STOCHASTIC MODEL OF THE NASA/MSFC GROUND FACILITY

FOR LARGE SPACE STRUCTURES WITH UNCERTAIN PARAMETERS

- THE MAXIMUM ENTROPY APPROACH

Report Part II

by

Dr. Wei Shen Hsia
Department of Mathematics
The University of Alabama
Tuscaloosa, Alabama 35487
(205) 348 – 5153

NASA Grant Number: NAG8-081
Grant Period: 5-23-88 to 11-22-89
<table>
<thead>
<tr>
<th></th>
<th>Chapter Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Maximum Entropy Modelling</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Model Reduction: Wilson's Method</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Model Reduction: Hyland's Method</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>References</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Appendix 1: Numerical Results of M.E. Method</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>Appendix 2: Program for M.E. Method</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>Appendix 3: Program for Optimal Projection</td>
<td>57</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The National Aeronautics and Space Administration and the Department of Defense are actively involved in the development of a validated technology data base in the areas of control/structures inter-action, deployment dynamics and system performance for Large Space Structures (LSS). In the Control System Division of the System Dynamics Laboratory of the NASA/MSFC, a Ground Facility (GF), in which the dynamics and control system concepts being considered for LSS applications can be verified, has been designed and built under Dr. Henry Waites' supervision [8]. The viability and versatility of this MSFC LSS ground test facility was recognized by the U.S. Air Force Wright Aeronautical Laboratory as a site for their Vibration Control of Space Structures (VCOSS) testing.

One of the important aspects of the GF is to verify the analytical model for the control system design. The procedure is to describe the control system mathematically as well as possible, then to perform tests on the control system, and finally to factor those results into the mathematical model.

However, development of a "correct" mathematical model of a system is still an art. In constructing large order structural models, various errors, such as modelling errors, parameter errors, improperly modeled uncertainties, and errors due to linearization of non-linear effect, create a great challenging task of determining "best" models for a dynamic system. It is recognized that it is conceivable that better performance will be anticipated when uncertainties are modeled through stochastic multiplicative and additive noise terms. Optimal control strategies generated under all possible parameter variations will definitely create more robust control systems, under controllability and observability conditions, than those generated by the usual approaches [15]. To avoid ad hoc assumptions regarding "a priori" statistics, Hyland [13,14,15] used the maximum entropy principle to determine a priori probability assignment induced from available data. A
main advantage of maximum entropy approach is that it sacrifices as little near-nominal performance as possible while securing performance insensitivity over the likely range of modelling errors.

The second issue addressed in this report is the reduction of the order of a higher order control plant. Usually, the principle is looking for a quadratically optimal but fixed-order compensator for a higher order plant in order to simplify implementation. Amongst the methods available in the literature, we studied methods developed by Hyland [16] and Wilson [34] in this project report.

In this report, we first improved the computer program for the maximum entropy principle adopted in Hyland's MEOP method [14] developed in the previous report. The new program then was tested against the testing problems ran by A. Gruzen [9]. It resulted very close match. Therefore, it is safe to say the program is successful.

The second part of this report is centered at the theme of model reduction. Two methods were examined: Wilson's model reduction method [34] and Hyland's optimal projection (OP) method [14]. Design a computer program for Hyland's OP method was attempted. Due to the difficulty encountered at the stage where a special matrix factorization technique is needed in order to obtain the required projection matrix, we were only able to have the program successively up to finding the LQG solution but not beyond. Apparently, a more thorough and deeper study of the OP method is needed.

Numerical results along with computer programs which employed ORACLS are given in this report.

This report is based on the final results of a special project conducted by Wan-Sik Choi who was a graduate student in the Mathematics Department at the University of Alabama. The project was supervised by Drs. Wei Shen Hsia and Stavros Belbas.
2. MAXIMUM ENTROPY MODELLING

2.1. Maximum Entropy Method

Consider a linear system:

\[\dot{X} = AX + BU + \omega_1 \]

\[Y = CX + \omega_2 \]

where

\[X \in \mathbb{R}^n, U \in \mathbb{R}^m, Y \in \mathbb{R}^t, A \in \mathbb{R}^{nxn}, B \in \mathbb{R}^{nxm}, C \in \mathbb{R}^{txm}, \]

and

\[\text{SD}(\omega_1, \omega_2) = (v_1, v_2). \]

We seek to determine a dynamic compensator

\[\dot{Z} = A_c Z + FY \]

\[U = -KZ \]

where \(Z \in \mathbb{R}^n, A_c \in \mathbb{R}^{nxn}, F \in \mathbb{R}^{nxl} \) and \(K \in \mathbb{R}^{mxn} \) that minimizes the Quadratic Cost Function:

\[J = \int_0^\infty (X^T R_1 X + U^T R_2 U) \, dt \]

where \(R_1 \) and \(R_2 \) are penalty matrices. The maximum entropy [26,27] (ME) design approach [11,12,13,14,15] is used to minimize \(J \) in the presence of parameter uncertainties.

2.2. Stratonovich Correction

The stochastic integral \(\int_a^b \Phi(x(t), t) \, dx(t) \) can be defined in two ways.
Ito Integral:

\[
\int_{a}^{b} \Phi(x(t),t)dx(t) = \lim_{\Delta \to 0} \sum_{j=1}^{N-1} \Phi(x(t_j),t_j)[x(t_{j+1}) - x(t_j)]
\]

Stratonovich Integral:

\[
\int_{a}^{b} \Phi(x(t),t)dx(t) = \lim_{\Delta \to 0} \sum_{j=1}^{N-1} \Phi\left[\frac{x(t_j) + x(t_{j+1})}{2}, t_j\right][x(t_{j+1}) - x(t_j)]
\]

where \(\Delta = \max(t_{j+1} - t_j)\).

To find the relationship between two integrals, consider

\[
D_\Delta = \sum_{j=1}^{N-1} \left[\Phi\left[\frac{x(t_j) + x(t_{j+1})}{2}, t_j\right] - \Phi(x(t_j), t_j) \right] [x(t_{j+1}) - x(t_j)]
\]

\[
= \frac{1}{2} \sum_{j=1}^{N-1} \frac{\partial \Phi}{\partial x} \left[\{(1 - \Theta)x(t_j) + \Theta x(t_{j+1})\}, t_j\right] \left[x(t_{j+1}) - x(t_j) \right]^2, \quad 0 \leq \Theta \leq \frac{1}{2}
\]

It was shown by Stratonovich that with probability 1

\[
\lim_{\Delta \to 0} D_\Delta = \frac{1}{2} \int \frac{\partial \Phi}{\partial x} (x,t) b(x,t) dt.
\]

Therefore,

\[
\int_{a}^{b} \Phi(x(t),t)dx(t) = \int_{a}^{b} \Phi(x(t),t)dx(t) + \frac{1}{2} \int_{a}^{b} \frac{\partial \Phi}{\partial x} [x(t)]b[x(t),t]dt
\]

\[\text{Stratonovich} \quad \text{Ito} \quad \text{correction}\]

where * denotes the integral in the sense of Ito.

The relationship for the stochastic differential equations is as follows.

\[
\text{Ito D.E.: } dx_t = m[x_t,t]dt + \Gamma[x_t,t]dy_t
\]
Stratonovich D.E.: \[dx_t = m[x_t,t]dt + \frac{1}{2} \Gamma'[x_t,t] \frac{\partial}{\partial x_t} \Gamma[x_t,t] dt + \Gamma'[x_t,t]dy_t \]

\[= \left\{ m[x_t,t] + \frac{1}{2} \Gamma'[x_t,t] \frac{\partial}{\partial x_t} \Gamma[x_t,t] \right\} dt + \Gamma'[x_t,t]dy_t \]

Above result was shown in [30] by using (4) and also proved in [35].

2.3. Stochastic Modelling of Errors

In most instances, the errors are made in the modelling process and some parameters may vary. Therefore, the actual system would be represented by

\[A_{\text{actual}} = A + \sum_{i=1}^{P} \alpha_i(t) A_i \]

where

- \(\alpha(t) \): zero-mean, unit intensity multiplicative white noise
- \(A_i \): Parameter error distribution matrices
- \(B_{\text{actual}} \) and \(C_{\text{actual}} \) take a similar form.

Substituting (5) into \(\dot{X}(t) = AX(t) \) yields

\[\dot{X}(t) = \left(A + \sum_{i=1}^{P} \alpha_i(t) A_i \right) X(t) ; \text{ O.D.E.} \]

\[\Rightarrow \]

\[dx_t = (A dt + \sum_{i=1}^{P} d\alpha_i A_i)X_t ; \text{ Ito S.D.E} \]

\[= AX_t dt + \sum_{i=1}^{P} d\alpha_i A_i X_t \]

(6)
By comparing (6) with \(I_0 \) D.E. and Stratonovich D.E. we obtain

\[
dX_t = \left\{ \left[A + \frac{1}{2} \sum_{i=1}^{p} A_i^2 \right] dt + \sum_{i=1}^{p} d\alpha_{it} A_i \right\} X_t : \text{Stratonovich D.E.}
\]

\[\Rightarrow \text{Stratonovich correction for } \dot{X}(t) = Ax(t) \text{ is } \frac{1}{2} \sum_{i=1}^{p} A_i^2 \]

\(B_s \) and \(C_s \) take similar form.

2.4. Necessary Conditions for Optimality [10]

Necessary conditions take the form of two Riccati equations and two Lyapunov equations, all coupled by the stochastic parameters.

\[
0 = PA_s + A_s^T P + \sum_{i=1}^{p} A_i^T P A_i - P R_s^{-1} P + R_s + \sum_{i=1}^{p} (A_i - Q s^{-1} C_i) (A_i - Q s^{-1} C_i)^T \hat{P}(A_i - Q s^{-1} C_i)
\]

\[
0 = A_s Q + Q A_s + \sum_{i=1}^{p} A_i Q A_i^T - Q_s^{-1} Q_s^T + V_1 + \sum_{i=1}^{p} (A_i - B_i R_s^{-1} P) Q (A_i - B_i R_s^{-1} P)^T
\]

\[
0 = \hat{P} A_s Q_s + A_s^T \hat{P} + P_s R_2^{-1} P_s
\]

\[
0 = A_s \dot{Q} + \dot{Q} A_s^T + Q_s^{-1} Q_s^T
\]

where

\[
A_s = A + \frac{1}{2} \sum_{i=1}^{p} A_i^2, \quad B_s = B + \frac{1}{2} \sum_{i=1}^{p} A_i B_i, \quad C_s = C + \frac{1}{2} \sum_{i=1}^{p} C_i A_i
\]

\[
R_{2s} = R_2 + \sum_{i=1}^{p} B_i^T (P + \hat{P}) B_i
\]
\[V_{2s} = V_2 + \sum_{i=1}^{p} C_i (Q + \dot{Q}) C_i^T \]

\[P_s = B_i^T P + \sum_{i=1}^{p} B_i^T (P + \dot{P}) A_i \]

\[Q_s = Q C_s^T + \sum_{i=1}^{p} A_i (Q + \dot{Q}) C_i^T \]

\[A_{Qs} = A_s - Q_s V_s^{-1} C \]

\[A_{Ps} = A_s - B_s R_s^{-1} P \]

The compensator matrices are,

\[A_c = A_s - Q_s V_s^{-1} C_s - B_s R_s^{-1} P_s + Q_s V_s^{-1} D_s R_s^{-1} P_s \]

\[F = Q_s V_s^{-1} \]

\[K = R_s^{-1} P_s \]
2.5. Algorithm

Compute \(F_p, F_q \)

- Generate a stabilizing gain matrix (\(F \)) for initializing the solution of Riccati eq.

Solve for \(LQG, P, Q \)

- Solve Riccati eqs without having parameter uncertainties — uncoupled eqs.

Begin Interations with \(LQG P, Q \)

Solves \(P - \) Riccati

\[
\text{no \quad } \| P_i \| - \| P_{i-1} \| < \epsilon_p ? \quad \text{where } \| \cdot \| \text{ is a Euclidean Norm.}
\]

Solves \(Q - \) Riccati

\[
\text{no \quad } \| Q_i \| - \| Q_{i-1} \| < \epsilon_q ?
\]

Solves \(\dot{P} - \) Lyapunov

\[
\text{no \quad } \| \dot{P}_i \| - \| \dot{P}_{i-1} \| < \epsilon_p ?
\]

Solves \(\dot{Q} - \) Lyapunov

- No need to iterate \(\dot{Q} - \) Lyapunov because parameter doesn't include \(\dot{Q} \)

\[
\text{no \quad } \| \dot{P}_i \| + \| \dot{Q}_i \| - \{ \| \dot{P}_{i-1} \| \} < \epsilon ?
\]

Form \(A_c, F, k \)

- Compensator matrices
2.6. Solution of Riccati equation and Lyapunov equation

As we have seen in the necessary condition of model reductions and Maximum Entropy Method, the necessary conditions consist of Lyapunov equations or coupled Riccati and Lyapunov equations.

Therefore solution of Riccati and Lyapunov is required for the design of control system. A lot of algorithm [8,18,24,28,31,32] were proposed in the past.

In this section, algorithms which employed for this special project are briefly discussed.

Kleinman [19] proposed an algorithm which is based on the method of successive substitution to solve the algebraic Riccati equation.

Consider the linear time-invariant system.

\[\dot{X}(t) = AX(t) + BU(t) \quad X(0) = X_0 \]

where \([A,B]\) is completely controllable.

The cost to be minimized is

\[J(X_0; U(\cdot)) = \int_0^\infty [X'(t) C' CX(t) + U'(t) R U(t)] dt \]

where \(R\) is positive definite and \([A,C]\) is completely observable. Necessary conditions for optimality are

\[U^*(X(t)) = -R^{-1}B'KX(t) \]

and \[0 = KA + A'K + C'C - KBR^{-1}B'K \]

where \(K\) is positive definite and

\[J(X_0; U^*(\cdot)) = \min_{U(\cdot)} J(X_0; U(\cdot)) = X'_0KX. \]

Thus for arbitrary feedback law \(U_L(X(t)) \),

\[J(X_0; U_L(\cdot)) = X'_0V_LX. \]

\[\Rightarrow \quad V_L = \int_0^\omega e^{(A-\mathbf{B}L)'t} (C'C + L'RL) e^{(A-\mathbf{B}L)t} dt \]
\[V_L \text{ is finite if and only if } A - BL \text{ has eigenvalues with negative real parts.} \]

\[0 = (A - BL)'V_L + V_L(A - BL) + C'C + L'RL. \]

Kleinman's Theorem.

