Proceedings

The 2nd Symposium on the

 FRONTIERS

Frontiers of Massively Parallel

Computation

October 10—12, 1988
George Mason University
Fairfax, Virginia

IEEE Computer Society Order Number 892
Library of Congress Number 88-82088
IEEE Catalog Number 88CH2649-2

ISBN 0-8186-0892-7

SAN 264-620X

@ IEEE COMPUTER SOCIETY

THE INSTITUTE OF ELECTRICAL
i ANO ELECTRONICS ENGINEERS, INC.
IEEE

COMPUTER

SOCIETY 0 (EEE-NATIONAL CAPITAL AREA COUNCIL
PRESS . .
eEE

George Mason University

(Vo¥N)
SullIhT oA

(i 10Tl-wl=-Y . Vi)

el Y]

G

<

G U A25D
ENGTAYA0dWLY T3V eYe ATOALTLYWw un

29/tS

{oun

co
BT -0

2 WATAL

=¥l --
Tty T-0EM

NASA

Natonal Aeronautics and
Space Administration

Goddard Space Flight Center

i

iy

-~

AT T GNAT ONG

SHE

COVER PHOTOS:

TOP LEFT: Fluid Flow. This picture shows the flow of water around rectangular objects
in an open tank. Flow patterns are calculated using the Navier-Stokes equations on a
1,024-processor DAP 510.

TOP RIGHT: Graphics. “Mercury?” by H. C. Delany, M.I.T. Media Laboratory. This pic-
ture shows reflective spheres over an alien sunset. It was computed at 1024 x 1024 pixel
resolution with 5 orders of reflection in 6 minutes using a 16,384-processor Connection
Machine-2.

BOTTOM RIGHT: Stereo Image Matching by J. P. Strong and J. E. Dorband, NASA/
Goddard Space Flight Center. A three-dimensional perspective view of terrain in north-
east India created by automatically fusing a pair of 512 x 512 stereo images in 50 seconds
using NASA's 16,384-processor Massively Paralle] Processor.

Cover design by ST Systems Corporation (STX) Graphics—Joan Sargies, Jane Foltz, and
Barbara Gogan-—Marinaro.

Proceedings

The 2nd Symposium on the

Frontiers of Massively Parallel
Computations

The 2nd Symposium on the

Frontiers of
Massively Parallel
Computation

Ronnie Mills, Editor
ST Systems Corporation
Lanham, Maryland

Proceedings of the second symposium sponsored by the
Computer Society of the IEEE,

NASA/Goddard Space Fight Center,

IEEE National Capital Area Council, and

George Mason University, and held at

George Mason University

Fairfax, Virginia

October 10-12, 1988

Supported by grants from

Active Memory Technology,
Digital Equipment Corporation,
LORAL Defense Systems—Akron,
Martin Marietta Aerospace,
Science Applications Research,
ST Systems Corporation, and
Thinking Machines Corporation

Proceedings

The 2nd Symposium on the

Frontiers of Massively Parallel
Computations

@IEEE Computer Society Press

Washington e Los Alamitos e Brussels & Tokyo

@lEEE Computer Society oThe Institute of Electrical and Electronics Engineers, Inc.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title
page. They reflect the authors’ opinions and are published as presented and without change, in the
interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, the IEEE Computer Society Press, or The Institute of Electrical and
Electronics Engineers, Inc.

Published by

IEEE Computer Society Press
1730 Massachusetts Avenue, N.W.
Washington, D.C. 20036-1903

Copyright © 1988 by The Institute of Electrical and Electronics Engineers, Inc.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem, MA
01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission, write to Director, Publishing
Services, IEEE, 345 East 47th Street, New York, NY 10017. All rights reserved.

IEEE Computer Society Order Number 892
leragl of Congress Number 88-82088
IEEE Catalog Number 88CH2649-2
ISBN 0-8186-0892-7 (paperL
ISBN 0-8186-5892-4 (microfiche)
ISBN 0-8186-8892-0 (case)

SAN 264-620X

Additional copies may be ordered from:

|IEEE Computer Society IEEE Service Center JEEE Computer Society IEEE Computer Society
Order Department 445 Hoes Lane 13, Avenue de I'Aquilon Qoshima Building
10662 Los Vaqueros Circle P.O. Box 1331 B-1200 Brussels 2-19-1 Minami Aoyama
Los Alamitos, CA 90728-2578 Piscataway, NJ 08855-1331 BELGIUM Minato-ku, Tokyo 107, JAPAN

0 THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

iv

PREFACE

Individuals interested in developing, using, and selling massively parallel
computers converged on George Mason University in Fairfax, Virginia, on
October 10 for Frontiers '88: The Second Symposium on the Frontiers of
Massively Parallel Computation. Four-hundred-forty-five registrants (in-
cluding five from foreign countries) attended the 3-day conference. Seven-
ty-six universities, 81 corporations, and 37 Government organizations were
represented.

There were 52 oral presentations and more than 60 poster presentations.
There were also exhibits, a tutorial (attended by 129 registrants), and a
panel discussion. The wide attendance and scope of the papers indicates
that the field of massively parallel computing is attaining ever greater im-
portance.

The sponsors and grantors look forward to continuing this series of sympo-
sia every other year at university sites in the greater Washington, DC,
area. We hope these Proceedings give you some feel of the excitement that
Frontiers ’88 generated.

James R. Fischer David H. Schaefer
NASA/Goddard Space Flight Center George Mason University
Conference Chairman Program Chairman

A note about the exhibits:

Nine organizations mounted exhibits at the symposium. Four of these
exhibits featured operational massively parallel systems:

Active Memory Technology had both their 1024 processor
DAP 510 and their 4096 processor DAP 610 performing

demonstrations.

George Mason University demonstrated the student-built
GAM 2 pyramid structure, containing 1365 processing ele-
ments on six levels, in their Advanced Computer Architec-
ture Laboratory.

Martin Marietta Aerospace had a 40,000 processor Geo-
metric Arithmetic Parallel Processor (GAPP) system in op-
eration.

Thinking Machines Corporation had a 32,768 processor
Connection Machine-2 running and demonstrating a va-
riety of applications.

Other exhibitors were the Space Data and Computing Division at NASA/
Goddard Space Flight Center with an exhibit of Massively Parallel Pro-
cessor (MPP) applications, LORAL Defense Systems—Akron with an ex-
hibit on the MPP and the Associative Parallel Processor (ASPRO)
computer, and the Cornell Theory Center with an exhibit of their Trolli-
us Operating System. Two publisher exhibitors were John Wiley & Sons,
Ltd., who advertised their new journal Concurrency: Practice and Experi-
ence, and the publishers of Supercomputing Review.

vi

FOREWORD

This section was transcribed from welcoming remarks presented at the symposium.

Dr. George W. Johnson,
President of George Mason University

George Mason University, in order to move quickly, has had to make certain bets.
Two of those bets are represented by this conference. One bet was that we had
always to anticipate what the cutting edge of developments in the fields that we
chose to embark on would be. We decided that we would have to build a new
engineering school, but that it would not be one built on the base of the physical
sciences, but on the base of the information sciences. That was the first bet that we
made.

The 2nd bet was that as a new university, we could not afford to be aloof and remote
from our community, that we had to be what we call "interactive." We had to
break down the walls between town and gown, the walls between marketplace and
academy, and we have embarked aggressively on doing exactly that. You can see
that the two come together in our School of Information Technology and
Engineering, where the demarcation between business, government, and academy
really is successfully blurred. And so this conference coming here at this
particular time is really a signal event for George Mason University, and for that
reason, among many others, you're very very welcome to the institution, and I'm
glad to see you here. Thank you.

Dr. Lee Holcomb
Director, Information Sciences and Human Factors Division
NASA Headquarters

On behalf of NASA, I would like to welcome you all to this symposium—The 2nd
Symposium on the Frontiers of Massively Parallel Computation. The NASA Office
of Aeronautics and Space Technology has had a long history in parallel processing
technology. Beginning in the early 1970's with the evaluation of the ILLIAC 1V,
we gained valuable knowledge on how to apply parallel processing power to
aerospace computational requirements. In the late 1970's NASA was at the
forefront of this important computing technology by funding the development of the
world's first massively parallel processor, the MPP, which was originally intended
for image processing applications. The MPP was designed, fabricated, and
delivered to NASA in 1983, and an Applications Working Group was formed to
encourage researchers from widely varied disciplines to conduct research on the
MPP. That early investment is now bearing fruit, and is certainly evident, in part,
by this symposium.

In the 1982 and 1983 time frame, the White House Office of Science and Technology
Policy (OSTP) Federal Coordinating Committee on Science Engineering and
Technology (FCCSET) established a subcommittee on supercomputing to
coordinate the activities of the various federal government agencies. The early
FCCSET committee focused on the concept of the federal government as a friendly
buyer of supercomputers and on the concept of providing researchers access to
supercomputers. Some of the programs that came out of this early activity were
the Numerical Aerodynamic Simulation program at NASA/Ames, the NSF
supercomputer centers that have been established throughout this country, and
the Supercomputing Research Center in Maryland.

vii

More recently, the FCCSET committee has focused on the government being more
than a friendly buyer. A recent OSTP report titled "A Research and Development
Strategy for High Performance Computing,” which was issued in November 1987,
calls for government sponsorship of research in high performance computers,
software technology and algorithms, networking, and basic research, and
resources. Each government agency that is participating in FCCSET is preparing
a response to this report. NASA has developed a high-performance computing
initiative which includes 3 parallel computing testbeds, one for computational
aerosciences, one for Earth & space sciences, and one for spaceborne applications.
We intend to support algorithm and architecture research and advances in
software for massively parallel systems, both operating systems and languages.

To date, this initiative has been worked primarily within the government through
planning activities of the FCCSET committee. NASA now wants to solicit stronger
involvement from industry and universities in this program. Dr. Paul Smith of
my staff, who is here today, will be formulating an approach for forming a
government, industry, and university planning team to advance this country's
massively parallel computational capability. Dr. Smith will be present throughout
this conference, and we solicit your views on how best to form this partnership. At
the hearings on the National Supercomputer Network in September 1988, Senator
Albert Gore, challenged the government to strengthen its ties with academia and
industry. This conference provides one forum to begin forming a partnership of
federal, academic and industrial researchers in this important frontier. I'm
happy to welcome you to this symposium and hope that you will find it stimulating
and productive.

Vil

ACKNOWLEDGEMENTS

Frontiers '88 could not have taken place without the contributions of many people including:

Technical Meeting Committee

Working Program Committee

James Fischer (Conference Chair)
NASA/Goddard Space Flight Center

James Tilton (Finance Chair)
NASA/Goddard Space Flight Center

David Schaefer (Program Chair)
George Mason University

Ronnie Mills (Publications Chair)
S.T. Systems Corporation

Representatives of Cosponsors and Grantors

Ai C. Fang
NASA Headquarters

Anne Marie Kelly
Magdelene Johnson
Denise Felix

IEEE Computer Society

Thomas Doeppner
IEEE National Capital Area Council

Lydia Walls
Nancy Joyner
George Mason University

Bruce Alper
Kevin Linck
Active Memory Technology, Inc.

Pearl Wang (Tutorials Chair)
George Mason University

Mark Stevens (Publicity Chair)
S.T. Systems Corporation

Samuel Earp (Exhibition Chair)
George Mason University

Barbara Framer (Local Arrangements Chair)
George Mason University

Jonathan Harris
Digital Equipment Corporation

Alan Hinkle
LORAL Defense Systems—Akron

Wade Pemberton

Eugene Cloud

Ron Sartain

Martin Marietta Aerospace

Ron Estes
S.T. Systems Corporation

Marvin Denicoff
Carol Bee-Latty
Thinking Machines Corporation

Prof. David Schaefer
George Mason University

Prof. Marvin Denicoff
Thinking Machines Corporation

Dr. John Dorband
NASA/Goddard Space Flight Center

Prof. Michael Rice
George Mason University

Dr. James Strong
NASA/Goddard Space Flight Center

Dr. James Tilton
NASA/Goddard Space Flight Center

Prof. Pearl Wang
George Mason University

Steering Committee

Program Committee

Tutorial Lecturers

Invited Speakers

Carol Bee-Latty
Thinking Machines Corporation

James Fischer
NASA/Goddard Space Flight
Center

Chester Grosch
Old Dominion University

R. Michael Hord
MRJ, Inc.

Michael Rice
George Mason University

Prof. David Schaefer
George Mason University

Dr. Ray Arnold
NASA Headquarters

Dr. Ken Batcher

LORAL Defense Systems—Akron

Dr. Jack Dongarra
Argonne National Laboratory

Prof. Michael Duff
University College, London

Dr. Milton Halem

NASA/Goddard Space Flight Center

Dr. James Hardy
Whitney/Demos Productions

Prof. Dennis Parkinson
Active Memory Technology

Prof. Tomaso Poggio
Massachusetts Institute of Technology

Prof. John Reif
Duke University

Prof. Anthony Reeves
University of Illinois

Prof. Azriel Rosenfeld
University of Maryland

Dr. Paul Schneck
Supercomputing Research Center

Dr, Steven Squires
DARPA

Dr. Guy Steele
Thinking Machines Corporation

Prof. Leonard Uhr
University of Wisconsin

Prof. Dennis Parkinson
Active Memory Technology, Inc.
Queen Mary College

Prof. David Schaefer
George Mason University

Prof. Pearl Wang
George Mason University

Dr. John Dorband
NASA/Goddard Space Flight Center

Dr. Kenneth Wilson
Ohio State University

Gary Demos
Whitney/Demos Productions

Prof. Azriel Rosenfeld
University of Maryland

Dr. Guy Steele
Thinking Machines Corporation

Session Chairs

R. Michael Hord Prof. Pearl Wang

MRJ, Inc. George Mason University

Dr. James Tilton Prof. Joseph 'Ja 'Ja
NASA/Goddard Space Flight Center University of Maryland

Dr. James Strong Prof. H.J. Siegel

NASA/Goddard Space Flight Center Purdue University

Dr. Samuel Earp Prof. Chester Grosch

George Mason University Old Dominion University

Dr. Michael Rice Dr. John Dorband

George Mason University NASA/Goddard Space Flight Center
Jonathan Harris Prof. Marvin Denicoff

Digital Equipment Corporation Thinking Machines Corporation

Special thanks to Maxine Schaefer for developing the database of abstract submissions, Millie Brice and
Towanda Plater at NASA/Goddard for handling the numerous large mailings, Michele Braithwaite at
George Mason University and Jim Elliott at NASA/Goddard for supporting publicity efforts, and the
George Mason University student chapter of the IEEE for supporting the exhibition and audio visual needs
of the conference.

X1

CONTENTS

Preface
Foreword
Acknowledgements

PANEL DISCUSSION

INVITED PRESENTATIONS

Languages for Massively Parallel Computers
Guy L. Steele, Jr., Thinking Machines Corporation

Generating Movie-Quality Animated Graphics With Massively Parallel Computers
Gary Demos, Whitney-Demos Productions

The Impact of Massively Parallel Computers on Image Processing
Azriel Rosenfeld, University of Maryland

SECTION I: ALGORITHMS
Part 1: Oral Presentations

How To Cluster in Parallel With Neural Networks
Behzad Kamgar-Parsi, University of Maryland
dJ. A. Gualtieri, NASA GSFC
Judy E. Devaney, Science Applications Research
Behrooz Kamgar-Parsi, George Mason University

Modeling Neural Networks on the MPP
Joe Hicklin and
Howard Demuth, University of Idaho

Artificial Neural Network on a SIMD Architecture
Joe R. Brown,
Melissa M. Garber, and
Steven F. Venable, Martin Marietta Electronic Systems

Characterizing the Error Function of a Neural Network
Barbara Moore and
Marcelo Fogaca, MIT

Alan Kramer, University of California, Berkeley

The Impact of Rent's Rule on Massive Parallelism
P. J. Koopman and
D. P. Siewiorek, Carnegie Mellon University

vii

XXV

15

21

31

39

43

49

59

i RAGE_X_[] . INTENIIONALLY BLANS

PRECEDING PAGE BLANK NOT FILMED

Overview and Extensions of a System for Routing Directed Graphs on SIMD Architectures
Sherryl Tomboulian, NASA Langley Research Center

An Analysis of Disjoint Path Properties in Data Manipulator Networks
Wayne G. Nation and
Howard Jay Siegel, Purdue University

Data Structures for Associative Supercomputers
J. L. Potter, Kent State University

Parallel Implementations of the Simplex Algorithm
Richard Marciano and
Teodor Rus, University of Iowa

Region Growing on a Highly Parallel Mesh-Connected SIMD Computer
Marc Willebeek-LeMair, Cornell University
Anthony P. Reeves, University of Illinois at Urbana-Champaign

Hypercube Algorithms Suitable for Image Understanding in Uncertain Environments
T. L. Huntsberger and
A Sengupta, University of South Carolina

Efficient Scan Operators for Bit-Serial Processor Arrays
C. M. Fiduccia and
R. M. Mattheyses, General Electric R & D Center
R. E. Stearns, SUNY at Albany

SECTION I: ALGORITHMS
Part 2: Poster Presentations

An Efficient Method for the Representation and Transmission of Message Patterns
P. J. Bernhard, Clemson University
D. J. Rosenkrantz, SUNY at Albany

Minimum Spanning Tree on the HMESH Architecture
R. V. Boppana and
C. S. Raghavendra, University of Southern California

Optimal Mesh Algorithms for VLSI Routing
Shing-Chong Chang and
Joseph JdJd, University of Maryland

A Uniform and Reconfigurable Framework for the Multidimensional Fourier Transform
Ron Coleman and
Michael Post, Polytechnic University
Alan Waksman, Plex Systems Research, Inc.

Xiv

69

77

85

93

101

105

115

121

125

129

Parallel Algorithms for Interactive Manipulation of Digital Terrain Models

E. W. Davis,
D. F. McAllister, and
V. Nagaraj, North Carolina State University

Sort Computation
John E. Dorband, NASA GSFC

Parallel Frequency Domain Adaptive Line Enhancer
Mohamed El-Sharkawy, Bucknell University
Maurice Aburdene, Naval Research Laboratory

Optimal Geometric Algorithms for Digitized Pictures on an Optical Mesh
Mehrnoosh Mary Eshaghian and

V. K. Prasanna Kumar, University of Southern California

An SIMD Parallel e-Approximation Scheme for 0/1 Knapsack
Thomas E. Gerasch, SPARTA, Inc.

Fault Tolerant Message Routing on Large Parallel Systems
Jesse M. Gordon and
Quentin F. Stout, University of Michigan

Load Balancing for Massively-Parallel Soft-Real-Time Systems
Max Hailperin, Stanford University

Efficient Algorithms for Massively Parallel Computers

I. Design of Stable Computational Systems Using Linear Systems Models
Harold M. Hastings, Hofstra University
Ivan Kadar, Grumman Corporation

Applied Geometric Algorithms on Boolean N_Cube Computers
Wen-Jing Hsu and
Xiaola Lin, Michigan State University
Kuan-Tsae Huang, IBM Corporation

A Fast Algorithm for Voronoi Diagram Calculation Based on Distance Doubling

David Izraelevitz, The Analytic Sciences Corporation

Provably Good Parallel Algorithms for Channel Routing of Multiterminal Nets

Sridhar Krishnamurthy and
Joseph JdaJd, University of Maryland

Sparse Matrix Vector Multiplication on Polymorphic-Torus

Hungwen Li, Almaden Research Center
Ming-Cheng Sheng, IBM Corporation

Xy

133

137

143

147

151

155

159

165

169

173

177

181

Almost Linear Speed-Up of Distributed Discrete Event Simulations
Boris D. Lubachevsky, Bell Laboratories

Dynamically Allocating Sets of Fine-Grained Processors to Running Computations
David Middleton, NASA Langley Research Center

Portable Parallel Algorithms for Geometric Problems
Russ Miller, SUNY at Buffalo
Quentin F. Stout, University of Michigan

Algorithms for Long Fast Fourier Transforms on a Connection Machine
J. P. Norris,
P. Hertz, and
K. S. Wood, Naval Research Laboratory
Paul Anderson, Planning Research Corporation

Simulating Neural Networks Using C*
Mark J. Norton, GE Aerospace Advanced Technology Laboratories

D-Trees: A Class of Dense Regular Interconnection Topologies
B. Ramkumar and
L. V. Kalé, University of Illinois at Urbana-Champaign

A Model of Task Migration in Partitionable Parallel Processing Systems
Thomas Schwederski,
Howard J. Siegel, and
Thomas L. Casavant, Purdue University

Sparse Matrix Computations on an FFP Machine
B. T. Smith,
R. K Singh, and
G. A. Magé, University of North Carolina

A Parallel Algorithm for Finite Element Computation

P. Subramaniam, Picker International

N. Ida, University of Akron

The Fast Fourier Transform as a Test Case for a Systolic Data Flow Machine
Doron Tal,
John Comfort, and

Maria Martinez, Florida International University

Optimal Tilings for Iterative PDE Solvers
Anthony E. Terrano, Rutgers University

Parallel Algorithms for Direct Solution of Large Systems of Equations

Jian-She Wang and
Nathan Ida, University of Akron

Xvi

187

191

195

199

203

207

211

215

219

223

227

231

SECTION II: APPLICATIONS
Part 1: Oral Presentations

Stochastic Simulation of Charged Particle Transport on the Massively Parallel Processor
James A. Earl, University of Maryland

Suitability of Simulation of a Population of Chemical Polymers on the Massively Parallel

Processor
David Marshall Cohen, University of Iowa

Estimating Water Flow Through a Hillslope Using the Massively Parallel Processor
J. E. Devaney, Science Applications Research
P. J. Camillo and
R. J. Gurney, NASA GSFC

Implementation of a 3D Thermal Analysis Code on the CM-2 Connection Machine Computer
R. E. Cline, Jr., Sandia National Laboratories
B. M. Boghosian and
B. Nemnich, Thinking Machines Corporation

Fractal Graphics and Image Compression on a SIMD Processor
S. F. Reddaway and
A. Wilson, Active Memory Technology
A. Horn, Oxford University

Application of Massively Parallel Machines to Molecular Dynamics Simulation of
Free Clusters

L. L. Boyer and

P. J. Edwardson, Naval Research Laboratory

An Overview of Current Connection Machine Applications at MRJ
R. Michael Hord, MRJ, Inc.

A High Performance Parallel Approach to Medical Imaging
G. Frieder, Syracuse University
O. Frieder, Bell Communications Research
M. R. Stytz, Air Force Institute of Technology

Parallel Algorithm for the Solution of Nonlinear Poisson Equation of Semiconductor
Device Theory and Its Implementation on the MPP

J. P. Darling, The Johns Hopkins University Applied Physics Laboratory

L D. Mayergoyz, University of Maryland

XVil

237

241

249

257

265

275

279

282

289

DARPA Sensor National Testbed: Hardware and Software Architecture
D. R. Guarino,
R. P. Kruger,
8. Sayre,
T. Sos,
C. J. Turner, and
C. L. Winter, Science Applications International Corporation

Efficient Management of Sensory Data for an Autonomous Submersible Utilizing a
Parallel Processing Architecture

Alhad Chande,

Sondra Shapiro, and

Art Acampora, Martin Marietta Aero & Naval Systems

SECTION II: APPLICATIONS
Part 2: Poster Presentations

Simulations of Conposit, a Supra-Connectionist Architecture for Commonsense Reasoning
John A. Barnden, New Mexico State University

Massively Parallel Computing Applied to the One-Dimensional Bin Packing Problem
Judith O. Berkey, George Mason University

Surface Modeling Algorithm for Pyramid Architectures
D. Britton, George Mason University and Trident Systems, Inc.

A Homogeneous Computational Model for Spatial Inference on Massively-Parallel
Architectures
Mark J. Carlotto, The Analytic Sciences Corporation

Scan Line Graphics Generation on the Massively Parallel Processor
John E. Dorband, NASA GSFC

Fingerprint Identification on a Massively Parallel Architecture
T. R. Gowrishankar, George Mason University

Gray Scale Adjustment Algorithms on SIMD Architectures
Christopher Lee Kuszmaul, MRJ, Inc.

A Parallel Particle-In-Cell Model for the Massively Parallel Processor
C. S. Lin,
A L. Thring, and
J. Koga, Southwest Research Institute

xviii

295

303

311

317

321

323

327

331

335

339

Parallel Algorithm for Determining Motion Vectors in Ice Floe Images by Matching

Edge Features 343
M. Manohar,
H. K. Ramapriyan, and
d. P. Strong, NASA GSFC

Symbolic Solution of Simultaneous Linear Algebraic Equations via Parallel

Numerical Computing 349
L D. Mayergoyz and
F. P. Emad, University of Maryland

Parallel Implementation Considerations for a Class of Signal Processing Algorithms 353
Nidal M. Sammur and
Martin T. Hagan, Oklahoma State University

Image Segmentation by Iterative Parallel Region Growing With Applications to Data
Compression and Image Analysis 357
James C. Tilton, NASA GSFC

The Performance of the Image Understanding Architecture on the DARPA Integrated
Image Understanding Benchmark 361
Charles C. Weems, University of Massachusetts

SECTION III: ARCHITECTURES
Part 1: Oral Presentations

The Martin Marietta Advanced Systolic Array Processor 367
A. Haug and
R. Graybill, Martin Marietta Aero & Naval Systers

The Geometric Arithmetic Parallel Processor 373
Eugene L. Cloud, Martin Marietia Electronic Systems

NAP (No ALU Processor): The Great Communicator 383
Jeff Fried, MIT and GTE Laboratories
Bradley C. Kuszmaul, MIT and Thinking Machines Corporation

Generalization of Orthogonal Multiprocessor for Massively Parallel Computation 391

Kai Hwang and
Dongseung Kim, Uriversity of Southern California

Xix

BLITZEN: A Highly Integrated Massively Parallel Machine
D. W. Blevins, The Microelectronics Center of North Carolina
E. W. Davis, North Carolina State University
R. A Heaton, The Microelectronics Center of North Carolina
J. H. Reif, Duke University

Massively Parallel Computing System for Research and Development Applications
W. Keith Johnson, Amber Engineering, Inc.

The APx Accelerator
E. Abreu,
D. Jenkins,
M. Hervin, and
D. Evans, Visionary Systems, Inc.

The Design of a Bit-Serial Coprocessor to Perform Multiplication and Division on a Massively

Parallel Architecture
Robert E. Morley, Jr.,
Gary E. Christensen,
Thomas J. Sullivan, and
Orly Kamin, Washington University

Controlling and Programming the Sphinx Multi-SIMD Pyramid Machine
J. Méhat, Université Paris VIII
A. Mérigot, Institut d’Electronique Fondamentale, Université Paris Sud

The Ynet: An Interconnect Structure for a Highly Concurrent Data Base Computer System
Philip M. Neches, Teradata Corporation

A Reconfigurable Optical Interconnection Network for Highly Parallel Architecture
X. Thibault,
D. Comte, and
P. Siron, ON.E.RA./C.E.R.T.

The GAM 1I Pyramid
Zahi Abuhamdeh, George Mason University

SECTION III: ARCHITECTURES
Part 2: Poster Presentations

Parallel and Pipelined VLSI Design for the Histogramming Operation
M. Abdelguerfi, University of Detroit
A. K Sood, George Mason University
S. Khalaf, Wayne State University

XX

399

407

413

419

423

429

437

443

451

The Function of a Connection Network Between Host and Processing Elements in
Massively Parallel Computer Systems
Timothy Bridges, Indiana University and Massively Parallel Arch. Corp.

Dense Symmetric Networks From Linear Groups
L. Campbell and
M. Fellows, Unriversity of Idaho
G. Carlsson, Princeton University
V. Faber and
J. Moore, Los Alamos National Laboratories
M. Langston, Washington State University
A. Mullhaupt, University of New Mexico
H. Sexton, Lucid, Inc.

A Massively Parallel Processing System Based on a Hyper-Crossbar Network
C. Chin and
W. Lin, General Electric Company

Hypercomputers: Design and Architecture
Ron Coleman and
Michael Post, Polytechnic University
Alan Waksman, Plex Systems Research, Inc.

A Reduced Diameter Interconnection Network
K. Efe, University of Southwestern Louisiana
P. Blackwell,
T. Shiau, and
W. Slough, University of Missouri-Columbia

The PSMH: A Pyramid of Fractional Dimension
Jean Hecquard and
Raj Acharya, SUNY at Buffalo

Routing Linear Permutations Through the Omega Network in Two Passes
John Keohane and
Richard E. Stearns, SUNY at Albany

Performance of the ASP on the DARPA Architecture Benchmark
A Krikelis and
R. M. Lea, Aspex Microsystems Ltd.

Simulation and Analysis of Enhanced Switch Architectures for Interconnection Networks
in Massively Parallel Shared Memory Machines

Yue-sheng Liu and

Susan Dickey, New York University

Fault Tolerance of Allocation Schemes in Massively Parallel Computers
Marilynn Livingston, Southern Illinois University
Quentin F. Stout, University of Michigan

XXi

455

459

463

467

471

475

479

483

487

491

Computer Architecture for Intelligent, Real-Time, Numeric and Symbolic Processing 495
R. K Mahadevan and
C. C. Carroll, University of Alabama

Regular Processor Arrays 499
Allen D. Malony, University of Illinois at Urbana—Champaign

Interconnection Networks for Fifth-Generation Computers 503
Bernard L. Menezes, University of Maryland

Reliability Considerations in Large-Scale Computing Systems 507
W. Najjar, Information Sciences Institute
J.-L. Gaudiot, University of Southern California

Design Considerations for a Pyramidal Cellular Logic Processor 511
Joseph J. Pfeiffer, Jr., New Mexico State University

Microcode Generation for the Control of a Massively Parallel Computer 515
Tom Phillips,

Bret Michael, and
Zahi Abuhamdeh, George Mason University

A Multi-Layered G-Network for Massively Parallel Computation 519
Teresa Haynes Rice, East Tennessee State University
Ratan K. Guha, University of Central Florida

A Sequenced Hypercube Topology for a Massively-Parallel Database Computer 521
Naphtali Rishe,
Doron Tal, and
Qiang Li, Florida International University

An Architecture for the Implementation of a Parallel Marker Propagation System 525
Howard Schneider, Cité de la Santé de Laval Hospital

LN-Tree: A Fault-Tolerant Tree Architecture 531
K. Y. Srinivasan, University of Toledo
A K. Sood, George Mason University

A Sliding Memory Plane Array Processor 537
M. H. Sunwoo and
J. K. Aggarwal, University of Texas at Austin

Study of the Generalized Multiple Bus-Connected Parallel Computer 541
Chia-Jiu Wang, University of Colorado
C. Wuand
Victor P. Nelson, Auburn University

Neurocomputing With Optical Pipeline Networks 545
Zhiwei Xu, Rutgers University
Kai Hwang, University of Southern California

XXit

SECTION IV: LANGUAGES
Part 1: Oral Presentations

Massively Parallel Data Optimization
Kathleen Knobe, Compass, Inc.
Joan D. Lukas, University of Massachusetts at Boston
Guy L. Steele, Jr., Thinking Machines Corporation

Testing Shared-Memory Parallel Programs
Andrew H. Sung, New Mexico Tech

On the Expansion, Analysis, and Mapping of Conventional Programs Into Code for Bit
Level Processor Arrays
José A. B. Fortes, Purdue University

Compiling Collection-Oriented Languages Onto Massively Parallel Computers
Guy E. Blelloch, MIT
Gary W. Sabot, Thinking Machines Corporation

Implementation and Use of an Image Processing Algebra for Programming Massively
Parallel Machines

J. N. Wilson,

G. R. Fischer, and

G. X. Ritter, University of Florida

MPP Pascal

Tim Busse, Computer Sciences Corporation

A Formal Model for SIMD Computation
M. D. Rice,
8. B. Seidman, and
P. Y. Wang, George Mason University

Abstract Data Types for SIMD Hypercube Machines
Farokh B. Bastani and
Dar-Ren Leu, University of Houston

An Optimally Portable SIMD Programming Language
Russ Tuck, Duke University and University of North Carolina at Chapel Hill

A Generic Fine-Grained Parallel C
L. Hamet and
J. Dorband, NASA GSFC

MPP Implementation of Abstract Data Parallel Architectures for Declarative Programming

Languages
John T. O’Donnell, University of Glasgow

xxiii

551

559

567

575

587

595

601

609

617

625

629

SECTION IV: LANGUAGES
Part 2: Poster Presentations

Performance Analysis of Interconnection Networks for Massively Parallel Multicomputers
Hassan Z. Abdalla and
Scott F. Midkiff, Virginia Polytechnic Institute

Parallel Hashed Key Access on the Connection Machine
Paul B. Anderson, Planning Research Corporation

Object-Oriented Prototypes of Parallel Architectures for the Performance Evaluation
of Algorithms
Herb Barad, Tulane University

Characterizing the Advantages of Massively Parallel Computing
R. M. Hord,
T. A. Kraay, and
E. P. McMahon, MRJ, Inc.

A Systematic Approach for Designing Pipelined Data Parallel Algorithms
Chung-Ta King, New Jersey Institute of Technology
Wen-Hwa Chou and
Lionel M. Ni, Michigan State University

CMS: An Integrated Simulation Environment
J. Leslie Walker, Charles River Analytics
Abbas Birjandi, Northeastern University

ADDITIONAL PAPERS

Signal Processing With Nodal Networks on a SIMD Massively Parallel Processor
William I. Lundgren, GE Aerospace Advanced Techrology Laboratories

Usefulness of the Massively Parallel Processor for Study of Electronic Properties of
Atomic and Condensed Matter Systems

N. Sahoo and

T. P. Das, SUNY at Albany

S. N. Ray, Software Corporation of America

Tools for Managing Massively Parallel Systems
K. M. Nichols, Apple Computer, Inc.

Programming Considerations in the Design and Use of a SIMD Image Computer
Allan L. Fisher, Carnegie Mellon University
Peter Highnam, Schlumberger Doll Research

Illustrations
Attendees
Author Index
Title Index

XX1V

639

647

651

653

657

663

671

675

683

693
705
727
733

ORIGINAL PAGE IS
OF POOR QUALITY

THE PANEL DISCUSSION

On Wednesday afternoon, October12, a panel convened to discuss the following topics:
¢ Whatis the future of MIMD in massively parallel systems?

¢ Will massively parallel computing environments ever be comparable to those of
vector processors?

¢ Can progress in the use of massively parallel computing take place in a world
dominated by dusty FORTRAN decks?

Professor David Schaefer of George Mason University led the discussion. The panel
members were:

Dr. Milton Halem - Goddard Space Flight Center

Professor Kai Hwang - University of Southern California

Professor Dennis Parkinson - Active Memory Technology and
Queen Mary College

Professor John Reif - Duke University

Professor Anthony Reeves - Cornell University

Dr. Paul Schneck - Supercomputing Research Center

Dr. Guy Steele - Thinking Machines Corporation

Professor Leonard Uhr - University of Wisconsin.

The following is an edited version of this session. It was prepared by David Schaefer
from a tape recording of the discussion. He gratefully acknowledges help from Jim
Fischer of Goddard, from notes taken during the session by David Middleton of ICASE,
and from the panel members, all of whom reviewed the first draft and made sugges-
tions.

The session started with the reading of a communication.
David Schaefer

Thinking Machines Corporation has given me a memo concerning their feelings about
SIMD and MIMD. The memo, a little edited, is as follows:

People have an emotional attachment to MIMD. They keep wantingit to
be the answer, but they keep seeing SIMD come up as the answer.

Appeal of MIMD: You only understand in terms of what you understand,
and people know single processors.

XXV

Achievements of SIMD:
¢ high processor count
¢ applications fit (God is SIMD)
* very basic circuitry
e price performance ratio is good

The ultimate issue: Software is too expensive to be run on just one
processor. You need to write as little code as possible and run each
program on as many processors as possible. ﬂ'

MIMD: “If you are willing to accept alot of complexity, youcan doamazing
things.”

SIMD: “If you are willing to accept alot of simplicity, you can do amazing
things.”

That is the end of the Thinking Machines communique. Milt, do you want to take the
ball and give your answer to the question, “What is the future of MIMD in massively
parallel systems?”

Milt Halem

With the proliferation and increase in power of our workstations and our growing
powerful PC’s, the impetus on industry will be to tie that capability together to develop
amore powerful resource. Itisfairly obvious that thereis a place for MIMD in massively
parallel systems and there is a place for SIMD in massively parallel systems. I think
we will see them both continue to evolve and merge in the next dozen years.

Schaefer
Do you think the panel should agree on what we mean by “massively parallel?”
Kai Hwang

The definition of massive parallelism is a time function—it varies. If you said a
thousand now, five years from now you would be embarrassed to say a thousand.

What I feel about massive parallelism in MIMD systems relates to computationsin the
neural computing area. I feel that is where massively parallel MIMD operations are
needed. Neurons are not synchronized in the biological case. Tomodel a large neural
mass, we need a simulation which is asynchronous.

The real bottom line concerning MIMD massive parallelism is not the hardware—it’s
really the software. We don’t know how to partition programs so that multiple
instruction streams can handle them. So software is one of the major research areas
where we should push in order to see really large scale MIMD machines.

XXVi

I feel there are real massively parallel MIMD candidates (with even a million PE’s)in
the neural computing area.

Dennis Parkinson

Whenever you get two groups of human beings fighting very hard about any subject
such as BASIC versus FORTRAN, you know it is really an irrelevant argument. This
is another of these irrelevant arguments which keeps academics happy most of the
time. The future is not going to be MIMD, the future is not going to be SIMD, it is going
to be some mucky mixture of the two.

When Ilook at the system I use, it has a component, one of its many components, which
is a SIMD processor. It also has a Sun host which has a few other independent units.
I use a collection of processors and ’'m using them for their different abilities to do
different parts of my total task, and that really is what is going to happen.

Ithink the massively parallel components are probably going tobe very much of a SIMD
nature. But they are going to be connected into an environment which we would
consider to be MIMD in principle.

Schaefer

I have a quote here, that maybe you recognize. It says “the optimal algorithm for a
MIMD system is a SIMD algorithm, therefore there is no point in building MIMD
systems.” Does that sound at all familiar?

Parkinson

Ithink I have heardit before. Iactually usedit manytimes, but it was, in fact, first said
to me by Enrico Clemente, who put together MIMD systems from array processors at
the IBM labs.

MIMD has an apparent advantage for the dusty LISP deck people, and that smaller
community which uses dusty FORTRAN decks. If you start from how we used to
program a serial machine, then the MIMD model is the easiest one to play with.
Naturally, most people are starting from there.

If you start from old-fashioned languages like LISP, then you really are stuck in a
computation model which wants to do one thing at a time. The easiest way to do that
is to break your problem up into a few large independent tasks.

If you want to go into thousands of processors or tens of thousands of processors or
millions of processors (I aspire, for Christmas every year, of 16 million, by the way), you
will find that you can optimally keep everything synchronized by using SIMD algo-
rithms. That’s the best algorithm for many MIMD architectures. That’s why the quote
is there.

XXvii

Tony Reeves

The thing I see with the SIMD system is that there is a remarkable number of
applications that map onto such an architecture. When you get a good mapping from
an algorithm to the architecture, then there is very little that you can do to beat that
in terms of performance. The additional cost of an MIMD system is never going to be
justified in that context.

I guess what concerns meis that class, even though anincreasing class, is arestrictive
class. I have been moving some algorithms that don't fit well onto SIMD systems over
to MIMD systems. And what do you know? They turn out to be a lot faster and a lot

more efficient.

We say SIMD is easy to program. I think softwareis the key. We don’t really know how
to program an MIMD system and it is going tobe a while, a number of years, before we
have the proper formalized techniques for doing so. We don’t know how to express
problems for MIMD systems. This harks back tothe type of mathematics we use. There
is a tremendous amount of work to be done in algorithms and concepts.

Consider simulation, for example. I think the mathematical approach we take to it
right nowis very clumsy. We specify a vast number of operations that are not necessary.
It is going to take a more flexible computing structure to take advantage of any
techniques we devise to not bother with some of the redundant calculation operations.

The answer is that there has got to be a place for both kinds of systems. MIMD
architectures are going to assume a more important role as we are able to make the
hardware cheaper as more effective software systems and environments are developed.

Schaefer

Tony, do you see a million-processor, MIMD system?
Reeves

Why not?

John Reif

I guess there are perhaps a number of answers to your question. 1 am a partly
theoretical computer scientist, and there are some interesting ideas on the theory side
of this issue. You've probably all heard of P versus NP. Can you take any arbitrary
sequential problem that is running on a conventional machine, and then can you take
it and put it on a parallel machine so it runs in, say, polylog time? This is a deep
theoretical issue, but the conventional wisdom from the theory community is that the
answer is “no.”

XXViii

PRECEDING PAGE BLANK NOT FILMED

So what this means in practice is that there will remain out there, in spite of very
brilliant algorithm people and brilliant architectures like the Connection Machine, and
other machines like that, a vast collection of non-parallelizable applications areas.
That’s the bad news.

The good news is that, as we have seen in demos here and from many of the talks, there
remains a very large class of scientific problems that we can parallelize. The great
advantage of these specialized SIMD architectures is they are more cost effective than
a Cray.

Cray type architectures, incidentally, include SIMD attributes in their vector opera-
tions, and they have very fast MIMD capability. That is crucial if you want a general
purpose machine that can handle anything. As I mentioned, there are significant
classes of application areas which you cannot parallelize.

SIMD architectures are not necessarily purely SIMD any more. They once were, say
five years ago, but as an example there is a MIMD indirect address feature which was
first added by the DEC people. It was also added in our project where we have 128
processors on a chip, each having MIMD addressing. The Connection Machine now has
that capability as well. Probably many of the future SIMD systems will involve MIMD
aspects.

What they probably won’t haveis fullindependent control. But they are evolvingin that
direction. MIMD systems will evolve very successfully and there will eventually be a

capability of putting more than one MIMD processor on a chip, perhaps even dozens to

hundreds. There will be million-processor MIMD systemsifwe believe in the continual
evolution of VLSI, just as we have seen in SIMD applications.

What will not happen willbe that MIMD will take over because for specialized scientific
computing problems, such as matrix problems and many fluid-flow problems and so
forth, it is more cost effective to have massively parallel SIMD. So it is really a
coexistence of two types of intellectual cultures that I think will become somewhat
fused. They will remain and have various costs and computation power tradeoffs even
through the next century.

Schaefer

As soon as you have a mask register, you don’t have a completely SIMD system
anymore. Therefore, hardly any pure SIMD systems are around anyway.

Reif

Well, indirect addressingis a significant jump past conditional control at the processor
level.

XXIX

Paul Schneck

Professor Parkinson pointed out that this is a religious issue, so let me state immedi-
ately that I'm a polytheist.

Some of you will recall the IBM compatible systems. That first operating system made
a 360/75 completely compatible to a 360/30. They all ran at the same speed.

Allen Turing pointed out in a little informal proof that all computing systems, in the
sense that we know of them, are equivalent. A problem which is soluble on oneis soluble
on another. The only difference is speed. Of course it is that difference which is the
essence of why we are all here and why some computers are supercomputers and others
are not supercomputers.

When I look at a computer system, I don’t look directly at the computer. (Remember
Dave introduced me as a compiler person.) I see it through a programming language,
actually through an algorithm and then through a programming language, then
through acompiler. Thereis an operating system that getsin the way before I ever get
onthemachine, and thereisaloaderand alibrary. There are alot ofinterveninglayers.

I would challenge almost anyone in this audience (this is an analog of the Turing test)
to figure out not whether the thing on the other end of the teletype line is a person or
a computer, but whether it's a SIMD machine, a MIMD machine, or a sequential
machine.

You've got a twisted pair going out of the room (if you want to go modern, a fiber cable)
and all that you have in front of you is a keyboard and a screen. You get to write a

program and the important pointis capturing the ideas ofthe program. Then you leave
it to the compiler writing community to worry about the issue of parallelization.

Notthat those are trivial issues, but I think all of the harderissues of SIMD and MIMD
and sequential pale by comparison. In fact, right now there are 80 to 100 university
projects building various types of parallel machines. Very few of those will see the light
of day as commercial machines. Very few of those have compilers or languages
associated with them.

Itislargely a software compiler and language expressivity issue. Right now, probably
among the couple of hundred people in this room, there are a couple of hundred ideas

astomachines. I daresay there are far fewerlanguageideas, and that is where the real
difference will be.

Schaefer

So Paul, you do see massively parallel MIMD systems?

XXX

Schneck
Sure I do, not to the exclusion of anything else, however.
Guy Steele

I don’t believe in driving nails with a wrench—unless that’s all I've got; or in driving
carpet tacks with a sledge hammer or spikes with a tackhammer—unless thatis all 've
got. And by the way, these are not hypothetical examples. I've been in all these
situations both literally and metaphorically. So my position is that let a thousand
flowers bloom. Some of them will prove to be perennial and the rest won't.

Len Uhr

Yes, I agree. There are many intriguing possibilities to be explored. MIMD systems
certainly will develop in many fruitful directions, but probably very gradually in
relatively simple small steps.

It might make sense to look at our technology curve and pack as much into as good a

system as we can build economically. Indeed, we developed more powerful individual

processors that way, and the Cray is our standard leading example. We have much

more powerful processors than the one-bit processing elements that today we associate
with SIMD, and remember there is no reason to associate bit serial PE’s with SIMD.

That just happens to be the case today.

So my point is that the MIMD people have a very good argument. Let’s build a good
cheap powerful processor. Let’s put a lot of them together. Each one has its own
controller and that is what MIMD means, not the power of each processor.

But now they have the problem that they have not been able to solve. How on earth do

these independent computers talk to each other? The best I have heard now is 5,000,

or maybe 500, instructions to get a message from me to you. So they have major

problems, but they will probably make progress toward solving them. Almost certainly
what we want is to combine the virtues of SIMD and MIMD.

SIMD also has its problems when synchronous operation and a fixed topology are not
appropriate.

We do have, fortunately, many cases of beautiful mappings of algorithms, usually onto

an array, but sometimes onto a pyramid. Without a good mapping, we really need

something to augment the array or pyramid. At the moment I'd suggest we see whether
we can’t design powerful SIMD-MIMD systems. I’'m hoping that we will be able to solve
the major problems on both sides, and get many successful new architectures.

XXX1

Parkinson

Your references to Turing reminded me of when I had a few less gray hairs than I have
now and I went to the office of Tony Hoare (who had a number of things that he was
responsible for, including things like Quick Sort and MIMD languages) to describe the
DAP architecture. I gave my talk describing the lock step, one thousand single-bit
processor system.

At the end he threw me completely by saying “It’s all a lie. You have not described a
multiple processor at all to me. What you have described is a system with a 1,000-bit
word which is arranged as a 32 by 32 matrix and has a rather strange instruction set
which does operations between these words.”

He would say the same to Guy Steele about his sixty-four thousand processor hyper-
cube. He would say it was a one-word machine, that every instruction just has a
hypercube shaped word. It’s a totally valid approach to SIMD architectures.

Even if you had a million processors with 16 bit words, Tony Hoare would sort of say
that you have got this three-dimensional word whichis xyz, and it is a totally valid view
that these SIMD architectures arejust single-processor machines. It all depends what
kind of software you care to put on these machines and how you care to interpret the
results. And as I say, the argument is religious.

Hwang

I believe this audience, most of you, are probably more experienced with SIMD
machines because signal processing and image processing need fine-grain processors.
It is really the state of the technology and the simplicity of the control of the SIMD
machines that leads to the massive parallelism of today.

The control complexity of a MIMD machine is tremendous. Sothatis why we didn’t see
large scale MIMD machines. The fundamental difference is that, on the one hand,
SIMD machines have higher efficiency. On the other hand, MIMD machines have
greater application flexibility. So you are talking about a trade-off between efficiency
and flexibility.

Sometimes I use this comparison, communism versus capitalism. O.K.? In terms of
production, you want to use SIMD machines;in terms of consumption, you want MIMD
machines. Right! We need a hybrid architecture. When we want toengage in extensive
production operations, we use the SIMD portion. When we are involved in the area of
applications, we need flexibility, we needinteractions. The MIMD machines then play
more of a role.

Reif

Iwould concur, but we need the resources that are available for Crays. The better Crays
cost $15 million. One could have the hypothetical massively parallel machine with

XXX11

significant MIMD capabilities and with state-of-the-art SIMD capabilities as well.
That would be very very exciting.

What we have currently is the first stage toward that. It is not anywhere near what
could be, given significant monetary resources. Imagine a $15 million Connection
Machine-type of computer with MIMD capability and incredible I/O. It would be very
interesting then to compare its ability with the Cray. We are really not playing a fair
game. The Cray, the full expensive version of the Cray, is far more expensive than
existing SIMD machines.

Schneck

I have two comments, the first being, I would like to argue with John about economics.
We are talking about the price of the Cray, not its cost. When you own abig piece of the
market you price it at what you can get forit Cost, Ithink, changes the equation rather
dramatically.

More importantly, Ken Iobst, whois sitting in this audience, his chin just dropped, has
aninterestingtest for these machines. He simulates oneilk of machine on another. You
simulate a connection machine or the MPP on a Cray. You can try simulating a Cray
on a Connection Machine, or if you have an SIMD machine, you can try simulating a
Cray on an Intel V-6. I wouldn’t try that too long, but you get the essence of the
experiment.

If machine A can simulate machine B and machine C and do it well, but machine B
cannot simulate machine A, then maybe there is a hierarchy that one sees coming out
of this. Ithink the hierarchy is that for simulation purposes, SIMD machines seem to
doagoodjobofsimulatingeven MIMD machines. Part ofthat may be because so much
of the effort is spent in instruction access, instruction decode and control and so little
of the hardware, relatively speaking, is spent on the disparate aims and disparate
actions of the program, which is of course the only thing we really care about. SoIwould
pose this simulation metaphor as something to think about.

Uhr

It may well be that if we can handle a 64 computer MIMD system (one big enough so
we can’t stick it on a bus) then we can go up to any number.

Assume we have 64 anarchists, the MIT “actors,” each one an independent agent that
does all sorts of Al style “reasoning.” It’s as if each one of us on this panel is thinking,
and then we decide we want to interrupt each other. If we were all talking then you,
the audience, wouldn’t hear much of the panel, and none of us would hear much of
anything, or do much of anything.

The point is there is a problem in 5 or 10 people coordinating effectively. We might

examine the sociology of small group behavior to try to develop the kind of message
passing that MIMD systems need.

XXX111

On a related issue, I used to think that we were really being cost efficient in SIMD
systems in that everybody was working all the time. Which indeed they are, because
they have to be working all the time. But are they working on anything useful?

For computer vision, itis pretty clear theyinitially are doing useful work because when
a general vision program starts out, it doesn’t know what is going to be where and,
therefore, it has to look everywhere for everything. But as soon as it gathers some
information, then clearly everything is not going to be everywhere, but all the
processing elements continue to cycle in synchrony.

As processing continues, I get more and more unhappy. All the processors are working
all the time, but more and more of them are just doing nothing.

Now the MIMD system is able to reconfigure its structure and handle that kind of thing
with much more efficiency. Ifit were only capable of passing messages, which today,
of course, it is not.

Schaefer

Well, we have whipped through the first question in record time of 40 minutes. So, Milt,
I am going to ask you this question, “Will massively parallel computing environments
ever be comparable to those of vector processors?”

Halem

Well, if I should take this question literally, I think it is safe to say that people are not
going to give up an operation that already has a long heritage in mathematics, such as
vector and scalar operations. The number of applications that currently are running
on vector processing machines is almost exclusive with the exceptions of a few
disciplines, perhaps computer vision or neural networking, and even those have been
put on vector processors.

I think it is pretty obvious that vector processors will continue to dominate the
computing market. But that doesn’t mean thatit will be exclusively a vector processing
or serial market. There certainly is a place for massively parallel processing because
we have a class of problems that will continue torequire an architecture which is more
suited to those problems.

SoIthink the problem domain will guarantee a place for massively parallel processing,
but that vector processors will still continue to develop and expand and dominate the
markets.

Let me mention a very specific problem domain area—problems related to the space
program. We will be acquiring images in space with arrays of sensitive detectors. The
use of massively parallel processors will be required to reduce the data and to analyze
this high volume of data.

XXXiV

But thatis not the public market, thatis not the mass market. In the mass market, we
will continue to have growing vector processing capabilities, especially as vector
processors shrink down into the work station domain.

Hwang

Tome, “environments” represents application environments, that is the environment
auser will see where he orshe willbe located. The environmentincludes userinterface,
language support, software support, run time support, debugging systems, etc.

I would say that the concurrent processing growth in environment build-up will be
much slower becauseitis alot more difficult. Vectorizing compilers vectorize the inner
loops of do-loops. The inner loop operation is an identical operation being vectorized.
So that is easy to detect in a program construct.

You see a lot of vectorizing compilers around. You don’t see too many concurrentizing
or parallelizing compilers. I have seen only two. One is the Alliant, which has a
FORTRAN compiler and that can doa“doacross.” Thatis a doloopspreadinto several
processors. The otheris the CMU Warp machine compiler that can partition a job and
spread it around.

Until we have veryintelligent parallelizing compilers, I really don’t see that a massively
parallel environment is there yet. It will grow, but it will be very slow.

Parkinson

We have a large community of people now who have by heroic efforts modified their
sequential FORTRAN to run on vector FORTRAN machines, even though they were
promised that that wasn’t going to be necessary. They are not going to lose that
investment. Their problem is not to solve a particular problem in physics. Itistorun
an existing FORTRAN code.

The commercial realities of that means that even after fifty years we will still have
things which accept that kind of code. There will be manufacturers who willmakealot
of money from the fact that it is human nature to not want to learn anything new.

I don’t know when Newton invented the calculus, but when I was a schoolboy you still
were able to take courses in physics which didn’t use calculus. People don’t want to
learn anything new, and these things are. People keep talking about algorithms. I wish
people would talk about problems.

Everybody says “how do you do xyz algorithm on SIMD or MIMD machines?” Nobody
comes to me and says how do you solve such and such a problem on the machine. They
always talk about method and that’s the difficulty. If we could only talk about our
problems, then half of this argument would go away.

XXXV

When John Reif was talking he said he knows algorithms which are not suitable for
SIMDmachines. Idon’t know any problems which are not suitable for SIMD machines.

Reif

It is important for the audience to know that as far as the theory community seems to
know, there are many problems out there that cannot be parallelized. It was not
algorithms I was talking about, it was problems. That means that for a fair amount of
code out there, you cannot expect that it can be parallelized.

Itisnot the algorithms;in fact, we are relatively creative about new parallel algorithms.
That is what I do a lot, and [should be more optimistic. But the absolute truth, as far
as people who have thought long and deeply about this, is that we will not be able to
parallelize the world away. There are fundamental problems with that. Even if you
have gigantic massively parallel machines, they will never reach their full potential for
every problem.

Person in audience
Give us one example.
Reif

Sure, there is the example of the Boolean circuit evaluation problem. Given a Boolean
circuit, the problem is to evaluate it. Suppose the circuit has ninputs, size polynomial
in n, and depth d. No one knows how to take an arbitrary circuit and evaluate it at a
depthsignificantlyless thand. Therefore an arbitrary sequential computation cannot
be parallelized as far as anyone knows. There have been very very bright individuals
that have looked at that problem.

On the otherhand, that does not mean that we are out of ourjobs. It means thatinstead
we should look carefully at scientific computing problems that do, in fact, have good
parallel solutions. Many people in the audience have had major application areas
where they have found beautiful parallel algorithms. Itis both a positive and negative
thing.

You shouldn’t take the religion of parallelism too far. The realistic answer is, it does
work in many, many cases, but by no means is every problem parallelizable.

Uhr

That is obviously true. It is a complexity argument in terms of the worst case.
Ontheother hand,surely anything todo withintelligence, anything that the brain does
is massively phenomenalogically parallelized. I would imagine that most data base
problems and most scientific problems are highly parallelizable. Soin termsof thereal

world and the real kinds of problems that dointerest us, that argument should be sort
of tempered.

XXXVi

Reeves

Will parallel computing environments ever be comparable to those of vector processors?
I hope they never sink so low!

As Guy pointed out, there aren’t many vectorizing compilers that really look very neat
even today, and they have had many years of development to get into the act. I hope
we make vast improvements in software over the next 20 or 30 years.

One should imagine that there will be tremendous improvements in both vectorizing
compilers and parallelizing compilers, and in ways of expressing problems. This will
far transcend what we currently do today in FORTRAN, although of course I don’t
expect FORTRAN to die in any sense.

I am sure that in the future there will be much better environments. I see these
environments more tailored to specific application areas. Today we don’t program in
raw FORTRAN, we program with packages, which is a very limited higher level
approach.

Isee much higherlevel approaches as specificapplication areas evolve. Then there may
be systems and environments tailored specifically to those application areas. These
environments may be ported to more than one type of machine architecture, even to
heterogeneous collections of different computing resources.

So1think we should lock to much better paradigms than those we are currently using.
Ultimately we will get better environments, more of the kind of environments that we
deserve for both massively parallel and vector machines, or whatever our computing
resources may be.

Reif

I don’t think there is anything natural about the computing environments around
vector processors. It is true that it is fairly easy to port certain types of scientific
computing code into these vector processors. In part, that is due to work by Kuck at
Illinois and his group.

In that type of technology, Kuck takes recurrence equations, the FORTRAN code,
unwraps it and develops a recurrence equation model for certain inner loops, and
vectorizes those. In fact that can be done for massively parallel SIMD architectures.
Within five years, there will be systems that can do that for SIMD computing
components.

I would also comment that again, I don’t think the vector environments, which are
FORTRAN based, generally speaking, are anything magical. Ithink they will persist,
but I think thatin the software world there are other environments, C-based environ-
ments, Connection Machine C*, thingslike that, thatlook to melike they would be more
effective in the future.

XXXVl

One example, this is actually a star LISP example. The fellow who gave the talk last
night about computer graphics wrote his original code in half a million lines of
vectorized code. He ported that onto the Connection Machine and, thisis second hand,
the new code was approximately one to two hundred thousand lines of code instead of
500 thousandlines of coding. Soalready, there exists parallel computing environments
about which I think the community can be very proud.

So I am fairly optimistic about evolving environments for massively parallel comput-
ing. Thereis alsoalot ofinterestin DARPA. They are really pushingin this direction.
It is possible to have very flexible, very powerful primitives for massively parallel
computing. What is not possible again, is just that you can effectively use all that
parallel computing power in all possible instances.

Schneck

Dave Schaefer asked me to join the panel because I am an argumentative cuss. Since
I don’t want to disappoint him, this is my opportunity.

It seems to me there are two issues here that are getting confused. One is languages
and the other is environments. Although they are strongly related, they are not the
same.

The language issue deals with expressivity and the way in which we write an algorithm
oraproblem. Environments have to do with what Ilike to call the psychologicalissues.
How we deal with the programming process. I think the psychological issues belongin
a different conference; I think that environments belong in a different conference.

I think we are much more concerned with technicalissues of parallelism, issues of how
programs work, how algorithms work, how we express parallelism in a concise and
direct way. Not whether we get ten lines of code or whether when we change one
package or subroutine, we need to change another one. Not whether we need todo a
recompile or a make. Ithink those are all things that are second-order effects.

