - High compression ratio controlled quality algorithm for monochrome images. Based on 
adaptive cosine transform coding. 

A31 - Same as A30 but for RGB color images. 

A40 - High speed lossless coding algorithm for binary images. Based on CCI" one-dimensional 
RL coding. 

A50 - Lossless high compression ratio algorithm for binary images. Based on CCI" modified 
READ coding. 

The Universal Algorithm Interface (UAI) 

The OPTIPACTM compression system is shown in Fig. 2. In this diagram the PC host memory is 
represented by the central block and contains a compression application which has been linked with 
the OPTIPACM run time library to form an executable image. The interface between the user's 
application and the run time library is depicted as the universal algorithm interface (UAI) and 
represents a set of function calls which are used to control a compression or expansion session. At 
the top left of the diagram we see image data stored in a file and also a frame buffer. The display.cnf 
file associated with the frame buffer is simply a configuration file needed by the system. At the top 
right we see the destination for the compressed data, a second disk file. This is simply one example 
configuration and different sources and destinations are of course possible. At the bottom of the 
diagram we see the compression hardware and a disk file which contains the DSP applications and 
the IAST. 
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Stage - I - SetuD The f i s t  stage of a compression session is the setup. This is accomplished by a call 
to the Setupcompress function using the following syntax: 

Setupcompress( x, y ,  z, nx, ny, nz, color, bits, type, mode, quality ) 

This specifies to the compression system that we wish to process a region of size (nx, ny, nz) at offset 
(x, y ,  z )  where x and y are spatial coordinates within the current frame, and z is the frame number. 
The image data type is specified by color which specifies color or monochrome and bits which is the 
number of bits per pixel. Then finally the mode and quality parameters specify the compression 
mode and one of the ten controlled quality coding levels: 9 (highest), 8, ..., 0 (lowest). This function 
call initializes the compression code and, as shown in Fig. 3, causes the appropriate DSP application 
(algorithm) to be downloaded to the compression engine. 

Stage - 11 - Commess The next step is to compress the image region specified in the setup stage. 
This is accomplished by a call to the Compress function using the following syntax: 

Compress( read - window, write-block ) 

This provides the compression system with two user supplied VO functions: read-window and 
write - block which are independent of the specific algorithm in use. In Fig. 4 we have: 

Compress( ReadFileWindow, WriteFileBlock ) 

and ReadFileWindow is called by the run time library to load image data into the compression 
hardware and then, after processing, the compressed data is stored using the WriteFileBlock function. 
By simply changing the I/O functions, unlimited image sources and destinations can be 
accommodated. For example in Fig. 5 we have: 

Compress( ReadFrameWindow, WriteFileBlock ) 

and the image source is now a frame buffer rather than a disk file. 

Since the compression hardware is unable to store the complete image on board, the read window 
and write block functions are called repeatedly to process the complete image region specified in 
Setup. Furthermore the window size requested each time by OP"ACTM is algorithm dependent and 
is made as large as possible to minimize the overhead associated with a data transfer between the PC 
host and O F T I P A P .  The run time library code handles this complicated algorithm dependent 
control leaving a simple consistent interface, the UAI. The complete system is shown in Fig. 6. 

Performance 

Overall system performance is shown below in Tables 2 and 3. In Table 2, CR is shown when 
images with different data types and of differing complexity are compressed using some of the 
available modes. Five different compression modes are shown: hs - high speed lossless; hc - high 
compression ratio lossless; and q5, q3, q l  which are controlled quality coding at quality levels of 5, 
3, and 1 respectively. The corresponding execution times are shown in Table 3. 
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Typical times for compressing 512x512 monochrome images on a standard 8 MHz IBM PC/AT are: 
2 seconds for the hs mode and 6 to 7 seconds for the controlled quality mode. Coding 512x512 color 
images takes 5 to 6 seconds for the hs mode and 9 to 10 seconds for the controlled quality mode. 
Compressing binary 8.5"xll" pages sampled at 200 dots per inch and 200 lines per inch takes about 2 
seconds for hs and 4 seconds for the hc mode. Expansion times are similar to compression times. 

Note that although the CR figures for hc coding are always greater than, or at least equal to, the 
corresponding hs figures, they are often not significantly larger for monochrome and color images. 
In fact, hc only provides substantial improvements when the hs figures are already relatively large. 
Furthermore hc coding can take much longer than the other modes because it is currently 
implemented on the slow PC/AT host. If the application is long term archival and the only 
requirement is to obtain the highest possible CR then the hc option should always be used. 
Otherwise, only when the noise level is low and there is a great amount of redundancy in the image, 
that is the hs CR is 2 or more, is it usually worth spending the extra time to utilize the hc option. 
Consider the color baboon and logo images as extreme examples. The baboon takes an extra 72.5 
seconds to compress in hc mode rather than hs mode, but still only achieves the same CR (=1.4). On 
the contrary, the computer generated logo image takes only an extra 10.5 seconds to dramatically 
increase the CR from 2.4 to 23.2. 