Let \(V_k, k = 0, 1, \cdots \), be the (unique) positive definite solution of the linear algebraic equation

\[0 = A_k'V_k + V_kA_k + C'C + L_k'R_kL_k \]

where, recursively,

\[L_k = R^{-1}B'V_{k-1}, \quad k = 1, 2, \cdots \]
\[A_k = A - BL_k \]

and where \(L_0 \) is chosen such that \(A_0 = A - BL_0 \) has eigenvalues with negative real parts.

Then

1) \(K \leq V_{k+1} \leq V_k \leq \cdots, \quad k = 0, 1, \cdots \)

2) \(\lim_{k \to \infty} V_k = K \)

Note. In this project, stabilizing matrix \(L_0 \) is computed by CSTAB in ORACLS and Riccati equation is solved by RICNWT in ORACLS [1].

An algorithm for the solution of the matrix equation \(AX + XB = C \) was proposed by Bartels and Stewart [6]. Above equation has a unique solution if and only if

\[\lambda^A_i + \lambda^B_j \neq 0 (i = 1, 2, \cdots, m; j = 1, 2, \cdots, n) \] where \(\lambda^A_i \) and \(\lambda^B_j \) are eigenvalues of \(A \) and \(B \) respectively [2]. The method of solution is based on the reduction of \(A \) and \(B \) to the real schur form, i.e., block lower (upper) triangular form.
Let
\[AX + XB = C \]
and \(U, V \) be the orthogonal matrix.

Then
\[
\begin{align*}
B' &= V^T BV \Rightarrow B = V B' V^T \\
B & \rightarrow \text{upper Hessenberg form} \rightarrow \text{upper real Schur form; } B' \\
& \text{Heusehalder's method} \quad \text{(QR algorithm)}
\end{align*}
\]

\[
\begin{align*}
A' &= U^T A U \Rightarrow A = U A' U^T
\end{align*}
\]

A' (lower real Schur form) is obtained by reducing the transpose of A to upper real Schur form and transposing back.

\[
C' = U^T C V \Rightarrow C = U C' V^T
\]

Substituting (8), (9), (10) into (7) yields

\[
U A' U^T X + X V B' V^T = U C' V^T
\]

\[
A' U^T X + U^T X V B' V^T = C' V^T
\]

\[
A' U^T X V + U^T X V B' = C'
\]

\[
A' X' + X' B' = C'
\]

\[
\begin{bmatrix}
A'_{11} & 0 \\
A'_{z1} & A'_{zz} \\
\vdots & \vdots & \ddots & \vdots \\
A'_{p1} & A'_{p2} & \cdots & A'_{pp}
\end{bmatrix}
\begin{bmatrix}
x'_{11} & \cdots & x'_{1q} \\
x'_{p1} & \cdots & x'_{pq}
\end{bmatrix}
\begin{bmatrix}
x'_1 & \cdots & x'_q \\
D & \cdots & \cdots
\end{bmatrix}
\begin{bmatrix}
B'_{11} & B'_{12} & \cdots & B'_{1q} \\
B'_{22} & \cdots & B'_{22q} \\
\vdots & \vdots & \ddots & \vdots \\
B'_{qq}
\end{bmatrix}
= \begin{bmatrix}
C'_{11} & \cdots & C'_{1q} \\
\vdots & \ddots & \vdots \\
C'_{p1} & \cdots & C'_{pq}
\end{bmatrix}
\]

\[
\Rightarrow A'_{kk} X'_{kk} + X'_{kk} B'_{kk} = C'_{kk} - \sum_{j=1}^{k-1} A'_{kj} X'_{kj} - \sum_{i=1}^{l-1} X'_{ki} B'_{il}, \; k = 1, 2, \ldots, p, \; k = 1, 2, \ldots, q
\]

\[(11)\]
Equation (11) can be solved successively for $X_{k't'}$. Let the right side of (11) be D.

Since the block matrices A'_{kk} and B'_{tt} are of order at most two, we are again required to solve the matrix equation of the form (7).

Writing (11) in matrix form gives

$$
\begin{bmatrix}
a'_{11} & a'_{12} \\
a'_{21} & a'_{22}
\end{bmatrix}
\begin{bmatrix}
x'_{11} & x'_{12} \\
x'_{21} & x'_{22}
\end{bmatrix}
+
\begin{bmatrix}
b'_{11} & b'_{12} \\
b'_{21} & b'_{22}
\end{bmatrix}
=
\begin{bmatrix}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{bmatrix}
$$

The right side of (11)

$$
\Rightarrow
\begin{bmatrix}
a'_{11} + b'_{11} & a'_{12} & b'_{21} & 0 \\
a'_{21} & a'_{22} + a'_{11} & 0 & b'_{21} \\
b'_{21} & 0 & a'_{11} + b'_{22} & a'_{12} \\
0 & b'_{12} & a'_{21} & a'_{22} + b'_{22}
\end{bmatrix}
\begin{bmatrix}
x'_{11} \\
x'_{21} \\
x'_{12} \\
x'_{22}
\end{bmatrix}
=
\begin{bmatrix}
d_{11} \\
d_{21} \\
d_{12} \\
d_{22}
\end{bmatrix}
$$

(12)

$X'_{k't'}$ is obtained from (12). Then the solution of (7) is given by $X = U X' V^T$.

Note. In this project, Lyapunov equation is solved by BARSTW in ORACLS [1].

2.7. Numerical Example for Maximum Entropy Method

The following system posed by Doyle [9] was solved by Gruzen [10]. In this project some problem is solved for comparison of numerical results.

$$
\begin{bmatrix}
\dot{X}_1 \\
\dot{X}_2
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix}
+
\begin{bmatrix}
0 \\
1 + \Delta b
\end{bmatrix}
U
+
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\omega
$$
\[Y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + V \]

\[R_1 = \Theta \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad R_2 = 1 \]

\[V_1 = \mu \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad V_2 = 1 \]

\(\Theta, \mu \): parameters related with the gain margin

Parameter uncertainty distribution matrices:

\[A_1 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0 \\ \beta \end{bmatrix}, \quad C_1 = [0, 0] \]

Note: \(\Theta = \mu = 60, \quad 0.93 \leq 1 + \Delta b \leq 1.01 \)

\(0 \leq \beta \leq 0.2 \), size 0.05 is used.

Necessary conditions for this example are

\[0 = PA_s + A_s^T P - PB_s^T R_{2s}^T B_s^T P + R_1 \]

\[0 = A_s Q + QA_s^T Q C_s^T V_{2s}^T C_s Q + V_1 + (B_1 R_{2s}^{-1} P_s) \hat{Q} (B_1 R_{2s}^{-1} P_s)^T \]

\[0 = \hat{P} A_{Q_s} + A_{Q_s}^T + P_s^{-1} R_{2s}^{-1} P_s \]

\[0 = A_{\hat{Q}} + \hat{Q} A_{\hat{Q}}^T + Q_s V_{2s}^{-1} Q_s \]

where

\[A_s = A, B_s = B, C_s = C, R_{2s} = R_2 + B_1^T (P + \hat{P}) B_1 \]

\[V_{2s} = V_2, \quad P_s = B_s^T P, \quad Q_s = Q C_s^T, \quad A_{Q_s} = A_s - Q_s V_{2s}^{-1} C_s \]
\[A_{ps} = A_s - B_s R_{2s}^{-1} P_s . \]

The compensator matrices are,

\[A_c = A_s - Q_s V_{2s}^{-1} C_s - B_s R_{2s}^{-1} P_s \]

\[F = Q_s V_{2s}^{-1} \]

\[K = R_{2s}^{-1} P_s \]
Table 1. Numerical Results

<table>
<thead>
<tr>
<th>(\beta) (Disturbance in Matrix B)</th>
<th>Compensator Gains</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A_c)</td>
<td>(F)</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>0 (LQG)</td>
<td>[-9 1]</td>
<td>[-9 1]</td>
</tr>
<tr>
<td>.15</td>
<td>[-10.18 1]</td>
<td>[-10.18 1]</td>
</tr>
<tr>
<td>.20</td>
<td>[-10.89 1]</td>
<td>[-10.74 1]</td>
</tr>
<tr>
<td></td>
<td>[-34.51 -4.741]</td>
<td>[-31.81 -3.63]</td>
</tr>
</tbody>
</table>

Note: 1) Column I is a numerical result obtained by A. Gruzen. Column II is a numerical result obtained by this project.
2.8. Discussions on ME method

As shown in table I, matrix K decreases as \(\beta \) (disturbance) in matrix \(B_1 \) increases. This is because

\[
K = R_2^{-1} P_s, \quad R_2 = R_2 + B_1^T (P + \dot{P}) B_1
\]

and similarly for matrix F but F increases as \(\beta \) increases.

When \(\beta = 0 \) (LQG case), the two results (A.G. & N.R.) are exactly same. But for \(\beta \neq 0 \) best results obtained for \(\beta = .15 \). Differences in numerical results between A.G. & N.R. are possibly occurred from the value of \(\Delta b \). (In this project \(\Delta b = 0 \) is used, but A. Gruzen doesn't show the value of \(\Delta b \) which he was used).

As a whole, the results are pretty close each other. Therefore, this indirectly verifies that "ME FORTRAN" provides correct answers. And it supports the fact that ORACLS is a good design package for designing controllers.

3. MODEL REDUCTION: WILSON’S METHOD [34]

3.1. Problem Statement

Given an \(n \)th-order system

\[
\dot{X} = AX + BU
\]

\[
Y = HX,
\]

find an \(r \)th-order reduced system

\[
\dot{X}_r = A_r X_r + B_r U
\]

\[
Y_r = H_r X_r.
\]

The input vector \(U(t) \) will be taken as a white noise, i.e.,

\[
E(t) = 0
\]

\[
E[U(t)U^T(s)] = N\delta(t-s).
\]
The cost function to be minimized is

\[J = \lim_{t \to \infty} E[e^T(t) Q e(t)] \tag{17} \]

where \(e \) is the reduction error, \(e = y - y_r \) and \(Q \) is positive definite. Without loss of generality assume \(Q \) is \(m \times m \) identity matrix.

Note. where \(A, B, H \) are \(n \times n, n \times p, m \times n \) matrices,

\(A_r, B_r, H_r \) are \(r \times r, r \times p, m \times r \) matrices,

\(x, y \) are \(n \times 1, m \times 1 \) vectors,

\(x_r, y_r \) are \(r \times 1, m \times 1 \) vectors,

\(U \) is \(p \times 1 \) vector.

3.2. Necessary conditions for optimum

\[
\begin{align*}
A_r &= \Theta_1 A \Theta_2 \\
B_r &= \Theta_1 B \\
H_r &= H \Theta_2 \\
\text{where } \Theta_1 &= -P^{-1} \begin{bmatrix} P_{12}^T & P_{12} \
\end{bmatrix} \quad \text{and } \Theta_2 = R_{12} R^{-1}_{22}.
\end{align*}
\tag{18-20}
\]

\[
\Theta_1 \Theta_2 = I_r \tag{21}
\]

\[
FR + RF^T + S = 0 \tag{22}
\]

\[
F^TP + PF + M = 0 \tag{23}
\]

3.3. Derivation of Necessary Conditions

Equation (13) - (16) may be written as

\[Z = FZ + GU \tag{24} \]

where \(Z = \begin{bmatrix} X \\ X_r \end{bmatrix}, F = \begin{bmatrix} A & 0 \\ 0 & A_r \end{bmatrix}, G = \begin{bmatrix} B \\ B_r \end{bmatrix}. \)
From (17)

\[J = \lim_{t \to \infty} E[e^T Q e] \]

\[= \lim_{t \to \infty} E[e^T e] \text{ since we assumed } Q = I_m \]

\[= \lim_{t \to \infty} E[(Y - Y_r)^T(Y - Y_r)] \]

\[= \lim_{t \to \infty} E[(Hx - H_r X_r)^T(Hx - H_r X_r)] \]

Now,

\[(Hx - H_r X_r)^T(Hx - H_r X_r) \]

\[= x^T H^T H x - x^T H_r^T H_r x_r - x^T H_r^T H x + x^T H_r^T H_r x_r \]

\[= x^T H^T H x - x^T H_r^T H_r x_r - x^T H_r^T H_r x + x^T H_r^T H_r x_r \]

\[= \begin{bmatrix} x^T \quad x_r^T \end{bmatrix} \begin{bmatrix} H^T H - H_r^T H_r & -H_r^T H_r + H_r^T H_r \end{bmatrix} \begin{bmatrix} X \\ X_r \end{bmatrix} \]

\[= Z^T \begin{bmatrix} H^T H & -H_r^T H_r \\ -H_r^T H_r & H_r^T H_r \end{bmatrix} \begin{bmatrix} X \\ X_r \end{bmatrix} \]

\[= Z^T M Z. \]

Thus,

\[J = \lim_{t \to \infty} E[Z^T M Z] \]
\[R = \lim_{t \to \infty} E[Z(t) Z^T(t)] \]

Let, \(r(t) = E[Z(t) Z^T(t)] \).

Then, \(\dot{r}(t) = E[\dot{Z}(t) Z^T(t) + Z(t) \dot{Z}^T(t)] = E[\dot{Z}(t) Z^T(t)] + E[Z(t) \dot{Z}^T(t)] \).

Since \(\dot{Z}^T = Z^T F^T + U^T G^T \),

\[\dot{r}(t) = E[(FZ + GU)Z^T] + E[Z(Z^T F^T + U^T G^T)] \]
\[= F r(t) + r(t) F^T + GE[U Z^T] + E[Z U^T] G^T. \] (26)

But,

\[Z(t) = \Phi(t,t_o) Z(t_o) + \int_{t_o}^{t} \Phi(t,\lambda) G(\lambda) U(\lambda) \, d\lambda \]
where \(\Phi(t,t) \) is the state transition matrix.