In the high speed computing community, much more time and effort is given to the
running of the programs than to the writing of programs. Down at the PC level, much
more time and effort goes into the writing of the programs. Ithink our attention ought
tobe carefully focused on the running of programs and the speed at which programs run,
not on, from my point of view, the mundane issues of how to write programs and how
to do it effectively and efficiently with the smallest number of people.

Steele
I suppose I am going to take a very pragmatic position, not that the previous arguments

have not been pragmatic. Ijust want to tell you that I am going to take an extreme on
that. Ithink that theissue hereis purely an economicone. Alot ofinvestment has gone

XXX Vi

into program environments and compilers and other tools for the developing of
programs for vector processors.

If the approach of massive parallelism proves to be effective, then over the long run at
least as much effort is going to be invested in producing good environments there. The
question is “how can we go about improving those environments?”, and the other
question is “will it be worth our while to do s0?”.

I think reasonable people may have differences of opinion over what fraction of the
market, measured in dollars, or problems to be solved, or whatever, is going to be
tackled through massive parallelism in preference to vector or other approaches. Ifthat
fraction turns out to be large, the investment will be made.

What needs to be done to improve those environments is to look at the necessary

abstraction and metaphors that will make things easier. Itis necessary to capture the

standard pattern of doing things and because the approach of massively parallelism is

still relatively young, we haven’t figured out what all the standard patterns and idioms
are going to be.

To connect that with the previous remark, Tony Hoare might choose to characterize a
SIMD machine as being a serial processor with very wide words. I agree thatis a
perfectly valid description for some programming purposes, a very useful description.
The questionis,”is that the most useful description for all ways in which one might use
the machine?” Ithink that the answer to that is “no.”

Sometimes you want to think of the metaphor as programming many individual
processors. Sometimes you want to think about wide words. Sometimes you want to
think about organizing your view of the machines in other ways. We need to figure out
what these patterns are and then capture them in an integrated way with the other
tools in the programming environment, so we can deal with them easily.

Uhr

Ithasnever been clear tome, and I guess to a lot of people, why two-dimensional array
processors shouldn’t replace vector processors. About 78 or’79, the DAP group tried
to sell a lot of DAP’s and didn’t get very far, I think for quite irrelevant commercial
reasons.

Probably there are also relatively small but crucial things that still need to be ironed

out. The lack of fast floating point operations, that you finally have in the Connection

Machine, is one of the things that sort of put massively parallel systems behind. Others
are the rigidity of a fixed size array and the fact that the array is not an integral part

of a larger system.

We have a very comparable situation with image processing where we have pipelining
vector processors and we have array processors. They are both sort of flourishing

XXX1X

equally now, although the vector processors are much easier to handle and more
popular. I personally think that the array processors will end up ahead.

I am suggesting thatimage processing is one of the better shots for massively parallel
systems. Inimage processing, we don’t have what seems to be a problem for numerical
processing, where a short pipeline is better than a long one. Ibelieve it is Fujitsu that
has a long pipeline which may not be too usable. The short pipeline gives more
flexibility but, of course, it gives slower processing.

Inasimilarmanner, afixed size array, like the DAP 64 by 64, is toorigid for applications
using arrays of different sizes.

Schaefer

We are running out of time. Let’s see if we can get this panel to give one word answers
to the question “Can progress in the use of massively parallel computing take placein
a world dominated by dusty FORTRAN decks?” “Yes” or “No”, right!

Halem

Ithink the answeris pretty obvious. Overthe last two years, we've seen the size ofthis
conference double. I believe there is every reason to expect it will double again in
another two years based on what we see coming in the market and what the agencies
are putting in. We livein the world of dusty decks, and we are still making tremendous
exponential growth.

Schaefer

Thank you for your one word answer.

Hwang

My answer is “yes”, but I want to give you an explanation. We were talking about
parallel programingenvironments. Thereis aspecial issue on language compilers and
the environments for parallel programming which appeared last month in the Journal
of Parallel and Distributed Computing. If you are interested, David Kuck edited a
special issue of eight papers. One describes how IBM is developing a “PTRAN”
environment. “PTRAN” stands for “Parallel FORTRAN”. Just for your information.

Schaefer

We are having massively parallel one-word answers.

Parkinson

Yes, the FORTRAN programmers are going to die out of old age.

XXXX

Reeves
Yes, of course. FORTRAN programmers of today won’t die so quickly, but they will die.
Reif

I think the dusty FORTRAN deck will stay around until we are quite old, but I think
that massively parallel computing will be real exciting in the next few years.

Schneck

John has said it, but let me just remind you since no one has said it before. We don’t
know what the next language will look like, but it certainly will be called “FORTRAN”.

Steele
Yes.
Uhr

No, in the sense that we will be developing into a new world with new kinds of
computers to handle new kinds of problems, and the old world will continue to exist.

XXXX1

INVITED PRESENTATIONS

PRECEDING PAGE BLANK NOT FILMED

PRECEDIN

G PAGE BLANK NOT FILMED

Languages for Massively Parallel Computers

Guy L. Steele, Jr.
Thinking Machines Corporation

I'm here to talk about languages for massively
parallel computers. Programming languages
is a very wide field and there isn’t any way I
can possibly cover everything that’s been
done. I'm just going to talk about the ones I
know about, which is always a good policy.
This is an outline for what I'm going to dis-
cuss.

First off, we’ll discuss some common themes
I've seen over and over again in many pro-
gramming languages that have been de-
signed for parallel computation. These are
common themes about the way you organize
control structures of programs, the way you
organize data, and about communication
patterns. As we will see through the course of
this talk, these themes tend to pop up in
different ways in different language design.
They are common threads and serve as a
taxonomy I use to categorize the different
aspects of parallel programming languages.
Once I've shown you these common themes,
I'm going to give you thumbnail sketches of
three different parallel programming lan-
guages. They happen to be ones with which I
am particularly familiar because they are
running on, or are in the process of being
designed for, the CM—2 computer system with
which I work at Thinking Machines. After I've
sketched out these three languages, I'm going
to try to pull them back together and do a
thematic comparison of them so we can see
how the themes fitin and how various aspects
of these languages can be ccmpared according
to these themes.

First, I'd like to present some principles of
language design that are merely guidelines

CH2649-2/89/0000/0003$01.00 © 1988 IEEE

that I've found useful in trying to design
parallel programming languages. The first
rule is don’t start from scratch. It is very
important to build on existing knowledge and
traditions partly to avoid reinventing the
wheel. And it is important to take advantage
of programmers’ existing familiarity about
ways one can do things in programming lan-
guages and take advantage of certain tradi-
tions. For example, the standard scientific
notation of floating point numbers is a tradi-
tion and you just do it that way unless you've
got a really good reason to do it some other
way in your language. A particularly impor-
tant kind of tradition to build on in designing
parallel languages is a set of expectations we
build up about how serial programming lan-
guages are designed. Even when running
parallel programs, there are still large parts
of them that will be sequential, or that can be
regarded as sequential programs operating
on each of many data items at once. So, it is
important to build on that set of traditions. A
consequence of that first principle, and one
approach, is to start with existing serial lan-
guages that are well understood, and then
judiciously make extensions for parallelism.

On the other hand, which brings us to the
second principle, don't settle for a superficial
patch. It doesn’t produce a really satisfactory
parallel programming language simply to
take Fortran or C and add two message-
passing primitives, or add semaphores or
something like that, and call that a parallel
programming language. Yes, it is possible to
program a parallel computer that way, but it
tends to feel verylow level because you simply
slap the two primitives on top rather than

u‘j},’mumnm AN

integrating them into the structure of the
language. You ought to arrange it so that the
features you add for parallelism fit in well
with the personality of the language and are
integrated with the various other features of
the language so as to interact smoothly. The
other important thing is you want to be sure
that the features you add support important
paradigms of parallel programming, and
those paradigms are the subject of my list of
themes.

Given those principles, a third possible deci-
sion one might make is to concentrate on the
data rather than on the control structures,
and this is particularly appropriate for mas-
sively parallel computations. There are dif-
ferent styles of parallelism: there are MIMD
and SIMD; there is focusing on large amounts
of data, there is focusing on large numbers of
processors, there is focusing on small num-
bers of processors in the 10—20 range. These
call for different styles of programming lan-
guage. My interest happens to lie in the
massively parallel arena, so most of what I
have to say will address languages and topics
in that area.

Ifone chooses to concentrate on the data, then
a strategy one can adopt is to take an addi-
tional sequential programming language,
add a parallel data type—whatever that
means—and that may mean different things
in different languages, but having added a
data type, try as hard as possible to use the
existing language operators rather than in-
venting a whole slew of new ones. In this way,
one can take advantage of understanding on
the part of programmers of the semantics of
the existing operators. On the other hand, you
have to ensure that those semantics extend
smoothly and in an intuitive way for the new
data type.

Now, let’s look at these common themes: ele-
mentwise parallelism, replication, reduction,
permutation, and conditionals. There is noth-

ing terribly profound about them, this is just
a list of useful things. However, I would ex-
hort you to examine eachitem on the checklist
when programming in a parallel language.

One obvious theme is elementwise parallel-
ism. Typically, if you've got two arrays, you
want to add the elements of the arrays, com-
ponentwise, for example. This is a case where
you're doing computation on corresponding
elements of arrays. But, the elements in cor-
respondence aren’t interacting much. That’s
one kind of thing you want to see. That hap-
pens so often, it is so pervasive in parallel
programming, that it seems commonplace to
mention it. Yet, you want to ensure that,
becauseitis so cornmonplace, that itis easy to
say in the language. As we’ll see when we get
to the thumbnail sketches, sometimes, it’s not
so easy to design languages that make that
smooth.

Another example is replication: taking a
small amount of data and making more of it.
This breaks down into several cases: there is
the one-to-many case which you might call
broadcasting; there is the few-to-many case,
which can be in either a regular or an irregu-
lar pattern. The regular case is sometimes
called spreading (in Fortran, for example).
The converse of replication is reduction,
where you're taking many data items and
reducing them to a few items or one item.
Then, there is the question of how you do that
reduction. You might take many data items,
reduce them to one data item by choosing one
and discarding the rest. Or, you might take
the sum over many values or the product, or
the maximum or minimum, or the greatest
common divisor. There are any number of
interesting reduction operators, some of
which are more useful than others.

Then, there is the case of permutation, where
the amount of data doesn’t change, but you
are rearranging it in some interesting way.
That breaks down into dozens of subcatego-

ries, such as shifting of the Cartesian grid or
arbitrary permutations controlled by a per-

mutation vector.

By the time we get to substantive condition-
als, it is a control structure issue rather than
a data stucture issue. In fact, one can try to
categorize other kinds of control structures as
well, except Idon’t see a theme that pops upin
any regular way in all the programming lan-
guages except for conditionals. It is very fre-
quently the case that, based on the value of
some piece of data, you want to make a choice
of doing this or that computation. Sometimes,
this is the most difficult theme to embed in a
parallel programminglanguagein a true way.

So, that is my list of themes. I'm now going to
give you thumbnail sketches of three pro-
gramming languages. The first is the particu-
lar dialect of Fortran running on the CM-2,
which is not particularly specific for the
CM-2. It is precisely Fortran 77 with the
proposed Fortran 8X array features added in.
But no other features of Fortran 8X. There
wasno particular reason toleave out the other
ones, it was just an implementation decision
made for the purpose of this project. When we
set out to do Fortran at Thinking Machines,
we were prepared for the possibility of having
to do it our own way and invent a new lan-
guage. That is something we are loathe to do
when we can stand on the shoulders of some
other giants. We were delighted to find, in
fact, that the Fortran comittee, X3J3, has
come up with a very reasonable and plausible
design for a data parallel Fortran in the pro-
posed array features.

This is going to be a very quick sketch of a
parallel Fortran since there is no way that I
can do justice to any of these languages in
10-15 minutes, or even in an hour. I'm simply
going to show you some highlights of the
language that will hook into the develop-
ments I want to show you later.

First of all, the Fortran 8X array extensions
provide for elementwise expressions. If you
declare three arrays (A, B, and C), each with
1,000 elements, they are said to conform since
they are the same length. Because they con-
form, I can mix them in expressions. For
example, I can write A = B. That means copy
the entire process of b into a elementwise. So,
that Bl gets aassigned to Al, and B2, to A2.
Similarly, I can do elementwise addition. In A
=B + C, the corresponding elements of B and
C are added together and were both assigned
to A. Or, I can do multiplication. like

A =B x C. Thisis elementwise multiplication.
I can also use the built-in library intrinsics
from the built-in subroutine library. For ex-
ample, in

A = SQRT(B)SIN(C), I can take the square
root of every element of B, and a sine of every
element of C, do an elementwise division, and
assign the result to A.

Also, there is no reason why arrays have to be
constrained to be one-dimensional. I could
have taken matrices for five-dimensional
objects, and as long as their corresponding
dimensions matched, I could use them in an
elementwise fashion. What this technique of
language design manages to do, is to take
operations on arrays and make them look
syntactically like operations on single items.
In effect, I have overloaded addition and
multiplication and extended it to the array
case.

Another important rule in language is scalar
extension. Again, this is something that is so
natural and so embedded into mathematical
and programming notations, that it hardly
seems worth remarking on. With scalar ex-
tension, you can take a scalar and mix it with
an array within an expression. The rule is
that the scalar is automatically replicated to
match the array. For example, if A = 0, the
effect is to replicate the zero so that there are
enough zeroes to match all of the components
in A. So that every element in A gets cleared.

Similarly, I can write a complex expression
such as A =B/2 = C/(I1+4), and it looks perfectly
natural. I'd take every element of B, divide by
2, take every element of C, and divide by I + 4
(which is scalar), add them, and assign to the
corresponding elements of A. As you look at it
closer, you'll see that parts of this expression
are scalar and parts are arrays. So, for ex-
ample, the constant 2 is scalar. The addition
operation (I+4) has scalar operands, so it will
be executed in scalar mode. First, this scalar
subexpression is computed. Then, the result
is replicated, and then divided into C.

The Fortran 8X proposal provides for reduc-
tion by providing a series of new intrinsics
such as SUM, MAXVAL, PRODUCT, MIN-
VAL, COUNT, ANY, ALL, etc. In the simplest
case, you can just give it an array as an
argument and get a scalar value back. A more
complex variant involves specifying an op-
tional mask argument, the value of which is
an array of logicals that matches the first
array argument and specifies which ones are
to participate in reduction. For example, in
the case SUM9A ,MASK=A.GT.00, it adds up
only those elements of A that are greater than
zero and ignores the elements of A that are
less than or equal to zero. Also, it is possible to
do summation over an entire array, along
rows or columns of a matrix. For example,
REAL M(100,100) provides a matrix of 100 x
100 elements. SUM(M,DIM=2) sums up rows.
So, the result of either of these would be an
array of length 100. Given a square, it pro-
duces a result that is either stored along the
top or down the edge.

The converse of the reduction intrinsics is an
intrinsic called “spread.” Spread can take an
array of some smaller dimension and repli-
cate it along a new axis so as to make an array
that’s of a rank one higher. For example, in
REAL A (100), M(100,100), I have a vector A
of length 100 and a matrix, M. Then, M =
SPREAD(A, DIM=1,NCOPIES=100) says:
take A and make 100 copies of it. The new

dimension is to be dimension 1 and should be
assigned to M. Because the new dimension is
dimension 1, the vertical direction, A, gets
replicated and is used to fill in each row of M.
On the other hand, ifT had said DIM = 2, then
A would be used to fill in the columns of M

instead.

A very interesting feature of the proposal,
which is in the category of removed exten-
sions, is vector-valued subscripts. This is a
feature that the committee has debated and
bothinserted and deleted a few times. Itis one
of those things that looks really important,
but that might be hard to implement on some
machines. We decided to include it in Fortran
for the CM-2, because it seems to be a very
valuable thing, and we have a reasonable
implementation for it. Vector-valued sub-
scripts can be viewed as simply allowing the
subscripting operation to be componentwise
in the same way that addition and multiplica-
tion are. For example, in

REAL A(100), B(593)
INTEGER V(100).

I have a vector A of length 100, a vector V of
length 100, and a vector B of length 593. The
assignment A=B(V) means that for every
element of V, use its value to subscript. This
produces a vector of results of the subscript-
ing operation which then gets assigned to A.
So, you can see why the length of V has to
match the length of A because there will be
one result in the subscripting operation for
every element of V. The length of B is not
relevant to the conformality property.
Rather, the rule is that the value stored in
vector V would have to be suitable indices for
B. By using the subscript vector this way, you
can encode fairly arbitrary patterns of data
rearrangement. For example, V might be a
permutation vector, in which case, you’d want
B to be the same length of A. You can also
arrange for few-to-many replications, since it
might be that V has duplicate values. In that

case, many elements of A might receive copies
of the same element of B.

You can also use a vector-valued subscript on
the left-hand side asin B(V)=A. In which case,
elements of A will be assigned to places in B
that are dictated by V. In this case, the lan-
guage designers imposed the rule that no
collisions are allowed. That is, it is forbidden
for V to contain duplicate values. This avoids
the problem of what happens when two values
try to get assgned to the same location. That
problem was solved in Fortran by fiat. We'll
see later that in C*, it is solved in a different
way.

Another of the very powerful removed exten-
sions is the FORALL statement. This is an-
other feature that has come in and out of the
standard, and I'm not sure what its status is
as of this week. It is a very powerful state-
ment. You can say all kinds of marvelous
things with it. It is effectively like a parallel
DO loop (or at least a DO loop that is easier to
parallelize than the standard DO loop, which
has sequential semantics). For example,

FORALL (I=1:100)
A(M=BD*I

The body of the FORALL statement must be
a single array assignment statement. That is
an important restriction that is imposed be-
cause it eliminates the problem that can
happen if you have multiple assignment
statements in the regular semantics for “exe-
cute all assignment statements where I=1,
then execute all of the assignments for 1=2.”
Or, whether you execute the first assignment
for all values of I and then the second for all
values of I, or some other scrambled order.
You avoid that set of problems by saying that
there will only be one assignment statement
within a FORALL.

FORALL allows you to solve a problem with
the vector-valued subscripts where you have

7

duplicate indices on the left-hand side. If you
write a sufficiently elaborate statement, you
can specify how to resolve collisions. For ex-
ample,

FORALIL(I=1:593)
B(I)=SUM(A,MASK=V.EQ.])

In this case, I tried to represent B(V)=A, but,
where V may have duplicate values. If there
are duplicate values, then I want the corre-
sponding elements of A to be summed and
have the sum of all the values acquired there
putinto B. What I am sayingis: for I runs from
1 to 593 (which is the length of B, not A), B(I)
gets the sum over A in the positions where V
equals I. So, in effect, instead of using sub-
scripting, I have used this calculated logical
maskinstead. Now, whether the implementa-
tion of that will be as efficient as what you
would expect from B(V)=A is a question that
can only be decided by looking at the implem-
entation and the architecture. Some architec-
tures will do a much better job of this kind of
thing than others. So, it is possible to say it in
the language, but whether or not it is an
effective statement of what you want, one that
will be efficiently executable, depends on your
implementation. This points out the differ-
ence between expressiveness and effective-
ness.

There is a parallel condition statement that is
very much like a parallel IF. The syntax is as
follows:

WHERE (A.NE.O)
B=B/A
C=C/A
ELSEWHERE
B=0
C=C*3
END WHERE

In this example, I am saying, in positions
where A does not equal zero, you can divide
both B and C by A. In all other places, you

execute the other statements in the corre-
sponding positions of B and C. Again, there is
a restriction. The statements that are con-
trolled by the WHERE statements are only
permitted to be array assignment state-
ments, and all of the arrays assigned to it
must conform to the array logical expression
that appears as the predicate of the WHERE.
So, it better be the case that B and C conform
with A.

Averyimportant observation of thislanguage
design is that very few of these features
matter. If you don’t use these array features,
if you don’t use the array expressions and the
reduction transitions for work, then the lan-
guage looks like plain old sequential For-
tran—it’s completely upward compatible. So,
any Fortran 77 code is, in fact, CM Fortran
code, and also full Fortran 8X code. Thatis a
nice property of the design.

Okay, now let’s take a look at C*. C* is a
parallel dialect of C that was developed at
Thinking Machines Corporation, but which
seems also to be in use elsewhere in the world
now. In fact, I think there is a project at the
University of New Hampshire that Michael
Quinn is invclved with and he is implement-
ing it on, I believe, the NCUBE machine. A
language isn’t real until it is running on more
than one machine. So, C* is at least real in
that sense, if not in other senses.

Okay, now, let’s look at a particularly nasty
language design problem. We would like to
have scalar extension in C*, much the same
way that we did in Fortran because it is so
convenient. But, suppose that X is the name of
an array. What does X+1 mean? Well, unfor-
tunately, that already means something in C.
Because in C, unlike Fortran, arrays are
pointers, and to have an array with a bunch of
things is the same as to have a pointer to the
first element. In C, X+1 already means to do
pointer arithmetic. It means take the address

of X (which, if it is the name of an array, then
it is a pointer), and increment that pointer by
1 to point to the next element. So, if you just
say, “Well, we’ll just let that mean add 1 to
every element of X,” it won’t work.

How do you get around that? Thisis a problem
that I worried over for several months and
just couldn’t see how to do it. Then finally, we
came up with a solution that sort of goes in the
back door. Instead of trying to wedge the
parallel data type in using C arrays, which
won’t work because arrays coerce to pointers,
weintroduce the parallel data typein another
way and then later add the necessary “array-
ness.” This was accomplished by adding two
new storage classes to C that describe where
the data reside. The keywords used are:
“mono” for scalar data, and “poly” for parallel
data.

Poly data are organized into domains. For
example,

domain particle {

float x, v, z;

float mass;

float vx, vy, vz;

I

domain particle w[10000];

Each particle can have a bunch of compo-
nents. Here, I have chosen position, velocity
coordinates, and mass as a demonstration.
Within a declaration of a domain, given that
declarations are implicitly poly, I could have
written the word poly explicitly in front of
each of these declarations. In fact, the words
mono and poly tend not to pop up too much in
actual C* code simply because the defaults
are arranged so you get what you want by the
time that you write it. Since these are implic-
itly poly, these will represent parallel data.
There is an essential rule about domain ar-
rays. When you make an array of domains, the
result is to get something that can be proc-
essed in parallel. In the above example, we
have an array of 10,000 particles called W.

When you select a domain, you are activating
parallel processing. It is as if for every in-
stance of that domain that you have declared,
there is a separate processor that can execute
code. To select a domain, I would like to
introduce a new statement type (square
brackets around “domain particle” with the
body enclosed by {} and a . in between). Within
the selection statement, it can again be ar-
ranged so that parallel code looks like serial
code. This is the nice property that Fortran
also had, but it was achieved in C* by alter-
nate means.

Once I have selected the domain of particles,
all of the data that are declared to be around
in that domain (such as x, y, z, mass, vx, vy,
and vz) can be referred to as if they are scalar
values. So, it is as if you wrote code within a
selection statement that is to act on each
particle independently. In computing this, I
can declare a new variable which temporarily
becomes part of the domain. In the example:

[domain particle].{
float v2 = vx*vx+vy*vy+vzt*vz;
float k = mass*v2*0.5;

iftk>1 .dEQ) blooey0;

a new automatic variable, v2, is allocated for
each particle. For each particle, I calculate vx
squared plus vy squared plus vz squared and
store that into v2. Then, I can compute the
kinetic energy by multiplying mass by v2 by
0.5. Notice the implicit use of scalar extension
here. If I simply use a mono value here, then
there is implicit replication. I can also use all
kinds of sequential program constructs in
here, such as IF statements. I can use, in fact,
any C control structure within the parallel
code. Now, how all that works out is really
tricky, and I will address that in a few min-
utes. In the preceding example, the function,

blooey, will get called only on behalf of par-
ticles whose energy k exceeds 1 billion.

So, within a domain, code is parallel. It l1ooks
just like serial code except that if you mention
poly quantities, the effect is to get elemen-
twise operation. Now, if you use mono data in
parallel code, it results in broadcast. This is
how you get X+1 to behave as expected, be-
cause in some sense, X is not the name of an
array in this theory of data types. Rather, X is
the name of a scalar thatis, however, declared
as a poly value within an array of particles.
So, X is technically not an array—it is a scalar
value with some “arrayness” hiding outside
having to do with the domain data type. So,
thisis how we do the end run around the array
problem.

An interesting consequence of all this is that
we find the reduction operators are already
there in the language in the guise of com-
pound assignment, which is a set of operators
that Fortran does not have. If you use a scalar
value on the left side of an assignment and a
parallel value on the right side, you can get
lots of assignments to happen at once to the
same place. In this example:

mono float total-mass=0;
[domain particle].{
total_mass +=mass;

}

I have declared a mono variable called
total_mass and initialized it to zero. Then, I
activate all particles and ask each particle to
add its mass to the total_mass. This requires
a new semantic rule which is that in cases
where you have side effects like this that
collide in single locations, you have to have a
rule that says itis okay, and defines what the
result is.

We have chosen to state the rule as simply:
the assignments happen as if in some serial

order. That is one way of resolving the con-
flict. Of course, you don’t implement it that
way, you implement it by making a binary
tree, for example, and doing the summationin
logarithmic time (or some other technique).
The net effect from the language point of view
is that all of the masses get added into the
total_mass. Since C provides these built-in
compound assignments for all kinds of opera-
tors, there is multiplication assignment, OR
assignment, AND assignment, etc., and this
gives you pretty much all of the standard
compound operators. C does not have MAS
and MIN operators built into it, so we added
those into C* purely so that we could get
compound MAX and MIN assignments so
that we could get this reduction effect because
it is so useful.

The fact that arrays were pointers was a
decided disadvantage in trying to get array
features into the language. However, there is
another part of the language where you can,
in fact, turn pointers to great advantage.
Pointers in C are perfectly general. For al-
most any data object, you can make a pointer
to it, and then pass that pointer and assign
through that pointer or reference through
that pointer. C* simply carries that over di-
rectly. If you think of each particle as residing
in a different processor, then a consequence is
in effect that one processor can have pointers
to the memory of another processor. Every
time you do a pointer indirection, that is
potentially interprocessor communication.

In the following example, let’s suppose that
every particle has an additional component
that is a pointer to some other particle called
nearest (assuming it will have a pointer to the
particle that is nearest it). We can then do
such things as having every particle compute
the distance (dx)betweenit (in the x direction)
and its nearest neighbor.

domain particle {
domain particle *nearest;

};

[domain particle].(
float dx=x-nearest->x;

}

You basically say: assign to dx my x and
subtract from that value obtained by taking
the pointer to my nearest neighbor, indi-
recting through it, and selecting its x compo-
nent. You do not necessarily have to have
pointers to nearest neighbors, you can have
any kinds of pointers you like. This is one of
those cases where identical-looking state-
ments in the language, depending on the
values of those pointers, can have radically
different implementation consequences. If
you have an architecture that supports near-
est-neighbor communications particularly
well, but supports general communications
fairly poorly, then it is not surprising that
nearest-neighbor communication will be
faster than the general case. However, that is
from the point of view of the implementation.
From the point of view of the language, all
pointers are alike.

Also note that if one combines the idea of

using compound assignments to do reduction,
this allows the possibility of doing many-to-
one or many-to-few reductions.

[domain particle].{
float nearmass=0;
nearest->nearmass+=mass;

}

If you have every particle create a new par-
ticle nearmass and initialize to zero, and then
have every particle add its mass into the

10

nearmass of its nearest neighbors, then you
will end up with a complicated pattern. De-
pending on how you precompute the pointers,
you will often end up with complicated pat-
terns of many-to-few reductions.

In C*, all control statements may be used in
parallel code. The simplest statement is the
IF statement where E is a poly value.

if (E)S
if (E) S1 else S2

In particles in positions where E is true, you
execute S, in particles where it is not true, you
don’t execute S. And similarly for the if-then-
else statement. So, these work as expected.
Furthermore, the generalized semantic the-
ory gives “while” statements a reasonable
meaning, and even “break,” “continue,” and
“goto.” It is beyond the scope of this talk to
describe how all of that works, but I can refer
you to a Thinking Machines Technical Report
that describes it.

A final observation is that if you don’t use
domains at all, then C* code looks like plain
old serial C code. You can take any C code and
run it through the C* compiler, and it is a
valid program. It executes serially and be-
haves like any ordinary C code.

Now, I am going to take a look at CM-Lisp.
This is the highest level and most abstract
language. Itis an attempt to take the symbolic
programming language, Lisp, and cast it into
a parallel framework. It has always been the
cultural attitude of Lisp that it tries to ab-
stract a good deal away fronm the details of
the machine hardware and to provide not just
numerical objects to compute on but, in fact,
abstract symbolic constructs. The first-order
strategy is very similar to what was done in
Fortran and C, which is to introduce one new
data type. This then gets operated on in par-
allel. However, the data type has a very differ-
entnature. In keeping with the perhaps puck-

11

ish sense of humor on the part of the Lisp
hackers, this data structureis given a strange
name. It is called a “xapping.”

A xapping is an unordered set of ordered
pairs. Each of the two elements in the pair
may be any Lisp object. Lisp objects may look
like numbers, atomic symbols (look like iden-
tifiers), and lists (ordered sequences of Lisp
objects). In the case of xappings, we take a
sequence of pairs and write them between
braces:

{sky->blue apple->red grass->green}

A pair is written as the index object, then a
right arrow, then the value object. The pre-
cedingisaxapping ofthree pairs that map sky
to blue, apple to red, and grass to green. The
indices may be any Lisp objects, but they must
be distinct, and the values may be anything.

[Editors Note: the details on CM-Lisp have
been removed. If you would like further infor-
mation on CM-Lisp, refer to Thinking Ma-
chines Technical Report P1.87-6.]

Now, let’s do a thematic comparison of the
languages: Fortran, C*, and CM-Lisp. First,
let’s look at elementwise parallelism. That is
achieved in Fortran simply by making two
arrays be an operand to, for example, the +
operator (A + B). That does not work in C*
because addition on arrays already means
something else. Instead, you have to write A +
B in the context of parallel code: within a
selection statement using poly data. In the
case of CM-Lisp, A and B are xappings, so
instead of using +, you have to use alpha+.
You have to explicitly say that you want the +
distributed over it. The reason for that differ-
ence is that CM-Lisp, unlike the other two,
allows nesting of symbolic data.

For broadcasting, which is one-to-many repli-
cation, Fortran and C do it by simply having
a built-in rule about scalar extension. In the

case of Fortran,itis when scalar data meet an
array. In the case of C*, it is when mono data
meet poly data, the mono data get replicated.
CM-Lisp has an operator for that. Itis the job
of alpha to do that replication. In the case of
many-to-many replication, there are widely
different mechanisms. Fortran can do irregu-
lar communication by using vector-valued
subscripts. A particularly interesting regular
case is accomplished by the SPREAD intrin-
sic. It turns out that both these cases are
accomplished in a single syntactic way in C¥*,
which is that you compute a pattern of point-
ers and then do pointer arithmetic (effectively
vector-valued subscripting). In the case of
CM-Lisp, regular communication can be ac-
complished with alpha because you can apply
alpha to a xapping to make a xapping of
xappings. Again, the concept of a nested data
stucture actually simplifies things here. You
get irregular patterns by doing alpha aref
where aref is the Lisp subscripting operator.

In the case of reduction, I have broken it down
into many-to-one and many-to-few reductions
and in both the regular and irregular cases,
because there is an interpreting pattern here.
Many-to-one cases and regular many-to-few
cases are both handled in Fortran by different
cases of the SUM intrinsic (depending on
what arguments you give it). To get irregular
many-to-few reductions, you have to use some
complicated form of the FORALL statement.
In C*, all three of them are accomplished in
much the same way by using compound as-
signments. The difference between them
depends simply on what you use on the left
side. If youuse a mono 1value on the left side,
you get a many-to-one reduction (m+=x). If
you use a poly value on the left side particu-
larly involving pointers, you get many-to-few
reductions and regular and irregular compu-
tations look the same (*p+=x). In the case of
CM-Lisp, the data operator handles all three
cases. If you want many-to-one reduction, you
only have to supply one argument. If you want
complicated values, you supply two argu-

12

ments and you get the xipping effect. A pecu-
liar thing here is the strange pattern where
each of the languages has two cases the same,
but Fortran does not have the same two the
same as the other languages. This points out
a difference in the styles of language design.

Now, let’s look at permutations. In the case of
Fortran, there are some built-in intrinsics for
doing regular permutations. In the case
where you have rectangular arrays (which is
what Fortran is good at), there are intrinsics
to do circular shifts along any axis, end-off
shifts that shift in zeroes and discard shifted-
out data, and a matrix transpose operator. In
the case of C*, you just do it with general
mechanisms again by just computing the rele-
vant pointer pattern and hoping that the
compiler will recognize a special case pattern
or that the underlying hardware/software
will deal with that case as well. You can take
these separate cases and bury them in macros
to make them linguistically convenient. In the
case of CM-Lisp, one can also use calculated
indices, such as in C*, but there are also
intrinsics that we built into the language to
handle interesting special cases.

As for conditionals, I am going to contrast the
scalar and parallel case. Fortran uses the IF
statement to do scalar conditionals, but it
uses a separate kind of WHERE statement
that is otherwise syntactically very similar
except that it has restrictions as to what you
can put in the body. I think that is why they
chose a different key word, namely the
WHERE statement. Certain kinds of condi-
tionalization are accomplished with a special
mask=argument in some of the intrinsics. In
the case of C*, the same if statement or the
same conditional expression serves in both
the scalar and parallel cases. It is merely a
matter of whether you use mono or poly data.
In the case of CM-Lisp, again, the if construct
serves for both cases. However, you have to
distinguish whether you want the scalar or

parallel case by the explicit use of alpha. That
has to do with the nesting of data structures.

Finally, let’s compare the languages by look-
ing at the data structures. Fortran provides
arrays and the elements are scalar. Atleastin
the dialect I described, which is Fortran 77
with the 8X array extensions. Fortran 8X also
provides many other kinds of data structure
constructsincluding record structures. So, for
full 8X, the following restriction does not
apply. For the dialect that I discussed, there
are only scalar elements and the indices are
strictly integers. C* gets its parallelism by
introducing domains and then there is a
funny thing that arrays of domains are spe-
cial. You can select and activate them. Or
rather, you can activate their domains, which
causes the array elements to become active.
Again, the indices are restricted to being inte-
gers. In the case of CM-Lisp, we introduce
xappings, which you can think ofas being very
much like arrays except the indices and ele-
ments may be any Lisp objects. This makes it
fit in better with the symbolic computation
nature of Lisp.

So, to wrap up, each of these common themes
having to do with elementwise operation and
replication or reduction showed upinall ofthe
languages. However, they got realized in very
different ways because they had to be embed-
ded in such a way as to suit the personality of
the language and the standard cultural way
that things are done in that language. I think
itis important to take that into account when
doing a language design.

I would like to point out some patterns that I
think will be important in the future. Themes
that I think will become increasingly common
in the future include the parallel prefix opera-
tors. These are what APL calls a “scan opera-
tor.” Not only just the simple case of taking an
entire array and doing parallel prefix, but also
taking an array and breaking it into pieces
and doing parallel prefix. Some work has been

13

done in this area by an MIT student, Guy
Blelloch, on models of computation that are
based on doing segmented scans. There are
some fairly powerful ideas on how to build up
algorithms that way. I think that sorting is
going to become increasingly important and
we have to understand better how to use that
in a language context. The ideas of convolu-
tions are also important, including simple
ideas like taking an array, looking up/down/
left/right, adding them up, and dividing by
four, which happens all the time, as well as
more complicated patterns of convolution.
Here, we not only need to understand these
patterns and provide them as facilities, we
need to do more than just provide subroutines
in a library, we need to understand how to
integrate these patterns into the language
designs. They need to fit in smoothly with
everything else that is going on.

I think I've raised more questions than an-
swers in giving this talk, but these are what I
see asimportant topics for the future of paral-
lel language design.

Generating Movie-Quality Animated Graphics
with Massively Parallel Computers

Gary Demos
Whitney-Demos Productions

T'll start by posing some challenges to the
audience. I'd like to challenge you to push
the state of the art in scientific computing.
Graphics, as a discipline, or, as a software
problem, really acts very much like many
scientific problems, and tends to stress a lot
of the directions of the general use of the
machine, and the general performance
capabilities.

We found with the CRAY X/MP that the
vector scalar balance was pretty good for
doing graphics. And, scientists, I think,
have found, in general, that it was a fairly
good balance for their codes.

We're beginning to see a lot of scientific and
engineering applications running on mas-
sively parallel systems, and, it’s achallenge
to seejust how far we can take that. I think
the potential for massively parallel ma-
chines to go way beyond their present
power level is quite large.

Let’s talk a little about the topology of
massively parallel machines. It’s obvious
that two-dimensional grids are quite useful
for some problems. However, I'm sure a lot
of people here have run into those problems
where you have to do funny things to get the
grid to solve the problem. In many ways,
scientific problems are modeling three-
dimensional space. At least, most of them
are. And, most of them are beginning to
model timeframe problems, as well.

For this you want a 3-D, maybe 4-D—typi-
cally not more than 5-D—kind of grid. Now,
obviously, having eight directions is more
helpful than four in the sense of a 3-D grid.

CH2649-2/89/0000/0015$01.00 © 1988 IEEE

15

If you have a hypercube that’s got 4,000
nodes, you essentially have 12 wires at each

cell of the hypercube.

A12-wire hypercube also has, by its attrib-
utes, 12 nearest neighbors. So, if you think
of this as the dimension, it’s really some-
thing like 3.5, Now, 23% is 12. I'm not sure
whether this is three or four dimensions.

If you think of the cell dividing space as
being a cube, it really has six faces. It
doesn’t have four. It doesn’t have eight.
Many three-dimensional scientific codes
are based around cell subdivisions.

This brings up the whole issue of how to
subdivide space and map it onto massively
parallel topologies. If you're thinking of a
3-,4-, or 5-D kind of a space-filling topology,
what you really need is spaces that can be
close packed. And, of the regular polyhe-
dron, in which all the faces are the same,
and all the angles are the same, there aren’t
very many such things. And, those that
there are canbe kind of strange. Cubes tend
to be good ones.

Three dimensional shapes that can be close
packed are tetrahedrons. But,Idon’t know
really how you solve a tetrahedral composi-
tion of 3-D space. I'm sure there are other
irregular polyhedrons that are made up of
two classes of faces, e.g., a square and a
triangle or, maybe, some asymmetrical
shapes. But, these are very difficult to
construct scientific codes around.

Anyway, I think this is part of the chal-
lenge. Obviously, a general purpose rout-
ing capability is one way to solve the issue.

PRECEDING PAGE BLANK NOT FILMED

a4 INTENIONALLY BLANE

But, there are natural topologies in three
dimensions that deal with some of these

issues.

Another problem is local subdivision: if you
have a grid around an aircraft, and you
want to have finer resolution around the
fronts of the wings, it’s nice if the grid can
subdivide in those regions without leaving
gaps where pieces are not connected.

One of the big topics for several years has
been SIMD versus MIMD. And, it might
even be possible to think of some hybrids. 1
heard some discussed today where each
processing node has some limited comput-
ing capability, but, in general, the whole
thing can turn over as a unit. These things
remain to be investigated.

For graphics problems, the main issue re-
ally is numeric power. And, it’s easiest to
deal with that numeric power with floating
point operations. Let’s just think in terms
of this scientific problem and being a power-
ful machine and just in terms of floating
point power. I realize there are intercon-
nectivity issues, and other issues.

But, let’s just think of it in terms of floating
point for a second. Let’s say that we have a
goal of obtaining a machine that was 1,000
times more powerful than an XMP proces-
sor. Now, obviously, that’s something that
alot of people would be excited about. Let’s
just figure out what that might mean.

If I have 4,000 processors, that means that
each processor has to be 25 megaflops.
Well, that’s a lot of megaflops. This is, by
the way, taking the basepoint that an XMP
is about 100 megaflops. And, Irealizeit can
vary anywhere from 10 megaflops to about
200, depending on how your code’s written.

But, let’s just sayit’s a1l00. So, 'm givingit
a pretty good peak rate there. So, thisis—

16

1,000 times that is about 100 gigaflops. So,
4,000 processors with each processor at 25
megaflops—you could do it with 16,000
processors where each processor had 6
megaflops. That might be a little more
possible.

You could do it with 1,000 processors where
each had 100 megaflops. Now, that sounds
hard. You could do it with 64,000 processors
where each one had a megaflop and a half.
I think it's somewhere in this space. Now,
I don’t know how to optimize this in trying
to find the peak point, where you'd get the
most bang for your buck, if you will. Idon’t
think scientific codes care that most of them
have million-node meshes. Certainly,
graphics doesn'’t care.

If you have a 1,000-x-1,000 screen, that’s a
million picture elements. If you want to put
a million polygons on it, that’s another
handy million. You get 1,000 frames per
minute, roughly, within an order of mag-
nitude, so, you could do 1 billion things in
parallel and just compute 1 minute’s worth.
So, you can go pretty parallel in that sense.

One of the issues facing everybody, of
course, is 32 versus 64 bits. Some of the
scientific community absolutely insists on
64 bit. Other people seem to be willing to
work with 32. This tends to create shop
cultures. Certain shops are 64-bit only.
Other shops are hybrids, or 32 bit, or what-
ever.

Graphics can be done on either, depending
on the algorithm. Most graphics algo-
rithms can be done pretty well with 32 bits
with an occasional 64-bit computation in a
couple of isolated spots. But, I think a
scientific machine really has to have high
performance in the 64-bit range to satisfy
the broad number of users. Because,
clearly, there are a number of machines out

that are largely parallel. And, each of them
is serving certain niches.

But, if you want a general machine serving
most problems, I think you’d want to think
in terms of 64. That’s just my personal bias.
In the work that we did, and, I think, alsoin
scientific work, the 1-bit granules are not
used. In some sense, they’re good for other
kinds of simulations than scientific or
graphic type work. So, in some sense, I
thought of that machine as being a smaller
number of floating point chips as opposed to
a larger number of 1 bit processors.

Of course, some of the problems you en-
counter in programming massively parallel
machinesis how to track the state, measure
its performance, and evaluate the available
tools. Some presentations on these issues
were made earlier today. And, something,
Ithink,is pretty interesting—I thinkifyou
use graphics to display parallel variables
where you have alarge number of them and
you can put them in some coded way on the
screen where you can watch the machine
and similarly use it to display utilization,
router activity, grid activity — those kinds
of things that it can be used for.

At the other end of the spectrum-—not the
high end, but the lower end—when we go
home and play with our personal comput-
ers, or we get something on our desktop for
our office — there’s a trend toward rapidly
increasing power. There’s really two rea-
sons for this. One is the RISC technology
seems to have pushed the performance of
small machines, and these machines are
starting to become something that’s moving
towards our home and our desktop. But,
also floating point power becomes much
cheaper, particularly, pipeline floating
point,

And, it’s even possible to get parallelism in
a Macintosh IT or a PC. You can put boards

17

in there that will accelerate you up to sig-
nificant speeds. And, it won’t be very long
before you have the power of a CRAY 1,
which is about 50 megaflops, on your desk-
top for about $10-15,000.

There are some interesting things going on
in our field—revolutionary things. I'm
going to digress a little bit and talk about
our experiences with the CRAY X/MP. We
wrote an algorithm for graphics that ended
up being about 500,000 lines of code, which,
by my measures, is a large code.

The algorithm averaged about 500,000
polygonsinaframe. That’s alot of complex-
ity. A polygon is a unit of surface. It's a
piecewise linear spatial way to approxi-
mate 3-D images. We typically approxi-
mate them by their surface because one
typically doesn’t see inside of things unless
one is refracting light through crystals or
something. We typically made frames at
2,000-x-2,500 pixels with 36 bits per pixel—
that’s 24 megabytes. So, we pushed a lot of
data in each frame.

We made some frames that are 5,000-x-
4,000, or 75 megabytes. We made use of the
100-megabyte-per-second channels. People
are beginning to explore this. Doing graph-
ics has a lot of bandwidth requirements.
Feeding the tube requires a lot of band-
width.

Just to give you a sense of how much com-
puting is involved, in The Last Starfighter,
we did about 30 minutes of film, and we had
to compute on a CRAY-1 for about 6-9
months, and we were backed up with about
2 years’ worth of computing.

Webroughtinthe X/MP and then computed
onit for about 6 months. If you just figured
in two processor X/MP time, it was almost 9
months of solid computing—that’s a lot of
cycles. And, we were producing about 1.5

hours of imagery per year for an average
frame time of about 2 minutes/frame.

We found that there is a perceptual thresh-
old for interacting with complex pictures of
5 minutes. If you can make your frames in
less than 5 minutes, everyone’s productive.
If you take longer than 5 minutes, nobody
makes any progress and the production
grinds to a halt.

We also find in computer graphics that an
issue such as volume visualization, where
you have a big field of 3-D images and you
want to see what’s going on, that the data
can be very complex. You may be looking
through many layers. And, it requires the
same high levels of computing such as the
kinds of graphics that we’ve been working
on for entertainment.

We've declared parallel variables on the
CM-2 by creating an operator,which is
really a 1-character prefix on our parallel
variables. We used exclamation points with
the data we processed on the CM. So, every
parallel variable (P-VAR) was “bang” some-
thing or other. We called the renderer the
“bang render,” the thing that makes the
pictures. But, anyway, I think it’s my vote
that is counter to everything that
everybody’s doing to make the parallel
variable jump out at you by having them
look different.

I think it makes the code easier. I think the
whole general trend toward having lan-
guages hide the machine’s activities is
wrong. I think it’s much better to just bring
it up and let you control this machine.
You've got to think in terms of these mas-
sively parallel machines, anyway, or you're
not going to get to square 1. Nobody’s going
to throw a normal FORTRAN program on
these machines. Or, if they do, they’re not
going to like it.

18

We made use of *LISP, which is the parallel
LISP dialect for the CM and used the sym-
bolics front end. For me, who had been
programming in FORTRAN for many
years, to change from normal, vectorized
FORTRAN, to parallel LISP was a pretty
radical culture shock, but, I'm alive to tell
you about it.

However, not very many people are willing
to go through this kind of psychological
lobotomy, or whatever it takes to redesign
your brain patterns. Programming the CM
is like solving 3-D puzzles. There are people
who are good at it, but, I'm not one of them.
My work cycle on the CRAY wastypically as
follows: I would think about something to
code up, e.g., a couple of pages. I would
think about it for a day. I would code it for
aday. And, Iwould godebugitforaday.On
the CM, I'd think about it for about 3-4 days,
code it in about 2 hours, and debug it any-
where from half a day to a week. Some of
the problems were very hard to debug be-
cause it was difficult to see the state of the
machine—what it was doing.

You had to build alot of test cases to find out
what the processors were sending or get-
ting or whatever it may be. Anyway, there
are different coding styles. It's a different
lifestyle, if you will. It’s still in the middle
of the night for most of us. But, other than
that, it’s a different function.

On the CRAY, we used precision film-re-
cording scanning systems that use cathode
ray tubes. With the CM, we were targeting
mostly commercial production, and we used
“digital video.” There’s a broadcast indus-
try standard now called “422 Component
Digital Video,” for short, it’s called CCIR
601. This particular standard is a way of
sending numbers to represent the picture.
It’s a vast improvement over analog sig-
nals, where they’re always drifting around
on you. And, there are media that are kind

of interesting peripherals that support this
digital medium. One is a disk system that
holds 100 seconds, and you can random
access it. It’s made by a company called
Abekas. ‘

There’s also a tape machine that will store
this visual video made by Sony. It’s called
a DVR 1000; the format on the tape is called
Dl; but, the data are transmitted at 20
megabytes per second—a healthy data
rate. It’s over an eight-bit-wide differential
ECL signal level cable. And, this 20-mega-
byte-per-second stuff can be laid down on a
tape. Well, that’s a hell of a tape machine.

Each tape is a little cassette that will hold
either 35 minutes; a slightly larger one will
hold 75 minutes. That’s 50 gigabytes! A
little tape of 50 gigabytes transfers at 20
megabytes per second, and has a disk that
goes with it. That was pretty exciting stuff.
Our connection to it was over the Ethernet.
Oh, well, at least we’ve preconditioned all
the data. So,it ran100 Kilobytes per second,
or whatever the Ethernet would go. We
were going to hook up a VME, but didn't get
around to it. We also made some use of the
HBTYV standard, which is the high defini-
tion video spec. There are people who have
produced systems for it including Phillips
in Europe and Sony and NHK in Japan.
Anyway, it’s 1,125 lines. They account for
the lines that scan back that you don't see.
It’s really a 1,040-lines visible system.

But, it’s not a square screen or even a 5-to-
4 type screen. It's a 1.6-to-l1 aspect ratio
which is the old European movie format.
So, it’s 1,040 lines-x-1,660 pixels. We made
some use of this. We actually used
nonsquare pixels and used 1,280 lines and
stretched them.

We were not at the optimum performance
on the CM that we would be if we just kept
pounding on our performance and our soft-

19

ware. On the CRAY, we figured that we’d
put 8 man-years into the algorithm and 16
man-years into optimizing it. We had put
the 5, or whatever, man-years in the CM;
but, we hadn’t put the subsequent10in the
optimization, so, we had a long way to go.
But, among the things that were—that we
could see to do to improve ourselves—is
that we had about 35-percent efficiency
based on the front-end issuing instructions.
It wasn’t keeping the CM busy. It wasn't
issuing instructions fast enough. We would
have benefitted a lot from the later CM
operating system release where they have
something they call “variable virtual proc-
essor ratios.”

The way that that machine uses its floating
point chips and pipelines, it does not get
very good floating point efficiency in terms
of its peak unless you use high virtual
processor ratios. We had to use a virtual
processor ratio on our code of 1, meaning we
just barely fit with the number of tempo-
rary variables. We have a large number of
temporary variables. But, we could've had
a few variables that would've fit in there
and we could’ve used large virtual proces-
sor ratios for that and gotten significant
improvement—probably a factor of 2 on our
code.

We also found that we used mostly many-
collision routing, thatis to say, lots of people
wanted to get from or send to the same
place. Let’s say a processor was a pixel.
And, at some point, every processor’s a
polygon. And, it says, okay, I'm going to see
what pixels I touch. And, it’s going to start
to scan itself out. As it does, it’s going to
send to some other processor that’s a pixel.
So, it does that. And, now every processor
puts on a different hat and pretends to be a
pixel. And, it sees who all the polygons are
that touched it.

So, we made almost no use of our graphics
hardware on the news grid. It was almost
all general routes with lots of collisions. So,
for any of you who are designing machines
and are interested in complex graphics
algorithms, that’s our experience, at least
for the kind of algorithms I design.

Others may design other kinds of algo-
rithms. We also used indirect addressing.
That’s how you build things on the list that
are different length, where every processor
has a different length list. It was funda-
mental through our design. We also used
some of the more exotic operations that the
CM provides in *LISP-—scans, ranks, and
enumerates copy scans and segmented
COpy scans, etc.

We made lots of use of them. Everytime
they would say “here’s something funny
and it does something funny. Is it useful?”
we’'d say “yeah,” and we'd stick it over here.
We made lots of use of all that and, it
became important for performance.

Another thing we did was adopt a concept
that has been bouncing around known as
data flow in the industry where you group
pieces of work to be done together. If you're
going to turn off 90 percent of your proces-
sors and only have 10 percent active, that’s
not very good use. But, if a whole bunch of
different things need the same—let’s say, a
whole bunch of users need a multiplier, but
each one would only be 10 percent active if
you did them separately.

So, you'd collect them all together. You'd do
the multiplying and then, send them all
back. Now, multiply isn’t a big enough unit
of work to justify all that sending and col-
lecting, but, we had units of work that were
similarly small which meant entirely differ-
ent things because they were from com-
pletely different parts of the code. But, we

20

would collect them up, do them all in paral-
lel and send them back. And, that turned
out to gain significant speed.

%

The Impact of Massively Parallel
Computers on Image Processing

Azriel Rosenfeld
University of Maryland

The use of massively parallel computers for
image analysis was first suggested in a
paper entitled “A Computer Oriented Ap-
proach Toward Spatial Problems,” which
appeared in the proceedings of the IRE, if I
remember correctly after 30+ years. It was
suggested that if you took an image and
loaded it into a bit and then connected an
array of processors—one pixel per proces-
sor, perhaps—you could do an awful lotina
small number of computational steps using
pixel parallelism. I want to start off from
that baseline and say something about
what kind of things we want to do with
images once we get them loaded into a
massively parallel system, and how hard
some of those things are going to be. We
know how to massively parallelize some
operations; but, we don’t necessarily know
where the bottlenecks are. I have my own
prejudices, and I'll comment onthem as I go
along,

Let’s look at real-time vision. You point a
camera at a scene. You get a video image,
grab a frame, digitize it, and now you have
this massive data set, but the frames keep
coming at you. You're dealing with perhaps
many megabytes per second, depending on
frame rate and size. One of the serious
limitations in our business is that you often
have to do things in real time. These limita-
tions have no meaning, however, if you get
an image every day from somewhere out in
space, and you are willing to take 24 hours
to make some decision about it. For most
systems, we don’t have that kind of luxury.
In most real-world applications, for ex-
ample, if you are trying to create eyes for a

CH2649-2/89/0000/0021$01.00 © 1988 IEEE

robot that actually has to move around and
manipulate things in real time, then imple-
menting what the system has to do in real
time at low cost is a challenge.

Let’s go into the factory and look at the
industrial machine vision systems that are
being sold. They don’t work with massive
parallelism, because massive parallelismis
not something you can put on a chip for a
few thousand dollars so that you can install
them economically. So, they work with the
sort of simple operations that you can per-
form sequentially more or less at frame
rates, which tremendously limits what they
can do. The things that computer vision
researchers were inventing, exploring, and
developing 20-30 years ago, you can now do
in real time on a single-processor system.

Massive parallelism offers the tantalizing
promise of being able to do less trivial
things in real time once the cost of mas-
sively parallel systems comes down. The
axiom is that computer power is getting
cheaper, and this trend will continue. We
are far from being up against a stone wall.

There are experts on hardware here who
will tell you how soon you’ll be able to buy a
1,000-x-1,000 mesh-connected system for
$1,000. It'll be awhile, no doubt. But, unless
the economic pressures for doing it go away,
it would surprise me if, by the turn of the
century (plus or minus a few years), we
weren’t within shooting distance of that
target, if not already there. This implies
that although we keep coming up with ever
more diabolical ideas about how to torture

data and squeeze drops of wisdom out of it,
anything we can do today will eventually be
done in real time at low cost. This is my
underlying hypothesis.

What types of data do we need to process
when we try to do computer vision? What
stages do we go through from the time we
get the image into our retina (8o to speak)
until the time we are able to do things?
What types of operations do we need to
perform on these types of data, and in what
way can we speed up those operations using
parallelism?

It’s fashionable to say nowadays that com-
puter vision has two major goals: construct-
ing amap of the environment, and recogniz-
ing the objects.

The catch for goal 1 is that the environment
is three-dimensional (3-D), while the cam-
eraimage is two-dimensional (2-D). Tomap
the environment, you need surface topogra-
phy. If I pointed a camera at this room,
there’s a lot of depth here, lots of objects
occluding one another, and they are very
complex objects.

With regard to goal 2, recognizing the ob-
jects, lets look at the people in this room.
Can I recognize and count them? Can I tell
the men from the women? Can I distinguish
which ones are wearing eyeglasses or
beards? Such recognition tasks are beyond
the state of the art. You might come up with
a technique that recognizes 80-—90% of
them, but, that doesn’t mean you're doing it
right—and when you blow it, you really
blow it. Maybe the slide projector down the
aisle will show up as a guy wearing a funny
hat because your technique doesn’t know
about slide projectors and projector stands.

Recognition is a very hard and open-ended
problem. Naturally, there are simple do-
mains in which we can do topographic re-

22

covery; but, very little of the topographic
recovery stuff has successfully been done
robustly on real data. Much of it gets dem-
onstrated on synthetic examples. Vision
problems are not easy. We're starting with
an image and we want to end up with
certain products, or outputs, one of which is
a depth map. Many people are using range
sensors nowadays instead of TV cameras,
although they’re very slow, because they
give you a depth map. Recognition is still a
mess, though, because objects are 3-D. You
only see one side of them. They hide one
another. Objects may not even be precisely
defined. (Give me the precise definition of
the human head or, for that matter, a pre-
cise definition of a beard. Heads and beards
come in many varieties.)

I want to stress the data types involved in
vision. If you are trying to get from the pixel
array to the depth map, which is also a pixel
array (the pixel means something else), the
data types involved are primarily pixel
arrays, and you might actually get away
with pixel parallelism, with what we might
call “retinoptic” processing, involving proc-
esses that look at local patches of the data,
chew them up, and spit them out again in
array form in a way that is now more mean-
ingful: it’s now a depth map instead of an
image.

In this situation, you are basically process-
ing arrays of data; the basic data typeis the
array. The kinds of operations you're per-
forming are primarily local operations
where you look at little pieces of the array
and infer the logical topography by massag-
ing them. If this was all we wanted to do, it
would substantiate the contention that the
big bottleneck in doing vision quickly is the
massive local processing of all those pixels
in parallel. Mesh-connected machines like
the Massively Parallel Processor (MPP)
might, in fact, be the basic solution. And,
even though these machines, in their pres-

ent states, still have some limitations,
they're developing and improving all the
time.

When you come to recognition tasks, how-
ever, it's fairly clear that you need other
types of data representations. What's a
human face? It’s got eyes, eyebrows, nos-
trils, lips, and so on. In order for it to be a
face, however, the parts have to be in the
right places. So, now we are talking not just
about images as pixel arrays, but about
image parts. We're talking about eyes being
almond-shaped, with pointy ends. We're
talking about noses being aquiline—that
even sounds 3-D. We're talking about
mouths being pursed or smiling. We're talk-
ing about image parts—about geometric
properties of those parts, and relations
among the parts.

So, when we want to do recognition, we're
not just talking about pixel arrays; We're
talking about other kinds of data and data
types—other kinds of information about
these data types, and other kinds of proc-
essing of these data types.

A computer vision system may be con-
fronted with a variety of data types. It
certainly starts with array data and, at the
very beginning, a particular numeric ar-
ray—that’s the pixel array. It may go from
there to do all kinds of derived arrays. Some
of them may no longer be numeric; some of
them may be symbolic and look like over-
lays. Evenin the domain of numeric arrays,
which may not even be scalar valued. These
arrays might represent surface orientation.
They might represent textural informa-
tion, which is painfully gathered on a local
basis in the neighborhood of each pixel. In
short, there are many array-like represen-
tations.

Above and beyond that, we must eventually
start extracting geometric entities in two

23

and three dimensions from the pixel array.
Now, we are confronted with how to repre-
sent geometric entities—patches of the
image, patches of surface, or pieces of solid.
These are entities in two dimensions, two-
and-a-half dimensions (surface patches),
and pieces of solid, not all of which you can
see. A vision system must deal with the
representation of that kind of information
and its processing.

Going up to a still higher level of abstrac-
tion, how do you represent this data collec-
tion about pieces of the image and their
properties and relations? The old standby is
that you create some kind of labelled graph
in which you represent the image pieces as
nodes. The graph then tells you how they
are related. That’s how you get from the
array to some sort of abstract structure.
The reason for doing this is object recogni-
tion. The description of the object is in
terms of parts and their relations. So,
somebody has to get that kind of informa-
tion out of the image and check it against
the models—the descriptions of what a
generic thing is going to look like. Modeling
is hard. Description is hard. Making them
meet halfway so that you can check one
against the other is hard.