Conclusions 

We have described a programmable image compression system that can handle images of any type 
and size while maintaining a consistent interface. For systems requiring even faster performance, 
multiple boards can be used or the consistent design philosophy can be extended to more complex 
systems containing multiple processors and compression specific hardware modules. 
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high controlled 
graphics color compression quality 

-~ 

hs t hc $ q5* q3* q l *  

Monochrome images (512x512~8) 
Very Simple Scene (adac) 2.8 3.9 32 45 115 

Complex Scene (airport) 1.3 1.5 8 12 31 
Simple Scene (f18) 1.7 1.9 14 21 49 

Color images (512x512~16) 
Very Simple Scene (AT&T logo 5 12x400) 2.4 23.2 31 46 111 
Simple Scene (lenna) 1.8 2.0 22 35 92 
Complex Scene (baboon) 1.4 1.4 10 17 61 

Black and White images (1728x2376~1) 
Simple Scene (CCI'IT 2) 12.5 18.8 
Complex Scene (CCITT 7) 4.5 5.3 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

algorithm 

A20 
A30 
A10 
A30 
A20 
A3 1 
A10 
A3 1 
A40 
A30 
A50 
A30 
A20 
A3 1 
A10 
A3 1 

Table 1 Indirect Algorithm Selection Table (IAST). The image data type (graphics, color) and 
compression mode (high compression, controlled quality) are used to form a 4-bit index into the IAST 
The first bit is 1 for graphics images and 0 for non-graphics images; the second bit is 1 for color and 0 
for monochrome; the third bit is 1 for high compression ratio mode and 0 for high speed mode; the 
fourth bit is 1 for controlled quality coding and 0 for lossless coding. The specific algorithms (A10, 
A20, A30, A3 1, A40, and A50) are described in the text. 

~~ 

t hs - High Speed lossless compression mode 
$ hc - High Compression Ratio lossless compression mode 
* q5, q3, ql  - Controlled Quality (Quality Levels: 5 (highest), 3, 1 (lowest)) 

Table 2 Compression ratios (CR) for different image data types and compression modes. 
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Monochrome images (512x512~8) 
Very Simple Scene (adac) 
Simple Scene (f18) 
Complex Scene (airport) 

Modem Disk Tape 

1.8 15.5 
2.2 29.8 
2.1 36.4 

Scanner Frame 
Grabber 

r 

5.8 5.6 2.4 
7.6 6.7 3.0 
10.1 8.5 3.6 

CPU memory 

Color images (512x512~16) 
Very Simple Scene (AT&T logo 512x400) 
Simple Scene (lenna) 
Complex Scene (baboon) 

OPTIPAC 

4.5 15.0 
5.9 63.5 
5.9 82.4 

7.5 7.1 3.5 
10.4 9.0 3.6 
15.5 12.0 4.1 

Black and White images (1 728x2376~ 1) 
Simple Scene (CCIlT 2) 
Complex Scene (CCI'IT 7) 

1.7 1.8 
3.9 4.6 

t hs - High Speed lossless compression mode 
$ hc - High Compression Ratio lossless compression mode 
* q5, q3, q l  - Controlled Quality (Quality Levels: 5 (highest), 3, 1 (lowest)) 

Table 3 Compression times (secs) corresponding to CR figures shown in Table 2. Note that all times 
are memory to memory on an 8 MHz IBM F'C/AT. 

Figure 1 O P T P A P  in a PC environment. The input (or compressed) image from a disk, tape, 
image/document scanner, modem etc., is read into the main memory. It is then compressed (or 
expanded) by the OPTIPAC? and routed to the output via main memory. 
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Figure 2 An overview of the OPTIPACM compression system. 
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OPTIPAC Run Time Library 

t 
OPTIPAC 
hardware 

T 
Figure 3 SetllpCompress - selecting and loading the appropriate compression algorithm from 
c0mpress.fm.q the DSP application library. Note that this data file also contains the IAST which is 
therefore independent of the application code. 
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ReadFileWindor ReadFrameWindor WriteFileBlock 
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OPTIPAC 
hardware 

compress.tms €3 
Figure 4 Compress - compressing an image stored in a disk file to a second disk file. Note how the 
run time library uses I/O functions provided by the user to access image data. In this way any 1/0 
device is readily accommodated. 
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compm.trm 6 
Figure 5 Compress - compressing an image stored in a frame buffer to a disk file. Note the similarity 
with Fig. 4, the only difference is that ReadFileWindow has been replaced by ReadFrumeWindow. 
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Figure 6 The complete OPTIPAP compression system showing the combined effects of the two 
stages: SetupCompress and Compress. 
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HYBRID LZW COMPRESSION 

H. Garton Lewis Jr. and William B. Forsyth 
Fairchild Weston Systems Inc. 

Abstract: 
The Science Data Management and Science Payload Operations subpanel reports 
from the NASA Conference on Scientific Data Compression (Snowbird, Utah in 1988) 
indicate the need for both lossless and lossy image data compression systems. The 
ranges developed by the subpanel suggest ratios of 2:l to 4:l for lossless coding and 
2:l to 6:l for lossy predictive coding. For the NASA Freedom Science Video 
Processing Facility it would be highly desirable to implement one baseline 
compression system which would meet both of these criteria. This paper presents 
such a system utilizing an LZW hybrid coding scheme which is adaptable to either 
type of compression. Simulation results are presented with the hybrid LZW algorithm 
operating in each of its modes. 