Thus,

\[E[U Z^T] = E[U(t) Z^T(t_o)] \Phi^T(t,t_o) + \int_{t_o}^{t} E[U(t) U^T(\lambda)] G^T \Phi^T(t,\lambda) \, d\lambda \]
\[\overset{0}{\text{uncorrelated}} \]
\[= \int_{t_o}^{t} N \delta(t - \lambda) G^T \Phi^T(t,\lambda) \, d\lambda \] (27)

\[E[Z U^T] = \Phi(t,t_o) E[Z(t_o) U^T(t)] + \int_{t_o}^{t} \Phi(t,\lambda) G(\lambda) E[U(\lambda) U^T(t)] \, d\lambda \]
\[\overset{0}{\text{uncorrelated}} \]
Substituting (27) and (28) into (26) yields

\[
\dot{t}(t) = Fr(t) + r(t) F^T + \int_{t}^{t} GN\delta(t - \lambda) G^T\Phi(t,\lambda)d\lambda + \int_{0}^{t} \Phi(t,\lambda) G(\lambda) N \delta(\lambda - t) G^T d\lambda
\]

\[
= Fr(t) + r(t) F^T + \frac{1}{2} G N G^T \Phi(t,t) + \frac{1}{2} \Phi(t,t) G N G^T
\]

\[
= Fr(t) + r(t) F^T + G N G^T.
\]

Since \(R = \lim_{t \to \infty} r(t) \), \(FR + RF^T + G N G^T = 0 \).

Let \(S = G N G^T \)

Then,

\[
FR + RF^T + S = 0
\]

To minimize (25) subject to (29) form the

Lagrangian

\[
L = \text{tr}[\lambda R M] + (FR + RF^T + S)P.
\]

\[
\frac{\partial L}{\partial R} = 0 \Rightarrow \lambda M + F^T P + PF = 0
\]

Let \(\lambda = 1 \). Then

\[
F^T P + PF + M = 0
\]

By comparing (30) with (29) we may write

\[
J = \text{trace}(PS)
\]
Let the symmetric matrices P and R be partitioned as

$$
P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12}^T & P_{22} \end{bmatrix}, \quad R = \begin{bmatrix} R_{11} & R_{12} \\ R_{12}^T & R_{22} \end{bmatrix}.
$$

Differentiating J with respect to any parameter β,

$$
\frac{\partial J}{\partial \beta} = 2 \operatorname{tr} \left[\frac{\partial F}{\partial \beta} R P \right] + \operatorname{tr} \left[\frac{\partial S}{\partial \beta} P \right] + \operatorname{tr} \left[\frac{\partial M}{\partial \beta} R \right].
$$

(32)

To find A_r, obtain derivative of J with respect to a_r using (32), then

$$
\frac{\partial J}{\partial a_r} = 2 \operatorname{tr} \left[\frac{\partial F}{\partial a_r} R P \right] + \operatorname{tr} \left[\frac{\partial S}{\partial a_r} P \right] + \operatorname{tr} \left[\frac{\partial M}{\partial a_r} R \right]
$$

where

$$
R = \begin{bmatrix} R_{11} & R_{12} \\ R_{12}^T & R_{22} \end{bmatrix}
$$

and

$$
P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12}^T & P_{22} \end{bmatrix}.
$$

$$
= 2 \operatorname{tr} \left[\begin{bmatrix} 0 & 0 \\ \frac{\partial A_r}{\partial a_r} R \\ 0 & \frac{\partial A_r}{\partial a_r} \end{bmatrix} R P \right]$$

where

$$
R = \begin{bmatrix} R_{11} & R_{12} \\ R_{12}^T & R_{22} \end{bmatrix}
$$

and

$$
P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12}^T & P_{22} \end{bmatrix}.
$$

$$
= 2 \operatorname{tr} \left[\frac{\partial A_r}{\partial a_r} \begin{bmatrix} R_{12}^T P_{11} + R_{22} P_{12} \\ R_{12}^T P_{11} + R_{22} P_{12} \end{bmatrix} \right]
$$

$$
= 2 \operatorname{tr} \left[\frac{\partial A_r}{\partial a_r} \begin{bmatrix} R_{12} P_{12} + R_{22} P_{22} \\ R_{12} P_{12} + R_{22} P_{22} \end{bmatrix} \right]
$$

$$
= 2 \operatorname{tr} \left[\begin{bmatrix} \frac{\partial A_r}{\partial a_r} \left(R_{12}^T P_{11} + R_{22} P_{12} \right) \\ \frac{\partial A_r}{\partial a_r} \left(R_{12}^T P_{11} + R_{22} P_{12} \right) \end{bmatrix} \right]
$$
\[\frac{\partial J}{\partial r} = 0 \Rightarrow R_{12}^T P_{12} + R_{22} P_{22} = 0 \]
\[(33) \]

\[\Rightarrow P_{12}^T R_{12} + P_{22} R_{22} = 0 \]

\[\therefore P_{22}^{-1} P_{12}^T R_{12} + R_{22} = 0 \]
\[(34) \]

From (33)

\[
\begin{bmatrix}
A & 0 \\
0 & A_r
\end{bmatrix}
\begin{bmatrix}
R_{11} & R_{12} \\
R_{12}^T & R_{22}
\end{bmatrix}
+ \begin{bmatrix}
R_{11} & R_{12} \\
R_{12}^T & R_{22}
\end{bmatrix}
\begin{bmatrix}
A^T & 0 \\
0 & A_r^T
\end{bmatrix}
+ \begin{bmatrix}
B_{NB_r}^T & B_{NB_r} \\
B_r N_{NB_r}^T & B_r N_{NB_r}
\end{bmatrix}
= 0
\]

\[\begin{bmatrix}
AR_{11} & AR_{12} \\
A_r R_{12}^T & A_r R_{22}
\end{bmatrix}
+ \begin{bmatrix}
R_{11} A_r^T & R_{12} A_r^T \\
R_{12}^T A_r & R_{22} A_r^T
\end{bmatrix}
+ \begin{bmatrix}
B_{NB_r}^T & B_{NB_r} \\
B_r N_{NB_r}^T & B_r N_{NB_r}
\end{bmatrix}
= 0
\]

\[\begin{align*}
AR_{12} & + R_{12} A_r^T + B_{NB_r} = 0 \\
A_r R_{22} & + R_{22} A_r^T + B_{r N_{NB_r}} = 0
\end{align*} \]
\[(35) \]

But \(B_r = - P_{22}^{-1} P_{12}^T B \).

Thus (35) becomes

\[\begin{align*}
AR_{12} & + R_{12} A_r^T - B_{NB_r} P_{12} P_{22}^{-1} = 0 \\
A_r R_{22} & + R_{22} A_r^T + P_{22}^{-1} P_{12}^T B_{NB_r} P_{12} P_{22}^{-1} = 0
\end{align*} \]
\[(36, 37) \]

Now, \(P_{22}^{-1} P_{12}^T \) (36) + (37) gives

\[P_{22}^{-1} P_{12}^T AR_{12} + A_r R_{22} + (P_{22}^{-1} P_{12}^T R_{12} + R_{22}) A_r^T = 0 \]

\[\underbrace{0}_{\text{, by (34)}} \]

\[\Rightarrow \]

\[A_r = - P_{22}^{-1} P_{12}^T A R_{12} R_{22}^{-1} \quad \text{same as sq. (18)} \]
To find B_r, \[
\frac{\partial J}{\partial b_r} = 0.
\]
\[
\frac{\partial J}{\partial b_r} = 2 \text{tr} \left[\frac{\partial F}{\partial b_r} \right] + \text{tr} \left[\frac{\partial S}{\partial b_r} \right] + \text{tr} \left[R \frac{\partial M}{\partial b_r} \right]
\]
\[
= \text{tr} \left[P \frac{\partial S}{\partial b_r} \right] + \text{tr} \left[P \frac{\partial}{\partial b_r} \left[\begin{array}{cc}
BNB_T^r & BNT_T^r \\
B_T^r & BNT_T^r
\end{array} \right] \right]
\]
\[
= \text{tr} \left(\begin{array}{cc}
P_{11} & P_{12} \\
P_{12}^T & P_{22}
\end{array} \right) \left[\begin{array}{c}
0 \\
BN
\end{array} \right] = \text{tr} \left(\begin{array}{c}
P_{12}BN \\
PT_{22}BN + 2P_{22}BN
\end{array} \right)
\]
\[
\Rightarrow 2P_{22}BN = -2P_{12}^TB
\]

\[
B_r = -P_{22}^{-1}P_{12}^TB = \Theta_1 B \quad \text{same as (19)}
\]

To find H_r, \[
\frac{\partial J}{\partial h_r} = 0.
\]
\[
\frac{\partial J}{\partial h_r} = \text{tr} \left[\frac{\partial M}{\partial h_r} R \right] = \text{tr} \left[\frac{\partial}{\partial h_r} \left[\begin{array}{cc}
H^T H & H^T H_r \\
H_r^T H & H_r^T H_r
\end{array} \right] R \right]
\]
\[
= \text{tr} \left[\begin{array}{cc}
0 & -H \\
-H & 2H
\end{array} \right] \left[\begin{array}{c}
R_{11} \\
R_{12}^T
\end{array} \right] = \text{tr} \left(-HR_{12}^T - HR_{12} + 2H_r R_{22} \right)
\]
\[
= \text{tr} \left(-2HR_{12} + 2H_r R_{22} \right)
\]
\[
\Rightarrow H_r = HR_{12}R_{22}^{-1} = H\Theta_2 \quad \text{same as (20)}
\]
From (2.21), \(R_{12}^T P_{12} = - R_{22} P_{22} \).

\[\Rightarrow P_{12}^T R_{12} = - P_{22} R_{22} \]

Now,

\[\Theta_1 \Theta_2 = - P_{22}^{-1} P_{12}^T R_{12} R_{22}^{-1} \]

\[= - P_{22}^{-1} (- P_{22} R_{22}) R_{22}^{-1} \]

\[= I_r \quad \text{same as (21)} \]

When the conditions on \(A_r, B_r \) and \(H_r \) \{(18), (19), (20)\} substituted into eqns. (29) and (30), a set of nonlinear equations in the unknown matrices \(\Theta_1 \) and \(\Theta_2 \) is obtained. Namely,

\[R_{22} \Theta_2^T A^T \Theta_1 + \Theta_1 A \Theta_2^T R_{22} + H \Theta_2 N \Theta_2^T H^T = 0 \]

\[P_{22} \Theta_1 A \Theta_2 + \Theta_2^T A^T \Theta_1^T P_{22} + \Theta_2^T H^T H \Theta_2 = 0. \]

An explicit solution for \(\Theta_1 \) and \(\Theta_2 \) is not apparently possible. \(\Theta_1 \) and \(\Theta_2 \) are nonunique, in the sense that the output of the reduced model is invariant under any nonsingular transformation \(T \).

An algorithm to solve this optimum reduced order model problem was presented by Mishra and Wilson [22].
3.4. Algorithm [22]

Step 1: Choose the matrices Q and N

Step 2: Choose a value for the parameter Δ satisfying $0 < \Delta < 1$. Normally, without prior knowledge choose $\Delta = 1$.

Step 3: Make initial guesses for the matrices A_r and B_r, such that the pair (A_r, B_r) defines a completely controllable, strictly stable system.

Step 4: Solve the matrix equation $FT + RF^T + S = 0$

Step 5: Compute the matrix $\Theta_2 = R_{12}R^{-1}_{22}$

Step 6: Set $H_r = H\Theta_2$

Step 7: Solve the matrix equation $F^TP + PF + M = 0$

Step 8: Compute the matrix $\Theta_1 = -P^{-1}_{22}P_{12}^T$

Step 9: Set $B_r = \Theta_1B$

Step 10: If B_r computed in Step 9 is not the same as B_r used in Step 4, then go to Step 4 using the B_r from Step 9. Otherwise, the B_r computed in Step 9 and the H_r computed in Step 6 are taken to be the optimum for the present A_r matrix. Step 9 and the H_r computed in Step 6 are taken to be the optimum for the present A_r matrix.

Step 11: Compute the error function J using the present A_r matrix and the optimum B_r and H_r defined in Step 10.

Step 12: Designate the present A_r matrix as A_r^{old} and the present value of the error function as J_0.

Step 13: Compute a new A_r.

$$A_r^{\text{new}} = \Delta \Theta_1 A \Theta_2 + (1 - \Delta)A_r^{\text{old}}$$

where Θ_1 and Θ_2 were used to compute the optimum B_r and H_r for A_r^{old}.

Step 14: If (A_r^{new}, B_r) is strictly stable controllable, then go to Step 15. Otherwise, reduce Δ and go to Step 13.
Step 15: For \(A^\text{new} \) and the optimum \(B_r \) for \(A^\text{old} \), use Steps 4 to 10 until the
optimum \(B_r \) and \(H_r \) are obtained for \(A^\text{new} \).

Step 16: Compute \(J \) using \(A^\text{new} \), \(B_r \) and \(H_r \) defined in Step 10. Designate the value
of \(J \) as \(J_1 \).

Step 17: Test

(a) If \(J_1 < J_0 \): Go to Step 12

(b) If \(J_1 > J_0 \): Decrease \(\Delta \) and go to Step 13

(c) If \(J_1 = J_0 \): If \(\Theta_1 \Theta_2 = I_r \) step. The triple \((A^\text{new}, B_r, H_r)\) used to compute
\(J_1 \) are the optimal reduced model. Otherwise decrease \(\Delta \) and go to Step 13.