There’s an even more abstract data type
that we might call “knowledge.” I won't
even try to speculate how easy or hard it is
to do vision in an Al-ish [artificial intelli-
gence-ish] context in which you can reason
about what you are doing. The processes of
extracting parts from an image are not very
Al-ish. The processes of setting up the data
structures are not very Al-ish. People are
attempting to make use of Al-ish control
structures in doing some of the higher level
massaging of the more abstract data types.
Parenthetically, I would contend that if the
Al-ish approach is going to do the vision
community any good, they ought to start
using it, even down at the pixel level. But,

since I'm not prepared to prove that specu-
lation, let’s pass it by.

The real thing I want to call your attention
to is to not assume that the bottleneck is
only at the pixel level. Yes, the data you
begin with in your vision system are pixel
arrays of various sorts, whether the origi-
nal one or all sorts of derived ones. Yes,
those arrays involve fairly massive
amounts of data. For example, 1,000-x-
1,000 pixel images give rise to arrays of 1
million pixels, and if we have 1 or a few
bytes per pixel, we're talking 1 or a few
million bytes of data. Yes, that’s a lot of
data. But massive parallelism is approach-
ing the million level, even if it hasn't quite
gotten there yet. (Maybe you'll hear product
announcements at this meeting.) We al-
ready know how to break the bottleneck at
the pixel level for certain types of opera-
tions through massive parallelism, be-
cause, as massive as the parallelism may
be, we're on our way toward it. And, once we
achieve that level, when the parallelism of
the machine is equal to that of the problem,
then we can process every pixel in theimage
simultaneously. If all we're trying to do is
some kind of local processing, maybe re-
peated local processing (local means not
very large neighborhood sizes), of the pixel
arrays, massive parallelism of the conven-
tional kind—mesh-connected machines—
would allow us to do it very fast. Thus, if the
bottleneck occurred at the pixel level, con-
ventional massive parallelism would break
it.

The question is, what about the possible
bottlenecks at the more abstract levels?
Here, an optimist might say that, at these
levels, we’re working with fragments of the
image; and how many of them are there?
Perhaps just a few hundred. But how many
bytes does it take to tell us everything we

24

want to know about one of these fragments?
Not a vast number. Then, why do I insist
that there may be problems up ahead?

Because we may run into a combinatorial
explosion. True, I said that from your mil-
lion-pixel image, all you need do is extract,
say, 1,000 image fragments. What gets you
into trouble is that you pull out these 1,000
fragments in 100 different ways. Anybody
who thinks you can run one canonical seg-
mentation technique on an image and get
the definitive thousand atomic image frag-
ments is wrong. You need to extract the
fragments in many different ways. So, in
fact, they represent possibly overlapping
inconsistent interpretations of pieces of the
image. Then, you need to put those frag-
ments together in combinations. True,
you're almost certainly not considering
arbitrary combinations of the thousand-
image fragments (2-to-the-thousandth-
power combinations); you're probably look-
ing only at certain connected combinations,
and although I'm not prepared to count
them, it’s certainly not a fully combinato-
rial problem. But, there are still many
combinations, and that’s where the true
bottleneck may lie.

What kinds of operations do we want to
perform on these various data types? There
is a taxonomy; it’s a kind of textbook of basic
image processing and analysis techniques
organized by type of operation.

If I'm given a pixel array, I might want to
work on it one pixel at a time. I might want
to do a stretch of the gray scale or a thresh-
olding. I might want to do a huge variety of
local operations. These are a generalization
of point operations, where we're not just
operating on single pixels, but one pixel and
afew other related pixels everywherein the
image. It’s obvious how to do that kind of

thing in a massively parallel way, but some
kinds of things get a little less obvious.

Suppose I want to do statistics on the im-
age, perhaps to analyze its texture. How do
you get global statistics on a 1,000 x 1,000
image? Not by local operations. Somehow,
you've got to get all the information to-
gether in one place, so you can count noses,
so to speak. (How many occurrences of some
particular local property are there in the
entire image?) The mesh doesn’t support
that too well. A 1,000 x 1,000 mesh looks
like its’s giving you a millionfold speedup
factor in processing, but that’s for local or
point operations. It's giving you only a
1,000-fold speedup in statistical computa-
tion, because you still have a communica-
tion problem.

Other kinds of image transformations pro-
vide other problems. There are geometric
image transformations that perform arbi-
trary warping of our image to correct distor-
tions. There are other kinds of transforma-
tions in which the output is still an image,
but it no longer has even a geometrically
distorted point-by-point correspondence
with the input image. Finally, there is the
large class of segmentation operations that
perform the segment extraction of the
image parts. The inputis an array, but the
output no longer is.

Suppose we have managed to pull out of our
million-pixel image 1,000 image fragments,
or something on that order, and we have
somehow represented them (without giving
a lecture on representations), so we now
have descriptions that are sufficient to re-
construct each of those fragments. In other
words, we have a collection of geometric
entities. What sorts of things do we want to
do with them?

It starts right out as combinatorial in that
we want to assemble them in various ways.

25

I may need to take unions of collections of
them. I may need to intersect some of them.
I may need to derive other subsets from
them. I don’t think there’s a general agree-
ment on the taxonomy on what you may
want to do with image parts. What are the
geometric computations you need to per-
form? And how can they be efficiently per-
formed? What are the good ways of repre-
senting the geometric entities?

Yes, you only have 1,000 entities; but, you
may need to deal with a very large number
of combinations of the entities. And every
time you form a new combination, you may
have to recompute everything, especially
since the images are coming along at 30 per
second. Whateveritis youdo, you may have
to do it again, especially if things changed
rapidly. On the very next frame, you may
have to extract and/or combine fragments,
a different combination every time, and
then compute derived structures, geomet-
ric properties, and decide on geometricrela-
tions of all sorts on the resulting mass of
data.

We have accumulated alot of ideas over the
past decades as to the types of things we
need to do. We have reasonably efficient
algorithms for doing them. We can now look
at this body of tasks and ask how can we
speed them up? Is massive parallelism
useful when you are trying to handle the
combinatorics of search with the goal of
combining image parts so that you can get
to the next stage of description?

Similar remarks are true at the next level of
abstraction, the graph level, where we have
thrown away the geometric details. A geo-
metric entityis now represented by a graph
node at the location of the entity. But
graphs are combinatorial objects, too. Even
at the graph level, you get into the combina-
torics of considering collections of nodes,
and the complexity gets at least polyno-

mial. I'm not a graph theorist. I'm not ask-
ing what the taxonomy of computations is
that you want to do on labelled graphs. I'm
only asking what a taxonomy of labeled
graph computations is that a vision person
might want to do.

When you look at vision benchmarks nowa-
days, you find that the creators of the
DARPA vision benchmarks deliberately
stuck their necks out and said “What about
computational geometry and graph algo-
rithms?” The next DARPA architectures
workshop will be held next week, in Avon,
CT, where people will report on a unified
benchmark involving operations at all the
different levels of abstraction.

To summarize: What’s the vision problem?
What are we trying to do? Topographic
recovery? Object recognition? What sorts of
data do we need to process? The pixel array?
Derived arrays of all kinds? Geometric ob-
jects, represented in various ways? Still
more abstractly, labeled graph structures?
Beyond that, I don’t even want to suggest
anything.

What kind of operations do we want to
perform on these data types? We have a
longlist for the array types, a shorterlist for
the geometric types, and a still shorter list
for the graph types. I don’t claim that the
list is really shorter, but only that I've been
too lazy to think harder and come up with a
convincing, definitive taxonomy of what we
may want to do. Now comes the question,
“What about the speedup of these opera-
tions using various forms of parallelism?”

The pipeline idea yields operation parallel-
ism. No sooner do you finish doing an opera-
tion on the first little piece of your image,
then, treading right on its heels, comes
another processor that starts the next op-
eration on the partial output of the first
operation. By doing this, you’re overlaying

26

operations; if you can do one operation at
frame rates, then you can do K operations,
not in K times the frame rate, not K times
slower; by overlapping, you can do K opera-
tions practically at frame rates.

The MPP, and the other mesh-connected
parallel systems, provide another ap-
proach, which allows an operation to be
performed in parallel at every pixel. The
tree-structured machines represent some-
thing that you might call orthogonal to the
mesh. It's a different interconnection struc-
ture, but tremendously powerful for certain
purposes. If you want to do statistics opera-
tions—for example, if you want to do histo-
gramming, a tree is great.

A pyramid is basically the cross-product of
the mesh and the tree. It has the advan-
tages of both. I'm not going to give you a pep
talk on pyramids, but, it should be clear
from the program of this meeting, and
almost any meeting these days, that pyra-
mids are currently undergoing a wave of
popularity, which is nice.

Finally, there’s a wave of commercial ma-
chines using hypercube achitectures.
Hypercubes—if they’re sufficiently mas-
sively parallel—are very advantageous. In
terms of communication flexibility, they
can simulate pyramids very handily.

These architectural ideas have been
around for some decades. The mesh has
been around in a conceptual way since
1958, so it's having a 30th anniversary.
Eventually, a succession was built. People
have been talking about hypercubes for
10-20 years. People have been talking
about pyramids for 10-15 years. Using all
these kinds of parallelism—a lot is known
about that. But the vision problem is still a
challenge.

Suppose I was showing slides instead of
these dull black-and-white, alphanumeric
transparencies. Suppose I hit the slide
changer button and up on the screen ap-
peared a slide of an octopus. How long
would it take you to recognize it? A fraction
of a second. Suppose I hit the button, and
the next slide is the Eiffel Tower. Again, in
1/10th of a second, you think “Eiffel Tower.”
They are familiar objects. A typewriter is
familiar. My Doberman Pinscher (which I
don’thave)is familiar. And soon. Younever
saw that particular dog before, and maybe
you don’t know breeds that well; but, in 1/
10th of a second, you recognize it as a dog.
It’s a familiar object. You didn’t expect it,
but you recognize itin a fraction of a second.
You have along-term memoryin your head.
Asachild, youlearned at anincredible rate.
It’'s been estimated that a child learns to
recognize 5,000 objects by the age of 10.
(This is based on counting the entries in a
picture dictionary.) You can name more
than 5,000 objects reliably. You have all
this information stored in your head. And
you can instantly access it in a fraction of a
second. How much processing could have
gone on in your head from the time the light
hit your retina to the time the word “octo-
pus” came to the surface?

Neurons are slow; they take milliseconds.
There is controversy as to exactly how
neurons do their computations (computa-
tion is the best metaphor we have these
days), but, whatever it is they do, and
however they encode it, and however it is
represented computationally—somehow,
there is something going on in your head
that goes from the light hitting your eye
with an octopus pattern to the word “octo-
pus” coming up in your short-term auditory
memory, and coming out as a word.

When we do that in a few tenths of a second,
uncoached, unprompted, and unexpected,

27

how many neuron firings were there in that
time? It’s on the order of hundreds. How do
you vision in the order of 100 cycles? What
kind of architectures can achieve such per-
formance? How do we program them?
That’s the next lecture.

SECTION I: ALGORITHMS

Part 1: Oral Presentations

PRECEDING PAGE BLANK NOT FILMED

mﬁ”mmm«m BLAMS

—_
~

Néb;16443gQ¢;

HOW TO CLUSTER IN PARALLEL WITH NEURAL |

NETWORKS

J. A. Gualtieri

Behzad Kamgar-Parsi

Judy E. Devaney

Center for Automation Research Code 635 Science Applications Research
University of Maryland NASA GSFC 4400 Forbes Bivd.
College Park, MD 20742 Greenbelt, MD 20771 Lanham, MD 20706

Behrooz Kamgar-Parsi
Dept. of Computer Science
George Mason University
Fairfax, VA 22030

ABSTRACT

Partitioning a set of N patterns in a d-dimensional met-
ric space into K clusters — in a way that those in a given
cluster are more similar to each other than the rest —
is a problem of interest in astrophysics, image analysis
and other fields. Asthere are approximately % possible
ways of partitioning the patterns among K clusters, find-
ing the best solution is beyond exhaustive search when N
is large. We show that this problem in spite of its expo-
nential complexity can be formulated as an optimization
problem for which very good, but not necessarily opti-
mal, solutions can be found by using a neural network.
To do this the network must start from many randomly
selected initial states. The network is simulated on the
MPP (a 128x128 SIMD array machine), where we use
the massive parallelism not only in solving the differen-
tial equations that govern the evolution of the network,
but also by starting the network from many initial states
at once thus obtaining many solutions in one run. We
obtain speedups of two to three orders of magnitude over
serial implementations and the promise through Analog
VLSI implementations of speedups comensurate with hu-
man perceptual abilities.

Keywords: Combinatorial Optimization, Synchronous
Analog Network, Parallel Simulation, SIMD.

INTRODUCTION

Problems that involve data analysis are becoming in-
creasingly severe in that data sets are becoming very large
and their rate of acquisition is growing rapidly. It is clear
that humans possess immense computational power for
solving certain problems through visualization and that
what is needed is the development of algorithms that have
some of these capabilities.

31
CH2649-2/83/0000/0031$01.00 © 1988 IEEE

The value of neural networks — whose development has
been motivated by human beings’ computational capabil-
itles — as a computational device is yet to be explored. In
fact, little is known about the reliability and complexity
of these algorithms, and how they scale with the size of
the problem. The work we present in this paper is an
attempt to answer some of these questions. For this, we
will concentrate on the problem of data clustering - a
problem of interest in astrophysics, image analysis and
other fields. The conjecture is that because of the many
connections among neurons, neural networks should be
particularly useful for the class of problems that involve
collective decision making, of which one example is un-
supervised clustering. Here the patterns must decide to-
gether how to partition themselves into subsets according
to a given criterion. The problem considered here, as in
all partitioning problems, is a discrete optimization with
a goodness-of-fit criterion. By embedding this discrete
problem in the continuous space of an analog network
one can perform a downhill search on the energy surface
which is more purposeful and effective than the search
in the discrete space. Until hardware implementation of
analog neural networks in VLSI become available — which
is expected in the next few years [1] — simulation is going
to be an indispensible tool in the study and design of these
systems. Analog networks are intrinsically synchronous
and hence well suited for simulation on massively parallel
SIMD machines.

In this paper, we simulate the neural net we propose for
solving the clustering problem on the MPP {a 128x128
SIMD array machine with 1024 bits of local memory per
processor|. The issue of performance of neural net algo-
rithms on parallel machines is also addressed. Before we
proceed, however, we will discuss the clustering problem
in some detail

PRECEDING PAGE BLANK NOT FILMED

PAGE_ 7 O iNTENIIONALLY BLANK

THE CLUSTERING PROBLEM

By clustering we mean partitioning a set of N patterns
(the patterns are represented as points in a d-dimensional
metric space) into K clusters in a way that those in a
given cluster are more similar to each other than the
rest. As there are approxxma.tely possible ways of
partitioning the patterns among K clusters [2], the prob-
lem has exponential complexity and finding the best so-
lution is beyond exhaustive search. As is often employed,
we let our criterion for best solution be the minimum
square-error. That is, representing the patterns by d-
dimensional points {F;|¢ = 1,..., N}, the best solution
is the one minimizing x? = l(r(p) — R;)? with re-
spect to {§p|p =1,...,K}. Here cluster p contains the
subset of the points, {?‘.(p)}, and its centroid is given by
R, = TN #® where N, is the number of points in
the cluster. A partitioning based on such a criterion is
also known as minimum variance partioning. Because of
the complexity of the problem, finding the best solution
may not be possible. This, however, is not a major con-
cern, because in practice usually only a good solution is
sufficient.

Due to the importance of this problern many meth-
ods have been proposed by various researchers. (See Jain
and Dubes [3] for a survey of the literature.) Many of
these approaches are based on iterative schemes and of-
ten the differences between the suggested algorithms are
quite subtle. The number of clusters K may or may not
be fixed. For a given value of K, the essence of iterative
algorithms is as follows.

After the initial partioning of the patterns into K clus-
ters, their centroids, i.e. seed points in the d-dimensional
metric space of the patterns, are computed. Each pattern
is then assigned to the cluster with the nearest seed point
and new centroids are computed. The process is repeated
until the partitioning ceases to change. However, the pro-
cess of the computation of new centroids can be carried
out in two ways: (i) Keep the centroids fixed until the
distances of all patterns to the K centroids are computed
[4]; (ii) Update centroids as frequently as one pattern is
found to be closer to the centroid of a cluster other than
the one it is assigned to. In this case, the pattern is imme-
diately reassigned and the centroids of the winning and
the losing clusters are updated [5]. Thie method is some-
times referred to as K-means. Note that for a parallel
machine, where the distances of the patterns from clus-
ter centroids can be computed simultaneously, the first
approach appears to be more efficient.

The neural net approach that we propose has many
similarities with the iterative scheme described above. As
will be explained later in more details, the major differ-
ence, however, is that the neural net allows a given pat-

32

tern to belong to several clusters until the final iteration.
That is, at least during the execution of the algorithm,
a given pattern belongs to all clusters, though with dif-
ferent weights. The closest conventional method to this
is the one proposed by Gordon and Henderson [6].

their method, however, the sum of the weights for every
pattern is restricted to one at any given iteration; thus,
it dose not possess the full flexibility of neural networks.

As for the initial cluster centroids, one may take the
first K points of the input data, which is very simple and
inexpensive; or if one suspects the input points are pre-
arranged in some special way, one may choose at random
any K points of the input data [7]. More elaborate and
expensive methods for choosing more promising initial
centroids have been proposed in the literature (see Ref.
[8) and [3]). Such methods, however, are not of interest
to us.

OPTIMIZATION WITH NEURAL NETS

It has been recognized in recent years that artificial
neural networks have computational properties [9,10].
The Hopfield model of neural network, which we use in
this work, is particularly suitable for solving certain op-
timization problems. A neuron is a simple nonlinear pro-
cessor that is connected to many (possibly all) other neu-
rons in the network; it adds up the signals it receives
from other neurons and fires a signal accordingly. The
state of the network, that is the firing rates or activi-
ties of the neurons, through interactions with each other,
change with time but eventually the network settles into
a steady state where the neuronal activities remain con-
stant. The energy of the Hopfield network is Lyapunov
(ie. it does not increase with time) and its minima are
the steady states of the network. It is this property of
neural networks that iz used in optimization. The ap-
proach is to cast the problem in terms of an energy func-
tion that is then minimized by the corresponding network
as it evolves spontaneously from some randomly selected
initial state to states of lower energy. The energy function
has typically many minima that represent valid solutions
to the problem; deeper minima correspond to good solu-
tions and the deepest minimum to the best solution.

In this paper we use analog neural nets, because they
outperform digital nets in solving optimization problems
[9,11]. Many problems of interest, including the problem
we address in this paper, can be cast in terms of an energy
function, F, that is quadratic in the neuronal activities
and has the form [9],

=__ZZn,VV ZIV+ Z/ dzg~'(z).
=1 y=1 (1)

Here n is the number of neurons in the network, and

V; (0 £ V; < 1) is the activity or firing rate of neuron
1. The first term in (1) is the interaction energy among
neurons, and the elements of the connection matrix, T;; =
Ty =-— Fgr:fv;, are completely determined from E. In the
second term [; is the bias or activity threshold of neuron
t+. The third term encourages the network to operate in
the interior of the n dimensional unit cube {0<V; <1}
that forms the state space of the system. In this term 7
is the self-decay time of the neurons, and g(u), a sigmoid
function, is the gain or transfer function of the neurons
that relates the input u, to the output V;. A standard
form for g, which we will also use, is

1
1 + e—Zui;uo 4

where ug determines the steepness of gain. The neuronal
activities, ¥, as well as the input signals, u;, depend on
time t. The evolution of the network is determined by
the n coupled ordinary differential equations, du,/dt =
—3E/8V;, which are

du; _
dt

Vi=g(w) = %(1 + tanh%) = (2)

~= + E TV, + L.
=1

We will set 1 = 1, so that time is measured in units of

7. Note that the bigs-term can be eliminated from the

energy and instead incorporated into the gain function if
we define V; = g(u; — 7L;).

To find a solution (i.e. a minimum), we start the net-
work from a randomly selected state and let it evolve
freely until it reaches a minimum of the function £ and
stops. As is usual in dealing with computationally in-
tractable problems, we find not just one but several solu-
tions by starting the network from different initial states,
and then take the best one as the solutson which may
or may not be the optimum. Since a neural network con-
verges rapidly to a minimum we can afford to run it many
times thus ensuring that we find at least a very good solu-
tion. Below, we discuss how to construct an appropriate
network for solving this problem.

CONSTRUCTION OF THE ENERGY FUNC-
TION

We want to partition a set of NV points in a 2-D plane
into the best K clusters (generalization to arbitrary di-
mensions is trivial) - best in the sense that sum of the
squares of the distances of the points from their respective
cluster centroids (i.e. sum of “within cluster variances”)
is minimised. We formulate the problem in a manner
that can be solved by a neural network; that is we cast
the problem in terms of an energy function that can be
minimized by the network.

(3)

The energy function will consist of two parts: (i) con-
gtraint terms which make certain a point, at the end of

33

the search, belongs to one and only one cluster; (ii} the
cost term which is the sum of the residuals and is the
function we actually wish to minimize. The formulation
can best be illustrated through an example. Let us con-
sider the case where we wish to partition N = 10 points
into K = 3 clusters. A possible solution (not necessarily
the best one) would be that, say, points 1, 2, 6 and 9 be-
long to cluster A, points 4 and 5 belong to cluster B, and
points 3, 7, 8 and 10 belong to cluster C. This particu-
lar solution can be represented by the 3x10 rectangular
array given in Table 1, where the rows are labeled by the
clusters and the columns are labeled by the points. The
elements of this matrix are 0 or 1 with the interpretation
that “element A1=1" indicates that point 1 belongs to
cluster A, “element B1=0" indicates that point 1 does
not belong to cluster B, and so on.

Table 1: A possible solution for partitioning 10 points
into 3 clusters.

Cluster Points
1 2 3 4 5 6 7 8 9 10
A 1 1 0 0 01 0 O 1 O
B 0 0 01 1 0 0 O O0 O
C 0 01 0 0 01 1 0 1

If we think of the elements of this matrix as the activities
of neurons (n = K x N neurons altogether), and denote
them by Vi, where p and 1 refer to the cluster and the
point, respectively, then the constraint part of the energy
function, E, can be expressed as

?ZZZV V«-+—Z(ZV--1)’ (4

i=1p=1 q#p i=1 p=1

h

where the coefficients A and B are positive constants.
The A-term has its minimum value (i.e. sero) if in each
column (representing a point) at most one neuron is active
and the rest are off. The B-term has its minimum value
(also zero) if the sum of activities in each column equals 1.
The two terms together enforce the syntaz of the solution
given in Table 1.

There is an additional constraint that we should, in
principle, include in the energy function: that each cluster
should contain at least one point. In terms of the solution
matrix of Table 1 it means that in each row there should
be at least one full¥{a.ctive neuron. Such a constraint can
be imposed by }___, 6(1- vy, Vyi), where 6(z) =0
for <0 and G(z) =1 for z> 0 is the step function.
However, since this term is nonanalytic its inclusion in
the energy function creates problems and a better strat-
egy appears to be to leave out this term and rather reject

those solutions that violate this constraint. In our sim-
ulations of neural networks (several thousand trials) the
solutions never violated this conatraint. Therefore, it ap-
pears that the absence of this constraint from the energy
function is of little consequence.

To complete the energy function we must also formulate
the cost term. We denote the square of the distance of
point ¢ from the centroid of cluster p (i.e. the residual)
with R,; which is given by

(5)

Rpi = (=i - Xp)2 + (v — Yp)a!
where (z;, y;) are the coordinates of point 3, and (X, Yy)
are the coordinates of the centroid of cluster p. Here we
have chosen the Euclidean distance as the metric; but one
can define any metric one wants. Let us consider again
the solution represented by Table 1. The sum of residuals
or the cost for this solution is

(Ra1 + Raa+ Rae+ Rao) + (Rpa+ Rps)
+(Rcs + Rc7 + Res + Reo)s

(6)
which can be written as

K N

> 2 BuVii

. (7

Hence the energy function E, including cost and con-
straint, for this problem can be expressed in the final form

A N K K B N K
E=5323"3 ViVait 32 (D Vei—1)
i=1 p=1 q#p =1 p=1
C K N
52 D RV (8
p=1li=1

where C' is also a positive constant. When the constraints
(or the syntax) are satisfied the A-term and the B-term
vanish and the energy function, E, reduces to just the
cost term, therefore deep minima of E correspond to good
solutions, and the deepest minimum to the best solution.

The network dynamics, obtained from —3E/3Vy,, are

dup.-

K K
2= ~tpi=AY Vo= B(D_ Vei—1)=CRuVii+ L.
aEp
(9)

Note that (8) is only the quadratic part of the energy
function corresponding to the first term in (1), and that
the two terms Ij; and —u,; in (9) come from the second
and third terms in (1), respectively.

=1

To find a solution we assign random values between 0
and 1 to all the n = K x N neuronal activities, V;. Thus
the N points are partitioned into K clusters. Note that
the partitioning is not done in the proper sense that a
point belongs to a particular cluster and to no others;

34

rather, point 1 is partitioned among all the K clusters
with varying strengths that are the magnitudes of V,,
that is, we interpret Vy; as the strength of hypothesis
that point ¢ belongs to cluster p. Hence the centroid of
cluster p is obtained from the weighted average

N N N N
Xo =2 Vel D Veir Yo=D wVpi/ D Vii.
=1 =1 i=1 i=1

(10)
As the state of the network changes with time the cen-
troids, as well as the residuals Ry, also change. Start-
ing from this randomly selected initial state the network
evolves toward states of lower energy according to the
equations of motion (9}, until it reaches a minimum en-
ergy state and stops. The downhill motion of the network
on the energy surface is guided toward a proper solution
(one that satisfies the constraints) by the A- and B-terms
and toward solutions of good quality by the C-term. As
the network is searching for a solution the constraints are
most surely violated since most neurons are partially ac-
tive. Only at the end of the search when a solution is
found the clustering becomes unambiguouns. Note that
the energy E also contains other minima that do not cor-
respond to solutions (i.e. violate the syntax); such min-
ima when found by the network are of course rejected as
meaningless.

We remark that the cost term (7) can be written as a
linear function of activities such a8 Rp;V)p; which is bias-
like rather than tnteraction-like, However, bias-like terms
are not as effective in breaking the symmetry among the
states that satisfy the syntax, and leave the energy land-
scape more flat. Hence it will not be as easy for the
network to find valid solutions as it frequently becomes
stuck in the middle of the n-dimensional unit cube. This
is confirmed in our simulations, where the rate of success
for finding valid solutions drops significantly when we use
the linear form for the cost.

For simulations we have chosen the following values for
the parameters of the energy functionn A = B = 1,
C = 0.9/Raug, all Ip; = 1, and the gain function pa-
rameter up = 0.1, Scaling parameter C with the average
residual R,,, is necessary to ensure good solutions, be-
cause as the network evolves, the residuals become gen-
erally smaller and the cost term becomes less effective in
driving the network toward good solutions; this rescaling
of parameter C keeps the cost term of the same order of
magnitude as the syntax terms.

PARALLEL IMPLEMENTATION

We have simulated the behavior of the neural net on
the MPP. To do this we first generate a random initial
state {Vp:(t = 0)} and then solve the equations of motion
(9) to find which of the minima (or solutions) it converges
to. Solutions of ordinary differential equations, such as

the equations of motion, lend themselves very nicely to
a massively parallel computational approach. In addi-
tion, since we want to find several solutions starting from
different initial states — as is usual in computationally in-
tractable problems — we run several trials at once on the
MPP. Thus the speedup comes from parallel solution of
the differential equations as well as running several trials
at the same time.

We use the Euler method [12] with a fixed time step 4t
to solve the differential equations (9), i.e. we iterate the
set of n = K X N equations,

K
upi(t + 61) = upi() + 6e{~upi(t) — A Y_ Viult)

g#p

X
~B[Y_Vai(t) = 1] - CRVyi(8) + I}, (11)
=1
until the system converges to a stationary state. The only
stopping criterion we use is when the changes in the fir-
ing rates become insignificant, i.e. when all [V},;(t+ 6t) —
Vpi(t)| < €, where € <« 1. After the network converges to
a solution, we must check if it is a valid solution that sat-
isfies the syntax, i.e. for every point ¢ we must have one
Vpi = 1 and all the rest Vy; = O for ¢ # p. In analog net-
works the activity of a neuron can never become exactly
0 or 1 and can only reach close to the limits. Therefore,
if Vpi < no we take Vy,; = 0, and if Vi > 1 — n; we take
Vpi = 1, where no and #; are small positive numbers.
In the simulations we have chosen the following parame-
ter values: time step 6t = 103, convergence parameter
€= 1074, and the syntax parameters no = n; = 0.2.

Mapping onto a SIMD parallel processor was accom-
plished by assigning a unique processing element to each
data point. With this requirement, all of the necessary
operations reduce to simple array arithmetic, parallel
sums, row and column broadcasts, and global boolean
tests. All of these are the strong points of a massively
parallel processor such as the MPP. Since the MPP has
16384 processors, fewer data points allow more separate
trials to be run in parallel. Thus, for example, the 128
point case allowed for 128 trials with different starting
conditions to be run at the same time. The overhead to
the program to keep track of the different trials is trivial
since the data movement required is straightforward and
controlled by the programmer. The set of data points is
replicated for each trial run in parallel.

Each processor has stored in its memory its coordinate
values z; and y;, the neuronal activities V,,, input signals
U, residues Ry, for p=1,---, K, convergence indicators
for each neuron, and other ancillary information. The
processing begins with the calculation of the centroids of
each cluster according to (10). This involves a simple ar-
ray multiplication of the z; and y; by Vy for each cluster

35

p=1,---, K. Thiz result is summed using the cascading
sum technique [13] and divided by the sum of V), for each
cluster. These centroids are broadcast in parallel over the
remainder of the array using the MPP micrcoded broad-
cast primitive. This primitive, designed by Rudi Feiss
(described in [14]) is very fast using only 231 cycles to
broadcast a row or column — 128 32 bit numbers ~ to
the remainder of the rows or columns of the 128x 128
array. Then we calculate the residues from (5) which
involves more array arithmetic. The new input signals
upi(t + 6¢t) are calculated from (11) and the new activi-
ties Vp;(t + 6t) are calculated from the sigmoid function
(2). These are all array arithmetic operations. A boolean
mask for each cluster is created in parallel to record where
the new activities are different from the old activities by
more than the convergence parameter ¢. A logical ‘or’
(implemented as the ANY function in MPP Pascal) on
the masks determines whether the convergence criteria
has been met for all activities. This logical ‘or’ directly
translates into a hardware instruction on the MPP and
thus allows simultaneous checking of conditions which on
a serial processor would have to be done individually. Up-
dating of all neurons for each trial was continued, regard-
less of whether a particular trial had converged, until all
trials had converged. Thus unnecessary bookkeeping time
is eliminated.

Thus the speed on the MPP is obtained from, (i) the
mapping which allows most operations to be formulated
in terms of array arithmetic, (i) the movement of data
among the processing elements which can be done with
parallel algorithms, and (iii) the global boolean tests
which are done by the machine hardware. For the case
of 128 points to be clustered into 5 clusters, 128 trials
were run simultaneously. This required 19 seconds per
500 iterations. The corresponding CPU time on a VAX
8800 was 2940 seconds (a speedup of over 150 times), and
21100 seconds on a VAX 11/780 (a speedup of about 1100
times).

EXAMPLES

To study the performance of the neural net we have
tested it on some examples. In the first data set, there are
128 points divided among 5 clusters with within-cluster
Gaussian distributions (Fig. 1a}. Here the 5 clusters are
rather well defined and out of the 128 trials the neural
net found the optimum clusters 128 times. The aver-
age number of iterations for convergence was 4263; since
§t = 10737, the average convergence time is about 4.37,
where 7 is the decay time of a neuron. In VLSI im-
plementations of neural networks that are currently in
progress [1], the decay time of neurons, 7, is in the range
1078 — 1073 second, hence the convergence time of the
network should be in the range of a few micro-seconds to
a few milli-seconds. Note that from numerical solution of

differential equations one can only obtain an estimate of
the actual convergence time, because the number of itera-
tions for convergence depends on the value of the conver-
gence parameter as well as the time step. Obviously if the
convergence parameter is8 made smaller it will take more
iterations for the network to meet the convergence crite-
rion, resulting in a higher estimate for the convergence
time. On the other hand if the time step is made smaller
by, say, a factor of 10, it will take fewer than 10 times
the number of iterations to converge, thus resulting in a
lower estimate for the convergence time. Fig. 2 shows in
more detail the number of iterations for the convergence
of all the 128 trials.

The conventional method of Forgy [4] in 128 trials
found the best clusters only 46 times and various other
solutions 82 times. The average number of iterations for
convergence was 7. Clearly, in this example, the neural
net outperforms the conventional method, in that it finds
the best solution much more frequently. On the other
hand, the conventional method takes far fewer iterations
to converge than the neural net. But we should bear in
mind that these are simulations of the neural net, and
that the number of iterations needed for convergence is
not the true measure of the processing time of the net-
work. The convergence time of an actual analog VLSI
network must be measured in 7, the characteristic time
of a neuron, which is in the micro to milli-second range.™

To test the performance of the network in cases where
clusters are fuggy, we started from the data points of Fig.
1a, randomly selected 10% of the points and distributed
them uniformly throughout the unit square (Fig. 1b).
Thus we obtained 5 clusters with uniform background
noise. The neural net in 128 trials found the best clusters
28 times. It failed to find valid solutions statisfying the
syntax 46 times. This large number of failed solutions can
be interpreted as an indication that the clusters are fussy,
that there are outliers, and that perhaps the specified
number of clusters, X = 5, is too few. However, even
when the syntax is not satisfied we can extract a valid
solution with the following scheme. For each point ¢ set
the largest Vp,,; to 1 and all the other V,; with ¢ # p
to 0, and interpret this solution as the one favored by
the network, thus we obtain 128 solutions. Conventional
algorithms always find valid solutions and cannot give an
objective indication of the fuzziness of clusters.

Similarly to Fig. 1b, we generated other data sets by
increasing the background noise to 25%, 50%, 75%, and
100% (i.e. mno clusters). These data are shown in Fig.
lc-f. The results of partitioning the data among 5 clus-
ters obtained, in 128 trials, with the neural net and with
Forgy’s method are listed in Table 2. The average es-
timated convergence times for the network are given in
units of r. Two points of note in this table are: (i) As the

36

5 clusters become less discernible the network increas-
ingly fails to satisfy the syntax indicating that clusters
are fussy and that 5 clusters are not sufficient. The con-
ventional method, on the other hand, always finds valid
solutions, and although the variety of solutions that it
finds increases (this is true in both methods) which may
be taken as a clue to the fuzginess of clusters it is not as
objective an indicator as the failure to satisfy the syntax;
(i) When there are well defined clusters the neural net
performs better than the conventional techniques which is
reflected in the lower average x? (x2 is the sum of within-
cluster variances) for solutions found by the neural net.
And as clusters become fuszier the quality of solutions
found by both methods become comparable.

Table 2: In this table the results obtained by Forgy’s
conventional algorithm are compared with those by the
neural network. The Data refer to data points of Fig.
la-f. These are based on 128 trials.

Data Conventional
Iter | Best Var | Best% | Avg Var
a 7 0.62 36 1.23
b 8 1.06 34 1.57
c 8 1.95 12 2.27
d 10 2.94 2 3.14
e 10 3.88 10 4.11
f 10 4.13 2 4.64
Data Neural Net
Time | Best Var | Best% [Avg Var | Synt%
a 4 0.62 100 0.62 100
b 7 1.06 22 1.24 64
c 7 1.95 19 2.03 9
d 8 3.00 15 3.04 0
e 6 3.89 1 4.11 1
f 8 4.46 2 4.71 0

Iter: is the average number of iterations for convergence.
Best Var: is the variance of the best solution found.
Best%: is the percentage of trials that found the best
solution.

Avg Var: is the average variance of the solutions found.
Time: is the average estimated time of convergence in
units of 7.

Synt%: is the percentage of trials that found solutions
satisfying the syntax.

In Fig. 3, we have plotted the trajectories of the cen-
troids of the 5 clusters as a function of time for all the 128
trials for the data of Fig. 1a. It can be seen that although
the centroids start from different places in different trials,
they all eventually converge to the same 5 points which
are the true centroids of the 5 clusters. This clearly shows

that the network succeeds, in every trial, in finding the
structure in the data. In Fig. 4, we have plotted the cen-
troid trajectories for the data of Fig. 1f. The spreading
of trajetories (as contrasted to the contraction of trajec-
tories in Fig. 3) of different trials, shows that where there
is no underlying structure in the data, the network does
not prefer any particular clustering and hence finds many
different solutions.

CONCLUDING REMARKS

Preliminary results for clustering with neural networks
are promising. The neural net appears to outperform con-
ventional iterative techniques, when there are well defined
clusters since it finds better solutions more frequently.
And when clusters are fuzzy, or when the number of clus-
ters we specify is not compatible with the structure of
data, the neural net indicates that it cannot find valid
solutions easily, and that something may be wrong. This
indicator is an objective measure and hence more reliable
than the user supplied bounds and tolerances for conven-
tional techniques. Work on larger data sets is in progress.

The clustering criterion we have used in this paper,
that is minimum sum of within-cluster variances, results
in convex compact clusters. Often clusters are not round
or compact. By adding to the energy function, appropri-
ate terms that favor closeness of a point to its neighbors
(and not just to the cluster centroid), one can design a
network that finds non-convex elongated clusters of vari-
ous shapes.

4

Simulations of the neural net on the MPP for the clus-
tering problem are two to three orders of magnitude faster
than simulations on serial machines such as the VAX 8800
and VAX 11/780. The speedup is due to parallel solution
of the differential equations that govern the behavior of
the network, as well as running several trials at the same
time. However, the real benefit of neural nets may lie
in the future when they can be mapped on analog chips.
There are forecasts that analog VLSI neural nets will be-
come available in several years [1]. These devices will
have processing times in the micro to milli-second range,
making their performance comensurate with human per-
ceptual abilities.

References

[1] C. Mead, “Real-time analog computation in VLSI
neural networks”, in the First Annual International
Neural Networks Society Meeting (Boston, 1988).

[2) W. Feller, An Introduction to Probability Theory and
Its Applications, 2nd edition (John Wiley, 1959) Vol
1, p. 58.

37

[3] A.K. Jain and R.C. Dubes, Algorithms for Clustering
Data (Prentice Hall, 1988).

[4] E.W. Forgy, “Cluster analysis of multivariate data:
efficiency versus interpretability of classifications”,
Biometric Soc. Meetings, Riverside, California. Ab-
stract in Biometrics, 21, 768 (1965).

[5] J.B. MacQueen, “Some Methods for Classification
and Analysis of Multivariate Observations”, Pro-
ceedings of Fifth Berkeley Symposium on Mathemat-
ical Statistics and Probability, Vol. 1, p. 281 (1967).

[6] A.D. Gordon and J.T. Henderson, “Algorithm for
Euclidean sum of squares classification”, Biometrics,
38, 355 (1977).

[7] D.J. McRae, “MIKCA: A FORTRAN IV iterative
k-means cluster analysis program”, Behavtoral Sci-
ence, 16, 423 (1971).

[8] M.R. Anderberg, Cluster Analysis for Applications
(Academic Press, 1973).

[9] J.J. Hopfield and D.W. Tank, “Neural computation
of decisions in optimization problems”, Biological
Cybernetics, 52, 141 (1985).

(10] Neural Networks for Computing, edited by J.S.

Denker (American Institute of Physics, 1986).

[11] B. Kamgar-Parsi and B. Kamgar-Parsi, “An efficient
model of neural networks for optimization”, in Pro-
ceedings of the IEEE First International Conference
on Neural Networks, edited by M. Caudill and C.

Butler, Vol.3, p. 785 (1987).

C.W. Gear, Numerical Instial Value Problems in Or-
dinary Differential Equations (Prentice-Hall, 1971).

(12]

[13] H.S. Stone, “Problems of Parallel Computation”, in
Complezity of Sequential and Parallel Numerical Al-
gorithms, edited by J.F. Traub (Academic Press,
1973).

[14] J.E. Devaney, “The MPP - a Totally Different Ap-
proach to Programming”, presented at the IEEE
Computer Society Workshop on Computer Architec-
ture for Pattern Analysis and Image Data Base Man-

agement (1985).

1.

150

&
8

number not converged

128 points divided among 5 clusters and re-
spectively 0,10,25,50,75,100 % uniform background in
a,b,c,d,e,f.

1000

1o0p

Fig. 2. Number of trials not converged versus iteration
for the data in Fig. la. (0 % background) (loop is the
iteration number).

Fig. 3. Trajectories of the five cluster centroids for all 128
trials for the data in Fig. la. (0 % background). Lower
left corner of Fig. 1a. corresponds to back top corner in
this figure

Fig. 4. Trajectories of the five cluster centroids for the
data in Fig. 1f. (uniform distribution - 100% back-
ground).

MODELING NEURAL NETWORKS ON THE MPP

Joe Hicklin

Howard Demuth

Department of Electrical Engineering
The University of Idaho
Moscow, Idaho

ABSTRACT

A network of fixed-connection-weight neuron-like
elements has been simulated on the massively
Parallel Processor (MPP) in two ways. First, the
square connectivity matrix of a 128 neuron
network was mapped onto the square MPP
processor array. This allowed a highly parallel
simulation in which 128 MPP processors were
active at all times. Next, a 128 by 128 array of
neurons was mapped onto the 16384 MPP
processors, Here the MPP processor limits neuron
connections somewhat but all MPP processors are
active at all times and a large speedup is obtained.
The first simulation, based on the mathematics
(weight matrix), produced a significant speedup but
tended to obscure the second faster simulation
based on mapping the physics (entire physical
description) of the neural network onto the MPP.
The authors experience suggests that alternative
mappings onto the MPP should be sought and
examined carefully.

Keywords: massively parallel processor, neural

network, neural network simulation.

INTRODUCTION

This paper describes two simulations of neural
networks on the Massively Parallel Processor
(MPP). The first simulation seemed to be a natural
fit of the the mathematics involved to the MPP
architecture. It gave a significant speedup but it was
found that only a small percentage of the potential
power of the MPP was being utilized. The second
simulation mapped the physical process under
study to the MPP and led to a much better
utilization of the MPP. In the first implementation
we fell into what we believe may be a common trap,
that of simulating the mathematics as opposed to
the process. We would like to make this trap clear so
that others may recognize it and perhaps avoid it in
the future.

This paper provides a brief description of the MPP
and an outline of the neural model to be simulated.

CH2649-2/89/0000/0039$01.00 © 1988 IEEE

39

This is followed by a description and a comparison
of the two simulations implemented on the MPP.

Logically, the MPP is a single instruction stream,
multiple data stream (SIMD) machine that has a
rectangular mesh of 128 by 128 one bit processors.
Each processor has 1024 bits of local memory and
can communicate directly with its four nearest
neighbors, including opposite edge neighbors. This
topology can be used in several ways to simulate the
neural networks described below.

NEURAL NETWORK MODEL

A simple example of the kind of neural network
studied here is shown in Figure 1. The neuron
bodies are labeled A, B, and C. Their connections
are labeled p through u. The connection from A to C
says that when A "fires", a signal of strength q is
sent to neuron C. A neuron fires when the sum of its
accumulated activation and its present inputs
exceed its threshold. On firing, the accumulated
activation of a neuron is set to zero.

To

Figure 1, A Simple Neural Network

The operation of an N neuron network like that
shown in Figure 1 can be described mathematically
as follows:

Aj(tp) & activation of neuron { at time tp (real
number)

Wij & strength of connection from jth neuron to the
ith neuron

(Also, the ijth element of the weight matrix W,)
T £ threshold at which any neuron will fire

1ifAD) 2 T
Wﬁmgku@m<T

N
Aft+1) = (1-FIAWD * A0 + YFIA(W]wy
j=1

Here the first term says that if a neuron fired on the
last time step its activation is not carried forward
and its contribution to the current activation is
zero; but if it did not fire its previous activation is
carried forward to the new activation. The second
(summation) term indicates the current effects of
the firings of other neurons.

This neuron model has a variety of simplifications.
First, time is discreet. Second, all neuron
thresholds are identical. This constancy is not a
limitation for the effect of different thresholds can
be achieved through adjustment of the weight
matrix elements. Third, the neuron connections are
not adjusted once the simulation begins. Thus, no
“learning" involving change in the elements of W is
involved. This last approximation allows the
behavioral investigation of relatively large non-
learning networks.

The activation update phase of the simulation of the
models requires the majority of the computation
time. Here the activation vector for the next time
step is generated from the current activation vector
and the weight matrix. On each time step some
elements of the activation vector are above
threshold, and so the associated neurons fire. A
binary firing vector, F, is generated with a one in
the elements associated with neurons that fire on
this time step and a zero in the others. Each neuron
that fires on a given time step alters the activation
of the other neurons by the amount in the element
of the weight matrix corresponding to the
connection from the firing neuron to the receiving
neuron.

40

FIRST SIMULATION

A first look at the problem reveals that the topology
of the MPP is the same as that of a weight matrix. If
each processor served the function of a single
element of the weight matrix then the problem
would be well mapped to the hardware. For this
strategy a 128 neuron system, matching the
column/row size of the MPP, would be simulated.
Each processor has its particular weight stored in
its local memory. Since the activation vector has
128 elements, it can be handled by a single row or
column of the MPP. Activation update steps proceed
as follows. The activation vector is held in the
uppermost row of the MPP. A firing vector is
generated in the top row as each processor in that
row determines if the activation held there is above
threshold. As shown in Figure 2, this firing vector is
passed downward across the entire array so that
each processor in the i'th column can know whether
the i'th neuron is to fire on this time step.

P

P P P

T 9 v v w9
T T 9 O v
h-- I - B ~ RS ~ R -~ B I -}

p
p
P
p
p

v v v v w9
I B -~ B = B, =

Figure 2, Firing Information Moves Downward

Next all processors in columns that fire pass their
weights to the right while the other columns pass
zeroes. As shown in Figure 3, these weights are all
passed to the rightmost column where they are
summed. This results in a vector in the rightmost
column that represents the change in A due to the
firing of the neurons.

p—
p] p ﬁ"p p [P]
pl p|plpP PP
pl plp{pP PP
p| p p|p B lp
pl p|p|p P |p
P pipjp PP

|| -

Figure 3, Weights move to the Left

This vector must be added to the old A vector in the
top row to form the new A. (More correctly, it is
added to the old A vector after the firing neurons in
the old A vector have been reset.) This stage is time
consuming since 256 shifts are needed to move all
the data from column form to row form. The
activations are shifted as shown in Figure 4.

-—
P P P P PP
P P P P PP
P P P P P|P
P P P P PP
P P P P P|P
P P P P PP

Figure 4, Activation Shifts from Left to Top

As described above, 128 processors work on the
problem in parallel at every step except the final
shifting stage. This gives a tremendous speedup over
single processor simulations. Another way of
looking at this performance however, is that at any
given time, about 1% of the MPP is being used while
the remaining 99% is idle. This second view
prompted a search for a better method of
simulation.

SECOND SIMULATION

The second simulation can model a much larger
neuron population and utilizes the MPP more fully,
but it does this at the expense of altering the neural
model slightly. Each processor now represents a
single neuron and stores its own activation level, as
well as the row of the weight matrix containing the
weights from other neurons to itself, in its own
local memory. Due to the 1024 bit memory
limitation of the MPP, there is not room for all
connections to all 16,384 neighbors, and only those
connections to the 24 nearest neighbors are held.
This is not as drastic a change in the model as it
might seem, for in the brain, connections between
nearby neurons are vastly more common that those
between distant neurons. A second change in the
model is that now the neurons have neighbors in
two dimensions rather than only one as in the
previous model. This change also leads to a more
realistic model, as the cerebral cortex is essentially
a two dimensional sheet of neurons.

The activation update procedure is shown in Figure
5. There each processor (neuron) determines if its
activation is above threshold. Each processor then

41

passes a one bit flag to the processor on its right,
informing that processor as to whether the first
processor is firing. Each processor stores this
information and then passes it upward. The process
repeats and each processor passes the flag to the left.
In this manner, the flag spirals outward around the
processor that generated it until it has reached all
24 of the nearest neighbors. If more then 24
connections are desired, the flag can spiral outward
as far as necessary. Thus, every processor
communicates its firing with its 24 neighbors using
only 24 shifts. Notice that the entire bit plane is
shifted so that all 16,384 processors pass their
firing information together.

PP PP PP

P p—p—p—p P

P P—pe—p P P
| T 1

p T [p]—p :T) p

P P—p—Pp—p P

PP PP PP

Figure 5, Data Flow in the Second Simulation

After this communication phase, each processor
sums its weights associated with its neighbors that
fired and updates its own activation, completing the
activation update. Every processor is used in every
step, achieving full utilization of the MPP. The size
of the network has been increased by a factor of 128,
the total number of connections has been increased
by a factor of 24, and the similarity of the model to
the real world has been improved.

CONCLUSION

The simulation of neural networks on the MPP
architecture may be done in at least two ways. The
second simulation described above allows
connections between a limited set of neural
neighbors but all of the processors of the MPP are
active at all times and a much larger network can be
simulated. The update step in the second simulation
runs in approximately one fifth the time of that of
the first simulation and processes 24 times as many
connections. This yields a factor of 120 in the
number of connections processed per unit time. The
experience of the authors suggests that the
simulation of neural networks on massively
parallel machines can be done in several ways not
obvious at first glance and that alternatives should
bhe examined carefully as some may yield higher
computational rates than others. We first attempted

to match the MPP to the matrix mathematics of the
model. Then we tried to match the physics of the
situation. It is interesting that the mathematical
modeling got in the way here. In a sense, the
hardware of the MPP more closely matches the
brain that the mathematical model originally
chosen.

42

ARTIFICIAL NEURAL NETWORK ON A SIMD
ARCHITECTURE

Joe R. Brown, Melissa M. Garber, and Steven F. Venable

Martin Marietta Electronic Systems
MP 1304, P.O. Boz 555837
Orlando, Florida 92855-5837

ABSTRACT

An implementation of a fully connected artificial neural net-
work using the multi-layered perceptron model is described.
The neural network is implemented on Martin Marietta’s
systolic array processor based on the Geometric Arithmetic
Parallel Processor (GAPPTM) chip. Arrays of GAPP chips
make up a single instruction multiple data (SIMD) class
machine which has fine-grained connections and is fully
programmable. Previous application areas of the GAPP
system are image/signal processing, computer vision, and
knowledge-based processing. The neural network is a rel-
atively new processing model for the GAPP, but one that
readily maps onto the architecture of the overall array proces-
sor. The proof-of-concept neural network was a multi-layered
perceptron model which used the back-propagation learning
paradigm. This initial network had fewer than 100 nodes in
three layers, and was trained to recognize letters of the al-
phabet. Work is progressing towards implementing a massive
artificial network environment (more than 40,000 nodes and
more than 10,000,000 connections) on the GAPP-based ar-
ray processor. Alternate learning techniques are also being
investigated.

Keywords: Neural Networks, Back Propogation, Parallel
Processors, Single-Instruction Multiple-Data (SIMD), Char-
acter Recognition

INTRODUCTION

The Image and Signal Processing Section of Martin Marietta
Electronic Systems is developing artificial neural network im-
plementations in the Geometric Arithmetic Parallel Proces-
sor (GAPPTM). The GAPP is a Martin Marietta-developed
systolic array processor, made up of one-bit processing el-
ements, or cells, connected in a two-dimensional nearesi-
neighbor mesh. Adhering to the axiom, “the algorithm is
the architecture,” GAPP array sige may be directly tailored
to the size of the problem being solved, making possible many
different configurations of GAPP systems. A single instruc-
tion multiple data (SIMD) class machine, previous applica-

CH2649-2/89/0000/0043%01.00 © 1988 IEEE

43

tions of the GAPP system were image and signal processing,
associative processing, and knowledge-based processing. The
neural network is a relatively new processing model for the
GAPP, but one that readily maps onto the architecture using
techniques developed from the above mentioned application
areas.

Artificial neural networks attempt to model the human cogni-
tive process in a computer. They are massively parallel hier-
archically interconnected netwotks of simple elements which
interact with the real world similar to the way biological ner-
vous systems do. Neural network models have the great-
est potential in areas where many hypotheses are pursued
in parallel and high computation rates are required, areas
which take full advantage of the GAPP’s paralle] architec-
ture. One such promising field of application is pattern recog-
nition. Traditional artificial intelligence (Al) algorithms for
pattern recognition are too specialized: they are designed to
deal with information in a single, strict form. For example,
in machine vision there are separate algorithms for boundary,
disparity, curvature, shading, and spatial frequency informa-
tion. Such algorithms typically use different computational
schemes to analyze each type of information, so that fusing
multiple types of information into a single general-purpose
vision algorithm is difficult.

The neural network learning paradigm offers a unique solu-
tion to this problem. Requiring only & general algorithm for
learning, neural networks automatically and dynamically de-
termine what information is salient to a solution. The form
that information must assume is therefore much less rigid
than that required by traditional Al systems, aliowing eas-
ier correlation of different levels of information. For exam-
ple, this implementation uses pixel-level inputs to a network
which recognizes letters.

Our first implementation in the GAPP system has been suc-
cessfully trained on letters of the alphabet. After training,
the implementation allows the user to place various inputs
under a camera and in this way examine the extent to which
the net has generalized the learning of the inputs. Via the
camera, rotated and corrupted versions of the inputs can be
provided to help in identifying some of the salient features
determined by the net.

MODEL DESCRIPTION

The netwotk model selected is that of & fully connected,
three-layer feed-forward net containing a total of 91 nodes
and 1728 weighted connections. For ease of initial develop-
ment, the input domain of letters was broken into a 5-by-7
grid in which it is possible to pixelize all 26 letters of the
alphabet. As these 35 cells were selected as the input to the
net, the first layer, or input, layer contains 35 nodes, one per
input pixel. Further, an input can only take on the value zero
or one corresponding to the cell being off or on, respectively.

The third, or output, layer was selected to have 27 nodes, one
for each letter of the alphabet and one tc designate “other
than letter” recognition. The second, or hidder, layer was
initially chosen to be 25 nodes based on a rule of thumb
stating that the hidden layer should be roughly 2/3 of the
input or output layers. It was later increased to 27 nodes
after some experimentation on a VAX-based network indi-
cated that using these two additional nodes provided faster
network settling.

While the input nodes can only take on values of zero or one
due to input considerations, the values al both the hidden
and output nodes are positive 10-bit fixed point numbers (10
bits to the right of the decimal point) and range from 0.0
to 0.99902. The decision to use 10 bits was somewhat arbi-
trary, although the decision was influenced by the amount of
available GAPP memory. The output node with the largest
value is selected as the total net output. If two or more
nodes have the same value, they are all selected. Because
the net is expected to output a value greater than zero and
greater than the smallest non-zero value (0.000976), an ad-
ditional constant-valued node was added to the output layer.
The constant-valued node is selected if the value of all other
nodes are less than or equal to it. This node is used to signal
an internal network error condition and is not included in the
count of 91 total nodes. The selected output nodes, including
this special constant-valued node, are then highlighted on the
display which shows each letter of the alphabet.

Thete are two other special nodes, one on the input layer
and one on the hidden layer. Termed “bias nodes,” these
constant-valued nodes supply an offset or bias to the dis-
criminant function at the node layer to which the node con-
nects. These nodes have no incoming connections but do
have weights and connections to the next node layer and for
all practical purposes act as just another node on the layer
(thus appearing as 36 input nodes and 28 hidden nodes). The
value of these nodes is considered to be one (actusally 1.0 on
input, 0.99902 on hidden) so that the value of the weights on
connections are the actual bias for the discriminant function.

The net model used is a fully connected net: each node on a
layer is connected to all nodes (excluding the bias nodes) on
the next layer (see Figure 1). Attached to each connection
is & weight which is multiplied by the node value to provide
the value arriving on the connection to the destination node.
Weights in our implementation are assigned 15-bit fixed point
numbers, ranging from —16.0 to +15.9995 (4 bits to the left

44

of the decimal point, 11 bits to the right). Following the
standard net training techniques, these weights are adjusted
to provide a “trained network.” Note that a weight of zero
would map a non-connection.

NETWORK EXECUTION

To exploit the power of the GAPP system, the model was
laid out such that a unique processor cell is assigned to each
nodal interconnect as well as assigning a processor for each
node, thus utilising a total of 1756 processors. The input
node data is duplicated down rows of cells and then summed
across the columns producing the hidden node values. These
are in turn duplicated across columns and summed down the
rows of cells, providing the final node values. This final node
layer also uses one processor per node, utilizsing a total of
1766 processors.

The network is executed by following the standard feed-
forward operations. These processing steps are described be-
low.

The value at node k on any layer ; is defined as:

N
zkaf(zwikzlj—l_e) (1)

=1

where f() is a limiting non-linear function (see Equation 2);
N is the number of nodes on the previous level (7 — 1); wy,
is the weight connecting nodes i and k; z;,_; is the value of
node i on the previous level; and 4 is the bias (or value of the
weight on the connection from the bias node to node k).

1. Place input in input nodes. For training this is a
fixed input with known correct output. For camera input
this entails thresholding the camera’s 8-bit data to values
of zero and one, then pixelizing and shifting the data to
the GAPP cells designated as input nodes.

2. Spread the input across the weights and multiply.
As there is a distinct weight for the connection from each
input node to each hidden node (i.e. 27 weights per
input node), the input node values are spread across an
array of 36 (35 inputs + 1 bias) by 27 GAPP cells. This
distribution allows the process of multiplying the node
values times the weight values to be done in parallel.

3. Sum the values arriving at each hidden node and
pass through the non-linearity function. The prod-
ucts from step 2 are summed across all input nodes, in-
cluding the bias. All hidden nodes are summed simul-
taneously in the GAPP system. These sums are passed
through a pseudo-sigmoid function [f(z) in Equation 2]
to provide the hidden node value. The desired sigmoid
function is f(x) = 1/(1+ e~%). But for easy implemen-
tation this function was coded as a group of conditionals

Qutput nodes
(27 nodes)

Hidden nodes
{27 + 1 bias)

Bias nodes,
no input
connections

Input nodes
(35 + 1 bias)

Figure 1: Network node connections

which simulate the sigmoid function as follows:

o.99902, if 2> 46.0;
o0.000976, if z < —5.0;
flz) =4 =R if410<z<460; (2)
gb §f b0<z < -1.0
'—3’—’, otherwise.

4. Spread the hidden node values across the weights
and multiply. Repeat step 2 using the values obtained
in step 3 for the 28 hidden nodes and 27 output nodes.

5. Sum and threshold. Repeat step 3 using the values
for the 27 output nodes.

6. Determine the nodes with maximum value and
display accordingly. The value at each output node
is compared to the others and those with the largest
value are identified. The desired result is that only one
node has the largest value. When this node (or nodes)
is identified, a display is generated in which the letter
corresponding to the node is highlighted.

NETWORK TRAINING

The training algorithm selected is the back propagation tech-
nique which uses a gradient heuristic, enabling a network
to self-organise for improved performance over time. Back
propagation requires a specific training period in which the
correct (or desired) output is known for each potential input
that will be trained. All possible inputs do not need to be
shown, but rather only a subset of the inputs. The actual sise
and contents of this subset is not known and is expected to
be domain dependent. Only those outputs that are trained
can be expected to be correct.