Introduction: 

LZW lossless coding'I2 is a completely reversible process; the encoding/decoding 
operations preserve all of the information contained in the input data sequence. This 
technique may be used on image data, computer files, or telemetered data. The 
hybrid system presented in this paper has the ability to compress image data in either 
a lossless or lossy mode, trading off data quality for data volume. It does this by 
means of an adaptive DPCM loop, which decorrelates the input image into symbols, 
before encoding with the LZW algorithm. The DPCM output symbols may be 
uniquely represented (lossless mode) or quantized (lossy mode.) 
In addition, a mechanism is provided for the compression of non-video (telemetered) 
data. The mode of operation may be selected through the command and control 
system. 

Decorrelatina the i n w t  imaae (the decorrelation circuit): 

Let Si represent the value of the ith element of an image vector S, being clocked out 
of a camera. The "error" vector 
(sometimes called the difference signal) E, is defined as Ei=Si-Si-l. A complete, 
alternate representation of S is the first pixel, So followed by the vector of error 
values, E. This representation contains enough iniormation to reconstruct S (since 
Si = Si-l + Ei.) This idea forms the basis of predictive coding theory3. 

The value of the previous pixel is thus Si-l. 

251 



The compression ratio for lossless coding is bounded by the entropy of the input data. 
Since adjacent pixels in an image tend to be highly correlated, the resulting entropy 
for the vector E is much lower than that of the original vector S. Fig. 1 shows a 
reconnaissance image (S) and its histogram, and Fig. 2 shows the resulting 
decorrelated image (E) and its histogram. In Fig. 2 all values of E have been made 
positive by adding an offset. Thus, Ei=O is displayed at the middle of the graph. 

Fig f - f (Recce. original) 

Fig 2-1 (Recce. Decorrelated) 
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Fig 1-2 (Histogram of Recce. image) 
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Fig 2-2 (Histogram of Decorrelated image) 

Uniquely representing each error value, as in Fig. 2, requires 2"' bits, where n is 
the total number of bits per pixel in S. In this way, all information is preserved and S 
can be completely reconstructed; such a representation is used in the lossless mode 
of the hybrid LZW compressor. 

ORIGINAL PAGE 
BLACK AND WHITE PHOTOGRAPH 
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Alternatively one can choose to quantize the error signal: 

E. = s. - S’ 
I I i-1 

Quantizer 

where A = the current bin width of the quantizer 

E; - 
/ 

and then 

Predictor : 

* Memory 
SI-1 Previous Element 

si-1 

If A 2 2, then E can be represented with fewer bits, but quantization error is 
introduced into the image; this technique is used in the lossy mode of the compressor. 
The case A=1 is referred to as linear quantizing, and represents the lossless mode. 

Si 

It is possible to switch between the lossy and lossless modes of operation by 
determining the representation to use to describe E: either uniquely representing or 
quantizing each Ei (see Fig. 3.) For the remainder of this paper, the error Ei: and 

error vector E: will be used to represent output from the quantizer in Fig. 3. 
Lossless - Linear Quantizer 
Lossy - Non-Uniform Quantizer 

Fig 3. Decorrelation Circuit 

Encodinq the Error: 

Once the quantized error vector E’ is obtained, it is encoded with the LZW algorithm, 
thus preserving all information contained in E’. The LZW algorithm is a good choice 
since it approaches the lower bounds of compression ratios attainable by block-to- 
variable and variable-to-block codes designed to match specific source data. Since 
the LZW routine automatically adapts to changes in the source data no a priori 
information about E’ is required. 
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Svstem block diaaram: 
Fig. 4 shows the block diagram for the compression system. The image S (in Fig. 4, 
shown coming from an experiment occurring in the Space Station) passes through a 
subtractor which forms E. Then, depending on the mode selected, Ei’ is formed by 
quantizing or singularly representing (linear quantizing) Ei. 

The “predictor” block in Fig. 4 is simply a function for improving the accuracy of the 
value Ei. Instead of representing Ei by S i-S.:-, , some other equation may be used 

which takes into account the correlation between vertically adjacent pixels in the 
image. S is now represented as a two dimensional array SiJ, where i and j have 
origin at 0 and are bounded by the maximum horizontal and vertical dimensions of the 
image. Determining good equations for Ei is the subject of many books and papers on 

predictive coding4. The equation used for the remainder of this paper is 

Ei = Si - P(i,j) , 

where 

P(i,j) = 0.75*9l_~ ,j - 0.5*S[-, ,j-l + 0.75*Slj-, 

Fig 4. Hybrid LZW sysfem block diagram 
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After quantizing, the signal E’ is fed into the LZW compressor which codes it without 
loss. The resulting symbols are placed into an elastic buffer (described later), and are 
finally output into a fixed channel (in Fig. 4, the TDRSS KSA channel.) 

