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Abstract 

Aspects of natural vision (physiological and perceptual) serve as a 
basis for attempting the development of a general processing scheme for 
contour extraction. Contour information is assumed to be central to visual 
recognition skills. While the scheme must be regarded as highly preliminary, 
initial results do compare favorably with the visual perception of structure. 
The scheme pays special attention to the construction of a smallest scale 
circular difference-of-Gaussian (DOG) convolution, calibration of multiscale 
edge detection thresholds with the visual perception of grayscale boundaries, 
and contour/texture discrimination methods derived from fundamental assump- 
tions of connectivity and the characteristics of printed text. Contour 
information is required to fall between a minimum connectivity limit and 
maximum regional spatial density limit at each scale. Results support the 
idea that contour information, in images possessing good image quality, is 
contained largely if not wholly in the highest two spatial frequency channels 
(centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial 
frequency channels appear to play a major role only in contour extraction 
from images with serious global image defects. 
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Introduction 

The goal of sophisticated machine vision capabilities requires that 
attention be paid to the semantic content of images together with intrinsic 
image characteristics such as contrast, noise, blur, and sampling. The 
visual task of recognition and interpretation is of paramount interest. Here 
the first step toward a more general approach to machine vision recognition 
is defined as a set of methods for transforming arbitrary images into contour 
or schematic line drawing information. This set of methods was fashioned 
from natural vision concepts (physiological and perceptual) coupled with 
image acquisition processes. Emphasis is placed on the smallest scales of 
the image. An abbreviated pyramid of circular difference-of-Gaussian (DOG) 
convolution operators forms the first stage of image processing. In 
particular the nontrivial problem of constructing a smallest scale DOG 
operator from discrete image samples is of special interest. Edge detection 
and contour extraction processing is then performed for each scale of 
operator. Multiscale contour information is then merged in an hierarchical 
manner with priority being given to the information from the smallest scale. 
Larger scale information is only added to spaces not already occupied by 
smaller scale information. 

The set of methods can be viewed as a progression starting with the 
image and proceeding through "seeing" to significance. The processing 
scheme, which must be regarded as preliminary, is described together with the 
ideas behind the scheme. Results are given for a series of image processing 
experiments designed to provide a partial demonstration of the overall 
consistency of the scheme with the visual perception of structure in images. 
While conciseness of either the processing or the resulting information was 
not a major goal, it is noted that processing is reasonably simple and the 
contour information is intrinsically concise (and can be made more compact by 
the addition of coding schemes). 

Construction and Resiliency of Smallest Scale Operator 

Previous work by Huck et al. (Ref. 1)  demonstrated that a well-behaved 
smallest scale DOG operator could be constructed for one case of a specific 
amount of image blur and a particular spacing of the square grid sampling 
lattice. Subsequently this work was extended to show that this well-behaved 
operator will result from the same set of weighting coefficients even for 
significant changes in blur or sampling lattice spacing (Ref. 2 ,  Figs. 1 
and 2). 
the image samples is then equivalent to applying a small DOG operator to the 
original scene radiance distributions. Less attention was paid to the 
construction of larger operators (in this case about 3 times and 6 times 
larger) and the larger functions used were merely formed from discrete values 
of the desired size of DOG function. The spatial spread of image edges after 
convolution was checked as a rough verification that the desired scale 
operator was achieved. 

The two-dimensional convolution of these weighting coefficients with 

Multiscale Two-Dimensional Edge Detection and Representation 

A fully two-dimensional edge detection method was found to be necessary 
(Ref. 2). Likewise an edge representation space magnified by a factor of two 
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over the original image space was also a requirement (Figs. 3, 4 ,  and 5). 
Edge detection is based on zero-crossings (Ref. 3); however, the determina- 
tion of thresholds for "zero" for edge detection could not be determined from 
fundamental considerations. In particular, noise-limited edge detection 
produced edge representations with a wealth of textural detail which seemed 
inconsistent with the subsequent goal of contour extraction. Therefore, the 
performance of visual perception was examined for guidance in determining 
multiscale contrast sensitivities. To this end, the perception of grayscales 
edges and bar patterns was examined. 

The Disparity Between Grayscale and Bar Pattern Perception 
at Scales Larger than the Visual Acuity Limit 

The perception of both grayscale and bar patterns (Fig. 6) seemed 
suitable to the calibration of contrast sensitivity versus image scale. 
One aspect of grayscale edge perception is noteworthy. For equal step 
intervals in the grayscale and decreasing angular size, a point is reached 
where almost all edges vanish at once. The exceptions are the lowest and 
highest steps which vanish at slightly larger angular sizes. Therefore for a 
particular angular size, edge detection in grayscales seems to be an almost 
linear process with constant threshold value. 

