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SUMMARY

Autonomous stereo vision for range measurement could greatly enhance the performance of
telerobotic systems. Stereo vision could be a key component for autonomous object recognition and
localization, thus enabling the system to perform low-level tasks, and allowing a human operator to perform
a supervisory role. The central difficulty in stereo vision is the ambiguity in matching corresponding points
in the left and right images. However, if one has a priori knowledge of the characteristics of the objects in
the scene, as is often the case in telerobotics, a model-based approach can be taken.

In this paper, we describe how matching ambiguities can be resolved by ensuring that the resulting
three-dimensional points are consistent with surface models of the expected objects. A four-layer neural
network hierarchy is used in which surface models of increasing complexity are represented in successive
layers. These models are represented using a connectionist scheme called parameter networks, in which a
parametrized object (for example, a planar patch p=f(h,mx,my)) is represented by a collection of processing
units, each of which corresponds to a distinct combination of parameter values. The activity level of each
unit in a parameter network can be thought of as representing the confidence with which the hypothesis
represented by that unit is believed. Weights in the network are set so as to implement gradient descent in
an energy function.

1. INTRODUCTION

The goal of autonomous stereo vision is to determine the three-dimensional distance, or depth, of
points in a scene from a stereo pair of images. This information is very useful for higher level perception
capabilities such as autonomous object recognition and localization. Such capabilities could greatly enhance
the performance of telerobotic systems, by enabling the system to perform low-level tasks and allowing the
human operator to perform a more supervisory role. This paper describes a new approach to stereo vision
that we have implemented and with which we have obtained preliminary results. Section 2 provides an
overview of stereo vision and our general approach. Section 3 describes our implementation of the
approach with a connectionist, or neural network model. Sections 4 and 5 give additional details of the
implementation. Section 6 describes results, and Section 7 gives conclusions.

2. STEREO VISION

The usual approach to stereo vision includes the following steps [1]: (1) Features are extracted from
each image independently, (2) features from one image are matched with the corresponding features from
the other image, thus deriving their depths, and (3) a surface is interpolated between the possibly sparse
depth points. The central difficulty in autonomous stereo vision is the second step; i.e., matching
corresponding points in the left and right images [2]. The reason is that matching is highly ambiguous,
since there is little information to characterize low-level features (e.g., edge points) uniquely. Although less
ambiguous higher level features such as long line segments [3] can be used, these approaches are less
general and do not explain the ability of the human visual system to fuse stereograms consisting solely of
random dots [4].

A different approach to solving the correspondence problem, which we have taken here, is to use a
model-based approach, which requires some a priori knowledge of the characteristics of the objects in the
scene. Specifically, parametrized surface models are defined, such as planar and quadratic patches, and
only those matches are allowed that are consistent with those models. The surfaces of the objects in the
scene are assumed to be composed of a set of these patches. Low-level features (i.e., edge points) are
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used, which makes the approach general in the sense that no specific markings or texture patterns are
required. However, the specific surface models restrict the applicability of the approach to situations where
the objects in the scene are indeed describable by these surface models. This is a reasonable approximation
in most cases, especially for the man-made objects which would be encountered in many situations in
telerobotics.

To use this surface-based approach, the processes of matching and surface interpolation must be
integrated. This is because matching provides surface depth values at the locations of the matched features,
which constrain the interpolated surface. However, the correctness of the choice of matches is judged by
the type of surface produced. Therefore, the interpolation process should be integrated with matching so
that acceptable matching decisions can be made.

A stereo vision algorithm that integrated matching and surface interpolation was recently developed
by one of the authors (Hoff) [5]. Similar approaches have been taken by other researchers [6-8]. The work
described in this paper primarily differs from these other approaches in that it uses a connectionist
implementation. This approach tightly integrates matching and surface interpolation and naturally combines
top-down and bottom-up processing.