3.5. Derivatives of Cost Function.

\[
J = \text{tr}(RM) \tag{25}
\]

\[
FR + RF^T + S = 0 \tag{29}
\]

\[
J = \text{tr}(PS) \tag{30}
\]

\[
F^TP + PF + M = 0 \tag{31}
\]

\[
\frac{\partial J}{\partial \beta} = \text{tr} \left[\frac{\partial R}{\partial \beta} M \right] + \text{tr} \left[R \frac{\partial M}{\partial \beta} \right], \text{ where } \beta \text{ is any parameter}
\]

\[
= - \text{tr} \left[\frac{\partial R}{\partial \beta} (F^TP + PF) \right] + \text{tr} \left[R \frac{\partial M}{\partial \beta} \right] \text{ since } M = -(F^TP + PF) \text{ from (31)}
\]

\[
= -2 \text{tr} \left[\frac{\partial R}{\partial \beta} PF \right] + \text{tr} \left[R \frac{\partial M}{\partial \beta} \right]. \tag{38}
\]
Differentiating (29) with respect to β,

$$ \frac{\partial F}{\partial \beta} R + F \frac{\partial R}{\partial \beta} + \frac{\partial R}{\partial \beta} F^T + R \frac{\partial F^T}{\partial \beta} + \frac{\partial S}{\partial \beta} = 0 \quad (39) $$

Postmultiply (39) by P and taking the trace

$$ \frac{\partial F}{\partial \beta} R P + F \frac{\partial R}{\partial \beta} P + \frac{\partial R}{\partial \beta} F^T P + R \frac{\partial F^T}{\partial \beta} P + \frac{\partial S}{\partial \beta} P = 0 $$

$$ \begin{align*}
 \text{tr} \left[\frac{\partial F}{\partial \beta} R P \right] &+ \text{tr} \left[F \frac{\partial R}{\partial \beta} P \right] + \text{tr} \left[\frac{\partial R}{\partial \beta} F^T P \right] + \text{tr} \left[R \frac{\partial F^T}{\partial \beta} P \right] + \text{tr} \left[\frac{\partial S}{\partial \beta} P \right] = 0 \\
 \text{tr} \left[\frac{\partial R}{\partial \beta} PF \right] &+ \text{tr} \left[\frac{\partial R}{\partial \beta} PF \right] + \text{tr} \left[\frac{\partial R}{\partial \beta} RP \right]
\end{align*} $$

So, $-2 \text{tr} \left[\frac{\partial R}{\partial \beta} PF \right] = 2 \text{tr} \left[\frac{\partial F}{\partial \beta} R P \right] + \text{tr} \left[\frac{\partial S}{\partial \beta} P \right] \quad (40)$

Substituting (40) into (38),

$$ \frac{\partial J}{\partial \beta} = 2 \text{tr} \left[\frac{\partial F}{\partial \beta} R P \right] + \text{tr} \left[\frac{\partial S}{\partial \beta} P \right] + \text{tr} \left[R \frac{\partial M}{\partial \beta} \right] $$

4. **MODEL REDUCTION: HYLAND'S METHOD** [16].

4.1. **Problem Statement**

Given the system

$$ \dot{X} = AX + BU \quad (41) $$

$$ Y = CX \quad (42) $$

find a reduced - order model

$$ \dot{X}_r = A_r X_r + B_r U \quad (43) $$

$$ Y_r = C_r X_r \quad (44) $$
which minimizes the model-reduction criterion

\[J(A_r, B_r, C_r) = \lim_{t \to \infty} E[(Y - Y_r)^T R(Y - Y_r)]. \] (45)

The input \(U(t) \) is taken to be white noise with positive-definite intensity \(V \).

Note. \(A, B, C: \) \(n \times n, \ n \times m, \ \ell \times n \) matrices

\(A_r, B_r, C_r: \) \(n_r \times n_r, \ n_r \times m, \ \ell \times n_r \) matrices

\(R, V: \) \(\ell \times \ell, \ m \times m \) p.d. matrices

\(x, u, y, x_r, y_r: \) \(n, m, \ell, n_r, \ell \) dimensional vectors

\(\rho(z): \) rank of matrix \(Z \)

Assumption: \(A, A_r \) stable.

4.2. Necessary Conditions for Optimum

\[A_r = \Gamma A G^T \] (46)

\[B_r = \Gamma B \] (47)

\[C_r = CG^T \] (48)

\[\rho(\hat{Q}) = \rho(\hat{P}) = \rho(\hat{Q}\hat{P}) = N_r \] (49)

\[0 = A\hat{Q} + \hat{Q}A^T + BVB^T - \gamma_\perp BVB^T\gamma_\perp^T \] (50)

\[0 = A^T\hat{P} + \hat{P}A + C^TRC - \gamma_\perp C^TRC\gamma_\perp \] (51)

where \(G = Q_2^{-1}Q_{12}^T, \ \Gamma = -P_2^{-1}P_{12}^T \)

\[\gamma = G^T\Gamma, \ \gamma_\perp = I_n - \gamma \]

\[\Gamma G^T = I_{n_r} \]

4.3. Derivation of Necessary Conditions

Introducing the augmented system

\[\ddot{X} = \bar{A} \dot{X} + \bar{B} U, \]

\[\ddot{Y} = \bar{C} \dot{X} \]
where

\[\tilde{X} = \begin{bmatrix} X \\ X_r \end{bmatrix}, \quad \tilde{Y} = Y - Y_r \]

\[\tilde{A} = \begin{bmatrix} A & 0 \\ 0 & A_r \end{bmatrix}, \quad \tilde{B} = \begin{bmatrix} B \\ B_r \end{bmatrix}, \quad \tilde{C} = [C \quad C_r]. \]

\[J(A_r, B_r, C_r) = \lim_{t \to \infty} E[(Y - Y_r)^T R(Y - Y_r)] \]
\[= \text{tr} \tilde{Q} \tilde{R} \quad \text{where} \quad \tilde{R} = \tilde{C}^T R \tilde{C} \quad \text{and} \quad \tilde{Q} = \lim_{t \to \infty} E[\tilde{X}(t)\tilde{X}^T(t)]. \]

As shown in Wilson's Method (25) - (29) \(\tilde{Q} \) is given by the unique solution of
\[0 = \tilde{A} \tilde{Q} + \tilde{Q} \tilde{A}^T + \tilde{V} \]
where \(\tilde{V} = \tilde{B} \tilde{V} \tilde{B}^T \).

To minimize (52) subject to (53), form the Lagrangian
\[L(A_r, B_r, C_r, \tilde{Q}) = \text{tr}[\lambda \tilde{Q} \tilde{R} + (\tilde{A} \tilde{Q} + \tilde{Q} \tilde{A}^T + \tilde{V})\tilde{P}] \]
where \(\lambda \geq 0 \) and \(\tilde{P} \in \mathbb{R}^{(n + n_r) \times (n + n_r)} \).

Expanding \(L(A_r, B_r, C_r, \tilde{Q}) \) gives
\[L = \text{tr} \left[\lambda(Q_1 C_r^T R C_r - Q_{12} C_r^T R C_r - Q_{12}^T C_r^T R C_r + Q_{2} C_r^T R C_r) \\
+ A Q_1 P_1 + A Q_{12} P_{12}^T + A_r Q_{12} P_{12} + A_r Q_2 P_2 \\
+ Q_1 A_r^T P_1 + Q_{12} A_r^T P_{12} + Q_{12}^T A_r^T P_{12} + Q_2 A_r^T P_2 \\
+ \tilde{B} \tilde{V} \tilde{B}^T P_1 + \tilde{B} \tilde{V} \tilde{B}^T P_{12} + \tilde{B}_r \tilde{V} \tilde{B}_r^T P_{12} + \tilde{B}_r \tilde{V} \tilde{B}_r^T P_2 \right]. \]
And,

$$\tilde{Q} = \begin{bmatrix} Q_1 & Q_{12} \\ Q_{12}^T & Q_2 \end{bmatrix}, \quad \tilde{P} = \begin{bmatrix} P_1 & P_{12} \\ P_{12}^T & P_2 \end{bmatrix}, \quad \tilde{R} = \tilde{C}^T R \tilde{C} = \begin{bmatrix} C^T R C & -C^T R C_r \\ -C^T R C_r & C^T R C_r \end{bmatrix},$$

$$\tilde{V} = \tilde{B} V \tilde{B}^T = \begin{bmatrix} B V B^T & B V B^T_r \\ B^T_r V B^T & B^T_r V B^T_r \end{bmatrix}.$$

Now,

$$\frac{\partial L}{\partial \tilde{Q}} = 0.$$

$$\frac{\partial L}{\partial \tilde{Q}} = \begin{bmatrix} \frac{\partial L}{\partial Q_1} & \frac{\partial L}{\partial Q_{12}} \\ \frac{\partial L}{\partial Q_{12}^T} & \frac{\partial L}{\partial Q_2} \end{bmatrix} = \begin{bmatrix} \lambda C^T R C + A^T P_1 + P_1 A & -\lambda C^T R C_r + A^T P_{12} + P_{12}^T A_r \\ -\lambda C^T R C_r + A^T P_{12}^T + P_{12}^T A & \lambda C^T R C_r + A^T P_2 + P_2 A_r \end{bmatrix} = \lambda \begin{bmatrix} C^T R C & -C^T R C_r \\ -C^T R C_r & C^T R C_r \end{bmatrix} + \begin{bmatrix} A^T P_1 & -A^T P_{12} \\ A^T P_{12}^T & A^T P_2 \end{bmatrix} + \begin{bmatrix} P_1 A & P_{12} A_r \\ P_{12} A_r & P_2 A_r \end{bmatrix}. $$
\[
\begin{align*}
\lambda \tilde{R} + \begin{bmatrix}
A^T & 0 \\
0 & A^T
\end{bmatrix}
\begin{bmatrix}
P_1 & P_{12} \\
P^T_{12} & P_2
\end{bmatrix}
+ \begin{bmatrix}
P_1 & P_{12} \\
P^T_{12} & P_2
\end{bmatrix}
\begin{bmatrix}
A & 0 \\
0 & A^T
\end{bmatrix}
&= \lambda \tilde{R} + \tilde{A}^T \tilde{P} + \tilde{P} \tilde{A} \\
Thus, \quad \tilde{A}^T \tilde{P} + \tilde{P} \tilde{A} + \lambda \tilde{R} &= 0.
\end{align*}
\]

Without loss of generality, take \(\lambda = 1. \)

Then \(\tilde{A}^T \tilde{P} + \tilde{P} \tilde{A} + \tilde{R} = 0 \)

\[
\frac{\partial L}{\partial A_r} = 0,
\]

\[
\frac{\partial L}{\partial A_r} = 2 P^T_{12} Q_{12} + 2 P_{22} Q_2,
\]

Thus, \(P^T_{12} Q_{12} + P_{22} Q_2 = 0 \implies Q^T_{12} P_{12} + Q_2 P_2 = 0 \) \(\quad (55) \)

\[
\frac{\partial L}{\partial B_r} = 0.
\]

\[
\frac{\partial L}{\partial B_r} = P^T_{12} B V + P^T_{12} B V + 2 P_{22} B_r V
\]

Thus, \(2[P^T_{12} B + P_{22} B_r] V = 0 \) \(\quad (56) \)

\[
\frac{\partial L}{\partial C_r} = 0 ,
\]

\[
\frac{\partial L}{\partial C_r} = -R C Q_{12} - R C Q_{12} + 2 R C_r Q_2
\]

Thus \(2R[C_r Q_2 - C Q_{12}] = 0 \) \(\quad (57) \)
Define,
\[G = Q_2^{-1}Q_{12}^T \] and \[\Gamma = -P_2^{-1}P_{12}^T \]

Then,
\[\Gamma G^T = -P_2^{-1}P_{12}^T Q_2 Q_2^{-T} \]

But from (55), \[P_{12}^T Q_{12} = -P_2^T Q_2 = -P_2 Q_2^T \]

Thus,
\[\Gamma G^T = -P_2^{-1}(-P_2 Q_2^T)Q_2^{-T} = I_{n_r} \]

From (56), \[B_r = -P_2^{-1}P_{12}^T B = \Gamma B \]

From (57), \[C_r = C Q_{12}^{-1} Q_2^{-1} = C(Q_2^T Q_{12}^{-1})^T, \] \[Q_2 \] is p.d.
\[= C(Q_2^{-1} Q_{12}^T)^T = CG^T. \]

Expanding (53) and (54) yields
\[
\begin{align*}
0 &= AQ_1 + Q_1 A^T + B V B^T \\
0 &= AQ_{12} + Q_{12} A_r^T + B V B_r^T \\
0 &= A_r Q_2 + Q_2 A_r^T + B_r V B_r^T \\
0 &= A^T P_1 + P_1 A + C^T R C \\
0 &= A^T P_{12} + P_{12} A_r - C^T R C_r \\
0 &= A_r ^T P_2 + P_2 A_r + C_r ^T R C_r
\end{align*}
\]

(58) \hspace{1cm} (59) \hspace{1cm} (60) \hspace{1cm} (61) \hspace{1cm} (62) \hspace{1cm} (63)

