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Abstract

A transportation system will be necessary to support
construction and operation of bases on Phobos and Mars beginning in
the year 2020 or later. The Star Truk Company presents an approach
to defining a network of vehicles and to specifying the types of
vehicles which may be used in the system. The network will provide
a convenient, integrated means for transporting robotically
constructed bases to Phobos and Mars. All the technology needed for
the current plan is expected to be available for use at the projected
date of cargo departure from the Earth system. The modular design
of the transportation system provides easily implemented
contingency plans, so that difficulties with any one vehicle will

have a minimal effect on the progress of the total mission.

The transportation network proposed by the Star Truk Company
consists of orbital vehicles and atmospheric entry vehicles.
Initially, only orbital vehicles will participate in the robotic
construction phase of the Phobos base. The Interplanetary Transfer
Vehicle (ITV) will carry the base and construction equipment to
Phobos where the Orbital Maneuvering Vehicles (OMV's) will unload
the cargo. In addition, the OMV's will participate in the initial
construction of the base. When the Mars base is ready to be sent,
one or more ITV's will be used to transport the atmospheric entry
vehicles from Earth. These atmospheric vehicles are the One Way
Landers (OWL's) and the Ascent/Deséent Vehicles (ADV's). They will

be used to carry the base components and/or construction equipment.



The OMV's and the Orbital Transfer Vehicles (OTV's) will assist in
carrying the atmospheric entry vehicles to low Martian orbit where
the OWL's or ADV's will descent to the planet surface. The ADV's
were proposed to accommodate expansion of the system.
Additionally, a smaller version of the ADV class is capable of

transporting personnel between Mars and Phobos.
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1. General Summary

This document was prepared in response to a Request for
Proposal (RFP) for a transportation system to support the robotic
construction of bases on Mars and Phobos. The Star Truk Co.
presents an approach to defining a transportation system and to
specifying the types of vehicles which may be used in the system.
This document is composed of four main sections: general summary,
technical information, management information, and cost
information. The general summary provides an introduction to the
project: its objectives and assumptions as seen by the members of
the Star Truk Co. The technical section describes an integrated
transportation fleet, presents candidate vehicle designs for use in
the system, and outlines the process which was used to select and
modify these designs. The management section details the
organization structure, status, and program schedule of the company.
Finally, the cost section presents status of expenses in the

performance of the contract.

1.1 Project Background

Before specifying the objectives of the transportation system,
the long term goals of a manned presence in the Martian system will
be addressed. Idealistically, establishing bases on Mars and Phobos
will provide a source of national pride and international cooperation,
a technology catalyst, and scientific knowledge. @ Commercially,

these bases will provide fuel and material production sites, a
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proving ground for life support systems, and a refueling point
enroute to the asteroid belt and outer planetary system. Eventually,
a Mars base could support life independent of Earth's resources.

Early steps toward achieving these goals include the
construction of the initial human outposts. Science/technology
bases on Phobos and Mars will also establish first generation fuel
production facilities. A modular design will allow for updating,
replacing, and expanding of facilities.

The bases will be transported as prefabricated units by a low-
thrust Interplanetary Transfer Vehicle (ITV) to the Martian system
and assembled by robots. In this way, humans will not be exposed to
the harsh radiation environment during construction. In addition,
these unmanned vehicles will use a slow, low-energy transfer orbit
to Mars, reducing the fuel consumption. Furthermore, using
unmanned vehicles simplifies the vehicles by reducing the
redundancy requirements. However, these autonomous missions will
require highly sophisticated technology in the following areas that
is either currently exists or being developed.

+ Cryogenic Fluid Management

» Automated Proximity Operations

* Autonomous Rovers (Telerobotics)
« Aerocapture

* On-orbit Assembly and Construction
» Surface Power

* Advanced Propulsion

* Propellant Production

« Advanced Life Support Systems
* Vehicle Maintenance Facilities



1.2 Design Objectives

The main objective of the Star Truk Co. is to design a fleet of
vehicles to transport base components, cargo, and personnel between
a Martian parking orbit and the base locations. This fleet will
include a combination of vehicles, the designs of which depend on
the specific functions to be served. Possible vehicles include: Mars
one way landers (OWL), Mars ascent/descent vehicles (ADV), orbital
maneuvering vehicles (OMV), orbital transfer vehicles (OTV), and a
transportation node in Martian orbit (MarsPort). In addition,

satellites will be deployed to provide communication.

1.3 Assumptions
In order to define the scope of the transportation problem, the

following assumptions have been made:

 Year of initial cargo departure from low Earth
orbit (LEO) and/or low Lunar orbit (LLO) will be
between 2020 and 2030.

« A space station suited for vehicle assembly will
be operational in LEO and/or LLO.

« A Lunar base will be operational and producing
liquid oxygen .

» Elements of the Phobos and Mars bases, along with
equipment needed to assemble the bases will be
delivered to the Martian system from the Earth
system by a single ITV or a series of ITV's.

« Each ITV will enter Martian orbit in the vicinity of
Phobos. It will carry base equipment, satellites,
and elements of the transportation system.
MarsPort (a truss structure, similar to the delta-



truss space station proposed for Earth orbit) could
be the backbone of the vehicle or just another
payload.

« OMV's and OTV's will be operational (with one
generation of experience).

* An inspection team will travel to Phobos to verify
base construction. After the initial inspection, the
Phobos base will be crew-tended.

* Mars base construction will begin after Phobos
base construction has been verified.

« Data from precursor missions of cooperating
nations will be available.

* Accurate models of the Martian atmosphere will be
available.

- Before the ITV carrying the Mars base arrives, the
Phobos base will have produced fuel to support
vehicle flights as required by mission scenarios.

1.4 Design Philosophy

Since this project is a conceptual design of mission and
spacecrafts, the emphasis is on the overview of the design and not
at the subsystem level. Furthermore, the design of a vehicle or
system is an iterative process, and the mission and vehicle designs
presented in this report represent the results from only the initial

iteration.



1.5 Final Product

The Star Truk Co. will provide a conceptual design for a
convenient, integrated means to transport materials and personnel
to and from the bases within the Martian system. All the technology
needed for the current plan is expected to be available for use at the
projected date of cargo departure from the Earth system. A modular
design for the transportation system will provide for easily
implemented contingency plans, so that difficulties with any one
vehicle will have a minimal effect on the progress of the total

mission.



2. Technical Section

A transportation fleet will be required to move construction
equipment and base components from a parking orbit to the surfaces
of Mars and Phobos. OMV's will be used for proximity operations
within an orbit including cargo transfer from the ITV to Phobos.
Travel to Mars will require vehicles capable of soft landing on the
Martian surface. The majority of the initial Mars base cargo will be
delivered with by the OWL's; smaller ADV's will be used for
delivering additional cargo and personnel. Both types of landers will
be transferred from Phobos orbit to low Mars orbit using OTV's
rather than their own engines to maximize the fuel efficiency of the
fleet.

An iterative approach was taken to the design of the fleet and
its components. Vehicles were adapted to the proposed scenario,
and the scenario was modified as vehicle capabilities were better
defined.

2.1 Vehicle Selection Process

A maintainable and efficient transportation system was
designed to accommodate the robotic construction of bases on both
Mars and Phobos. This system employs a MarsPort, Mars surface
landers, OMV's, and OTV's. The specific configuration and the number
of each type of vehicle were determined by a set of design criteria.

Important considerations during vehicle design include:



» Fulfillment of mission objective. Accomplishing a
prescribed mission is the highest priority for any
vehicle design. However, mission requirements
may dictate a design that is not optimal

* Modular design with redundancy. If one vehicle
fails, another vehicle should be able to complete
the failed vehicle's mission. Similarly, components
from vehicles should be interchangeable (i.e. the
OWL, ADV, and OTV could all use the same type of
main engine.)

« A favorable propellant to total vehicle mass ratio.
This ratio provides insight into the efficiency of
the vehicle as an overall system.

» Flexibility and growth capability. With time, the

role of the Martian outpost in interplanetary
exploration will undoubtedly expand. Ability to
upgrade flight software and hardware such as
computers is desirable since designing entirely
new systems is expensive.

The reader is refered to Appendix A for a more complete

discussion of vehicle selection.

2.2 Orbital Vehicles

This section discusses the orbital vehicles which will be used
in the Star Truk Company transportation system. OMV's will
transfer cargo from the ITV to Phobos and perform prox-ops, OTV's
will transfer the atmospheric entry vehicles and cargo to LMO, and

MarsPort will refuel and service vehicles in LMO.

2.2.1 Orbital Vehicle Scenarios
The Star Truk Co. operations scenario covers two missions

which will occur during different time frames: Phobos base



construction and, later, Mars base construction. One or more ITV's
will be dedicated to each mission, and as each ITV approaches its
parking orbit, the communication satellites on board the ITV will be
deployed. The ITV will then proceed to a co-orbit with Phobos.
After each ITV is positioned in its parking orbit near Phobos, the
other vehicles, base components, cargo, and the MarsPort will be
removed by an OMV and transported to their respective locations by
an OMV or an OTV. Phobos cargo will proceed directly to the surface,
and landers bound for the Martian surface will receive fuel from
Phobos before OTV's transfer them to LMO. Details of the orbital
mechanics for both the solar system and the Martian system are
covered in Appendix B.

The remainder of the scenario requires a prediction of the
technology and the support behind the program. Rather than choosing
a technology baseline for a given year, it was decided to construct
two scenarios that represent opposite ends of the spectrum
regarding the assumed technology and the assumed political and
economic environments supporting the program. These scenarios
have been termed upside and downside scenarios.

An upside scenario assumes that the political and economic
environments favor the development of a large scale program. With
this support, it assumes that all advanced technologies critical to
the program can be developed within the specified context and time
frame. Also, an upside scenario suggests areas of technology which
should be developed.

A downside scenario, on the other hand, assumes an unfavorable

political and economic environment. Without the desired support,
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limited technology and funding will be available to the program.
Current technology or a conservative projection of future technology
is used, therefore the scenario does little to identify which
technologies should be developed.

This report emphasizes the upside scenario because it describes
a more efficient and adaptable transportation system. The upside
requires a larger initial investment, but the long-term benefits of a
more sophisticated vehicle fleet will better prepare man for a
permanent presence at Mars.

Table 1 lists the vehicles and their uses in the two scenarios.
An overview of the two scenarios follows. Descriptions of specific

operations are found in section 2.4,

2.2,1.1 Upside Scenario

All vehicles mentioned above are used in the upside scenario.
The first ITV will insert into a chaser orbit with Phobos, and the
OMV's will then be used to deliver the Phobos base elements.

OTV's and the MarsPort will not be used with the Phobos
mission, but the MarsPort will be delivered on this cargo mission to
alleviate the cargo mass requirements on the subsequent Mars base
mission.

Years later, another ITV with the Mars base cargo will insert
into Phobos orbit. Since fuel production and vehicle service
facilities will be available at Phobos, the ADV's, the OWL's and the
OTV's will be transported from Earth without fuel, thereby reducing

the payload mass.
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The tanks of MarsPort will also be fueled at Phobos prior to
delivery of the MarsPort to LMO by the OTV's. At that time service
and refueling facilities will be available in the LMO and at Phobos.
The OTV's will then begin transporting the Mars landers to LMO
where the OTV's will assist the OWL's with de-orbit burns. Since
this maneuver will require large amounts of fuel, the OTV will
refuel at MarsPort prior to the burn. (As discussed in section
2.4.4.5, the efficiency of locating refueling facilities at MarsPort

should be addressed in further studies.)

2.2.1.2 Downside Scenario

The OTV's and MarsPort will not be used in the downside
scenario, so the refueling and service facilities will be located at
the Phobos base only. Furthermore, the Mars landers will be required
to perform their own orbit maneuvers and de-orbit burns. The
delivery of the Phobos base will proceed as in the upside scenario,
using the OMV's and the ITV.

2.2.2 Orbital Vehicle Requirements

All orbital vehicles must be transportable from Earth to Mars.
This study assumes that this criterion has been considered and can
be satisfied. In addition, the vehicles must be designed to meet the

mission requirements listed below:

« OTV's must provide the necessary orbital
transfer AV to a given payload mass such as the
OowL

11



OMV’'s must maneuver Phobos base components
and achieve zero velocity three meters above the
Phobos surface.

For the first mission, all fuel used in the Mar-
tian system must be transported from Earth.

Empty fuel tanks will be delivered to Phobos.