3. CONNECTIONIST IMPLEMENTATION OF STEREO CORRESPONDENCE

In connectionist or neural network architectures, a large number of simple processing units are
connected by weighted connections. In our stereo implementation, each unit represents a hypothesis about
a parametrized model; i.e., a feature correspondence or a surface patch. Each unit has an activation value,
which represents the confidence of the hypothesis. Ballard calls this class of models parameter networks
[9]. Positive and negative connections between pairs of units represent consistency constraints between the
hypotheses they represent. The units then incrementally update their activation values in parallel, based on
the activation values of their neighbors and the connections to them. It is this parallel computation which can
be used to tightly integrate matching and surface interpolation.

4. DETAILED DESCRIPTION OF THE MODEL: STRUCTURE
4.1 Hierarchical Structure of the Model

Our model consists of a four-layer neural network hierarchy, in which features of increasing
complexity are represented in successive layers of the hierarchy. The model takes two stereo images as
input at the lowest layer, and produces surface depth and orientation estimates in the highest layer (fig. 1).

Level 1.

The first level of the hierarchy consists of two stereo images that have been preprocessed to detect
edge point features. It is assumed that the images are of a densely textured surface, so that there is an
abundance of edge features in the images. As far as our model is concerned, the details of the edge-detector
are not important. (Note: Unlike other approaches [10], the performance of this algorithm is not tied directly
to the spatial scale of the edge detector.)

Level 2.

The second layer consists of representations of correspondences between edge point features in the
left and right images. Each correspondence has an associated stereo disparity value, from which the actual
3D position of the point can be calculated. Since we are using local representations, one unit is allocated for
each possible depth (or disparity) at each pixel location. (Note: the 3D-points and surface patches are all
represented in the coordinate system of the left image.) The range of allowable disparities is a parameter of

the model, and is the same at all pixel locations!.
Level 3.

1 This is a deficiency of the present model compared to those that allow different disparity estimates at different locations. In
the present model, to allow for a wide range of disparities across an image, one must allocate units to account for all possible
disparities at every pixel location, regardless of the particular disparity estimate at that location.
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The third layer consists of representations of overlapping surface patches of constant depth. Each
patch covers a region in 3D space of a fixed diameter (in pixels, not in physical space), and at a constant
depth. The representation of the entire surface at this level of the hierarchy would consist of a surface patch
at each (x,y) location, each patch being a little plane of zero slope and some known depth. In this level the
spatial resolution is reduced so that not every (x,y) pixel location contains an estimate. The diameter of the
surface patches is a parameter of the model, and is the same for all patches and at all pixel locations. The
range of allowable depths is the same as that of level 2.

Level 4.

The fourth layer consists of representations of surface patches of known depth and constant (but
possibly non-zero) slope. These patches cover a larger spatial region than the constant-depth patches, and
they also overlap spatially. The representation of the entire surface at this level of the hierarchy would
consist of a surface patch at each (x,y) location, each patch being a little plane of some known slope and
some known depth. The difference between level 3 and level 4 is that the level 4 patches can have non-zero
slope. Again, the spatial resolution is reduced. Three parameters are used to represent a surface patch of
non-zero slope: d, my and my - the depth, and the x and y components of the slope. One unit is used to

represent each (d, my, my) combination.

Additional Levels.

Additional levels could be defined, such as higher order surface patches (e.g., quadratic surfaces) or
volumetric primitives. Higher levels would represent more specialized descriptions and would implement
more powerful matching constraints.

4.2 Connections in the Model

Since we have designed the units in the model to represent specific things, we can also design the
connections between them. There are two types of connections: (1) Inhibitory, to implement the
competition between mutually inconsistent units, and (2) excitatory, to implement the support that mutually
compatible units can give to each other. All connections in the model are bi-directional, so the model
contains feedback of activation from higher layers to lower layers. Thus, the model can be seen as an
instance of an interactive activation and competition model [11].

Inhibitory Connections.

Since separate units are used to represent each possible surface hypothesis at each pixel location,
they represent conflicting estimates or inconsistent hypotheses of the surface at that point. We would
therefore like these units to compete against each other, and so at each level, the units located at the same
(x,y) position are fully connected with inhibitory connections. In level 4, this means that each of these 3D
grids of units forms a giant competing pool of units - there can be only one winning (9, my, my)
combination at a given patch location.

Excitatory Connections.