While a consistent result for grayscale edges and bars was expected, 
actual results were quite different. A striking disparity occurred between 
the perception of grayscale edge and bar patterns at 3x and 6x the visual 
acuity limit (Fig. 7). This led to the use of the grayscale sensitivities 
for edge detection and the formation of a hypothesis that contour information 
exists as a higher contrast subset of information within the full range of 
visual phenomena (Fig. 8 ) .  It should be noted in these spatial frequency 
diagrams that higher contrast at a given scale is a necessary but not 
sufficient requirement for visual phenomena to be contour information. That 
is, some higher contrast phenomena may still prove to be textural or 
otherwise not relate to overall contour description of a scene. Contrast 
sensitivity versus scale must now be related to edge detection zero-crossing 
thresholds by considering noise, blur, edge contrast, and most importantly 
sampling effects. 

Edge Detection Threshold-Calibration to Contrast Perception 
Considering Sampling, Noise and Blur 

Sampled edge convolution signals exhibit considerable chatter compared 
to the characteristic analog signal (Fig. 3). Therefore, capture of extended 
edges in a test image at each scales' contrast sensitivity was calibrated for 
intrinsic sampling errors coupled with reasonable values of noise and blur. 
The existence of reasonably low noise (S/N > 50) and modest blurring 
(Gaussian u = 0.6 of the sampling lattice spacing) was checked. This 
calibration (Table 1) was performed in two stages. A set of convolution 
samples on extended edges at threshold contrast was used to make an estimate 
of edge detection threshold. Since this relatively small sample might not be 
highly accurate, some image processing experiments were performed. Edge 
detection thresholds were adjusted until the bulk of extended straight edges 
at minimum contrast were detected. 
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Contour Extraction Methods (Semantic Reference Points1 

To this point only the "seeing" of edges has been considered. The 
isolation of contour information now necessitates a step beyond this into the 
semantic content of contour information. The question is namely - can we 
find a fundamental characteristic of contour information on which further 
processing can now be based? Contour information subjectively seems to 
always steer between "too little" and "too much", so we can look for ways to 
establish quantitative criteria for these subjective limits. Connectivity 
was investigated as a "too little" criterion while regional spatial density 
of events was used for a "too much" criterion. The following two approaches 
to minimum connectivity were investigated: 1) the minimum feature of printed 
text - the period, or more fundamentally 2) connectivity across the space 
occupied by the original DOG operator. The latter proved to be the most 
perceptually consistent. Printed text characteristics were also investigated 
to establish a region size and a maximum number of spatial events allowed. 
This hypothesis arose from the idea that printed text is engineered by man 
for possibly maximum information throughput. The resulting quantitative 
criteria are summarized in Table 2 .  

Results, Discussion, and Conclusions 

As a partial demonstration of generality, the computational scheme is 
applied identically to diverse images. The original image is shown at the 
correct size to place each image pixel at about the visual acuity limit f o r  a 
normal reading distance (Fig. 9). However, perceptual comparisons with these 
reproduced images are not particularly accurate because the contrast rendi- 
tion of the original image cannot be maintained in publication. Only results 
for the lx and 3x combined scales are shown since this appears to be 
sufficient for good quality images. Addition of 6x scale information appears 
to be unnecessary in this case and comes into play for images with global 
defects (weak contrast, severe blur or noise). The handling of defective 
images is the subject of an on-going investigation and seems to require a 
graceful shift to a pair of larger scales as one or more smaller scales 
produce insufficient information in some global sense. 

In an overall sense, these results support the idea that a general 
scheme for contour extraction is possible and can be based mostly on a 
pairwise selection of two scales of edge detection and representation. These 
two scales should be the smallest two for most normal imagery and shift to 
pairs of successively larger scales only when globally defective images 
occur. 
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TABLE 1. - EDGE DETECTION THRESHOLDS FOR THE THREE SMALLEST 
I M A G E  SCALES ( l X ,  3X, AND 6X V I S U A L  A C U I T Y  L I M I T )  

SCALE 

1x  

3x 

6X 

SCALE 

1x  

3x 

6X 

DES I R E D  
CONTRAST THRESHOLD 

50% 

15% 

5.5% 

E S T I M A T E D  
EDGE DETECT I ON 

THRESHOLD 

19% 

7.0% 

1.2% 

ACTUAL 
EDGE DETECT I O N  

THRESHOLD 

16% 

5.5% 

1.2% 

T A B L E  2. - CONTOUR PROCESSING C R I T E R I A  
( I N MAGN I F  I ED EDGE REPRESENTAT I ON SPACE) 