The elastic buffer and bit-rate controller are shown as two separate blocks (in reality 
they are often merged.) The purpose of the bit-rate controller is to switch between 
lossless and lossy modes so that the output symbols from the LZW compressor are of 
constant rate (in bits/pixel) on average. The bit-rate controller does this by examining 
the current rate of compression and changing the current mode of operation (lossless 
or lossy), when necessary, to bring the rate into the desired range. 

Additional control is provided by resetting the LZW symbol table when compression 
falls below the channel output rate. In such a case, symbols are being generated too 
efficiently. By resetting the LZW table, we force the algorithm to begin learning the 
scene statistics anew. This results in a lower compression rate until the table fills up. 

Unfortunately, the rate out of the LZW encoder cannot be controlled at every instant. 
Thus, the elastic buffer is needed to hold several lines of image information in case of 
drastic changes in the scene statistics (which cause a large change in the 
instantaneous bit-rate.) In this way, constant output rate may be assured over the 
entire image, if not on a line by line basis. 

In addition to compressing image data, the system provides a path for non-image 
data. This ancillary information (such as data from experiments) is fed directly into the 
LZW compressor. 

Results: 
A variety of images were selected to examine the performance of the hybrid LZW 
compression system in each of its modes. Some results for the lossy mode (A=8) are 
shown in Fig. 5. Two of the images, (Docking Target and Satellite) contain 
significant amounts of tape noise. Lossless results are not shown since the original 
image is always equal to the reconstructed image. Tables 1 and 2 show 
compression of between 3.4 and 4.3 bits/pixel for the lossless mode, and 1.24 to 1.59 
bitslpixel in the lossy mode with A=8. The quantizer used for the lossy case is a non- 
uniform quantizer (Fig. 6.) For such a quantizer, the width of each bin increases as 
Ei ’ increases, and the output of each bin is not its center, but rather its centroid. 
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Fig 5- 1. Satelife image 

Fjg 5-3. Satellite reconstructed with A=8 
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Lossless L Z Compression 

ENTROPY 
ORGIONAL 

IMAGE 
BITSlPIXEL 

DOCKING 
TARGET 

SATELLITE 

CLOUDS 

LINEAR 
DECORRELATED L Z  

ENTROPY COMPRESSION 
BIWPIXEL BlTSlPlXEL 

7.23 

6.38 

1 

4.05 4.3 1.86 

3.41 3.74 2.13 

L Z  
COMPRESSION 

RATIO 

ENTROPY 
ORGIONAL 

IMAGE 
IMAGE I BlTSlPlXEL 

7.31 I 3.61 I 3.40 I 2.05 I 

NON-LINEAR 
DECORRELATED L Z  

ENTROPY COMPRESSION 
BIWPIXEL Bl WPlXEL 

SATELLITE 

CLOUDS 

Table 1. Lossless Compression Results 

7.23 1 .!+I 1.59 

6.38 1.24 1.30 

Non - Uniform Quantizer - Followed 
By L Z Encoder 

I I 
I I 

-6 A -2 A 

-16 A -4 A -AI2 

Input To Quantizer 
16 Bins 

I 
I 

+AI2 +4A 

+ 2 A  +6 A 

I 7.31 I 1.18 I 1.24 TARGET 

1 
COMPRESSION 

RATIO 

6.15 

OUtDUtS Of Quantizer 

Fig 6. Non-uniform quantizer 
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Future Plans: 
Current results from the hybrid LZW routine indicate that it is possible to satisfy both 
lossless and lossy requirements in a single system. In order to gain even greater 
compression ratios, several possible enhancements are currently being investigated. 

Improved control of the bit-rate out of the quantizer is being developed for the lossy 
case. Control is provided by modification of A on a line by line basis, that is, the 
current bit-rate is examined at the end of every line, and A is adjusted (if necessary) 
to raise or lower the output symbols to the desired rate. 

Further optimization of the non-uniform quantizer is possible. A constrained loss 
quantizer should be implemented. This quantizer uses a A=1 (linear quantizer) for low 
values of Ei, and uses larger values of A as the values of Ei increase. 

Finally, use of the Discrete Cosine Transform to decorrelate S instead of a DPCM 
predictor is being considered. LZW compression ratios of 16:l have been realized 
for DCT coefficients. 

Summarv: 
A hybrid LZW compression system has been presented which satisfies NASA 
requirements for both lossy and lossless compression. The system has been 
simulated on a computer, and has produced good quality output images at rates as 
low as 1.24 bits/pixel. The system appears to have applicability for spacecraft and 
reconnaissance imagery. 
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CONNECTIONIST MODEL-BASED STEREO VISION FOR TELEROBOTICS 

William Hoff and Donald Mathis 
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SUMMARY 

Autonomous stereo vision for range measurement could greatly enhance the performance of 
telerobotic systems. Stereo vision could be a key component for autonomous object recognition and 
localization, thus enabling the system to perform low-level tasks, and allowing a human operator to perform 
a supervisory role. The central difficulty in stereo vision is the ambiguity in matching corresponding points 
in the left and right images. However, if one has a priori knowledge of the characteristics of the objects in 
the scene, as is often the case in telerobotics, a model-based approach can be taken. 