45

Back propagation consists of adjusting the weights by a small
amount based on the difference between desired node values
and present node values after executing the net for the given
input. The weight adjustment is based on the following equa-
tions:

wij{t + 1) = wi;(¢) + né;e; (3
where w;; is the weight on the connection from either input
or hidden node i to node j on the next layer; 1 is a gain term;
5; is an error term given in Equation 4; and z; is the value
of node i, For the hidden-to-output node level:

8 =y (1 -y }d; —) (4)

where y; is the value of output node j and d; is the desired
value for that output node. For the input-to-hidden node

level:
& =zi(1-2;) Y bawy (8)
k
where k is over all nodes in the layers above node ;.

In our implementation, these steps are followed precisely with
the gain term (n) variable at execution time. The best results
have been achieved with a value of 0.0625 (1/16). While
most literature references gains of 0.3 to 0.5, the gain used
in our implementation is believed to be smaller due to the
increased speed of training, errors in weight adjustment due
to truncation, and lose of significant precision in the use of
fixed point, rather than floating point operations.

The actual steps in training are:

1. Execute the net. The exact steps given under execu-
tion are performed with the correct output known for
the input used. The only operations not performed are
determining maximal output node and generating the
display.

2. Calculate the error delta (é) on the output layer.
Here the desired node value is considered to be 0.99902
if that is the node which corresponds to the letter being
trained, with a value of 0.0 {or all other nodes.

3. Spread the delta and multiply. This is the same
operation as used to execute the net except the spread
operation is in the reverse direction: the delta is spread
from the output nodes over the previously spread hidden
node values. These values are then multiplied by the
node values and the gain (7).

4. Alter hidden layer weights. The product from step
3 is then added to the weights to produce new weights
for the next execution iteration.

5. Compute next layer error delta. The previously
computed delta (step 2) is multiplied by the weights and
summed for all hidden nodes. This sum is then multi-
plied by the hidden node variance, per the back propa-
gation algorithm.

6. Spread the delta and multiply, alter input layer
weights. Repeat steps 3 and 4 using the weights on the
input layer.

After these operations the network has had one iteration of
training for the given input. Typically many iterations are
performed for all possible outputs. In this example the train-
ing was performed on the four “perfect” (meaning no corrup-
tions in the data) inputs of T, A, X, and blank. With some
experimentation the primary features which the net extracted
for three of the four inputs were found to be the center line
for the T, left and right sides for the A, and most anything
else for X. If no input cells were on, or if even any one at
random was on, the blank was considered. Figure 2 shows
the training input to the network and Figure 3 shows some
test case inputs. Note that while the network was trained on
only the inputs shown in Figure 2, the net can still recognize

Figure 2: Training inputs

46

pieces of the inputs shown in Figure 3. After some analysis of
the weights during training, it was found that all the desired
ouiput nodes were driven high while all other output nodes
were low and remained so. All remaining iterations appeared
to act only to differentiate between the inputs. Further ex-
perimentation and analysis must be done to study what the
values at the hidden nodes represent.

CONCLUSION

We plan to investigate at least two alternative learning strate-
gies to provide more flexible training capabilities: Grossherg
and Carpenter's Adaptive Resonance Theory (Ref. [3]) and
Genetic Algorithms as described by Booker, Goldberg, and
Holland (Ref. [1]). The Adaptive Resonance Theory self-
organizes stable pattern recognition codes in response to an
arbitrary input environment. This theory is based on mul-
tiple interacting memory systems to monitor and adaptively
react to the novelty of events without an external teacher.
Genetic Algorithms, which model gene pools, have been pro-
posed mainly for pattern classification. They are based on
replacing weak classifiers by recombining compournts from
strong classifiers, similar to Darwin’s theory of natural selec-
tion.

In summary, the artificial neural network is a promising pro-
cessing paradigm which may be used to enhance existing Al
techniques. As mentioned previously, future research activ-
ity in neural networks at Martin Marietta will examine alter-
nate learning strategies and architectural topologies which
are “GAPP-able”. We will pursue applications specifically in
the areas of image understanding and spatial reasoning, and,
in general, expert systems which learn. With our past expe-
rience in pattern recognition and feature detection, coupled
with our proprietary GAPP architecture, we believe that we
can produce neural network systems that are well suited to
real-world problems.

Figure 3: Test inputs

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

References

(1

S

a

i Catrpenter,

Booker, Lashon B., David E. Goldberg, and John H. Hol-
land, Classifier Systems and Genetic Algorithms, The
University of Michigan, Cognitive Science and Machine
Intelligence Laboratory, Technical Report No. 8.

Gail A. and Stephen Grossberg, Asso-
ciative Learning, Adaptive Pattern Recognition, and
Cooperative- Competitive Decision Making by Newvral
Networks, SPIE Vol. 634 Optical and Hybrid Computing
1986, pp. 218-247.

I Grossberg, Stephen, Competitive Learning: From Inter-

active Activation to Adaptive Resonance, Cognitive Sci-
ence 11, 1987, pp. 23-63.

Hopfield, John J., and David W. Tank, Computing with
Neural Circuits: A Model, Science Vol 233, 8 August
1986, pp. 625-633.

47

[5] Jones, William P. and Josiah Hoskins, Back-Propa-

{6

gation, BYTE, October 1987, pp. 155-162.

Kohonen, Teuvo, Self-Organizing Feature Maps and
Absiractions, Proceedings of the Third International
Conference on Al and Information-Control Systems of
Robotics, 11-15 June 1984, Snolenice, Czk., pp. 39-45.

Kohonen, Teuvo, Clustering, Tazonomy, and Topological
Maps of Patterns, Proceedings of the Sixth International
Conference on Pattern Recognition, Vol I, 19-22 Oct
1982, Munich pp. 114-128.

Lippmann, Richard P., An Introduction to Computing
with Neural Nets, IEEE ASSP Magazine, April 1987,
pp. 4-22.

Tank, David W. and John J. Hopfield, Collective Com-
putation in Neuronlike Circuits, Scientific American, pp.
104-114.

PRECEDING PAGE BLANK NOT FILMED

CHARACTERIZING THE ERROR FUNCTION OF A
NEURAL NETWORK

Barbara Moore*, Marcelo Fogaga*, and Alan Kramert.

*MIT Al Lab, NE43-826, 545 Technology Square, Cambridge MA 02139
tDepartment of EECS, Cory Hall, UC Berkeley, Berkeley CA 94720

Abstract

We consider several means of exploring the error function of
a multi-layer, feedforward neural network. In particular, we
look at hyperplane configurations over time, and the gen-
eralization of the network function to a region of the input
space. Using this approach, we analyze th- results of sev-
eral experiments run on the massively parallel Connection
Machine computer, as well as other reported results and ob-
servations.

Keywords: Neural Networks, Error Function, Layered Feed-
forward Network, Connection Machine, Hyperplanes, Geo-
metric Analysis of Neural Networks.

1 Introduction

Feedforward neural networks can “learn” surprisingly com-
plex input/output mappings using simple gradient-descent
algorithms which minimize an error function whose variables
are the network weights. These networks are an attractive
computational paradigm not only for their adaptation capa-
bilities, but also because they have natural parallel imple-
mentations.

However, even massively parallel implementations of neu-
ral networks may require extremely long training times. We
are hoping to reduce training times by incorporating into
the learning algorithm knowledge of both the structure of
the problem to be learned and the learning network topol-
ogy. To this end, we are investigating various means of char-
acterizing the shape of the error function in weight space,
for the case of a feedforward layered network and the sum-
of-squared-differences error function. We have also found it
useful to look at the movement in input space of hyperplanes
corresponding to the weights on links to hidden units, over
the course of training with the classical back-propagation al-
gorithm. (This representation of network state is referred to

CH2649-2/89/0000/0049%01.00 © 1988 |IEEE

49

below as the hyperplane configuration.) There is often struc-
ture inherent in a network’s architecture and in a problem
(or training set) which is reflected in the error function and
in the hyperplane configurations over time. An understand-
ing of this structural information can help to better deter-
mine parameters such as size, connectivity, and initial weight
values of the learning network, and can contribute to the de-
sign of faster learning algorithms and input preprocessing
stages. Our analysis also allows us to provide explanations
for empirically observed phenomena, such as “flat spots” in
the energy surface, and improvements in performance with
extra hidden units.

In Section 2 we describe the implementation of the back-
propagation network training algorithm on the Connection
Machine. Section 3 presents results of a scaling experiment,
in which we study the effect on learning time of the number
of hidden units. We also present results of an experiment
on adjusting the length of the initial random weight vectors.
Section 4 discusses our explorations of the shape of the en-
ergy function in weight space, and developes the hyperplane
configuration. In Section 5 we apply the hyperplane analysis
to explain our experiments and other empirically observed
phenomena. Section 6 suggests several methods for obtain-
ing speedup in training times based on our analyses, and
summarizes the paper.

2 Connection Machine Implemen-
tation of Back-Propagation

To run our experiments, we wrote an optimized Connec-
tion Machine version of the back-propagation learning al-
gorithm for multilayer feedforward neural networks. {We do
not describe that algorithm here; see reference [4]. The node
function for the units is assumed to be the sigmoid func-
tion varying between 0 and 1.} The Connection Machine’s
massive parallelism is well suited for neural network imple-
mentations. For most of the problems we experimented with,
the Connection Machine allowed us to completely parallelize
the network, with one processor allocated to each node and
each weight.

Mﬂurmmuonmx HLANS

3008 o

l.-.' 1 Vll

:t-0-0-0-0 0000 O
% sor0000 0000 O«
O OO0 0000 U4
0 deoé dood o
:0 0000 0000 O
200000 0000 O«
O Q000 Q000 OdOa
0 $e0é 00¥ 0.
zm@;BE*‘*@@OQUb
® .0o0000 @202 O-
Q0000 @20 O
0 3do00d éo00-a
:0 0000 ©-0-0-C-a
®.,00000 00003
«0 0000 @000+ «

Figure 1. Implementation of neural network on the Connection
Machine: snapshots during feed-forward of activity from one
layer to the next. Squares at left (1,2,3,4) represent node pro-
cessors in layer i. Circles to their right represent forward-link
processors from layer 1 to layer ¢ + 1. Squares at right (a,b,c,d)
are node processors for layer 1 + 1. Circles preceding squares
are backward-link processors from layer i to layer z + 1. In
the first snapshot, activities at the layer 2 node processors are
forward scanned into their forward-link processors. In the sec-
ond snapshot, these activities are scaled by the weights in each
forward-link processor. Third, the link values are routed from
the forward-link to the backward-link processors. Fourth, a for-
ward scan is used to sum link values into the layer ¢ 4+ 1 nodes,
where the sigmoid function is applied to obtain layer 1 + 1 ac-
tivities.

50

The Connection Machine is a powerful fine-grained par-
allel machine having between 4000 and 16000 processors. It
is a single-instruction multiple-data (SIMD) machine. Each
of the processors is a simple 1-bit processor with 4000 bits
of memory (the CM-2 has more memory and floating point
operations). There are two modes of communication among
the processors. In the first, the processors are connected by
a mesh of wires into a two-dimensional grid network (the
NEWS network, so-called because the connections are in the
four cardinal directions), allowing rapid direct communica-
tion between neighboring processors. The second communi-
cation mode is the router, which allows messages to be sent
from any processor to any other processor in the machine.

The back-propagation algorithm that we implemented on
the Connection Machine takes advantage of the fast parallel
scan operation [1]. One processor is assigned to each node
in the neural network. Fach node processor is preceded by
a linear string of “backward-link” processors, each of which
stores information corresponding to a link from a node in
the previous layer. Each node processor is also followed by
a set of “forward-link” processors, each corresponding to a
link to a node in the next layer. The purpose of this linear
arrangement is to-allow use of the fast scanning operation
to pass information along the linear string of node and link
processors.

Forward propagation starts with the inputs being loaded
into the first layer node processors. Then a forward scan op-
eration sends the activities from these nodes into their asso-
ciated forward-link processors. Each forward-link processor
multiplies this activity by its weight value, and the rout-
ing network of the Connection Machine is used to send this
value to the corresponding backward-link processor in the
next layer of processing nodes. The final step in the loop is
another forward scan which adds the values of the backward-
link processors into the node processor for the second layer.
Then each node processor in this layer computes the sigmoid
output function and we start again on the next layer with a
forward scan (Figure 1).

Back-propagation of error works in a similar way, using
the backward scan operation instead of the forward scan. Er-
rors instead of activities are transmitted backward through
the network, and weight values at the node processors are
updated.

3 Some Experimental Results

The problems we are investigating include the parity func-
tion of n inputs and classification of n-dimensional vectors
over real-valued intervals: R® — {0,1}. The parity function
is useful because it scales in an obvious way, and because
it is the most complex Boolean mapping to learn. Many
of our experiments used two-input XOR as the input; al-
though occasionally maligned as being somehow unrepresen-
tative of problems to which neural networks ought to be
applied, we note that it is in fact very useful as the simplest

binary problem which requires a hidden layer in a network.
The problem of classifying real-valued vectors problem since
there has been less work with real-valued inputs than with
binary-valued inputs, although many potential applications

involve analog data.

3.1 Learning Time as a Function of Hid-

den Layer Size

One critical question in the design of a neural network is the
number of units in the hidden layers. There is often a min-
imum hidden layer size below which the network is not ca-
pable of representing certain input-output mappings. Even
above this minimum size, however, it may still be difficult
for the network to learn. By running experiments, we have
confirmed reported results that adding hidden units reduces
the learning time. The speed of our parallel implementa-
tion allowed us to run enough experiments to get reasonable
statistics on this phenomenon.

In all of the experiments described in this paper we used
a network with one hidden layer. The input layer had two
units and the output layer had one unit, while the numbes
of units in the hidden layer was varied. We used the XOR
problem as the mapping to be learned by the network. The
learning algorithm employed was back-propagation, with a
learning rate of 1.0 and the momentum term set to 0.0. The
initial weights of the connections in the network were ran-
domly initialized to values in the range -1.0 to 1.0. In each
run, the stopping criterion adopted was that the error must
be less than or equal to 0.02. The learning time of a network
is then defined as the minimum number of passes through
the backpropagation algorithm that are necessary to bring
the error of the network to 0.02 or less. (We make the as-
sumption that results on learning times obtained for one set
of parameters scale simply for other values of these parame-
ters. Setting the momentum term to 0 was useful in that it
allowed us to interpret our results as reflecting the true shape
of the energy function in weight space.) In our experiments
we varied the hidden layer size from 2 to 128 units.

Table 1 summarizes our results on the scalability of the
hidden layer size. It confirmes reported results that adding
hidden units reduces the learning time of a network.

The relationship between the learning time and the size
of the hidden layer resembles a hyperbolic curve (Figure 2),
and so we looked for a linear correspondence between the
learning time and the inverse of the size of the hidden layer
for a particular network. Figure 3 shows a plot of learning
time as a function of the inverse of the size of the hidden
layer. A linear regression was performed using the data for 2
to 48 hidden units in order to obtain an equation relating the
number of hidden units and the learning time. (As discussed
in section 5, this model breaks down for a large number of
hidden units because of overshoot effects.) The equation
obtained was:

51

hidden units | trials t
2 60 968 + 254
3 60 802 + 144
4 60 719 + 128
5 60 665 + 114
6 60 618 + 93
7 60 597 + 85
8 60 580 + 59
9 60 544 + 55
10 60 545 + 57
12 40 504 + 56
16 40 484 £+ 55
20 40 467 1 44
24 40 453 + 36
32 40 452 + 34
48 40 432 + 34
64 40 389 + 24
96 40 318 + 33
128 40 373 + 61

Table 1. Learning time vs. number of hidden units.

t==—+B, here

h+ whe
A = 1140,
B = 420,

t = learning time,
h = number of units in hidden layer.

The model described by the equation above was tested
with our previous results, as described in the Table 2. The
values for the learning time that were predicted from the
model equation fell within 3.3 % of the mean value obtained

for each case.

hidden units | predicted f | actualt | error
2 990 968 +23%
3 800 802 -02%
4 705 719 -1.9%
5 648 665 -26%
6 610 618 -1.3%
7 583 597 -23%
8 563 580 -29%
9 547 544 -06 %
10 534 545 -2.0 %
12 515 504 +22%
16 491 484 +14%
20 477 467 +21%
24 468 453 +33%
32 456 452 +09%
48 444 432 +28%

Table 2. Fit of model to data.

e — P
-¥
S

Ly

Tim,

3

Llearnin

S

20 4o o 10 Yoo 120
hidden onids —»

Figure 2: Graph of learning time as a function of the number of hidden units on the XOR problem.

-0

meé - -
< &
3 :
» » o«

Lmrﬂfns T

-
>
»

4on

N 2 3 i .5
—

4 hdden unis

Figure 3: Graph of learning time as a function of the inverse of the number of hidden units on the XOR
problem.

Further, the model was tested with new experimental

data obtained independently of that from Tables 1 and 2. hidden units | predictedt & o | actual I | error
The experiment was performed in the same manner, but dif- 15 496 496 00 %
ferent values for the number of units in the hidden layer were 30 458 a1 n 3 X7
used. The results are summarized in Table 3. The model was 5 245 110 T 1'1 7
again able to predict the learning time for all new cases with = 0
an error variation not greater than 5 %. Table 3. Fit of model to new data.

TProbability of Success = 10‘3 @@

A‘Jﬁrﬂse learninﬂ %lﬂ\e/ T
950.00 * :
A oo . '
900.00 » : - 1400
“a. ! }
- . i
850.00 ‘ -) 1300
B ;
800.00 ‘ R 1200
\ J -
750.00 ‘ 1100
i i ",_L B
700.00 /»— 1000
650.00 \ ‘ / 900
600.00 \ :‘._. Z %00
550.00 \ | / Tou
500.00 \ / '.._\: coC
450.00 ; 500
| \/
| ;
400,00 \ +—— 400
l * A
| |
le-02 le-01 1e+00 le+01
—> WVL

Figure 4: A. Probability of success as a function of initial weight vector length. B. Learning time as a

function of initial weight vector length.

3.2 Learning time as a function of initial
weight vector length

Weight values are usually initialized to “small” random val-
ues. We have found that the length of this initial weight vec-
tor is important and has a strong effect on measured learning
time results, at least for the XOR problem with two hidden
units. For all of our experiments, initial weights were cho-
sen by randomly choosing a point in the unit-radius hyper-
sphere according to a uniform probability distribution, and
then normalizing the length of the weight vector to a user-
specified length. (To achieve a uniform distribution over the
unit-radius hypersphere, we chose points in the unit hyper-
cube by choosing each coordinate independently from a uni-
form distribution, and then rejected points which were not

53

within the unit hypersphere. While this method works well
for a small problem like XOR which has a nine-dimensional
weight space, it becomes impractical for much larger prob-
lems because too many of the randomly chosen points are
rejected before a “hit”.)

The learning algorithm used was batch back-propagation
with a learning rate of 0.25 and a momentum of 0.9. The
algorithm terminated with a “success” if the error was re-
duced to less than 0.125. Learning time for successful trials
was measured in epochs, or passes through the entire train-
ing set. The algorithm terminated with a “failure” if it had
not succeeded after 10,000 epochs.

Graph A in Figure 4 shows that for XOR, the proba-
bility of back-propagation terminating successfully does de-
pend on initial random weight vector length. Eight initial

|‘1\PW} 2

o0 (L
b e O . o/ O
o e ° (o] o/e
0y (10) 0
nput 1
v pu—_‘_> /
bindon 2 SO _luinden 7 250 [lainton 7 500 4t 7 750 |

Figure 5: Hyperplane configurations in learning the XOR problem with two hidden units. Snapshots at

epochs 50, 250, 500, and 750.

random weight vector lengths were chosen and these values
appear on the WVL axis. For each length, 100 random initial
weight vectors were generated and run through our learning
algorithm. The percentage of these hundred runs which ter-
minated successfully is plotted and is seen to decrease with
increasing WVL.

Graph B in Figure 5 shows that average learning time
does depend on initial weight vector length. Eight initial
random weight vector lengths were chosen and these values
appear on the WVL axis. For each length, 100 random initial
weight vectors were generated and run through our learning
algorithm. The average number of learning sweeps needed
for the trials which terminated successfully is plotted, and
shows that learning time increases if the length of the initial
random weight vector is too small, as well as if it is too big.

4 Exploring the Error Function in
Weight Space

We have considered several ways of looking at the error func-
tion in weight space. The error function is defined as the sum
of the squares of the differences for each input in the train-
ing set of the desired output and the actual network output.
For the two-input, two-hidden-unit XOR problem, we nu-
merically explored the energy function in weight space, and
derived the error equation analytically (for these results, see
the forthcoming Al working paper [2]). We ran many back-
propagation experiments. We watched the evolution over
time of the hyperplanes representing the hidden units, and
we performed a geometric analysis of final weight configu-
rations. We found it very useful in practice to overlay the
hyperplanes on a color image representing the function com-
puted by the network (with a range of colors from blue to
red representing values from 0.0 to 1.0). We now develope
the hyperplane configuration approach.

Consider a sigmoid unit in a feedforward neural network,
which computes the function

54

where z is the weighted sum of inputs to the unit. The unit
will output a value of .5 whenever its weighted inputs sum to
0. Given weights on the input links, then, the locus in input
space of values which will produce a 0 input to the node is a
hyperplane. In the case of two inputs, this is a line. For bi-
nary output problems, a network that has learned to output
correct responses to training set elements has a hyperplane
configuration in which hyperplanes separate training inputs
which have different outputs.

We plotted snapshots of the movement of these lines in
input space over the course of learning. Figure 5 is an exam-
ple of training a 2-hidden-unit network on the XOR problem.
The four training set elements are represented in the input
space by the four circles. The filled circles at (1,0) and (0,1)
have a desired output of 1, and the open circles at (0,0) and
{1,1) have a desired output of 0. The final solution, with the
parallel lines separating the two classes of inputs, is in one
of only two possible configurations (the other configuration
has the parallel lines cutting the training examples the other
way).

Figures 6 and 7 illustrate snapshots during the training
of a 3-hidden-unit network on XOR. The final configuration
in Figure 6 is similar to that of a 2-hidden-unit network; a
glance at the output weights for each hidden unit reveals
that the “extra” hyperplane has weight much smaller than
the other two. On the other hand, the final configuration in
Figure 7 is structurally dissimilar from that of a 2-hidden-
unit network: a star of lines is formed instead of two parallel
lines. All three of the hidden units are important in the
network, and the magnitudes of the weights between them
and the output node are approximately equal.

We can characterize the final configurations of the hy-
perplanes into informal equivalence classes. For example,
the 2-hidden-unit solution with parallel lines is one equiva-
lence class (the two possible orientations are considered to
be in the same equivalence class, by symmetry). The star
configuration is another equivalence class. Thus we found
that increasing the complexity of the learning network not
only allowed for variations of existing final configurations,
but also added new structural equivalence classes. We are

Window 2 50 Window 2 100 Window 2 175 indow 2 250
\< .
/O/ 0
M{ndow 2 375 Mindow 2 475 Mindow 2 67$
Figure 6: Hyperplane configurations in learning the XOR problem with three hidden units. Final config-
uration is similar to that of 2-hidden-unit network. Snapshots at epochs 50, 100, 175, 250, 375, 475, and
675.
[] e} O
o] [[]
indou 2 50 250 hitndou'2 375 | lutndou 2 00
_
(o] [)
°
Windou 2 52 {ndou 2 550 indov 2 675

Figure 7: Hyperplane configurations in learning the XOR problem with three hiddenunits. Final config-
uration is not similar to that of 2-hidden-unit network. Snapshots at epochs 50, 250, 375, 500, 525, 550,

and 675.

35

currently working on the problem of describing the regions of
attraction in weight- or hyperplane-space for each of the final
configurations. In particular, we noticed that there are long
learning times corresponding to initial configurations which
lie on the boundary of these regions of attraction, indicating
that it takes some time to make the decision about which
direction in which to go.

The motion of the hyperplanes during the course of learn-
ing (as well as the color map of the network function in in-
put space) shows a lot about the shape of the error function.
Slow movement of hyperplanes corresponds to low deriva-
tives in the error function. Fast and often oscillatory move-
ments of the hyperplanes indicate rapidly changing areas of
the error function; the oscillation is due to overshoot of a
local energy minimum along the direction of the gradient at
a point.

5 Explaining Empirical Observations

The hyperplane configuration approach has provided answers
or clues for various observed phenomena, as well as pointing
out new questions we had not previously asked. We were par-
ticularly interested in such phenomena as speedup in learn-
ing with increased number of hidden units, “flat spots” in
the error function, the initial shrinking of the weight vec-
tor, symmetry-breaking and hidden unit differentiation, and
the success of the heuristic of removing hidden units after
learning has been partially completed. By watching the hy-
perplanes as learning progressed, we were particularly struck
by certain oscillatory eflects, fast vs. slow movements, and
analogies with attractive and repulsive forces.

Let’s start by considering the experiments in which we
varied the number of units in the hidden layer. We found
a steady decrease in the learning time, up to a point, after
which the learning time began to rise again. By looking at
the hyperplanes and the color graph of the network function
in input space, we could see that one of the explanations for
decreasing learning time was that more final configurations
were available to the network, and it had more freedom in
choosing weight values with more hidden units and redun-
dancy. For only two hidden units, the values of the weights
could not vary much at all before violating the required er-
ror bound. Another thing we noticed was that the effective
step size increased dramatically as the dimensionality of the
weight space increased: the step size in the gradient descent
algorithm is used by each weight in adjusting itself, so the
morc weights there are, the larger the total step size. There-
fore, we were seeing a lot of oscillation in the large networks
because there was a lot of overshoot of local minima in the
direction of the gradient.

On many of our training sessions, we noticed that the
length of the weight vector would often change rapidly over
a brief period right away, and this would be accompanied

56

by a rapid reduction in the error. After this there would be
a leveling off of both signals. This was easy to understand
when we looked at the plot of the network function over the
input space: the first thing that happens is that the output
layer weights are adjusted so as to bring the output function
of the network to be approximately .5 everywhere. Usually
the hyperplanes do not intersect the unit hypercube that
is defined by the binary training vectors, because they are
chosen at random. Then the hyperplanes would be slowly
dragged in toward the unit hypercube; the farther away they
were from the cube the slower they would move. Thus the
initial location of the hyperplanes is a key factor in learning
time.

Another interesting aspect was symmetry-breaking and
hidden unit differentiation. We observed several cases where
one or more of the hyperplanes was in a location near a “deci-
sion point”. On one side of this point, the hyperplane would
go in one direction, and on the other side of this point, it
would be pulled in a different direction. Hyperplane move-
ment near this decision point was generally quite slow. There
were also times when more than one hyperplane was serv-
ing the same function (located in a similar place), and one
was needed elsewhere. It would take a long time for the two
hyperplanes to differentiate.

If two networks have been trained successfully on a prob-
lem, the smaller one tends to generalize better. However, the
smaller networks also tend to become trapped in unaccept-
able local minima more readily during the training phase.
Therefore researchers have investigated the possibility of re-
moving hidden units after learning has been partially com-
pleted. Our conclusion is that this heuristic works well only
under certain conditions, wherein “redundant” hidden units
are chosen for elimination. Often useless or redundant units
have smaller weight vector magnitudes, so this is a good
heuristic.

We also did some experiments with larger-size problem
such as parity of n inputs and more complex classifications
of two real-valued inputs. We found that the learning time of
the networks tended to correspond to the number of hyper-
planes that were needed to separate the inputs in different
classes, and we used this as an informal definition of the
complexity of the problem.

6 Speeding Up the Learning Algo-
rithm and Future Work

Several approaches to obtaining speedup in training times
have suggested themselves from our experiments. One is the
choice of initial weights. By starting with the hyperplanes
near the unit hypercube and separated from each other, we
very much decreased the learning times. Various compu-
tational geometry algorithms are also attractive for deter-
mining initial hyperplane configurations; depending on the
complexity of these algorithms as a function of input dimen-

sionality and training set size, they might even become a re-
placement for back-propagation network training methods.
For large training sets, we would like to consider alternatives
such as those suggested by Stephen Omohundro [3].

We also implemented a steepest descent algorithm, and
the more efficient Fletcher-Powell algorithm for determining
the next direction in which to change the weights combined
with a quadratic interpolation for optimum step size. This
algorithm is parallelizable and achieves learning rates at least
as good, and usually better, than others reported in the lit-
erature.

We are currently working on characterizing the regions
of attraction of the final hyperplane configurations. In ad-
dition to studying the hyperplane configurations experimen-
tally, we hope to make a theoretical statement about the
hyperplane configurations of final solutions obtained by the
back-propagation learning algorithm. We may be able to de-
rive analytically the configurations which correspond to local
minima of the error function in weight space. We are also
interested in considering the movement of the hyperplanes
in terms of forces between them and the training set inputs,
as well as among hyperplanes themselves.

We would like to look at the behavior of other learning
algorithms in hyperplane configurations. For example, we
are particularly curious to try it on David Rumelhart’s new
scheme which adds terms to the error function that reduce
the size of the network dynamically during learning.

References

[1] G. Blelloch, “Scans as Primitive Parallel Operations”,
Proceedings International Conference on Parallel Pro-
cessing, pp. 355-362, 1987.

[2] B. Moore, “Error Function Explorations, or Beating
XOR to Death,” forthcoming MIT AI Lab Working Pa-
per.

[3] S. Omohundro, “Efficient Algorithms with Neural Net-
work Behavior,” Report no. UIUCDCS-R-87-1331, De-
partment of Computer Science, Univ. of Ill. at Urbana-
Champaign. April 1987.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
“Learning Internal Representations by Error Propaga-
tion,” in D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Ezplorations in the Mi-
crostructure of Cognition, Bradford Books/MIT Press,
Cambridge MA, 1986.

[5] A. Wieland and R. Leighton, “Geometric Analysis of
Neural Network Capabilities,” Proceedings of the IEEE

First International Conference on Neural Networks, pp.
385-392, 1987.

57

PRECEDING PAGE BLANK NOT FILMED

THE IMPACT OF RENT’S RULE ON MASSIVE PARALLELISM

P. J. Koopman
ECE Department

D. P. Siewiorek
CS Department

Carnegie Mellon University
Pittsburgh, PA

ABSTRACT: Rent’s Rule is an empirical relationship stating
that the number of pins on a chip increases as the number of
gates on the chip increases. In massively parallel systems,
every extra pin is multiplied by the number of processors.
This causes a rapid increase in system complexity, cost, and
failure rate. The key to more efficient massively parallel sys-
tems is finding a way around Rent’s Rule. By studying the
effects of re-implementing a system of fixed complexity using
different integration levels, we have found that Rent’s rule
does not apply to systems which place program memory on
the same chip as the processor. This suggests that a focus for
massively parallel systems might be to use processing ele-
ments simple enough to completely fit onasingle chip, rather
than faster but more complex processors that use external
memory devices.

Keywords: Rent’s Rule, integration level, system complexity.

INTRODUCTION

Rent’s Rule (Ref. 1) is an empirical relationship between the
number of gates and the number of /O pins a single chip.
The relationship is given by:

]O=AS"‘GR

In this equation, 10 is the number of input/output pins on the
chip. AS is the complexity of a single logic gate on the chip
as measured by the number of inputs for the gate. G is the
number of logic gates on the chip. R is the Rent Exponent,
which is a circuit-dependent “magic” number between 0 and
1, which is often near 0.5.

The trend in VLSI processor design has been: given the
availability of more silicon real estate, put more sophisti-
cated functions or wider data paths into a single chip. Thus,
memory chips have progressed from 256K bits to 1M bits to
4M bits. Also, microprocessors have evolved from 8 bits
wide to 16 bits to 32 bits. These chips all obey the Rent’s
Rule prediction of a logarithmic increase in the number of

CH2648-2/89/0000/0059%01.00 © 1988 IEEE

59

pins as the number of gates on the chip increases. This in-
crease in the number of pins has important implications for
the builders of massively parallel systems.

THE COST OF TOO MANY PINS

Since the innovation of standardized integrated circuits we
have progressed from the introduction of the 14-pin dual in-
line package (DIP) to common use of pin grid array packages
(PGAs) with hundreds of pins. The addition of extra pins to
a chip has some obvious as well as hidden costs.

The most obvious cost is the manufacturing cost of the chip
package itself. Small DIPs are very inexpensive to manufac-
ture since they use stamped metal pins. As chips require
more pins, DIPs become impractical, and packages such as
leadless chip carriers (LCCs) are used. Each contact on an
LCC costs more than a DIP pin, because it must be more
precisely manufactured and placed around four sides of the
package. At the high end of the spectrum, PGAs use
precision-machined round pins that are precisely placed ina
matrix on the back of the chip. It is not unusual for each pin
of a PGA to be several times more expensive than an entire
DIP package. Thus, there is a very steeply increasing cost
curve for the entire chip as the number of pins is increased.

The direct cost of the chip package only begins to describe
the costs of adding pins, however. Atthe on-chip level, every
pin must have an on-chip pad. This pad consumes valuable
silicon real estate. But, more importantly, each pad con-
sumes power. As geometries become smaller, the amount of
power used by a chip to drive its output pins can dwarf power
consumption for on-chip logic. The problem is especially
severe with CMOS technology, which is coming into favor for
high density circuits.

At the system level, the footprint of the package on the
printed circuit board increases as the number of pins on the
package increases, costing valuable printed circuit board real
estate. Increased printed circuit board sizes result in bigger
cabinets and, ultimately, more boards with expensive and

265 53' ANIENITONALLL HLANS

slow interconnect structures. Dense pin arrangements such
as those found on PGAs further aggravate the problem by re-
quiring expensive multi-layer boards.

Many indirect costs are associated with chips that have large
pin counts. These costs include the use of very expensive
automated chip testers when they are manufactured. Also,
every extra pin in a finished computer reduces the over-all
system reliability, since interconnect failure is afrequent sys-
tem failure mode. (Ref. 2)

In a parallel computer, these pin costs are multiplied by the
amount of parallelism in the design. Since the premise be-
hind a massively parallel system is that more processors are
better, all massively parallel designs will ultimately be
limited in processing power by the number of processors that
can be afforded within a given space/power/cost budget. The
number of pins in each processing element within the system
can therefore directly affect the ultimate computational
power of a massively parallel processor.

BREAKING THE RULE

One should not infer from the previous discussion that the
use of VLSI chips with large pinouts is bad. These chips,
while expensive, are less expensive than the total system cost
of using a large number of less complex chips instead. The
question is: can we do better?

Rent’s Rule predicts that increased VLSI chip complexity
will lead to an inexorable increase in pin count. A key to
making massively parallel systems faster and more cost-ef-
fective is to find a way to break out of Rent’s empirical
relationship. One way to accomplish this goal is to find an
implicit assumption in the relationship that can be altered.

There is an historic relationship between chip complexity
and overall system complexity. As chips have become more
dense, computer systems have not only become more highly
integrated, but have also become more complex. Adding
more complexity to a system makes sense in a uniprocessor
environment, where the added complexity squeezes the most
possible performance from the machine. Rent’s Rule ap-
plies to computer systems as they have been built over the
years, so it accounts for this implicit assumption. But what if
we violate that assumption, and hold system complexity as a
constant?

The answer to this question may be found by conducting an
experiment that holds system complexity as a constant for
varying integration levels. In order to do this, we built a
hierarchical description of a 16-bit microprocessor system
(Ref. 3) starting at the gate level. All circuit functions were
ultimately reduced to combinations of 2-input NAND gates
for simplicity. Then, we did a redesign of the system using
six different integration levels ranging from SSI (all 2-input

NAND gates) to high density VLSI (entire system on a single
chip). Each integration level was chosen to correspond to a
reasonable method for partitioning the system components.
Figure 1 shows a graph of chip complexity versus pin count
for the various implementations, as well as the curve for a
Rent exponent of 0.38. There are more than six data points
in this graph, since most implementations had several chips
in the design. RAM chips are not shown as they obey a Rent
curve with a different slope that clutters the diagram. Power
supply pins are not accounted for since they vary with im-
plementation technology.

Integration Levels 1 and 2, which correspond to SSI and MSI
components, obey a classic Rent’s Rule curve with an ex-
ponent value of approximately 0.38. Integration Level 4,
which corresponds to a 3-chip system, also falls neatly on this
curve. Integration Level S, which corresponds to a standard
micro-processor 2-chip system (processor chip and memory
chip) is somewhat off the curve, but is still a reasonable fit.
Integration Level 3 turned out to be an awkward level of in-
tegration, which forced a very poor partitioning of the sys-
tem, resulting in a very high pin count for one of the chips.

The really interesting point on the graph is Integration Level
6. This design is nowhere near the curve! Integration Level
6 corresponds to a single-chip system, which incorporates
program memory and the processing logic on the same chip.
This implementation appears to break Rent’s Rule.

INTERPRETING THE RESULTS

Figure 2 shows a curve that helps us interpret the results of
the experiment. If we ignore Integration Level 3 as a "bad
data point", then what is really happening is that the designs
obey Rent’s rule quite well through Integration Level 4.
Then, as we reach very high levels of system integration, the
number of pins on the chips begins to decrease. If the entire
system is on a single chip, only a few pins for system I/O are
needed. While the microprocessor seems to be near the
break in the curve, the break is not really noticeable until the
system-on-a-chip approach is taken.

The results, once one thinks about the situation, are rather
straightforward. A system-on-a-chip needs off-chip inter-
connection only for I/O, so it needs very few pins. Why hasn’t
this concept been exploited then? The reason is that it is of
limited use in the uniprocessor world. Most high-perfor-
mance uniprocessors are 100 complex to allow enough room
for on-chip memory.

The situation in a massively parallel processor environment
is quite different than in a uniprocessor environment. Since
massive parallelism is cost effective only in applications
which can achieve roughly linear speed improvements as
processors are added, N processors that perform at 1/Nth the

speed of a given uniprocessor are roughly equal in process-
ing power to that same uniprocessor.

The approach that is supported by these findings is one of
building relatively simple processor/memory systems that
can fit on a single chip. Since these chips will be much less
expensive to manufacture and use in a system, more proces-
sors can be included in a system.

There are several methods of implementing this strategy.
One method is to simplify a given processor implementation
as much as possible, probably sacrificing speed-enhancing
hardware features for overall system size. With current tech-
nology (1 to 2 micron CMOS), this approach can lead to
simple 16-bit processing elements with small program
memories. Of course, appropriate software techniques to
keep code size small are vitally important, This approach is
probably the most attractive for MIMD machines.

Another possible method is to reduce the word-size of each
processing element. The ultimate extension of this
philosophy is bit-serial machines which can, in fact, have mul-
tiple processing/memory elements per chip. This approach
is obviously well-suited to SIMD machines.

CONCLUSIONS

In the near term, the challenge to achieving the maximum
level of processing element integration is to find design styles
and programming methodologies that can fit enough
functionality onto available chip real estate to go beyond the

61

Rent’s Rule breaking point. Current architectures which
may be able to do this include: bit-serial processors, which
can pack several processors with memory onto a single chip;
8-bit microcontrollers, which are probably not powerful
enough to be of interest in their currently available form; and
stack-oriented processors, with their small program memory
size requirements. In the future, chip sizes may increase
enough to allow RISC processors to have a full-sized on-chip
cache and slow serial interfaces to their program memories.
CISC processors may eventually reach this point as well, but
only if they are frozen at a particular complexity level.

Some parallel processor architectures, especially SIMD ar-
chitectures, are clearly already embracing the philosophy of
simple computational elements that can fit on a single chip.
What we have explored are some of the theoretical under-
pinnings of this approach, and why it makes sense for mas-
sively parallel architectures.

REFERENCES

1. Landman, B.S. and Russo, R.L., "On a Pin Versus Block
Relationship For Partitions of Logic Graphs," IEEE Trans-
actions on Computers, December 1971, C20(12), pp. 1469-
1479

2. Siewiorek, D.P. and Swarz, R.S., The Theory and Practice
of Reliable System Design, Digital Press, Bedford MA, 1982

3. Koopman, P.J., CPU/16 Technical Reference Manual,
WISC Technologies, La Honda CA, 1986.

-0 =~o0oU3cZ2

no~00

- 0O ~oo3CcZ

no~00

100000 |-
10000
10001
100+ 2
3 =
4 = 3-chip system
2 5 = microprocessor
6 = 1-chip system
101
LI n i I ! 1
T i i 1 I 1
0 20 40 60 80 100 120
Number of Pins
Figure 1. Experimental data shown with a Rent curve (R=0.38)
100000--
10000-
3
10001
LEGEND:
1 = SSI
100-} 2 = MSI
= LS|
4 = 3-chip system
5 = microprocessor
6 = 1-chip system
10
! ‘ : | o | ;
; T — T 1 T
0 20 40 60 80 100 120

Number of Pins

Figure 2. A different curve that better fits the data

62

L
(- L
AS

- A

P

NOO-16444 - .

OVERVIEW AND EXTENSIONS OF A SYSTEM FOR
ROUTING DIRECTED GRAPHS ON SIMD ARCHITECTURES *

Sherryl Tomboulian

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center, Hampton VA 23665

ABSTRACT

Many problems can be described in terms of directed graphe that con-
tain a large number of vertices where simple computations occur using
data from adjacent vertices. A method is given for parallelizing such
problems on an SIMD machine model that uses only nearest neighbor
connections for communication, and has no facility for local indirect
addressing. Each vertex of the graph will be assigned to a processor
in the machine. Rules for a labeling are introduced that support the
use of a simple algorithm for movement of data along the edges of the
graph. Additional algorithms are defined for addition and deletion of
edges. Modifying or adding a new edge takes the same time as parallel
traversal. This combination of architecture and algorithms defines a
system that is relatively simple to build and can do fast graph process-
ing. All edges can be traversed in parallel in time O(T), where T is
empirically proportional to the average path length in the embedding
times the average degree of the graph. Additionally we present an ex-
tension to the above method which allows for enhanced performance
by allowing some broadcasting capabilities.

Keywords: routing algorithm, SIMD architecture, parallel processing,
graph embedding, interconnection network

INTRODUCTION

There are many problems that can be formulated as directed graphs.
Such problems include circuit simulation, semantic networks and to-
pography. Typically the real-world versions of these problems contain
100,000 vertices or more, and while the computations that occur at
each vertex are simple, the size of the problems makes them compu-
tationally intensive. A natural way to parallelite these problems is a
paradigm in which each processor is assigned a vertex in the graph,
and there is some mechanism for realizing the arcs. This fine grained
approach suggests the use of SIMD architectures, which can be built
with many thousands of processors.

The problem with using SIMD architectures is that often they do
not easily support generalized message passing schemes. This paper
presents a method of embedding graphs in a class of SIMD architectures
by using a special space-time labeling that supports message delivery
and incremental addition of paths. The algorithms for this system are
presented in (Refs. 16, 17). Basic concepts of the system will be re-
viewed, followed by an important generalization of the original method.

To maximize the number of processors which can be built, we choose
the simplest hardware definition necessary to solve graph oriented prob-
lems. The machine model used is SIMD: there is a controller and a
large number of slave processors which can execute the same instruction
stream simultaneously. The processors have exclusively local memory,
and they have no facilities for indirect addressing. The processors must
be connected in a topology with the following requirements: (1) there
must be some path between any two processors; {2) every neighbor
link must be bi-directional, i.e. if A is a neighbor of B, then B must
be a neighbor of A; and (3) the neighbor relations between processors

*THIS WORK WAS SUPPORTED BY THE NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION UNDER NASA CONTRACT NO. NAS1-18107
WHILE THE AUTHOR WAS IN RESIDENCE AT ICASE.

CH2649-2/89/0000/0063%01.00 © 1988 IEEE

63

must have a consistent invertible labeling. A more precise definition
of the labeling requirements can be found in (Ref. 16). It suffices that
most networks (Ref. 4) including grid, hypercube, cube connected cy-
cles (Ref. 13), shuffle exchange (Ref. 14), and mesh of trees (Ref. 7)
are admissible under the scheme. Additional requirements are that the
processors be able to read from or write to their neighbors’ memories,
and that at least one of the processors acts as a serial port between the
processors and the controller.

The Massively Parallel Processor (MPP) built by Goodyear
Aerospace is an SIMD architecture with single bit processors arranged
in a 128 by 128 processor grid (Ref. 2). The MPP is not the perfect
machine for this algorithm since it is limited by ite diameter being
V'N, but nevertheless is a good candidate.* A parallel machine design
that fits our model well is the Boolean Vector Machine (BVM) being
built at Duke University which is an SIMD machine that uses the cube
connected cycles interconnection scheme {Ref. 13).

The Connection Machine, produced by Thinking Machines Corpo-
ration, is an SIMD architecture with 64K processors, each with 4K
bits of memory, and complex routing hardware that supports arbitrary
communication (Ref. 5). While a hardware router may be a preferred
method for solving graph problems, many applications do not require
this arbitrary communication facility and would profit by replacing the
equivalent silicon area with more processors and using software for com-
munication. By choosing a software alternative, problems that do not
need generalized communication are more economical and graph ori-
ented problems are still viable. Independent of the argument of whether
one should or should not build an SIMD architecture with routing hard-
ware, the fact remains that architectures such as the MPP are being
built that do not have routing hardware, and routing software extends
their usability.

THE METHOD

In this section we present the concept of conflict-free space-time la-
beling, henceforth referred to as CFST-labeling. Using this labeling
scheme, we present a simple algorithm for data movement and an al
gorithm for generating CFST-labeling of a graph incrementally.

It is necessary to distinguish between the graph problem being at-
tacked and the computer model being used. The graph being embedded
will be referred to using standard graph terminology with regards to
vertex, edge, and degree. The machine elements are called processors
and wires. Each vertex will be assigned to a different processor. Each
edge in the graph will be realized by a path in the physical network
which is a list of consecutive wires joining adjacent processors. Each
wire specification that is part of a path is referred to as a link.

Traversing all the edges of the embedded graph in parallel will take
more than one step since messages cannot be sent instantaneously but
rather must be passed along through successive neighbors. Traversing
all edges in parallel, referred to as the delivery phase, will be consid-
ered an uninterruptible operation that takes T steps. In addition to
the spatial characterization of a path, a path will also be character-
ized by a relative temporal offset within the delivery phase. Rules are
provided governing paths. Algorithms are presented to create paths

“See (Ref. 3) for an implementation of sorting on the MPP.

incrementally and to transfer a collection of messages through paths
simultaneously.

We will begin by defining the data structures which will be resident
at each processor.

ALLOCATED ---- boolean flag indicates that processor
is assigned a graph vertex
VERTEX_LABEL --- label of graph vertex
HAS_NEIGHBOR([1..peighbor_limit] --- flag indicates
existence of wires

SLOTS[1..T} OF edge path information

START---------- new edge starts here
DIRECTION------ direction to send

{1. neighbor_limit, FREE}
END-----==-=-m- edge ends here

ARC LABEL----- label of edge

The ALLOCATED and VERTEX_LABEL fields indicate that the pro-
cessor has been assigned a vertex in the graph. The HAS_ NEIGHBOR
field is used to indicate whether a physical wire exists in the particular
direction (e.g. in a flat grid, edge processors only have 3 neighbors, and
corner processors 2, while internal processors have 4); for a completely
regular topology it is superfluous. The SLOTS data structure is the key
to the routing system. It is used in the delivery algorithm to instruct
the processor where to send a message and in the labeling algorithm to
insure that paths are constructed so that no collisions will occur. The
SLOTS array is used to tell the processors what they should do on each
relative time position within the delivery phase.

One of the characteristics of this algorithm is that a fixed path is
chosen to connect two processors and once chosen it is never changed.
For example, consider the grid in Figure 1.

Q@@G
6@@9

Figure 1.

If there is an edge between vertices in A and H, there are several pos-
sible paths: East-East-South, East-South-East, and South-East-East.
Only one of these paths will be chosen between A and H, and that same
path will always be used. For each edge, the corresponding path is not
only fixed in space (i.e. the set of wires is constant), but is also fixed in
time (the initial delay before the message starts down the path is con-
stant). Once the starting time for the path has been fixed, it is never
changed. Paths do not have to start on time 1, but can be scheduled to
start at some relative offset within the delivery phase. Since there are
no facilities for buffering, a message must proceed continuously along
the specified directions without delay. For instance, if the path is of
length 3 and it starts at time 1, then it will arrive at time 4; if it starts
at time 2, it will be guaranteed to arrive at time 5. Further, it is nec-
essary to place the paths so that no collisions occur; that is, no two
paths can be at the same processor at the same instant in time. The
rules for patha that fulfill these requirements are listed below.

e At most one link can enter a processor at a given time, and at
most one link can leave a processor at a given time. It is possible
to have both one coming and one going at the same time. Note
that this does not mean that a processor can have only one link;
it means that it can have only one link during a particular step in
the delivery phase. It can have as many as T links going through
it (since a delivery phase is length T by definition).

Any path between two processors (u,v) representing an edge must
consist of links at consecutive time steps. For example, if the path
from processor u to processor v is {u,f,g,h,v}, then if the link from
u-f is assigned time 1, f-g must use time 2, g-h time 3, and h-v time
4. Likewise if u-f occurs at time 5, then link h-v will occur at time

8.

When these rules are used to form paths, the SLOTS structure can be
used to mark the paths. Each path goes through neighboring processors
at successive time steps. For each of these time steps the DIRECTION
field of the SLOTS structure is marked, telling the processor which
direction it should pass a message if it receives it on that time slot.
SLOTS serves both to instruct the processors how to send messages
and to indicate that a processor is busy at a certain time slot so that
when new paths are constructed it can be guaranteed that they won’t
conflict with current paths.

Consider the following example. Suppose we are given the directed
graph with vertices A,B,C,D and edgese A -+ C,B — C,B — D, and
D — A (Figure 2), and that vertices A,B,C, and D have been assigned
to successive processors in a linear array. (A linear array is not a good
network for this scheme but convenient for demonstration.) Initially
all slots are free. We proceed to construct a CFST-labeling, placing
each edge in the order it appears in the list above.

Figure 2.

A,B.C,D are successive members in a linear array

1. A — C can be completed with the map East-East, so Slots[A][1]
= E, Slots|B][2|=E, End|C|[2}]=TRUE.

2. B — C can be done with the map East; it can start at time 1,
since Slots{B[1] and End{C}|1] are free.

3. B — D goes through C then to D; its map is East-East. B is
occupied at time 1 and 2. It is free at time 3, so Slots(B]|[3]|=E,
Slots|C](4|=E, End|[D|[4]= TRUE.

4. D — A must go through C,B,A. using map West-West-West. D is
free on time 1, and C is free on time 2, but B is occupied on time 3.
The path can start from D on time 2. Slots[D}[{2]=W, Slots[C][3]=
W, Slots[B][4]= W, End[A][4|=TRUE.

Every processor acts as a conduit for its neighbors’ messages. No
processor knows any message’s source or destination, but each processor
knows what it must do to establish the local connections.

Given that the paths satisfy the CFST-labeling rules, measage de-
livery for graph problems is simple. The paths have been constructed
80 that there will be no collisions, and each path link uses consecutive
time slots. The end of a path is specified by setting a separate bit that
is tested after each message is received. A separate start bit in SLOT]|k}
indicates that a path starts at time k. The start bit is needed because
the SLOTS array just tells the processors where to send a message,
regardless of how that message arrived **. The start array indicates
when a message originates, as opposed to arriving from a neighbor.

The following algorithm is basic to the routing system.

**Both the START and the STOP bits can be encoded as part of the DIRECTION
fleld in SLOTS, but the presented method is simpler to explain and allows for more
efficient execution.

PROCEDURE DELIVER

for i = time 1 to T
FORALL processors
/* if an edge starts or passes through at this time */
if SLOT[1].START = 1 or active = 1
for j=1 to neighbor-limit
begin
if SLOT[i].direction= j
write message bit to
in-box of neighbor j;
set active = 0;

end
FORALL processor that just received a message
if end[i]
move in-box to message-destination;
else

move in-box to out-box;
set active bit = 1;

This code follows the method described above. The time slots are
looped through, and the messages are passed in the appropriate direc-
tions as specified in the SLOTS array. Two bits, in-box and out-box,
are used for message buffering.

The time complexity of data movement is O{T x neighbor limit).
Since the number of neighbors is assumed to be a small constant for
each network, the complexity is O(T). This suggests that networks
with fewer neighbors have advantages. For instance, the hypercube
network has logN neighbors, and the cube connected cycles network
has 3 neighbors. Empirical results (Ref. 17) shows that while hypercube
uses a smaller T, CCC actually has a faster overall delivery time.

Setting up Message Paths

One of the goals in developing this system was to have a method for
adding new edges quickly. Paths are added so that they don’t conflict
with any old path. Once a path is placed it will not be re-routed by
the basic placement algorithm; it will always start at the same spot at
the same time. The basic idea of the method for placing a connection
is to start from the source processor and in parallel examine all pos-
sible paths outward from it that do not conflict with pre-established
paths. As the trial paths are flooding the system, they are recorded
in temporary storage. At the end of this deluge of trial paths, if the
destination processor has been reached, then a real path exists. Using
the stored information a path can be backtraced and recorded. This
is similar to the Lee-Moore routing algorithm (Refs. 6, 8} for finding a
path in a system.

Suppose that the connection (u,v) is to be added. First it is assumed
that processors for u and v have already been determined, otherwise
(for now) assume a random allocation from a pool of free processors.
It is necessary to find a path between u and v that does not conflict
with any of the existing paths. The method for doing this is a type of
flooding. A breadth-first search will be performed in parallel starting
at the source processor. A record is kept of the trial paths resulting
from this search. The paths must adhere to the CFST labeling rules, so
a trial path must not conflict with paths that are already established.
For instance, suppose a trial path starts at time 1 and moves to a
neighboring processor, but that neighbor is already busy at time 1
(as can be seen by examining the DIRECTION-SLOT.) Since a path
that would go through this neighbor at this time is not legal, the trial
path would commit suicide, that is, it stops propagating itself. If the
processor slot for time 2 was free, the trial path would attempt to
propagate itself to that processor’s neighbors at time 3.

Trial paths are recorded in a structure called TRIALSLOTS. A trial
path knows if the next time slot is occupied by referring to the SLOTS
data structure. If the destination processor is reached by a path, it
will be a path that does not violate the rules. Therefore we can trace
backwards from the destination processor using the markings in TRI-
ALSLOTS and transfer this good path to the actual SLOTS structure.

65

PERFORMANCE

Adding an edge (assuming one can be added), deleting any set of
edges, or traversing all the edges in parallel, all have time complexity
O(T x nesghbor Jimit). If it is assumed that neighbor limit is a small
constant then the complexity is O(T). Since T is related both to the
time and space needed, it is a crucial factor in determining the value of
the algorithms presented. Some analytic bounds on T were presented
in (Ref. 16), but it is difficult to get a tight bound on T for general in-
terconnection networks and dynamically changing graphs. For the case
where the graph is known a priori an upper bound of O(log?N) can
be achieved on a hypercube. This is obtained by applying a result by
Nassimi and Sahni {Ref. 10) in which they present a method for data
broadcasting in SIMD computers which conforms to the CFST-labeling
rules.

Of major interest is the on-line case, where edges are added and
deleted dynamically. A simulator was constructed to examine the be-
havior of the algorithms. Besides the simulated data, the algorithms
mentioned were actually implemented for the Connection Machine.
The data presented by the simulator is consistent with that produced
by the real machine. The major result is that the size of T appears
proportional to the average degree of the graph times the average path
length in the embedding.

This is a highly significant result. If it is assumed that the av-
erage number of connections and the neighbor-limit are bounded by
small constants then the time for a parallel traversal operation, is,
the worst case, O(diameter). This indicates that the algorithm per-
forms optimally for routing random communication graphs, since a
random graph can have connections between processors that are dia-
metrically opposed. If it assumed that the diameter is O(logN) then
Cr is O(logN).

This bound indicates that the methods presented here are compet-
itive with existing methods for parallel traversal in SIMD architec-
tures. Some methods for SIMD parallel communication were men-
tioned in the introduction. Permutations can be done in O(logN) time
(Refs. 9, 10). Sorting can be done in essentially O(log?N) time, us-
ing (Ref. 12) or Batcher (Ref. 1) combined with Thompson (Ref. 15).
These methods are restricted to permutations and sorting. One of
the advantages of the method presented here is the ability to deal
with graphs that are more general. Using the previous methods,
if the connections specified a complete permutation, and addition-
ally some processor also wanted to connect to two other processors,
three entire permutations must be performed because the complexity
is diameter X maz_number_of connections. In our system some items
can have more connections than others without substantially increas-
ing T. This result is achieved because the complexity of this method is
based on the diameter x AVERAGE number of connections, rather
than the maximum number. The method used here also has the ad-
vantage that new connections can be added easily, unlike the other
methods which require the entire set-up to be re-computed.

A further advantage of this method is the ability to exploit locality.
Since the heuristic for T is dependent on the average path length,
situations where the embedding can be arranged so that processors
connect to those in some neighborhood will produce smaller values of

T.

BRANCHING PATHS

There are many variations of this basic method that can be exploited.
Among these are heuristics for picking shortest paths, assignment of
node to processor, and choosing paths so as to avoid congestion. A
discussion of these methods can be found in (Ref. 16).

A siguificant and important extension of the general CFST label-
ing rules involves a generalisation that we refer to as branching paths.
Branching paths is actually a form of broadcasting. Rather than having
each arc represented by a different path, arcs starting from the same
vertex can be combined for greater efficiency. However, this gain comes
at the loss of two features.

The first is an obscure feature. In the basic CFST method presented,
the system is identically free of conflicts whether it is run forwards or
backwards. That is, rather than have an algorithm that starts at step 1
in the delivery cycle and initiates messages with the START bit marked,
it is possible to write a send backwards algorithm which, using the same
SLOTS structure, will start at time T initiating those links that STOP
at the processors, and work backwards to time 1, reversing all the
links, until the values get to the source. If one wished to implement a
bi-directional graph rather than a directed graph, instead of actually
putting in two sets of wires (from each pair u — v and then v — u),
one could just put in one set of wires, pass the values in the forward
directions, then reverse it and pass the values back again.

The second and greater issue involves the nature of the messages that
are passed along the arcs. If the application requires that a different
message be passed along each arc, then it will not be possible to use this
combining method. However, if all connecting processors are passed the
same value, or the same value modified by a different constant, then
this variation is viable. Many applications, including circuit simulation
and neural networks fall into this class.

In the standard method, each arc in the original graph becomes a
path in the embedding.

O
©, ©
© ©

For example, Figure 3 shows a graph in which one vertex is connected
to all others. Mapped onto a linear arry, each arc becomes a path
(Figure 4).

Figure 3.

OZOLOR0m02020

Figure 4.

The branching path method adheres to the CFST labeling rules, but
alters the premise that each arc in the original graph is represented by
a separate path. Instead, the set of arcs associated with each vertex
can be represented by a set of branching paths. A branching path has
two characteristics that differ from a standard path between two nodes.
The first is that a path can “drop off” values at intermediate nodes in
the path. For example, Figure 5 shows that a single path can be used
to deliver messages to all intermediate vertices. Essentially, processors
along the same route can share the path.

6-G-0-3-0-0-3

Figure 5.