The orbital mechanics of the transportation
fleet scenario (such as placement of the
MarsPort) must accommodate efficient use of
vehicles and fuel.

MarsPort should be a stable platform requiring
minimal reboost and station keeping propellants.

There must be contingency plans in case of vehi-
cle failure.

All operations must be performed autonomously.
The entire transportation system must be adapt-

able to future expansion of the Mars and Phobos
base capabilities.

Orbital Vehicle Descriptions

Earth system.

possibility of a low-thrust OTV was not explored.

The designs for the OMV, OTV, and MarsPort were adapted from

the designs of vehicles which are currently being considered for the

Although an attempt was made to account for the

technological advances which will be made in these areas, the

mass of the OWL, and the absence of time constraints on the orbit
transfer maneuver, a future study should address the feasibility of

using a low-thrust OTV. This type of vehicle may be more efficient

12
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for moving large masses, although the orbit transfer times will be
longer.

In the following sections, the design and purpose each vehicle is
briefly presented. The method used to size the orbital vehicles is

presented in Appendix C.

2.2.3.1 Interplanetary Transfer Vehicle (ITV)

This study is concerned only with the configuration of the cargo
on the ITV and the size of the nuclear power plant which may be
removed from the vehicle for use at the bases. Therefore, the
selection of an ITV and its subsystems will not be addressed in this
study. As a reference, the Kepler vehicle, presented in the
University of Michigan Study, is shown in Figure 1. This vehicle uses
nuclear powered ionic propulsion and incorporates a 10 megawatt

nuclear power plant.

2.2.3.2 Orbital Maneuvering Vehicle (OMV)

OMV's are proposed for moving payloads in the proximity of
MarsPort and for delivering payloads to Phobos. A representative
OMYV is shown in Figure 2. The purpose of the OMV is to move
payloads short distances, to perform prox-ops, and (with a service
package attached) to perform some vehicle maintenance functions.

The main propulsion system and fuel tanks were sized such that
one OMV can move 120 MT (the mass of the Phobos base) from the
ITV to Phobos (10 km). These results are shown in Table 2. The RCS

will provide 3-axis attitude control with a high degree of control
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and accuracy. Both propulsion systems will use LH2/LOX fuel

produced on Phobos.

2.2.3.3 Orbital Transfer Vehicle (OTV)

The OTV's, shown in Figure 3, were sized without aerobraking
shield to transport Martian landing vehicles and payloads between
Phobos and Low Mars Orbit (LMO). OTV's are being designed for LEO
to geosynchronous orbit (GEO) missions and it is proposed to adapt
these vehicles to meet Star Truk Co. mission requirements.

The aerobraking shield shown in the figure would reduce the
propellant required to perform the Phobos to Mars orbit transfer.
Implementation of this technique is questionable at Mars due to the

thin atmosphere and the high mountain peaks.

2.2.3.4 Transportation Node (MarsPort)

A delta truss structure is proposed for the MarsPort. The truss
structure will provide a stable configuration with large surface area
available for attachment of payloads and fuel tanks. Some of the
possible functions of the MarsPort include: storage depot for
supplies and fuel, servicing station for vehicles, and refueling
station for vehicles. MarsPort will have attitude control devices
such as control moment gyros, but reboost will be provided by its
attending OMV or by an OTV.

2.2.4 Orbital Vehicle Subsystems
The following section discusses the major subsystems of the

orbital vehicles.
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2.2.4.1 Computer Systems and Communications

The operation of the orbital vehicles will be monitored and
coordinated by an expert computer system, the foreman. Initially,
this foreman will function as the main computer of the ITV. In that
capacity, it will perform GNC for the ITV, monitor the payloads and
other vehicles, communicate with Earth, and act as trouble shooter
for the mission. The foreman will be delivered to Phobos with the
robots. There, its program will be reconfigured to monitor and
coordinate the robots and to continue observing and coordinating the
other vehicles. Communications between the foreman and the fleet
will be accomplished with the COMSAT's.

The OMV's and OTV's will operate autonomously, but the foreman
will monitor them more closely during critical tasks such as
docking. In addition, the foreman will conduct periodic systems
checks on the vehicles.

Each of the OMV's and OTV's will have an onboard computer with
simpler capacities than those of the foreman. It will be programmed
to perform a particular task such as to deliver the dock to the
beacon on the Phobian surface. An orbital vehicle will also monitor
its own equipment status and perform GNC. If it encounters any
problems, it will communicate with the foreman for instructions.

If an OMV or OTV has a thruster misfire or otherwise strays
from its planned mission, it will attempt to communicate with the
foreman. If communication fails, it will home in on a beacon
(located on Phobos and on the ITV) and proceed to that location. In

the worst case, if main guidance systems fail, the vehicle will rely
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on a star tracker to locate its position relative to the satellites or

to selected stars.

2.2.4.2. Radiation Protection

Since the orbital vehicles will not transport personnel within
them, radiation shielding will be confined to sensitive equipment
areas. In addition, shielded hangar facilities will be available to
protect the OMV's and OTV's during long-term storage and while

sensitive equipment is exposed for service.

2.2.4.3 Power System

Power for the computers, cryogenic pumps, and other equipment
on each vehicle will be provided by rechargeable celis which will be
charged at Phobos. Depending on the technology available, it is
possible that each vehicle will be equipped with a small nuclear

reactor.

2.2.4.4 Thermal Control System

The need for thermal control will be minimal on the exposed
truss structures of the orbital vehicles. Small radiator devices
could be provided for each heat generating component, or a central
heat dissipating system could be used. During transport of the
landers, a larger thermal control system could be attached to the

OTV to dissipate the heat accumulated in the lander.
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2.3 Atmospheric Entry Vehicles

This sections discuss the vehicles that will be used in
delivering cargo to the Martian surface. Designs for three different
saucer type vehicles will be presented. They are:

» a large one way lander
» a medium size ascent/descent vehicle
« a small ascent/descent vehicle

Each of these vehicle types will be discussed in the following
sections. For a detailed description of the vehicle sizing, the reader

is refer to Appendix D.

2.3.1 Atmospheric Vehicle Requirements

Mars landers are required to take base construction equipment
and base modules from Mars orbit to the Martian surface. Also, a
lander may be required to transport some Phobos base construction
equipment and one of the Phobos base modules to the Martian
surface. Transportation will also be required for personnel. The

following requirements will be placed on the landers:
« All operations must be performed autonomously.

« Landers must be able to withstand aerodynamic heating
during descent.

« Landers will be limited to 10-g loadings for cargo and
3-g for personnel.

« Landers must be stable on the Martian surface.

« Landers must be capable of carrying a variety of
payload sizes and shapes.
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« OWL fuel tanks will be removable and will be used for
fuel storage on the Martian surface.

« Landers will employ some level of redundancy in
critical systems such as communication and control.

« Landers must provide for easy cargo loading and
unloading.

* ADV's must be capable of ascending to at least LMO
(104 km).

* At least one ADV will be capable of transporting
personnel.
23.2 One Way Lander (OWL-200)
The following section will discuss the purpose, requirements,
constraints, physical descriptions, and subsystem requirements of
the OWL-200.

2.3.2.1 Purpose, Requirements, and Constraints

The One Way Lander-200 (OWL-200) is illustrated in Figure 4.
The numeric suffix indicates the payload capacity of this vehicle in
metric tons. Four or five of these large landers are proposed for
landing the Mars base construction robots and the Mars base
modules. The first OWL-200 will carry robots and equipment needed
for initial base construction. Subsequent landings of the OWL-200
will carry base habitat modules and a manufacturing facility to the

surface.

The following requirements have been imposed on this vehicle:

1) The vehicle must land 200 MT of payload.
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2) Once landed, the vehicle will be used as a
service/storage facility for the smaller landers
and therefore, must be large enough for the ADV-50
and ADV-10 to fit inside.

3).Main engines must be removable for spare parts.

2.3.2.2 Physical Descriptions

The OWL will be a saucer shaped vehicle with two main decks.
The upper deck will carry fuel tanks which will surround .a central
core containing navigation and power supply packages. The
propellant will be located above the payload in order to have the
vehicle center of gravity decrease in height as it descends instead
of increase as would be the case if the propellant were located
below the payload. The lower deck will carry cargo and additional
fuel tanks. Below the lower deck will be the main engines which
will be used to provide a soft landing. A heat shield will cover the
lower surface of the OWL during atmospheric entry. See Appendix E

for a dicussion on the numerical sizing of the OWL.

2.3.2.3 Subsystem Requirements

The following discussion includes the most important
subsystems as perceived by the Star Truk Company members.
Wherever applicable, the subsystems on board the OWL will be

removable from the vehicle.

« Communication System |
The OWL-200 will maintain communication with the operations

control center (OCC) during descent. (The OCC will be located at

24



Phobos as discussed in section 2.4.5.) Communication will be
constant provided that all COMSATS are operational and except for
the unavoidable blackout time during atmospheric entry (if this
phenomenon occurs on Mars). This two-way communication system
will send the spacecraft's attitude data to and receive commands
from the OCC for any attitude adjustments. Furthermore, special
connection ports will be integrated in the system to allow the
robots to communicate with the OCC. Since this communication
system could be salvaged by M.I.N.G. for temporary communication
during initial base construction and backup communication in an
emergency, the communication package on selected OWL's may
include additional features such as tele-video, keyboard, etc., to
accommodate human communications. In addition, due to the crucial
role of the communication system in the OWL mission, this system

will have at least double redundancy.

» Equipment Status Monitoring (ESM) System

During the transit from Earth to Mars, the OWL will perform
periodic self-diagnostic tests which will ensure that all systems
(with the possible exception of pyrotechnic and propulsion) are
functioning properly. The ESM will relay the results to Earth via the
communication system of either the ITV or the OWL, whichever
appropriate. Upon arrival in the Martian system, all subsystems
(including the ESM) will undergo an equipment status verification
test which will be performed autonomously or manually during the

fueling process.
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* Attitude Control and Navigation System (ACNS)

During the descent sequence, the attitude and altitude of the
OWL will be monitored by the ACNS. This system will issue
commands for attitude correction and hover sequence initiation
during the descent profile of the OWL. All ACNS commands can be
overridden by OCC in case of system malfunction. This means that
the commands received from OCC must agree with the programmed
commands in at least two of the three ACNS on board to avoid
erroneous commands. If total override is required, then the OCC
must issue a command to shut down the Logic Unit of the ACNS,

where the programmed commands are stored and executed.

* Heat Shield

Although the Martian atmosphere is extremely thin compared to
that of Earth, aerodynamic heating cannot be ignored during
atmospheric entry on Mars. Therefore, it is proposed that a heat
shield be used to protect the OWL from aerodynamic heating during
entry. This shield will be ejected pyrotechnically in order to
minimize the total mass of the vehicle during propulsive
deceleration. Unless there is a need to use the heat shield in another
capacity after ejection, the shield will be of a charring ablator type,
since charring ablators are relatively light, inexpensive and easily

removed.

* Landing Gear |
The landing gear will absorb the landing impact and provide

clearance between the ground and main engine nozzles. However,
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since the vehicle is a cargo transport, the vehicle height should be
minimized to facilitate convenient cargo removal. Because of this
dual requirement, it is proposed that the legs be collapsible. During
transport and before heat shield ejection, the landing gear will be in
the collapsed position. After shield ejection, the gear will be

extended hydraulically and collapsed after landing.

« Power System
The OWL will be equipped with a self-contained nuclear power
supply unit. This unit could be removed from the OWL to provide
extra room when the vehicle is converted to a storage unit or hangar.
Because the power system could be used in the Mars base operation,
either in a temporary capacity or in an emergency situation, the
power requirement may be higher than that needed for the OWL

operation.

« Radiation Shielding
Since the OWL will not be used as a personnel carrier during the
base construction phase, radiation shielding will be minimal in order
to minimize vehicle mass. Radiation protection will be provided

mainly by the casing of the individual subsystems.

« Propulsion Systems
The propulsion systems of the OWL-200 include the Main Engines
(ME), the Attitude Control and Maneuvering Engines (ACME) and the
De_-orbit Assist Boosters (DAB). The Main Engines will provide the

propulsive power to decelerate the vehicle during entry and to hover
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the vehicle at the landing site. These engines will be used later as
replacement parts for the ADV's and the OTV's. The ACME will
provide 3-axis attitude correction as well as lateral thrust to guide
the vehicle to the landing site. The fuel to be used in the ME and the
ACME will be LH2/LOX combination since this fuel will be produced
at Phobos. The ACME may use a different type of fuel if a more
powerful fuel is developed (i.e., high specific impulse - mass ratio).
The DAB will help de-orbit the OWL (along with the OTV's) and will
separate from the vehicle before the latter enters the atmosphere.
The type of fuel to be used by the DAB is determined mainly by

economic factors, since DAB could either be expendable or reusable.