C O N N E C T I V I T Y  

6 

1 8  

36 

NUMBER OF EVENTS REGION S I Z E  

75 25 x 25 

260 50 x 50 

350 75 x 75 
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m i c e  spacing 

F i g u r e  1. C o n s t r u c t i o n  of S m a l l e s t  S c a l e  Edge Opera to r  
f o r  Square L a t t i c e  Image Space 
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F i g u r e  2 .  R e s i l i e n c y  of Opera to r  t o  V a r i a b l e  Sampling L a t t i c e  
Spacing ( o r  E q u i v a l e n t l y  V a r i a b l e  B l u r )  
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Arbitrary 
sampling 

cross section - 

I 

F i g u r e  3 .  

Sampled image 

Minimum number of samples 
in local 3 x 3 neighborhood 

required to define edge 
structure in image space. 

D i s c r e t e  Samples of Convo lu t ion  of 
Edge wi.th DOG O p e r a t o r  
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F i g u r e  4. I l l u s t r a t i o n  o f  t h e  Requirement f o r  a Magni.fied 
Edge R e p r e s e n t a t i o n  Space 
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F i g u r e  5. Zero-Crossing Comparisons Used i n  Edge D e t e c t i o n  
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F i g u r e  6 .  P e r c e p t u a l  Determi n a t i  on of C o n t r a s t  
S e n s i t i v i t y  Versus Image S c a l e  
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Figure 7. Disparity in Grayscale Edge and Bar Pattern Contrast 
Sensitivities for Scales Above Visual Acuity Limit 

200 

100 

100 

"seeing" 

Contour 

1 
0 10 20 30 40 
Spatial Frequency, cycldeg 

Linear-linear scale 

General 
"seeing" 

Contour 
information 

I 1 , 1  
1.0 2.0 10.0 30.0 

Spatial Frequency, cycldeg 
Log-log scale 

Figure 8. Hypothesis Regarding Contour Information 
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Figure 9. Image P r o c e s s i n g  Results 
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F i g u r e  9 .  Cont inued  
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Fi.gure 9 .  Cont inued  
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Figure 9 .  Concluded. 
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Biological image processing strategies and algorithms are of interest to NASA because of 
their potential for practical application. Of special interest is an algorithm of Cornsweet.[9,10] 
This Intensity Dependent Spatial Summation (IDS) algorithm is correlated with a number of 
quantitative, empirical aspects of vision.[ 111 The spatial scale of the associated point spread 
function is intensity dependent. Lower intensities are associated with a broader range of spatial 
integration. There is an interesting similarity between intensity dependent spatial integration 
and spiketrain coding of intensity in which the integration time is longer for lower intensities. 
Extended spatial integration and extended temporal integration are both strategies tradeoffs 
appropriate to coping with low intensity signal-to-noise problems.[ 121 

The Cornsweet algorithm is of interest in connection with edge detection, the identification of 
contours of objects and the specification of an image in terms of reflectance ratios. The temporal 
analog of a reflectance discontinuity at an edge is a step function intensity transient. One 
vision-system-like mode of transient sensing has already been demonstrated in our approach. [ 131 
Implementation of the Cornsweet algorithm is a more subtle and interesting problem than 
transient sensing, although some insights may emerge from the similarity between spatial and 
temporal integration. 

A parallel asynchronous hardware implementation of the Cornsweet algorithm would repre- 
sent an interesting application of our approach. The ultimate and most challenging application 
would be real time, high frame rate, high resolution image processing. Hardware implementa- 

ELECTRONIC OR OPTICAL INPUTS 

Si wafer 

Figure 4: Schematic illustration (cross- 

si wafer tern through a 2-D parallel asynchronous 
processor consisting of stacked silicon 

Si wafer 
P sectional side view) of the signal flow pat- 

P wafers. Parallel asynchronous fire-through 
" si wafer is a key t o  propagation o f  pulsed signals 

P 

" Si wafer 

P through chips. Injection pulses are associ- 
P ated with current-flow between the n- and Si wafer 

" p-l a yers . 
P 

1 1 1 3 1 1 1 1 1 1 1 1  
OPTIONAL LED OUTPUT ARRAY 
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5 
10 

Figure 5: Experimental data points [6] and the calculated (MINUIT)  
fit. The output dynamic range is slightly less than the input dynamic 
range corresponding to sublinear current-to-frequency conversion. The 
model gives an extremely good fit which ranges across 7 decades. 