In this paper, we describe how matching ambiguities can be resolved by ensuring that the resulting 
three-dimensional points are consistent with surface models of the expected objects. A four-layer neural 
network hierarchy is used in which surface models of increasing complexity are represented in successive 
layers. These models are represented using a connectionist scheme calledparameter networks, in which a 
parametrized object (for example, a planar patch p=f(h,mx,my)) is represented by a collection of processing 
units, each of which corresponds to a distinct combination of parameter values. The activity level of each 
unit in a parameter network can be thought of as representing the confidence with which the hypothesis 
represented by that unit is believed. Weights in the network are set so as to implement gradient descent in 
an energy function. 

1. INTRODUCTION 

The goal of autonomous stereo vision is to determine the three-dimensional distance, or depth, of 
points in a scene from a stereo pair of images. This information is very useful for higher level perception 
capabilities such as autonomous object recognition and localization. Such capabilities could greatly enhance 
the performance of telerobotic systems, by enabling the system to perform low-level tasks and allowing the 
human operator to perform a more supervisory role. This paper describes a new approach to stereo vision 
that we have implemented and with which we have obtained preliminary results. Section 2 provides an 
overview of stereo vision and our general approach. Section 3 describes our implementation of the 
approach with a connectionist, or neural network model. Sections 4 and 5 give additional details of the 
implementation. Section 6 describes results, and Section 7 gives conclusions. 

2. STEREO VISION 

The usual approach to stereo vision includes the following steps [ 11: (1) Features are extracted from 
each image independently, (2) features from one image are matched with the corresponding features from 
the other image, thus deriving their depths, and (3) a surface is interpolated between the possibly sparse 
depth points. The central difficulty in autonomous stereo vision is the second step; k., matching 
corresponding points in the left and right images [2]. The reason is that matching is highly ambiguous, 
since there is little information to characterize low-level features (e.g., edge points) uniquely. Although less 
ambiguous higher level features such as long line segments [3] can be used, these approaches are less 
general and do not explain the ability of the human visual system to fuse stereograms consisting solely of 
random dots [4]. 

model-based approach, which requires some apriori knowledge of the characteristics of the objects in the 
scene. Specifically, parametrized surface models are defined, such as planar and quadratic patches, and 
only those matches are allowed that are consistent with those models. The surfaces of the objects in the 
scene are assumed to be composed of a set of these patches. Low-level features (Le., edge points) are 

A different approach to solving the correspondence problem, which we have taken here, is to use a 
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used, which makes the approach general in the sense that no specific markings or texture patterns are 
required. However, the specific surface models restrict the applicability of the approach to situations where 
the objects in the scene are indeed describable by these surface models. This is a reasonable approximation 
in most cases, especially for the man-made objects which would be encountered in many situations in 
telerobotics. 

To use this surface-based approach, the processes of matching and surface interpolation must be 
integrated. This is because matching provides surface depth values at the locations of the matched features, 
which constrain the interpolated surface. However, the correctness of the choice of matches is judged by 
the type of surface produced. Therefore, the interpolation process should be integrated with matching so 
that acceptable matching decisions can be made. 

by one of the authors (Hoff) [ 5 ] .  Similar approaches have been taken by other researchers [6-81. The work 
described in this paper primarily differs from these other approaches in that it uses a connectionist 
implementation. This approach tightly integrates matching and surface interpolation and naturally combines 
top-down and bottom-up processing. 

A stereo vision algorithm that integrated matching and surface interpolation was recently developed 

3. CONNECTIONIST IMPLEMENTATION OF STEREO CORRESPONDENCE 

In connectionist or neural network architectures, a large number of simple processing units are 
connected by weighted connections. In our stereo implementation, each unit represents a hypothesis about 
a parametrized model; i.e., a feature correspondence or a surface patch. Each unit has an activation value, 
which represents the confidence of the hypothesis. Ballard calls this class of models parameter networks 
[9]. Positive and negative connections between pairs of units represent consistency constraints between the 
hypotheses they represent. The units then incrementally update their activation values in parallel, based on 
the activation values of their neighbors and the connections to them. It is this parallel computation which can 
be used to tightly integrate matching and surface interpolation. 

4. DETAILED DESCRIPTION OF THE MODEL: STRUCTURE 
4 . 1  Hierarchical Structure of the Model 

Our model consists of a four-layer neural network hierarchy, in which features of increasing 
complexity are represented in successive layers of the hierarchy. The model takes two stereo images as 
input at the lowest layer, and produces surface depth and orientation estimates in the highest layer (fig. 1). 
Level 1. 

The first level of the hierarchy consists of two stereo images that have been preprocessed to detect 
edge point features. It is assumed that the images are of a densely textured surface, so that there is an 
abundance of edge features in the images. As far as our model is concerned, the details of the edge-detector 
are not important. (Note: Unlike other approaches [lo], the performance of this algorithm is not tied directly 
to the spatial scale of the edge detector.) 
Level 2. 