* Thermal Control System

The OWL may experience radiation heating during transit from
Earth to Mars. To dissipate this heat, the OWL will be connected to
the thermal control system of the ITV. During its trip from the ITV
to MarsPort, the OWL will be connected to an external thermal
control system which could be attached to the OTV or directly to the
OWL. A system attached to the OWL would be removed from the
vehicle before de-orbit occurs. The elapsed time of the descent
profile will be relatively short, so the internal temperature of the

OWL should not exceed the operating limits of the subsystems.

2.3.3 Ascent/Descent Vehicle-50 (ADV-50)

The following section will discuss the purpose, requirements,
constraints, physical descriptions, and subsystem requirements of
the ADV-50.
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2.3.3.1 Purpose, Requirements and Constraints

The ADV-50 will be used to land individual base modules which
will be added to the Martian base. This capability will be necessary
during initial construction of the base, since the Phobos base
medical module will be moved to the Martian base for permanent use
there.

The following requirements have been placed on this vehicle:

1) The vehicle must land 50 MT of payload. This is the
mass of an individual Mars base module.

2) The vehicle must be able to fit an individual base
module in its payload bay area. A base module is a
half-cylinder 3 meters in radius and 13 meters in
length.

3) The vehicle must ascend to the low Mars parking orbit
with 30 MT of payload.

2.3.3.2 Physical Descriptions

The ADV design, shown in Figure 5, includes a payload platform
covered by a protective shield, all necessary vehicle systems, and a
retractable heat shield. Cargo will be located on top of the payload
platform in standardized attachable containers. Because the cargo
will be located ahove the main platform, the vehicle will be capable
of transporting a wide range of payload in sizes and shapes. A
disadvantage of this method of -cargo placement is that the location
of the vehicle center of gravity will rise as it burns its propellant
since the propellant tanks are located below the payload. See

Appendix E for a discussion of numerical sizing of the ADV-50.
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2.3.3.3 Subsystems Requirements
Although none of the ADV-50 subsystems is intended to be
removed like those of the OWL, most should have easy access for

repair and maintenance purposes.

« Communication Systems

Similar to the OWL-200 communication requirements, the ADV-
50 will maintain constant communication with the OCC during
descent. This two-way communication system will send the
spacecraft attitude data to and receive commands from OCC for any
attitude adjustments. Due to the crucial role of the communication
system in the ADV mission, this system will have at least double
redundancy. Since the ADV is expected to be in service for a long
period of time, the design of the communication system must allow

for incorporation of new technology into the system.

 Equipment Status Monitoring (ESM) Systems
The ADV-50 will be equipped with an ESM system similar to
that of the OWL's. An equipment status verification test will be
performed on the ADV before departure and after arrival in
subsequent missions of the vehicle in addition to the initial test

upon its arrival at the Martian system.

- Attitude Control and Navigation System (ACNS)
The ACNS of the ADV will be similar to the OWL's. However, the
accuracy of this system will be higher than that of the OWL since

the ADV is required to land in a prepared landing site.
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* Heat Shield

Due to the reusability of the ADV, its heat shield will not be
ejected like that of the OWL-200. Therefore, it is proposed that an
advanced carbon-carbon heat tile shield be used for aerodynamic
heating protection.  This type of tile is a proven technology;
therefore, it is more reliable than other experimental heat tiles.
Although titanium heat tile has been suggested, it is believe that the
use of titanium would be too expensive to justify becauée of its high
demand in military applications.

The ADV heat shield must also expose the main engines during
propulsive deceleration; to accomplish this, the heat shield will
open in a flower petal-like configuration to expose the main engine
nozzle. If the heat shield cannot be opened, this region of the shield
will be pyrotechnically removed. All heat tiles will be inspected

before and after each ADV mission.

* Landing Gear

Although the landing gear system on the ADV serves the same
dual requirement as that of the OWL (protects the vehicle and allows
easy access to cargo), the same collapsible concept cannot be used
here since it is believed that such concept would not resulted in a
favorable mass versus convenience factor. Instead, a simple rod is
proposed. Thereforé, the ADV" will have three rods or legs stored
flush along the side of the heat shield and will be deployed at an
angle of 30° from the vertical. This angle was chosen as a first

order analysis based on the following constraints: physical,
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stability, and structural. Minimum stress occurs when the leg is
exactly vertical, however, this configuration does not seemed to
provide the spacecraft with stability when landed. Since the leg has
finite length, there exists an angle which provides the optimum
combination of stability and clearance between the main engines and

the ground. See Appendix F for stress analysis on landing gear.

 Power Systems
The ADV will be equipped with a self-contained nuclear power
supply unit. Due to a low power output requirement, the ADV can be
equipped with batteries or fuel cells if nuclear power is not

feasible.

« Radiation Shielding
Design criteria for radiation protection on the ADV will be

similar to that of the OWL.

 Propulsion Systems

The propulsion systems of the ADV-50 consist of the ME and the
ACME. The Main Engines will provide the propulsive power to
decelerate the vehicle during descent and to hover the vehicle at the
landing site. In addition, they can be replaced by the ME's from the
OWL-200 if need. The ACME will provide 3-axis attitude correction
as well as lateral thrust to guide the vehicle to the landing site.
The fuel to be used in the ME and the ACME will be LH2/LOX

combination since this fuel is produced at Phobos.
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» Thermal Control System
The thermal control system of the ADV will have the same

requirements as those of the OWL.

2.3.4 Ascent/Descent Vehicle-10 (ADV-10)

The following section will discuss the purpose, requirements,
constraints, physical descriptions, and subsystem requirements of
the ADV-10.

2.3.4.1 Purpose, Requirements and Constraints

There are actually two types of vehicle which fall within the
ADV-10 designation. The first type is a payload vehicle which is
essentially a down-sized ADV-50. This vehicle is proposed for
transporting up to 10 MT of cargo to and from the Mars base. The
second vehicle type is designated as the ADV-10P and its purpose is
to transport personnel to and from the Martian base. This vehicle
will have a higher level of redundancy than the cargo ADV, an ECLSS
system, and it will allow for manual override of the autonomous

control system.

2.3.4.2 Physical Descriptions
The ADV-10 class is physically smaller than the ADV-50 class,
otherwise, both classes are similar in shape. See Appendix E for a

discussion of the numerical sizing for the ADV-10.
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2.3.4.3 Subsystem Requirements

The subsystem requirements of the ADV-10 class are similar to
those of the ADV-50 class, therefore, only major differences that
exist between the ADV-10 and the ADV-10P will be noted here. It
should be emphasized that since the ADV-10P is man rated, it will

have higher redundancy requirements than the ADV-10.

» Airlock
The ADV-10P will be equipped with an airlock for docking with
the Phobos base and for exiting the vehicle. This airlock will be
located inside the ADV-10P at the top of the vehicle personnel

carrier dome.

« Communication Systems
Due to human presence on the ADV-10P, tele-video and other
relevants communication equipment will be included in the
personnel carrier dome in addition to the usual complement of

communication systems on the ADV-10.

- ECLSS
The ADV-10P will be equipped with an Environmental Control
and Life Support System which will be located in the personnel
carrier dome. Since the vehicle is not expected to make long trips,
the ECLSS will provide life support for a maximum of three days
with the maximum crew capacity. Waste management and system

replenishment will be performed at Phobos and Mars base.
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* Attitude Control and Navigation Systems (ACNS)
The ADV-10P will be equipped with manual override of the
ACNS, otherwise, this system will function similar to the ADV-50
and ADV-10.

* Power Systems
Due to the higher redundancy and the additional equipment such
as the ECLSS, the power output requirement of the ADV-10P will be
higher than that of the ADV-10.

* Radiation Shielding
Since the ADV-10P is a personnel carrier, it must provide
adequate radiation protection for the crew. To minimize the vehicle
mass, however, only the crew deck portion of the vehicle will have
the maximum radiation protection. Vehicle subsystems will be

shielded only where necessary.

2.4 Orbital Operations

This section discusses the following operations:

* ITV Orbit Insertion and Satellite Deployment
« Docking and Cargo Removal

* Payload Management

« Service Facility Requirements
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2.4.1

A description of ITV orbit insertion and satellite deployment

follows.

2.4.11

Phobos Mission Orbit insertion and satellite deployment are
illustrated in Figure 6.
of the procedure correspond to the numbered locations in the figure.
The Phobian satellites will provide a communication link between

the robots on the Phobos surface as well as a communication with

ITV Orbit Insertion and Satellite Déployment

Phobos Mission

Earth through COMSAT2.

1

H>

Initially, the ITV will insert into an orbit having the
same inclination and eccentricity as the Phobian
orbit, but its radius of periapsis will be greater. The
orbit of the ITV will then have a slower mean motion,
so Phobos will eventually "catch up" with it.

After a status check from Earth but before reaching
Phobos, the ITV will deploy the COMSAT1 with a
spring loaded device. Deployment will force the
satellite into an orbit at least 25 km higher than that
of Phobos. This will allow the satellite to pass
behind Phobos.

A burn will be executed to insert the satellite into the
Phobian orbit 120° behiqd Phobos.

When the ITV reaches the Phobos vicinity, it will also
insert into a co-orbit with Phobos.
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5 While the ITV is in this chaser orbit, the cargo will be
removed as described in section 2.4.3.

6 The ITV communications system, capable of Mars-to-
Earth communications, along with a small attitude
control system will then be deployed as a second
COMSAT. The satellite's orbit radius will be
decreased with a thruster burn, moving it away from
Phobos in the orbit direction. Another burn will insert
COMSAT2 into a co-orbit with Phobos and COMSAT1,
120° from each.

2.4.1.2 Mars Mission

Mars Mission Orbit insertion and satellite deployment are
illustrated in Figure 7. In the description which follows, the steps
of the procedure correspond to the numbered locations in the figure.
The Mars-synchronous satellites, in conjunction with the Phobos
satellites, will provide a constant communication link between
Phobos and Mars as well as communication with Earth through two
of the satellites. Communication with the ADV's and OWL's will also
be accomplished with the satellites.

During the transfer from Earth to Mars and prior to arrival at
the Martian system, a cluster of three communication satellites will
be released by a spring mechanism. This satellite cluster package
consists of one Mars-to-Earth communications satellite (EMSAT) and
two Mars System communications satellites (MSAT1 and MSAT2).

After satellite deployment, the following events will occur:

jia The ITV will insert into a co-orbit with Phobos to
facilitate fuel and cargo transfer.
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ib The satellite cluster will insert into a Mars
synchronous orbit at an orbital radius of
approximately six Mars radii.

2 The satellite cluster will maneuver into a position
such that there is a 60° separation angle between
the cluster and the future Mars base location.

3 Spring loaded devices, exerting equal and opposite
forces on EMSAT will deploy MSAT1 and MSAT2
simultaneously. One will go into a low, fast orbit
with respect to the EMSAT, while the other goes into
a high, slow orbit

>

Each MSAT will be inserted into Mars-synchronous
orbit after achieving a separation angle of 120° from
EMSAT.

5 The Mars landing vehicles will be fueled at Phobos.
Then the OTV's will transport them to LMO. (See
section 2.4.3 for details.) De-orbit burns will be
executed, allowing the landers to enter the Martian
atmosphere.

The final configuration of the communication satellites,
after the Phobos base and Mars base deliveries, is illustrated

in Figure 8.
2.4.2 Docking and Cargo Removal

The Star Truk Company docking system design presents ideas

which may be used in the future to connect U.S. and Russian manned
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spacecraft. The docking system requirements, design, and procedure

are described in this section.

2.4.2.1 Design Requirements
The following requirements will be placed on the docking

system:

« All vehicles in the Star Truk transportation system
will be equipped with compatible docking
mechanisms.

« Each vehicle will be equipped with two docking
mechanisms located symmetrically on opposite sides
of the vehicle. This configuration will allow
simultaneous attachment to the OMV and ITV.

2.4.2.2 Design Description and Docking Procedure

The docking mechanism system is shown in Figure 9. The base
will be attached directly to the vehicle while supporting the
attenuators and capture frame.