In addition to path sharing, the other ability is to allow paths to branch
out, or broadcast to their neighbors. For example, Figure 6 shows a
grid in which processor A is connected to B and C. This is represented
with one branching path.

66

Figure 8.

More formally, as before, each vertex in the original graph is mapped
to a processor in the network topology. The set of arcs associated
with each vertex will be represented as a set of directed acyclic graphs
(DAG). For each arc (u,v), there must be a DAG, D, whose root is
u which has v as either a leaf node, or an internal node. For any leaf
node w in the graph D with root u, (u,w) must be a an arc in the
original graph. Further, in the family of DAGs which represent the
arcs originating from the root u, each arc in the original graph can be
represented only once. That is, if a graph has root u and leaf w, then
no other graph with root u can have leaf w. Likewise, any internal
node that is a destination must be marked to indicate that it is not
just an intermediate node in the route, but rather a drop-off point. If a
graph with root u has a specially marked internal node v representing
arc (u,v), then no other graph with root u can have v has a specially
marked node, although v can appear without a marking. As in the
original method, each arc is only represented once, although paths can
go through other nodes that are not part of their message destination.
For example, in figure 6, A connects to B and C. Suppose that A
were also connected to W. In this case W would have to be marked to
indicate it not just an intermediate node in the graph. Further, if A
were to connect to Q, this could be represented by a separate graph as
a path going through W. But, W could only be a destination vertex in
one of the two graphs.

Another aspect of this definition involves the nature of the messages.
If all vertices that u connects to receive the same value message then
the definition mentioned above is fine. If all receive the same value
message multiplied by a different constant, it is also fine, because each
constant can be stored at the destination node, so all connecting arcs
will be passed the same value, and multiplication will occur at the time
of delivery. However, if connecting values are truly different, then no
two arcs (u,v), (4, w) that have different arc weights can be represented
by the same DAG. Hence, in the original case, where we assumed that
each arc receives a different dynamic value, each arc would have to be
represented by a separate DAG, which would be 2 DAG with only one
leaf, which is our definition of a path. So the original method is simply
a subset of this method.

Having defined this family of graphs that represent the arcs in the
new embedding, we proceed to label them according to an extension to
the CFST labeling rules. The first rule, non-exclusion, originally said
that at most one connection can enter a processor at a given time and
at most one can leave. Now we allow more than one to leave provided
that the connection is defined as part of the same DAG. The second
rule, of contiguous time, still holds. When a path splits into two or
more branches, each of the connections proceeds at the same time, as
illustrated previously in Figure 6.

A small clarification: strictly speaking, the branching paths do not
have to be DAGS, that is, they don’t have to be acyclic. That is,
when a connection reaches a processor, it does so at some time 1, and
it is possible for the path to loop back on itself, which will occur at
some later time 7. While usually such loops are inefficient, sometimes
they are used to avoid jams in the system, and further, they can occur
naturally as part of the algorithms which finds paths. In terms of the
static algorithm, a way to avoid the conceptual messiness of cycles is

Algorithm Updates

The algorithms change surprisingly little. The algorithm for delivering
the messages doesn't change at all The loop which checks for the
marked direction and passes the value in the appropriate direction may

simply see, for instance, that the North bit is on, and so passes it north,
and then checks that the West bit is on, and passes likewise within the
same time step. Since, because of the SIMD nature of the machine, it
is already necessary to loop through the different directions, no extra
work is done.

The algorithm for finding a new path requires a small modifica-
tion. In the original method, paths propagate from the source through
neighboring processors which are not already busy. To encorporate the
branching path method, during the spreading method all connections
which start from the source are activated, as they would be during the
normal delivery cycle, and these active processors are included as part
of the path spreading. That is, if a processor would normally be active
at time i if it were sending a message from the source as part of its
normal delivery cycle, then on time ¢ + 1 it will attempt to propagate
a new path to its neighbors. If the shortest path heuristic is used (Ref.
17), so that each trial path has a length associated with it, then a new
path that is formed as a branch or continuation off an old path starts
at length O from that branch point, rather than starting at length 0
from the source. For problems that do not require unique values to
be passed and that have multiple connections per vertex, these minor
changes allow for a much more efficient message delivery system.

Analysis

The basic comments on analysis are the same as for the original case.
A message delivery cycle still takes O(T'), where T is the number of
slots, but by using the branching paths, T can be much smaller. As an
example, we take the case of a fully connected graph embedded in a
linear array. We know that the lower bound on T is the cutwidth of the
resulting embedding (Ref. 17). When embedding the fully connected
graph in a line using the original method, the maximum cutwidth is
O(N?), and in the branching path method it is O(N). Hence, in this
case the savings between the two methods is substantial. While this is
an unusual example, it gives an idea of the advantages. Some empirical
results on the on-line random graph examples, of the type done in (Ref.
17), tend to show an improvement of a factor of 2 to 3 over the original
method. These results are preliminary and haven’t been statistically
validated.

CONCLUSION

Some simple algorithms have been presented which allow arbitrary
graphs to be embedded in SIMD architectures having a variety of
topologies. The time for performing a parallel traversal and for adding
a new connection appears to be proportional to the average path length
in the embedding, times the average number of arcs in the graph being
embedded. Since the average path length is no more than the diam-
eter of the network, the method is competitive with existing methods
for SIMD routing, with significant advantages for graphs that can ex-
ploit locality. Additional advantages are that there are no a priors
requirements for the form of the data, the topological requirements are
extremely general, and new arcs can be added without reconfiguring
the entire system. The simplicity of the implementation and the flex-
ibility of the method suggest that it could be an important tool for
using SIMD architectures as graph processing machines.

REFERENCES

1. K. Batcher, “Sorting Networks and their Applications,® Proceedings of
AFIPS 1968 SJCC, pp. 307-314.

2. K. Batcher, “Design of a Massively Parallel Processor,” JEEE Trans on
Computers, Sept 1980, pp. 836-840.

3. L.E. Dorband, “Sort Computation and Conservative Image Registra-
tion?, Ph.D. Thesis, Pennsylvania State University, Dec. 1985.

4. T. Feng, “A Survey of Interconnection Networks,” Computer, Dec 1981,
pp.12-27.

11,

12.

13.

14.

15,

16.

17,

18.

W. Hillis, *The Connection Machine,” MIT Press, Cambridge, Masa.,
1985.

. C. Lee, “An algorithm for path connections and its applications,” /RE

Trans. Elec. Comput., Vol. EC-10, Sept. 1961, pp. 346-365.

. T. Leighton, “Parallel Computation Using Meshes of Trees,” Proc. In-

ternational Workshop on Graph Theory Concepts in Compuler Science,
1983.

. E. Moore, “Shortest path through a maze,” Annals of Computation Lab-

oratory, Vol. 30, Harvard Univ. Press, 1959, pp. 285-292.

. D. Nassimi and S. Sahni, “Parallel Algorithms to Set-up the Benes

Permutation Network,” Proc. Workshop on Interconnection Networks for
Parallel and Distributed Processing, April 1980.

. D. Nassimi and S. Sahni, “Benes Network and Parallel Permutation

Algorithms,” [EEE Transactions on Compulers, Vol. C-30, No. §, May
1981, pp. 332-340.

D. Nassimi and S. Sahni, “Data Broadcasting in SIMD Comput-
ers,” IEEE Transactions on Computers, Vol. C-30, No. 2, Feb 1981, pp.
101-106.

D. Nassimij and S. Sahni, “Paralle] Permutation and Sorting Algorithms
and a New Generalized Connection Network,” JACM, Vol. 29, No. 3,
July 1982, pp. 642-667.

F. Preparata and J. Vuillemin, “The Cube Connected Cycles: a Versatile
Network for Parallel Computation,® Comm. ACM, Vol. 24, No. 5, May
1681, pp. 300-309.

H. Stone, “Paralle] processing with the perfect shuffle,” JEEE Trans.
Computers, Vol. C-20, No. 2, Feb. 1971, pp. 153-161.

C, Thompson, “Generalized Connection Networks for Parallel Processor
Intercommunication,” JEEE Tran. Computers Vol. C-27, Dec. 1978, pp.
1119-1125.

S. Tomboulian, *A System for Routing Arbitrary Communication
Graphs on SIMD Architectures,” Doctoral Diesertation, 1986,Dept. of
Computer Science, Duke University, Durham, NC.

S. Tomboulian, *A System for Routing Directed Graphs on SIMD Ar-
chitectures®, ICASE Report No. 87-14, NASA Langley Research Center,
Hampton, VA (updated 1988).

R. Wagner, “The Boolean Vector Machine,” IEEE 1988 Conference Pro-
ceedings of the 10th Annual International Symposium on Computer Archi-
tecture, pp. 59-66.

X

AN ANALYSIS OF DISJOINT PATH PROPERTIES IN DATA MANIPULATOR NETWORKS

Wayne G. Nation

Howard Jay Siegel

Parallel Processing Laboratory
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907, USA

ABSTRACT

A critical component of a supercomputer based on mas-
sively parallel processing is the interconnection network
that provides communications among the system’s pro-
cessors and memories. The data manipulator network
family is a class of multistage interconnection networks
based on the PM2I interconnection functions. One
interesting property of the data manipulator network
family is the existence of multiple paths through the
network for most source/destination pairs. The condi-
tion which must be present to have disjoint paths
through the network for a given source/destination pair
is shown, where disjoint paths are multiple paths with
no links in common. For source/destination pairs which
have no disjoint paths, a single fault can prevent com-
munication between that source/destination pair. It is
proven that the maximum number of disjoint paths for
any source/destination pair is two and a method for
finding the routing tags that specify these paths is given.
The effect of a fault in a given stage of the network on
the number of source/destination pairs that can be con-
nected is also discussed.

Keywords: ADM, IADM, gamma network, data mani-
pulator, redundant path networks, interconnection net-
works, parallel processing, supercomputers.

1. INTRODUCTION

Large-scale parallel processing is one approach to the
design of supercomputers. The interconnection network
in a massively parallel computer system is a critical
component. The network provides communications
among the processors and memories of the system. One
family of networks that has been proposed for use in
such systems is the data manipulator family.

The data manipulator network family is a class of mul-
tistage interconnection networks based on the PM2I
interconnection functions [11]. In some cases, data
manipulator networks have a single path from a source

This research was supported by the Supercomputing
Research Center, Lanham, MD, where H.J. Siegel was on leave
when most of this research was done.

PRECEDING PAGE BLANK NOT FILMED

CH2649-2/89/0000/0069%$01.00 ©® 1988 IEEE

69

S to a destination D while in other cases multiple paths
exist; i.e., the number of paths between a given S and D
may vary from one $/D pair to the next. Having a vari-
able number of paths impacts the network throughput,
permuting ability, and routing tag control. These issues
are under study [2-7, 9-11, 13-16].

Properties of disjoint paths between a given S and D in
data manipulator networks are examined here. Disjoint
paths are multiple paths from a given 8 to D which have
no links in common. The condition that must be
present to have disjoint paths through the network for a
given S and D pair is presented. To avoid any fault in a
path from S to D there must exist another disjoint path
for the same S and D. If a fault develops in one of these
disjoint paths, it can be avoided by choosing to use the
other disjoint path. It is shown that disjoint paths are
available for only half of the possible S and D pairs.
This indicates the fault tolerance limitations of the data
manipulator network family. Furthermore, it is proven
that the maximum number of disjoint paths for any S/D
pair is two. A method for finding the routing tags that
specily these paths is given. The effect of a fault in a
given stage of the network on the number of S/D pairs
that can be connected is also discussed.

Section 2 introduces the data manipulator network and
some of its variations that are in the literature. In Sec-
tion 3, two routing tag schemes for specifying paths
through these networks are described. Properties of dis-
joint paths in this network class are presented in Section
4. Finally, Section § is a general discussion of these
results.

2. THE DATA MANIPULATOR NETWORK
FAMILY

The data manipulator network family includes the data
manipulator [2], the Augmented Data Manipulator
(ADM) [12], the Inverse Augmented Data Manipulator
(IADM) (6], and the gamma [8] multistage interconnec-
tion networks. The data manipulator [2] (Figure 1) con-
sists of m stages (N = 2™). Each stage is a column of N
switches. There is also an (m+1})-st column of network
output ports. The stages are ordered from m—1 to 0. At
stage i switch j can pass data to switch j + 2' modulo N
of stage i—1 {i.e.,, PM2,;), switch j of stage i—1 (i.e.,
straight), or j — 2' modulo N of stage i—1 (i.e., PM2_;).

-~ (oﬂ INTENTIONALLY GLANS

0O
|
N U
T
P
P
U
T U
T
STAGE 2 1 0

Figure 1: The data manipulator or Augmented Data
Manipulator {ADM) network for N = 8.

0]
I
N 18)
T
P
P
8)
T U
T
STAGE 0 1 2

Figure 2: The Inverse Augmented Data Manipulator
(LADM) or gamma network for N = 8.

A switch has three input links and three output links.
Each switch can pass data from one of its input links to
any one of its output links for a “one-to-one” setting.
Data can also be passed from one of a switch's input
links to two or three of its output links for a “broadcast”
setting.

70

The Augmented Data Manipulator (ADM) is a data
manipulator network constructed so that each switch
can be set independently. The Inverse Augmented Data
Manipulator (IADM) (Figure 2) is similar to the ADM
except the stage ordering is reversed (stage 0 is the input
stage). It is called the "Inverse” ADM because for any
data permutation the ADM can do in one pass through
the network, the IADM can do the inverse of that per-
mutation [11]. The gamma network is a data manipula-
tor network which has reverse stage ordering and indivi-
dual switch control. The gamma network uses a 3x3
crossbar in each switch. This allows a gamma switch to
perform several one-to-one settings at once; i.e., all of
the switch inputs can each be connected to a unique
switch output concurrently.

To route data from an input (source} S to an output
(destination) D, the data must traverse links whose sum
modulo N is {D—S) modulo N. As an example, for an
ADM network with N = 8, the links traversed for § =1
and D =6 are: +2? (+2? link in stage 2), +0 (straight
link in stage 1), +2° (4+2° link in stage 0). The sum of
the traversed links is +22 +0 4+ 2° =5. Four other
paths exist that route data from 1 to 6: +2%, +2! —2%;
and straight, ~2!, —2° (—x = (N—x) modulo N. Assum-
ing that the network is implemented with both 4+2™~!
and links at stage m—1 (even though
(+2=°! = —2™-1) modulo N), then two more paths
between 1 and 6 are: —22, straight, +2% and —2%, 42!,
20 In general, if S # D, there are multiple paths from
S to D.

_Zm—l

The ADM and IADM will be used to represent the data
manipulator family. Because the discussion focuses on
disjoint paths for individual S/D pairs, the gamma
network’s added capability from the 3x3 crossbar switch
makes no difference. Thus, all properties derived for the
IADM also apply to the gamma network.

The presentation to this point has assumed the networks
to be unidirectionally connecting N processor/memory
pairs, where processor/memory pair i is connected to
both input port i and output port i of the mnetwork,
0 = 1 < N. However, the results of this paper apply to
bidirectional implementations of the networks as well,
where the networks can connect processors at the input
side with memory modules at the output side and mes-
sages are routed in both directions.

3. ROUTING PATHS THROUGH THE ADM
AND IADM

To specify an arbitrary path in an ADM network, a full
routing tag, F =fo,_)..fp, can be used [6]. A stage i
switch examines bits f; and f, ;. If f is zero, that stage
i switch uses the straight link (the value of f,,; is
ignored). If f; is a one then the switch will use the +2'
link if f; is a zero and the —2' link if ., is 2 one.
For example, féor an N =16 -ADM network, the tag

F = 00111011 will route from 1 to 6 on the path +2°,
straight, —2!, —2°. The tag scheme using a full routing
tag requires a 2m bit tag but can be used to specify any
arbitrary path through the network.

A natural routing teg uses only one bit to specify the
sign of the non-straight links used in the path, thus all
the non-straight links traversed are of the same sign [6].
An m+1 bit routing tag T is formed by computing the
stgned magnitude difference between the destination and
the source: T = tg...tg =D—S. The sign bit is ty,
where t;; =0 indicates positive or zero (i.e.,, D = §),
and t; =1 indicates negative (i.e., D < S). Bits
tm_1..-tp equal & the absolute value of D—S, the magni-
tude of the difference. The natural routing tag is inter-
preted in the same way as the full routing tag, except ty
is used as the sign bit at every stage. For any natural
tag T for S to D (S # D) an alternative routing tag from
S to D can be computed that uses links of the opposite
sign by taking the two's complement of T [6]. For exam-
ple, for N=8, S=1, and D =6, T =0101, and the
two’s complement of T =T’ = 1011. This is shown in
Figure 3.

o] 0]

1] 1
17 28
N? 3, T
P — L
Uy (4 4P
T — U
5 5/ T
6 6

7] 7

STAGE 2 1 0

Figure 3: An N =8 ADM network showing the two
disjoint paths from S =1 to D = 6. The solid
line shows the positive dominant path
specified by T = 0101. The dashed line shows
the negative dominant path specified by
T’ = 1011.

A positive dominant routing tag is a natural routing tag
with t, =0, while a negative domsnant tag has t, = 1.
The positive dominant path is the path specified by the
positive dominant tag and the negative dominant path is
specified by the negative dominant tag. The two’s com-
plement of one sign dominant tag from S to D produces
the sign dominant tag from S to D of opposite domi-
nance.

A typical assumption made when studying the fault
tolerance of multistage networks is that the network
input switches and network output switches are not

71

faulty (so that data can enter and leave the network),
and the rest of the network is what must be made fault
tolerant [1]. This simplifying, although somewhat
unrealistic, assumption is adopted here also. It is shown
that even with this assumption, the data manipulator
has very limited fault tolerance.

4. DISJOINT PATH PROPERTIES OF THE
DATA MANIPULATOR FAMILY

This section presents certain disjoint path properties of
the data manipulator network family. In stage m—1,
the 427! and —2™! links from each switch are
equivalent; i.e., 427! = 2271 modulo N. Thus, a
Data Manipulator network could be implemented with a
single link for each 27! connection or separate links
for each +2™-1 and —2™7! connection. The results pro-
ven here are valid in either situation unless specified oth-
erwise.

Theorem 1 and Corollary 1 show that, for any combina-
tion of S and D, § ([D—S|) is odd if and only if the two
paths formed by the sign dominant routing tags are dis-
joint. Theorem 2 and Corollary 2 show that all paths
for a given S/D pair pass through no more than two
switches in each stage (excluding I/O ports). While this
has been conjectured before, it is formally proven here.
It is stated in Theorem 3 that for j > 0, 2! is the highest
power of two for which § is 2 multiple if and only if the
sign dominant paths share straight links and switches in
stages 0 to j—1. Theorem 4 proves that if there exists a
path from S to D that uses straight links in stages 0 to j,
then all paths from S to D use straight links in stages 0
to j. Corollary 3 (a generalization of Theorem 3) states
that for j > 0, 2! is the highest power of two for which ¢
is a multiple if and only if all paths from S to D share
straight links in stages 0 to j—1. The results of the
above are combined in Corollary 4 to prove that exactly
two disjoint paths exist for S/D pairs if and only if ¢ is
odd, while no disjoint paths exist if § is even. The sec-
tion concludes with the derivation of an expression for
the number of S/D connections that are not possible
given a straight link fault in any of the network stages
(Theorem 5). The notation ty/, will be used to represent
the string of bits tyty_; ... tyyity, x = ¥

Theorem 1: Consider an ADM network for arbitrary
N. &1is odd for a given S/D pair if and only if the two
sign dominant tags form two link-disjoint as well as
switch-disjoint paths through the network (excluding
input and output switches).

Proof:

Part 1: 6 odd — disjoint paths.

It is sufficient to prove that the two paths are switch-
disjoint, for if the two paths do not share a switch in
stage i then they cannot share a link leaving that stage.
Without loss of generality, assume D = S. Consider the
positive dominant routing tag T from source S to desti-

nation D. Because § is odd, T has the form T =t/ 1.
The negative dominant tag (T’ = two’s complement of
T) is therefore T = t,/;1. Because of this relationship,
when the negative dominant path takes the —2' link in
stage i (1 = i = m—1), the positive dominant path will
take the straight link in stage i. Likewise, when the
positive dominant path takes the +2' link in stage i
(1 = i = m—1), the negative dominant path will take
the straight link in stage i. Consider the ADM for arbi-
trary N. Because ty = 1, the switch P; that the positive
dominant path passes through in stage i
(0 = i = m—2), where the path is followed from the
destination D to the source, is given by:
1 . 1 .
P, = [D - Y2 = [D -1- Etj(zj)] modulo N.
j=0 j=1

(When i =0, Po =D—1.) Similarly, because t'g =
and t'y =t;, 1 = k = m—1, the switch N; that the
negative dominant path passes through in stage i
(0 = i = m—2)is given by:

N; =

D+iﬁ@)

i
D+1+ 3y (2)] modulo N,
j=0

i=1

(When i =0, Ng =D+1.) If the paths ever meet at a
switch in stage i, then the distance (difference) between
P; and N; will be zero at that stage. This part of the
proof is completed if '

[Ni —Pi]modulo N#0 foralli 0 2 1= m-2.

Using the above equations;
[Ni _ pi} -

i . -
D-D+14+1+ 1t(2') + 1t (2°)| modulo N
j=1 =1

i,
=2+ ¥22) modulo N
j=1

= (2*!) modulo N # 0

for 0 = 1= m—2.

Thus, the paths never meet at a switch (excluding the
input switch (stage m—1) and output port), and this
part of the proof is complete.
Part 2 disjoint paths — & odd.
Due to the two’s complement property of T and T’,
tg =t'g. If tg =t'g =0 then the paths would not be
disjoint (both would go straight in stage 0, connecting to
the same network port). Therefore, if the paths are dis-
joint tg = t’g = 1, with the positive dominant path tak-
ing the +2° link in stage 0 and the negative dominant
path taking the —2° link in stage 0. In order for
tg =t'o =1, 6 =ty_y /0 must be odd. Thus, if T and T’
specify disjoint paths, 6 must be odd.

]

An example of the disjoint paths for an N =8 ADM for
S =1 and D = 6 is shown in Figure 3.

72

Corollary 1: Theorem 1 is true for the IADM network.

Proof:

Part 1: 6 odd — disjoint paths.

The proof for the IJADM is similar to the proof for the
ADM with some factors that account for the different
stage ordering. In particular, for the JTADM, the paths
meet at the stage O switch (the input switch) and the
output port. To caleulate P; and N; (for
1 = i = m~—1), the paths are followed from the source
S to the destination, where:

P, =
j=1

-1
S+1+ Etj(zj)] modulo N

5 W
S§—-1- Etj(zj)] modulo N.
-1

N; =

Therefore,
[Pi —Ni]=(2i Jmodulo N#0 for 1 =i = m—-1

Thus, the paths never meet at a switch (excluding the
input switch (stage 0) and the output port).
Part 2 disjoint paths — § odd.
The proof follows from Theorem 1, proof of Part 2.
]

Theorem 2: In the ADM network, all paths for a given
S/D pair pass through no more than two switches in
each stage.

Proof: All possible paths emanating from the destina-
tion D back through stages 0, 1, ..., j pass through the
set, of stage j switches A;, where:

A; ={D + kmoduloN : 0 = k = (2*!-1)

An example of A; for an N =16 ADM network with
j=1and D =1 is shown in Figure 4. All elements of
A; represent 2J72_1 consecutive switches modulo N in
stage j (i.e., switches 0 and N—1 are consecutive). All
possible paths emanating from the source S through
stages m—1, m—2, ..., j+1 enter a set of stage j switches
B;, where:

B; = { S + kx2*! moduloN :0 < k < 2™

An example of Bj for an N =16 ADM network with
j=1 and S =10 is shown in Figure 5. Due to the
modulo N arithmetic, S + kx2 !l =8 — kx2*! for
k = 2™727). Each element of B; is at least 2/*! switches
apart from any other switch of Bj. A distance measure,
d(x,y), is defined as the shortest distance between two
switching elements x and y of a stage; i.e.,

d(x,y) = min{k—y} N — k—y).
So, V x,¥ (x #y) EBj, dlx,y) = AL

o) M 1 .
0 0 0 0 0
1 1 1] 1] 1]
2] 2 2] 2 2
— —-— 1 — —
3 3 3 3 3
| L — _— —
4 4 4 4 ¢
B 5 | 5 5
1 i‘ [4] 6 0
N |7 7 7 71 U
p L - T
v |8 8 8 8| p
T |9 9 F g! U
10 10 10 10
11| 11| 11 11]
12| 12| 12| 12|
-—ﬂ | —
13 13l 13 13|
- — -
4 14 14 14
15| 15 15 15
L) L} — -
STAGE 3 2 1 0

Figure 4: An N = 16 ADM network showing links used
by all possible paths from stage 1 to D =1.
All stage 1 switches not in A; are blacked out.

Similarly for elements of Aj, V x,y(x #y) €A,
d(x,y) = 2*?—2. By definition, a stage j switch is on the
path from S to D if and only if it is an element of both
Aj and B;. The intersection of A; and Bj (A; N B;)
must contain at least one element; otherwise, the net-
work could not make a connection between S and D
(which is known to be possible). It is a direct result of
Theorem 1 that 3 S,D such that Aj N B; =2 for
0=j= m-2

Proof by contradiction is used to show that it is not pos-
sible for Aj N B; to contain three or more elements
(i-e., the size of A; [B; is either one or two). Assume
3 x,y,2 € Aj N By such that x #y # 2. Consider the
elements x and y. 2t = d(xy) = 222 Also,
because x,y € Bj, d(x,y) =k x 2/*! modulo N, for some
k in the range 0 = k = 2°7%7), Hence, to obey the
bounds constraints on d(x,y), k must equal 1, which
implies d(x_,yz =2*1. Because z €A; N Bj, 2*! =
dx,z) = 2%°—2 and 2! = dyz) = 9*2-2. Simi-
larly, d(x,z) = d(y,z) = 2*1. This leads to a contradic-
tion since d(x,z) = d(y,z) = d(x,y) = 2"*! only if x =z or
y = z. Thus, the proof is complete.

(]

73

0] 0] 0] 0]
| |] |
1 1 1 1
2 2 2 2 2]
3] 3] 3] 3]
d hd ad i
4 4 4 4
r—-—' 1 S— —
5 5 5 5
S N 1 3 I R
N |7 7 7 7| U
P — — T
U f% 8 f_s_ 8| p
T |o S 9 9| g
10| 10 10 0] 10
11] 11 11 1]
L S — —
12 12 12 12
13 13 13 13,
14 14 14 14] 14
15 15 15 15
L]] -]
STAGE 3 2 1 0

Figure 5: An N =16 ADM network showing links used
by all possible paths from S = 10 to stage 1.
All stage 1 switches not in B; are blacked out.

Corollary 2: Theorem 2 is true for the JADM network.

Proof: The proof for the IADM is similar to the proof
for the ADM with some factors that account for the
different stage ordering. In particular, for the IADM, all
paths emanating from the source S through stages 0, 1,
...y J pass through the set of stage j switches A;, where:

(2'-1) }

Elements of A; represent 27*1_1 consecutive switches
modulo N in stage j. Thus, '

Y xy (x #y) € Aj, dxy) = 2t -2
All possible paths emanating from the destination D
back through stages m—1, m—2, ..., j+1 enter a set of

stage j switches B;, where:

Aj={SikmoduloN 0=k =

B ={D + kx2 moduloN :0 = k = 27717 }

Each element of B; is at least 2’ switches apart from any
other switch of B;j. Thus, ‘

vV x,y (x #y) €Bj, dix,y) = 2.
Proof by contradiction is used to show that it is not pos-
sible for Aj; M B; to contain three or more elements
(i.e., the size of A; () B; is either one or two). Assume

3 x,y,2 €A N B, such that x #y # z. Consider the
elements x and y. 2 = d(x,y) £ 2*1—2. Also, because
x,y €Bj, dxy)=k x_‘Zj modulo N, for some k in the
range 0 = k = 27717, Hence, to obey the bounds con-
straints on d(x,y), k must equal 1, which implies d[x,y)
=21, Because z €A, N B, 2 = dxz) = 2*1 2 and
2 < dlyz) £ 2¥122. Similarly, d(x,2) = dy,z) = 2.
This leads to a contradiction since d(x,z) = d(y,z)
d(x,y) =2 only if x =z or y =2. Thus, the proof is
complete.

O

As long as § is odd for a given S/D pair there are always
two disjoint paths where the two paths are specified by
the two sign dominant tags for that §. When ¢ is even, it
can be shown that the paths formed by the sign dom-
inant tags share a link in stage 0 and are thus non-
disjoint. This fact can be extended to state that if dis a
multiple of 2/ the paths formed by the sign dominant
routing tags will share links in stages 0, 1, ..., j—1 (i.e,,
the two sign dominant paths follow the same path in j
of the m stages). A proof of this statement follows in
Theorem 3.

Theorem 3: In a data manipulator class network, for
j > 0, 2 is the highest power of two for which 6 is a
multiple if and only if the two sign dominant paths
formed for S/D pairs with the given & share straight
links (and switches) in stages O through j—1 and are dis-
joint in stages j to m—1.

Proof: In the special case of j = m—1, it is necessary to
assume that the +2™~! and —2™~! links are distinet in
order to have disjoint paths in stage m—1.

Part 1: § multiple of 2 — sign dominant paths share
straight links in stages 0 to j—1.

If 2 is the highest power of two for which 6 is a multi-
ple, then the j+1 lower order bits of § can be written as
(51/0 = 10!, where 0/ means a string of j ‘0’s. Next con-
sider the tags T and T’ for the given . From Section 3,
tm—ijo =0 Because the j+1 lower bits of T are
tio = 10°, the j+1 lower bits of T’ are also 10’ (a pro-
perty of two's complement numbers). In this case both
sign dominant paths use straight links in stages 0, 1, ...,
j—1 and 2’ links in stage j. Depending on the stage
ordering of the network under consideration, stage 0 is
either at the input of the network (for the IADM) or at
the output of the network (for the ADM). In either
case, the sign dominant paths must meet at the input
and output ports of the networks considered. For the
ADM, because the two sign dominant paths meet at the
network output ports and use straight links in the last j
stages, the two paths must share links (and switches) in
those j stages of the network. For the IADM, because
the two sign dominant paths meet at the network input
switches and use straight links in the first j stages, the
two paths must share links (and switches) in those j

74

stages of the network. If 6 =0, t; ;5 =0™ and thus
only straight links are used in traversing the network,
forcing the two sign dominant paths to share links and
switches in every stage of the network.

Due to the properties of two’s complement numbers, if
T =tp/j4110%, then T” =ty ;,;100. Therefore, as was
shown in the proof of Theorem 1, when t’y =ty, the
two sign dominant paths do not share a link in stage k,
i =k =& m-1.

Part 2. sign dominant paths share straight links in
stages 0 to j—1 — § is a multiple of 2.

Because both sign dominant paths use straight links in
stages 0 to j—1 and are disjoint in stages j to m-—1,
tijo =t'j0 =100, Thus, §0 = 10/, and 2’ is the highest
power of two for which § = X2~ 0+ 10} is a multiple.

[m]

An example of this theorem for an N =16 ADM net-
work with S = 7 and D = 11 (6 = 4) is given in Figure 6.

o] 0] 0] 0] 0]

1 1 1 1 1

2 2 2 2 2

— - — -

3 3 3 3 3

4 4 n 4] 4

5 5 5 5 5
1 6 6) [6 o)
N |7 7 7] 7] 7] U
P — — — — T
u |8 8 8 8 8| p
T g 9 9 g] 9| U

]] s s T

10 10 10 10 10

11] 11 11] 11] 11]

12| 12 12 12| 12|

13 13 13 13] 13|

14 14 14 14 14

1] 15] 5] 15] 15|

] | -]]
STAGE 3 2 1 0

Figure 6: An N =16 ADM showing the sign dominant
paths for S=7 and D =11 (§=14). The
highest power of two for which & is a multiple
is j = 2. Thus, the sign dominant paths share
links in two stages (stages 0 and 1).

Theorem 4: For the data manipulator network family,
if there exists a path from S to D that uses straight links
in stages j to 0, all paths from S to D use straight links
in stages j to 0.

Proof: In general,
m-1
D=S+ Y2 wheref; € { —1,0,+1 }.
i=0
Because there exists a path from S to D with stages j to
0 set to straight, f; =0for 0 = i = j. Thus,

m-1 .
D=S§S+ ¥ fi2.
1=j+1
This implies s; =d; for 0 = 1 = j. If it can be shown
that s; =d; for 0 = i = j implies the switches on all
paths from S to D must be set to straight in stages j to
0, then the proof is complete.

This will be proven by contradiction. Assume that for
0 = k = j, stage k is the lowest numbered stage with a
switch on a path from S to D which is set to a non-
straight state. Because stages 0 to k—1 are set to
straight, they cannot affect di, and stages k+1 to m—1
affect bits dy,; to dy_y, but cannot affect dy,. Therefore,
the non-straight state of the switch in stage k forces

dy =s;. Thus, the assumption that stage k,
0=k=1j is set to a non-straight state implies
sk # dg, which contradicts s;=d; for 0 =i = j.

Therefore, the assumption is false and the proof is com-

plete.
(m]

Corollary 3: In data manipulator class networks, for
j >0, 2 is the highest power of two for which § is a
multiple if and omly if all paths from S to D share
straight links (and switches) in stages 0 through j—1 and
there exist disjoint paths in stages j to m—1.

Proof: The proof follows from Theorems 3 and 4.
m}

Corollary 4: For the data manipulator family of net-
works: (1) there are exactly two disjoint paths between 2
given S/D pair if and only if § is odd, and (2) for § even,
there are no disjoint paths.

Proof:

Proof of (1) Theorem 1 and associated Corollary 1
prove that the § for §/D pairs is odd if and only if dis-
joint paths exist for those S/D pairs. Theorem 2 and
associated Corollary 2 state that no more than two
switching elements are used in any stage for paths
between S and D. Therefore, there are exactly two dis-
joint paths between a given S/D pair if and only if ¢ is
odd.

Proof of (2): Follows from Theorem 3.
O

It has been shown previously [6] that any faulty non-
straight link can be avoided by a reroute technique

75

involving the two sign dominant paths. It is possible
now to derive an expression for the number of S/D pairs
in a data manipulator network that are blocked given a
straight link fault in stage j. A faulty straight link can-
not be avoided by any reroute technique if both sign
dominant paths must both use that link (or switch).
Theorem 5 presents a way of calculating the number of
S/D pairs that cannot communicate given a straight link
fault at switch P in stage j of an ADM network. Furth-
ermore, Theorem 5 goes on to show a way of enumerat-
ing these S/D pairs that cannot communicate due to
that fault.

Theorem 5: For the data manipulator network family,
a straight link fault in stage j at switch P = Pm-1/0 will
prevent 2m U1 S/D pairs from communicating. The
S/D pairs that are blocked are of the form
S =Sm-1/iPj—10 (i-e, all inputs which agree with P in
the lower order j bit positions) and D = P.

Proof:

Case 1: §/D pairs where the faulty straight link is not
used by either the positive or negative dominant path
(or both). These S/D pairs can still communicate.

Case 2: S/D pairs where both the positive and negative
dominant paths share the faulty straight link at stage j.
This implies t; =t; =0, which implies
tipo =t = 0! due to the properties of two’s comple-
ment numbers. Thus, the positive and negative dom-
inant paths share straight links in stages j to 0. Because
there exists a path that uses straight links in stages 0 to
i, all paths must use the same straight links in stages 0
to j (Theorem 4). Thus, if a faulty straight link is found
in stage j then all S/D pairs whose sign dominant paths
share this link cannot communicate. Consider the ADM
network. If the faulty straight link is at switeh P, then
the destination of all 8/D pairs that are blocked is also
P. For these S/D pairs, &0 = 01, The set of possible
sources is all sources which agree with P in the low order
j+1 bit positions; i.e., D =P, § = [D—S| and S0 = oit!
imply pjs =sjp- This set of sources takes the form
Sm—1/j+1Pj/0 Where sq_y/.; can take on any of gm-li+1)
values. Therefore, the S/D pairs that are blocked by the
fault are the 2@ U*1) pairs of the form § = Sm—1/j+1Pj/0
and D = P. The proof for the IADM network is similar
with the result that 2°°0*1) S/D pairs of the form
§=P and D =dn_y/41Pj0 (Where dp_y1,; can take
on any value) are blocked by a straight link fault in

stage j at switch P.
0

5. SUMMARY

Several important properties of the data manipulator
family of networks have been presented. Specifically,
the difference 5 ([D—S]) between the source port number
S and the destination port number D is odd if and only
if there exist two disjoint paths from S to D (Theorem 1
with associated Corollary 1). These two paths are the

sign dominant paths specified by the sign dominant
routing tags. Using this, a fault in one of the disjoint
paths can be avoided by choosing the other sign dom-
inant path. Theorem 2 (with associated Corollary 2)
states that no more than two switching elements are
used in each stage for all paths between a given S and
D. For j > 0, the sign dominant paths share straight
links and switches in stages 0 to j—1 and are disjoint in
stages j to m—1 if and only if 2’ is the highest power of
two for which § is a multiple (Theorem 3). Theorem 4
proves that if there exists a path from S to D that uses
straight links in stages 0 to j, then all paths from S to D
must use those same straight links in stages 0 to j.
Corollary 3 generalizes Theorem 3 by showing that for
i > 0 all paths from S to D share straight links in stages
0 to j—1 if and only if 6 is a multiple of 2). The above
results are combined to prove that exactly two disjoint
paths exist for S/D pairs if and only if ¢ is odd, while no
disjoint paths exist if § is even (Corollary 4). This pro-
perty limits the data manipulator family when consider-
ing their use as fault tolerant networks. Lastly, given a
straight link fault in stage j, there are om=(+1) enumer-
able S/D pairs that are blocked due to that fault
(Theorem 5).

Thus, various properties of disjoint paths for the data
manipulator family have been shown. Studies of net-
work characteristics, such as this, should aid system
designers in choosing networks appropriate for their
needs.

6. REFERENCES

1. G. B. Adams III, D. P. Agrawal, and H. J. Siegel,
"Fault-tolerant multistage interconnection net-
works," Computer, Vol. 20, No. 6, June 1987, pp.
14-27.

2. T.Y. Feng, "Data manipulating functions in paral-
le]l processors and their implementations," IEEE
Transactions on Computers, Vol. C-23, No. 3,
March 1974, pp. 309-318.

3. M.D.P. Leland, "On the power of the augmented
data manipulator network,” 1985 International
Conference on Parallel Processing, August 1985,
pp. 74-78.

4. D. Lee and K.Y. Lee, "Control algorithms for the
augmented data manipulator network,” 1986 Inter-
national Conference on Parallel Processing,
August 19886, pp. 123-130.

5. K.Y.Lee and W. Hegazy, "The extra stage gamma
network,” Thirteenth Annual International Sympo-
stum on Computer Architecture, June 1986, pp.
175-182.

76

10.

11.

12.

13.

14.

15.

16.

R. J. McMillen and H. J. Siegel, "Routing schemes
for the augmented data manipulator network in an
MIMD system,” IEEE Transactions on Computers,
Vol. C-31, No. 12, December 1982, pp. 1202-1214.

D. S. Parker and C. S. Raghavendra, "The gamma
network: a multiprocessor interconnection network
with redundant paths,” Ninth Annual Symposium
on Computer Architecture, April 1982, pp. 73-80.

D. S. Parker and C. S. Raghavendra, "The gamma
network: a multiprocessor interconnection network
with redundant paths," IEEE Transactions on
Computers, Vol. C-33, No. 4, April 1984, pp. 367-
373.

D. Rau, J. Fortes, and H. J. Siegel, "Destination
Tag Routing Techniques Based on a State Model
for the IADM Network," Fifteenth Annual Sympo-
stum on Computer Architecture, May 1988, pp.
318-324.

S. M. Reddy and V. P. Kumar, "On multipath
multistage interconnection networks," 1985 Inter-
national Conference on Distributed Computing Sys-
tems, May 1983, pp. 210-217.

H. J. Siegel, Interconnection Networks for Large-
Scale Parallel Processing: Theory and Case Stu-
dies, Lexington Books, D. C. Heath and Co., Lex-
ington, MA, 1985,

H. J. Siegel and S. D. Smith, "Study of multistage
SIMD interconnection networks,” Fifth Annual
Symposium on Computer Architecture, April 1978,
pp. 223-229.

A. Varma and C. S. Raghavendra, "Performance
analysis of a redundant-path interconnection net-
work," 1985 International Conference on Parallel
Processing, August 1985, pp. 474-479.

A. Varma and C. S. Raghavendra, "On permuta-
tions passable by the gamma network,” Journal of
Parallel and Distributed Computing, Vol. 3, No. 3,
March 1986, pp. 72-91.

H. Yoon, K. Y. Lee, and M. T. Liu, "Performance
analysis and comparison of packet switching inter-
connection networks,” 1987 International Confer-
ence on Parallel Processing, August 1987, pp.
542-545.

H. Yoon, K. Y. Lee, and M. T. Liu, "A new
approach to internetworking of integrated services
local networks," 1987 International Conference on
Distributed Computing Systems, September 1987,
pp. 390-397.

DATA STRUCTURES FOR ASSOCIATIVE SUPERCOMPUTERS'

J. L.

Potter

Kent State University
Kent, Ohio 44242

ABSTRACT

The parallel associative supercomputer model
uses associative data structures and
parallel associative searches to eliminate
the need for complex address computation.
This paper describes the simplicity of
programming associative supercomputers and
expands conventional associative data
references into a generalized associative
data structure reference mechanism which
encompasses the arrays, data structures and

data typing constructs of conventional
languages.
Keywords: Associative computing, Massive

Parallelism, Parallel Data Structures

INTRODUCTION

Associative Supercomputing

Associative supercomputing is a model of
computation, where each datum has its own
dedicated processor. It 1is a single

instruction, multiple data (SIMD) model with
a cellular memory, an exclusive read/write
and a restricted concurrent read capability.
In a cellular memory each cell contains
memory, a dedicated processor and at most
one association of data. Only one word in
a cell may be accessed at a time. All
cells may be accessed concurrently. The
exclusive read/write capability means that
each memory cell can be accessed by only
one processor at a time. The concurrent
read restriction means that only one memory
word from a single memory cell may be read
concurrently by all processors. The
restricted concurrent read capability is
equivalent to a global broadcast capability.

Associative computing exploits massive fine
grain parallelism in a natural way.
Massively parallel associative computers
such as the MPP® with 16k processors and the
Connection Machine® have been built. These
computers eliminate the need for time

'This research was supported in part
by ONR grant N00014-85-k0010.

CH2649-2/89/0000/0077$01.00 © 1988 IEEE

77

sharing a single central processing unit
with a multitude of data elements thus
avoiding the classic memory - CPU
bottleneck. Associative computing uses
massive parallel searching in place of
address calculation, reducing programming
complexity. This paper describes a method
for implementing data structures in the ASP
language based on the associative computing

model. See Potter [1987].
Background
The concept of associativity has been

present in computer science for many years.
For example, Jacks [1971] and Findler
[1979]. The most prevalent realization is
associative triples in AI. The standard
definition of an association is an ordered
triple of object, attribute and value. Many

similar definitions for associations have
been formulated. See, for example, Simon
(1970] and Savitt [1967]. The association
list and ASSOC function in the LISP language
are of course associative concepts simulated
in software on conventional sequential
hardware.

Kohonen [1978] rejected the standard
definitions of associativity as needing to
be defined in a more general fashion (p.
5). He proposed a model of association in
which a collection of triples forms an
associative memory and an entire triple is
retrieved when any portion of it is used to
query the memory.

Kohonen's model is expanded in associative
computing. Triples of data are replaced by
associations of any number of items. An
arbitrary number of different kinds of
associations may be stored in memory. Thus
in associative programming, sets of
collections of items form an associative
memory and an entire record of items (i.e.
an association) is selected when any subset

’Manufactured by Loral

Division, Akron, Ohio.

Aerospace

3Manufactured by Thinking Machines

Inc., Cambridge, Mass.

of its items are used to gquery the memory.
When an association in memory is so
selected, it 1is not moved to a central

processor, but is processed in situ.

Associative computers were first developed
at Goodyear Aerospace in the early
1970s. See Batcher (1977]. Foster's book
[1976] describes the basic components of
elementary associative computers.
Associative computers should not be confused
with content addressable (associative)
memories (CAMs). CAMs do not have in situ
processing. They retrieve data for delivery
to a cpu just as conventional memories do.
They are limited in use due to their
relatively high cost.

Inherent in associative programming is the
concept that each association has its own
dedicated processor and that computation is
effected by repeatedly selecting
associations to be processed and retrieved.

To date, no formal mechanism has been
developed for associative languages to
enable the specification of the equivalent
of data structures in conventional

languages. In the past data structures had
to be implemented at the assembly language
level. For example, Potter [1983], Reed
{1985] and Potter {1985]. This paper
expands on the concepts used for assembly
language data structures, building a
completely general hierarchy of data
structures which can be used in any higher
order language.

ASSOCIATIVE PROGRAMMING

Background

memory (i.e. its position in the program's
data structure) to select it.

The positional information content of a
program's data structure is established by
two mappings. The first mapping is between
the problem data and the logical data
structure used by the algorithm. The
second mapping is between the logical data
structure and the physical organization of
the computer's memory. A third mapping is
required to map the physical organization
into a time sliced sequence of scalar data
elements. These mappings are established

by the programmer and are often the most
crucial aspect of program
development. Figure 1 illustrates the
mapping sequence which is incorporated into
the addressing function component of
conventional programs.

In the simplest conceptualization, a

different addressing function is required
for fetching each individual piece of data
required by an algorithm. However, these
simple addressing functions are combined
into larger more comprehensive and complex
functions using looping and address
modification (indexing) techniques. The
loop construct, for example, is used
extensively to time share the CPU among the
many identical records of a file. An
important aspect of selecting a data
structure for a sequential computer is to
pick one which allows the addressing
functions to be efficiently folded so that
the loop construct can be used.

Associative computers reduce the complexity
of addressing functions without recursion

and without 1limiting the 1logical data

The impact of associative programming can be structure, thus they are easier to program
best explained by
analyzing the
fundamental components
of a program. A program PROBLEM logical LOGICAL physical PHYSICAL time CPU
contains ﬁwo qajor DATA -—=—=—-—- >DATA -——--==—=—-- >DATA W =————-- >DATA
E%?Zs o; rtpnggifiifi mapping STRUCTURE mapping STRUCTURE sharing STRUCTURE
fi?gfg?gﬁ_f ii?i t iﬁrs MATRIX TWO ONE SEQUENTIALY
component. The DIMENSIONAL DIMENSIONAL SCALARS

art
ggoecce?‘.f{riaels pt he (1 5 3) l_l_? l_i_ -1‘_ 1,5,3,4,2,6
operations to be () '; 2‘ 6 5
performed and the order (4 2 6) ! __l___l____ e
in which they are to be - 3
executed. The o
identification A
component of a program o
selects the data to be 5
operated on by the o
procedural component. 6
The identification e
component uses the
data's address within a

Figure 1 - A Conventional Program Message

78

as PASCAL use data typing to map

PROBLEM logical LOGICAL non-numerical address values into

DATA ~-===—==—- >DATA numerical ones at compile time.

mapping STRUCTURE The association data structure in

associative programming handles

MATRIX TWO STRUCTURE PROBLEM all three types of data
DIMENSIONAL CODE DATA organizations.

(1 5 3) 1 {53 1,1 1 When the implicit address

() ———tmm et —————— functions of conventional

(4 2 6) 4 | 2] s 1,2| 5 languages are stated explicitly in

————————————— ———| - a content addressable computer,

1,3| 3 the explicit address function

- values state specifically the

2,11 4 positions of the object in the

—————— data structure space generated by

2,21 2 the address function. For this

—— reason, the individual explicit

2,3| 6 address function values are

———|——— referred to as structure codes.

Figure 2 - Associative Data Mapping Thus in Figure 3, "age" and "size"

are the structure codes for "50"

and "large" respectively. The

than conventional computers. First, structure codes are discussed as if they

every data record has its own dedicated were a unique type of data item. In

processor. Thus, the need for a "time reality they are not. They are just like

sharing" factor in the address function is thg othe; data items 1in an associative

eliminated. Second, the physical mapping object in that they can be searched for

component of the address function is and manipulated by all ASP associative

replaced by parallel (associative) programming §tatements. Structpre codes are

searching. Finally, as described later, unique only in that they contain structural

the logical mapping relationship is stored
associatively as Structure Codes with the
data elements eliminating the need for run
time address calculations.

For example, in Figure 2, the logical
portion of the address function consisting
of the matrix row and column indices are
stored with the data elements as structure
codes. Since the data structure codes are
dependent only on the logical mapping, the
programming task is reduced to 1) directing
the computer in the sequential execution of
the fundamental steps of the algorithm and
2) the manipulaticon of the logical data
structure codes. The artifacts of time
sharing the CPU and the physical sequential
organization of memory are eliminated.

ASSOCIATIVE DATA STRUCTURES

The data structures, arrays and data types
of conventional languages can all be mapped
onto the general concept of associations.
In data structures, the address function is
a constant consisting of a path name. The
path name is constant because of the
requirement in conventional computers that
the address be determined at compile time.
Unlike data structures, variables can be
used in the address function of arrays
because the declared regular structure
allows run time address calculation. Run
time calculation requires that indices be
numerical. However, certain languages such

79

information on how one problem data element
relates logically to the other problem data
elements.

Data Structures as Extended Associations

The associative concept is most commonly
introduced 1in terms of attribute wvalue
pairs. All conventional data organizations
techniques can be viewed as extensions of
the attribute wvalue pair concept.
Specifically, an array can be thought of as
an attribute value pair with a compound
attribute consisting of a constant portion,
the array name, with variable modifiers, the
indices, as shown in Figure 4. The
"dimension" of the array determines the
number of modifiers.

On the other hand, a "data structure," as
shown in Figure s, is an attribute value

structure|data
code element
_______ +_...____—
attribute|value
————————— +_______.
age 50
size large
color blue
patient jones

Figure 3 - A Simple Scalar Structure

attribute|modifierl|modifier2|value
--------- e s Rttt
A | I | J | 3

A [I , J

Figure 4 - Compound Attribute

pair with a compound value. The fields of
the data structure constitute the multiple
values. Thus arrays and data structures can
both be viewed as generalizations of
attribute value pairs. In fact, all multi-
attribute, multi-valued data objects can be
viewed as extended associations.

Simultaneous Multiple Data Organizations

In an assocliative memory there is no hard
distinction between the attribute and the
value portion of an attribute value pair.
That is, the same datum can be retrieved by
searching for the matching attribute or the
matching value. For example (color $) and
($ blue) would both select (color blue).

Thus in effect, either the attribute portion
or the value portion can be defined as the
constant portion of an address function.

It is only by convention that the attribute
portion is considered the address function.

By extension to associative triples, any
one component of the triple can be
considered to be the address function with
the other two components being the compound
value, as shown in Figure 6. Moreover, any
combination of two components can be
considered to be a compound address function
with the third component a simple value.
In general, if there are n components in an
object there are:

n-1

\ n

/ C

--—- X

k=1
sets of address functions.

In an associative computer, all of these
address functions are available to the
programmer simultaneously. There is no a
priori reason to select one set of address
functions and its inherent data
organization over any other. Therefore, all
can be used at the programmers discretion,
intermingled in any way without any need
for reordering. Multiple simultaneous data
organizations are impossible in conventional
and parallel sequential computers, since
the data structures must be sorted to be

80

struct emp {
int emp#;
int birth_year;
int birth_day:
}:

attribute|subvaluel|subvalue2 |subvalue3
--------- e
| emp# |birth_year|birth_day

Figure 5 - An Associative Data Structure

efficiently accessed and they can be
organized only one way at a time.
Frequently auxiliary data structures such as
linked lists are employed to overcome this
limitation of conventional computers.

structure Codes for Generalized Array Data
S8tructures

Arrays are the canonical forms of data
structures. As shown in Figure 7, their
address functions form a natural hierarchy
of complexity. Scalars are zero dimensional
arrays. They are represented by the class
of address functions consisting only of
constants. The class of address functions
for one dimensional arrays consist of
constants plus one variable. Two
dimensional arrays have two-variable
address functions, etc. The most common
example of address functions for arrays, are
the row-major and column-major ordering
functions generated automatically for
indexed arrays by most high order languages
such as FORTRAN, PASCAL and C.

One dimensional arrays can be stored using
a straight forward extension of scalar
structure codes. The structure code

consists of the object name (the constant
portion of the address function) and the
position of the value in the construct (the
variable portion of the address function).
The variable component for one dimensional

arrays is simply the ordinal position of
the data element in the array. Thus, for
example, the one dimensiona object A = (1 5

4 3 2) would have the structure code shown
in Figure 8.

The structure code for two dimensional
arrays is a natural extension of one
dimensional arrays as shown in Figure 9.
The extension of structure codes to higher

dimensional arrays is obvious. The
composition and manipulation of these
canonical array structure codes to make

structure codes for complex compound data
structures is considered next.

s h o w n
in Figure 9
add. address ‘addres is modified
funct.’compound value compound|function |value compound value |functi EO 1nclud§
------ B et S s aaiatan I R e r o
sofa color |red sofa color |[red sofa color |red position."
table size big table size big table size big The conﬁtan&
chair weight heavy chair weight |heavy chair weight|heavy qddress B1
is shared by
a - Object b - Attribute c. - Value two valges
Address Function Address Function Address Function representing
the vector
] 1’ 9 3 "B
Figure 6 - Multiple Data Orginazation 55) and o
represents (7
6) .
Similarly, if the constant portion
ADDRESS FUN TYPE |EXAMPLE [DATA STRUCTURE is modified to include "column
__ position"” instead of "row position,"
constant I a | scalar "B 1" represents (5 7)' and "B 2"
constant+x, | a(xy) |1 dimensional represents (3 6)'.
constant+x,+x, a(xy,x;) 2 dimensional . . £ ot .
constant+x,+..+x_ a(xq,..+x,) n dimensional An 1mp9rtant broperty of structure
codes 1is the ability to reorganize
them as illustrated above. The "."
used to indicate

Figure 7 - A Hierarchy of Addrers Functions

One dimensional arrays are logical data
structures which are natural for use with
several common problem data structures such
as vectors, 1lists and strings. Two
dimensional arrays are logical data

structures which are natural for deallng
with matrices and imagery. The mapping
from these problem data structures to the
logical data structure is the identity
mapping. Consequently, for ease of reading,
where no confusion can arise, the terms
vector and matrix will be used
interchangeably for one dimensional and two
dimensional arrays respectively.

Associative Data S8tructure References
It is not uncommon to consider matrices as

collections of vectors. Thus if the
constant portion of the structure code

structure code data
—————————————————— element
constant|variable
part part
________ +___——..__—+-_—_...
object element value
name position
________ Fmrm e ————

A 1 1

A 2 5

A 3 4

A 4 3

A 5 2

Figure 8 - A One Dimensional Array

81

operator will be
the basic code grouping and can be
thought o©of as a concatenation
operator. The symbol, "$", is used as a
place holder. Thus the code B.1.$
represents the vector (5 3), B.S$.2
represents (3 6)', etc.

DATA STRUCTURE CODE MANIPULATION

The concept of combining data structures to
form new data structures at run time is
common in some languages such a LISP. For
example, lists can be grouped together to
form lists of lists, etc. This can be done
because of the generalized method of data
storage for lists. However, in conventional

languages, this capability is not easily
extended to other types of data structures
such as arrays. In associative computing,
it is possible to <create new data
structures from existing data structures at
run time for all types of data
organizations. That is, structures such as
structure code data
—————————————————— element
constant|variable
part part
———————— e
object |row |[col |value
name position
-------- Rt N et
B 1 1 5
B 1 2 3 B=(5 3)
B 2 1 7 (7 6)
B 2 2 6

Figure 9 - A Two Dimensional Array

arrays of arrays of lists of arrays can be
generated, decomposed and manipulated with
ease.

In order to describe how the structure codes
for two arbitrary data structures can be
combined to generate the structure codes
for a combined data structure, several
definitions are necessary. Let DS; be a
data structure of dimension r with address
function A;. Then A. = a0.a;l..a.;r are
the r+1 components of the structure code.
By convention, the 0th component is the
constant portion which is the name of the
data structure. Let Aj(m) stand for the
structure code of A; for the mth element of
D§;. Let 0' denote the constant value 0,
0% ‘denote 0.0, 0° denote 0.0.0, etc. Then O"
denotes the constant zero structure code
for a function with n components.
Similarly, let A"(x) denote the first (left
most) n components of a structure code. The
depth of a component is equivalent to the
number of components to its left.

Then if DS, is the complex data structure
obtained by inserting data structure DS,
with dimension s, as the mth element of DS;
with dimension r, at depth d, the address
function A for DS, has dimension d+s, and
is given by

for x i=m

A (x) = AJ.(x).od‘s‘r

A (x) for x = m,

for all y in DS,

d
A(x) A (Y)

The data structure insertion operation is
denoted by:

receiving_data_structure]| |
[element,depth]inserted_data_structure.

If a complex structure is to be built by a
number of insertions, they may occur in any
order, i.e. if m, != m,, then

(A, [[m,dy) A)

|| (m;,d,] A =
(A |][my,d;] A

||hmrdﬁ A,.

Figure 10 gives an example. DS, is an
"empty" vector with address function A, =
(1 2). DS, and DS_ are both matrices with
the same address function A=A =(1.1, 1.2,
2.1, 2.2). The composition A=(A, ||[1,1]
A) |1t2,1] A, 1is shown. Clearly,
arbitrarily complex hierarchical data
structures can be composed from the basic
canonical forms.

Figure 12 shows the conventional nested loop
statements required by a conventional
language (C, Fortran, Pascal, etc.) to
perform the same operation. Note that the
data must be physically moved (resorted)so
that the physical memory 1layout maps

82

| Aa|value
= e v - e o
pSa|l |nil DSa=(nil nil)
DSa|2 |nil
|Ab |value
———f e —p—————
DSbjl1l.1 7
DSb|1.2| 14 DSb=(7 14)
DSb|2.1| 3 (3 8)
DSbj2.2 8
|Ac |Value
———feeefe————
DSc|l.1 9
Dsc|1.2| 15 Dsc=(9 15)
Dsc|2.1| 6 (6 2)
DSc|2.2 2
OBJ |VEC|MAT|VAL
NAME | POS |R|C
et R
A 2 11 7
A 2 12 14 A=
A 2 21 3 ((9 15) (7 14))
A 2 22 8 ((6 2) (3 8))
A 1 11 9
A 1 12 15
A 1 21 6

Figure 10 - A Vector of Matrices

OBJECT VECTOR VECTOR VECTOR
NAME POSITION POSITION POSITION VALUE
------ it et EE L e
LIST 1 0 0 THIS
LIST 2 1 o} IS
LIST 2 2 1 A
LIST 2 2 2 LIST
LIST = (THIS (IS (A LIST)))
Figure 11 - A List
correctly onto the logical layout. This
requires that the number of items in all
arrays be known at run time. In

associative programming languages which use
structure codes, the address function is
modified as specified by the address
composition function above. The number of
data items is immaterial and the intent of
the data reorganization is clear. The new
address function is not hidden inside a
number of loops which need to be untangled.