The second layer consists of representations of correspondences between edge point features in the 
left and right images. Each correspondence has an associated stereo disparity value, from which the actual 
3D position of the point can be calculated. Since we are using local representations, one unit is allocated for 
each possible depth (or disparity) at each pixel location. (Note: the 3D-points and surface patches are all 
represented in the coordinate system of the left image.) The range of allowable disparities is a parameter of 
the model, and is the same at all pixel locationsl. 
Level 3. 

This is a deficiency of the present model compared to those that allow different disparity estimates at different locations. In 
the present model, to allow for a wide range of disparities across an image, one must allocate units to account for all possible 
disparities at every pixel location, regardless of the particular disparity estimate at that location. 
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The third layer consists of representations of overlapping surface patches of constant depth. Each 
patch covers a region in 3D space of a fixed diameter (in pixels, not in physical space), and at a constant 
depth. The representation of the entire surface at this level of the hierarchy would consist of a surface patch 
at each (x,y) location, each patch being a little plane of zero slope and some known depth. In this level the 
spatial resolution is reduced so that not every (x,y) pixel location contains an estimate. The diameter of the 
surface patches is a parameter of the model, and is the same for all patches and at all pixel locations. The 
range of allowable depths is the same as that of level 2. 
Level 4. 

The fourth layer consists of representations of surface patches of known depth and constant (but 
possibly non-zero) slope. These patches cover a larger spatial region than the constant-depth patches, and 
they also overlap spatially. The representation of the entire surface at this level of the hierarchy would 
consist of a surface patch at each (x,y) location, each patch being a little plane of some known slope and 
some known depth. The difference between level 3 and level 4 is that the level 4 patches can have non-zero 
slope. Again, the spatial resolution is reduced. Three parameters are used to represent a surface patch of 
non-zero slope: a, mx and my - the depth, and the x and y components of the slope. One unit is used to 
represent each (a, mx, my) combination. 

Additional Levels. 

volumetric primitives. Higher levels would represent more specialized descriptions and would implement 
more powerful matching constraints. 

Additional levels could be defined, such as higher order surface patches (e.g., quadratic surfaces) or 

4 . 2  Connections in the Model 

Since we have designed the units in the model to represent specific things, we can also design the 
connections between them. There are two types of connections: (1) Inhibitory, to implement the 
competition between mutually inconsistent units, and (2) excitatory, to implement the support that mutually 
compatible units can give to each other. All connections in the model are bi-directional, so the model 
contains feedback of activation from higher layers to lower layers. Thus, the model can be seen as an 
instance of an interactive activation and competition model [ 111. 
Inhibitory Connections. 

Since separate units are used to represent each possible surface hypothesis at each pixel location, 
they represent conflicting estimates or inconsistent hypotheses of the surface at that point. We would 
therefore like these units to compete against each other, and so at each level, the units located at the same 
(x,y) position are fully connected with inhibitory connections. In level 4, this means that each of these 3D 
grids of units forms a giant competing pool of units - there can be only one winning (a, mx, my) 
combination at a given patch location. 
Excitatory Connections. 

To set excitatory connections, units are connected to other units that support each other. Each level 
2 unit represents a 3D-point with a particular disparity (a) at a particular (x,y) location. As shown in figure 
2, it receives input from level 1 from the two locations that it accounts for - one at (x,y) in the left image, 
and one at (x+a,y) in the right image. 

receives input from all 3D-point units (in level 2) in a local region that lie sufficiently close to the (x,y) 
location and (a) depth represented by the level-3 unit (see fig. 3). Each level 4 unit represents a surface 
patch at a particular depth a, location (x,y), and slope (mx,my) and receives input from all level-3 units that 
lie sufficiently close to the (x,y) location, (a) depth, and (mx,my) slope represented by the level-4 unit (see 

Each level 3 unit represents a surface patch at a particular constant depth a and location (x,y), and 

fig. 4). 

The size of the support regions imply a characteristic scale assumption in the model. The support 
widths are parameters of the model. For example, a support-region width of w pixels from level 2 units to 
level 3 units embodies the assumption that the surface is smooth at the scale of w pixels. The disparity rang: 
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and surface slope range indicate assumptions about the allowable ranges for distance and orientation of the 
visible surfaces. 

5. DETAILED DESCRIPTION OF THE MODEL: WEIGHTS 

Now that we have the structure of the model - i.e., the layers, units, and connections are defined 
- we must assign weights to the connections. This is not a trivial problem, since it is difficult to specify in 
advance the relative importance of the various components, yet the performance of the model depends 
critically on setting the weights properly. One possibility is to have the network learn the weights on its 
own. This introduces additional problems, however, although we would like to explore this approach 
eventually. For example, one must create a training set of data that covers the important examples, and in 
the appropriate proportions. Also, training a network with feedback is computationally expensive [ 121. 