1 2  10' lo6 lo5 1612 l o l o  

CURRENT (AMPERES) 

tion of the Cornsweet algorithm is an unusually interesting area of research because the relevant 
retinal and neural mechanisms have not yet been identified.' On the other hand, a great deal is 
known about the connectivity of the retinal neural network, so that biological plausibility might 
be invoked as a broad, qualitative constraint on network architecture. For applications, it is of 
course not necessary to be unduly constrained by biological analogies and differehces will surely 
appear in a silicon device approach. However, a point which is frequently made in connection 
with neural network research is that, at our present level of understanding, there is probably 
much to be gained from a reverse engineering analysis of high performance biological systems. 

2 Devices For Parallel Asynchronous Processing 
Previous studies[6] of current driven p+-n-n+ diodes led to the discovery of input current 
dynamic ranges up to lo7. The corresponding output pulse rate range was sometimes less than 
the input range. See Fig.5. We have developed a model for spontaneous firing during current-to- 
frequency conversion (I-to- f conversion) and used the model to analyze the data shown in Fig. 5 
using a program developed at CERN called MINUIT[14]. A key feature which is explained is 
that the slope of lnf vs 1nI is not always unity. The data in Fig. 5 correspond to f cc Il-'. A 
simple picture with an equal amount of charge transfer in each impulse would explain f cc I. 
However, more detailed device modeling was required to understand sublinear f cc Il-' behavior. 

2.1 Sensors and Sensor-Processor Interfacing 

This section describes experimental work on sensors and sensor-processor interfacing. Results 
have been obtained for reverse biased p-i-n photodiodes which are useful in the visible, ultraviolet 
and near infrared regions and for infrared detectors which are useful in the far infrared region. 
The most dramatic results in terms of dynamic range came from visible light measurements 
with reverse biased p-i-n photodiodes where the dark current reduction associated with cooling 
led to the enormous dynamic range shown in Fig. 6. 

'T. Cornsweet, private communication. 
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Cllh. 

Figure 7: Schematic representation of the primate retina.[l7] 
T h e  light sensitive rods and cones pass signals t o  horizontal 
cells where lateral inhibition may occur. Signals then pass 

,,.ti ”,W,,,W.*l through bipolar cells t o  the highly interconnected plexiform 
Lhp.,.,, layer. From the plexiform layer, signals are transmitted to 
LI.ll I\m.,<,,nl. the ganglion cells which connect t o  fibers o f  the optic nerve. 

Reproduced with the permission of Sinauer Assoc. Inc. 
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LA”CI,.~” 
<CII 

The relevant output from the IDS algorithm conveys information in the neighborhood of an 
edge, so it’s not strictly one-dimensional. Besides edge contour information, there is additional 
information in the IDS algorithm output, namely, intensity-ratios or reff ectance-ratios associated 
with the two regions on either side of the edge. If we assign one normalized reflectance to each 2- 
D subregion (plaquette) within a closed contour revealed by edge detection, then the IDS output 
data could be compressed into a “sketch” displaying 1-D edge contours (plaquette perimeters) 
and a set numbers (normalized reflectances), one for each 2-D plaquette. 

2.5 

Our parallel asynchronous processing strategy, our neuronlike information coding and our in- 
trinsically 2-D data flow all suggest a close analogy with natural vision systems. In addition, 
our approach preserves the geometrical relationship of neighboring channels as is the case in 
natural vision systems. A key aspect of processing in natural vision systems is lateral inter- 
action between neighboring or nearby processing channels. It thus appears that our hardware 
approach is well suited to implementation of image processing schemes which parallel those of 
natural vision systems. 

Lateral interaction between nearby processing channels is associated with vision system 
spatial filtering. Lateral interactions determine the receptive fields of neuron processing elements 
and the point-spread functions of individual photoreceptors. In natural vision systems, neurons 
mediate lateral interactions as shown in Fig. 7. In the retina chip of Mead and Mahowald, lateral 
interactions are incorporated via a resistive network. [ 161 However, no spiketrain generation and 
no intensity-to-frequency conversion occur as in the retinas of natural vision systems. See Fig. 
8. 

In our approach, neuronlike spiketrain generation is used. An artificial neuron circuit and 
the analogy with real, stereotypical neurons is illustrated in Fig. 9.[5] 

Similarity with Image Processing in Natural Vision Systems 
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Figure 8: Waveforms recorded from various cells in the vertebrate 
retina when a small stimulus spot i s  shown on retina photorecep- 
tors, and when a large spot that includes surrounding elements 
is used. The stimuli l as t  about 1 second, and the responses are 
up to  30 mV in amplitude. OPL and IPL refer to  outer and inner 
plexiform layers and NF refers t o  the nerve fibers. [18] Reproduced 
with the permission of Cambridge University Press. 