Since \[A_r, B_r \] and \[C_r \] are independent of \[Q_1 \] and \[P_1 \], (58) and (61) can be ignored.
Define \(\dot{Q} = Q_{12} Q_{2}^{-1} Q_{12}^T = Q_{12} G \)
\[(64) \]
\[\dot{P} = P_{12} P_{2}^{-1} P_{12}^T = - P_{12} \Gamma. \]
\[(65) \]
Now (64), \(\Gamma^T \) yields
\[\dot{Q} \Gamma^T = Q_{12} G \Gamma^T = Q_{12} (\Gamma G^T)^T = Q_{12}. \]
\[(66) \]
Similarly, from (65)
\[P_{12} = - \dot{P} G^T. \]
\[(67) \]
\[\Gamma \dot{Q} \Gamma^T = - P_{12}^{-1} P_{12} Q_{12} Q_{2}^{-1} Q_{12}^T (- P_{12} P_{2}^{-T}) \]
\[= Q_{2} \]
Thus, \(Q_{2} = \Gamma \dot{Q} \Gamma^T \)
\[(68) \]
Similarly, \(P_{2} = \Gamma \dot{P} G^T \)
\[(69) \]
Substitute (47), (48), (66), - (69) into (59), (60), (62), (63)
\[0 = A \dot{Q} \Gamma^T + \dot{Q} \Gamma A^T + B \Gamma^T B^T \]
\[(70) \]
\[0 = A \Gamma \dot{Q} \Gamma^T + \Gamma \dot{Q} \Gamma A^T + \Gamma \Gamma^T \Gamma \Gamma^T \]
\[(71) \]
\[0 = A^T \dot{P} G^T + \dot{P} G A^T + C^T R C G^T \]
\[(72) \]
\[0 = A^T \dot{G} \Gamma G^T + \dot{G} \Gamma G A^T + G \Gamma^T R C G^T. \]
\[(73) \]
(71) - \(\Gamma \cdot (70) \),
\[A \Gamma \dot{Q} \Gamma^T = \Gamma A \dot{Q} \Gamma^T \]
\[\underbrace{Q_{2}}_{Q_{12}} \]
Thus, $A_r = \Gamma A Q_{12} Q^{-1}_2 = \Gamma A G^T$

$$
\gamma \hat{Q} = G^T \Gamma \hat{Q} = (- Q_{12} Q^{-1}_2)(P_{2}^{-1} P_{12}^T)(Q_{12} Q^{-1}_2 Q_{12}^T)
$$

$$
= Q_{12} Q^{-1}_2 P_{2}^{-1} P_{2} Q_{2} Q^{-1}_2 Q_{12}^T
$$

$$
= Q_{12} Q^{-1}_2 Q_{12}^T = \hat{Q}
$$

(74)

Similarly, $\hat{P} \gamma = \hat{P}$

(75)

Finally, $G^T \cdot (70)^T$ yields

$$
G^T \Gamma \hat{Q} A^T + G^T A \Gamma \hat{Q}^T + G^T \Gamma B V^T B^T = 0
$$

(76)

$$
\gamma \hat{Q} A^T + G^T \Gamma A G^T \Gamma Q + \gamma B V \cdot B^T = 0, \; \hat{Q} \text{ and } V \text{ symmetric.}
$$

$$
\gamma A \hat{Q} + \hat{Q} A^T + B V B^T = 0
$$

(76)

Similarly, $(72) \cdot \Gamma$ yields

$$
[A^T \hat{P} + \hat{P} A + C^T R C] \gamma = 0
$$

(77)

(76) + $(76)^T + (76) \cdot \gamma$

$$
= \gamma A \hat{Q} + \hat{Q} A^T + \gamma B V B^T + \hat{Q} A^T \gamma + A \hat{Q} \gamma^T + B V B^T \gamma + \gamma A \hat{Q} \gamma + \gamma \hat{Q} A^T \gamma +
\gamma B V B^T \gamma
$$

$$
= \hat{Q} A^T + A \hat{Q} + \gamma B V B^T + B V B^T \gamma + \gamma A \hat{Q} \gamma + \gamma \hat{Q} A^T \gamma +
\gamma B V B^T \gamma
$$

$$
= A \hat{Q} + \hat{Q} A^T + \gamma B V B^T + B V B^T \gamma + (A \hat{Q} + \hat{Q} A^T) \gamma + (A \hat{Q} + \hat{Q} A^T) \gamma + \gamma B V B^T \gamma
$$

$$
= A \hat{Q} + \hat{Q} A^T + \gamma B V B^T + B V B^T \gamma - \gamma B V B^T \gamma^T
$$
\[\begin{align*}
&= A\dot{Q} + QA^T + BVB^T - BVBT + \gamma BVBTIT + I_n BVBT \gamma^T - \gamma BVBT \gamma^T \\
n &= A\dot{Q} + QA^T + BVB^T - (I_n BVBTIT + I_n BVBT \gamma^T - \gamma BVBT \gamma^T) \\
n &= A\dot{Q} + QA + BVB^T - \gamma \downarrow BVB^T \gamma \\
\text{which is the same as (50)}
\end{align*} \]

Similarly,
\[(77) + (77)^T + \gamma^T(77) = A^T \dot{P} + \dot{P}A + C^T RC - \gamma^T \downarrow C^T RC \gamma \]

which is the same as (51).

A computer program has been designed (appendix 3) for this algorithm. Due to the difficulty of finding the projection matrix \(r \) through a matrix factorization process, the program only run successively up to obtaining an LQG solution. Apparently, more words and research need to be done in that area.

4.4. Algorithm ([17,7])

Step 1: Initialize \(\gamma^{(0)} = I_n \).

Step 2: Solve for \(\dot{Q}^{(K)}, \dot{P}^{(K)} \) from
\[0 = (A - \gamma^{(K)} A \gamma^{(K)} \downarrow) \dot{Q}^{(K)} + \dot{Q}^{(K)}(A - \gamma^{(K)} A \gamma^{(K)} \downarrow)^T + BVB^T \]
\[0 = (A - \gamma \downarrow A \gamma \downarrow)^T \dot{P}^{(K)} + \dot{P}^{(K)}(A - \gamma \downarrow A \gamma \downarrow) + C^T RC \]

Step 3: Balance
\[\Phi^{(K)} \dot{Q}^{(K)} (\Phi^{(K)})^T = (\Phi^{(K)})^{-T} \dot{P}^{(K)} (\Phi^{(K)})^{-1} = \Sigma^{(K)} \\
\Sigma^{(K)} = \text{diag} (\sigma_1^{(K)}, \ldots, \sigma_n^{(K)}), \sigma_1^{(K)} \geq \sigma_2^{(K)} \geq \cdots \geq \sigma_n^{(K)} \geq 0 \]

Step 4: If \(K > 1 \) check for convergence
\[e_k = \left[\frac{\text{tr}(C^T RCW_c) - \text{tr} \left(C^T RC \gamma^{(K)} \dot{Q}^{(K)} (\gamma^{(K)} \downarrow)^T \right)}{\text{tr}(C^T RCW_c)} \right]^{1/2} \]
If $|e_k - e_{k-1}| < \text{tolerance}$ then go to step 8, else continue.

Step 5: Select N_m eigenprojections

$$
\Pi_i \{ \hat{Q}^{(K)} \hat{P}^{(K)} \}, \ldots, \Pi_{m} \{ \hat{Q}^{(K)} \hat{P}^{(K)} \},
$$

$$
\Pi_i \{ \hat{Q}^{(K)} \hat{P}^{(K)} \} \triangleq \Phi^{(K)} E_i (\Phi^{(K)})^{-1}.
$$

Step 6: Update $\gamma^{(K+1)} = \sum_{r=1}^{m} \Pi_i \{ \hat{Q}^{(K)} \hat{P}^{(K)} \}$

Step 7: Increment K and return to Step 2.

Step 8: Set $\hat{Q} = \gamma^{(\omega)} \hat{Q}(\gamma^{(\omega)})^T$, $\hat{P} = (\gamma^{(\omega)})^T \hat{P} \gamma^{(\omega)}$

4.5. Relationship between two methods

<table>
<thead>
<tr>
<th>Wilson's Method</th>
<th>Hyland's Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{X} = AX + BU$</td>
<td>$X = AX + BU$</td>
</tr>
<tr>
<td>$Y = HX$</td>
<td>$Y = CX$</td>
</tr>
<tr>
<td>$\dot{X}_r = A_r X_r + B_r U$</td>
<td>$\dot{X}_r = A_r X_r + B_r U$</td>
</tr>
<tr>
<td>$Y_r = H_r X_r$</td>
<td>$Y_r = C_r X_r$</td>
</tr>
<tr>
<td>$J = \lim_{t \to \infty} E[(Y - Y_r)^T (Y - Y_r)]$</td>
<td>$J = \lim_{t \to \infty} E[(Y - Y_r)^T R(Y - Y_r)]$</td>
</tr>
<tr>
<td>$A_r = \Theta_1 A \Theta_2$</td>
<td>$A_r = \Gamma A G^T$</td>
</tr>
<tr>
<td>$B_r = \Theta_1 B$</td>
<td>$B_r = \Gamma B$</td>
</tr>
<tr>
<td>$H_r = H \Theta_2$</td>
<td>$C_r = CG^T$</td>
</tr>
<tr>
<td>$\Theta_1 = -P_{22}^{-1}$</td>
<td>$\Gamma = -P_{22}^{-1} P_{12}$</td>
</tr>
<tr>
<td>$\Theta_2 = R_{12} R_{22}^{-1}$</td>
<td>$G^T = Q_{12} Q_{21}^{-1}$</td>
</tr>
<tr>
<td>$\Theta_1 \Theta_2 = I_r$</td>
<td>$\Gamma G^T = I_n$</td>
</tr>
<tr>
<td>$FR + RF^T + S = 0$</td>
<td>$\dot{A} \hat{Q} + \hat{Q} \dot{A}^T + \dot{V} = 0$</td>
</tr>
</tbody>
</table>
Wilson's Method

\[F^T P + P F + M = 0 \]

\[S = \begin{bmatrix} B N B^T & B N B^T_r \\ B_r N B^T & B_r N B^T_r \end{bmatrix} \]

\[M = \begin{bmatrix} H^T H & - H^T H_r \\ - H_r^T H & H_r^T H_r \end{bmatrix} \]

i) \(\Theta_1 \) and \(\Theta_2 \) depend upon the solutions of a pair of

\((n + n_r) \times (n + n_r)\) Lyapunov equations \([29, 30]\) whose coefficients and nonhomogeneous terms depend in turn on

\(A_r, B_r \) and \(H_r \).

ii) Required to make initial guesses for \(A_r \) and \(B_r \).

Hyland's Method

\[\tilde{A}^T \tilde{P} + \tilde{P} \tilde{A} + \tilde{R} = 0 \]

\[\tilde{V} = \begin{bmatrix} B V B^T & B V B^T_r \\ B_r V B^T & B_r V B^T_r \end{bmatrix} \]

\[\tilde{R} = \begin{bmatrix} C^T R C & - C^T R C_r \\ - C_r^T R C & C_r^T R C_r \end{bmatrix} \]

\[\dot{A} \tilde{Q} + \tilde{Q} A^T + B V B^T - \gamma_\bot B V B^T \gamma_\bot^T = 0 \]

\[A^T \dot{P} + \dot{P} A + C^T R C - \gamma_\bot C^T R C \gamma_\bot = 0 \]

where \(\gamma_\bot = I_n - \gamma \)

i) necessary to solve \(n \times n \) Lyapunov equation \([50, 51]\) which is independent of \(A_r, B_r, \) and \(C_r \).

ii) Need eigenprojections to form

\[\gamma = \sum_{i=1}^{m} \Pi_i \tilde{Q} \tilde{P} \]

iii) Need \((G, M, \Gamma) - \) factorization of \(\tilde{Q} \tilde{P} \) to determine \(G \) and \(\Gamma \).
REFERENCES

APPENDIX 1

Numerical Results of M.E. Method
FORTVS ME (GS OPT (2)

VS FORTRAN COMPILER ENTERED. 22:45:04

MAIN END OF COMPILATION 1 ******

SUB1 END OF COMPILATION 2 ******

SUB5 END OF COMPILATION 3 ******

SUB8 END OF COMPILATION 4 ******

SUB9 END OF COMPILATION 5 ******

SUB12 END OF COMPILATION 6 ******

SUB13 END OF COMPILATION 7 ******

VS FORTRAN COMPILER EXITED. 22:45:07

GLOBAL TXTLIB VFORTLIB CMSLIB FORTUTIL
GLOBAL LOADLIB VFLODLIB
FILEDEF 5 DISK NME DATA
LOAD ME H (START
EXECUTION BEGINS...

SPECIAL PROJECT : MAXIMUM ENTROPY ALGORITHM

A MATRIX 2 ROWS 2 COLUMNS
1.00000000D+00 1.00000000D+00
0.00000000D+00 1.00000000D+00

B MATRIX 2 ROWS 1 COLUMNS
0.00000000D+00
1.00000000D+00

C MATRIX 1 ROWS 2 COLUMNS
1.00000000D+00 0.00000000D+00

R MATRIX 2 ROWS 2 COLUMNS
1.00000000D+00 1.00000000D+00
1.00000000D+00 1.00000000D+00

R2 MATRIX 1 ROWS 1 COLUMNS
1.00000000D+00

V MATRIX 2 ROWS 2 COLUMNS
1.00000000D+00 1.00000000D+00
1.00000000D+00 1.00000000D+00

V2 MATRIX 1 ROWS 1 COLUMNS
1.00000000D+00

B1 MATRIX 2 ROWS 1 COLUMNS
0.00000000D+00
0.00000000D+00

*** MATRIX F FOR P-RICCATI ***
8.0080020D+00 4.0020000D+00
*** MATRIX F FOR Q-RICCATI ***
4.0020000D+00 8.0080020D+00

*** SOLUTION OF LQG P-RICCATI ***

PROGRAM TO SOLVE CONTINUOUS STEADY-STATE RICCATI EQUATION BY THE NEWTON ALGORITHM

A MATRIX 2 ROWS 2 COLUMNS
1.00000000D+00 1.00000000D+00
0.00000000D+00 1.00000000D+00

B MATRIX 2 ROWS 1 COLUMNS
0.00000000D+00
1.00000000D+00

Q MATRIX 2 ROWS 2 COLUMNS
6.00000000D+01 6.00000000D+01
6.00000000D+01 6.00000000D+01

H IS AN IDENTITY MATRIX

R MATRIX 1 ROWS 1 COLUMNS
1.00000000D+00

INITIAL F MATRIX

F MATRIX 1 ROWS 2 COLUMNS
8.0080020D+00 4.0020000D+00

FINAL VALUES OF P AND F AFTER 7 ITERATIONS TO CONVERGE

P MATRIX 2 ROWS 2 COLUMNS
2.00000000D+01 1.00000000D+01
1.00000000D+01 1.00000000D+01

F MATRIX 1 ROWS 2 COLUMNS
1.00000000D+01 1.00000000D+01

*** SOLUTION OF LQG Q-RICCATI ***

PROGRAM TO SOLVE CONTINUOUS STEADY-STATE RICCATI EQUATION BY THE NEWTON ALGORITHM

A MATRIX 2 ROWS 2 COLUMNS
1.00000000D+00 0.00000000D+00
1.00000000D+00 1.00000000D+00

B MATRIX 2 ROWS 1 COLUMNS
1.00000000D+00
0.00000000D+00

Q MATRIX 2 ROWS 2 COLUMNS
6.00000000D+01 6.00000000D+01
H is an identity matrix

R matrix

Matrix 1 rows 1 columns
1.0000000D+00

Initial F matrix

Matrix 1 rows 2 columns
4.0020000D+00 8.0080020D+00

Final values of P and F after 7 iterations to converge

P matrix

Matrix 2 rows 2 columns
1.0000000D+01 1.0000000D+01
1.0000000D+01 2.0000000D+01

F matrix

Matrix 1 rows 2 columns
1.0000000D+01 1.0000000D+01

DIF. of PQ-Lyapunov = 1397.87078471772827
DIF. of PQ-Lyapunov = 0.568434188608080149E-12