Instead, we have chosen to set the weights so as to implement the minimization of an energy (or 
"cost") function. Specifically, the weights implement gradient descent in this energy function [ 131. This 
increases the likelihood of the system settling into a stable state, and a state that satisfies the requirements we 
wish to impose on the system (e.g., winner-take-all behavior, etc). The use of an energy function also 
greatly increases our ability to analyze the model and make meaningful adjustments to its parameters. 

the units in the network, and this energy function is designed to be minimized when the pattern of activity in 
the network corresponds to a good solution to the problem the network is trying to solve. Each unit then 
locally computes the gradient of the energy function with respect to its own activation, and adjusts its 
activation in the direction that reduces the energy. This process is repeated until the network settles on a 
stable pattern of activity. 

Grossberg's model [15]. We used a very simple activation function: 

The basic idea is that an energy (or "cost") function is defined as a function of the activations of all 

There are many variations of gradient descent, including the IAC model, the BSB model (141, and 

aj(t+l) = aj(t) + Aai(t), (1) 

where 
or 

A%(t) = - E * gradi * (1 - %(t)) 
A%(t) = - E * Fadi * %(t) 

if gradi 5 0 
if gradi > 0 

Here, gradi is the rate of change of energy with respect to ai, or dE/dai. This is based on gradient descent, 
but is not exactly the same as gradient descent since the activations (ai) are bounded by 0 and 1. 

5.1 The Energy Function 

There are many different energy functions that can be used to implement our model. Some energy 
functions contain more terms than others, and some seem to be easier to understand than others. We made 
the decision to try to minimize complexity, while still using a function that would provide good results. The 
energy function that was used is a sum of six terms. Each term represents a constraint on good solutions to 
the surface estimation problem: 

E(a) = 

(Term 1 : Image Evidence) 
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(Term 3: L2 e L3 support) 

n e r m  4: WTA - Level 3) 

(Term 6: L3 e L4 support) 

where the function f(i,j) is a "closeness" function used to weight the support of a point i for a planej within 
a threshold distance "d" by an amount inversely proportional to the point's distance from the plane: 

f(i,j> = 0 if distance(point(i), planeu)) > d (3) 

or d - distance(point(i), plane($) otherwise. f(i,j> = d 

The energy function (Eq. 2) has six terms, but there are actually only three different types of terms 
used. The first type of term (term 1) is minimized when the level 2 units maximally "agree" with the image 
evidence. The second type of term is minimized when winner-take-all situations exist wherever they are 
desired. There are three terms of this type (terms 2,4,5), one for each layer in which WTA situations are 
desired (the "c" parameter ranges over all competitive pools in the layer). The third type of term is 
minimized when hypotheses in one layer maximally "agree" with related hypotheses in adjacent layers (terms 

3,6). The "S" variables are the units' "support regions" (e.g., Si is the set of units in Level 3 that support 
unit i.. 

The constants ki are used to represent the relative importance of the various terms within the overall 
energy function. By inspection, it can be seen that the WTA terms are minimized when no more than one 
unit has a nonzero activation. The "support" terms are all functions of a single unit in one layer and a group 
of units in its "support region" in an adjacent layer. These terms are minimized when the unit with the most 
support within a competitive pool is the winner in that pool. The "Image Evidence" term (term 1) is 
minimized when the 3D point unit with the most support within a competitive pool is the winner in that pool. 

5.2 Connection Weights 

with respect to the unit activations. In order for a unit to be able to calculate the derivative locally, it usually 
needs to know the activations of some other set of units. This communication is implemented with weighted 
connections between the units. For units in level 2 of the present model, this derivative takes the form: 

L3 

The connection weights in the network are derived from the energy function by taking derivatives 

where C i  is a "competitive pool" of units of which unit i is a part, and S k 3  is the "support region" in Level 3 
for unit i . 
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The unit i can compute this derivative if we create connections between it and all the other units that 
appear in the above equation. The unit can then calculate the gradient using a net input function such as: 

neti = Cwijaj  - 
j 

where the subscriptj ranges over all of the units to which unit i is connected. The term ei is the "external 
input" to the unit, which in this case is the input from the edge images. To make this technique work, 
however, the weights (the wijk) must be set to the following values: 

wij = k l ,  for all units jE  Ci, with jti. (6)  
L3 wik = -W&j) ,  for all units kE Si . 

To put it another way, the connectivity and the connection weights themselves are derived from the 
energy function by first deriving the equation for aE/a% from the energy function, and then choosing a set of 
connections and a net input function that implement the aE/aq equation. This technique was used to 
determine the connectivity and weights throughout the network. 

Note that the energy function still contains 5 unknown parameters (the ki. ), which must be selected 
by trial and error. However, we can derive some useful relationships between these parameters, by strictly 
enforcing the winner-take-all requirement. For example, suppose that C is a set of units that forms a 
competing pool (i.e., a "winner-take-all" pool). If the current pattern of activations of the units in C is a 
winner-take-all pattern (Le., there is one unit with a "1" activation, and all of the others have a "0" 
activation), then this activation pattern will remain stable if: 

grad1 2 0 for all the "losing" units (le C).  
This is true because in gradient descent, the activation values are changed in a direction opposite in 

gradw I 0 for the "winning" unit (WE C), and (7) 

sign from that of the gradient, so if the above conditions hold, the winning unit will try to increase its 
activation (but will be limited at l), and the losing units will try to decrease their activations (but will be 
limited at 0). Therefore the winner-take-all pattern is stablel. 