The structure code mechanism is completely
general. Lists, for example, are simply a
special case of data structures. They are
"vectors" whose elements are atoms or other
lists. Address function composition can be
applied to list structure codes to generate
the structure codes for any complex nested

for (i=1,

}

i<2,

i++)
for (j=1, j<2, j++)
{ a(2,4,3]
a[i,i,31

b[i,3];
c(i,jls

Figure 12
Reorganization

Conventional

Data

above, arrays and data structures are both
just generalizations of associations, the
application of this technique to data
structures is straight forward although not
as intuitive.

S8ynonymous Data S8tructures
In some applications, it is desirable to

view data structures in two or more ways.
For example, a string can be thought of as

list. Figure 11 illustrates the structure a single variable containing a 1list of
codes for a list. Since as described characters or as an array of characters. As
can be seen in Figure 13, this dual approach
to referencing strings is a natural artifact
of using associative addressing techniques.
_ The string as a whole can be accessed by
§ = "A STRING" the structure code S.$ while the nth
OBJECT , l gharact;.qezt': intht)::e tsht'ring cal;). 113gt aco_::esged :y
.n. ote a is capability is due to
fﬁ%ﬁ---+§?§5?39§+Y§Eg§_ the parallel associative implementation of
structure codes and does not require
g ; A multiple variable declarations or
s 3 s equivalences.
g g g Associative S8tack and Queues
s 6 1 Other commonly used data structures, such
g g g as, stacks, gqueues, and linked storage can
also be handled in the associative model.
s 2 null Stacks and queues are simply variable length
vectors. A stack push is accomplished by
adding a new (larger) ordinal position to
Figure 13 - A String
the vector. A pop
TIME TIME TIME is simply the
TAG |VALUE TAG |VALUE TAG |VALUE selection of the
———pe— e e ————pmm——— largest ordinal
0 10 0 10 0 10 17 position of the
notjused 5 17 not jused 20 20 vector and the
2 15 2 15 2 15 35 35 35 return of its
4 20 4 20 not |used 15 15 15 associated value.
3 35 3 35 3 35 100 100 100 Queues and linked
1 100 1 100 1 100 10 10 10 lists can likewise
be easily
before after after before after after implemented. See
push 17 pop->20 push 17 pop->20 Figure 14.
associative stack conventional stack The time tag
column is shown
intentionally out
of order to
TIME TIME TIME illustrate that
TAG |VALUE TAG |VALUE TAG |VALUE ordering is
——— ————t—me—e ————tm———— immaterial. In
0 10 0 10 not |used 17 reality the nature
not jused 5 17 not |used 20 20 of stack and queue
2 15 2 15 2 15 35 35 20 operation 1is to
4 20 4 20 4 20 15 15 35 order items
3 35 3 35 3 35 100 100 15 naturally and as a
1 100 1 100 1 100 10 10 100 result, the time
tags would
before after after before after after normally be in
queue 17 next->10 qgueue 17 next->10 sequential order.
In addition, the
associative gqueue conventional gqueue time tags are
Figure 14 - Associative Stacks and Queues shown to be

83

sequential integers, in reality, they may
be any ordered sequence of unique values -
numeric, alphabetic or alphanumeric
(Alphabetic and alphanumeric codes would be
retrieved in ASCII sorted order).

It should be emphasized that lists, queues
and stacks are artifacts of conventional
sequential programming, and that in an
associative programming environment the need
for these structures is eliminated.

CONCLUSIONS

This paper has presented a unified approach
for representing arbitrarily complex data
structures in content addressable memories
and associative computers. This approach to
data structures in associative computers
has the advantages of 1) automatically
extracting fine grain parallelism, 2)
eliminating much of the complexity of the
non-algorithmic address computation in
program development, 3) allowing multiple
data structures to be associated with each

datum, 4) allowing the data structures
themselves to be modified, and 5) allowing
information exchange between vastly

different program languages such as LISP,
PROLOG, OPS5, FORTRAN and PASCAL.

Some areas for future research are:

1) defining arithmetic operations on complex
data structures as a natural extension of
element by element arithmetic of vectors
and matrices, 2) the utilization of multiple
distinct structure codes in the same datum.

In general, there can be a different
structure code for every logical
hierarchical data structure to which the
datum belongs. This aspect may be
particularly useful for semantic networks
and frames in AI applications, 3) the

development of universal operators for the
manipulations of structure codes. For
example, the operator "root" will generate
the structure code for the root of a tree
from the structure code of any of its nodes
(See Potter,1985). and 4) the
investigation of mathematical properties of
addressing functions and structures codes.

REFERENCES

1. Batcher, K. E., Multidimensional Access
Memory in STARAN, "in IEEE COMPUTER,
February, 1977, pp. 174-177.

2. Findler, N. V. (ed.), "Associative
Networks - Representation and Use of

Knowledge by Computers," Academic Press,

New York,1979.

3. Foster, C. C., Content Addressable
"Associative Networks -~ Representation and

84

Use of Knowledge by Computers," Academic
Press, New York,1979.
4. Jacks, E. L. (ed.), "“Associative

Information Techniques," Elsevies, New York,
1971.

5. Kohonen, T., Associative Memory: A
system-theoretical approach,"
Springer-Verlag, Berlin, 1977.

6. Potter, Jerry L., "Alternative Data
Structures for Lists in Parallel
Associative Computers," in THE PROCEEDINGS
OF THE 1983 ICPP, Bellaire, Michigan,
August 23-26, 1983, pp.486-491.

7. Potter, Jerry L., "Specialized SIMD

Instructions for Associative Processing," in
PROCEEDINGS ON THE 1985 INTERNATIONAL
CONFERENCE ON CIRCUIT DESIGN, Port Chester,
New York, October 7-10, 1985, pp. 490-493.

8. Potter, Jerry L., "An Associative Model
of Computation,™ The Second International
Conference on Super-Computing, May 4-7,
1987, San Francisco, Ca.

9. Reed, B. Jr., "An Implementation of Lisp
on a SIMD Parallel Processor," in AEROSPACE
APPLICATIONS OF AI, Dayton, Ohio, September
16-19, 1985.

10. Ssavitt, D. A., H. H. Love, Jr. and R. E.

Troop, 1967 Sprint Joint Computer
Conference, p. 87.
11, Simon, H. A. and A. Newell,

"Information-Processing in Computers and
Man," in PERSPECTIVES ON THE COMPUTER
REVOLUTION, Z. W. Pylyshyn, ed.,
Prentice-~Hall, Englewood Cliff, N.J., 1970.

Parallel Implementations of the Simplex Algorithm

Richard Marciano, Teodor Rus

Department of Computer Science
The University of Jowa
Iowa City, IA 52242

Abstract

Three parallel implementations of the simplex algorithm on three quence of iterations that for a given solution X'® = (29,29, ..., z%)
different parallel architectures, are presented and compared. Each of the linear programming problem improves f until the opti-
machine is the representative of one class of parallel computers. mum solution is obtained (if one exists, otherwise the absence of
Performance comparisons and the major difficulties encountered a solution is specified). Let X' be the solution before iteration 1.
by the user of these machines are given. A new solution X**! is constructed at iteration ¢ from X* with

The potential for parallel programming of the array proces- the property that F(X™*1) > f(X7). The construction of X**!
sors is investigated with the MPP machine. The multiprocessor from X* is performed by the following sequence of operations:

systems with asynchronous shared memory are studied by imple-
menting the simplex algorithm on the Encore machine in both
the process creation by fork() and tasking environment. The
class of supercomputers represented by the Alliant FX-8 “mini-
supercomputer” where a Fortran compiler can parallelize and
vectorize DO loops is considered. 2. Find the variable of X* that needs to be replaced by z..
The index of this variable is given by the smallest number
bj/aje,5=1,2,...,m, for ajc > 0. Let it be b,/a,..

1. Find the variable z. which generates the best contribution
to the value of f if introduced in the solution. The index ¢
of this variable is given by the maximum coefficient of the
function f at this iteration.

Keywords: array processor, parallel programming, performance,
simplex algorithm, multiprocessor, vectorization.

3. Transform the matrix of the initial problem by a Gaussian

1 The Simplex Algorithm elimim.xtion Psing element a,. as a pivot, i.e., perform the
operation V7,1, 7 # r,{ # ¢, 85 1= aji — @pa;./a,..

The simplex algorithm was developed by Dantzig{ DANT63] for

finding the solution of a linear programming problem. Its sim-

plicity and elegance made it the essential numeric tool for solving Start

optimizing linear problems. Therefore, it was (and still is) the

object of intense study [VAJD60], [FICK61], [BORG80]. Our

Computationally the algorithm can be presented as in figure 1.

Read matrix

paper is a contribution toward efficient implementations of the Set the initial solution
simplex algorithm on parallel processors available today. The T
general form of a linear programming problem can be expressed

follows: Find min ¢;, ¢; <0
as follows: Let ¢ be its index

Mazimize the linear function f = cyjzy1+c2z2+ ...+
cnTyn where cy,cq,...c, are given real numbers called
costs and z,,z3,...,Z, are unknowns subject to the
linear restrictions

a1z + a2+ ...+ aizi+ ...+ aqaxs < by
anzy+ageze+ ...+ axzi+...+amzr, < bs
171 +ajpTr + ...+ auTi + ..+ ajpTa < b

Find min b;/a;., ajo >0
Let r be its index

amiZ] +amaTz+ ...+ AmiZi+ ...+ @mnZn < b L

Vi, i,] #ri#fcdo

Qji 1= @55 ~ Gpil5c/ e

andz; > 0,i=1,2,...n, wherea;; € R,i=1,2,... ,n,5=
1,2,...,m.

The standard simplex algorithm [BUNDB84| consists of a se- Figure 1: Flow of control

85
CH2649-2/89/0000/0085%01.00 © 1988 [EEE

In order to use this algorithm to solve a linear programming
problem the set of m linear inequalities defining the problem is
first converted into a set of m linear equations by introducing
at most m slack variables and by changing the sign of all free
terms such that &; > 0,5 = 1,2,...,m. The optimizing function
f is then added as line 0 of the linear system of equations thus
obtained in the form € — f = 0 where C is its optimal value
(originally 0), i.e., —eyzy — €222 — ... — ¢pZn = 0. The initial
feasible solution is then obtained by introducing m new variables
whose coefficients in the function f are set to zero. The matrix
of this system with the free terms in column 0 is organized as the
two dimensional array called simplez tableau:

ap0 4ol o4 aon Q0n+1 a0n+m
ajp 0611 ayy Qln Qintl Cln+m
ajo aj1 aji Gjn Ojn+l Ajntm
Ama aml Tmi Amn Gmntl Amn+m

The simplex tableau is automatically constructed by the proce-
dure reading the simplex matrix.

Using the simplex tableau defined above, the simplex algo-
rithm can be formulated as the following sequence of steps:

1. Find the pivot column, i.e., perform the computation:

-1, ifT[0,i]>0fori=1,2,...,n+m;
C={c>1, if T[0,c] = min(T(0,i]), T[0,i] <O,
1=12,...,n+m.
If C = —1, the optimum solution was found. Otherwise

step 2 follows.

2. Find the pivot line, i.e., perform the computation:

-1, if T(5,C] < 0for j=1,2,...,m;
L=4{r>1, ifT[r,C]=min(T[5,0]/T[4,C)),
T7,C)>0,j=12,...,m.
If L = —1 there is no solution. Otherwise step 3 follows.

3. Transform the simplex tableau by the formula:

fori=0,1,...,n+m,1# C do
for j=0,1,...,m,3# L do
T(j,i] == T[j,i] - T[L,i*T}j,C]/T[L,C];

Clearly parallelism can only be found within each of these
three steps. In order to obtain maximum speed, the granularity
of parallelization needs to be controlled by the user according to
the architecture of the machine. This is done by allowing the user
to define the unit of parallelization as being a contiguous block
of H lines and K columns of the simplex tableau. The number
N of contiguous blocks T[H,K] (i.e., parallel jobs) in which the
simplex tableau T can be partitioned is determined by:

p=[(n+m)/ K]+ sg(rest((n + m)/K))
g = |m/H]+ sg(rest(m/H)),N = p*q.

The constants H and K that determine p,q are dependent on the
type of hardware and its computation power.

2 Implementation on the MPP

The MPP machine[NASA88] is an array processor that operates
under the control of a conventional VAX-11/780 front-end (figure

86

2) and consists of three main units:

1. Array Processing Unit, APU, a two dimensional 128 x 128
mesh with wrap around connections between processing
elements in the same row or column denoted by PE(i,j),
t,7=0,1,...,127. Each PE(3,j) is 1-bit processor contain-
ing 1,024 bits of random access memory denoted here by
PEM(i,j)[0..1023].

2. Array Control Unit, ACU, which executes scalar operations
and controls the operations performed by the APU. The
ACU, figure 2, is actually composed of three units:

e Main Control Unit, MCU, which is the local memory
of the MPP used to store an MPP program and its
scalar data.

e I/O Control Unit, [IOCU, which controls the flow of
data in and out of the APU, in particular data trans-
fers between the APU and STM.

o Processing Element Control Unit, PECU, which con-
trols the execution of the array operations in the MPP
program.

3. Staging Memory, STM, which is a large storage unit of 32
megabytes connected to the APU via a fast 128 bit data
path. It is used to buffer data due to limited memory ca-
pacity of the APU.

| {4 APU
U
VAX-11/780 %CU R BECU] 1
Memory I0CU
™ STM
ACU

Figure 2: MPP Diagram

An MPP program is a sequential program which contains ar-
ray operations, I/O operations and scalar operations. The special
feature of the ACU is that all of its three control units can op-
erate simultaneously to allow overlapping of the three types of
operations found in an MPP application program.

The software support for parallel processing implemented on
the MPP allows a user to develop a program using parallel ar-
rays and operations on paralle] arrays as computation units. A
parallel array is an abstraction for the APU, i.e., an array of
size 128 x 128 of a given type (integer, real, or boolean). An ar-
ray operation (i.e., having parallel arrays as operands) is simul-
taneously performed by every PE(i,j) of the APU, each PE(ij),
1,7 =0,1,...,127 acting in a lock step fashion on the correspond-
ing memory components of the parallel array operands stored in
its memory area.

The Pascal language has been extended with new constructs
supporting array processing and implemented on the MPP under
the name MPP Pascal.

MPP Pascal supports all the Pascal data types. In addi-
tion it has been extended with the parallel array as a predefined
data type supporting arithmetical and logical operations and the
stager array as a predefined data type supporting information ex-
change between APU and STM. Additional language constructs

operating on parallel arrays are provided in MPP Pascal allowing
parallel array management in a high level fashion such as: maz,
min, sum, prod, shift, rotate, transpose, rowbroad, colbroad, in-
gert, extract.

A parallel array may not be indexed directly. This is why
to perform an array operation using selected PE-8 of the APU,
MPP Pascal provides the special where masking statement:

where <mask > do < S; > otherwise < S; >.

The mask is a boolean expression that evaluates to a parallel
array of type boolean mapped on a bit-plane. Each element (i,j)
in this bit-plane specifies a processor PE(i,j} of the APU enabling
(mask(i,j)=1) or disabling (mask(i,j)=0) its execution.

The operations of information exchange between front-end,
array memory and stager memory are shown on figure 3.

The stager memory is treated as an extended array memory
of 512 parallel arrays of reals or integers. The unit of transfer is
a parallel array.

The synchronization operations wastg, which idles the MCU
until the PECU has finished, waitio which idles the MCU until
the completion of the I/O transfer initiated by the IOCU occurs,
allow the three components of the MPP to operate concurrently.

scalar expansion

extract et |
insert APU
| memory |
FVAX-11/780 2L "McU) .
' “memory ¢! memory transfer
L - - -~ _-——Jlﬁtr—_—_"
_L put | STM
| S |

Figure 3: MPP Data flow

A typical MPP application program consists of two parts: an
MPP part that runs in the MPP control unit (MPP Pascal), and
a host part (Fortran, C, Pascal) that runs on the host. The MPP
part is usually the “main” program consisting of data transfers
and large scale array computations. The host part generates
data files to be read in by the MPP main program and serves
as a driver for the MPP program. The communication between
MPP part and host part is performed by a tool called CAD.
Each part is compiled separately on the host and resulting object
modules are linked together to produce a program image that can
be directly loaded into the MPP for execution. This discussion
will be illustrated further with the MPP simplex implementation.

In order to execute a program the user invokes its executable
image through the CAD user interface. Access to the MPP is
done on a first come first served basis. Thus, the interaction
between the host part and the main part of an MPP program
during its execution observes a master-slave relationship.

2.1 Simplex Algorithm on MPP

The structure of array memory and stager memory determines
the parallelization strategy of the simplex algorithm. It con-
sists of splitting the simplex tableau in as many contiguous sub-
tableaux T(128,128] as possible.

87

The implementation of the simplex algorithm on the MPP
consists of two programs, a program running on VAX called Pre-
pare_data and a program running on the MPP called Simplez.
The program Prepare.data written in Fortran performs as fol-
lows.

1. Read the dimensions m,n of the simplex tableau main-
tained as a VAX file and determine constants p,q by the
rules:

p = [(n + m)/128] + sg(rest((n + m}/128))
g = [m/128) + ag(rest(m/128))

2. Reorganize the simplex tableau T{0..m,0..n+m] as an array
of parallel arrays stored on VAX file F2 in the following

format:
P(1,1) P(1,2) ... P(1,p)
P(2,1) P(2,2) P(2,p)
P(g,1) P(@.2) ... P(a.p)

P(i,7) = T[(i - Dg..(i - 1)g+127,(5 - 1)p..(7 — 1)p+127).
3. Use CAD to invoke Simplez, and to wait for its execution.

The program Simplez is an MPP Pascal program. It uses the
following type declarations:

type
ParAr23 = parallel array(1..23,0..127,0..127] of real;

ParArl = parallel array[0..127,0..127] of real;
ParArint = parallel array|[0..127,0..127] of integer;
ParArBol = parallel array|0..127,0..127] of boolean;
StArl = stager array|0..127,0..127] of real;
StAr512 = stager array|1..512,0..127,0..127] of real;

program Simplez{input,output,row_index,col_index,T1,T2);
%include *type.dat’
%include ’procedures.dat’
var
T1 : text; T2 : file of StArl; A : ParAr23;
T : StAr512; C_ind, R.ind, Pivcol, Pivrow : integer;
K1, K2, Flag : integer; DONE, IMPOSSIBLE : boolean;
begin
zeroarr;
DONE := false;
IMPOSSIBLE := false;
Load(T1,T2,T,A,Flag);
if (Flag <> 0) then
repeat
if (Flag = 23) then
begin
PivCol(A,C.nd,Pivcol K2);
if (Cind <> -1) then
begin
PivRow(A,R.ind,Pivrow,C_ind,Pivcol K1,K2);
if (Rind <> -1) then
Update(A,R.ind,Pivrow,C_ind,Pivcol K1,K2});
else NoSolution := true;
end
else Done := true;
end

if (Flag = 512) then
begin
StPivCol(T,C.ind,Piveol K2);
if (Cind <> -1) then
begin
StPivRow(T,R.ind,Pivrow,C_ind,Pivcol K1,K2);
if (Rind <> -1) then
StUpdate(T,R.ind,Pivrow,C.ind,Pivcol, K1,K2);

else NoSolution = true;

end
else Done = true;
end
until (Done or NoSolution)

end.

The Load procedure recomputes the constants K1 and K2
by the rules shown above and reads the file F2 into the array
memory or stager memory depending upon its size. Therefore,
the simplex on the MPP operates in two modes distinguished by
the variable Flag. When Flag < £ the entire simplex tableau is
stored in the array memory and PivCol, PivRow, Update are then
used. When 28 < Flag < 512 the simplex tableau is stored in
the stager memory and parallel arrays need to be swapped-in and
swapped-out in order to be processed and updated. The proce-
dures StPivCol, StPivRow, StUpdate similar to PivCol, PivRouw,
Update need to be used in that case.

Let us suppose for sake of clarity that the simplex tableau
is small enough to be entirely mapped onto one parallel array
All,,]. Each entry (,7) in the tableau is thus mapped onto its
own processor PE(i,j). Once pivot column and row have been de-
termined, the tableau updating can be carried out simultaneously
by all PE-s in one array operation. To perform this updating each
PE(i,j) needs to access three tableau items, (1,7}, (pivrow,j)
and (i, piv_col). The last two tableau items are not accessible
by PE(i,j) and data communication and exchange between pro-
cessors PE(i,j), PE(piv_row, j) and PE(i, piv.col} is necessary.
This is performed by creating two new parallel arrays (BrPC and
BrPR) both constructed by using shift and broadcast array func-

tions as carried out by the Update procedure. PE(i,j] now has
access to the three corresponding tableau items and the tableau
updating is performed by A[1,,]:= A[l,,] - BrPR x BrPC, fig-
ure 4. When the tableau maps over more than one parallel array
in the array memory, this data broadcasting scheme is applied
iteratively to each parallel array.

AlL)
. L] i
P E c? :
5 P
[t
HH BrPC
ARRAY .. | BrPR

Figure 4: Simplex tableau updating operation

g8

2.2 Performance Measurements

Performance measurements of the simplex implementation dis-
cussed above are given in the table 1. The lines of the table are
labeled by the number of iterations required to find the solution
while the columns are labeled by the number of parallel arrays
required to store the simplex tableau. The time in seconds taken
by the MPP to solve a problem of the size the number of parallel
arrays recorded in the column j and performing the number of
iterations recorded in the line i is recorded in the table entry (i,j).

[1 4] 9] 16] 25] 36] 49] 64
3]0.003 [0.006 [0.011 [0.016 [0.43 [0.57 [0.73 [0.91
6 | 0.006 [0.013 [0.022 | 0.033 | 0.84 [1.10 [1.40 | 1.80
44]/ 0.047 | 0.102 [0.173 [0.260 | 6.13 1 8.18 [10.0 [12.0

Table 1: Performance measurements on MPP

3 Implementation on Multimax

A new class of computers [GORD87] called Multimaz emerges
as multiprocessor computers using as components microproces-
sors that have the speed and functionality of mid-range super-
computers. The Encore Multimax is a modular system designed
as a component of the Encore Computing Continuum/ENCO87],
which provides a true multiprocessing and distributed environ-
ment. The Encore Continuum uses tightly coupled multipro-
cessing, distributed, and intelligent control of I/O devices and
clustering of Multimax systems. A multimax cluster incorpo-
rates from 2 to 20 32-bit processors each provided with 32K byte
cache of fast static RAM, 4 to 32 Mbytes of fast shared memory
and configurable I/O devices.

The Multimax support for parallel program development and
execution consists of a library of functions that extend the col-
lection of system calls supported by Unix! and allow the user to
create parallel processes in a program, schedule them for execu-
tion while sharing resources, and control their interaction. A user
can take advantage of these functions creating and managing a
process environment or a tasking environment.

3.1 Simplex with Process Environment

The process environment is provided by the fork() system call
that allows a program to create processes in the user program.
The function MakeProce was designed by us in order to allow the
simplex user to create a variable number of processes.

Process interaction is done by all processes having access at
the variable declared shared. There are two classes of system
calls in the parallel library allowing the user to declare shared
objects:

1. When shared memory is statically managed the user pro-
ceeds as follows:

e Declare a C-language data structure, say dats and/or
a pointer to it, say datapt.

e Call the function share() in the parallel library to
make date, datept shared under the form

datapt = share(0, sizeof(data));

!Unix is a trademark of Bell Labs

2. When shared memory is dynamically managed then the
user proceeds as follows:

o Provides the memory area to be manipulated dynam-
ically by the program using the call

alloc = share_malloc_init(size);

which returns a pointer to an area of memory of size
“size”.

e Manage dynamically the memory pointed to by alloc
using calls of the form

datapt = share_malloc(sizeof(data));
share_free(datapt);

Process synchronization is done by using the lock data types
supported by the Encore Multimax[RUS88]:

e Lock: is a binary semaphore supporting the operations
spin_tnitflock, flag), spin_create(flag), spin_unlock(lock),
spin_condlock(lock), where flag shows the state of the lock.

e Barrier: allows a fixed number of processes to synchronize
at a given point in a program. It supports the operations
barrier_create(count, state), barrier_tnit(lock, count, state),
barrier(lock) where count is the number of processes that
need to arrive at the barrier before it opens,

e Semaphore: is general semaphore supporting the opera-
tions semaphore_init(lock, state), semaphore_create(state),
semaphore_wait(lock), semaphore_signalflock).

e Event: provides a barrier at which a variable number
of processes can wait having two states, event_posted and
event_cleared. It supports the functions event_create(state),
event_init(lock, state), event_post(lock), event_clear(lock),
event.wait(lock).

The lock parameter is a pointer to an object of type the type
supporting the function using it, state is SPIN_.BLOCK, PRO-
CESS_BLOCK, TASK_BLOCK, showing the mechanism imple-
menting wait, count is an integer and flag is PAR_LOCKED or
PAR_UNLOCKED.

The lock variables used in a program need to be created in
shared memory. All operations supported by the lock data types
specified above are atomic. In addition, the parallel library pro-
vides the function timer_tnit() and timer_get() which allow the
timing of the program execution.

The structure of a parallel program under process environ-
ment is illustrated by the following sketch of the simplex imple-
mentation.

#include <stdio.h>
#include <parallel.h>
#define cols 1200
#tdefine lines 1200
struct shared_ area

double pivot, a[lines]|lines+cols];

int m, n, H, K, Procs, Jobs, JobCount;
int C, L, p, q, ColCount, RowCount;
BARRIER barr;

LOCK lock;

} *glob;

89

int IdProc = 0;
main (int argc, char *argv(])

int i, State = SPIN_BLOCK;
glob = share (0, sizeof(*glob));
/* Read matrix, parameters, and initialize data */
spin_init(&glob— >lock, PAR_UNLOCKED);
barrier.init{&glob— >barr, &glob— >Procs, State);
IdProc = MakeProcs(&glob— >Procs-1);
Start: PivCol(&glob- >K,&glob— >C);

barrier(&glob— >barr);
if (&glob— >C < 0) { PrintSolution(); exit()}
PivRow(&glob— >H,&glob— >L};
if (IdProc == 0)

&glob— >JobCount = 0;
barrier(&glob— >barr);
TransformL(&glob— >L, &glob~ >K);
barrier(&glob— >barr);
if (&glob— >L < 0) { NoSolution(); exit()}
i = Monitor(&glob— >JobCount);
while (i < &glob— >Jobs)

Update(i/p, i%p, &glob— >H, &glob— >K);
i = monitor(&glob— >JobCount);
}
barrier(&glob— >barr);
TransformC(&glob— >C, &glob— >H);
barrier(&glob— >barr);
goto Start;

The functions PivCol(), PivRow(), Update(), TransformL(),
TransformC(), and Monitor() implement the three steps of the
simplex algorithm, perform matrix transformations and ensure
computation consistency, respectively.

3.2 Simplex with Tasking Environment

Since process creation is a very costly operation, the tasking
mechanism was developed to support parallel program develop-
ment on the Encore Multimax. A task is a function provided
with its own stack and thus capable of being executed in parallel
with other tasks. A parallel program using the tasking environ-
ment consists of a collection of tasks that can be executed in
parallel. There is a special task called master that starts the ex-
ecution of the program initiating other tasks. Each task in turn
can start other tasks. The tasking environment of a program is
thus defined by the memory size Mem used to allocate stacks for
the tasks, the number of processes Procs that run tasks in par-
allel and the master task, Master. The tasking environment of a
program and the start of the master task are set up with a call
to the function task_init

task_init(Mem, Procs, Master, Stack, Argc, Arg0,...,Argn);

The starting of a task specified by a function Func in the tasking
environment (by master task and/or by other tasks) is performed
by the call

task_start(Func, Stack, Argc, Arg0, ..., Argm);

which allocates Stack bytes as the stack of this task from Mem,

transmits arguments on the stack and starts a process to execute
the code of Func on this stack, if there exists a processor available
for this purpose.

The tasking environment is controlled by the program using
the following tasking primitives: task_suspend() that suspends its
caller; task_resume(name) makes the task name reschedulable;
task_stop() terminates its caller; task_join() waits for all tasks
initiated by its caller to terminate; task_self() returns the task
identification number of its caller.

There are two restrictions imposed on parallel program devel-
opment by the tasking approach: the code of a function designed
as a task needs to be provided in the program text before the
invocation of that task and the locks need to be created and ini-
tialized in the main program. The consequence is a bottom-up
approach for program development. The structure of a parallel
C language program using the tasking environment is illustrated
by the following sketch of the tasking version of the simplex al-
gorithm.

#include < stdio.h >
#include < parallel.h >
##define Stacks 20000
##define Stack 500
#define cols 1200
##define lines 1200
double pivot, a[lines]|lines+cols};
int m, n, Procs, JobCount, Jobs, H, K;
int answer, ColCount, RowCount, C, L, p, q;
LOCK *lock;
transform(}
{

int i;

i = Monitor(JobCount);

while (i < Jobs)

{
Update(i/p, i % p, H, K);
i = Monitor{JobCount);
}
}

master ()

int i;

Start: ColCount = 0;

for (=0, i < Procs, i++)
task_start(Stack, PivCol, 1, C);

task _join();
if (C < 0) { answer = 1, return }
RowCount = 0;

for (i =0, i < Procs, i++)
task_start(Stack, PivRow, 1, L);

task _join();
if (L < 0) { answer = -1; return }
JobCount = 0;

for (1 = 0; i < Procs; i++)
task_start{Stack, transform, 0);

task join();

goto Start;

90

main (int argc, char *argv[])

/* Read matrix, parameters and initialize data */
lock = share (0, sizeof(LOCK));

spin_init(lock, PAR_UNLOCKED);

Set_timers();

task_init (Stacks, Procs, master, Stack, 0);
Get_timers();

if (answer == 1) PrintSolution();

else PrintNoSolution();

3.3 Performance Measurements

The performance measurements of the simplex implementation
on the Multimax using the process environment and the task-
ing environment closely follow the same pattern. Therefore in
tables 2 and 3 we only present the performance of the program
implemented in the process environment which is slightly better
than for the tasking environment. Table 2 illustrates the varia-
tion of the time to solve a problem whose simplex tableau was
512 x 512 (i.e., 256 x K elements), with the number of processes
running in parallel and the granularity of their interaction. The
lines of this table are labeled by the number of processes running
in parallel and the columns are labeled by the granularity of the
process interaction. The granularity is expressed by the size of
the contiguous subtableaux of the simplex tableau transformed
by a process independently of the other processes. This is given
in the number of parts in which the lines and columns of the
simplex tableau are divided. The time in seconds needed by the
Encore parallel processor to solve the problem is recorded in the
entry (i,j). However, examining the behavior of the algorithm on
a large number of problems we observed that the best time was
provided by job size (16, 260) with 12 processors. Therefore, the
last column of table 2 records the behavior of the algorithm for
this process interaction granularity.

I 1 2] 4 8] 16] 327(16,260) |
1 [[33.6 9] 20]272[324]353 17.8
3 [[339] 94|72] 98[111]117 6.6
6 [[344] 97[53] 58] 63] 65 42
9 [[348]102[368] 46 5[5.2 36
12352107 [41] 45| 46 47 35
15 357 [11.1 {47 | 45| 45] 46 3.9
18 399 (128 | 6 49| 53] 5.2 4

Table 2: Granularity study

[1] 4 9] 167 25 36] 497 64]
3 foe] 2] 25] 3.56] 46 55 67] 82
6 1721 35 5] 66 85]105129
44 /2.9 (71132 [21.9 364 | 443|625 | 73.2

Table 3: Encore performance measurements
4 Implementation on Alliant

The Alliant FX8 is a register to register machine equipped with 8
MCB68000 compatible vector processors, 11 interactive processors
for input and output, and a 64 megabyte memory subsystem
[ARGOBS6|. Parallel processing on the Alliant is performed by

pipelining vector operations and by parallel processing of the 8
vector processors.

Parallel programming support is provided by the Concen-
trix operating system (Unix-based) and the FX/Fortran lan-
guage which supports the array data type. Like MPP Pascal,
FX/Fortran has been extended with a set of intrinsic array func-
tions : min(Ar), maz(Ar), size(Ar), etc..., as well as a very sim-
ilar conditional array assignment statement allowing masking on
an array assignment:

where < cond > < stl > otherwise < st2 > end where

A Fortran optimizing compiler generates parallel streams of
control and vector operations unfolding DO loop operations un-
der programmer control.

Four modes of program execution are available on the Alliant
FX8, concurrent execution, vector execution, vector-concurrent
execution, and concurrent-outer vector-inner execution. Typi-
cally a programmer tunes the program execution by inserting
compiler directives in the Fortran code. These directives might
for example either turn off vectorization for a specific loop or
rather force concurrency specifying that there are no data de-
pendencies in a loop. The information allowing the programmer
to inject compiler directives in his program is provided by the
compiler itself. There are only 7 groups of possible directives.
The syntax of a compiler directive is CVD$[s] directive where:

G, directive applies globally (i.e., to the end of file);
5= { R, directive applies to end of the current routine;
L, directive applies to end of the current loop (default).

The available directives are (* indicates the default value): AS-
S0C, NOASSOC?, telling the compiler to perform the optimiza-
tion of the associative operations; CNCALL, NOCNCALL*, al-
lowing subroutine and function references in loops optimized for
parallel execution; CONCUR*, NOCONCUR, forcing (or inhibit-
ing) the optimization for concurrency irrespective of data depen-
dency; DEPCHK*, NODEPCHK, telling the compiler to check
(or to inhibit the checking) for data dependencies between loop
iterations; LSTVAL®, NOLASTVAL, telling the compiler to gen-
erate code to save last values of original indexes and promoted
scalars of optimized loops and arrays; SYNC*, NOSYNC, telling
the compiler to check for synchronization problems between loop
iterations; VECTOR*, NOVECTOR, telling the compiler to op-
timize {or to inhibit the optimization) for vectorization.

4.1 Simplex on Alliant FX8

In the Alliant F X8 simplex implementation through compiler di-
rectives, we inhibited vectorization of certain loops and strategi-
cally forced concurrency by inhibiting data dependency checks.
A sketch of the Fortran version of the simplex algorithm fully
tuned and optimized and running on all eight processors follows:

program simplex
integer L, C, m, n
real mat(1200, 1200)

CVD$R NOLSTVAL

C Read matrix and initialize data
SetTimer

99

C Find Pivot col and find Pivot row

C Divide Pivot row

CVDSL NOSYNC
do80)=1,m

91

if(j.ne.L) then
CVDS$L NOSYNC
do40k=1,n+m
if(k .ne. C) then
mat{j,k)=mat(j,k)-mat(L,k)*mat(j,C)

endif
40 continue
endif
80 continue
C Divide Pivot col
goto 99
C GetTimer
C Print solution or lack of solution
stop
end

In this implementation all the code is brought in the main
program to avoid subroutine calls.

4.2 Performance Measurements

In order to compare the performance of the simplex algorithm
implemented on the three machines, MPP, Encore Multimax, and
Alliant FX8, we run the program on the same set of problems
and organize the results in the same way. The behavior of the
algorithm on the Alliant FX8 is given in table 4.

[1 4 9] 16 25] 36| 49[64|
3 J0.015]0003]039]079] 13| 18] 25 3
6 [[0026] 015[074] 16[25] 36| 49| 59
44 o11] 08[46| 95]16.7 245336 [41.2

Table 4: Alliant performance measurements

5 Instead of Conclusion

The conclusions of the experiments we performed with the sim-
plex algorithm implemented on the three different computers are
twofold. On the one hand they regard the efficiency of the algo-
rithms implemented on the new parallel processing architectures
measured by the speed-up obtained by their parallelization and
on the other hand they regard the user convenience of the vari-
ous parallel processing architectures measured by the difficulties
implied in their programming.

The speed-up of Machinel versus Machine2, (Machine 1, Ma-
chine 2 are A for Alliant, E for Encore, and M for MPP]) while
solving a problem requiring a given number of iteraticns for vari-
ous sizes of the simplex tableau is recoded in a line of a speed-up
tableau labeled by Machinel:Machine2 in table 5. The size of the
simplex tableau used in our experiments is measured in number
of parallel arrays required to accommodate it.

[[1 4] o] 18] 25] 36] 49] 64|
s- AF 40 | 20.4 7.7 56 | 44 3.9 |35 3.5
3. MA 5.2 | 14.8 | 36.1 | 48.2 3 3.2 | 3.4 3.3
s- M:E 207 | 302 | 278 | 268 | 13.3 | 12.3 | 12 | 11.6
6- AE 38.5 14 | 47 3.1 2.6 24121 2.2
6- M:A 4.3 | 11.6 | 33.6 | 48.5 3 33|35 3.3
6- ME 167 | 162 | 159 | 182 7.9 771175 7.2
14- A:E || 264 89 2.9 2.3 2.2 1.8 { 1.9 1.8
“-MA 2.3 7.8 266 | 365 2.7 334 3.4
44- M:E || 61.7 | 69.6 [76.3 | 84.2 5.9 5.4 |62 6.1

Table 5: Speed-up for 3, 6 and 44 iterations

The simplex problems for these sizes were actually automat-
ically generated from smaller problems. Therefore, instead of
definitive conclusions we present our findings as the following
three observations:

¢ The simplex algorithm provides a natural application in
which operations on matrices are used. Therefore, array
and vector processors should perform better than the gen-
eral multiprocessor machines. This was confirmed by the
speed-up of the algorithm implemented on the three ma-
chines.

o The second conclusion shows that even for problems that
are naturally suited for array and vector operations, the
control of the granularity of process interaction allows the
shared memory multiprocessor to become comparable in
efficiency to the vector processor in the case of large size
problems.

¢ The third conclusion shows that the performance of the
vector processor provided with parallel execution becomes
comparable with that of the array processor when the the
size of the problem is large. This is due to the cost of array
transfer between array memory and stager memory.

Parallel processors clearly allow the simplex algorithm to become
an efficient tool in solving linear programming problems. There-
fore, comparing the standard version of the simplex algorithm
[TARJ83],[DANT79] with the newly discovered polynomial time
algorithms [ASPV79|, [BORG80|(pp. 18-22) may provide differ-
ent data when executed in parallel environments. So, further
study of the paralle]l implementations of the simplex algorithm
and its comparison with the parallel implementations of these
newer methods are necessary.

Each of the three different philosophies of handling parallel
processing has its specific type of user difficulties. The major
difficulties in programming an array processor result from the
promotion of the array (which is a defined type in most pro-
gramming languages) to a predefined data type. However, the
predefined type “array” does not coincide with the array type
existing in most languages nor with the matrix type existing in
mathematics. Therefore, in order to take advantage of the ma-
chine’s potential for parallel processing both experience and the
language support developed in this respect provide the necessary
help. The major difficulties in developing parallel programs for a
multiprocessor machine result from the requirement to explicitly
manage the implicit process type in the program. This task is
performed by the multiprogramming (multiprocessing) operating
system operating on a sequential program. Again, experience,
the development of concepts and their encapsulation in appro-
priate data types in the language seem to provide the real help.
As for developing parallel programs through the compiler the
major difficulties result from the compiler-programmer-processor
interaction which requires the programmer to have knowledge
of architecture, compilers, and the behavior of the algorithm.
Therefore, this could be only a temporary solution used to suc-
cessfully parallelize existing code that would otherwise be too
expensive to redesign.

92

6 Acknowledgments

We would like to express our acknowledgments to Prof. G.
Carmichael who provided us with the possibility to learn and use
the MPP machine, to Prof. E. Haug and D. Golden, for allowing
us to use the Alliant FX8 and Encore Multimax in the HSCF of
the University of Iowa, lowa City, and to Daniela Rus, for the
valuable observations and suggestions leading to improvements
of our work.

References

[ARGOB86] Argonne National Laboratory, Using the Alliant

FX/8, ANL/MCS-TM-69, Rev. 1, Mathematics and
Computer Science Division, September 1986.

[ARGO87] Argonne National Laboratory, Using the Encore Mul-
timaz, ANL/MCS-TM-65, Rev. 1, Mathematics and

Computer Science Division, February 1987.

[ASPV79] Aspval, B, Stone, R. E., “Khachian’s linear program-

ming algorithm”, J. Algorithms, 1 (1980) pp 1-13

Borgwardt, K. H., The Simplez Method, A Proba-
bilistic Analysis, Springer-Verlag, New York 1988.

(BORGS0)

[BUNDS84] Bunday, B. D., Basic Linear Programming, Edward

Arnold, London 1984.

[DANT$63] Dantzig, G. B, Linear Programming and Eztensionas,

Princeton Univ Press, Princeton, NJ 1963

[DANTT9] Dantzig, G. B., “Comments on Khachian's Algorithm
for linear programming”, Tech. Report SOR 79-22,
Dept. Operations Research, Stanford Univ, Stanford,

CA, 1979

[ENCOS87] Encore Multimax, Using the Encore Multimaz Ar-
gonne National Laboratory, MCS-TM-65, pp. 1-1,

1987.

|FICK61] Ficken, F. A., The Simplez Method of Linear Pro-
gramming, Holt, Rinehart and Winston, New York,

1961.

Gordon, Bell, “The Multi - A New Computer Class”,
Using The Encore Multimaz, Argonne National Lab-
oratory, MCS-TM-65, pp. 5-8, 1987.

[GORDS7]

[NASA88] NASA Goddard Space Flight Center, Greenbelt,
Maryland, MPP Pascal Programmer’s Guide, March

1988.

Rus, T., “Language Support for Parallel Program-
ming”, Proceedings of Computer Standards Confer-
ence, pp. 21-23, March 21-23, Washingto::, D.C,,
1988.

[RUS88]

[TARJ83] Tarjan, R. E., Data Structures and Network Algo-
rithms, Society for Industrial and Applied Mathemat-

ics Philadelphia, Pennsylvania 1983.

Vajda, S., Linear Programming and the Theory of
Game, John Wiley and Sons, New York, 1960.

[VAID60]

REGION GROWING ON A HIGHLY PARALLEL
MESH-CONNECTED SIMD COMPUTER

Marc Willebeek-LeMair
School of Electrical Engincering
Comell University
New York, USA

Anthony P. Reeves
Department of Computer Science
University of Illinois at Urbana-Champaign
linois, USA

ABSTRACT

The region growing paradigm for image scgmentation groups neighbor-
ing pixcls into regions depending upon a predetermined homogeneity
criteria. A parallel method for region growing on a highly parallel SIMD
mesh computer is presented. The approach is based upon a parallel
merging paradigm, which involves the selection of the best of all merge
possibilitics for all regions concurrently. A key requirement of any
parallel region growing scheme is the ability to concurrently compute
functions on irregular shaped regions. A set of general primitive func-
tions for region growing have been defined and techniques to implement
these functions on an SIMD processor have been dcveloped. These
techniques make use of an embedded tree data structure to represent
regions. The results of implementing a parallel split and merge region
growing algorithm on the Massively Parallel Processor are discussed.
The approach is shown to be efficient primarily for images involving
large numbers of regions.

Keywords: Non-uniform load distribution, Parallel processing, SIMD,
Segmentation and 2-D description, Parallel region growing, and Split
and merge.

INTRODUCTION

Region growing is a gencral technique for image scgmentation. Fre-
quently, the basic scheme is to combine pixcls with adjacent pixels 10
form regions; regions are then merged with other regions 1o “grow”
larger regions. The association of neighboring pixels and neighboring
regions in the region growing process is oflen governed by a homo-
geneity critcrion that must be satisficd in order for the pixels and regions
to combine. The homogencity critcria arc application dependent and
may be dynamic within a given application.

In addition to the homogencity criterion the order in which regions are
merged can have an important effect on the final result; many sequential
region growing algorithms ignore this fact. We introduce a parallel
merging paradigm in which a merge decision is based upon the best of
all alternatives for all regions simultancously

Highly parallel SIMD processors have been shown to be very effective
for regular algorithms such as image filtering and the FFT. This work
extends the domain of the SIMD processor to the irregular processing
characteristics of region growing algorithms which exhibit non-uniform
and unpredictable load distibutions. Our results indicate that, especially
for the case of a very large number of small objects, powerful parallel
region growing techniques can be implemented in a reasonable amount
of time. Section two of this paper outlines the principles of region
growing with emphasis on the split and merge algorithm. Section three
discusses the characteristics of the SIMD architecture and section four
introduces a parallel merging paradigm and considers the parallel imple-
mentation of a region growing technique on an SIMD architecture. The
algorithm complexity s discussed in section five. An cxample of the
parallel region growing technique is presented through a split and merge
implementation on the Massively Parallel Processor (MPP) in section
SIX.

REGION GROWING
Region growing is a technique for partitioning an image by linking indi-
vidual pixels into groups of pixels called regions. The merging of pixels

CH2649-2/89/0000/0093%$01.00 © 1988 IEEE

93

or regions to form larger regions is usually governed by a pre-defined
homogeneity criterion that must be satisfied. In this section we first
define a region and discuss its properties, next, we review the concept of
homogeneity criteria, and finally, we present a split and merge algorithm
as an cxample of a region growing technique.

Regions

A region might correspond to a world object or part of one. As defined
by (1], a region is a four-connected, two-dimensional area that is
allowed to be non-simply connected (contain holes). A single pixel can-
not belong to more than one region. Thesc properties stated more for-
mally are as follows.

A region R is considered to be a set of points with the following proper-
ties:

(1) x in a region R is connected to x; iff there is a sequence
{x;,....x;) such that x, and x,,, are connected and all thc points
are in R.

(2) R is a connected region if the sct of points x in R has the pro-
perty that every pair of points is connected.

(3) I, the entire image = (\ Ry

k=1
4 RM\R, =0, i#].

Homogeneity Criteria

When grouping pixels into regions it is usually necessary that the groups
satisfy some sort of homogeneity criteria. Therefore, the grouping of
neighboring pixels into regions is dependent on the characteristics of the
individual pixels. Once pixcls have been combined to form a region,
the region assumes certain properties based on the combined characteris-
tics of the pixels as a group (c.g. area or texture). A homogeneity cri-
teria can be designed to specify such things as the maximum range or
gradient allowable within a region, etc. This criteria will then be used
as a test to determine whether or not a given group of pixels can be
classified as a region.

As an example, the pixel range homogeneity criteria H(R) is defincd as
follows:

if for all point pairs x and y in R,
f&)-f O)<T.

false, otherwise.

true,

HR) = o)

This particular criterion requires that the range between the minimum
and maximum values within a region R, not exceed a threshold T.

A varicty of homogeneity criteria have been investigated for region
growing, ranging from statistical techniques, which involve the distribu-
tion of pixel grey levels, to state-space approaches, which represent
regions by their boundaries [1,2,3].

A problem with many region growing schemcs is that large rcgions
requirc an excessive number of merge sieps. A computationally
cxpedient technique called split and merge [4] addresses the large region
problem with a preprocessing split phase.

The Split and Merge Approach

The split and merge technique requires two types of operations; in our
algorithm a fast split phase is followed by one or more merge phases.
The split stage rapidly partitions an image into square regions which
conform to a first homogeneity criterion; then a region growing tech-
nique is used to merge these square regions into larger regions which
conform to a sccond homogeneity criterion. High speed is achieved by
the top down approach that rapidly deals with very large regions. Such
regions rcquirc many iterations to achieve with just a region growing
paradigm.

Splitting--The first phase of the algorithm is concemed with dividing the
image up into homogeneous, square regions of varying dimensions.
Beginning with the entire image as the area in question, an area is
checked for homogeneity. Should the homogeneity check fail, the area is
split into four quadrants. Each of the quadrants is then checked the
same way and recursively split until the homogeneity requirement is
satisfied. If an area passes the homogeneity test then it is considered a
region and left alone umtil the merge stage of the algorithm. The
scheme is illustrated in Figure 1. For this case the homogeneity criterion
requires that the range of the pixel values in a region must not be
greater than 2. Initially each pixel is labeled with a unique identifier
number (ID). While splitting, pixels are assigned a region ID number
corresponding to the pixel ID of the pixel located in the upper left hand
corner of the quadrant to which they are associated.

12f3]4] [0]2 A A EE)
slef7]s] [1]2]5]2 dE
ofiofi
112} [t]8]5]e o | 1 | IO,
13[14fislie] [9]9l6]s 13[14]
(a) (b) (c) (d)

Figure 1. Split and Mecrge splitting phase. (a) Pixel ID numbers. (b)
Pixcl values. (c¢) Region ID’s after first split. (d) Region ID’s after
sccond and final split.

3] 4 3 3 1
1 —I 1 1
! 718 I
ol Y . | H - 7
14 13 10 10
(a) (b) (c) (d)
Figure 2. Split and Merge merging phase. (a) Region ID’s after split-

ting phase. (b) Region ID’s after first merge. (c) Region ID’s after
second merge. (d) Region ID’s after third and final merge.

¥-]

Merging--In the merge phase, adjacent regions are merged to form
non-square regions. Region pairs that satisfy the homogeneity criterion
are allowed to merge. Figure 2 presents an example of the merging
stage for the regions split in Figure 1. In this case, the same homo-
geneity criterion as for the split phase is used again. Now, however,
merged region pairs assume the smaller ID of the two regions.

For many merging criteria, including the one uscd in the example, the
order of merging is important and this affects both the execution time
and the final result. An approach which involves increasing the threshold
value, in stages, in the merge phase, has been found to improve the
quality (i.c., produce less regions) in the final result for region growing
using both range images [13] as well as grey level images (5], Certain
constraints imposed on the merging order, as mentioned above, help to
improve on the final results, other constraints, however, are imposed in
the parallcl merging strategy to avoid violating the homogeneity criteria.
These constraints will be addressed later in the section on parallel region
growing.

THE MESH-CONNECTED SIMD ARCHITECTURE

Many highly parallel computer architectures designed for low level
image processing applications have been proposed and implemented

94

[6,7,8]. These designs exhibit a variety of interconnection schemes
between processors and the processors themselves range from simple
processing elements in the SIMD arrangements to much more sophisti-
cated processors in the MIMD systems. The architecture of interest in
this paper is the highly parallel (tens of thousands of binary processors)
mesh-connected SIMD processor array. The SIMD mesh consists of an
array of identical processing elements (PE’s) with near-neighbor connec-
tions. We will be considering the 4-connected case in which processors
are connected to their neighbors 1o the north, east, south, and west. The
architecture we are considering is illustrated in Figure 3. The array of
PE’s is controlled by a host computer that issues it instructions when a
paraliel array computation needs to be performed and is linked to
memory via a bi-directional I/O path. Each PE contains an ALU with a
limited amount of local memory.

Host {e—» it
y ™
: PE

1/0 ARRAY

Figure 3. General organization for a mesh-connected SIMD architec-
ture.

The SIMD-mesh architecture is particularly well suited for low-level
image processing. The physical layout of the processor array allows for
a direct mapping of pixels to PE’s. Furthermore, the type of computa-
tions inherent in low-level processing, such as image filtering and edge
detection, involve the analysis of a pixels local neighborhood.

The Massively Parallel Processor Architecture

The Massively Parallel Processor [11] is a SIMD mesh-connected com-
puter arranged in a two-dimensional 128x128 array of PE's. The PE's
are bit-serial, allowing for a flexible data format and efficient utilization
of resources. Each PE can perform high speed arithmetic and implement
all sixtcen possible boolean functions. In addition, each processor con-
tains a mask register that can be set to inhibit exccution of an instruc-
tion. PE’s are connected to their near-neighbors to the north, cast,
south, and west. For data to be transmitted from one point of the array
to another, it must be routed via a path linking both points through adja-
cent processors. The MPP is equipped with a buili-in sum-OR tree
which combines the output from all PE’s in a tree of OR elements. This
can be used to check for termination or convergence of a repeated
sequence of instructions.

PARALLEL REGION GROWING
Parallel Merging Paradigm

When merging regions in parallel, in order to obtain a correct result, it
is necessary that the merge sequence be ordered. Sequential region
growing algorithms are most often based on a "first merge" paradigm.
In this approach pixels are scanned one at a time, left to right, top to
bottom, and combined so long as they meet the homogeneity require-
ments. The "best merge" paradigm requires that rcgions only merge
with the neighboring region that best satisfies the homogencity require-
ments. This not only imposes an ordering to the merge sequence, but
tends to yield better results by minimizing the increase in range with
each merge. The best merge paradigm is based on the following rules:

(1) Each region can only merge with one other region at a time; that
being the ncighbor which best satisfies the homogeneity criteria.

(2) A tic is broken, arbitrarily, by selecling the neighbor with the
larger ID.
(3) A merge choice must be mutual for two regions to merge.

The parallel region merging paradigm can be modeled using an
undirected graph.
Let G = (V.E) be an undirected graph with weighted edges. The
vertices, V, of the graph correspond to the regions in the image.

region 1D
/ ,min:max
0

2 3
3 |2 2 1 /
2:6 2:2 1:1
6 7
6 6 11 1] 4
11:111]4:4
9 10
1 1 11 15
1:1 1:1 11:15
12 {1
9 9 1215
9:9 9:9

(t)

homogeneity criterion (range)

0
2 _1:4 1:6
5
0./.
1:6 6 9:15
o
6
9:15

(9) (h)

Figure 4. Parallel merging graph model. In the example shown the homogeneity range threshold has
been set at 6. Pixel values are given in (a), and the result of the split phase is represented in (b).
Edges exceeding the allowable range are deleted from the graph. Merges are performed by combining
vertices that share an cdge that is of lowest value for both vertices. After combining the vertices all
edges touching the newly formed vertices are updated with the new range values. Merging terminates
when there are no edges left in the graph. The result is shown in (h).

The set of edges, E, is comprised of the edges (v,w) such that the
regions corresponding to vertices v and w share a common boun-
dary. The edge weight, given by

€yw = h(v W),
equals the value of the homogeneity criterion evaluated for the
regions represented by v and w.

Using the model described above, the process of merging regions in
parallel is performed as follows:

For all edges E, in graph G, merge those vertices, v and w, for
which e, ,, is the edge of minimum weight for both vertices v and
w. For vertices with more than one edge having the same
minimum weight, the edge connecting with the vertice of highest
value is selected. Only edges weighted within the homogeneity
threshold are considered.

Two vertices, v and w, are merged by deleting edge (vw) and
relabeling all edges (iw), connecting to w, as (i,v). All edges
connected 1o v must then be updated with the new values for e; .

The process continues until there are no edges weighted below the
homogeneity threshold remaining in G.

The parallel merge process is illustrated in Figure 4. In this example we
make use of the range homogeneily criterion with a threshold, T = 7.
Figure 4(a) gives the pixel values of a 4x4 image. The result of the
split phase of a split and merge region growing process is presented in
Figure 4(b). At this point each region is represented by a unique
identification number (ID) and the values of the minimum and maximum
pixels within the region. Using this initial partitioning, the regions are
represented in the form of a graph (Fig 4(c)).

95

In the case of the range homogeneity criterion, the homogeneity value
h(v,w) for two regions can never decrease. Hence, edges weighted with
a value greater than the allowed threshold can be deleted from the
graph. A new region assumes the smaller region ID of the two regions
being merged.

In a single merge step multiple region pairs can merge without
conflicting with each other (Fig 4(d)). This illustrates the degree of
parallelism inherent in the merging paradigm. After each merge step,
once all edge weights have been updated (Fig 4(e)), those edges exceed-
ing the criterion threshold can once again be removed (Fig 4(f)). The
merge process is terminated when there are no edges left in the graph
(Fig 4(h)). The final result is illustrated in Fig 4(i).

Parallel Region Growing Implementation

A parallel region growing strategy is affected by both the form of the
homogeneity criteria and the constraints of the parallel processor archi-
tecture. In this section a set of representative local processing functions
which can be used to realize a large number of homogencity criteria are
defined. Their implementation on the mesh-connccted SIMD archiice-
ture, outlined in the previous section, is considered.

Parallel Region Growing Primitives-- A gencral set of primitive opera-
tions, which can be used on a multi-processor system to implement
parallel region growing algorithms, is described in this section. The
stratcgy for mapping image points onto processors in a mutti-processor
system may vary from one architecture to another. Conceptually, a
region is characterized by the values and spatial locations of its indivi-
dual points, as well as the properties of all individual points combined.
Therefore, a suitable representation of a region would be: a unique

region ID number assigned to all points in the region in conjunction
with a region descriptor that contains all relevant global information
needed to describe the region. Figure 5(a) illustrates the partition of an
image, where each region in the partition is described using the
representation suggested above. We assume that the region descriptor
information is located within a given processor. However, there is no
guarantee or constraint that confines all image points within a region to
a single processor.

region

req& ;ﬁ:s

Figure 5. Region representation. (a) A generalized representation of a
region consists of a spatial distribution of the region points relative o
their locations in the image, along with a corresponding region descrip-
tor for cach region. (b) A region representation on a mesh of processing
elements consists of each region pixel mapped to its own PE and a
designated PE 10 scrve as the region’s descriptor.

The primitive operations required by a parallel region growing algorithm
are as follows. First, in order to adequately characterize a region, a
method to accumulate information from all region points to the region
descriptor is nceded. Second, in order 1o update region points concern-
ing changes in status (i.c. region ID due to merging), information held at
the descriptor must be distributed out to all region points, particularly
boundary points. Third, in order 10 interact with all neighboring regions
in parallel, a method for exchanging information between all neighbor-
ing regions sharing a common boundary is needed. These tasks are fun-
damental in a paralle]l region growing process and can be accomplished
using the following sct of primitives.

(1) Reduction primitive: reduces information from many points in a
region 10 a single value and records it at the region descriptor.
Typical reduction functions used are minimum, maximum, and
sum.

(2) Distribution primitive: distributes a value from the region
descriptor to all points in the region.

(3) Exchange primitive: e¢xchanges information between points

across a common boundary shared by neighboring regions.

Having defined a set of general parallel region growing primitives, we
now consider their implementation on a mesh-connected SIMD
architecture. When processing images on a highly parallel array of pro-
cessors each pixel in the image can be directly mapped to a processor in
the array. Initially each processor will only have information about a
pixel’s value and its spatial location in the image (this is straight for-
ward with this architecture since a pixel’s location in the processor array
is a dircct spatial mapping of its location in the image). To adhere to the
region representation outlined above, as pixels are joined to form
regions, a given PE within each region is designated to be the region
descriptor (Fig 5(b)). What we require is a systematic way of choosing
the descriptor PE and a method to efficiently implement the primitives
described above. The nature of the primitives, particularly the reduction
and distribution functions, suggest that a tree structure could be an
cfficient mechanism to incorporate into the region representation out-
lined thus far. This reasoning helped us arrive at the embedded tree
data structure described in the following section.

The Embedded Tree Data Structure-- An embedded tree structure is
used to represent a region in an image. The tree structure is embedded
within a region’s boundaries on the PE array. Each region PE is
assigned to a vertex in that region’s embedded tree. A natural choice of
PE to be designated as region descriptor is the PE located at the
corresponding location of the tree root.

96

A tree is defined in [9] as a directed acyclic graph containing exactly
one vertex, called the root, which no edges enter. Every other vertex has
exactly one entering edge and there is a path (which is easily shown
unique) from the root to each vertex. A sample tree structure is
presented in Figure 6(a). The arrows indicate the edge directions. Furth-
ermore, if (v,w) is a directed edge of the tree, then v is called the parent
of w and w the child of v. A vertex with no children is called a leaf.
The depth of a tree is the length of the longest path from the root to a
leaf. For example, in Figure 6, vertex a is the parent of vertices b, c,
and d, and conversely vertices b, ¢, and d are children of vertex a. Ver-
tices ¢, f, 1, j, k, and 1 are all leaves, and the depth of the tree is 3.