The vehicle referred to as "active" is the maneuvering vehicle
and the "passive” vehicle is the maneuvered one. Upon initiation of
the docking procedure, the active vehicle will have its attenuators
extended while the passive vehicle's attenuators will be retracted.
The attenuators will. act as shock absorbers to reduce the impact
forces of docking and also allow for minor misalignment of vehicles
upon capture. Once the capture latches have been engaged, the

attenuators will retract to realign the mating vehicles. Finally, the
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structural latches will be engaged and the procedure will be

completed.

2.4.3 Payload Management

The OMV is well suited for retrieval and deployment of vehicles
as well as maneuvering payloads. The OTV, on the other hand, can
provide the thrust necessary for orbit transfer. Specializing the
functions of the vehicles in the transportation fleet results in a
more efficient system.

The OMV can be operated very close to the ITV and MarsPort
whereas the OTV and landers do not have the capability to use their
own engines within 300-1000 m of the ITV or the MarsPort.
According to the 1986 Space Port Systems group study at The
University of Texas, the primary concerns dictating this limitation
are environmental contamination due to propulsion effluents, plume
impingement on the ITV, and safety. A secondary concern is the
difficulty in achieving zero-momentum, precision docking into a

relatively small area, particularly with an unmanned vehicle.

2.4.3.1 Phobos Base Delivery

During the Phobos mission, three OMV's will be transported to
the Martian system, each docked to the payload package it will
transport. Their fuel tanks will be pre-connected to the cryogenic
storage tanks, allowing them to be filled soon after arrival in the
parking orbit (10 km from the surface of Phobos.) After a systems

check, they will begin operations.
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The OMV's will transfer the components of the Phobos base to
the surface of Phobos (point 5 in Figure 6) along a trajectory
determined by the CW equations. As the OMV and payload slowly
travel approximately 5 m above the surface, retro-rockets will bring
the vehicle to a hover approximately 3 m above the delivery location.
There, the OMV will release the payload, allowing it to fall to the
surface. After delivering the payload, the OMV will be available to
assist the robots with base set-up.

The delivery sequence proceeds as follows:

1. The OMV will transfer the dock, empty ITV fuel
tanks, and engines to an unprepared site at Stickney
Crater. Next it will extend a power cable to an
unprepared site for the power plant connection.

2. After the robots follow the power cable from the
dock to the power plant site, they will prepare the
site for plant arrival. The OMV will then transfer
the power plant to the site and extend a cable to the
prospective manned base site.

3. After the robots follow the power cable from the
power plant to the base site, they will prepare the
site for base arrival. Next, the OMV will transfer
the habitat modules to its site.

4. Upon returning to the stripped ITV, COMSAT2 will be
deployed and the remaining truss structure and fuel
tanks will be taken to the surface/service facility.

5. After the OMV's have completed all base
construction tasks they will be checked out, safed,
and stored in a hangar.
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2.4.3.2 Mars Base Delivery
This section describes the sequence of vehicle operations for
the orbital vehicles and the atmospheric vehicles in delivering the

Mars base.

2.4.3.2.1 Orbital Vehicles Mission Profile

When the ITV carrying the Mars base arrives in the Martian
system, the Phobos fuel production facility will have a supply of
LH2/LOX stored in tanks. The ITV will transport the OTV's, OWL's,
and ADV's to the Martian system with their fuel tanks empty, and
they will be filled at Phobos or at MarsPort.

Upon arrival of the ITV in co-orbit with Phobos, the three OMV's
will be removed from their hangar on Phobos, fueled, and prepared
for operation. The OMV's will first assist the robots in attaching
some of the tanks to the truss structure (MarsPort) which will be in
place from the Phobos base delivery. Due to limitations of the OMV
capabilities, MarsPort must initially have a mass of 120 MT or less.

An OMV will then transport ‘the partially assembled MarsPort to
the ITV vicinity, keeping it 300-1000 m from the ITV. Meanwhile,
the other two OMV's will transport filled fuel tanks to the ITV in
order to fuel up the OTV's. (The larger vehicles will not be brought
into the sphere of influence of Phobos in order to minimize the
thrust requirements of the OMV).

After delivering fuel to the OTV's, an OMV will dock with an
OTV, and remove the latter from the ITV. The OMV will then move
the OTV from 300 to 1000 meters to MarsPort, and attach the OTV to
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MarsPort. Finally, the OMV's will complete the transfer of fuel from
Phobos to MarsPort.

One OMV will remain with MarsPort, and the OTV will transfer
the MarsPort and its attached OMV to LMO. This will establish a
service/refueling facility in LMO, complementing the facility at
Phobos.

The OTV will then return to the Phobian orbit. There, an OMV
will retrieve it, mate it to a landing vehicle, and move the coupled
pair 300-1000 m from the ITV. This OMV could then retrieve a
returning OTV and repeat the cycle. Meanwhile, another OMV will
continue to transfer fuel from Phobos to the returning OTV's.

The OTV will move the lander to LMO where the MarsPort-based
OMV will ferry them to MarsPort. There all three of the vehicles
will be refueled. The OTV/lander pair will be ferried to the de-orbit
position where the OTV will assist with the de-orbit burn. The OTV
will then separate from the atmospheric vehicle, return to MarsPort

for fuel, and proceed to Phobos.

2.4.3.2.2 OWL Mission Profile

The OWL will arrive in the Martian system attached to the ITV.
From there, it will be transported to the low Mars parking orbit by
one or more of the OTV's. Once a final vehicle checkout is performed
and final landing site reconnaissance is made, the OWL will ignite
the de-orbit assist boosters to ’perform its de-orbit burn in addition
to the burn provided by the attached OTV. It will follow a ballistic
trajectory through the Martian atmosphere and, at an optimum

altitude, it will deploy parachutes to reduce its velocity. The
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ejection of the OWL's ablative heat shield will coincide with
parachute deployment since the deceleration caused by the
parachutes will aid in heat shield ejection. Immediately after heat
shield ejection, the main engines will initiate their propulsive
deceleration burn and simultaneously, the landing gear will be
extended. At a predetermined altitude, the OWL will commence
hover sequence and approach the landing site. Upon landing, system
safing will occur and a system checkout will be performed by the
status monitoring equipment. The results of this checkout will be
relayed to OCC and the OWL will then be ready for unloading.

Once the OWL has landed, it will be used on the surface as a
temporary storage area for its cargo and then as a permanent-hangar
facility for the Mars base construction equipment, robots, and the
ADV-50 and ADV-10 landing vehicles. It is also possible that one of
the OWL's will be converted to a recreation facility for the base

personnel.

2.4.3.2.3 ADV-50 Mission profile

The ADV-50's will arrive in the Martian system on the ITV.
From there, they will be transported to the low Mars parking orbit by
one of the OTV's. Although the ADV could perform its own de-orbit
burn by exposing the ME, it is recommended that this capability
should be restricted to emergency situation only because there is a
possibility that mechanical failure might prevent the opened heat
shield from closing. Therefore, the ADV will be assisted in its de-
orbit burn by an OTV. The ADV-50 will follow a ballistic trajectory

through the Martian atmosphere and at an optimum altitude, will
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deploy parachutes to reduce its velocity. At a predetermined
altitude, the ADV-50 will open its heat shield, deploy its landing
gear and ignite its main engines in order to further reduce its
velocity until a hover can be established. Upon landing, system
safing will occur, and a system checkout will be performed by the
status monitoring equipment. The results of this checkout will be
relayed to the OCC and the ADV-50 will then be ready for unloading.

When an ascent mission is required of the ADV-50, the
following sequence will be performed. The vehicle will be prepared
for launch and all systems will be checked out prior to propellant
loading. Once the vehicle is checked out and fueled, it will be
cleared for launch and will wait until the proper launch window
occurs. The vehicle will burn its main engines until orbit insertion
into the parking orbit occurs. The ADV will be fueled at MarsPort or
on Mars since it is not expected to travel beyond the LMO. In the LMO
the cargo dome will be removed from the ADV by the OMV and OTV

will transport the payload to its final destination.

2.4.3.2.4 ADV-10 Mission Profile

The mission profile of the ADV-10 is identical to that of the
ADV-50. Due to the 3-g constrains imposed on the ADV-10P, the
mission profile of this vehicle may require some modification to
meet this requirement. Furthermore, the ADV-10P will be
transported to Phobos along with the personnel dome. In addition,
the personnel on the ADV-10P will have the ability to control the

vehicle or let the automatic systems perform all operations.
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2.4.4 Service Facility Requirements

The vehicles operating in the Martian system will need
scheduled maintenance and refueling in order to ensure reliable and
optimal performance. In addition, unscheduled service may be
required, placing high demands on the artificial intelligence
capabilities of the vehicles and the robots.

Scheduled servicing includes vehicle inspection, component
testing, replenishment of depleted resources, preventive
maintenance, equipment replacement, and mission-specific
reconfiguration. Unscheduled servicing, on the other hand, is that
which is needed to restore the vehicle to an acceptable level of

operation following a malfunction or an accident.

2.4.4.1 Methods and Equipment

Like all other aspects of the mission, service will be fully
automated. However, it is likely that results of inspections and
tests will be relayed to Earth for analysis prior to execution of
critical tasks. This will keep humans in the control loop which will
be especially important when handling any unscheduled repairs. Any
vehicle requiring repairs beyond the capability of the automated
systems will be stored until humans are present. The modular
design of the vehicle fleet allows other OMV's or OTV's to take over
the responsibilities of a damaged vehicle.

OMV's will have limited servicing capabilities with the pre-

flight attachment of specialized repair kits. |f a vehicle is damaged
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or malfunctions at a remote location, an OMV or an OMV/OTV
combination will assist or retrieve it.

Aside from remote repairs, most service will be performed in
hangar facilities on Phobos and Mars. The service robots provided
for the robot crews at those locations will be used along with a
remote manipulator system (RMS). At MarsPort, however, only the
RMS will be available unless a robot is transferred there for an

emergency repair.

2.4.4.2 Propellant Transportation and Storage

This study considers LH2/LOX as the primary fuels because it is
assumed that these fuels will be produced on Phobos. It is bossible
that nuclear or other advanced propellants will be used, but the
information on these topics is limited.

Until production begins on Phobos, all fuel will be transported
from the Earth system. It could be stored as either LH2/LOX or as
water (with later electrolysis to obtain the LH2 and LOX). As noted
in the 1987 Gateway report at the University of Texas, further trade
studies are needed to compare transportation costs and power
requirements of the thermal control systems of each method. In
addition, electrolysis power and system requirements must be

estimated in order to complete the comparison.

2.4.4.3 Refueling Facilities
The servicing and refueling areas on Phobos and Mars will be
separate to achieve minimum contamination and scheduling problems

as well as maximum safety. Refueling at Phobos will occur at the
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dock; at the Mars base, ADV's will be refueled at the launch pad. In
addition, the orbiting MarsPort refueling facilities should provide a
berthing area for vehicles being refueled. The refueling areas should
be isolated from habitation modules in case of rupture, leak, or
other hazardous events. Finally, all facilities must be able to store
the required propellants, pressurants, secondary fluids, electrolysis

equipment, and refueling equipment.

2.4.4.4 Facilities at Phobos

Phobos will have full service and refueling capabilities for OMV's
and OTV's as well as refueling capability for other vehicles such as
the OWL and ADV. Liquid oxygen and liquid hydrogen produced on
Phobos will be stored in tanks which were used on the ITV's for the
orbit insertion burns and for storage of OMV/OTV propellant. Low-g
pumping equipment there will be used to transfer fuel to the
vehicles in one of two ways. First, a vehicle secured to the dock
could have LO2/LH2 pumped directly into its storage tanks. Second,
fuel could be stored in spare tanks. The RMS would then be used to
remove the empty tanks from the docked vehicle and install the full
tanks. Similarly, full tanks could be transported to the vehicle with
the OMV/OTV, leaving the larger vehicle in orbit. With either
method, fuel will be available for all vehicles used in the Martian
system.

A service hangar will be located near the docking site. One of the
surface vehicles or an RMS will move a docked OMV or OTV to the

enclosed facility where it will assist the service robot with service
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operations. In addition, the service package used with the OMV will
be stored and installed at the hangar.

A hangar, provided by Phobia Co., will provide radiation, thermal,
and micrometeorite protection. This will allow for safe storage and
servicing of vehicles, equipment, tools and spare parts. Initially,
this hangar will be large enough to store the OMV's during the years
between Phobos base delivery and Mars base delivery. When the
OTV's arrive with the Mars mission, the hangar will be enlarged or

another will be built.