To set excitatory connections, units are connected to other units that support each other. Each level
2 unit represents a 3D-point with a particular disparity (J) at a particular (x,y) location. As shown in figure
2, it receives input from level 1 from the two locations that it accounts for — one at (x,y) in the left image,
and one at (x+9d,y) in the right image.

Each level 3 unit represents a surface patch at a particular constant depth 0 and location (x,y), and
receives input from all 3D-point units (in level 2) in a local region that lie sufficiently close to the (x,y)
location and (d) depth represented by the level-3 unit (see fig. 3). Each level 4 unit represents a surface
patch at a particular depth d, location (x,y), and slope (my,my) and receives input from all level-3 units that
lie sufficiently close to the (x,y) location, (9) depth, and (mx,my) slope represented by the level-4 unit (see
fig. 4).

The size of the support regions imply a characteristic scale assumption in the model. The support
widths are parameters of the model. For example, a support-region width of w pixels from level 2 units to
level 3 units embodies the assumption that the surface is smooth at the scale of w pixels. The disparity range
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and surface slope range indicate assumptions about the allowable ranges for distance and orientation of the
visible surfaces.

S. DETAILED DESCRIPTION OF THE MODEL: WEIGHTS

Now that we have the structure of the model — i.e., the layers, units, and connections are defined
— we must assign weights to the connections. This is not a trivial problem, since it is difficult to specify in
advance the relative importance of the various components, yet the performance of the model depends
critically on setting the weights properly. One possibility is to have the network learn the weights on its
own. This introduces additional problems, however, although we would like to explore this approach
eventually. For example, one must create a training set of data that covers the important examples, and in
the appropriate proportions. Also, training a network with feedback is computationally expensive [12].

Instead, we have chosen to set the weights so as to implement the minimization of an energy (or
“cost") function. Specifically, the weights implement gradient descent in this energy function [13]. This
increases the likelihood of the system settling into a stable state, and a state that satisfies the requirements we
wish to impose on the system (e.g., winner-take-all behavior, etc). The use of an energy function also
greatly increases our ability to analyze the model and make meaningful adjustments to its parameters.

The basic idea is that an energy (or "cost") function is defined as a function of the activations of all
the units in the network, and this energy function is designed to be minimized when the pattern of activity in
the network corresponds to a good solution to the problem the network is trying to solve. Each unit then
locally computes the gradient of the energy function with respect to its own activation, and adjusts its
activation in the direction that reduces the energy. This process is repeated until the network settles on a
stable pattern of activity.

There are many variations of gradient descent, including the IAC model, the BSB model [14], and
Grossberg's model [15]. We used a very simple activation function:

aj(t+1) = aj(t) + Aa;(t), (1)
where Aaj(t) = - & * grad; » (1 - a;(t)) if gradj <0
or Aaj(t) = - € * gradj * aj(1) if grad; > 0

Here, grad; is the rate of change of energy with respect to a;, or dE/da;. This is based on gradient descent,
but is not exactly the same as gradient descent since the activations (a;) are bounded by 0 and 1.

S.1 The Energy Function

There are many different energy functions that can be used to implement our model. Some energy
functions contain more terms than others, and some seem to be easier to understand than others. We made
the decision to try to minimize complexity, while still using a function that would provide good results. The
energy function that was used is a sum of six terms. Each term represents a constraint on good solutions to
the surface estimation problem:

E(a) = (2)
- Zeiai (Term 1: Image Evidence)
i€el2
kLYY Yag (Term 2: WTA - Level 2)

cel2 iec jecij#
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-k2 2 Zaiaj Foalid) (Term 3: L2 <> L3 support)

iel2 fe SI.;3
y3 Y Y Ya (Term 4: WTA - Level 3)
cel3d iec jecj#
kY Y Yag (Term 5: WTA - Level 4)
cel4 iec jecj#i
-k5 z zaiaj £24G:0) (Term 6: L3 < L4 support)
iel4 je S]."3

1

where the function f(i,j) is a "closeness" function used to weight the support of a point i for a plane j within
a threshold distance "d" by an amount inversely proportional to the point's distance from the plane:

fGj) =0 if distance(point(i), plane(j)) > d 3)

otherwise.

or f(.))