An embedded tree is a tree confined within a specified boundary, and
linked in such a way that all poinis within the boundary correspond to a
unique veriex in the tree. An example of an embedded tree is shown in
Figure 6(b). Since each point in the image, or a region for that matter,
is mapped to its own processor, we can think of the processors them-
selves as the tree vertices. Furthermore, edges of the tree correspond to
interconnections between adjacent processors.

We chose the tree data structure because of its fan-in, fan-out nature and
because it is easily extended to cover a two-dimensional arbitrary shaped
region. The tree’s fan-in and fan-out qualities make it very efficient for
implementing the reduction and distribution primitives. By using a tree
to link together the various pixels in a region, where the pixels form the
vertices of the tree and the region descriptor is located at the tree root, it
becomes possible to broadcast information from the region descriptors to
other region pixels, or conversely, to accumulate region information at
the descriptor PE’s, within all regions simultancously. What is impor-
tant, however, is the way the wtree is constructed. The primitives’
efficiency is directly dependent on the depth of the tree. When process-
ing regions of an image in parallel, the complexity of the functions
employing the tree structure is bounded by the maximum tree depth of
all regions in the image. Therefore, it is essential that the trees be con-
structed in such a way so as to minimize the tree depth of all regions.

oot | e
$ | root < 3
h c a\ b f
Ky [oy oy
~.region
i ‘! K} boundary
(a) (b)

Figure 6. (a) Tree data structure. (b) Embedded iree data structure.

Embedded Tree Generation-- An iterative shrinking algorithm is used
o create an efficient tree structure. This technique systcmatically
removes pixels around a region’s border and creates pointers linking the
removed pixels to still existing neighboring pixels. The shrinking pro-
cess continues until only a single pixel of each region remains. This
remaining pixel is defined as the tree root or region descriptor. This stra-
tegy will centralize a tree root within a region.

The shrinking algorithm makes use of the near-neighbor connection
scheme existing in the mesh. A pixel can be removed in the shrinking
process only if certain conditions regarding its neighbors are true. This
requires that each PE investigate its neighbors’ values in order to make
a decision on whether or not to "shrink”. Initially all PE’s in the array
contain a binary onc. As pixels are removed in the shrinking process
these ones are changed to zeroes. Two things about a PE’s neighbors
need be known in order to determine whether or not the conditions
required for shrinking exist, (1) their region ID number and (2) their
binary value. The set of conditions shown in Figure 7 pertain to the
shrinking of the central pixel into its neighbor to the south. Shrinking
may occur into any one of a pixels four ncar-neighbors. To determine
whether a pixel may shrink 1o the west, north, or east, the conditions
neced to be adjusted accordingly. In one iteration of the shrinking algo-
rithm the conditions arc checked for cach of the four neighbor directions

Q Q Q
Qjx|a QiX|s s|X|a s|X
S S|s S|s

S- pixel of same region and
ot binary value one

Q- pixel of different region or pixel
of binary valua zero

Figure 7. Shrinking Algorithm. In order for pixel X to shrink to the
south one of the near-neighbor arrangements shown must exist.

in turn. Should a pixel satisfy the conditions in any one of these direc-
tions, its binary value is set to zcro and a set of pointers are created.
Each processor contains a pointer set which is encoded in four bits; one
bit for each possible direction. The resulting embedded tree is
represented by a double-linked set of parent and child pointers. For
example, if parent-pointer(d] is true for PE(ij) then the pixel at (i) is
linked to its parent in the direction corresponding to d. We can ascer-
tain that at the parent node, child-pointer{d] will be true for the value of
d corresponding to the opposite direction. The region PE with no
parent-pointers is the root of the region tree, and those PE's with no
child-pointers are designated as the tree leaves. The result of applying
the tree generating algorithm is illustrated in Figure 8. The region pix-
els are linked together by the parent-pointers, shown in 8(c), created
during the shrinking process. A corresponding sct of child-pointers exist.

able to merge without violating the homogeneity criterion. The parallel
merging is accomplished by regions exchanging information with their
neighbors and accumulating this information at the region descriptors for
evaluation. Regions can then select a merge partner based on the homo-
geneity criterion being used. Following the parallel region growing para-
digm proposed earlier, although more than one ncighbor may be suitable
for merging, merging is performed in a hierarchical fashion giving
preference to those regions that best satisfy the criterion by allowing
them to merge first.

The order of merging and a solution to the merge contention problem
are important aspects in the parallel approach. Both aspects are
addressed by the "best merge” paradigm which states that it is not possi-
ble for a region to merge with more than one other region during a sin-
gle merging iteration. The resulting region could otherwise be in viola-
tion of the homogeneity requirements. Two common merge contention
situations are illustrated in Figure 10. Furthermore, merging is not per-
formed unless both regions sclect cach other as merge partners. A region
that was unable to merge during a given iteration because its selection
was not mutual, may succeed in a subsequent iteration.

L
n 4

&
I

root

TR o EPEP PP P
111 R q_‘ P hERERPR
11 1R XEERT [xP
17111 Q% TR Rp
311333\1\\“_‘4 E11:::2:
3{3{1{3(3(3

3[3(3]3]|3[30 ;:}AT# b Txp P B R0
3(3(3[3l3]3 h nppp

(a) (b) (c)

Figure 8. Embedded tree data structure. (a) Regions are represented by
a unique ID number. (b) Embedded trees are created by the shrinking
algorithm. (c) Parent-pointers are assigned according to the following
encoding: 1=N, 2=E, 3=§, 4=W.

Regions with Holes-- The algorithm just described cannot generate
embedded trees for non-simply connected regions (i.e. regions with
holes). Rather than converging to a single point, the algorithm converges
10 a single element wide, ring of region pixels which surround the
enclosed region. This ring is similar to a medial axis of the region to
which it belongs. The result of applying the shrinking algorithm to a
region with a hole is shown in Figure 9(a). Since a root node must be
chosen from the remaining pixels contained in the ring, it is most
efficient to choose that pixel with maximum distance to the region boun-
dary. This would help to minimize the height of the region’s tree.
Should two or more pixels possess the same height, the pixel with the
highest ID is selected, arbitrarily, to be the region root. The remaining
pixels in the ring are then, systcmatically, linked to each other in the
direction of the chosen root. The ring uncoupling is illustrated in Figurc
9(b). Pixels neighboring the root are uncoupled from the ring and
linked to the root first. Their neighbors in the ring are removed next,
and so on, until all ring pixels have a linked path to the root. This solu-
tion will also work for regions with more than one hole. Unfortunately,
however, the presence of holes can lead to rather inefficient (deep) tree
structures.

General Parallel Region Growing Algorithm

Region growing, as mentioned earlier, is achieved by merging regions to
form larger regions that conform to a pre-defined homogeneity criterion.
Using the embedded tree structure, two regions can be merged together
by discarding the embedded wees of the individual regions and re-
generating a single more efficient tree for the combined regions. Merg-
ing is performed in iterations and terminates when no more regions are

97

Figure 9¢a). The result of the shrinking algorithm performed on a
region with a hole is a ring in the shape of a medial axis.

Ml [elely
——PE root node
i -
Py Y
IRERRRRERRRRRR |

Figure 9(b). The ring is uncoupled in such a way that the region root is
located at the point on the ring that is furthest from the boundary.

ALGORITHM COMPLEXITY

The region growing algorithm complexity depends upon both the imple-
mentation of the region growing primitives and the number of iterations
required 1o arrive at the desired result. The cost of implementing a
region growing primitive, Embed, Dist, or a reduction, is O(d) where d
is the maximum distance across any region. The Exchange primitive is
implemented in constant time.

The speed of the primitives also depends on the region shape and topol-
ogy. Convex blob-like regions containing O(d%) clements are processed
in O(d) time. Non-simply connccted regions require slightly more time
than simple regions due to the additional time taken to compute the
embedded tree. The complexity for these regions is still O(d) and, in
general, the cost increase will be less than 2. Strange concave shapes,

such as spirals, require the most time. Here d is the longest path
between two pixels in a region which does not go outside the region.
However, these regions rarely occur in practice. The ideal cost com-
plexity is Oflog d) but, this cannot be achieved because of routing limi-
tations on a mesh-connected architecture.

The number of iterations also depends upon the region dimension d. In
an ideal situation, merging of a two-dimensional region can be achieved
in O(log d) parallel merges starting with cach pixel as a region; how-
cver, if only one merge occurs during cach iteration then the worst case
complexity is O1d).

There are two heuristics which can greatly reduce the number of merge
itcrations. The first is the split phasc which was mentioned earlier. The
split algorithm only requires O(log d) computations for the region grow-
ing primitives (although routing is still O(d}) and O(log d) itcrations to
complete. Sccond, in many practical applications there is a "back-
ground” behind a collection of objects. This background, being a single
region, could dominate the algorithm cost. However, in most cases it is
possible to remove the background from consideration by a fairly simple
thresholding technique. The algorithm cost then depends on the span of
the largest object which remains,

R QX

(a)

EXIACTIAG

(b)

Figure 10. Merging order. Contention for merging is indicated by the
arrows in the diagram. (a) and (b) represent two different situations that
may develop. In both cases regions first choose a neighbor based on the
homogeneity critetion and resolve ties by selecting the neighbor with the
higher ID. Two regions may only merge if the choice is mutual,

PARALLEL SPLIT AND MERGE
SIVELY PARALLEL PROCESSOR

A parallel split and merge algorithm has been implemented on the Mas-
sively Parallel Processor (MPP), using the parallel region growing tech-
niguc outlined in the previous sections.

ON THE MAS-

The Parallel Split and Merge Algorithm

In order 10 implement the parallel region growing algorithm, a procedure
for generating the embedded tree data structures and a set of primitives
closely rescmbling those outlined earlier, were designed. These primi-
tives are as follows:
EMBED(ridm, pptrs, cptrs, maxtd):
This procedure reccives as input the region ID matrix, ridm, and
performs the region shrinking and embedded tree gencration. It
returns a matrix of parent and child pointers (pptrs,cptrs), and a
value proportional to the maximum tree depth, maxtd. Region 1D
zero is reserved to mask out regions that need not be processed.
MIN(pptrs, maxtd, pixval, rootval):
MAX(pptrs, maxtd, pixval, rootval):
These procedures receive as input the trec parent pointers, pptrs,
the maximum trec depth, maxtd, and the pixel vatues, pixval, and
perform reduction functions. They deliver the region minimum
and maximum, respectively, to the region roots (rootval).
DIST(¢ptrs, maxtd, rootval, pixval):
This procedurc receives as input the tree child pointers (eptrs), the
maximum tree depth (maxtd), and the values contained at the
region roots (rootval) and distributes them throughout the regions
(pixval).

98

EXCHANGE(ridm, pixval, direction, neighbval):

This procedure reccives as input the region ID matrix (ridm) and
the pixel values (pixval) to be exchanged across the region border.
The parameter direction is needed to discriminate between neigh-
boring regions bordering in different directions. The pixel values
of necighboring regions arc returned in neighbval,

Since all regions are square in the split phase of the algorithm, it is not
necessary to create embedded irees to represent the regions. On the
MPP the regions in the split phase will have dimensions mxm where m
is a power of 2. Hence, the upper-left comer PE of each region can be
designated as the region root. Then, by initially treating cach pixel in
the image as an independent region, an iterative merging technique can
be used to create larger square regions comprised of four subregions
(one in each quadrant). This has the same effect as a top-down split but
is more efficient. Using the homogeneity criterion suggested carlier, eqn
(1), all information needed to describe a region can be accumulated at
the root during the region growing process. In effect, a larger region’s
propertics {(e.g. minimum and maximum values) are obtained from the
properties of its four subregions. There is no need to re-cvaluate the
minimum or maximum values of all pixels in a region, but simply to
calculate the minimum and maximum of the values held at the roots of
the four subregions. A larger region is created by merging its four qua-
drants only if all four quadrants are homogencous regions and the com-
bincd properties of the subregions satisfy the homogeneity criterion.
Hence, reduction operations only require a constant number of steps to
perform and the distribution operation can be performed in Oflogim))
steps. However, since the MPP only has near-ncighbor connections the
cost of routing is stitl O(m). This could be reduced if a more complex
interconnection nctwork between PE’s were available (e.g. Oflog(m))
given a hypercube interconnection). In any case, this is much more
cfficient than using the embedded wrees, and only requires a slight
modification of the parallel primitives described above. The modified
primitives for square regions are described below.

SQRMIN(iteration,pixval,rootval):
SQRMAX(iteration,pixval,rootval):

These procedures receive as input the splitting iteration number 10
determinc the dimensions of the regions being processed and the
locations of the region roots. A region’s minimum and maximum
arc computed by shifting the minimum and maximum values of its
subregions to the region root. The results are retumed in rootval,

SQRDIST(dimensions,rootval,pixval):

The parameter dimensions is an array conlaining the dimensions
of cach region. This information is used to broadcast the root
value to all PE’s within the region. The result is retumed in pix-
val.
Both phases of the split and merge algorithm arc described below. Each
phasc of the algorithm is first outlined by dividing it into a serics of
steps. The corresponding pseudo-code for cach phasc is then broken
down into thc same steps. The WHERE (condition) construct is a
mask that only cnables those PE’s for which condition is truc. The
ANY ({condition) construct returns a value of true if condition holds
truc for any PE in the system. The homogencity criterion suggested ear-
lier, eqn.(1), is used.

The Split phasc algorithm

1. Since initially all pixels are treated as independent regions, the
region minimums and maximums are set to equal the pixel values
and the split iteration is set to one.

2. Each region’s maximum and minimum valucs are computed.

3. The region ranges are calculated at the roots.

4. If any regions display a range within the allowed threshold, the
new region dimensions are set at the roots.

5. The iteration value is incremented and, unless either the iteration
value exceeds log(n) (n ts the image dimension) or no mcrges
occurred during the last iteration, control is returned to step 2.

6.

The regions’ root PE ID’s are distributed to all region PE's using
the region dimensions contained at the region roots.

The Split phase pseudo-code

/* Variable declarations */

newmergerange, bestrangeval : PARALLEL ARRAY [1..128,1..128]
OF [0..255];

cptr, pptr : PARALLEL ARRAY [0..5,1..128,1..128) OF BOOLEAN;
merger : PARALLEL ARRAY [1..128,1..128] OF BOOLEAN;
maxtd, i : INTEGER;

1. * Create embedded trees for all regions and calculate

idm, pid, rootnode : PARALLEL ARRAY [1..128,1..128] (he region minima and maxima, */g
O_F [0"1638‘?]; . PARALLEL EMBED(ridm, pptrs, cptrs, maxtd);
pixval, regmin, regmax, T, range : . i MIN(pptrs, maxtd, pixval, mintoroot);
A_RRA,Y {1..128,1..128] OF [0..255]; MAX(pptrs, maxtd, pixval, maxtoroot);
dimension : PARALLEL ARRAY [1..128,1..128] OF {1..128]; DIST(cptrs, maxtd, mintoroot, regmins);
iteration : [1.7; DIST(cptrs, maxtd, maxtoroot, regmaxs);
merge : BOOLEAN;

e 2. /* Initialize the merge range to the threshold value. */

1. /* Initializations */ mergerange « T;
regmin « pixval;
regmz‘xx « pixval; /* Exchange ID, minima, and maxima information
iteration « 1; with all neighbors. */

FOR (i « 1 TO &) {
2 REPEAT , . . « EXCHANGE(ridm, regmin, i, neigbmin);
f* Compute the region minima and maxima. */ EXCHANGE(ridm, regmay, i, neighmax);
SQRMIN(iteration, regmin, regmin); EXCHANGE(ridm, ridm, i, neighbid);
SQRMAX(iteration, regmax, regmax); /* Determine the homogeneity range value of cach neighbor. */
. WHERE (neighbmax < regmax)
3. /* Calculate the new region ranges. */ neighbmax < regmax;
rootnode « f(pid,iteration); WHERE (neighbmin > regmin)
WHERE rootnode - neighbmin « regmin;
range ¢ regmax- regmin; newmergerange < neighbmax-neighbmin;
. . . * R th d ID of the region

4, /* Calculate new dimension for homogencous regions. */ ;icldﬁ?g“:hc ?)er:ltnf:ngz x/ ° 8!

;rllfrge « ANY(range <T); WHERE ({(newmergerange < mergerange) AND
(merge) { (ridm <> neighbid)){
WHERE ((range[< [T) AND rootnode) mergerange newmergrange;

| dimension « 27575 mergeneighbid « neighbid

IH
5. /* Terminate when cither no merges occurred in the previous }i

iteration or the entire image has been spanned. */

. . . N ! 3. /* Accumulate the best merge range at the root. */

iteration « iteration + 1; ;

UNTIL ((iteration > log(n)) OR NOT merge); MIN(pptrs, maxtd, mergerange, mintoroot);
DIST(cptrs, maxtd, mintoroot, bestrangeval);
. * Broadcast th sion ID’s to alt PE’s conlained within

6 é)cirrg;u:clisaric: rig/,lon 4. /* Select the neighbor yielding the best range value and arbitrate
QQRDIS’r(dilr{e.nsion pid, idm); tics by selecting the ncighbor with the largest 1D. */

) ' T ’ WHERE (bestrangeval = mergerange)
) mergechoices « mergeneighbid;

The Merge phase algorithm MAX(pptrs, maxtd, mergechoices, maxtoroot);

1. Embedded irces for all regions are constructed using the region DIST(cptrs, maxtd, maxtoroot, mergechoice);
ID’s.

. Lo . . .

2. Minimum and maximum values and region ID’s are exchanged 5. éhE_xchangelnE::rge ([lh;)]leC ml’ormauo[n wu? ncig;hbors.
between neighboring regions, to determine the range of combined FOOIl{CiiS (T“ls TOT;F Or a merge to oecur.
regions, and possible merges. . . EXCHANGE(ridm, mergechoice, i, neighbmergechoice);

3. Lowest merge ranges are accumulated at the region roots and dis- EXCHANGE(ridm, ridm, i, neighbid);
tributed to all region PE’s. WHERE ((ridm = neighbmergechoice) AND

4. In case more than onc neighboring region yiclds the same "lowest (mergechoice = neighbid))
merge range”, the region with the higher ID is selected. merger « true;

5. Choices of merge selection are exchanged with ncighbors. If two ;La;:amerge_ « ANY(merbger);l et th I
regions select each other, both regions merge by assuming the be{hn;Ic)rgmg rﬁglons, arl xtran Ylbsc*jﬂ‘ ¢ smaller
smaller 1D of the two. ?F (:avear:eisg:,) c{ new region's L.

6. Unless no merges occurred during the last itcration, control returns WHERE (merger AND (neighbid < ridm))
to step 1. ridm « neighbid;

MIN(pptrs, maxtd, ridm, mintoroot);

The Merge phase pscudo-code DIST(cptrs, maxtd, mintoroot, ridm);

b

” b

Variable declarations.

*/ Results

ridm, regmins, regmaxs, mergeneighbid, mergechoices, mergechoice,
neighbmergechoice : PARALLEL ARRAY [1..128,1..128]

OF {0..16383);

pixval, mintoroot, maxtoroot, mergerange, netghbmin, neighbmax,

A high-level language (Parallel Pascal [12]) implementation of the
region growing primitives was run on the MPP. A series of timing tests
were conducted using images of square NxN regions with the set of

99

dimensions: N = 8, 16, 32, and 64 (Table 1). These lest sets were
representative of blob-like regions with d=N.

Table 1. Measured Timing Results for Primitives.

Dimension Time (ms)
N embed | min/max dist exchange
8 12.5207 1.9675 | 1.5291 0.0660
16 22.2983 3.5137 | 2.7260 0.0660
32 41.8582 6.6043 | 5.1177 0.0660
64 80.9739 | 12.7876 | 9.9032 0.0660

The following set of timing expressions, given in milliseconds, were
derived from these results.

Tompea(N) = 1.222N + 2741 (2a)
Trinimas (V) = 0.1932N + 04210 (2b)
T (V) = 0.1495N + 03322 (20)
T exchange (N) = 0.0660 Q2d

The measured valucs do not deviate from the above equations by more
than 2 percent.

An estimated performance analysis was conducted assuming an optimal
machine-level encoding of the primitives. The clock cycle time for the
MPP is 100 nanoseconds. Furthermore, it was assumed that loop set-up
in the host could be overlapped with array computations. This is possi-
ble on the MPP since a FIFO buffer exists between the host and the PE
array which allows the host to perform serial calculations while the
array is busy processing instructions in the buffer. The analysis yiclded
the following expressions.

T omeaN) = 0.1570N + 0.0197 (3a)
Trinimax vy = 0.0168N + 0.0034 (3b)
Ty (N) = 0.0104N + 0.0034 (3¢)
T pxchange (N) = 0.0358 (3d)

The estimated results range between 2 to 15 times faster than the meas-
urcd results. This is probably due to two main reasons. First, the Paral-
lel Pascal code generator produces inefficient code since it currently
does not perform any code optimizations; second, the host may not be
able to gencrate instructions fast enough to keep the processor array
busy; especially for boolean data operations. (Conditional branches
which are dependent on processor array valucs cause the FIFO buffer to
empty, however no such branches occur in the implementation of the
primitives).

A similar comparison analysis was conducted for the split and merge
phases of the algorithm. The measured results for the blob-like regions
are summarized in Table 2.

Table 2. Measured Timing Results for Split and Merge Phases.

| Dimension Time (ms)
N Split Merge
8 2.7276 38.1122
16 3.4329 67.1308
32 4.2128 | 125.1579
64 5.2824 | 241.2121
These results yielded the following expressions.
T, (N) = 0.01518N + 0.583%0g(V) + 0.8077 (4a)
Terge W) = 3.62TN + 9.104 (4b)

The first term in the split phase expression represents the cost due {o the
shift operations nceded to route information through an NxN mesh con-
nected region. This could be reduced to OflogN) given a hypercube
interconnection scheme. The second term in the expression is related to
the number of arithmetic opcrations performed to create an NxN region.

100

The third term includes the overhead operations that are independent of
N. The merge phase results are primarily a product of the primitive
operations and therefore yield an expression of O(N). The estimated per-
formance using an optimal encoding is as follows.

Topi (V) = 0.0045N + 0.100log(NV) + 0.052 (5a)
Trnerge (N) = 0.3746N + 0.3737 (5b)

For the split phase the estimated performance was three to five times
faster than the measured results. Since the merge phase of the algorithm
is highly dependent on the paralle] primitive implementation, we could
predict that the estimated performance will be approximately ten times
faster than measured results. This is in fact the case as demonstrated by
the expression above.

“ONCLUSION

A technique for region growing on a highly parallel SIMD computer has
been described. This technique is based on a "best merge" paradigm
which imposes an ordering to the parallel merge sequence. Three funda-
mental primitives for region growing have been defined: reduction, dis-
tribution, and neighbor exchange. Furthermore, it has been shown that
the split algorithm on the target architecture is efficiently implemented
by region growing using special primitives for processing square regions.
A simple homogencity criteria, pixel range, has been used to demon-
strate the basic parallel techniques. However, arbitrary complex homo-
geneity functions can be computed with this scheme. Additional reduc-
tion functions such as PRODUCT and MEAN may be implemented with
a similar efficiency 1o-the primitives MAX and MIN. An embedded tree
structure has been introduced to implement the region growing primi-
tives on a mesh-connected SIMD system,

REFERENCES

[1] D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall,
Englewood Cliffs, New Jerscy, (1982).

A. Rosenfeld and A. Kak, Digital Picture Processing, Academic
Press, New York, New York, (1982).

S. W. Zucker, "Survey, region growing: childhood and adoles-
cence,” Computer Graphics and Image Processing 5, pp. 382-399,
(1976).

S. L. Horowitz and T. Pavlidis, "Picture scgmentation by a
dirccted split-and-merge procedure,” Proceedings 2nd 1JCPR, pp.
424-433, (August 1974).

J. P. Gambotto and O. Monga, "A parallel and hierarchical algo-
rithm for region growing,” Proceedings of the 1985 IEEE Confer-
ence on Computer Vision and Pattern Recognition pp. 649-652
(1985).

A. P. Recves, "Survey, parallel computer architcctures for image
processing,” Computer Vision Graphics and Image Processing
25, 68-88 (1984).

A. P. Reeves, "Highly parallel computer architectures for scientific
applications,”

J. Kitler and M. J. B. Duff, Image Processing System Architec-
tures , Research Studies Press, Letchworth, England, (1985).

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
Analysis of Computer Algorithms , Addison-Wesley, Reading,
Mass., (1974).

A. P. Reeves, "A systematically designed binary aray processor,”
IEEE Transactions on Computers C-29, pp 278-287 (1980).

K. E. Batcher, "Design of a massively parallel processor," IEEE
Transactions on Computers C-29(9) pp.836-840 (September 1981).

A. P. Recves, "Parallel Pascal: an extended Pascal for parallel
computers,” Journal of Parallel and Distributed Computing 1 pp.
64-80 (1984).

R. W. Taylor, M. Savini, A. P. Recves, "A fast algorithm for
range image scgmentation,” 1987 /EEE Systems Man and Cyber-
netics Annual Conference (October 1987).

]

(31

[4]

(5]

(61

(7
(8]

9]

(10

(1

[12]

{13]

HYPERCUBE ALGORITHMS SUITABLE FOR IMAGE UNDERSTANDING
IN UNCERTAIN ENVIRONMENTS

T.L. Huntsberger, A. Sengupta

Intelligent Systems Laboratory
Department of Computer Science
University of South Carolina
Columbia, SC 29208

ABSTRACT

Computer vision in a dynamic environment needs to be fast and
able to tolerate incomplete or uncertain intermediate results. An
appropriately chosen representation coupled with a parallel architecture
addresses both concens. The wide range of numerical and symbolic pro-
cessing needed for robust computer vision can only be achieved through
a blend of SIMD and MIMD processing techniques. The 1024 element
hypercube architecture manufactured by NCUBE of Beaverton, Orcgon
has these capabilitics, and was chosen as the test-bed hardware for
development of highly parallel computer vision algorithms.

This paper presents and analyzes parallel algorithms for color
image segmentation and edge detection. These algorithms are part of a
recently developed computer vision system which uses multiple valued
logic to represent uncertainty in the imaging process and in intermediate
results [HUNTS86). Algorithms for the extraction of three dimensional
properties of objects using dynamic scene analysis techniques within the
same computer vision system framework [HUNT87, HUNTS88] are bricfly
examined. Results from experimental studies using a 1024 element
hypercube implementation of the algorithms as applied to a scrics of
natural scenes will also be reported.

INTRODUCTION

Several supercomputers such as the NEC SX-2, the Cray Rescarch
CRAY-2, and the ETA-10 offer the possibility of extremely high speed
execution of various computer vision algorithms. However, the syn-
chronization of numerical processing and symbolic manipulations of
higher level vision information has been proven to be a difficult problem.
The massively parallel architecture of the connection machine addresses
some of the underlying problems with processing for image understand-
ing {BALL83, HARR86]. The large number of processors needed for
such a machine for computer vision would dictate a possibly prohibitive
cost. A modular pipeline architecture such as the PIPE design allows
computer vision tasks to be partitioned [KENT8S].

The low level operations of computer vision such as edge detection
and component labeling are efficiently accomplished on parallel arrays of
processors such as the ZMOB [BANES81, KUSH81, RIEGS81], the homo-
geneous multiprocessor [DIMO81, RAMAS6] and systolic arrays
[KUNGB83] among others. Reeves gives a review of the current designs
for parallel architectures for image processing (REEV84]. The devclop-
ment of reconfigurable architectures like the PASM design [SIEG81] has
led to more flexibility in the range of tasks possible on a given architec-
ture of this type. Since the nature of image understanding is more
abstract at higher levels, vastly different tools are needed to perform
higher level operations such as object identification. Putting more intelli-
gence into the operating system for control in image understanding tasks
was recently suggested in {DELP8S].

The large bandwidths (100 MFLOPS) typically nceded for feature
extraction algorithms has severely limited responsc times in most vision
systems. Many architectures are capable of local image opcrations, but
become very inefficient for higher order symbolic processing. This is
due not only to the architecture design itself, but also to the utilization of
algorithms and processing techniques not optimized for parallelism.
Recent results for a number of both low and high level vision algorithms

CH2649-2/89/0000/0101$01.00 © 1988 IEEE

101

implemented on a hypercube architecture indicate the flexibility inherent
in the design [BONDS88, JONESS, WILLS8].

IMAGE SEGMENTATION ALGORITHM

An iterative algorithm which performs clustering in an image color
space is used for image segmentation [HUNTS85a). This clustering in
color space is done with the fuzzy c-means algorithm generalized by
Bezdek [BEZDS81]. The performance of this algorithm on a Single
Instruction Single Data (SISD) machine has been disappointing, with a
typical runtime of from hundreds of minutes to 40 plus hours depending
on the hardware used. A recently devcloped integer version of the algo-
rithm coupled with lookup tables for the distance metric and exponentia-
tion gives an order of magnitude increase in performance on a SISD
machine, with the tradeoff of increased storage requircments [CANNBSG].
Upon investigation, it was found that certain portions of the algorithm
were highly parallel in nature and that a significant performance bencfit
can be achicved by exploiting this inherent parallelism {HUNT85b}.

The clustering procedure has two phases: cluster center generation
and membership value determination from these cluster centers. This
means that there is an inhcrent sequential limitation to the algorithm,
since each phase relies on the output of the other. Expressions for the
cluster centers and membership values are given below:

)" %
vt — (1a)
Y)™
k=1
for the cluster center v, and
M = !)

for the membership value W, where ¢ is the number of clusters, d;; is a
distance metric, m is a weighting exponent and n is the total number of
points being analyzed. The values used in the scgmentation phase of the
computer vision system are # =9, m = 2.0 and ¢ =2 with a Euclidean
distance metric in RGB color space.

The scheduling table for the parallel implementation of the cluster
generation phase of the segmentation algorithm indicates that generation
of cluster centers can be accomplished in 13 machine cycles using a 16
node hypercube configuration, as opposed to 177 operations on a scquen-
tial machine. Partitioning the tasks along these lines differs from the
multistage pipeline, which was the vriginal application-specific design
[HUNT85b]. Analysis of the membership value determination portion of
the algorithm indicates that 16 cycles will be required on the same hyper-
cube configuration, as opposcd 10 212 operations on a sequential architec-
ture.

The implementation of the clustering algorithm discussed above has
been designed to only allow interprocessor communication between
nearest neighbor nodes in the hypercube network. This will greatly cut
down on communication overhead times and should allow accurate

reports of running times, since the direct peak interprocessor communica-
tion speed on the NCUBE/10 is 180 Megabytes/sec. Each run of the
clustering algorithm will typically take 5 iterations to converge. Thus,
there are typically about 1945 floating point operations involved in the
production of the membership values and cluster centers for each pixel
for a sequential analysis, or put another way, 11.7M floating point opera-
tions for each frame of size 240X256 full color pixel data. Recent results
of parallel algorithm development on the NCUBE/10 have indicated a
relatively slow sustained processor floating point performance of 0.14 to
0.26 single precision MFLOPS [GUST88]. Allocation of the full 1024
nodes as 16 element sub-cubes gave a near real-time segmentation rate of
1.2 seconds per frame.

Although the MIMD algorithm just discussed exhibits a possible
parallel speed-up of about 82 percent, message buffering for interproces-
sor communication within the AXIS operating system on the NCUBE/10
hypercube totally negates this speed-up. As observed by the Sandia
group, unless overlapped communication cycles can be built into the
algorithm, interprocessor transfers typically take about 365 microseconds
per four byte transfer [GUST88). As the operating systems on hypercube
architectures evolve, this speed bottleneck will be eliminated with
unbuffered nearest neighbor communication protocols included at the
algorithm level.

The hypercube architecture is flexible to allow alternate mappings
of algorithms. The possible parallel implementations of the segmentation
algorithm for the hypercube would be decomposition of the image data
with very little interprocessor communication needed, or a 5 stage pipe-
line. Both of these approaches were investigated, with the expected
results, If the image data set is decomposed into windows of size 9 X 6
pixels, with a single window on each of 1024 processors, the segmenta-
tion time is reduced to 40 milliseconds per 240 X 256 full color frame.
Another version of the data set decomposition technique would assign
two processors to each window, with each processor computing a single
cluster center and then exchanging the results. Despite the simultaneous
calculation, the communication overhead drove the segmentation time up
to 67 milliseconds per frame.

The five stage pipeline design allows each iteration of the algo-
rithm to be computed in one stage of the pipe. For five processors
arranged in a ring pipeline the number of interprocessor communication
cycles is 35 with overlapping and a segmentation rate of 54 milliseconds
per frame. This time is about of factor of 1.4 times slower than the
image data decomposition method. If a five stage pipeline with two pro-
cessors in each stage is constructed for the segmentation process, the time
increases to 92 milliseconds due to the extra interprocessor communica-
tion cycles.

PARALLEL EDGE DETECTION ALGORITHM

Once the membership values to the color cluster centers are deter-
mined, the process of edge detection is done using these membership
values. Local homogeneity properties of a color image are evaluated
with set operations. An edge operator has been developed that is
independent of thresholds and that treats the pixel color characteristics as
a vector [HUNT85b). The information for the location and strength of
color edges is resident in the hypercube processors after the image

segmentation process. This leads to efficient edge detection for input to
higher level processes, such as shape representation [HUNTS6], due to
the elimination of reloading time for the membership values.

Ambiguities in edge strength and location can arise from many fac-
tors. Among these are noise in the sensors and motion blur of region
boundaries. Membership values are close to one within a homogeneous
color region, and drop close 10 zero after crossing the boundary of the
region. The corresponding change from one to zero will occur in the
membership values of the adjacent region. If regions are treated as
image subscts, the spatial intersection between these subsets can be
defined as an edge.

As such, we defined an edge operator based on local pixel charac-
teristics obtained from the cluster analysis. This operator has the form

HOMOG; = pjs — U,)

and computes the relative homogeneity of pixel i with respect to its adja-
cent pixel. Here, p, and p;, are the membership values associated with
pixel i to the image subsets a and b. The location of an interclass edge
is the point at which the operator

EDGELOC;, = HOMOG; - HOMOG,, 3

experiences a zero-crossing, where j and k are labels for two adjacent
pixels. Both operators are only defined for two adjacent pixels, where
the index a in (2) is the set label corresponding to the maximum
membership value for pixel j and index b is the set label corresponding
to the maximum membership value in pixel k.

From the homogeniety information derived in equation (2), it is
possible to express the strength of the edge in terms of a membership
value to the set of ideal step edges. This edge strength is defined as

| |
rHOMOG; - HOMOG; |
HEpGE: = 2 , “)

where i and j are two adjacent pixels, and 2 is a normalization factor.
A diffuse edge is characterized by values of Mgpgr. intermediate
between zero and one, being closer to one as the interface between two
adjacent color regions becomes more distinguishable. This operator is
computed only at the zero crossings of cperator (3), i.e. where evidence
for an edge exists.

Determination of edge location and strength was only implemented
in the data decomposition hypercube mapping scheme used in the seg-
mentation phase of processing. The edge location using equations (2)
and (3) and the same size windows as in the segmentation step took 9.7
milliseconds per frame. It is anticipated that this step can be interleaved
with the segmentation phase. Determination of edge strength varied
depending on the edge frequency found in the previous step. Typical
times on our full color natural images ran on the order of 2 to 4 mil-
liseconds per frame.

DYNAMIC SCENE ANALYSIS

In this section we analyze a possible parallel technique for the
determination of the optic flow field in a sequence of images. This tech-
nique exploits the link between contour and region deformations that is
inherent in the behavior of moving cbjects as viewed by a monocular
observer. The segmentation method mentioned in a previous section is
extended to deal with dynamic sceres. We consider a packet of k&
frames at a time for analysis, k normally being four or five. The cluster-
ing analysis is done for the first frame of this k frame sequence. The
color cluster centers obtained are used as reference centers for the calcu-
lation of the region characteristics for subsequent frames.

These centers allow a connected components analysis 1o be per-
formed using the technique discussed in Jones [JONES8). The typical
case timing on a 256X256 image was 636 milliseconds on a 6 dimen-
sional 7 MegaHertz NCUBE system. After the connected components
calculation is performed, further calculation of principal components can
be done using the buterfly accumulation algorithm (JONESS).

Changes in these principal components are used as featurcs for spa-
tiotemporal deformation studies. A series of simultaneous lincar equa-
tions is derived from the deformation of four of the low order principal
components. Sequential versions of these algorithms are discussed in
[HUNTS7, HUNTSS).

DISCUSSION

The 1024 element hypercube architecture allows the integration of
image processing and computer vision modules under a single structure.
Studies of the parallel implementation of some recent dynamic scenc
analysis work is also under way [HUNT87, HUNT88]. The performance
improvement over the sequential algorithms just in the segmentation

102

phase of the system indicate that close to real-time three dimensional
analysis of moving objects can be accomplished on this type of architec-
ture. We are presently implementing these algorithms on a 1024 element
hypercube (NCUBE/10). In addition, parallel algorithms are being
developed for the higher level operations such as model basc matching
[HUNTS6].

ACKNOWLEDGEMENTS

One of the authors (TLH) would like to express his thanks to Judson
Jones of the Oak Ridge National Laboratory for his helpful comments
and software assistance.

REFERENCES

[BALLS3)
D.H. Ballard, G.E. Hinton and T.J. Sejnowski, "Parallel visual com-
putation,” Nature, Vol. 306, pp. 21-26, Nov. 1983.

[BEZD81}
J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, New York, 1981.

[BONDSS]
A.H. Bond and D. Fashena, "Parallel vision techniques on the
hypercube computer,” Proc. Third Conf. Hypercube Concurrent
Computers and Applications, Pasadena, CA, Jan 1988, pp. 1007-
1010.

[CANNS6]
R.L. Cannon, J.V. Dave and J.C. Bezdek, "Efficient implementation
of the fuzzy c-means clustering algorithms,” /EEE Trans. PAMI,
Vol. PAMI-8, pp. 248-255, March 1986.

[DELPS85]
E.J. Delp, H.J. Siegel, A. Whinston and L.H. Jamieson, "An intelli-
gent operating system for executing image understanding tasks on a
reconfigurable parallel architecture,” in Proc. CAPAIDM, Miami
Beach, FLA, Nov. 18-20 1985, tp. 217-224.

[DIMO81]
N.J. Dimopoulos, "On the structure of the homogeneous multipro-
cessor," IEEE Trans. Computers, Vol. C-34, pp. 141-150, 1981.

[GUSTS8]
J.L. Gustafson, GR. Montry and R.E. Benner, "Development of
parallel methods for a 1024-processor hypercube,” to appear in
SIAM Journ. Scientific and Stat. Computing, Vol. 9, No. 4, July
1988.

[HARRS6]
J.G. Harris and A.M. Flynn, "Object recognition using the connec-
tion machine’s router," in Proc. [EEE Conf. Comp. Vis. and Patt.
Recogn., Miami Beach, FLA, June 22-26, 1986, pp.134-139.

[HUNT85a}
T.L. Huntsberger, C.L. Jacobs and R.L. Cannon, "lterative fuzzy
image segmentation,” Pattern Recognition, Vol. 18, pp. 131-138,
Apr. 1985.

[HUNTS8Sb]
T.L. Huntsberger and W.R. Wocd, "FLASH, A parallel architecture
for computer vision in uncertain environments,” in Proc.
CAPAIDM, Miami Beach, FLA, Nov. 18-20 1985, pp. 280-283.

[HUNTS6]}
T.L. Hunisberger, C. Rangarajan and S.N. Jayaramamurthy,
"Representation of uncertainty in computer vision using fuzzy sets,”
IEEE Trans. Computers, Special Issue on Multiple Valued Logic,
Vol. C-35, pp. 145-156, Feb. 1986.

[HUNT87]
T.L. Huntsberger and S.N. Jayaramamurthy, "Dctermination of the
optic flow field from deformations of region propertics," Patr.
Recogn. Letters, Vol. 6, pp. 169-177, 1987.

[HUNTS8]
T.L. Huntsberger and S.N. Jayaramamurthy, "Determination of the
optic flow field in the presence of occlusion, Patt. Recogn. Letters,
in press.

[JONESS8]
J.P. Jones, "A concurrent on-board vision system for a mobile
robot,” Proc. Third Conf. Hypercube Concurrent Computers and
Applications, Pasadena, CA, Jan 1988, pp. 1022-1032.

[KENTSS5]
E.W. Kent and S.L. Tanimoto, "Hierarchical cellular logic and the
PIPE processor: Structural and functional correspondence,” in Proc.
IEEE Workshop Comp. Arch. Patt. Analys. Image Database
Management, Miami Beach, FLA, Nov. 18-20, 1985, pp. 311-319.

[KUNG83]
H.T. Kung and M.S. Lam, "Real time signal processing V1," Proc.
Soc. POIE, San Diego, CA (Aug. 1983), pp. 143-158.

[KUSHS1]
T. Kushner, A)Y. Wu and A. Rosenfeld, "Image processing on
ZMOB," in Proc. IEEE Workshop CAPAIDM, Hot Springs, Va.
(Nov 11-13, 1981), pp. 88-95.

[RAMAS6]
D.V. Ramanamurthy, N.J. Dimopoulos, K.F. Li, R.V. Patel and
Al-Khalili, "Parallel algorithms for low level vision on the homo-
geneous multiprocessor,” in Proc. IEEE Conf. CVPR, Miami
Beach, FLA, June 22-26, 1986, pp. 421-423.

[REEV84]

AP. Reeves, "Parallel computer architectures for image process-
ing,” CVGIP, Vol. 25, pp. 63-88, Jan. 1984.

[RIEGS1]
C. Rieger, "ZMOB: Doing it in parallel,” in Proc. IEEE Workshop
CAPAIDM, Hot Srings, Va., Nov 11-13 1981, pp. 119-124.

[ROSE84]
A, Rosenfeld, "The fuzzy geometry of image subscts,” Patt.
Recogn. Letters, Vol. 2, pp. 311-317, 1984.

[SIEGS81])
H.J. Siegel, LJ. Siegel, F.C. Kemmerer, P.T. Mueller, Jr, HE.
Smalley and Smith, S.D., "PASM: A partitionable SIMD/MIMD
system for image processing and pattern recognition," J/EEE Trans.
Computers, Vol. C-30, pp. 934-947, Dec. 1981.

[WILL8S]
M. Willebeek and A.P. Reeves, "Region growing on a hypercube
multiprocessor,” Proc. Third Conf. Hypercube Concurrent Comput-
ers and Applications, Pasadena, CA, Jan 1988, pp. 1033-1042.

103

PRECEDING PAGE BLANK NOT FILMED

Efficient Scan Operators for Bit-Serial Processor Arrays

C. M. Fiduccia and R. M. Mattheyses
General Electric R & D Center
Schenectady, NY 12301

R. E. Stearns
SUNY at Albany
Albany, NY 12222

Abstract

A fast algorithm is presented for broadcasting a word
of length w, on an n x n SIMD array of bit-serial
processing elements, in time O(n + w}. Data-skewing
problems caused by SIMD restrictions are solved by
assuming that each processing element contains a shift
register and an activity flag that allows each pro-
cessing element to conditionally ignore instructions.
The broadcasting algorithm is then extended to a
fast segmented-scan (prefix) algorithm that runs in
time O(n + (w + t)logn), where t is the time needed
to perform the arbitrary, user-defined, operation on
which the scan is based. Because of the versatility
of scan operations, many algorithms written for more
powerful SIMD computers, such as the Connection
Machine, can easily be adapted to bit-serial arrays.
Slightly less efficient algorithms are also presented for
processing elements that lack shift registers.

Keywords: Broadcast, parallel prefix, scan, SIMD arrays,
bit-serial algorithms, meshes.

I. Introduction

The Connection Machine is a powerful Single Instruction
Multiple Data (SIMD) computer consisting of 64K bit-
serial processing elements (PEs) connected by a global
router. In addition to providing general interconnections
among the PEs, much like a telephone system, the router
can be used to implement sorting and various segmented-
scan (prefix) operations [Hil, Ble]. Due to the relative cffi-
ciency of scans, many Connection Machine algorithms use
them heavily in conjunction with some sorting and a min-
imal number of general permutations. Algorithms written
in this style can often be ported directly to bit-serial pro-
cessor arrays for which efficient scan implementations exist.

In this paper we present a fast parallel algorithm for
computing segmented scans on a two-dimensional n x n
SIMD array of bit-serial processors. The algorithm takes
O(n+(w+t)logn) time to perform a scan on n? data items,
where w is the word length and ¢ is the time to perform
the binary operation on which the scan is based.

The scan algorithm is adapted from a novel SIMD
broadcasting technique that takes O(n + w) time on an

CH2649-2/89/0000/0105%$01.00 © 1988 IEEE

105

n X n bit-serial array in which each PE has an activity flag,
that determines whether that PE will execute or ignore the
current instruction, plus a shift register that is used to solve
data-skewing problems. Machines such as the MPP [Bur]
and the GE Cross-Omega chip [GE] have both of these fa-
cilities. In practice, our bit-serial technique is considerably
faster than the straight-forward word-level method, which
requires O(wn) tifne, and has the desirable property that it
is essentially independent of word length, for a large array,
since n 4+ w = n.

A slightly less efficient broadcasting technique is also
presented for PEs without shift registers. However, the al-
gorithm is sufficiently more complex that it makes a good
case for including shift registers in future designs of bit-
serial SIMD arrays. Indeed, it can be argued that, in ad-
dition to including shift registers, the data paths within a
PE can be easily designed so that broadcasting takes place
at clock speeds; i.e., in about n + w cycles. Such mesh ar-
rays would then become competitive with machines, such
as the DAP [Flan etal], which resort to global busses for
broadcasting.

For applications, such as linear programming or Gaus-
sian elimination, in which broadcasting is an essential part
of the pivoting operation, our fast bit-serial algorithm
speeds up broadcasting by nearly a factor of w. This re-
duces the broadcasting time to a small fraction of the piv-
oting time, rather than dominating it.

II. Fast Broadcast

Consider the problem of broadeasting the values in a given
row, of a bit-serial SIMD array, to the m rows below it.
If the values are words of length w, the obvious word-level
row-at-a-time algorithm takes O(wm) time. Given the re-
strictions of the SIMD model, it is not clear that a sig-
nificantly faster algorithm exists. In this paper we show
how the inclusion of a shift register in each PE, together
with the exploitation of the bit-serial nature of the array,
can be used to reduce this time to O(m + w). If shift reg-
isters are not available, we show how it can be done in
time O(m + wlogw) using a more complicated algorithm.
We note that both of these results give speedups on the
order of w, when m is sufficiently large. This is quite sig-

e/ 0 iwrenmionaisy sans

nificant in practice. For example, consider the problem of
performing a pivoting operation on a 512 x 512 array using
32-bit words. If the bit-serial arithmetic in a PE takes time
O(w?), then the broadcast time (using our algorithms) is
on the same order as the time to do arithmetic, whereas
with the word-level O(wm) algorithm, communication time
would completely dominate the pivoting operation.

Implicit in our algorithms is the ability of each PE to
conditionally ignore the current instruction. This is done
via an activity flag. We also assume that each PE has
its own shift register, and that the PE’s activity flag also
controls the shift register. This means that, in an inac-
tive PE, the contents of the shift register do not change.
On the other hand, we view the bit-serial mesh as being
a global connection network that is ezternal to the PEs
and is thus influenced only by the global controller. Thus,
the movement of bits along the mesh, into and out of the
one-bit mesh registers located “under” the PEs, is uncon-
ditional. An alternative view is that every PE, active or
not, must participate in moving mesh data, although an
inactive PE can neither read nor write its mesh register.
The major SIMD restriction is that all PEs must use the
same address whenever a reference is made to a bit in the
local memory of a PE. No indexing is allowed within a PE.

Since the broadcasting of each word in the source row
is confined to one column, we confine our attention to a
single column of the PE array. The bit-level algorithms in
the sequel may best be understood by referring to Figure
1, where a typical column of the array is depicted. The
basic idea is to exploit the bit-serial nature of the mesh by
allowing each sending PE to stream its w bits down the
bit-serial mesh, while each receiving PE copies the bits as
they go by.

Note that there is no word-level description of this
bit-streaming process. If we can make it work in a SIMD
environment, the broadcast will clearly take only O(m +w)
time. The major problem is that a given bit, of the word
being broadcast, arrives at different PEs at different times.
This causes skewing problems, because all active PEs must
use the same memory address to store each incoming bit.
In this section, we show how to solve the skewing problem
by assuming that each PE has a shift register. We then
show how this problem can also be solved, without shift
registers, by accepting the fact that bits are first stored in
a skewed fashion, and then using an O{w logw) algorithm
to align them.

A. With a shift register

Assume that each PE has a bit-array B{0 : w — 1} in its
memory, serving as a w-bit buffer. Initially, a sender has a
word in its buffer; eventually, every receiver will also have
a copy of this word in its buffer. In addition, each PE
has two one-bit flag registers S and R to indicate various
conditions. If a PE is a sender then S = 1 otherwise S = 0.
The value of S is assumed to be given as part of the input to
the broadcasting routine and is not modified by the routine.
The R flag is used to indicate that a PE has received its

106

copy of the word; at that point, # = 1. To deal with
the SIMD restrictions, we find it useful to also treat each
sender as a receiver. Thus, when R = 1in all PEs, a copy
of the word exists in every PE. The subtleties involved with
detecting this global condition are discussed below,

Associated with each PE, there is also a one-bit mesh-
register M which the PE can read or write when it is active.
The global instruction advance mesh causes the bit con-
tents of all mesh register to unconditionally “shift down”
one row. That is to say, each PE, active or not, simultane-
ously sends the bit in its M register to the PE below and
replaces 1t with the bit in the M register of the PE above.
It goes without saying that the “down” direction is used
only for illustrative purposes and that any mesh movement
could be used in its place. Indeed, it should be clear that
the entire broadcast process can be carried out not only
along any direction of a PE array of any dimension d > 1,
but also along any set of node-disjoint paths of any graph.

Finally, we assume that cach PE has a shift register
SHR of length | > w, where I"= O(wr). The iustruction
SHR(X, Y) simultaneously shifts the register’s contents to
the right, reads a new bit from bit-register X into the left
end, and writes the old right bit into bit-register Y. The
purpose of the shift register is to capture the bits stream-
ing down the mesh and shift them uutil they oceupy the
rightmost w bits of the register. This solves the skewing
problem, provided each PE can be made to conditionally
stop once the w bits are right justified in its shift register.
Conditional stopping is accomplished by preceding the w
bits in the broadcast stream with an extra header bit.
Being up front, it is the first to emerge from the right end
of the shift register, and serves to deactivate the PE. This
event can be detected by, say, using the value 1 for the
header in conjunction with an initially cleared shift regis-
ter. Careful analysis reveals that it suffices to clear only
the leftmost { — w bits of the shift register, since the right-
most w bits are shifted out before the halting condition is
tested. It follows that no clearing is necessary when ! = 0.

The parallel SIMD pscudo-code for the entire process
is given below.

clear leftmost [— w Dbits of shift register
M~ S
SHR(M,R)
fork « 0to w—1do
advance mesh
when S do M — B[k] endwhen
SHR(M,R)
endfor
while not all R do
advance mesh
when not R do SHR(M,R) endwhen
endwhile
shift rightmost w bits into buffer B{0:we — 1]

The line M « S performs two functions. Since S=1 for
a sender and S=0 for a receiver, the command effectively
clears the mesh and then writes the header bit S=1 on the

mesh iff the PE is a sender.

The line SHR(M,R) immediately reads the header bit
into the shift register. The second argument R serves no
logical purpose at this point; however, the fact that it can
be chosen as R is of considerable importance. It should
be noted that all instances of the SHR command use only
the arguments M and R, in that order. This means that
the data-path connecting M, R, and the shift register is
never changed. This implies that it can be efficiently imple-
mented in hardware. Such a concurrent data-path would
allow the algorithm to stream bits at the clock rate. In
such an implementation, the bit register R could be essen-
tially identified with the (complement of) the PE’s activity
flag.

The for loop also serves two purposes. It is used, by
a sender, to move its w bits B[0],..., Blw — 1] onto to the
mesh. This portion of the code is factored out of the while
loop, below it, because the first w steps of the algorithm
are the only ones that need to make memory references.
During this time, the initial rightmost w bits of the shift
register, assumed to be garbage, are shifted out by all PEs
and ignored. Again, the argument R serves no logical pur-
pose, until k = w — 1, when (if I = w) the header bit
emerges from the shift register into R. Because the left-
most { — w bits were cleared (set to @), it follows that the
first 1 to eventually emerge from the right end of a shift
register must be the header bit. Its recognition is therefore
assured. When this event occurs, the shift register has the
desired w bits right-justified and the PE deactivates itself.
If I > w, the leftmost [— w bits are considered to be junk.

The while loop keeps the bit-stream going, until each
receiver has a right-justified copy of the desired w bits in
its shift register. Of course, during this time, any PE that
has already received its copy (R=1=true) remains inactive.
Note that a when statement activates only those PEs that
satisfy its predicate; only those PEs execute the entire body
of the when statement.

The predicate not all R that controls the while loop
needs some discussion. It should be viewed more as a spec-
ification than an actual evaluation of a predicate. Its real
intent is to keep the bit-stream going until every PE has
received the w bits and has deactivated itself. We note
that there is no harm in letting the loop continue past this
point, and that being able to do so offers a flexibility that
allows the algorithm to be used on various PE arrays and
under various circumstances. Certainly, if the PE array has
a global flag [GE, Hil], so that each PE has an input to a
global AND gate, say, then the loop condition can actually
be evaluated as needed. Since such a massive gate would
likely be pipelined, the termination condition would be de-
tected after the event actually occurred. As pointed out
above, this will cause no harm. A more likely situation is
that the distance m, that a word needs to be broadcast, or
an upper bound for m, is known in advance or can be pre-
computed. In such a case, the while loop can be replaced
with a for loop (counter). One need only guarantee that
the number of iterations is sufficiently large so as to allow

107

all PEs to deactivate themselves: such a scheme needs no
global gate.

The clearing step, the for loop, and the final shifting
step can all be done in O{w) time. The while loop takes
O(m) time since the last bit sent must be streamed down
into the shift register of the farthest receiver. The entire
process thus takes O(m + w) time.

It is worth noting that, if the R register is identified
with the PE’s activity flag, the when statement, in the
while loop, can be replaced by the unconditional instruc-
tion SHR(M,R). This is possible because the condition not
R is then equivalent to if the PE is active, and hence only
active PEs would participate. The point is that, if PEs
have the data path depicted in Figure 1. the body of the
while loop can be performed at clock speeds.

B. Without a shift register

If the PEs do not contain shift registers, the streaming idea
still works: however the solution to the skewing problem is
a bit more complicated. The SIMD restriction that all PEs
use the same memory address, together with the fact that
a given bit of the word being broadcast reaches different
PEs at different times, means that the bit will be stored at
different addresses in different PEs. However, the pattern
is regular enough to be managed by a SIMD algorithm.

During the first stage, as the bits are streaming by, the
global controller generates a sequence of addresses that cy-
cle through the w locations of the buffer B0 : w —1]. This
cyelic addressing process continues until every PE has a
(cyclically skewed) copy of the w bits. Each PE is respon-
sible for deactivating itself, once it has stored w bits in
its buffer, to prevent the bits from being overwritten with
garbage. Each PE must also maintain an offset counter
that keeps track of how much that PEs buffer needs to be
cyclically shifted to correct its skew. This is done with an
additional logw-bit counter C in each PE. Once all PEs
have received copies of the w bits, a second stage of the al-
gorithm is performed, in order to correct the skew in each
buffer, by cyclically shifting its contents as specified by that
PE’s offset value.

There are two barriers to this approach in a bit-
serial SIMD environment. Although C is a counter, we
do not want to simply increment it in the obvious way.
In the worst case, carry propagation would take O(logw)
time, resulting in an O{mlogw)-time broadcasting algo-
rithm. A more efficient counting scheme is discussed be-
low. Once the offsets have been determined, the straight-
forward method of correcting the cyclic skews of the buffers
is to allow each PE that has a given skew 5,1 < 5 < w,
to correct it by cyclically shifting the contents of its buffer
s units. Since any such a shift needs to move all w bits
of the buffer, it takes O(w) time for any value of s. Do-
ing this, with a SIMD algorithm, for all w — 1 values of s
takes O(w?) time. We show below how it can be done in
O(w log w) time.

In addition to these complications, we must still deal
with the problem of detecting when a given PE should

deactivate itself, so as not to overwrite the w bits in its
buffer B[0 : w — 1]. For this purpose, we again resort to
the use of a header bit. We essentially clear the buffer and
begin to cyclically store the incoming bit stream. Before
storing a bit, we check the bit already there. The first time
a value of 1 is seen, we are assured that it is the header
bit, and can thus deactivate the PE.

The parallel SIMD pseudo-code for the entire process
is very similar to the previous code.

M«~S
fork « O tow—1do
advance mesh
when S do M « B[k] endwhen
Blk] « M
endfor
R«S
k0
Ce0
while not all R do
advance mesh
when not R do
R « B[k]
Bk} « M
increment C from global k
endwhen
k ~ k+1 (mod w)
endwhile
align the circular buffer B[0:w-1]

Note that there is no need to initially clear the buffers.
Since the instruction M « S overwrites the garbage in the
mesh, the for statement will store w of these “clean” mesh
bits into the buffers, before the testing of register R begins.
This effectively overwrites and ignores the initial contents
of the buffers.

The global counter k serves two purposes. It specifies
the single (SIMD) memory location B[k], where each PE
stores the bit copied from the mesh, and it is also used
to update each of the offset counters C. After reaching lo-
cation Blw — 1), k returns to location B[0] and continues
in this cyclic fashion until all PEs are deactivated. Each
counter C simply tracks k until its PE deactivates itself; its
sole function is to remember the last value of k. When a PE
deactivates itself, its C points to the buffer location where
the broadcast word starts. Rather than letting each PE
cyclically increment its own C register, in a bit-serial fash-
ion, the global controller need only broadcast the bits of C
that need to be modified to keep it current. This can be
done in a SIMD manner since all active PEs have the same
value of C, and hence need the same update. Although as
many as logw bits of C may need updating, to increment
C, the total number of bits that need to be changed, to
perform w increments of C, is at most 2w [FidMat}, rather
than wlogw. Thus, on average, an update modifies only
two bits, and the streaming process, although not progress-
ing at a constant rate, is slowed down by a factor two.

When the streaming process finally stops, each PE

108

has a copy of the w broadcast bits in its circular buffer
B[0 : w — 1}, together with a pointer C to the location
B[C] of the first bit. Again, there is no harm in letting
the loop go past the point when all PEs have been deac-
tivated. The contents of all buffers can then be aligned,
in d = logw iterations, by stepping through the d bits
Cld —1],...,C[0] of C. At the ith iteration, any PE that
has bit Cli]=1 cyclically shifts its entire buffer an amount
2. After d iterations, taking dw = wlogw time, all PEs
have their buffers aligned and the broadcast is complete.

The entire process takes O(2m + w + wlogw) time.