, ,  OUTPUTS 

TRANSMISSION LINE 

Figure 9: A ) :  Features of a typical neuron from Kandel and Schwartz [is] and B):  our artif icial neuron, which exhibits 
the summation over synaptic inputs and fan-out. The input and output capacitive couplings are useful in conjunction 
with spiketrains. The darkened diode is a p-n junction device used for pulse height discrimination. The other diode i s  
a p+-n-n+ diode used for spiketrain generation. 
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Figure 6: T h e  graphs show that the pho- 
tocurrent output of a reversed biased p-i-n 
photodiode (left graph) in response t o  vis- 
ible light overlaps the large dynamic range 
of p+-n-n+ devices (right graph). This im- 
plies that such photodiodes could be directly 
interfaced t o  a parallel asynchronous proces- 
sor based on p+-n-n+ devices. Such in- 
terfacing would preserve the high dynamic 
range. 
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2.2 Two-Dimensional Data Transfer 
We have performed experiments in order to examine means of 2-D parallel data transfer without 
multiplexing. The idea is that neuronlike spiketrains could be used to drive arrays of LEDs for 
2-D optical data transfer. The LED firing pattern could be recorded using a video camera or 
received by a photodiode array. 

In our experiments, a p+-n-n+ diode drives a LED which is also inside a cryogenic envi- 
ronment. When a pulse from the p+-n-n+ diode goes above the threshold voltage of the LED, 
the LED starts conducting and emitting light. The LED inside the dewar can be viewed from 
outside the dewar. This is convenient and avoids a heat load. While the p+-n-n+ diode pulse 
is greater than the threshold the LED will be on. The pulse will decay according to the cir- 
cuit parameters, i.e., the time constant. The speed of data transfer will be limited by the RC 
time constant. Optimal performance corresponds to dissipation of power in the LED rather 
than in the load resistor so that the RC decay is undesirable from the point of view of power 
considerations as well as avoidance of pile up at high pulse rates. 

2.3 Ultralow Power Requirements 
Massive processing tasks, operation in space and cooling for high performance (low dark current) 
operation are all factors which point to the benefits of low power operation. Von Neumann’s 
estimate of the power consumption of the brain was 10-25 watts [15] which is remarkably small 
for a system with - lo1’ neurons, i.e. - 100 picowatts/neuron. It has been argued that arrays 
of small p+-n-n+ diodes could offer comparably low (or even lower) power consumption.[5] 
Scaling down the device size will scale down the power requirements per device. For p+-n-n+ 
diodes, we have observed pulses with energy dissipation down to 4 picojoules/mm2/pulse and 
a quiescent power dissipation of 10 picowatts/mm2. Considering the thermodynamic efficiency 
of cooling, these numbers correspond to 290 picojoules/mm2/pulse and 710 picowatts/mm2 at 
room temperature. For comparison, we note that the retina chip of Mead and Mahowald[lG] 
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has a power dissipation of 4 microwatts/mm2. 
The range of p+-n-n+ diode action potential pulse heights observed to date is from about 

20 millivolts to 50 volts with the low end of the range corresponding to the low power figures 
reported here. The low end of this range of pulse heights is comparable to action potential 
pulse heights of real neurons. Our device physics modeling of spiketrain generation could lead to 
further power reductions if necessary. Low power dissipation would permit substantial processing 
to be performed at or just behind a focal plane array of detectors which are normally cooled to 
achieve high performance. 

This electronic approach is remarkably well suited to neural network emulation and parallel 
asynchronous processing. Such hardware offers the possibility of 2-D parallel image processing 
in conjunction with image acquisition in much the same way as image acquisition and early 
processing are performed in natural vision systems. This is of interest because it is generally 
acknowledged that many image processing tasks are performed by natural vision systems with 
noteworthy speed, even in comparison with the fastest available systems employing conventional 
electronics. 

We have identified certain image processing algorithms (IDS and pyramid) as being (A) 
especially well suited to our 2-D parallel approach and (B) of special relevance to potential NASA 
applications. The ultimate system which could emerge from our research would be a real time, 
high resolution, high dynamic range, low power integrated (single package) focal plane array- 
2-D parallel processor. The processor would be hard-wired to implement particular algorithms. 
Successive processing levels could perform a succession of processing tasks. For example, one 
might want to perform further parallel processing on the output of an IDS algorithm stage. 

Detected Features 
Set of point targets 

Set of edges 
Full optical data flow 

Input + Output Dimensionality 
2D + OD 
2D + 1D 
2D -, 2D 
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