2.4.4.5 Facilities at MarsPort

MarsPort will have refueling capabilities and limited servicing
capability. OTV's will transport fuel as cargo from Phobos to
MarsPort. Both tank refill and tank exchange techniques will be
used, so numerous attachment points for spares must be available on
the truss structure. In addition, an RMS and an OMV will be available
for rendezvous and prox-ops.

Service will be performed by the RMS and the OMV with service
package. However, there will be no hangar and no service robot.
Unscheduled repairs could require transfer of a service robot from
Phobos to MarsPort, but scheduled maintenance will take place at
Phobos or Mars.

MarsPort will have refueling capabilities for several reasons.
First, the OTV's will operate more efficiently if they refuel in LMO
rather than carry fuel for their return mission to Phobos as extra
cargo. Second, the ADV's will refuel there prior to de-orbit. Third,

the OMV based at MarsPort will require refueling. Finally, it is
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possible that the OWL's will be transported to LMO without fuel in

order to reduce the requirements on the OTV's.

2.4.4.6 Facilities at Mars Base

ADV's will be serviced inside the empty cargo bay of an OWL (see
Figure 10). The lifting equipment used to build the Mars base will be
used to move the vehicles, and the service robot at the base will
perform the required maintenance. A hangar facility will be
constructed in the empty cargo bay of one of the OWL's. With the
addition of radiation protection, and a sealed liner, a shirt sleeve
environment could eventually be provided.

Refueling will be performed at the launch facility prior to launch
of the ADV's.

2.4.5 Operation Control Center

During the atmospheric vehicles operation there will be
communication between the vehicle and OCC to ensure a successful
mission. The Star Truk Company has tentatively decided that OCC
should be located at Phobos. To minimize any extra burden on the
crew at Phobos, the mission sequence will be sent to Phobos from

Earth prior to mission initiation.

2.5 System Evolution |
In order to develop a transportation system that is responsive
to - growth, the Star Truk Company proposes the following

evolutionary phases for the system:
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- Phase |I: This phase of the mission profile was also
discussed in the Orbital Vehicle Scenario. The initial phase of the

transportation system can be divided as follows:

(a) The materials for Phobos base
construction will be delivered to the Martian
system using an ITV and unloaded on Phobos using
OMV's. Two communication satellites will be
deployed to provide communication between Earth
and Phobos and on the surface of Phobos.

(b) Mars base construction cargo and three
more satellites will be delivered after the
completion of the Phobos base. The delivery
process will require an ITV to carry OWL's and
ADV's from Earth to the Martian system. These
landers will be transfer to LMO by OTV's.
Subsequent delivery on Mars will be accomplished
by ADV's unless payload size requires OWL delivery.
The three additional satellites will provide
communication between Mars, Phobos and Earth as
well as communication on the Martian surface.

- Phase Il: After base construction is completed, an improved
service facility will enable better vehicle maintainability.
Mandatory vehicle inspection will be enforced for all vehicles at the
beginning of Phase Il to ensure performance reliability. Whereas
most of the repairs on the vehicles during Phase | will be performed
autonomously by robots, it is preferable that more direct human
involvement in vehiclé repair occur in Phase Il. It is expected that
the transportation system will primarily support Mars base
expansion during this phase. As the system ages, the need for

vehicle replacement will arise. The actual time scale for
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replacement will ultimately be determined by the components used
in vehicle construction.

« Phase Ill: After routine operations of the original Mars base
are achieved, the human presence on Mars will expand. New vehicles
or types of vehicles may be introduced into the transportation fleet
at this time. It is conceivable that during this phase of the mission
profile, the Star Truk Company may be expected to provide
transportation for bases at additional locations on the Martian
surface. In this situation, the Star Truk Co. would have a centralized
transportation base and a new type of vehicle for traveling within
the Martian atmosphere or on the Martian surface. Furthermore,
future traffic patterns between Phobos and Mars might dictate a

change in the objectives of the Star Truk Company.

2,6 Recommendations
Due to the time constraint and the lack of technical expertise,
there were many issues which were not addressed in the design of

the transportation system and the vehicles in the fleet. They were:

* Vehicle sizing analysis refinement
All analyses performed by the Star Truk Company engineers
were intended to provide some ideas about the dimensions of the
vehicles. To generate a more precise dimension will require
introducing more variables in the analysis thus increasing the level

of technical difficulty and the time dedicated to analysis
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« Advanced propulsion system study
This study only addresses LOX/LO2 as propellants for the
propulsion system since Phobos is expected to produce them. Using
a different type of fuel will complicate the study since the fuel
supply must be located. However, the penalty imposed on the design
by using only LOX/LO2 indicates that wherever possible, a different
type of propulsion system should be used; especially, the need to

study the propulsion system for the low-thrust OTV.

+ Entry vehicle dynamics and characteristics study
Due to the lack of training in entry vehicle, the Star Truk
engineers initially relied on a FORTRAN program written by a
previous design group. Unfortunately, after spending a considerable
amount of time, the results obtained from this program appeared to
be questionable. Without the technical knowledge of vehicle entry
dynamics, the Star Truk engineers cannot determine the validity of

the results.

e Artificial intelligence study
Although the transportation system designed by the Star Truk
engineers required human interactions in critical phases of vehicle
operations, all routine operations were required to be autonomous.
To realistically address how a certain operation can be performed

autonomously, a study in artificial intelligence must be conducted.

e Vehicle construction materials
Due to the lack of time, no materials were studied and proposed

for use in constructing the vehicles in the transportation system. A
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research on construction materials will eliminate another unknown

variable in the vehicle sizing.

* MarsPort trade-off study
Although MarsPort was proposed to provide additional
flexibility in the transportation system, its existence imposed
rendezvous constraint between the ADV's and the OTV's. Therefore,
a study should be conducted to determined whether or not the
flexibility provided by MarsPort outweighed its ‘rendezvous

constraint.
It is suggested that these topics should be considered in detail

in future studies in order to optimize the design of the

transportation system.
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3. Management Report

3.1 Personnel and Responsibilities

Figure 11 summarizes the organizational structure of the Star
Truk Company. In the conceptual stage of the project, the Star Truk
Co. consisted of two Project Managers, two Team Leaders, two
senior engineers, and thrée engineers; in addition, one senior
engineer served as an Administrative Assistance Officer (AAO) and
one Project Manager served as Liaison Officer (LO). During the
design stage, the company employs only one Project Manager, two
Team Leaders, two senior engineers, and four engineers; the AAO and
LO retain their responsibilities. For sake of brevity, this report will
only address the company structure in the second stage of the
project; the reader is asked to refer to the Star Truk Co. Proposal
for description of the management structure in the company's initial

stage.

3.1.1 Individual Responsibilities

The Project Manager has final responsibility for all
administrative and technical matters. He is responsible for
conducting meetings of the Technical Advisory Team and the Star
Truk Co. and maintaining communication with the base construction
groups in his capacity as the Liaison Officer. To ensure that
administrative matters will not be ignored or compromised, the

Administrative Assistance Officer is accountable for personnel time

61



9,,3025 cozmu_cmwho 1L mh,:m_m

62

1504 ueAug
weyd neyj J49JE3YI0G ||Ig
neaunT aiLY weyd neyn UINN yiodeuue A
|9Zzedg Moer Albol119 9139uueSP uosebun4 umeyg
'SJoquiaLy wes | Ja|sog jed 'SJaqWISLy Wea |
1504 ueAug
A1bor119 9330uuesr Ja/so0g 1ed
J8pea] wes | dopeasT wea |
wea;y [~ °°° T wea| (T T T wea |
3121YaA AJos|Apy 3191YsA
Jjdaydsowy RIUTEEY] 1831940
weuyd neyd
uosebun4 umeyg
J321JJ0 uoise|
90UR1S|SSY 3A|IRJIS|UWPY
weyd neyn

Jabeuel 105 04d

UDdwio) FILIDj



schedules, cost management, and general bookkeeping. The
responsibilities of the Team Leaders are to provide technical
guidance for their respective teams. Administrative duties are kept
to a minimum in order to avoid unnecessary distraction from the
research and engineering tasks assigned to the individual team

members.

3.1.2 Team Responsibilities

In the conceptual stage of the project, the group was divided
into two teams: Vehicle Technology Survey Team and Planetary
Survey Team. The main purpose for this structure was to collect
relevant data for the vehicle design effort. After the Conceptual
Design Review, the Star Truk Co. was restructured in order to
respond to its task more effectively. The new structure divides the
group into three teams: Orbital Vehicle Team, Atmospheric Vehicle
Team, and Technical Advisory Team. The Orbital Vehicle Team
responsibilities include orbital and trajectory analysis, selection of
the transportation node location, and establishment of the orbital
vehicle design criteria. The duties of the Atmospheric Vehicle Team
encompass Martian environment research, a study of atmospheric
vehicle characteristics, and atmospheric vehicle design criteria
formulation. Unlike the two teams mentioned above, the Technical
Advisory Team has a more general directive: to ensure that the final
design will provide the most logical and practical transportation
system. To accomplish this task, the team will provide the
background information that will enable the group to see the

transportation system in a broad perspective.
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In addition to the regular team division, the Star Truk Co. also
employs an Editing Team for report preparation. This team consists
of members of both the Orbital and Atmospheric Teams who serve on
a voluntary basis. The primary responsibility of the Editing Team is
to ensure the publication of quality reports. These reports must
accurately reflect the direction, objectives, and technical results of
the Star Truk Company. Furthermore, all reports must be prepared in

a manner consistent in both style and content.

3.2 Program Schedule

The program is following the critical path chart, shown in
Figure 12. The program schedule, shown in Figure 13 shows the
estimated time-line for milestones (in boldface) and tasks of the

project. (The shaded triangles indicate completed tasks).

3.3 Management Status

The Star Truk Company has not encountered any major problems
in its management organization. The shift from two Project
Managers to one was due to unanticipated time constraints of one of
the managers. Productivity of the company has increased as the
project has become more clearly defined and the tasks have become
more specific. The company has not deviated greatly from the
initial time schedule; deadline extensions were approved by the

Project Monitor only when major milestones were closely spaced.
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3.4 Recommendations

The following recommendations are based upon some of the
problems encountered by the Star Truk Company during the
performance of the contract:

1 Better defined project requirement

2 Documentation of previous studies

3 Documentation of computer programs

4 More interactions inside and outside the department

At the beginning of the project, the members of the Star Truk
Company spent a considerable amount of time in trying to scope the
project. This effort took away valuable time that could have been
spent in research or brainstorming. Therefore, to avoid this
problem, project statement should be better defined.

Throughout the duration of the contract, the research effort was
compromised by lack of documentation of previous studies. For
example, important reference sources were not discovered until late
in the semester. These references would have been discovered
sooner had there been a listing or catalog of previous studies.

The problem which gave the Star Truk Company the most
difficulty was the lack of documentation in computer programs by
previous groups. Valuable time were spent and lost mostly on trying
to figure out exactly what a program does. The dependency on
programs written from previous groups were due to the lack of
technical expertise in the Star Truk Company. Unfortunately, once
all programs were verified, it was discovered that they were

written especially for a particular design or the results obtained
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were very questionable. Although some effort is made in this report
to provide the user with better documentation for all programs
written in the performance of the contract by the Star Truk
Company, it is hoped that a more standardized format on
documentation will be developed and implemented in the future.

The lack of expertise in certain technical areas that existed in
the Star Truk Company indicated the necessity for better
interactions within and without the Aerospace Department. Since
the members of the Star Truk Company were trained in the orbital
field of the aerospace engineering program, the company was
inadequately prepared to perform atmospheric analysis. Therefore, a
better communication with the atmospheric group in the Aerospace
Department would be helpful in the future. Although there were no
direct need by the Star Truk Company to interact with other
departments, our observation of PHOBIA Co. and MING Co. indicated

that such interaction would be beneficial.
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4. Cost Status

Labor and material costs have been totaled for the fifteen
weeks of work performed to date. Table 3 presents a synopsis of
current labor and cost totals as compared to projected totals for
this point in time. Actual man hour totals are 1547.5 hours. The
projected total after fifteen weeks was 1843 hours. This
represents a difference of 16% below man hour projections. Total
actual labor cost was $31,445 as compared to a projected figure of
$37,801. This is 17% below projected cost for labor. (The original
proposal was based upon an erroneous schedule of 16 weeks. The
original projected total cost was $40,477 as stated above. The cost
figure of $37,801 is the correct adjusted figure). Material costs
were incurred as expected.

Although actual expenditures are lower than expected, Star Truk
has successfully completed each technical and program milestone.
The work was completed on schedule and to the required level of

technical expertise.