d - distance(point(i), plane(j))
d

The energy function (Eq. 2) has six terms, but there are actually only three different types of terms
used. The first type of term (term 1) is minimized when the level 2 units maximally "agree" with the image
evidence. The second type of term is minimized when winner-take-all situations exist wherever they are
desired. There are three terms of this type (terms 2,4,5), one for each layer in which WTA situations are
desired (the "c" parameter ranges over all competitive pools in the layer). The third type of term is
minimized when hypotheses in one layer maximally "agree" with related hypotheses in adjacent layers (terms

. . T L3. o
3,6). The "S" variables are the units' "support regions" (.8, S; " is the set of units in Level 3 that support
unit i..
The constants k; are used to represent the relative importance of the various terms within the overall

energy function. By inspection, it can be seen that the WTA terms are minimized when no more than one
unit has a nonzero activation. The "support" terms are all functions of a single unit in one layer and a group
of units in its "support region" in an adjacent layer. These terms are minimized when the unit with the most
support within a competitive pool is the winner in that pool. The "Image Evidence" term (term 1) is
minimized when the 3D point unit with the most support within a competitive pool is the winner in that pool.

5.2 Connection Weights

The connection weights in the network are derived from the energy function by taking derivatives
with respect to the unit activations. In order for a unit to be able to calculate the derivative locally, it usually
needs to know the activations of some other set of units. This communication is implemented with weighted
connections between the units. For units in level 2 of the present model, this derivative takes the form:

oE .. .
gradj = 3;1= k1l Zaj - (k2 +k3) zakf23(1,J) - €. (with j#i) 4
jec kesp?

- . " . . L3. " . e
where cj is a "competitive pool” of units of which unit i is a part, and S;" is the "support region" in Level 3
for unit i .
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The unit i can compute this derivative if we create connections between it and all the other units that
appear in the above equation. The unit can then calculate the gradient using a net input function such as:

netj; = ZWIJB.J - € )

J
where the subscript j ranges over all of the units to which unit i is connected. The term ¢; is the "external
input" to the unit, which in this case is the input from the edge images. To make this technique work,
however, the weights (the wij's) must be set to the following values:
wij =kl, for all units je cj, with ji. (6)
ik = -k2f53(i.j), for all units ke S{‘3.

To put it another way, the connectivity and the connection weights themselves are derived from the

energy function by first deriving the equation for 0E/0a; from the energy function, and then choosing a set of

connections and a net input function that implement the 0E/0a; equation. This technique was used to
determine the connectivity and weights throughout the network.

Note that the energy function still contains 5 unknown parameters (the k;. ), which must be selected
by trial and error. However, we can derive some useful relationships between these parameters, by strictly
enforcing the winner-take-all requirement. For example, suppose that C is a set of units that forms a
competing pool (i.e., a "winner-take-all" pool). If the current pattern of activations of the units in C is a
winner-take-all pattern (i.e., there is one unit with a "1" activation, and all of the others have a "0"
activation), then this activation pattern will remain stable if:

gradw < 0 for the "winning" unit (we C), and @)

grad] =2 0 for all the "losing" units (le C).

This is true because in gradient descent, the activation values are changed in a direction opposite in
sign from that of the gradient, so if the above conditions hold, the winning unit will try to increase its

activation (but will be limited at 1), and the losing units will try to decrease their activations (but w111 be
limited at 0). Therefore the winner-take-all pattern is stablel.

When these conditions are applied to the competing pools in our model, we get the following results:

k1> (k2)W2 3 +¢j (8a)
k3 > (k2)W2 3 + (k5)W3 4 (8b)
k4 > (k5)W3 4 (8¢c)

where Wj p is the width of the support region between units in Level a and units in Level b.  So given
values for k2 and k5, we can set the other k values according to these equations and be sure that all winner-
take-all patterns will be stable.