*** Solution of ME algorithm ***
Beta = 0.000000000000000000E+00

*** Matrix AC ***
-9.0000000D+00 1.0000000D+00
-2.0000000D+01 -9.0000000D+00

*** Matrix F ***
1.0000000D+01
1.0000000D+01

*** Matrix K ***
1.0000000D+01 1.0000000D+01

DIF. of PQ-Lyapunov = 1483.52550453469172
DIF. of PQ-Lyapunov = 31.1122528653733639
DIF. of PQ-Lyapunov = 4.0351530382116361
DIF. of PQ-Lyapunov = 0.141727321507062243
DIF. of PQ-Lyapunov = 0.671832436983663683E-01
DIF. of PQ-Lyapunov = 0.182016129660951265E-01
DIF. of PQ-Lyapunov = 0.233668764548156105E-02
DIF. of PQ-Lyapunov = 0.102304770734917838E-03

*** Solution of ME algorithm ***
Beta = 0.5000000007450580597E-01

*** Matrix AC ***
-9.2759643D+00 1.0000000D+00
-2.2199309D+01 -8.6775519D+00

*** Matrix F ***
1.0275964D+01
1.2521757D+01

MATRIX K

<table>
<thead>
<tr>
<th></th>
<th>0.96775519D+00</th>
<th>9.6775519D+00</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>26.0149127163574008</td>
<td>3.20086419084577756</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>2.0472422381747722</td>
<td>1.86151733248436813</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>0.878094194215236712</td>
<td>0.263785988925747006</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>0.26288390012980121E-01</td>
<td>0.26889037474234101E-01</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>0.214989882915119779E-01</td>
<td>0.97091456958082747E-02</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>0.267261225042147998E-02</td>
<td>0.23941324633697316E-03</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>1549.05227113589928</td>
<td>84.4184428246941252</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>26.0149127163574008</td>
<td>3.20086419084577756</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>2.0472422381747722</td>
<td>1.86151733248436813</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>0.878094194215236712</td>
<td>0.263785988925747006</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>0.26288390012980121E-01</td>
<td>0.26889037474234101E-01</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>0.214989882915119779E-01</td>
<td>0.97091456958082747E-02</td>
</tr>
<tr>
<td>DIF. OF PQ-LYAPUNOV</td>
<td>0.267261225042147998E-02</td>
<td>0.23941324633697316E-03</td>
</tr>
</tbody>
</table>

SOLUTION OF ME ALGORITHM

BETA= 0.999999942372131348E-01

MATRIX AC

<table>
<thead>
<tr>
<th></th>
<th>-9.7125436D+00</th>
<th>1.0000000D+00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.4992726D+01</td>
<td>-7.3259751D+00</td>
</tr>
</tbody>
</table>

MATRIX F

<table>
<thead>
<tr>
<th></th>
<th>1.0712544D+01</th>
<th>1.6666751D+01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.3259751D+00</td>
<td>8.3259751D+00</td>
</tr>
</tbody>
</table>

SOLUTION OF ME ALGORITHM

1.549.05227113589928

26.0149127163574008

3.20086419084577756

2.0472422381747722

1.86151733248436813

0.878094194215236712

0.263785988925747006

0.26288390012980121E-01

0.26889037474234101E-01

0.214989882915119779E-01

0.97091456958082747E-02

0.267261225042147998E-02

0.23941324633697316E-03

1549.05227113589928

84.4184428246941252

3.20086419084577756

2.0472422381747722

1.86151733248436813

0.878094194215236712

0.263785988925747006

0.26288390012980121E-01

0.26889037474234101E-01

0.214989882915119779E-01

0.97091456958082747E-02

0.267261225042147998E-02

0.23941324633697316E-03

1549.05227113589928
BETA = 0.149999976158142090

*** MATRIX AC ***
-1.0182880D+01 1.0000000D+00
-2.7716769D+01 -5.3712423D+00

*** MATRIX F ***
1.1182880D+01 2.1345526D+01

*** MATRIX K ***
6.3712423D+00 6.3712423D+00

DIF. OF PQ-LYAPUNOV = 2043.32093212088944
DIF. OF PQ-LYAPUNOV = 422.622199510942664
DIF. OF PQ-LYAPUNOV = 321.264125429695071
DIF. OF PQ-LYAPUNOV = 192.278331629577451
DIF. OF PQ-LYAPUNOV = 79.8465890746290938
DIF. OF PQ-LYAPUNOV = 0.86192990368036321
DIF. OF PQ-LYAPUNOV = 45.4660100056273109
DIF. OF PQ-LYAPUNOV = 67.089669260947465
DIF. OF PQ-LYAPUNOV = 72.6089619424420221
DIF. OF PQ-LYAPUNOV = 68.7181502289284936
DIF. OF PQ-LYAPUNOV = 59.9148116939483657
DIF. OF PQ-LYAPUNOV = 49.0218397391997769
DIF. OF PQ-LYAPUNOV = 37.7723155764265357
DIF. OF PQ-LYAPUNOV = 27.2175524990368558
DIF. OF PQ-LYAPUNOV = 17.9715890001505159
DIF. OF PQ-LYAPUNOV = 10.3474085776692846
DIF. OF PQ-LYAPUNOV = 4.43796081232255801
DIF. OF PQ-LYAPUNOV = 0.174540652494613369
DIF. OF PQ-LYAPUNOV = 2.62192679792053696
DIF. OF PQ-LYAPUNOV = 4.19708560874676045
DIF. OF PQ-LYAPUNOV = 4.82445353761380602
DIF. OF PQ-LYAPUNOV = 4.77252454138550775
DIF. OF PQ-LYAPUNOV = 4.28303268764602763
DIF. OF PQ-LYAPUNOV = 3.55564212377225886
DIF. OF PQ-LYAPUNOV = 2.74423996702182649
DIF. OF PQ-LYAPUNOV = 1.95656871106899644
DIF. OF PQ-LYAPUNOV = 1.26023106524792183
DIF. OF PQ-LYAPUNOV = 0.68974001255651098
DIF. OF PQ-LYAPUNOV = 0.255423312301900296
DIF. OF PQ-LYAPUNOV = 0.497768301354426512E-01
DIF. OF PQ-LYAPUNOV = 0.242425045327479438
DIF. OF PQ-LYAPUNOV = 0.343552133679565941
DIF. OF PQ-LYAPUNOV = 0.376151789676043791
DIF. OF PQ-LYAPUNOV = 0.361426173297725000
DIF. OF PQ-LYAPUNOV = 0.317537609715657254
DIF. OF PQ-LYAPUNOV = 0.258647684084621687
DIF. OF PQ-LYAPUNOV = 0.196205113078065096
DIF. OF PQ-LYAPUNOV = 0.137271073638146390
DIF. OF PQ-LYAPUNOV = 0.858135003701931964E-01
DIF. OF PQ-LYAPUNOV = 0.444365240942943274E-01
DIF. OF PQ-LYAPUNOV = 0.137696488609091060E-01
DIF. OF PQ-LYAPUNOV = 0.759230053478177069E-02
DIF. OF PQ-LYAPUNOV = 0.207745541576294399E-01
DIF. OF PQ-LYAPUNOV = 0.272035746581309468E-01
DIF. OF PQ-LYAPUNOV = 0.286712760499199248E-01
DIF. OF PQ-LYAPUNOV = 0.269569517134300440E-01
DIF. OF PQ-LYAPUNOV = 0.232341396629749397E-01
DIF. OF PQ-LYAPUNOV = 0.184511397725941606E-01
DIF. OF PQ-LYAPUNOV = 0.139755047704852586E-01
DIF. OF PQ-LYAPUNOV = 0.97289009523511030E-02
DIF. OF PQ-LYAPUNOV = 0.593533052074235457E-02
DIF. OF PQ-LYAPUNOV = 0.274063213629460734E-02
DIF. OF PQ-LYAPUNOV = 0.648672616364365240E-03

*** SOLUTION OF ME ALGORITHM ***
BETA= 0.199999988079071045

*** MATRIX AC ***
-1.0741235D+01 1.000000D+00
-3.1813464D+01 -3.6263966D+00

*** MATRIX F ***
1.1741235D+01
2.7187067D+01

*** MATRIX K ***
4.6263966D+00 4.6263966D+00
APPENDIX 2

Program for M.E. Method
C MAIN PROGRAM FOR THE MAXIMUM ENTROPY METHOD

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A(10),B(10),C(10),R(10),RI(10),R2(10),V(10),
& V2(10),B1(10),V1(10),V2S(10),CS(10),BST(10),
& Q(10),AS(10),BS(10),AT(10),CT(10),FQ(10),H(10),P(10),Q(10),PB(10),
& QB(10),CST(10),AST(10),COF(10),COQ(10),COQI(10),CST(10),AC1(10),
& QS(10),AQS(10),COQ(10),COQI(10),APS(10),ACI(10),F(10),AK(10),UI(10),
& R2S(10),PS(10),AP(10),AQ(10)

DIMENSION
& NA(2),NB(2),NC(2),NR(2),NR2(2),NV2(2),NBI(2),
& NV(2),NR1(2),NV1(2),NCT(2),NFP(2),NFQ(2),NH(2),
& NP(2),NQ(2),NAS(2),NV2S(2),NCQ(2),NCST(2),NST(2),
& NQS(2),NAQS(2),NCOF(2),NCQ(2),NAPS(2),NAS(2),NAC1(2),
& NAC(2),NF(2),NK(2)

IDENT, DISC, FNULL, SYM

CALL RDTITL

C INPUT THE MATRICES FOR THE SYSTEM

CALL READ(5,A,NA,B,NB,C,NC,R,NR,R2,NR2)
CALL READ(3,V,NV,V2,NV2,BI,NBI)

THETA=60.
AMU=60.

CALL SCALE(R,NR,RI,NRI,THETA)
CALL SCALE(V,NV,VI,NVI,AMU)

C WRITE(*,*) ' MATRIX RI'

C CALL PRNT(RI,NRI,0,3)

C WRITE(*,*) ' MATRIX Vl'

C CALL PRNT(V1,NVI,0,3)

C COMPUTE THE F MATRICES FOR P & Q - RICCATI EQUATION

IOP(1)=0
IOP(2)=1
IOP(3)=0
SCLE=1.

CALL CSTAB(A,NA,B,NB,FP,NFP,IOP,SCLE,DUMMY)
CALL TRANP(A,NA,AT,NA)
CALL TRANP(C,NC,CT,NCT)
CALL CSTAB(AT,NA,CT,NCT,FQ,NFQ,IOP,SCLE,DUMMY)
WRITE(*,*) ' *** MATRIX F FOR P-RICCATI ***'
CALL PRNT(FP,NFP,0,3)
WRITE(*,*) ' *** MATRIX F FOR Q-RICCATI ***'
CALL PRNT(FQ,NFQ,0,3)

C SOLVE FOR INITIAL P & Q FROM LQG SOLUTION

IOP(1)=1
IOP(2)=0
IOP(3)=0
IDENT=.TRUE.
DISC=.FALSE.
FNULL=.FALSE.
WRITE(*,*) ' *** SOLUTION OF LQG P-RICCATI ***'
CALL RICNWT(A,NA,B,NB,H,NH,R1,NR1,R2,NR2,FP,NFP,P,NP,IOP,
& IDENT,DISC,FNULL,DUMMY)
WRITE(*,*) ' *** SOLUTION OF LQG Q-RICCATI ***'
CALL RICNWT(AT,NA,CT,NCT,H,NH,V1,NV1,V2,NV2,FQ,NFQ,Q,NQ,IOP,
& IDENT,DISC,FNULL,DUMMY)