TABLE 3 Cost Status Summary

Actual Projected
Labor 1547.5 Hrs 1843 Hrs

$31,445 $37,801
Material $2400 $2400
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Appendix A: Vehicle Study

A.1 Vehicle Design

Vehicle selection and modification will be performed according
to mission requirements and projected environmental conditions.
The selection and modification process will be repeated for each
type of vehicle. First, previously studied vehicle designs will be
examined. Second, the advantages and disadvantages of these
possible choices will be examined. Finally, the merits of each
design will be evaluated with a preliminary set of selection criteria.
Based on these criteria, trade studies will be conducted for the
atmospheric and orbital vehicles. The results of these studies will
be used to suggest modifications to the original design. As the
vehicles, the mission, and the operating environments are more

clearly defined, the selection criteria may be changed or amended.

A.1.1 Orbital Vehicles

Four types of orbital vehicles will be used:

Interplanetary Transfer Vehicle
Orbital Transfer Vehicle
Orbital Maneuver Vehicle
Transportation Node

A.1.2 Atmospheric Entry Vehicles
Five types of Mars landers were considered:

* a non-aerodynamic type (similar to the lunar landers)
« an Apollo capsule type
* biconic types
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« a Space Shuttle derived type
- a flattened Apollo capsule type (flying saucer)

A.1.2.1 Non-Aerodynamic Lander

A non-aerodynamic vehicle is defined as a vehicle which is
designed to operate in a negligible atmosphere. The Lunar lander is
an example of this type of vehicle. The non-aerodynamic lander
would be capable of carrying a diversity of payloads. Some of the
base modules that will be used on Mars or transported from Phobos
to Mars may require this flexibility. The vehicle envisioned is
essentially a propulsion system with a guidance and control package
and a mount for cargo. A ballistic trajectory like that of the lunar
landing would be required for this vehicle since it will not be able to

"fly" in the atmosphere.

A.1.2.2 Apollo Capsule-Type Lander

Due to the geometry of the Apollo-type vehicle, the payload
capabilities are limited. Also, the vehicle layout would locate the
payload in the nose of the lander. In a vertical landing, the payload
would be 10 - 20 meters off the surface, making it more difficult to
unload. A horizontal landing of the Apollo-type lander would require

a prepared landing runway.

A.1.2.3 Biconic Type Lander

This type of lander has a fairly high lift to drag ratio, but no
inherent aerodynamic control surfaces. Also, like the Apollo
capsule-type lander, the biconics have payload limitations due to

vehicle geometry. The biconics are capable of either vertical or
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horizontal landings and, like the Apollo-type, either of these

landings has drawbacks.

A.1.2.4 Space Shuttle Derived Lander

A Space Shuttle type lander would have a relatively high lift to
drag ratio. This would allow the lander to "fly" long distances in the
atmosphere. On the other hand, the low aerodynamic drag
characteristic of the vehicle increases the requirement for chemical
propulsion to decelerate the vehicle.

In Figure A1, showing the University of Michigan's proposed Mars
lander, it can be seen that parachutes and S-turn maneuvering are
used to slow the vehicle in the Martian atmosphere. However, the
capability of the drogue chute and the S-turn maneuver to reduce
velocity is questionable in the low density of the Martian
atmosphere. Also shown in the figure is an ascent vehicle launching
from the lander. The University of Michigan group proposed this

vehicle as a means to return personnel to their orbiting spacecraft.

A.1.2.5 Flattened Apollo-Type Lander

The features of the flattened Apollo or flying saucer type
vehicle, shown in Figure A2, include considerable cross-range
capability, high aerodynamic drag, high accessibility of payload to

surface when landed, and high stability when landed.
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A.2 Vehicle Selection

A.2.1  Orbital Vehicle Selection

All of the vehicles considered for use in the Mars orbital system
will have been developed for use in the Earth system. Relying on
this proven technology, the selection process for orbital vehicles is
simply a matter of choosing which vehicles will actually be used and
adapting them to the mission requirements. In order to define these
mission requirements, a scenario describing the use of the vehicles
within the system must be described. This, in turn, requires a
prediction of the technology and the level of support behind the

program.

A.2.2 Atmospheric Vehicle Selection
Each of the vehicles presented in section A.1.2 was evaluated on
the following design criteria:

* payload capability
> mass
> volume

* accessibility of payload to surface
» stability on surface

* reusability/transformability?

e ascent vehicle integration2

« atmospheric controllability

* crossrange capability/hover time

1 Since maximum efficiency is desired in the use of material resources, any
Mars lander that cannot be reused as a transportation vehicle will be designed so that it
can be transformed into a structure (or structural parts) which can be used by the
Martian base or transportation system.

2 It it is not feasible to design a vehicle capable of descent and ascent, a landing
vehicle shall be required to carry an ascent vehicle as cargo.
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» aerodynamic features

This preliminary qualitative analysis was not intended to yield
an ultimate design, but rather to quickly provide the "best" starting
point for further evaluation.

The non-aerodynamic type vehicle (e.g., lunar lander) was
considered as a possible Mars lander. While the simple structure of
a non-aerodynamic vehicle provides a savings in mass and ease of
access to cargo, the vehicle has no inherent aerodynamic stability.
In addition, even though the Martian atmosphere is very thin, there is
sufficient atmospheric density for aerodynamic heating to occur
during entry. Therefore, some modifications would be necessary to
enable the vehicle to enter the atmosphere successfully. Propulsive
deceleration might be required throughout the descent trajectory to

reduce the vehicle velocity, thereby lessening the amount of

aerodynamic heating.

The ApoII6 capsule-type vehicle is not currently under
consideration due to the limitations that the vehicle geometry
imposes on the size and shape of payloads that could be carried and
the difficulties invoived with either vertical or horizontal landing.

Although the biconic and the shuttle type vehicles (see Figure
A3) provide good aerodynamic stability and high lift to drag ratios,
they both rely primarily on aerodynamic control surfaces for
attitude control as they fly through the atmosphere. To fly in the
thin atmosphere of Mars (approximately 10 mbar maximum) the
control surfaces would have to be extremely large to achieve
satisfactory vehicle performance. The weight and size of these

control surfaces might make the vehicle impractical to operate.
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Furthermore, a satisfactory horizontal landing of the biconic or
shuttle derived vehicle would require a prepared landing strip, which
might not be available during the Mars base construction phase.
Vertical landings of these vehicles is not desirable due to the
position of the payload relative to the surface when landed.

The flying saucer vehicle has been chosen as the best vehicle for
initial analysis. This vehicle type has good cross-range capability,
high aerodynamic drag, good accessibility of payload to the surface,
and high stability when landed. Cross-range capability allows more
flexibility in the atmospheric entry trajectory of the vehicle. Since
the lander can maneuver through the atmosphere, greater accuracy in
landing at a designated landing site can be expected. High
aerodynamic drag is advantageous because it facilitates velocity
reduction in the atmosphere. Any velocity that can be lost in the
-atmosphere reduces the amount of chemical propellant required to
slow the vehicle prior to landing. Ease of access to the Martian
surface and high stability once landed result from the flying
saucer's relatively low profile. Easy access to the surface reduces
the complexity of removing payloads from the lander and placing
them on the surface. Stability of the vehicle on the surface is

necessary for surface operations.
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Appendix B: Orbital Analysis

In order to explain some of the orbital vehicle requirements,
two orbital mechanics studies are presented. The first examines the
minimum AV required for insertion into a Mars parking orbit from an
Earth-to-Mars transfer orbit. The second shows the minimum AV
required to transfer within the Mars system. A simplified analysis
was performed using circular orbits and Hohmann transfers
incorporating a plane change. It was assumed that the computed AV
was strictly a function of inclination and orbit radius, and that

launch windows were not time critical.

ITV Parking Orbit

Although this study is not concerned with the specifics of the
ITV, the parking orbit was addressed in an attempt to minimize both
the AV required for insertion into the Mars system and the AV
required to transfer from the parking orbit to the base locations.
First impressions might suggest that the ITV will approach Mars in
the Mars orbit plane, indicating that the parking orbit should be in
this plane. However, the difference in AV required to park in the
Phobos orbit rather than the Mars orbit plane is negligible.
Therefore, Phobos orbit was selected as the insertion orbit.

As the vehicle approaches Mars in its low energy transfer orbit,
it has a particular velocity, V1. The insertion burn can be minimized
if the selected parking orbit has an orbital velocity corresponding to
V1.
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A TK! Solver model used to compute the minimum insertion AV
as a function of the parking orbit radius is listed in Appendix G. As
shown in Figure B1, the optimal parking orbit radius is
approximately 3.5 Mars radii, which is very near the Phobos orbit
radius of 2.8 Mars radii. The difference between AV requirements
for the two orbits is negligible, so the Phobos orbit was chosen as
the parking orbit for the ITV.

Parking in a Phobos chaser orbit is favorable because it
minimizes the AV required for Phobos cargo delivery, and it
simplifies operations. Orbit transfer, hence fuel consumption and
operations associated with OTV's, is eliminated in this scenario. In
addition, incoming vehicles can be serviced and refueled at -or near
Phobos.

Two opposing factors influence the position selected for the ITV
in Phobos' orbit. Because of gravitational attraction between the
vehicle and Phobos, the distance between them must be large enough
to reduce station keeping requirements. On the other hand,
increasing the travel distance between the ITV and Phobos increases
the OMV thrust requirements. As an approximation of the best
location, a distance of 10 km was selected.

Further studies could optimize the placement distance. It may
also be more efficient to dock the ITV to Phobos, eliminating the 10
km excursion of the OMV. In this case, the OMV would still be
necessary in the vehicle fleet to move the Phobos base components

across the surface and to perform prox-ops for the OTV.
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Low Mars Orbit

MarsPort will be placed in LMO at an altitude of approximately
100 km if it is incorporated into the overall transportation system.
This LMO may, however, be only a rendezvous point between ADV's
and OTV's. Referring to Figure B2, it is apparent that a plane change
is necessary to transfer between the Mars base and Phobos unless
the Mars base is located at 2° latitude. It is assumed that the
landing vehicles have limited cross-range capability, so they will
require a groundtrack which takes them over the base. That is, the
orbit inclination must be greater than or equal to the latitude of the
base. Similarly, the inclination of an ascent vehicle's initial orbit
can not be less than its launch latitude. Of course, low Ai is desired
within the orbit system, so the latitude of the Mars base was chosen
as the inclination for LMO.

The radius of the LMO (R1) was chosen to reduce the AV
associated with the plane change. When using a Hohmann transfer
between LMO and Phobos, the AV associated with the plane change
decreases as the LMO radius decreases. Thus, R1 should be small,
yet must allow for favorable launch windows between LMO and
Phobos. The actual time between launch windows is not critical for
the robotic missions. Only a regularity was pursued.

As a conservative estimate of the lowest possible altitude for
LMO, 100 km was chosen as an initial approximation of R1. Then,
based on a gravity model of Mars incorporating J2 effects, the period

of repetition of LMO groundtracks was adjusted so that a favorable
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launch window occurred. An orbit radius was calculated for each
latitude under consideration for the Mars base.

With the radius and the inclination of each orbit in the system
defined, the AVs required to transfer between orbits was analyzed.
This data is critical when estimating the vehicle fuel requirements
and when sizing the vehicles. Appendix H lists the TK! Solver model
used to study AV versus plane change executed at LMO. Figures B3a
through B3c show the output plots. For 30° latitude, the minimal AV
of 1.829 km/s is accomplished when a 4° plane change is made at
the LMO burn and the rest is made at the Phobos orbit burn. For 25°
latitude, the minimum AV of 1.7371 km/s is associated with a LMO
plane change of 3°. Finally, for 0° latitude (no plane change), the
minimum AV is 1.4835 km/s.

Based on these figures, it is recommended that the Mars base is
located as close to the equator as possible to reduce the required

AV. However, the Martian topography may influence the location.
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Appendix C: Orbital Vehicle Sizing Procedure

The objective in an initial vehicle sizing is to determine the
amount of propellant required by a proposed vehicle to accomplish a
given mission. From the propellant requirements, propellant tank
sizes can be determined. An initial sizing process has been
performed to determine propellant requirements and tank sizes for
the OTV and OMV. |

For the initial sizing, the worst case scenario was used for the
OTV. This scenario represents the most massive proposed payload
undergoing the maximum AV foreseen. Additional iterations of the
sizing process can be performed to refine the entail results
obtained. |

The following mission is used for sizing the OTV. First, the OTV
‘trave_ls from Phobos or the ITV to LMO delivering its payload. Next,
the OTV returns empty to Phobos or the ITV. As part of the worst
case scenario, it is assumed that no propellant is located in' LMO for
refueling the OTV. Therefore, the OTV must carry its return
propellant during the cargo delivery trip.