C. Segmented broadcasting

The above descriptions of the two broadcasting algorithms
were given as if only one PE per column were sending a
word of length w to the m PEs below it. In fact, both algo-
rithms work for eny number of senders. The real meaning
of register S is that any PE with S=1 will send its word to
all PEs (if any) between itself and the next PE, below it,
that also has S=1. The crucial step that makes this work
is that every advance of the mesh is followed by a write
to the mesh. As a consequence, every sender overwrites
the bits coming from above and substitutes its own. This
effectively cuts the mesh into segments, at the will of the
user, according to the values given to S in each PE. The
term m should then be interpreted as the length of the
longest segment. Moreover, the values of S in one column
of the PE array can be chosen completely independently of
those in other columns. Any assignment to S is valid, no
matter what the dimension of the PE array. This means
that we are not restricted to simply broadcasting rows, in
two-dimensional array, or planes, in three-dimensional ar-
rays.

The only uncertainty in this description is how the
boundary PEs are connected. If the mesh wraps around,
the top PE in a column may be naturally viewed as being
below the bottom PE in that column. Since this interpre-
tation gives a potentially infinite column, there should be
at least one sender per column to guarantee that the PEs
in that column will eventually be deactivated. If the mesh
does not wrap around, any PE above the topmost sender
will receive garbage from the boundary of the mesh; how-
ever, because of the segmentation, all other PEs receive

well-defined values.

As an important example of segmentation, consider
a column with n = 2%¥ PEs, numbered 0 through 2F — 1,
say. If we choose those PEs whose indices are multiples of
2 as senders, we effectively segment the column into 2%~*
segments, each of length 2°, and can concurrently broadcast
a different value in each segment. Thus, for ¢ = 1, each of
the n/2 PEs an even index will send its value to the PE
immediately below it. This idea is used in the next section
to build a broadcasting tree that serves as the skeleton of
the scan algorithm.

I11.

In this section, we first describe how one-dimensional
broadcasting can be made into a fast bit-serial scan algo-
rithm. We then show how to extend the scan algorithm to
two dimensions. The generalization to higher-dimensional
arrays is immediate.

Let X = (z3,...,zn) be alist (vector) whose elements
are from some domain). Assume that D has an assocta-
tive operation on it, which may be though of as multipli-
cation. The product of two elements z and y is denoted,
as usual, by ry. Multiplication need not be commutative.

Given an input list X = (z;,...,zn), the scan op-
erator o produces the list o(X) = (711(X),...,min(X)),
whose ith element is the prefix product =;;(X), where,
in general, 7;; denotes the interval product =;(X) =
Z;Tit1...2;. We also use the notation 7(X) to denote the
product 7, y(X) of the entire list. Note that o(X) is a list,
whereas n(X) is a scalar.

By appropriate choice of the multiplication operation,
the scan operator can be made to perform a variety of
useful functions. Its versatility may be further enhanced
when a bit-vector B = (b;,...,bn) is associated with the
input X. The vector B is used to segment X, by inter-
preting each 1 in B as the beginning of a new segment,
going from left to right. The scan function can then be
extended to a list of pairs, over {0,1} x D, by restricting
each prefix product that represents the 1th output element
to the segment that contains the ith input element x;. That
is to say, if B segments X into X1, X,,...,X,, say, then
op(X) = (o(X1),0(X2),...,0(Xs))

The recursion my;(X) = my,-1(X)z; makes it clear
that a scan can be performed sequentially in time O(N);
however, the computation is net inherently sequential. In
[LadFish] it is shown that there exists a parallel prefix
circuit of size O(N') and depth O(log N). A simpler ap-
proach easily yields a circuit of size O(N log N) and depth
O(log N). We now use this simpler approach to derive a
scan algorithm for a one-dimensional bit-serial array. The
algorithm is then extended to two-dimensional arrays.

Let m, 1 < m < N, be a “midpoint” that parti-
tions the input X into two lists X; = (z1,...,T,,) and
Xz =(2m41,---,2n). Note that for every ¢ > m, we have
11i(X) = 71 (X)Tme1,i(X). This suggests that to com-
pute o(X), we concurrently compute the scans o(X;) and
o(X2), and then simply “lift” every element of o(X2) by
premultiplying it by the last element 73 (X} = #(X;) of
a(X,). This gives the recursion

Fast scan

(X1, X3) = (o(X1), 7(X1)o(X2))

where a(by,...,b,) = (aby, ..., aby).

For our purposes, the main observation is that the
last element mym(X1) = n(X,) of o(X) needs to be broad-
cast to all the elements of o(X;). This three-step pro-
cess of computing o(X;) and o(X;), broadcasting 7(X;)
to 0{X;), and multiplying = (X,) by the elements of 6(X,),
is depicted in Figure 2. Although the technique is recur-
sively defined, it can be easily expressed as a log N-stage

109

iterative SIMD algorithm. The main problem is to deter-
mine, at each stage, which PEs need to broadcast. This
can be decided on the fly, assuming that each PE knows
its own index, or that each PE can precompute a logN-
bit value that specifies at which stages that PE should be
broadcasting.

Using our fast bit-serial broadcasting algorithm, and
assuming that multiplying two words of length w takes
time ¢t = t(w), the time T(N) to perform a scan, on a list
of length N, satisfies the recursion: T(1) = 0,

T(N) = max(T(m), T{N —m))+max(m+w, N —m+w)+?

Assuming N = 2%, and that at each stage of the re-
cursion we cut each sublist in half, the time to perform a
scan on a list X, of length N, whose elements are placed
one per PE, on a one-dimensional mesh, is

T(N) = (N/24w+t)+(N/d+w+t)+... = N+(w+t)log ¥

Thus, the use of our fast streaming broadcast method
gives an O(N) scan algorithm, rather than O((w + t)N),
for values of w, t; and N that are likely to be encountered
in practice.

A.

In this section, we consider how to perform the scan opera-
tion on a list X when we are also given a bit-vector B that
specifies a segmentation of X [Ble]. Rather than giving a
new scan algorithm, we simply show how to define a new
multiplication operation that yields the desired result.

We first take the bit-vector B, with elements in {0, 1},
and the list X, with elements in D, and combine then into
a single list of pairs X' = ((b1,21),...,(bn,zN)), With
elements in the cartesian product D' = {0,1} x D. We
now define the product of any two pairs (a,z) and (b, y),
in D', as

Segmented scan

(a,z)(b,y) = if (b=1) then (b,y) else (a,zy).

If D has has a unit element I, the new product is
equivalent to (a + b,z%y), where z° = I for all z € D,
+ stands for boolean OR, and the bar denotes boolean
negation. Note that when b=1, meaning that y is at the
beginning of a new segment, we have 'y = Py =1Iy =
y. If, on the other hand, b=0, we get 'y = z'y = zy.
Thus, b=1 causes a segmentation, while b=0 does not.
This means that by doing a conventional scan o(X'") on
the list of pairs (using the new multiplication), and then
projecting out the boolean component in the resulting list
of pairs, we get the desired segmented scan o 5(X) of the
original list X. By case analysis, one can easily verify that
the new multiplication is associative.

B. Two-dimensional scan

In this section, we consider the problem of doing a scan
on a list X of length ¥ = mn, whose elements are placed,

one per PE, in raster-scan fashion, on a two-dimensional
m x n bit-serial array. Thus, the first n elements of X are
in the first row, the next n elements are in the second row,
..., and the last n elements are the last row. Note that in
this section, the row and column indices of the PE array
go from 1 to m and from 1 to n, respectively.

Although the PE array is two-dimensional, we wish to
treat X as a one-dimensional list and perform a scan oper-
ation on it, such that the result ¢(X) has its ith element in
the same PE that holds z;. The algorithm has five steps.

Step 1[horizontal scan]: In parallel, for ¢ = 1 to m, per-
form a left-to-right scan o(2(;—1)n+1,...,Tin) of each row
1.

After this step, the (4,7)th PE contains the interval
product m_1yn+1,ii—-1)n4;(X). In particular, the last col-
umn of the array contains the products

-

= Wl,n():)v P2 = 7rn+].'lﬂ(‘\)s s Pm = 7'r(rn—l)n,mn(-’()~

Note that the interval products in the first row are the
desired prefix products, those in the second row need to be
lifted by q; = pi, those in the third row by q2 = p1p2, and
that, in general, those in the (7 + 1)th row need to be lifted
by the factor ¢; = 71;(p1,...,Pm)- Clearly, (g1,...,qm)} =
a(p1,..-,pm), so that a vertical top-to-bottom scan of the
last column of the PE array is required.

Step 2[vertical scan]: Perform a top-to-bottom scan of
the values in the last column of the array to compute the
“lifting factors” q1,...,qm-

Since g; is needed in row i + 1, we need to do:

Step 3[vertical shift]: In parallel, shift ¢1,...,¢m-1, in the
last column of the array, down one row: ¢; « g;_1.

Since each interval product in row ¢, 2 < i < m, needs
to be premultiplied by (the new value of) ¢; = 71 (;_1)a(X),
which is now at the right end of row i, we need to do:

Step 4[horizontal broadcast]: In parallel, for : = 2 to m,
broadcast the lifting factor g; to every element in row t.

There are two ways to perform this step. We can
simply do a right-to-left broadcast, or, if the mesh wraps
around horizontally, we can first shift the last column to
the right, into the first column, and then do a left-to-right
broadcast. The advantage of the second method is that
it uses the same left-to-right broadcasting direction as the
scan in step 1.

Now that each PE has the appropriate lifting factor,
we can do:

Step 5(lift]: In parallel, in every PE, in rows 2 through m,
multiply the lifting factor by the interval product computed
in step 1.

110

The product computed in the (7,7)th PE will then
be the prefix product 7y (;_1yn{ X)T(i_1yns1,(i—tyn4(X) =
71 (i=1)n+{X), as desired.

The times taken by the five steps are: T} = O(n +
(w + t)logn)), T = O(m + (w + t)logm), Ty = O(w),
Ty = O(n + w), and T5 = O(t). The total time to perform
the entire scan on the list X, of length N = mn, is thus
O(m +n+ (w+ t)log(mn)). If m =n = /N, the time is
O(2V/N + (w + t)log N).

Its clear that the technique used above for a two-
dimensional mesh can be easily extended to a multi-

dimensional mesh. Thus, if N = n9 the scan time,
on a d-dimensional mesh, for a list X of length N, is
O(dn + (w + t)log N).

A final observation is in order, for the realistic situ-
ation in which the length N of the list X is larger than
the number of PEs in the array. Suppose that the array is
m X n and that N < smn, for some integer s > 1. Assum-
ing each PE has sufficient memory to hold s elements, we
can again distribute X in a raster-scan fashion, putting s
adjacent elements of X per PE. Each PE can then perform
a scan on its s elements, in time O(st), using the obvious
sequential algorithm. The sth result, in each PE, is then
used by the above scan algorithm, to compute the neces-
sary mn lifting factors. Since all s elements in a given PE
need to be lifted by the same factor, an additional O(st)
time is needed to compute the final results. The total par-
allel time is thus O(m + n + (w + t)log(mn) + 2st). When
m = n, this is O(2V/N + 2st), for realistic values of t and
w, showing that s can be O(n/t) without increasing the
time by more than a factor of two.

References

Blelloch, G., “Scans as Primitive Parallel Op-
erations,” Proc. 1987 International Conference
on Parallel Processing, 1987.

Burkley, J.T., “MPP VLSI Multiprocessor inte-
grated circuit design,” in The Massively Parallel
Processor, J. L. Potter (Ed.), The MIT Press,
Cambridge , Massachusetts, 1985.

Fiduccia, C.M. and Mattheyses, R.M., “Bit-
Serial Counting in Linear-Time,” in prepara-
tion.

[Ble]

[Bur]

[FidMat]

[GE] General Electric Company, “The Cross-Omega

Machine,” DARPA proposal, November 1984.
Flanders,P.M., Hunt,D.J., Reddaway, S.F., and
Parkinson, D., “Efficient High Speed Comput-
ing With the Distributed Array Processor,” in
High Speed Computer and Algorithm Organi-
zation, Kuck, D.J., Lawrie, D.H., and Sameh,
A H., Academic Press, New York, 1977.

[Flan etal]

[Hil] Hillis, W.D., The Connection Machine, The
MIT Press, Cambridge, Massachusetts, 1985.
[LadFish] Ladner, R.E. and Fisher, M.J., “Parallel Pre-

fix Computation,” JACM, 27(4), 1980, pp. 831-
838.

(R R e I) N
VI NI F2 e K L | T
- — SHRMRA= R S]
=[xy [z F->{1]
3Y
X |
[y [z[1 0] active
4y X L >k
L Z[T]0}—>{0] 0 (e Xgy)
5 v Xk:,_ T ket kel \@“’WLKH
2 \>|1 0|0 }——){ X172 el \G}"’W‘-kﬂ
6y
1|
0]0]0 > 0]
7V

O _\‘lro 0 Ol @ X2k—>_—- M)—_)wLm(

~~——>lalb[c}-»[1]FEs Figure 2.

- - e/ = _ _ Scan Using Broadcast

“~~-aa]bJc }-»{1]

Y Figure 1.
Segmented Broadcast

111

SECTION I: ALGORITHMS

Part 2: Poster Presentations

PRECEDING PAGE BLANK NOT FILMED

gaas_ | Lo inienisonalLY HANG

PRECEDING PAGE BLANK NOT FILMED

AN EFFICIENT METHOD FOR THE REPRESENTATION
AND TRANSMISSION OF MESSAGE PATTERNS

(summary)

P.J. Bernhard

Department of Computer Science

Clemson University
Clemson, S.C. 29634

Abstract

In this paper we describe a formalism for the
compact representation of message patterns for
multistage interconnection networks. In this for-
malism a descriptor called an (s,d)-mask is used
to represent a message pattern, or rather, a set
of messages. We show that when message pat-
terns are represented in this way a number of
their properties can be determined in polynomial
time. This includes determining if a message pat-
tern creates conflicts or congestion. In addition,
we show that the minimum round partitioning
problem, which in general is NP-complete, can
be solved in polynomial time for any message
pattern which can be represented by a single
(s.d)-mask. This generalizes a known result to
a more general class of message patterns and a
more general class of networks.

Keywords: Omega network, routing, computa-
tional complexity, SIMD, parallel processing.

1 Introduction

In [La73] Lawrie proposed the Omega network as an in-
terconnection network for a multiprocessor system. For
this network a particular message can be represented by a
source-address, destination-address pair, abbreviated as
an (s,d) pair, where s is the binary address of the source
of the message and d is the binary address of the desti-
nation of the message. Hence, a message pattern can be
represented by a set of (s,d) pairs, where each (s,d) pair
corresponds to one message.

In this paper we develop a formalism, called the mask
language, for the representation and transmission of mes-
sage patterns on Omega networks. In this formalism a
message pattern can be represented by a single descriptor
called a (s5,d)-mask. This representation has a number of
advantages. For example, a single (s,d)-mask can repre-
sent a number of (s,d) pairs which is ezponential in the
size of the (s,d)-mask. Hence, it saves space and, in the

CH2649-2/89/0000/0115%$01.00 © 1988 IEEE

115

D.J. Rosenkrantz

Department of Computer Science

SUNY Albany
Albany, N.Y. 12222

context of multiprocessor communication, a single (s,d)-
mask can be broadcast to all processors rather then send-
ing the entire set of (s,d) pairs to their respective proces-
sors. In addition, we show that when a message pattern
is represented by an (s,d)-mask, a number of properties
of the message pattern can be determined in polynomial
time simply by examining the (s,d}-mask rather than the
entire corresponding message pattern. Since a message
pattern can be exponentially large compared to its corre-
sponding (s,d)-mask, this fact illustrates one of the main
advantages of representing message patterns in the mask
language. In addition, we show that the mask language
defines a class of message patterns for which the mini-
mum round partitioning problem can be solved in poly-
nomial time for a general class of networks called bundled
Omega networks .

2 The Omega Network

Following Lawrie {La75], an N-input N-output Omega
network (also called an N x N Omega network), where
N=2™, consists of m identical stages. Each stage consists
of a perfect shuffle wire interconnection [St71] followed
by N/2 switching elements. In Figure 1(a) we show an
8 x 8 Omega network, and in Figures 1(b)-1(g) we show
the possible states for each of the switches. Figure 1(b)
shows the “straight through” state where the input sig-
nals are sent directly to the corresponding outputs, 1(c)
shows the “interchange” state where the input signals
are first interchanged before being sent to the outputs
and Figures 1(d)-1(g) show “incomplete” states. For ex-
ample, in Figure 1(d) a signal is passed from the upper
input to the upper output while nothing is on the lower
input or lower output. Note how the model here differs
from the one in [La75] since switches are not allowed to
“broadcast” messages. In Figure 1(a) we have labeled the
interconnection links for each stage, from the top down,
with a log;N bit binary address. We have also numbered
the stages and shown a path through the network from
input 000 to output 011.

A particular path through the network can be rep-
resented by a source-destination pair, abbreviated as an

P _/ ['] . InTENTIORALLY RLANE

(s,d) pair, where the source s= $¢8;... Sp,-1 is the bi-
nary address of the input at the first stage, the destina-
tion d= dod;... d,._y is the binary address of the out-
put at the last stage and m= log, N . Careful exami-
nation of the network shows that the path code sosi..
Sm_1dody... d,_; completely determines a unique path
through the network. Specifically, if we define an m bit
window W; as the bit pattern beginning t bit position
7 of the path code, we see that at stage i in the net-
work, where 0 < ¢ < m, the path which goes from spsi...
S to dgdy... dm_1 makes use of the link with address
Wi= 8i8iy1... Sm_1dody... di_;[RV86]. For example, Fig-
ure 1(a) shows a path from 000 to 011. For this path
W,=001 and at stage 2 the path makes use of the link
with address 001.

The fact that a path code uniquely determines a path
through the network enables communication conflicts in
the network to be detected easily. Two messages that are
being transmitted through the network will conflict if and
only if they require use of a common link in the network.
Hence, in light of the window property mentioned above,
two (s,d) pairs are said to conflict if and only if there
exists an ¢ such that the two (s,d) pairs have the same bit
pattern on window W;. For example, Figure 1(a) shows
the paths (000,011) and (100,000). Both (s,d) pairs have
W,=000, accordingly at stage 1 both pass through the
link with address 000.

This concept of an Omega network can be generalized
by the addition of a new parameter b called the bundle
size of the network. Specifically, we define a (b)Nx(b)N
Omega network, where N=2"_ to have bundle size b if
each switch in the network has two bundles of inputs
and two bundles of outputs, each of size b. For example,
in Figure 2 we show a (3)4%(3)4 Omega network. Each
bundle in the network may carry b or fewer signals into
a switch. Hence, a total of at most 2b signals may be
input to a switch at any given time. Similarly, each out-
put bundle may carry b or fewer signals out of a switch.
For each input bundle, the incoming signals may be sent
to the upper or lower output bundle. However, all the
signals on a given input bundle don’t necessarily have
to go to the same output bundle. Some may go to the
upper output bundle, while others may go to the lower.
Similarly, two signals on different input bundles may go
to the same output bundle. The only constraint is that
at most b signals can use a particular output bundle at
any given time. If more than b require use of the same
output bundle then we say that congestion occurs. The
definition of the standard Omega network is a special
case of the generalized definition, where b=1. Similarly
“conflict” is just a special case of “congestion”. Bundled
networks have also been considered in [SH87], where a
bundled network was referred to as a dilafed network.

Recall that two (s,d) pairs are said to conflict at stage
¢ in the network if and only if they have the same bit
pattern on window W,. However, when 6 > 1 the fact

116

that two pairs have the same bit pattern on window W;
doesn’t necessarily imply that congestion occurs. In or-
der for congestion to occur at stage ¢, at least b+1 pairs
must have the same bit pattern on window W;. For ex-
ample, consider the paths (0000,1000) and (1100,1001)
on a (2)16 x (2)16 Omega network. These pairs have the
same bit pattern 0010 on W, and, hence, the bundle at
stage 2 with address 0010 is full because the two paths
are in use at the same time. If we now consider the path
(0100,1010) we see that at stage 2 this also requires use of
the bundle 0010. Hence, if all three paths were required
to be in use at the same time, congestion would occur.
An example of a bundled Omega network with =16 is
in the proposed G.E. Cross Omega machine [H86].

Finally, define a message pattern to be a set of (s,d)
pairs. Each (s,d) pair in the set represents the fact that
a message is to be sent from input s to output d of the
network. Note that this definition imposes no restrictions
on what type of message pattern the set represents. For
example, many pairs may have the same source or the
same destination. Furthermore, any number of conflicts
may exist in the set,

3 Definition of the Mask
Language

Define the mask language as follows. Symbols used in
the language will include constants and literals. Con-
stants are 0 and 1, literals include variables “ 4"
“z" ,“ zy” , etc. and their complements. A mask is
any sequence of symbols such as 0001, 1, 11, z10z41,
Tox1 T2, etc. The length of a mask M is the number of
symbol occurrences in the mask. Each mask has an im-
plicit universal quantifier to the left of the mask for each
variable in the mask, where the variables are quantified
over the set {0,1}. Hence, a mask containing the vari-
ables g, zi,..., T,_; is said to represent the set S of
2" addresses, each specified by one of the 2" functions
from the variables zg, 21,..., z,—1 to the set {0,1}. For
example, the mask z412,0 represents the set of addresses
{0100, 0110, 1100, 1110} . Furthermore, each address in
the set is said to be covered by the corresponding mask.
In the case where a mask contains no variables, such as
the mask 101, then the mask represents the set which
contains only itself {101}.

An (s,d)-mask consists of a left hand side and a right
hand side, where each is a mask of the same length.
Examples of (s,d)-masks are (001,010), (1z4, 01) and
(2010225, ,10z,20). As with masks, an (s,d)-mask
has an implicit universal quantifier to the left of the
(s,d)-mask for each variable contained within. Hence,
the (s,d)-mask is said to represent the corresponding set
of (s,d) pairs. For example, the (s,d)-mask M=(z,10,
Tolz,) represents the set $={(010, 110), (010, 111), (110,
010), (110,011}}.

4 (s,d)-Masks and Detecting
Congestion

In this section we describe a structure called a conflict-
cubelRV86]. Each (s,d)-mask has a conflict-cube associ-
ated with each window of the (s,d)-mask. As we shall
show, the conflict-cubes associated with a given (3,d)-
mask can be used to determine a number of properties of
the corresponding message pattern.

Suppose that M is an (s,d)-mask and let V be the
set of variables which occur or whose complements occur
in M. Furthermore, let V; be the set of variables which
occur or whose complements occur in window W of the
(s,d)-mask, where 0 < j < m. The conflict-cube Su;
of M corresponding to window W; is the set Sps ;= V-V,
Note that this definition is a slight variation of the one
given in [RV86).

Now let S be the message pattern corresponding to

M. Then the following property of S holds[RV86].
Fact 1.Consider an Omega network with bundle size
b=1. Then the number of messages which conflict on a
particular link at stage jis given by 2%, where & is the car-
dinality of the corresponding conflict-cube Sas;. Hence,
a message pattern represented by a single (s,d)-mask will
contain conflicts if and only if it has a nonempty conflict-
cube.

In following sections we will show how conflict-cubes
can be used to determine a number of properties of (s,d)-
masks and their corresponding message patterns. Fur-
thermore, conflict-cubes can be exploited in the solution
to the minimum round partitioning problem for any mes-
sage pattern which can be represented by a single (s,d)-
mask.

5 Detecting Conflicts in an
(s,d)-mask

The Omega network is a blocking network and, as such,
does not allow the transmission of arbitrary message pat-
terns. Specifically, it does not allow the transmission of
message patterns which give rise to communication con-
flicts. Hence, algorithms for detecting communication
conflicts and strategies for dealing with communication
conflicts have become the focus of numerous researchers.
As stated in Section 1, one of the advantages of the mask
language is that many properties of message patterns can
be determined simply by examining (s,d)-masks rather
than the entire corresponding message pattern. The fol-
lowing lemmas illustrate this for the detection of conflicts
and congestion in a message pattern represented by one
or more (s,d)-masks. It should be noted that for the lem-
mas and theorems in this paper we give short sketches of
the proofs. We refer the interested reader to [B88] for
the detailed versions.

117

Lemma 2. Let M be an (s,d)-mask of length m. Then
determining if the message pattern corresponding to M
contains communication conflicts can be done in O(m)
time.
Proof. (sketch) By Fact 1 in Section 4, a given (s,d)-
mask will contain conflicts if and only if it has a nonempty
conflict-cube. Hence, an algorithm for detecting conflicts
would operate by scanning the (s,d)-mask from left to
right checking for a nonempty conflict-cube. The key to
the algorithm lies in the fact that each window is exam-
ined using only a constant amount of time, thus ensuring
that the algorithm operates in linear time.D

In [BR87) an algorithm is discussed which will deter-
mine if a given set S of (s,d) pairs contains communica-
tion conflicts. The algorithm operates in time O(m?p),
where p =| S | . Given that p could be exponential in m,
the length of a corresponding mask pair, Lemma 2 illus-
trates one of the main advantages of using (s,d)-masks
for representing message patterns. We now consider the
more general case of detecting congestion in an Omega
network with bundle size b > 1.
Lemma 3. Let M be an (s,d)-mask of length m and
b > 1 be a bundle size. Then determining if the mes-
sage pattern corresponding to M is congestion-free for
an Omega network with bundle size b can be done in
O(m}) time.
Proof.(sketch) As in the proof of Lemma 2, an algorithm
for detecting congestion would scan the (s,d)-mask from
left to right examining the conflict cubes at each win-
dow. However, it follows from Fact 1 in Section 4, that
in order for congestion to occur on an Omega network
with bundle size 6 > 1, the (s,d)-mask must contain a
conflict-cube of size k, where 25> 4. O

In addition to message patterns representable by a
single (s,d)-mask, we consider message patterns which
require more than one (s,d)-mask for their representa-
tion. Hence, it becomes important to be able to detect
communication conflicts and congestion in a set of (s,d)-
masks. In the following, a set of (s,d)-masks is said to be
disjoint if no (s,d) pair is covered by two different (s,d})-
masks in the set.
Theorem 4. Let S be a set of disjoint (s,d)-masks where
n =| S| and m is the length of each (s,d)-mask in S. Then
determining if S is conflict-free can be done in O(m?n?)
time.
Proof. (sketch) An algorithm for detecting if a set of
(s,d)-masks contains conflicts would operate by scanning
all of the (s,d)-masks, at the same time, from left to right.
As it scans it would examine the set of (s,d)-masks on
each window. For each window it would compare each
pair of (s,d)-masks to see if they conflict on that window.
This can be determined by a reduction to an instance of
2-SAT, which can be solved in O(m) time[GJ79]. Since
each pair of (s,d)-masks must be compared on each win-
dow, a total of O(n?) 2-SAT instances must be solved for
each window. Hence, each window requires an O(mn?)

operation. Since there are a total of m+1 windows to be
examined, this gives a total running time of O(m?n?).0
Theorem 5. Let & > 1 be a bundle size and S a set of
n disjoint (s,d)-masks, where n is fixed and each (s,d)-
mask in S is of length m. Then determining if the set §
is congestion-free for an Omega network with bundle size
b can be done in O(m?) time.
Proof. (sketch) As in Theorem 4 an algorithm for test-
ing for congestion will check each of the m+1 windows.
In addition, for each window each of the 2" subsets of the
n masks must be checked to see if a subset of the (s,d)-
masks covers a set of conflicting (s,d)-pairs, at least one
(s,d)-pair per mask. The test of each such subset requires
that an instance of 2-SATISFIABILITY be solved, which
requires O(m) time. However, since the bundle size of the
network may be greater than 1, an additional counting
step must be performed. Since there are m + 1 windows
and since n is fixed the running time of the algorithm is
O(m?). It should be noted that since each window re-
quires 2" 2-SATISFIABILITY instances to be solved the
constant on the running time is exponential in n. O

As with Lemma 2, the above results illustrate one of
the main advantages of using (s,d)-masks. Specifically,

the corresponding algorithms which operate on sets of
(s,d) pairs, instead of (s,d)-masks, may require an expo-
nential increase in time.

6 Minimum Round Partitioning
for (S,D) Masks

Suppose that a message pattern is to be transmitted on
an Omega network. In addition, suppose that it has been
determined that the message pattern creates congestion.
One strategy for dealing with this situation is to par-
tition the corresponding set of messages into disjoint,
congestion-free subsets, called rounds, and then trans-
mitting the set of messages by successively transmitting
the messages in each round. Clearly, in order to minimize
the total time for message transmission, it is important
to minimize the total number of rounds.

The problem of partitioning a set of (s,d) pairs into
a minimum number of rounds is referred to as the min-
imum round partitioning problem. This problem
has previously been considered by a number of authors.
For example, in {A83] upper and lower bounds for the
problem have been established. In [WF80] and [DF87)
heuristics for the problem are given. An algorithm is
given in [RV86] which will construct a “partitioning func-
tion” for a set of messages when the message pattern is
represented as a “bit permute complement” permutation.
And in [BR87] the computational complexity of the prob-
lem was considered. For a number of special cases the
problem was shown to be solvable in polynomial time,
however, it was shown in general to be NP-hard. Here,
we show that the problem can be solved in polynomial

118

time when the message pattern can be represented by a
single (s,d)-mask.

Theorem 6. Let S be a message pattern which can be
represented by a single (s,d)-mask. Then S can be parti-
tioned into a minimum number of congestion-free rounds
for an Omega network with bundle size b6 > 1 in linear
time.

Proof. The algorithm for performing the partitioning
exploits two facts related to message patterns which can
be represented by a single (s,d)-mask. The first is that
for any such message pattern the (s,d)-mask can be com-
puted from the set S in linear time[B88]. And the second
is that the minimum number of rounds required by the
message pattern is equivalent to 2%, where k is the cardi-
nality of the largest conflict cube for the corresponding
{s,d)-mask. Given the message pattern as input, the al-
gorithm will compute the (s,d)-mask and then determine
how many rounds are required by examining the associ-
ated conflict-cubes. Using this information it will then
partition the message pattern. Each of these steps can
be performed in linear time. Hence, the result follows. O

7 Conclusion

In this paper we have described a formalism for the com-
pact representation of message patterns. We have shown
that when message patterns are represented in this for-
malism a number of their properties can be determined in
polynomial time, simply by examing representative (s,d)-
masks rather than the message patterns themselves. This
fact is important since a message pattern may be expo-
nentially large compared with its corresponding
(s,d)-mask. In addition, we have shown that the min-
imum round partitioning problem, which in general is
NP-complete, can be solved in polynomial time for any
message pattern that is representable by a single (s,d})-
mask. This generalizes a known result [RV86] to a more
general class of message patterns and a more general class
of networks.

References
[A83] Agrawal, D.P., “Graph Theoretical Analysis and
Design of Multistate Interconnection Networks,”
IEEE Trans. Comput., vol. C-32, no. 7,July 1983,
pp. 637-648.

[B88] Bernhard,P.J., “Algorithmic Aspects of Message
Transmission Strategies for Multistage Intercon-
nection Networks,” Comput. Sci. Dept., SUNY

Albany, Albany, N.Y.

[BR87] Bernhard,P.J. and Rosenkrantz,D.J., “The Com-
plexity of Routing Through an Omega Network,”
Proc. Twenty-Fifth Annual Allerton Conf. on

[DF87]

[GJ79]

[H86)]
[La73]

[La75)

[RVS6]

[SH87]

[St71]

Communication, Control and Computing, Sept.
1987. Also appears as a technical report: Com-
put. Sci. Dept., SUNY Albany, Albany, N.Y., TR
87-12, 1987.

Deogun,J.S. and FangZ., “A Heuristic Algo-
rithm for Conflict Resolution Problem in Mul-
tistage Interconnection Networks,” Proc. of the
1987 International Conf. on Parallel Processing,
Aug. 1987. pp.475-478.

Garey,M.R. and Johnson,D.S., “Computers and
Intractability: A Guide to the Theory of NP-
Completeness,” W.H. Freeman and Co., 1979.

Hardy,R.M., personal communication.

Lawrie,D.H., “Memory-processor connection net-
works,” Univ. Illinois, Urbana-Champaign, Dep.
Comput. Sci., Rep. 557, Feb. 1973.

Lawrie,D.H., “Access and Alignment of Data in
an Array Processor,” IEEE Trans. Comput., Vol.
c-21, no. 12, Dec. 1975, pp. 1145-1155.

Raghavendra,C.S. and Varma,A.,“Fault-Tolerant
Multiprocessors with Redundant-Path Intercon-
nection Networks,” IEEE Trans. Comput., Vol.
C-35, No. 4, April 1986, pp. 307-316.

Szymanski, T.H. and Hamacher, V.C., “On the
Permutation Capability of Multistage Intercon-
nection Networks,” IEEE Trans. Comput., Vol.
C-36, July 1987, pp. 810-822.

Stone,H.S., “Parallel processing with the perfect
shuffle,” IEEE Trans. Comput., vol. C-20, Feb.
1971, pp. 153-161.

[WF80] Wu,C.L., Feng,T.Y., “On a Class of Multistage

Interconnection Networks,” IEEE Trans. Com-
put., vol. C-29, no. 8, August 1980, pp.694-702.

119

00

0l

10

1

stage 0 stage 1 stage 2

Figure 1(a): An Omega network.

(b) (<) (d)

(e) (f) (g)

Figure 1(b)-(g): Possible switch states.

Il

Il

Figure 2: A 3(4) by 3(4) Omega Network

000
001
010
011
100
101
110
11

00
0l

10

1

PRECEDING PAGE BLANK NOT FILMED

MINIMUM SPANNING TREE ON THE HMESH ARCHITECTURE*

R. V. Boppana

C. S. Raghavendra

Dept. of Electrical Engineering—Systems
University of Southern California
CA 90089

Los Angeles,

Abstract

A fast algorithm to compute minimum spanning tree of a given
undirected graph on Hierarchical MESH connected computer
(HMESH) is presented. The time complexity of the algorithm is
O(log” n), where n is the number of nodes in the graph. HMESH
is a broadcast bus VLSI architecture which consists of n x n
processing elements (PE’s) in a mesh connected structure and a
hierarchy of broadcast buses in each row and column of the mesh
structure such that each broadcast bus is connected to exactly k
PE’s, where k is a small constant. Later, we will show that with
simple modifications to the algorithm, MST of n node graph can
be found on HMESH of size p x p in O([n/p]? logn logp) time.
It is also shown how to compute connected components and tran-
sitive closure of a given undirected graph in O(log® n) with a few
modifications to the algorithm presented for computing minimum
spanning tree.

1 Introduction

The minimum spanning tree of a given undirected, connected
graph G = (V, E}, where V is a non-empty set of n nodes and
E is a set of e unordered pairs of nodes called edges, with cost
or weight assigned to each edge in the graph, is the connected
subgraph of G whose total edge cost is minimum. The problem of
finding mintmum spanning tree has some practical applications
e.g., the problem of connecting various cities by high ways so
that each city has a path to other cities, directly or through
another city, with minimum cost, routing a common signal to
different points in a VLSI chip efficiently, efficient broadcasting in
networks etc. The problem of finding the connected components
of a given undirected graph is to color all the vertices in the
same component of G, with some unique color. So, the problem
of finding the connected components of a given undirected graph
G can be seen as the problem of finding the spanning forest of
G with weights of all edges being equal. The problem of finding
connected components has some applications in areas like pattern
recognition etc.

The classical methods of finding, sequentially, the minimum
spanning tree of a given undirected graph are Prim-Dijkstra’s
[1,2] method, Kruskal’s [3] method, and Sollin’s [4] method. Of
these three, Sollin’s method is most suitable for parallel compu-
tation of the minimum spanning tree of a graph. The problem of
obtaining a parallel solution to compute the minimum spanning
tree and the connected components of a given undirected graph
G with n nodes and e edges, has been studied extensively in the

*This research is supported by the NSF Presidential Young Investigator
Award No. MIP 8452003, a grant from AT&T Information Systems, and a
grant from TRW Inc.

CH2648-2/89/0000/0121$01.00 © 1988 IEEE

121

literature [5,6,7,8,9,10,11,12,13].

Some fast and efficient parallel algorithms are proposed in
(8,7,9,10,11]. In [8] an O(log?n) parallel algorithm to com-
pute the connected components is presented. They use PRAM
model with CREW (Concurrent Read, Exclusive Write) capa-
bility. Modifications to the algorithm in (8] resulted in faster
algorithms with time complexity O(logn) to compute minimum
spanning tree [9,10], and connected components [11]. However,
they all use PRAM model with CRCW (Concurrent Read, Con-
current Write) capability. The algorithm proposed in [11] uses
O(log(n + 2e)) processors, and computes the connected compo-
nents of G. The algorithm proposed in [9] uses n® processors,
and computes minimum spanning tree of G.

Many researchers use PRAM models to evaluate the time com-
plexity of their parallel algorithms. However these PRAM
models are not realizable in practice with the current technol-
ogy. So, some researchers have proposed various VLSI architec-
tures as practical models for synchronized parallel computation
[29,25,26,27,28]. In particular linear array and two dimensional
array processor architectures are given considerable attention
[30], [18],[17],[16],(14], [6]; because, the regularity of the archi-
tectures makes them suitable for VLSI implementation. One dis-
advantage of these architectures is that they have large diameter
(i.e. worst case communication delay between any two process-
ing elements in the architecture). Attempts to overcome this, in
particular for two dimensional mesh connected computers, are
met with some success [15,23,19,20,32]. However, mapping algo-
rithms to these architectures is non-trivial and, in some cases,
is highly complex [19,15]. Moreover, the resultant architecutes
are not practical for VLSI implementation. As a solution to
these problems the Hierarchical Mesh structure (HMESH) was
proposed [21]. HMESH is a highly modular architecture, which
allows easy mapping of algorithms [24]. In this paper we will
present an algorithm to compute the minimum spanning tree us-
ing HMESH (described later) in O(log?n) time. With simple
modifications the same algorithm can be used to find connected
components and transitive closure of G.

2 Architecture of the HMESH

In mesh connected computers, the solution time complexities are
dominated by the interprocessor communication times. In a 2-
dimensional MCC with n? PE’s, time required for movement of
data between two farthest PE’s is O(n). Therefore, many prob-
lems on the MCC will have O(n) complexity, e.g., finding maxi-
mum of » numbers. Since the MCC is a well suited structure for
various problems, attempts are made to reduce the delay involved
with long data movements, by adding broadcast buses [15,22,19].
In [21] the hierarchical mesh connected computer (HMESH) has

N/ LD _ inTENTIONALLY BLANS

been proposed by generalizing the idea of multiple broadcast
buses with a view to certain practical aspects, such as limiting
the number of PE’s that can be connected to a bus. The main
idea is to provide multiple buses in each row and column of a 2-
MCC such that there are some finite number of PE’s connected
to each bus (figure 1.)

iAY

! £ it
/ &
P /i_—,—/;::;’ ";

Figure 1: The Hmesh architecture with n = 16 and k = 4.(Only
first two and last column buses are shown for clarity)

The hierarchical mesh is an SIMID architecture consisting of
n X n processing elements with four nearest neighbor connec-
tions. Each PE consists of a few registers and is capable of per-
forming arithmetic and logic computations. For routing data to
long distances, the array of PE’s are interconnected by a system
of hierarchical broadcast buses. The PE’s are numbered as (1, j)
where 1 < i,j < n. In each row and column PE’s are grouped
and each group of size k share a common bus. The least index
numbered PE’s are again grouped in the next level, and again
groups of k PE’s share a bus. This construction is repeated until
the top level is reached with one group < k PE’s which would
require only one bus. There will be [log, n] levels of buses in
each row and column. The architecture for 16x16 PE’s is shown
in figure 1.

The hierarchy of multiple buses allow fast data transfer between a
pair of PE’s. It takes at most O{log) bus transfers for data to be
routed from a source PE to a destination PE. Of course multiple
PE’s can be transferring data to other PE’s simultaneously as
long as different buses are used. However, there is potentially
high parallelism in transfer of data between PE’s. Also, a single
PE can broadcast its data to all other PE’s in O(log n) time. This
can be accomplished by first broadcasting to local PE’s, then to
subsequent level of PE’s, and after logn steps to the entire row
of PE’s. Then the same procedure can be repeated in all the
column of PE’s. In the algorithm for MST we repeatedly use te
row or column broadcast operation (contents of the register z of
PE;; will be sent to all the PE’s in row ¢,) and min operation
(mininum of the contents of register(s} of PE’s in a column or row

122

is found) repeatedly. The time taken by either of these operatjons
is O(log n) (here k is treated as a constant.) These two operations
are discussed in detail in [31,5].

Many parallel algorithms use divide and conquer technique which
maps naturally to this architecture. Therefore, we can expect
algorithms for this architecture to be much simpler and yet very
efficient.

3 Minimum Spanning Tree

In this section we present the algorithm MST to compute the
minimum spanning tree of a given graph G. We will also show
that with simple modifications to the algorithm, MST’s of graphs
larger than HMESH can be found with correspondingly larger
time complexity.

3.1

The algorithm uses the well known Sollin’s technique to compute
the minimum spanning tree in parallel [4]. The basic idea is
to group nodes in the same component using the edge weight
information, and to make all the nodes in a group to have one
identification number (also called color of the group, but it is
really the node number of one of the nodes in the group) so that
any two nodes can immediately identify whether they are in the
same group or not. A group in which all the nodes have one color
is called a super vertex.

At the beginning of the algorithm, each node is a super vertex by
itself, and its color is same as its node number. Each node tries to
hook to a node, to which it is connected by the minimum weight
edge. This is called hook operation. As aresult of hook operation
there could exist a long chain of nodes in which a node is trying to
another node and one or more nodes are trying hook to this node.
Cycles between twonodes are avoided by making one of the nodes
to point it to itself and the other to point to it. This chain is
condensed into a star shape format so that all the nodes point to a
single node, called the leader of the super vertex which also gives
the color of the super vertex. This condensing operation is called
shortcut operation. In case of long chains it may take several
steps before they are condensed into one supervertex. In the
meanwhile, a supervertex is free to hook to another supervertex
or to a chain of nodes that is being condensed. It should be noted
that a chain of nodes will never participate in a hook operation
until it is condensed into a supervertex. This process is repeated
until no supervertex changes and there exists no chains of nodes.

Discussion

3.2 The algorithm MST

We shall now present the algorithm to compute minimum-cost
spanning tree of an undirected graph G (see figure 2.) The initial
conditions and terminating conditions are as given below.
Initial Conditions

e Each PE;; for 1 < i,j < n has the following registers: (a) A
register C;; to keep the color of the node j. Ci¢,, indicates
the color of the node Cy;. (b) register lVi-'J- to keep the cost of
the edge connecting the new neighbor vertex. (c) A register
C!; to keep the color of the new neighbor vertex.

Each non diagonal PFE;; for 1 < i, < n and 7 # j has the
following registers/flags in addition to the above mentioned
ones: (a) A flag E;; to indicate whether there is an edge
(1,§) present in the given graph. i.e. adjacency matrix is
assumed to be the input to the algorithm. (b) A register
W,; to keep the cost of edge (7, 7). (¢) A flag 5, to indicate
whether the edge (7,7) is present in the spanning tree.

o Each PE;; for 1 < i < n has the following registers/flags in
addition to those mentioned above: (a) A flag @; to indicate
whether the vertex i has participated in the present iteration
or not. This is useful in testing for the completion fo the
algorithm. (b) Two registers 51, and 52; to keep the index
information of the PE that supplied the most min. cost
edge to connect super vertex i to a neighbor super vertex
in the present iteration.

Terminating Conditions

» All diagonal PE’s in the same component will have the same
color. i.e., C; = C,; iff vertices i and j are in the same
connected component.

o All the edges in the spanning tree are indicated by setting
the corresponding ‘5’ flag true. i.e., Si; = true if edge (4, j)
is in the spanning tree.

Time complexity of the algorithm is, shown in (31, O(log®n).
Proof of correctness also is given in [31].

3.3 Finding MST with Smaller HMESH

In this section we will show that MST of a given graph G(V,E)
can be found on HMESH of size smaller than n, the number of
nodes in G.

Let the number of rows and columns in the HMESH be p where
p > 1. With simple modifications to the algorithm MST given
earlier it is possible to find MST of G. Now each PE in the
HMESH will have r = [n/p] times the original number of regis-
ters, and will keep the information about r nodes. Information
about node 7 will be kept in PE’s in row 7 mod p and column
i mod p. Each step in the algorithm is modified to execute the
same operation for all the nodes having the same index (given as
z mod p where z is the node number) and hence are taken care
of by PE’s in the row or column given by the index number. All
the subscripts appearing in the algorithm are now their actual
value modulo p so that correct PE’s are accessed.

It is shown in [31] that the resulting time complexity is

O([n/p]* logn logp).

4 Related Problems

In this section we will show how to compute connected compo-
nents and transitive closure of a given graph G using the algo-
rithm MST.

By taking the adjacency matrix as the weight matrix, the al-
gorithm MST can be used to compute connected components of

the given graph G. However, to compute transitive closure of
G we first compute the connected components of G and then
step 3 given below is performed. The transitive closure of the
graph is given by the boolean matrix formed by falgs §;; for all
1<4,j<n

foreach i do
if Ci; = Ci; then 5;; = true

123

Algorithm 1 MST

/* The following terminology is used in the algorithm.

forall indicates that all the PE’s are active in the computation. fore-
ach iindicates that all the PE’s in a row are active. foreach j indicates
that all the PE’s in a column are active. broadcast is done along that
column. The broadcast value is given by the diagonal PE. */

1 /* Necessary parameters are iritialized now */
1.1 forall PE,, do { C;; = ¢; }
1.2 forall PE;; j #i do S;; = false;
2 repeat
2.1 forall PE;; do { Q; = false;}
2.2 column-broadcast Cj;;
2.3 /* This is a shorteutting operation */
2.3a foreach i do {
2.3al Cii = Cic,,;
2.3a2 if Cii # Cic,, then Q¢,. = true;}
2.3b column-broadcast Cj;; v
24 /* This is a hooking operation */
2.4a foreach i do
2.4a1 if C;;, = C,C“ A *\Qc“ then do {
2.4a2 82; = man;{3|Wi; is min. AC,; is min.
AE;; ACyj # Cii}
2.4a3 Wi, = Wisa,;
2.4a4 Clc., = Cisa, and mark PE (7, Cyy) active; }
2.4a5 else C}, = 0;
2.4b foreach j do
2.4b1 if there exists an active PE in the column do {
2.4b2 Q; = true;
2.4b3 S1; = min.{i{C{J is min. AW/ is min. };
2.4h4 55115255 = true;
2.4b5 5525:, 51, = true;
2.4b6 Gl = Chyy; }
2.4c column-broadcast Cj;
2.4d foreach ¢ do {
2.4d1 if (C; #0) A (i = C!,,) then
2.4d2 ¢! = min{i, L}
2.4d3 else if C/, # 0 then Ci;; = C},; }
until (-Q; for all ¢}
Figure 2: Algorithm to compute minimum spanning tree
References

[1] R. C. Prim, Shortest Connection Networks and Some Gen-
eralizations. Bell Systems Technical Journal 36, Nov. 1957,
pp 1389-1401.

[2] E. W. Dijkstra, A note on two problems in connection with
graphs. Numerisch Math, Vol. 1, No. 5, pp 269-271.

[3] J. B. Kruskal, On the shortest spanning subtree of a graph
and the tarvelling salesman problem. Proc. Amer. Math. So-
ciety, 1956, Vol. 7, No. 1, 48-50.

[4] Sellin, An algorithm attributed to Sollin in Programming,
Games and Transportation Networks. by Berge, C., and
Choulia-Houri, A. Wiley, NY 1965.

[5] D. Nath, S. N. Maheshwari and P. C. P. Bhatt, Ejfficient
VLSI Networks for Parallel Processing Based on Orthogonal
Trees. IEEE Trans. on Comput. Vol C-32. No. 6. June 1983.

[6] M. J. Atallah and S. R. Kosaraju, Graph Problems on a
Mesh-Connected Processor Array. JACM Vol. 31, No. 3,
July 1984.

(7] F. Y. Chin, J. Lam and I. Chen, Eficient Parallel Algorithms
for Some Graph Problems. Communications of ACM, Vol.
25, No. 9, Sept. 1982.

[8] D. S. Hirschberg, A. K. Chandra and D. V. Sarwate, Com-
puting Connected Components on Parallel Computers. Com-
munications of ACM, Vol. 22, No. 8, August 1979.

[9] D. S. Hirscberg and D. J. Volper, A Parallel Solution for the
Minimum Spanning Tree Problem. Proceedings of the 1983
Johns Hopkins Conference on Info. Science and Systems, pp
680-684.

[10] F. T. Leighton, Parallel Computation Using Meshes of Trees.

Proceedings of the Workshop on Graphtheoretic Concepts in
Computer Science, July, 1983.

[11] Y. Shiloach and U. Vishkin, An O{logn) Parallel Connec-
tivity Algorithm. Journal of Algorithms 3, 1982, pp 57-67.

[12] D. Nath and S. N. Maheshwari, Parallel Algorithms for the
Connected Components and Minimal Spanning Tree Prob-
lems. Information Processing Letters, Vol. 14, No. 1, March
1982,

(13] J. L. Bentley, 4 parallel Algoritm for Constructing Minimum
Spanning Trees. Tech. Report, Deptt. of Computer Sci. and
Mathematics, CMU, August 1979.

S. H. Bokhari, MAX: An Algorithm for Finding Marimum
in an Array Processor with a Global Bus. Proc. 1981 Inter-
national Parallel Processing Conference, pp 302-303.

(14]

[15] S. H. Bokhari, Finding Mazimum on an Array Processor
with a Global Bus. IEEE Transactions on Computers, Vol.

(C-33, No. 2, February 1984, pp 133-139,

D. A. Carlson, Performing Tree and Prefizx Computations
on Modified Mesh-Connected Parallel Computers. Proc. 1985
Int. Conf. on Parallel Processing, August 1985, pp 715-718.

P. S. Gopalakrishnan, I. V. Ramakrishnan, L. N. Kanal,
An Efficient Connected Components Algorithm on a Mesh-
Connected Computer. Proc. 1985 Int. Conf. Parallel Process-
ing, August 1985, pp 711-714.

H. T. Kung, C. D. Thompson, Sorting on a Mesh Connected
Computer. Communications of the ACM, 1977.

(18]

[19] V. K. Prasanna Kumar, C. S. Raghavendra, Array Processor
with Multiple Broadcasting,. Proc. 12th Annual Symposium
on Computer Architecture, June 1985, pp 2-10.

[20] V. K. Prasanna Kumar, C. S. Raghavendra, Image Process-

ing on an Enhanced Mesh Connected Computer. Proc. IEEE

Workshop on Computer Architecture for Pattern Analysis

and Image Database Management, November 1985, pp 243-

247.

C. S. Raghavendra, HMESH:A VLSI Architecture for Par-
allel Processing. CONPAR 86, Lecture Notes in Computer
Science, Springer—Verlag.

[22] Q. F. Stout, Broadcasting on Mesh Connected Computers.
1982 Conference on Information Sciences and Systems, pp.
£5-90.

{23] Q. F. Stout, Mesh Connected Computers with Broadcasting.
IEEE Trans. on Computers, pp. 826-830, 1983.

[24] Suresh B. C. and C. S. Raghavendra, Geometric Algorithms

on HMESH Architecture. 1987 Workshop on Pattern Anal-

ysis and Image Processing (to appear).

(21]

124

[25] Bentley, J. L. and H. T. Kung, A free machine for searching
problems. Proceedings of the 1979 Intl. Conf. on Parallel
Proc., Aug. ‘79, pp 257-266.

[26] H. T. Kung and C. E. Leiserson, Systolic Arrays (for VLSI).
In Sparse Matrix Proc. 1978, Society for Industrial and Ap-
plied Mathematics, 1979, pp 256-282.

[27] F. P. Preparata and J. E. Vuillemin, The cube-connected
cycles: a versatile network for parellel compuation. Proc.
12th Annual IEEE symposium on Foundatioins of Computer
Sciencs, 1979.

[28] G. Barnes et.al., The llliac IV computer. IEEE Trans. on
Comput., Vol. ¢-17, No. 8, pp 746-757, Aug. 1968.

[29] H. Stone, Parallel Processing with Perfect Shuffle. IEREE
Trans. on Comput., Vol. C-20, No. 2, Feb. 1971.

[30] V. C. Hamacher, Machine Complezity Versus Interconnec-
tion Complezity in Iterative Arrays. IEEE Trans. on Com-
put., Vol. C-20, 1971, pp 321-323.

(31] R. V. Boppana and C. S. Raghavendra, Minimum Spanning
tree on the HMESH architecture. Tech. report CRI-88-20,

Computer Research Institute, Univ. of Southern California,
Los Angeles.

(32] R. Miller and Q. F. Stout, The Pyramid Computer for Image
Processing. Proc. Tth International Conf. on Pattern Recog.,
1984.

Optimal Mesh Algorithms For VLSI Routing’
(Extended Abstract)

Shing-Chong Chang
Department of Electrical Engineering
Systems Research Center
University of Maryland
College Park, MD. 20742

Abstract

We develop optimal mesh algorithms for several VLSI
routing problems, such as river routing between rectan-
gles, routing within a rectilinear polygon and wiring mod-
ule pins to frame pads. We assume that the mesh consists
of a /nt X \/ processors, where n is the input size. Each
processor has a constant amount of memory. All our al-
gorithms run in time O(y/7).

1 Introduction

The recent advances in the VLSI technology allow the fabrica-
tion of highly complex systems on single chips. Sophisticated
software tools are needed to successfully design such systems.
In particular, the routing phase is a critical and time-consuming
part of the overall design process. Unfortunately, it turns out
that most routing problems are NP-complete and hence no ef-
ficient solutions seem to be likely. There are few exceptions,
however. For example, various river routing (one-layer) prob-
lems, the two-layer channel routing with no constraints, and few
routing problems in the knock-knee model are known to have
efficient solutions ([D et al],[MP],[0],[P],[PL]). Our goal is to
develop a good set of techniques to obtain fast and efficient par-
allel routing algorithms.

In this paper, we consider several basic problems in VLSI
routing such as river routing between rectangles, routing within
a rectilinear polygon, and wiring module pins to frame pads.
The known strategies to handle these problems seem to be in-
Lerently sequential. We develop new techniques that lead to
optimal parallel algorithms. Our basic model of parallel pro-
cessing is the two dimensional array.

Some of the well-known parallel techniques, such as path
doubling, prefix computation, list ranking and sorting, are used
extensively in our parallel routing algorithms. All of these tech-
niques have efficient mesh implementations. We will briefly in-
troduce these techniques below. Path doubling is a basic tech-
nique used to solve many problems involving lists and graphs.
For example, given a set of linked lists, we can determine the
sink reachable from each node by iterating the process of chang-
ing the successor of a node to the successor of the successor
(effectively doubling the Iength of the path from the node to its

'Supported in part by NSA Contract No. MDA-904-85H-0015, NSF
Grant No. DCR-86-00378 and by the Systems Research Center Contract
No. OIR-85-00108

CH2649-2/89/0000/0125%01.00 © 1988 |EEE

125

Joseph JdJa
Department of Electrical Engincering
Institute for Advanced Computer Studies
Systems Research Center
University of Maryland
College Park, MD. 20742

successor after each iteration). Given n elements ag, a1, ..., a,_;
and an associative operation *, the prefix computation consists
of evaluating the n partial products s; = ag * ay * ...a;, for
0 < ¢ £ n—1. Finally, sorting is the process of rearranging
a sequence of values in ascending or descending order. All the
techniques mentioned above can be implemented in O(y/n) time

on a /1 X \/n mesh.

2 Definitions

We assume that the reader is familiar with the basic definitions
related to river routing, routing within a rectilinear polygon (See
for example [D et al},[LP},[P],[SD],[T]), and wiring module pins
to frame pads (See [BP]). Here we will introduce these problems
briefly. The class of general river routing problems involves rout-
ing between ordered sequences of terminals such that the final
layout is planar. Figure 1 shows an example of a river routing
problem and a wiring achieving the minimum separation be-
tween the two boundaries. A more general version of the river
routing problem is to perform planar routing where the ports lie
on the boundary of a simple rectilinear polygon. Figure 2 shows
an example of this routing problem.

X 1,8 sty [ty bty ity todu tata Ny
T
E—' | '_’—JJ:'F,[EHJ r
bobsdy, bbb b1y by b bubn bubu
Figure 1: DBasic river routing problem between two parallel

boundaries.

=i

o

Figure 2: Routing within a rectilinear polygon.

The problem of wiring module pins to {frame pads is given
by a triplet < M, F, N >, where M is an arbitrary rectilinear
polygon representing a module, 7 is a rectangle representing a
frame, and .\ is a set of two-terminal nets such that one terminal
is on M and the other is on F. We assume that F contains M
and that each boundary segment of M is parallel to a frame
edge. We are supposed to determine a one-layer routing of A
whenever it exists. Figure 3 is an instance of a such problem
and its final wiring.

[n this abstract, we will concentrate on the one-layer model.
Section 3 presents a summary of the river routing algorithms
and section 4 addresses the problem of wiring module pins to
frame pads.

I T] 'Y - [1 a_n n
-
A NAA AR, »
ﬁ
AAAATAAARAT =
A A A A A AN RPN T,
[_]r___

LA 1 B | LLL B | L J L4 w w

Figure 3: Routing between module pins and frame pads.

3 River Routing

We can partition the nets into blocks such that the wiring prob-
lem is reduced to wiring each block simultaneously. For any
right block, such as < N5, Ng,..., N14 > in Figure 1, we have
following lemma.

Lemma 1: ([CJ1]) Let N; be a net in a right block and let 7
be the minimum j < 7 such that ¢; + (1 — j ~ 1) > b;. Then
the coordinates of the characteristic bend points of N, (bend
points closest to the bottomn row) are A, = (b;, ¢ — _] + 1) and
Bio=(t; +1 - Jui—j+1). The characteristic bend points
uniquely define the overall wiring.

Theorem 1: ([CJ1]) The characteristic bend points of the n
input nets as well as the minimum chaunel separation can be

determined on a /0 X /1 mesh in O(y/n) time.

In the routing problem of nets within a simple rectilinear
polygon, our strategy for the routing problem will consist of
identifving a set of net groups and the representative net of each
group then performing the wiring of each such net with the nets

“eovered™ hy it separately.

Lemuma 2: ([C\11]) The total number of bend points of all the
representative nets is Of{n), where n is the number of nets. We
can identify the proper groups and find the representative nets
in time O(/7) on a /n x /n mesh of processors.

126

Let N =< z,y > be a net in a group whose representative
is N,. With the number of nets between N and N,, we can de-
termine a bounding perimeter such that the wiring of N, cannot
lie inside it. We claim that the following lemma is true.

Lemma 3: ([CI1]) The union of all the bounding perimeters of
all the nets within a group determines the contour of the group
and hence determines the wiring of the representative net. If
the number of nets in the group is n, then the union can be
determined in time O{y/n) on the mesh.

Theorem 2: ([CJ1]) Detailed routing of n nets within a simple
rectilinear polygon can be done in time O(y/n) on a /u x /7
mesh of processors.

The problem may be unroutable if (1) The graph determined
by the nets when restricted to lie within the rectangle is non-
planar. (Figure 4-1) (2) The wiring of all the nets requires more
area. (Figure 4-2) Case (1) can be detected easily by the tech-
niques such as path doubling , prefix computation and sorting.
Our approach to case {2) is to pa