6. RESULTS

The system was run primarily on 1-dimensional random-dot stereograms. (A 1-d stereogram image
is just a single horizontal row of binary pixels). The system was run many times with different parameter
settings to study the effects of enforcing WTA behavior to varying degrees. It was found that if the £
parameters were set to values that would strictly enforce WTA, the network settled on very poor solutions to
the surface estimation problem. Better results were achieved when the parameters governing the lower
levels were set much lower than that required to enforce WTA (i.e., less than half the value), and the higher-
level parameters were set just slightly lower than that required for WTA. The best results were achieved

1 Note that this does not ensure that the network will settle on a winner-take-all pattern, but only that if a winner-take-all
pattern exists, it will remain stable.
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when, instead of setting the parameters to fixed values, they were all set initially to values far below the
WTA values, and then slowly increased to the WTA values. This appeared to work better because it allowed
partial activation of large numbers of "almost right" hypotheses initially, and then as the parameters were
raised, the best hypotheses were "selected” (more or less) from the set of partially active hypotheses.

How to interpret the graphics:

Each diagram consists of three large rectangles filled with small squares. The highest rectangle
represents the 3d-point layer of the network, the next lower rectangle represents the constant-depth-patch
layer, and the lowest rectangle represents the constant-slope layer. Each rectangle is a graphic representation
of the activations of the units in that layer of the network.

The 3d-point layer of the net is a 2D parameter space, (x vs. disparity). The horizontal dimension is
x, (it ranges from x=0 to x=50), and the vertical dimension is disparity (-5 to +5). Each point in the space
contains a unit, and the size of the black square at that point represents the activity of the unit. The constant-
depth layer also has these dimensions. The constant-slope layer of the network has an extra dimension:
slope. This extra dimension is graphically displayed as another level of rectangles-within-rectangles. The
large rectangle contains of a horizontal row of "tall" rectangles. There is one of these for every other x value
(the spatial resolution was reduced by a factor of 2). Each of these tall rectangles is filled with 77 tiny
rectangles, each of which represents a distinct combination of (x, disparity, and slope). These tiny
rectangles are arranged in a 2D grid, the vertical dimension of which is disparity (just as it is in the lower
layers), and the horizontal dimension is slope. The slope ranges from -0.6 to +0.6, in increments of .2.

Figures 5a-5c depict the history of one run of the network after 1, 5 and 9 iterations. The input to
the network is a stereo pair of images of a surface with slope -0.2 (this would appear as a diagonal line
running from the top-left to the bottom-right of the large rectangles. Within the large "tall" rectangles, a
slope of -0.2 would appear as a filled-in tiny rectangle three from the right (slope increases right to left; zero
slope is in the center). By the end of the series, you can see that the disparity has been estimated fairly well.
The slopes are roughly correct throughout the image (% .2), and they are exactly correct at 15 of the 25
pixels, or in 60% of the image).

7. CONCLUSIONS

The system performed very well on the 1D stereogram data. Addition of the second spatial
dimension will require an extension of the support regions into the y dimension, but will not require a
change to the competitive pools, since they extend only in the x direction. The energy function itself will not
change (except for the fact that the Sj's will change). The changes will be primarily quantitative, not
qualitative. An improvement in performance is expected, however, since the extension of the "cooperative"
constraints (smoothness, planarity) into the y dimension will allow 3d-point hypotheses to take into account
the smoothness (or lack thereof) of the surface in the y dimension. There will be an impact on the
derivations of the k-values needed to preserve WTA, since there will be more competitive pools in the
support region of a given hypothesis.

It is still not known exactly how the values of the k coefficients should be changed over time to
maximize performance. But since the network is trying to find an energy minimum (ideally, the global
minimum), simulated annealing with a fixed set of k's would probably produce equal or (more likely) better
results that the "pseudo-annealing" that was used here.

Despite the attempts to derive the values of as many of the model's parameters as possible, some
amount of "rapid prototyping" was still ultimately necessary. For example, there was little guidance in
picking the relative values of the "support weight" parameters (k2 and k5). For our purposes, we made
them equal.
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Levels
L4 - — Constant slope patches: p(mx,my,d)
accumulates local support from h(x,y)
L3 = Constant depth patches: h(x,y)

accumulates local support from d(x,y)

L2 Potential 3D points d(x,y) = xI - xr

L1 e Mo —— Stereo edge images

Figure 1. Four level hierarchical model for stereo matching and surface representation.
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Figure 5a. The network after 1 iteration.
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The network after 9 iterations.