When these conditions are applied to the competing pools in our model, we get the following results: 
k l 2  (k2)W2,3 + ei (gal 

k3 2 (fl)w2,3 + (k5)W3,4 (8b) 

k4 2 (k5)W3,4 (8c) 

where Wa,b is the width of the support region between units in Level a and units in Level b. So given 
values for k2 and k5, we can set the other k values according to these equations and be sure that all winner- 
take-all patterns will be stable. 

6 .  RESULTS 

The system was run primarily on 1-dimensional random-dot stereograms. (A 1-d stereogram image 
is just a single horizontal row of binary pixels). The system was run many times with different parameter 
settings to study the effects of enforcing WTA behavior to varying degrees. It was found that if the k 
parameters were set to values that would strictly enforce WTA, the network settled on very poor solutions to 
the surface estimation problem. Better results were achieved when the parameters governing the lower 
levels were set much lower than that required to enforce WTA (Le., less than half the value), and the higher- 
level parameters were set just slightly lower than that required for WTA. The best results were achieved 

Note that this does not ensure that the network will settle on a winner-take-all pattern, but only that ifa winner-take-all 
pattern exists, it will remain stable. 
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when, instead of setting the parameters to fixed values, they were all set initially to values far below the 
WTA values, and then slowly increased to the WTA values. This appeared to work better because it allowed 
partial activation of large numbers of "almost right" hypotheses initially, and then as the parameters were 
raised, the best hypotheses were "selected1 (more or less) from the set of partially active hypotheses. 

How to interpret the graphics: 
Each diagram consists of three large rectangles filled with small squares. The highest rectangle 

represents the 3d-point layer of the network, the next lower rectangle represents the constant-depth-patch 
layer, and the lowest rectangle represents the constant-slope layer. Each rectangle is a graphic representation 
of the activations of the units in that layer of the network. 

The 3d-point layer of the net is a 2D parameter space, (x vs. disparity). The horizontal dimension is 
x, (it ranges from x=O to x=50), and the vertical dimension is disparity (-5 to +5). Each point in the space 
contains a unit, and the size of the black square at that point represents the activity of the unit. The constant- 
depth layer also has these dimensions. The constant-slope layer of the network has an extra dimension: 
slope. This extra dimension is graphically displayed as another level of rectangles-within-rectangles. The 
large rectangle contains of a horizontal row of "tall" rectangles. There is one of these for every other x value 
(the spatial resolution was reduced by a factor of 2). Each of these tall rectangles is filled with 77 tiny 
rectangles, each of which represents a distinct combination of (x, disparity, and slope). These tiny 
rectangles are arranged in a 2D grid, the vertical dimension of which is disparity (just as it is in the lower 
layers), and the horizontal dimension is slope. The slope ranges from -0.6 to +0.6, in increments of .2. 

Figures 5a-5c depict the history of one run of the network after 1,5 and 9 iterations. The input to 
the network is a stereo pair of images of a surface with slope -0.2 (this would appear as a diagonal line 
running from the top-left to the bottom-right of the large rectangles. Within the large "tall" rectangles, a 
slope of -0.2 would appear as a filled-in tiny rectangle three from the right (slope increases right to left; zero 
slope is in the center). By the end of the series, you can see that the disparity has been estimated fairly well. 
The slopes are roughly correct throughout the image (k .2), and they are exactly correct at 15 of the 25 
pixels, or in 60% of the image). 

7. CONCLUSIONS 

The system performed very well on the 1D stereogram data. Addition of the second spatial 
dimension will require an extension of the support regions into the y dimension, but will not require a 
change to the competitive pools, since they extend only in the x direction. The energy function itself will not 
change (except for the fact that the Si's will change). The changes will be primarily quantitative, not 
qualitative. An improvement in performance is expected, however, since the extension of the "cooperative" 
constraints (smoothness, planarity) into the y dimension will allow 3d-point hypotheses to take into account 
the smoothness (or lack thereof) of the surface in they dimension. There will be an impact on the 
derivations of the k-values needed to preserve WTA, since there will be more competitive pools in the 
support region of a given hypothesis. 

It is still not known exactly how the values of the k coefficients should be changed over time to 
maximize performance. But since the network is trying to find an energy minimum (ideally, the global 
minimum), simulated annealing with a fixed set of k's would probably produce equal or (more likely) better 
results that the "pseudo-annealing" that was used here. 

Despite the attempts to derive the values of as many of the model's parameters as possible, some 
amount of "rapid prototyping" was still ultimately necessary. For example, there was little guidance in 
picking the relative values of the "support weight" parameters (k2 and k5). For our purposes, we made 
them equal. 
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Figure 1. Four level hierarchical model for stereo matching and surface representation. 
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Figure 2. A 3D point unit receives support Figure 3. A constant-depth patch unit receives 
from left and right edge point units. support from 3D point units. 
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Figure 4. A constant-slope patch unit receives support from constant-depth units. 

Figure 5a. The network after 1 iteration. 
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Figure 5b. The network after 5 iterations. 

Figure 5c. The network after 9 iterations. 
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