A TK! Solver model entitled OVSIZE was created to aid in OTV
sizing. The model and documentation are presented in Appendix |
OVSIZE calculates the total propellant required by a given vehicle
for a particular mission and also determines propellant tank
diameters. It uses the ideal rocket equation and Hohmann transfers

with plane changes, and the following assumptions are made: no
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drag, zero -G, no perturbations, no time of flight constraints and no
departure or arrival constraints.

OVSIZE requires the following inputs: total AV for the round
trip, specific impulse of the engine, oxidizer to fuel ratio, payload
mass, and final OTV mass after the round trip. The required AV was
calculated by the TK! Solver program DELV. This program was
adapted from a routine provided by Elfego Pinon, a graduate student
in the Aerospace Engineering Department of the University of Texas
at Austin. The specific impulse (Isp) used for the OTV engine was
450 seconds. Liquid oxygen/liquid hydrogen was assumed for
propellant and an oxidizer to fuel ratio (OFR) of 5.5 was chosen. The
dry mass of the OTV was used as the final OTV mass after the round

trip. From the ideal rocket equation, the initial to final mass ratio

is
M final = e(8V/c) where C = Ip*g
M initial

Also,

Mfinal = eAV/O* Mijisial
therefore Mprop for the return is

Mprop =1 - e(AV»/C))*l\'linitial

Final mass for the payload delivery leg of the round trip is the

initial mass of the return leg plus payload mass. Applying the ideal
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rocket equation again gives the required Mprop for the payload
delivery. The two Mprop's are summed for the total propellant
required. Ten percent is added to the propellant requirement to
account for ullage.

Table C1 presents the propellant requirements which were
determined for various payloads and orbit plane inclination changes
(i.e., AV's). The corresponding tank diameters for the oxidizer (LO2)
and fuel (LH2) are also shown.

Initial propellant tank sizes were calculated for the maximum
propellant quantity as calculated above. Both oxidizer and fuel
supplies were divided between two tanks each.

The following equations were used to arrive at the propellant
tank radii. First, using an oxidizer to fuel ratio of 5.5, the

propellant mass can be determined.

Mprop = MLo2 + MLu2

MLo2 = 5.5 MLu2

Therefore, Mprop = 6.5 MLH2.

Solving for the mass of the fuel and oxidizer yields,

M B
M — ~prop
LH2 6.5
and, ' ML02 = (55/65)Mprop
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Using mass density values of 1185 kg/m3 and 71 kg/m3 for the LO2
and LH2, respectively, the fuel and oxidizer masses were then
divided by the appropriate density to obtain the volume. Assuming
that all tanks will be spherical to maximize strength and minimize
tank size for the given propellant volume, the spherical radii were

then calculated using the volumes and the relationship

r = -3— volume
4r

These calculations are "first order" and many factors have not
been addressed. These factors include, but are not limited to, tank
pressure and temperature ranges, internal tank hardware, oxidizer
and fuel coefficients of expansion, and the burning rate constant.
Tank constructian will make use of composite material(s) to the
greatest extent possible. This is to maximize the strength to
weight (mass) ratio of the tanks. Further definition of tank
construction must address baffles for propellant slosh control and
propellant feed systems (i.e., pumps or gas pressure such as He or
N2).

The tanks must also have an efficient thermal control system to
maintain proper temperature of the cryogenic propellant. The use of
cryogenic propellant also requires additional measures in tank
construction to minimize boil-off. Valves used in the propulsion
system must be highly reliable and resistant to freezing. A high

degree of redundancy in the entire propellant feed system is also
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necessary to eliminate single point critical failure modes. Pop-off
relief valves will be incorporated to prevent catastrophic failure of
a tank.

Another important consideration in tank construction is the
ability to replace tanks. As the transportation system matures,
propellant tanks could be changed out to smaller sizes when less
propellant is required. This would increase the OTV efficiency by
tailoring the system and increasing the payload to OTV mass ratio.
The OTV could also be enhanced by oversizing the structural volume
where the tanks are installed, thereby permitting installation of
larger tanks. The OTV design will also include the capability to add
or "strap on" additional tanks for contingencies, missions beyond

Mars, or for general growth beyond present demands.

Orbital Maneuvering Vehicle

Sizing of the OMV follows the same methods described for the
OTV since both vehicles perform in the same environment with the
same type of propulsion system. However the OMV payload mass
requirements are at least three times less than the OTV, and the
round trip AV requirements are 850 times less. The CW equations
were used to calculate the AV required for a payload transfer (see
Appendix J), and a "standard" payload mass was defined as 120 MT.
With this information, the ideal rocket equation, as modeled in the
OVSIZE program, was used to determine the mass of propellant
required. The dry mass of the OMV was estimated as 5 MT. This
estimate was based upon the mass of three Shuttle orbital

maneuvering system engines.
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Appendix D: Atmospheric Vehicle Sizing Procedure

Vehicle Sizing Procedure

A necessary step in the vehicle design process is determining
the size of the proposed vehicle. Determining the propellant
required by a vehicle for landing and the propellant required for
ascent is one of the major steps in vehicle sizing. During the early
stages of this project, several computer programs were located
which were believed to be useful for determining propellant
requirements.  Appendix K discusses the descent profile, and
Appendices L and M present the computer programs which analyze
the de-orbit and entry phases of the profile. After a great deal of
time and effort was expended implementing these programs and
performing analysis with them, the validity of the results was
brought into question. The questionable characteristics of these
programs is discussed in the appendix which addresses each of the
programs. The sizing process presented here is based on the ideal

rocket equation.

Assumptions Made in the Sizing Process

The assumptions made in the vehicle sizing process are
presented in this section. The significance of these assumptions
will be discussed in the following section.

Assumptions were made in each of the following areas:

* AV required for landing,
* AV required for ascent,
» vehicle to payload mass ration,
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» propellant mix ratio,
* non-rotating planet, and
* negligible atmosphere.

All of these assumptions were made in order to simplify the
vehicle sizing process during the preliminary design stage. Each of

the assumptions and results are discussed in detail below.

Negligible atmosphere This assumption eliminates the

requirement to either estimate of determine analytically the AV

which is lost due to atmospheric drag.

Non-rotating planet This assumption was made since the

latitude of the Mars base has not been decided upon. Determining the
AV which can be provided to a launch vehicle by the angular velocity
of a planet depends on the latitude of the launch site and the

azimuth angle at which the vehicle is launched.

ndin V In the sizing process for each of the vehicles, it
was assumed that the AV required for descent was equal to the
vehicle orbital velocity in a circular orbit 104 km above the Martian
surface (104 km is the altitude of the proposed low Mars parking

orbit). The velocity in this orbit is approximately 3500 m/s.
Ascent AV The escape velocity for Mars was used as the AV

required to launch the ADV's into the 104 km parking orbit. Escape

velocity for Mars is approximately 5000 m/s.
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Vehicle to payload mass ratio This ratio was used to estimate
the dry mass of the vehicle (i.e., the vehicle without its payload or
propellant). A vehicle to payload mass ratio of 1:2.5 was used in the
sizing process. Current space vehicles do not achieve this ratio, but
it is expected that the ratio used here will be reasonable for the

time frame which is being addressed in this study.

Propellant mix ratio/density The propellant mix ratio and

densities were used to determine the volume of tankage required to
store the propellant in each of the vehicles. A mix ratio of 6:1
(LH2:LOX) was used for the sizing process. The following densities

for the LOX and LH2 propellants were used:
LH2: 1010 kg/m3,
- LOX: 62.2 kg/m3.

Ideal rocket equation The ideal rocket equation was used for
determining the propellant requirements of the different vehicles.

Results of Assumptions Made in the Sizing Process
The significance of the assumptions made in the vehicle sizing

process are presented in this section.

Neqgligible or non-existent atmosphere During a descent

trajectory, a planet atmosphere helps to reduce the vehicle velocity.
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On ascent, the atmosphere increases the AV required for the vehicle
to achieve orbit. Therefore, by assuming a negligible atmosphere,
the propellant required for descent is overestimated and that

required for ascent may be underestimated.

Non-rotating planet When launching a vehicle, the angular

velocity of the planet can provide additional AV to help boost the
vehicle into orbit. Assuming a non-rotating planet neglects this
potential AV gain therefore increases the propellant requirement to

launch the vehicle.

Landing AV Estimating or determining this AV is necessary to
use the ideal rocket equation for determining propellant
requirements. By neglecting the drag of the Martian atmosphere, the
AV for landing is equal to the velocity of the landing vehicle when it
enters the planet atmosphere. This velocity depends on the type of
orbit which the vehicle is in prior to entry and it is possible that the

actual velocity may be higher or lower than the value used here.

Ascent AV The AV for ascent is affected by the atmospheric
drag, the angular velocity of the launch site, and the altitude of the
target orbit. The escape velocity for Mars was used as the AV for
ascent with the belief that it is a conservative value to use and will
lead to overestimating the pfopellant requirements rather than

underestimating them.
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Vehicle to pavioad mass ratioc This factor affects the sizing

process significantly. Increasing the ratio of the vehicle to payload
mass (for example, 4:1 instead of 2.5:1) increases the mass of

propellant required for the vehicle to perform its mission.

Propellant mix _ratio The propellant mix ratio has a direct

effect on the volume of tankage which a vehicle will require.
Increasing the ratio of LH2 to LOX (for example, 8:1 instead of 6:1)

reduces the volume of tankage required.

Ideal rocket equation The ideal rocket equation is very useful in

preliminary design due to its simplicity. A more accurate method
would numerically integrate the vehicle equations of motion through

a desired trajectory to determine propellant requirements.
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Appendix E: Atmospheric Vehicles Numerical Sizing

OWL-200 Sizing Procedure
Based on the requirements listed in section 2.3.2.1, the

following dimensions for the payload deck were determined for the
OWL-200A:

radius: 15 0 meters,
height: 13.5 meters.

The OWL-200B is slightly larger in order to accommodate the
Mars base manufacturing facility which has a dimension of 25 x 25 x
4 meters. Since the need for this type of vehicle has just surfaced,
there was not enough time to perform sizing analysis.

The next step in the sizing process was to determine the mass
and volume of propellant required to perform the landing mission
using the ideal rocket equation. Beginning with the payload mass of
200 MT, a vehicle to payload mass ratio of 2.5 was used to
determine the mass of the overall vehicle (500 MT) without payload
or fuel. The sum of the vehicle and payload mass (700 MT) was used
as the final mass of the lander on the surface of Mars. With the
final mass of the vehicle and the AV required to land (3500 m/s)

known, the following data was calculated:

Mass of vehicle/payload combination 700 MT

Mass of vehicle/payload/fuel combination 1550 MT
Mass of propellant to land 850 MT
Volume of propellant to land 1000 m3
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Knowing the volume of propellant that the vehicle would require
and the maximum volume of the proposed payload, the payload deck
was configured as shown in Figure 4. The propellant tanks and the
deck on which they are mounted will be removable so that the entire
interior of the payload deck can be used as a vehicle hangar. The
propellant tanks will be used by the Mars base for propellant

storage.

ADV-50 Sizing Procedure
The dimensions of a base module determined the following

dimensions for the payload deck and standard payload protective

shell:
Payléad deck radius: 8 0 meters,
Protective shell radius: 8 0 meters,
Protective shell height: 3.5 meters.

To continue the sizing process for this vehicle it was necessary
to determiné the volume of propellant required for it to perform its
mission. The first calculations in this process were performed
using the ideal rocket equation method and were based on the

following assumptions:

1) After landing a base module, the ADV-50 would
ascend to low Mars orbit with 30 MT of payload.
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2) The AV for descent and ascent are 3.5 km/s and 5.0
km/s, respectively.

Using a vehicle to payload mass ratic of 2.5, and the

assumptions above, the following data was calculated:

Vehicle/payload mass after ascent: 55 MT
Propellant mass for ascent: 325 MT
Vehicle/payload/propellant mass on surface: 480 MT
Propellant mass for descent: 580 MT
Vehicle/payload/propellant mass on orbit: 1060 MT
Fuel volume for descent/ascent mission: 420 m3

It was determined that this volume of propellant could not be
accommodated with the vehicle dimensions as stated above.
Therefore, the radius of the proposed vehicle was increased, and the
following dimensions were calculated for a vehicle which can
accommodate the propellant required along with the necessary

vehicle systems.