C PREPARE THE REQUIRED MATRICES FOR ME ITERATIONS

CALL NULL(PB,NA)
CALL NULL(QB,NA)
CALL EQUATE(A,NA,AS,NAS)
CALL EQUATE(B, NB, BS, NBS)
CALL EQUATE(V2, NV2, V2S, NV2S)
CALL EQUATE(C, NC, CS, NCS)
CALL TRANP(BS, NBS, BST, NBST)
CALL TRANP(CS, NCS, CST, NCST)
CALL TRANP(AS, NAS, AST, NAST)
CALL UNITY(UI, NA)
S=-1.
DO 300 IK=1,5
 BETA=.05*(IK-1)
 BI(2)=BETA
C BEGIN ITERATIONS
PQTEMP=0.
 K=1
PTNORM=0.
QTNORM=0.
PLTNOR=0.
QLTNOR=0.
C COMPUTE COEFFICIENTS FOR P-RICCATI
 I=1
10 CALL SUB12(R2, NR2, B1, NB1, P, NP, PB, NA, R2S, NR2)
C SOLVE P-RICCATI
 IOP(1)=0
 IOP(2)=0
 IOP(3)=0
 IDENT=.TRUE.
 DISC=.FALSE.
 FNULL=.FALSE.
C WRITE(*,*) ' *** SOLUTION OF P-RICCATI ***'
CALL RICNWT(AS, NA, BS, NB, H, NH, R1, R1, R2S, NR2, FP, NFP, P, NP, IOP,
 & IDENT, DISC, FNULL, DUMMY)
C TEST FOR CONVERGENCE OF P - RICCATI SOLUTION
 IOPT=2
 M1=NP(1)
 CALL NORMS(M1, M1, M1, P, IOPT, PNORM)
 DIF=DABS(PNORM-PTNORM)
C WRITE(*,*) ' DIF. OF P-RICCATI = ', DIF
 IF(DIF.LE.STOL) THEN
 GO TO 20
 ELSE
 PTNORM=PNORM
 I=I+1
 IF(I.GE.500) GO TO 200
 GO TO 10
 END IF
C COMPUTES COEFFICIENT FOR Q - RICCATI EQUATION
20 J=1
25 CALL SUB12(R2, NR2, B1, NB1, P, NP, PB, NA, R2S, NR2)
CALL MULT(BST, NBST, P, PS, NPS)
CALL SUB13(B1, NB1, R2S, NR2, PS, NPS, QB, NA, CQ, NCQ)
CALL ADD(V1, NV1, CQ, NCQ, COF, NCOF)
C SOLVE FOR Q-RICCATI
C WRITE(*,*) ' *** SOLUTION OF Q-RICCATI EQ.'
CALL RICNWT(AS, NAS, CST, NCST, H, NH, COF, NCOF, V2S, NV2S, FQ, NFQ,
 & Q, NQ, IOPT, IDENT, DISC, FNULL, DUMMY)
C TEST FOR CONVERGENCE OF Q-RICCATI
 N1=NQ(1).
 CALL NORMS(N1, N1, N1, Q, IOPT, QNORM)
 DIF=DABS(QNORM-QTNORM)
C WRITE(*,*) ' DIF. OF Q-RICCATI = ', DIF
IF(DIF.LE.STOL) THEN
 GO TO 30
ELSE
 QTNORM=QNORM
 J=J+1
 IF(J.GE.500) GO TO 200
 GO TO 25
END IF

C COMPUTE COEFFICIENTS FOR P-LYAPUNOV EQUATION
30 I1=1
 CALL SUB12(R2,NR2,B1,NB1,P,NP,PB,NA,R2S,NR2)
 ITYPE=1
 CALL SUB5(ITYPE,UI,NA,P,NP,BS,NBS,R2S,NR2,COP,NCOP)
 C WRITE(*,*) ' *** MATRIX C OF P-LYAPUNOV ***'
 CALL PRNT(COP,NCOP,0,3)
 CALL SCALE(COP,NCOP,COP1,NCOP,S)
 CALL MULT(Q,NQ,CST,NCST,QS,NQS)
 CALL SUB8(AS,NAS,QS,NQS,V2S,NV2S,CS,NCS,AQS,NAQS)
C SOLVE P-LYAPUNOV EQUATION
 IOPL=0
 SYM=.TRUE.
 C WRITE(*,*) ' *** SOLUTION P-LYAPUNOV EQ. ***'
 CALL BARSTW(AQS,NAQS,AQ,NAQ,COP1,NCOP,IOPL,SYM,EPSA,EPSB,DUMMY)
 CALL EQUATE(COP1,NCOP,PB,NA)
C TEST FOR CONVERGENCE OF P-LYAPUNOV
 CALL NORMS(M1,M1,M1,PB,IOPT,PLNORM)
 DIF=DABS(PLTNOR-PLNORM)
 C WRITE(*,*) ' DIF. OF P-LYAPUNOV =',DIF
 IF(DIF.LE.STOL) THEN
 GO TO 40
 ELSE
 PLTNOR=PLNORM
 IF(I1.GE.500) GO TO 200
 GO TO 35
 END IF
C COMPUTE COEFFICIENTS FOR Q-LYAPUNOV EQUATION
40 J1=1
C40 ITYPE=2
45 ITYPE=2
 CALL SUB5(ITYPE,UI,NA,Q,N,QS,NC,QS,V2S,NV2S,COQ,NCOQ)
 C WRITE(*,*) ' *** MATRIX C OF Q-LYAPUNOV ***'
 CALL PRNT(COQ,NCOQ,0,3)
 CALL SCALE(COQ,NCOQ,COQ1,NCOQ,S)
 CALL SUB12(R2,NR2,B1,NB1,P,NP,PB,NA,R2S,NR2)
 CALL MULT(BST,NBST,P,NP,PS,NPS)
 CALL SUB8(AS,NAS,BS,NBS,R2S,NR2,PS,NPS,APS,NAPS)
C SOLVE Q-LYAPUNOV EQUATION
 C WRITE(*,*) ' *** SOLUTION OF Q-LYAPUNOV ***'
 CALL BARSTW(APS,NAPS,AP,NAP,COQ1,NCOQ,IOPL,SYM,EPSA,EPSB,DUMMY)
 CALL EQUATE(COQ1,NCOQ,QB,NA)
C TEST FOR CONVERGENCE OF Q-LYAPUNOV
 CALL NORMS(M1,M1,M1,PB,IOPT,QLNORM)
 DIF=DABS(QLTNOR-QLNORM)
 C WRITE(*,*) ' DIF. OF Q-LYAPUNOV =',DIF
 IF(DIF.LE.STOL) THEN
 GO TO 50
 ELSE
 QLTNOR=QLNORM
 J1=J1+1
C IF(J1.GE.500) GO TO 200
C GO TO 45
C END IF
C TEST FOR CONVERGENCE OF ME SOLUTION
50 PQNORM=PLNORM+QLNORM
IF=DABS(PQTEMP-PQNORM)
WRITE(*,*)' DIF. OF PQ-LYAPUNOV =',DIF
IF(DIF.LE.ETOL) THEN
GO TO 60
ELSE
PQTEMP=PQNORM
IF(K.GE.50) GO TO 200
GO TO 10
END IF
C COMPUTE COMPENSATER MATRICES
C COMPUTE AC
60 CALL SUB8(AS,NAS,QS,NQS,V2S,NV2S,CS,NCS,AC1,NAC1)
CALL SUB12(R2,NR2,B1,NB1,P,NP,PC,NA,R2S,NR2)
CALL SUB8(AC1,NAC1,BS,NBS,R2S,PS,NPS,AC,NAC)
WRITE(*,*)' *** SOLUTION OF ME ALGORITHM ***'
WRITE(*,*)' BETA=',BETA
CALL PRNT(AC,NAC,0,3)
C COMPUTE F
ITYPE=2
CALL SUB9(ITYPE,Q,NQ,CS,NCS,V2S,NV2S,F,NF)
WRITE(*,*)' *** MATRIX F ***'
CALL PRNT(F,NF,0,3)
C COMPUTE K
ITYPE=1
CALL SUB9(ITYPE,R2S,NR2,BS,NBS,P,NP,AK,NK)
WRITE(*,*)' *** MATRIX K ***'
CALL PRNT(AK,NK,0,3)
300 CONTINUE
200 STOP
END
C ******** SUBROUTINE SUB1
SUBROUTINE SUB1(B,NB,C,NC,D,ND,A,NA)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(50),B(50),C(50),D(50),E(50),FA(50),R(50),NR(50)
& DT(50),F(50),FT(50),EI(50),BT(50)
DIMENSION NA(2),NB(2),NC(2),ND(2),NE(2),NBT(2),
& NDT(2),NF(2),NFT(2)
CALL TRANP(B,NB,NT,BT)
IF(ITYPE.EQ.1) CALL SUB1(BT,NT,B,C,NC,D,ND,F,NF)
IF(ITYPE.EQ.2) CALL SUB1(D,ND,C,NC,B,NB,F,NF)
CALL TRANP(F,NF,FT,NFT)
CALL UNITY(EI,NE)
N=NE(1)
NR=NE(2)
CALL GAUSEL(N,N,E,NE,EI,IERR)
IF (IYPE.EQ.1) CALL SUB1(F,NF,FI,NE,FT,NFT,A,NA)
IF (IYPE.EQ.2) CALL SUB1(FT,NFT,FI,NE,F,NF,A,NA)
RETURN
END
C ***** SUBROUTINE SUB8
SUBROUTINE SUB8(B,NB,C,NC,D,ND,E,NE,A,NA)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION B(50),C(50),D(50),E(50),F(50)
DIMENSION NB(2),NC(2),ND(2),NE(2),NA(2)
CALL UNITY(DI,ND)
N=ND(1)
NR=ND(2)
CALL GAUSEL(N,N,D,NE,F)
CALL SUBT(B,NB,F,NA)
RETURN
END
C **** SUBROUTINE SUB9
SUBROUTINE SUB9(IYPE,B,NB,C,NC,D,ND,A,NA)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(50),B(50),C(50),D(50)
DIMENSION NB(2),NC(2),ND(2),NA(2)
CALL UNITY(DI,ND)
N=ND(1)
NR=ND(2)
CALL GAUSEL(N,N,B,DI,ERR)
CALL SUB1(C,NC,DI,ND,A)
CALL SUBT(B,NB,F,NA)
RETURN
END
C ***** SUBROUTINE SUB12
SUBROUTINE SUB12(A,NA,B,NB,C,NC,D,ND,E,NE)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(50),B(50),C(50),D(50),E(50),F(50)
DIMENSION NA(2),NB(2),NC(2),ND(2),NE(2)
CALL UNITY(D,ND)
N=ND(1)
NR=ND(2)
CALL GAUSEL(N,N,B,DI,ERR)
CALL SUBT(B,NB,C,NE,E)
CALL ADD(A,NA,E,NE)
RETURN
END
C ***** SUBROUTINE SUB13
SUBROUTINE SUB13(A,NA,B,NB,C,NC,D,ND,E,NE)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(50),B(50),C(50),D(50),E(50),F(50)
DIMENSION NA(2),NB(2),NC(2),ND(2),NE(2)
CALL UNITY(BI,NB)
N=NB(1)
NR=NB(2)
CALL GAUSEL(N,N,B,DI,ERR)
CALL SUB1(A,NA,BI,NE,E)
CALL ADD(A,NA,NE)
RETURN
END
APPENDIX 3

Program for Optimal Projection
C MAIN PROGRAM FOR THE OPTIMAL PROJECTION METHOD

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(49),B(14),C(21),R1(49),R2(4),V1(49),
& V2(9),P(49),Q(49),U1(49),TAUQ(49),C1(49),
& IOP(3),F(49),C3(49),CT(21),CS(49),C6(49),
& C12(21),AQC(49),AQ(49),AQT(49),BX(49),
& G(49),GT(49),AC(49),FC(49),RKC(49),H(49),
& RP(49),FQ(49),DUMMY(500),AT(49),APT(49),
& WK(98),QP(49),CK(14),CF(21),CFC(49),R2N(49),
& B(2),NB(2),NC(2),NR2(2),NV2(2),NF(2),NCT(2),
& NBX(2),NC13(2),NGA(2),NGF(2),NCT(2),
& NRKC(2),NH(2),NFQ(2),NRI(2),NVI(2),
& NP(2),NQ(2),NCK(2),NC12(2)
LOGICAL IDENT,DISC,FNULL,SYM
DATA STOL/1.E-4/, ETOL/I.E-3/, EPSA/1.E-6/, EPSB/1.E-6/
CALL RDTITL
C WRITE(*,*) ' INPUT THE ORDER TO BE REDUCED'
C READ(*,*) NCR
C INPUT THE MATRICES FOR THE SYSTEM
CALL READ(5,A,NA,B,NB,C,NC,R1,NR1,R2,NR2)
CALL READ(2,V1,NV1,V2,NV2)
C R2(2)=1.
C R2(3)=2.
WRITE(6,*) '*** NORMAL R2'
CALL NORMAL(R2,NR2,R2N,NR2)
CALL PRNT(R2N,NR2,0,3)
C COMPUTE THE F MATRICES FOR P & Q - RICCATI EQUATION
IOP(1)=0
IOP(2)=1
IOP(3)=0
SCLE=1
CALL CSTAB(A,NA,B,NB,FP,NFP,IOP,SCLE,DUMMY)
WRITE(6,*) ' MATRIX F'
CALL TRANP(A,NA,AT,NA)
CALL TRANP(C,NC,CT,NCT)
CALL CSTAB(AT,NA,CT,NCT,FQ,NFQ,IOP,SCLE,DUMMY)
C SOLVE FOR INITIAL P & Q FROM LQG SOLUTION
IOP(1)=0
IOP(2)=0
IOP(3)=0
IDENT=.TRUE.
DISC=.FALSE.
FNULL=.FALSE.
WRITE(6,*) ' RICCATI'
CALL RICNWT(A,NA,B,NB,H,NH,R1,NR1,R2,NR2,FP,NFP,P,NP,IOP,
& IDENT,DISC,FNULL,DUMMY)
WRITE(6,*) ' Q RICCATI'
CALL RICNWT(AT,NA,CT,NCT,H,NH,V1,NV1,V2,NV2,FQ,NFQ,Q,NQ,IOP,
& IDENT,DISC,FNULL,DUMMY)
C COMPUTE THE COMPENSATOR MATRICES FOR LQG
CALL SUB9(1,R2,NR2,B,NB,P,NP,CK,NCK)
CALL SUB9(2,Q,NQ,C,NC,V2,NV2,CF,NCF)
CALL MULT(CF,NCF,C,NC,CFC,NA)
CALL MULT(B,NB,CK,NCK,BCK,NA)
CALL SUBT(A,NA,CFC,NA,ACF,NA)
CALL SUBT(ACF, NA, BCK, NA, CA, NA)
WRITE(6, *) ' K MATRIX FOR COMPENSATOR'
CALL PRNT(CK, NCK, 0, 3)
WRITE(6, *) ' F MATRIX FOR COMPENSATOR'
CALL PRNT(CF, NCF, 0, 3)
WRITE(6, *) ' AC MATRIX FOR COMPENSATOR'
CALL PRNT(AC, NA, 0, 3)

C COMPUTES MATRIX NORM P & Q SOLUTIONS
M1=NA(1)
N1=NA(2)
IOPT=2
WRITE(6, *) ' NOW A'
C CALL NORMS(M1, M1, N1, P, IOPT, PNORM)
WRITE(6, *) ' NOW B'
C CALL NORMS(M1, M1, N1, Q, IOPT, QNORM)
CALL UNITY(UI, NA)
CALL NULL(TAU0, NA)

C BEGIN ITERATIONS FOR OPTIMAL PROJECTION ALGORITHM
K=1

5
I=1
PNORM=0.
C COMPUTES COEFFICIENT FOR P - RICCATI EQUATION
ITYPE=1
WRITE(6, *) ' NOW C'
C CALL SUB5(ITYPE, TAU0, NA, P, NA, B, NB, R2, NR2, C1, NA)
WRITE(6, *) ' NOW D'
C CALL ADD(R1, NR1, C1, NA, C1, NA)
WRITE(*, *) ' NOW E'
C SOLVES FOR P - RICCATI EQUATION
IOP(1)=0
IOP(2)=0
IOP(3)=0
IDENT=.TRUE.
DISC=.FALSE.
FNULL=.FALSE.
CALL RICWNT(A, NA, B, NB, H, NH, C1, NA, R2, NR2, FP, NFP, P, NP, IOP, IDENT, DISC, FNULL, DUMMY)
WRITE(*, *) ' PASS P-RICCATI'
C TEST FOR CONVERGENCE OF P - RICCATI SOLUTION
IOPT=2
CALL NORMS(M1, M1, N1, P, IOPT, PTNORM)
DIF=DABS(PNORM-PTNORM)
WRITE(*, *) ' DIF=', DIF
IF(DIF.LE.STOL) THEN
GO TO 20
ELSE
PNORM=PTNORM
I=I+1
IF(I.GE.1000) GO TO 200
GO TO 10
END IF

20
J=1
QNORM=0.
C COMPUTES COEFFICIENT FOR Q - RICCATI EQUATION
WRITE(*, *) ' NOW ONE'
ITYPE=2
C CALL SUB5(ITYPE, TAU0, NA, Q, NA, C, NC, V2, NV2, C3, NA)
C CALL ADD(V1, NA, C3, NA, C3, NA)
C SOLVES FOR Q - RICCATI EQUATION
WRITE(*, *) ' NOW Q'
CALL RICNW(T(AT,NA,CT,NCT,H,NH,C3,NA,V2,NV2,FQ,NFQ,Q,NQ,IOP, IDENT,DIDC,FNULL,DUMMY)
&
C TEST FOR CONVERGENCE OF Q - RICCATI SOLUTION
WRITE(*,*) ' NORMS'
CALL NORMS(M1,M1,N1,Q,IOPT,QTNORM)
DIF=DABS(QNORM-QTNORM)
WRITE(*,*) ' DIFQ=',DIF
IF(DIF.LE.STOL) THEN
GO TO 40
ELSE
QNORM=QTNORM
J=J+1
IF(J.GE.1000) GO TO 200
END IF
C COMPUTE COEFFICIENTS FOR P-LYAPUNOV EQUATION
40
ITYPE=I
WRITE(*,*) ' NOW TWO'
CALL SUB5(ITYPE,UI,NA,P,NA,B,MB,R2,NR2,C5,NA)
WRITE(*,*) ' NOW 3'
CALL SUB5(ITYPE,TAUO,NA,P,NA,B,MB,R2,NR2,C6,NA)
WRITE(*,*) ' NOW 4'
CALL SUBT(C6,NA,C5,NA,C6,NA)
ITYPE=2
CALL SUB9(ITYPE,Q,NA,C,NC,V2,NV2,C12,NC12)
WRITE(*,*) ' NOW 5'
CALL MULT(C12,NC12,C,NC,AQC,NA)
WRITE(*,*) ' NOW 6'
CALL SUBT(A,NA,AQC,NA,AQ,NA)
WRITE(*,*) ' AQ BARSTW - P'
CALL PRNT(AQ,NA,O,3)
C SOLVE FOR P - LYAPUNOV EQUATION
IOPL=I
SYM=.TRUE.
CALL TRANP(AQ,NA,AQT,NA)
WRITE(*,*) ' NOW 7'
CALL BARSTW(AQT,NA,AQI,NAQI,C6,NA,IOPL,SYM, EPSA,EPSB,DUMMY)
C COMPUTE COEFFICIENTS FOR Q - RICCATI EQUATION
ITYPE=2
WRITE(*,*) ' Q1'
CALL SUB5(ITYPE,UI,NA,Q,NA,C,NC,V2,NV2,C8,NA)
WRITE(*,*) ' Q2'
CALL SUB5(ITYPE,TAUO,NA,Q,NA,C,NC,V2,NV2,C9,NA)
WRITE(*,*) ' Q3'
CALL SUBT(C9,NA,C8,NA,C9,NA)
ITYPE=1
CALL SUB9(ITYPE,R2,NR2,B,MB,P,NA,C13,NC13)
CALL MULT(B,MB,C13,NC13,AQC,NA)
WRITE(*,*) ' Q4'
CALL SUBT(A,NA,AQC,NA,AP,NA)
WRITE(*,*) ' AP BARSTW - Q'
CALL PRNT(AP,NA,O,3)
C SOLVES FOR Q - LYAPUNOV EQUATION
WRITE(*,*) ' WRITE'
CALL TRANP(AP,NA,AQT,NA)
CALL BARSTW(AP,NA,AP1,NA1,C9,NA,IOPL,SYM,EPSA,EPSB,DUMMY)
C TEST FOR CONVERGENCE OF P & Q - LYAPUNOV SOLUTIONS
CALL MULT(C9,NA,C6,NA,QP,NA)
WRITE(*,*) ' *** MATRIX QP ***'
CALL PRNT(QP,NA,0,3)
C COMPUTE EIGENVALUES AND EIGENVECTORS OF MATRIX QP
N=NA(1)
ISV=N
ILV=0
CALL EIGEN(N,N,QP,ER,EI,ISV,ILV,V,WK,IERR)
WRITE(*,*) ' ISV=',ISV
WRITE(*,*) ' ILV=',ILV
WRITE(*,*) ' IERR=',IERR
C CHECK IF EIGENVALUES ARE ARRANGED IN INCREASING OR DECREASING ORDER
CALL LNCNT(4)
PRINT 650
650 FORMAT(//' EIGENVALUES OF QP',//)
675 FORMAT(10X,2D16.8)
CALL LNCNT(N)
DO 700 I1=1,N
PRINT 675,ER(I1),EI(I1)
700 CONTINUE
WRITE(*,*) ' EIGENVECTOR OF QP WITH NAMDA INCREASING ORDER'
CALL PRNT(V,NA,0,3)
N=NA(1)
NU=N-NCR
ND=NU+1
RA=ER(NU)/ER(ND)
RATIO=ABS(RA)
WRITE(*,*) ' RATIO=',RATIO
IF(RATIO.LT.ETOL)THEN
GO TO 50
ELSE
K=K+1
IF(K.GE.500) GO TO 200
C FORM NEW TAU
C CALL UNITY(VI,NA)
C N=NA(1)
C NR=NA(2)
C CALL GAUSEL(N,N,V,NR,VI,IERR)
C CALL FOMTAU(V,NA,NCR,TAU,NA)
C CALL CONTAU(NCR,VI,NA,TAU,NA)
C CALL SUBT(UI,NA,TAU,NA,TAUO,NA)
WRITE(*,*) ' TAU'
CALL PRNT(TAU,NA,0,3)
WRITE(*,*) ' TAUO'
CALL PRNT(TAUO,NA,0,3)
WRITE(*,*) ' GO TO 5'
GO TO 5
END IF
50 CALL SUBT(AQ,NA,APC,NA,C11,NA)
CALL SUB1(C12,NC,D,ND,C13,NC13,C14,NA)
CALL ADD(C11,NA,C14,NA,C14,NA)
C FORM GAMMA AND G
C CALL SUB1(GA,NGA,C14,NA,GT,NG,AC,NAC)
C PRINT AC
C CALL MULT(GA,NGA,C12,NC,FC,NFC)
C PRINT FC
C CALL MULT(C13,NC13,GT,NG,RKC,NRKC)
C PRINT KC
C ****** SUBROUTINE SUB1
SUBROUTINE SUB1(B,NB,C,NC,D,ND,A,NA)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(*),B(*),C(*),D(*),BC(49)
DIMENSION NA(2),NB(2),NC(2),ND(2),NBC(2)
CALL MULT(B,NB,C,NC,B,C,NBC)
CALL MULT(BC,ND,A,NA)
RETURN
END

C ****** SUBROUTINE SUB5
SUBROUTINE SUB5(ITYPE, B,NB,C,NC,D,ND,E,NE,A,NA)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(50),B(*) ,C(*) ,D(*) ,E(*)
& DT(50),F(50),FT(50),EI(50), BT(50)
& NDT(2),NF(2),NFT(2)
CALL TRANP(B,NB, BT,NBT)
IF(ITYPE.EQ.1) CALL SUB1(BT,NBT,C,NC,D,ND,F,NF)
IF(ITYPE.EQ.2) CALL SUB1(D,ND,C,NC,BT,NBT,F,NF)
CALL TRANP(F,I_,FT,NFT)
CALL UNITY(EI,NE)
N=NE(1)
NR=NE(2)
CALL GAUSEL(N,N,E,NE,EI,IERR)
IF(ITYPE.EQ.1) CALL SUB1(F,NF,NE,FT,NFT,A,NA)
IF(ITYPE.EQ.2) CALL SUB1(FT,NFT,NE,F,NE,A,NA)
RETURN
END

C ****** SUBROUTINE SUB9
SUBROUTINE SUB9 (ITYPE, B ,NB ,C ,NC ,D ,ND ,A ,NA)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(50) ,B(50) ,C(50)
& D(50) ,BI(50) ,CI(50) ,DI(50) ,CT(50)
& NV(2) ,NA(2) ,NVKT(2)
& NUK(2)
CALL UNITY(BI,NB)
N=NB(1)
NR=NB(2)
CALL GAUSEL(N,N,B,NR,BI,IERR)
ELSE
CALL UNITY(DI,ND)
N=ND(1)
NR=ND(2)
CALL GAUSEL(N,N,D,NR,DI,IERR)
END IF
CALL TRANP(C,NC,CT,NCT)
IF(ITYPE.EQ.1) CALL SUB1(BI,NB,CT,NCT,D,ND,A,NA)
IF(ITYPE.EQ.2) CALL SUB1(B,NB,CT,NCT,DI,ND,A,NA)
RETURN
END

C ****** SUBROUTINE FOMTAU
SUBROUTINE FOMTAU (V,NV,NCR,TAU,NA)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION V(50),TAU(50),VI(50),SUM(50),VKT(50),UK(50),UV(50)
DIMENSION NV(2),NA(2),NVKT(2),NUK(2)
CALL UNITY(VI,NV)
N=NV(1)
NR=NV(2)
CALL GAUSEL(N,N,V,NR,VI,IERR)
CALL NULL(SUM,NV)
DO 10 K=1,NCR
 CALL UKVKT(K,V,VI,VKT,NVKT,UK,NUK)
 CALL MULT(UK,NUK,VKT,UV,NV)
 CALL ADD(SUM,UV,NV,SUM,NV)
10 CONTINUE
CALL EQUATE(SUM,NV,TAU,NA)
RETURN
END

C ***** SUBROUTINE UKVKT
SUBROUTINE UKVKT(K,V,NI,NVI,VKT,NVKT,UK,NUK)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION V(50),VI(50),VKT(50),UK(50)
DIMENSION NI(2),NVKT(2),NUK(2)
N=NI(1)
L=1+(K-1)*N
DO 10 I=I,N
 JV=K+(I-1)*N
 VKT(I)=V(J-V)
 JU=L+(I-1)
 UK(I)=VI(JU)
10 CONTINUE
NVKT(1)=I
NVKT(2)=N
NUK(1)=N
NUK(2)=I
RETURN
END

C ***** SUBROUTINE CONTAU
SUBROUTINE CONTAU(NCR,Pi,NA,TAU,NTAU)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION Pi(49),TAU(49),PSI(49),EI(49),Na(2),NTAU(2),PN(49)
C CONSTRUCT PSI FROM Pi
CALL PSICON(Pi,NA,PSI,NPSI)
WRITE(*,*)' EIGENVECTOR OF QP WITH NAMDA DECREASING ORDER'
CALL PRNT(PSI,NA,0,3)
C CONSTRUCT MATRIX (INC,0)
CALL NORMAL(PSI,NA,PN,NA)
WRITE(*,*)' NORMALIZED EIGENVECTOR'
CALL PRNT(PN,NA,0,3)
CALL NULL(EI,NA)
N=NA(1)
N1=N+1
DO 10 I=1,NCR
 K=1+(I-1)*N1
 EI(K)=1
10 CONTINUE
WRITE(*,*)' MATRIX (INC,0)'
CALL PRNT(EI,NA,0,3)
C COMPUTES TAU
ITYPE=2
CALL SUB9(ITYPE,PN,NA, EI,NA,PN,NA,TAU,NA)
RETURN
END

C ***** SUBROUTINE PSICON
SUBROUTINE PSICON(Pi,NA,PSI,NPSI)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION Pi(49),PSI(49),Na(2),NPSI(2)
N=Na(1)
L=1
DO 10 I=1,N
DO 20 J=1,N
K=N*(N-1)+J
PSI(L)=PI(K)
L=L+1
20 CONTINUE
10 CONTINUE
RETURN
END

C **** SUBROUTINE NORMAL
SUBROUTINE NORMAL(A, NA, B, NB)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(49), B(49), C(7), NA(2), NB(2)

C COMPUTES EUCLIDIAN NORM OF EACH COLUMN
N=NA(1)
K=0
DO 10 I=1,N
SUM=0.
DO 20 J=1,N
J1=J+K
TEMP=A(J1)*A(J1)
SUM=SUM+TEMP
20 CONTINUE
K=K+N
C(I)=DSQRT(SUM)
10 CONTINUE

C NORMALIZE EACH COLUMN
K=0
DO 30 I=1,N
DO 40 J=1,N
J1=J+K
B(J1)=A(J1)/C(I)
40 CONTINUE
K=K+N
30 CONTINUE
RETURN
END