Payload deck radius: 10 meters
Height of cylindrical mid-section: 2 meters
Height of lower section: 5 meters

An ADV of these dimensions will fit inside the OWL and also
allow for larger payloads to be transported (within the 50 MT Ilimit).
At this point in the sizing process it was realized that a large
amount of propellant is required to land the propellant required for
ascent. For the case mentioned above, 395 MT of propellant is
required just to land the 325 MT of propellant required for ascent.

For this reason, it is strongly recommended that propellant
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production on the Martian surface be investigated. Also, more
powerful and less massive propellants should be developed.

A second iteration of the sizing process was made using the
assumption that propellant was available on the Martian surface and
that the ADV would not carry its ascent fuel during descent. With

this assumption, the following vehicle dimensions were calculated: |

Payload deck radius: 8 meters
Height of cylindrical mid-section: 1 meter
Height of lower section: 5 meters

This vehicle would easily fit inside of the OWL and allow room

for maintenance and repairs equipment.

ADV-10 Sizing Procedure
The physical dimensions of the basic ADV-10 have been

estimated at:

Vehicle radius: 6 meters
Height of upper section: 3 meters
Height of cylindrical mid-section: 1 meter
Height of lower section: 3 meters

The proposed payload capacity of the ADV-10 is 10 metric tons
(MT). By applying a vehicle to payload mass ratio of 2.5, an overall
vehicle mass of 25 MT is arrived at; this is the vehicle mass without

propellant. Using the ideal rocket equation method and a AV of 5000
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m/s to launch the vehicle into orbit, the following masses are

determined.
Vehicle mass prior to de-orbit: 240 MT
Vehicle mass when landed: 110 MT
Propellant mass to land: 130 MT
Vehicle mass at launch: 110 MT
Vehicle mass on orbit: 35 MT
Propellant mass to achieve orbit: 75 MT

The ADV-10P is expected to be more massive than the basic
vehicle due to the requirement for muiltiple redundancies in man-
-rated systems as well as life support system. It is also possible

that this vehicle will be physically larger than the basic ADV-10.

103



Appendix F: Landing Gear Stress Analysis

A first order approximation analysis was performed in order to
determine the lengths and diameters of the landing gear for the
ADV's (Ascent/Descent Vehicles). The following assumptions were
made in the analysis:

« Spacecraft lands equally on all legs.
« Gravity is the only external force acting in
the vertical direction through the vehicle

centroid.
mg

/:
= I

I Y

. 4y
|

U 4_ _______ - T T
U d - I
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A vector analysis,

>M=FxF=0 Ea )

shows that the only reaction forces ﬁ are in the vertical

direction and

R-___ Mg
number of legs (Eq. 2)
where
r = vector from any point to point of force reaction,
f = any reaction force ﬁ
m = vehicle mass, and
g = gravitational acceleration.

The axial stress in each leg will be:

G-= _Ii

which leads to:

Oaxial = R = R 5 sin 6
A m(d/2) (Eq. 4)

where
d = diameter of a leg, and
0 = the angle between the leg and the foot plate (see

illustration).
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Therefore,

Caxial = .38mg sin 6

2
# of legs x m(d/2) (Eq. 5)

The bending stress in the leg will be:

Obending = MC

I (Eq. 6)

where -

M
c

moment induced by Rp,

distance from neutral axis of member to point of stress,

and
| = moment of inertia of the leg.

Since maximum stress occurs when

M= Rbl (where | - length of leg)
C = radius of leg (Egs. 7)

For a cylindrical leg,
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64 | (Eq. 8)
Thus
Rbl-(1
Obending = _‘2{
TC'd—
64 (Eq. 9)

The total stress in a leg will be the sum of the bending and axial

stress.
Gtotal = Oaxial + cSbending (Eq. 10)

A FORTRAN program was written which calculates Oiotal for a

vehicle with a given mass and number of legs (see Appendix N). The
program will give the results for total stress for leg lengths of 1.5,
2.0, 2.5, and 3.0 meters with foot plate angles from 45° to 90° (in 5°
increments).

Generally, the stresses increase as the leg length increases.
Also, as the foot plate angle approaches 90°, the stress in the legs
approaches a minimum and the bending stress becomes negligible
(see Figure H1). Here one would have to look at buckling analysis as
the leg length increases.

In the worst possible situation when the spacecraft landed on

only one leg, the total stress becomes:

_ 0.38 mg sin6(4) 32m(0.38g) cos8(l)
Oiotal = " + 3
nd nd (Eq. 11)
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Appendix G: INSERT TK! Solver Model

Purpose: This TK! Solver model will be used to determine the
minimum AV required for insertion into the Mars system.
Note on inputs and outputs: The variables in TK! Solver model
can be defined as inputs or outputs depending on the objective of the
analysis. The variables shown below are the ones which the current
design team will use in their analysis.
Inputs:

Solar Gravitational Parameter

Gravitational Parameter of Earth

Gravitational Parameter for Mars

Periapse radius at Earth

Radius of Mars

Radius of Mars Orbit

Factor (ratio of insertion orbit to Mars orbit)
Outputs:

Periapse radius at Mars (the insertion radius) and

AV2 (the required fuel burn for insertion)
Source: Dr. Wallace T. Fowier, graduate mission design class
instructor at The University of Texas at Austin.
Modifications made: Not applicable.
Theory: A patch conic - Hohmann Transfer is used, assuming Earth
and Mars are coplannar. See: Fundamental of Astrodynamics, by
R. R. Bate, D. D. Mueller, J. E. White, Dover Publications, Inc., New
York, 1971.
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Listing: See below

Sample run: See below
Verification: N/A
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Appendix H: DELV TK! Solver Model

Purpose: This TK! Solver model will be used to determine the
minimum AV required to transfer between Phobos orbit and the Mars
parking orbits whose inclination are the same as base latitudes. The
AV for the transfer will be used to size the Orbital Transfer Vehicle
(OTV). ,
Note on inputs and outputs: The variables in TK! Solver model
can be defined as inputs or outputs depending on the objective of the
analysis. The variables shown below are the ones which the current
design team will use in their analysis.
Inputs:

Gravitational Parameter for Mars

Radius of Low Mars Orbit (the parking orbit)

‘Radius of Phobos Orbit

Plane Change at first burn

Total Plane Change (the same as base latitude)
Qutputs:

AViotal (the required fuel burn for the transfer)
Source: Written by the Orbital Analysis Team of the Star Truk Co.,
Spring 1989, The University of Texas at Austin.
Modifications made: N/A
Theory: A Hohmann transfer incorporating a plane change for the
circular orbit is used. Refer to Fundamental of Astrodynamics,
by R. R. Bate, DD. Mueller, J. E. White, Dover Publications, Inc., New
York, 1971.
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Listing: See below.

Sample run: See below.
Verification: N/A
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Appendix 1I: OVSIZE TK! Solver Model

Purpose: This TK! Solver model was used to determine the
propellant mass required by the OTV to transfer a given payload
between orbits using a Hohmann transfer.
Note on inputs and outputs: The variables in a TK! Solver model
can be defined as inputs or outputs depending on the objective of the
analysis. The variables shown below were used in this particular
analysis.
Inputs:

Total AV for the round trip transfer

Specific impulse

Oxidizer / fuel ratio

Payload mass

Final mass of the OTV after a round trip

Oxidizer and fuel densities
Outputs:

Total propellant quantity in metric tons

Diameter of spherical tank containing half of each propellant

component

Source: This model was created by the Orbital Vehicle Team of
Star Truk Company in April 1989.
Modifications made: N/A
Theory: Standard propulsion theory was used in applying the ideal
rocket equation. This theory assumes there are neither

perturbations nor atmospheric drag. The rocket equation solves for
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an initial to final mass ratio. With the ratio and the input final
mass of the OTV the initial mass prior to one leg of the transfer can
be calculated. The required propellant is then the difference
between the initial and final masses. The initial mass of the OTV
for the return leg plus the payload mass becomes the final mass for
the transfer. The procedure just described is repeated to determine
the masses and the propellant quantity for the payload transfer. The
total quantity for the round trip is the sum of the calculated
quantities. The oxidizer/fuel ratio is applied to find the mass of
each of the propellant component quantities. The component masses
are divided by the specified volumes to obtain the propellant
component volumes. The equation for the volume of a sphere is then

used to determine the tank diameter.

Listing: See below

Sample run: See below
Verification: Hand calculations were performed to verify the

program. A number of test points were calculated and substantiated

the results of the model.
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VARIABLE SHEET

St Input Name—— Output—— Unit Comment
MASS SIZING FROCEDURE
2305 delv m/s Change of velocity for the transfer
c 4414.5 m/s Exit velocity
ratio 1.491915% Mass ratio
Mi2 59.676638 MT Initial mass for the return trip
40 M2 MT Final mass for the return trip
MpZ2 19.6746638 MT Mass of fuel for the return trip
Mpaux2 21.6443702 MT Additional fuel mass
Mf1 181.6442 MT Final mass for the outgoing
L 1550 Mp1l MT Mass of the payload
Mil 270,.99807 MT Initial mass for the outgoing
Mpauxl 98,289101 MT Additional fuel mass
Mp1 89.753728 MT Mass of fuel for the outgoing
L Mptot 119.2734 MT Total fuel maes
TANK SI1ZING FROCEDURE
Mf1 18.451292 MT Mass of fuel
5.5 OFR 0x/Fuel ratio
Mox 101.48211 MT Mass of Ox
Vo 171.27782 o2 Volume of Ox
.S5925 Denox MT/mZ Density of Ox
V¥l 519.75472 m3 Volume of fuel
. 0Z8S Denfl MT/m™3Z Density of fuel
L TDo:: 5.41404956 m Ox tank diameter
L TDf1 7.8092402 m Fuel tank diameter
450 Isp
RULE SHEET
S Rule
ratio = exp(delV/c)
Mi2 = ratio & Mf2
Mp2 = Mi2 - M$f2
Mpaux2 = 1.1 ¥ Mp2
M€ 1 = Mpaux2 + MF2 + Mpl
Mi1i = ratio x Mf1
Mpauxl = 1.1 x Mp]
Mp1 = Mil - Mf{
Mptot = Mpauxl + Mpau:?
Mf1 = Mptot /7 (DFR + 1.0) -
Mos: = Mptot - Mfl
Vo = Mox / Denox:
V¥l = Mfl / Den+l ]
TDo:: = 20 ((3/44 1 p10)) X (Vou/2)) " (.3T))
TD+1 = 20K ((3/(4 % pi()) ¥ (VE1/72))y (.33
c = Isp x 9.81
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Appendix J: Computation of AV's for the OMV

J1 AV Determination

A targeting was made from an initial point to a desired final
location for various times of flight. The output was then used for
the initial trajectory states and propagated. An examination of the
resulting flight paths then determined a range of acceptable AV's. A
TK! Solver! model was created for the problem. A listing of the

model and documentation are in Appendix O.

J2 Results

Through interaction with the PHOBIA Co. an approximate landing
site was located at x-distance = -11 km and z-distance = 6 km from
the ITV. This site is near the trenches radiating from Stickney
Crater located on the Phobos, facing Mars. The sites considered by
PHOBIA are near the equator of Phobos, therefore the y distances and
velocities were not calculated.

In Table J1 the TOF is varied for targeting from the ITV to
Phobos (xo =0, zo= 0, x = -11000, z = 6000), and the resulting
velocities are displayed. A TOF of 40 minutes or less produced
excessive AV's as the flight path was nearly linear. TOF's greater
than 95 minutes produced a path which is greater the -11000 meters
in the x-direction and, therefore, would pass through Phobos in its
effort to rendezvous with the target. Figure J1 shows the resulting
path for a 76.52 minute TOF, the state values for this trajectory are

given in Table J2. This is a representative flight path for TOF's less
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than 95 minutes and greater than 40 minutes. In this flight the
vehicle will pass along the Phobos surface at approximately 3 to 5
meters per second. It will be able to commit to landing by executing
a reversed thrust, reducing its velocity to zero. The total AV's for
the TOF's between 95 and 40 minutes are seen to lie between 6 and
10 meters per second, respectively.

Once brought to near zero relative velocity, the OMV-Payload
unit will use small thruster engines to maneuver to approximately
100 to 50 meters above the proposed landing site. The payload will
be allowed to "drop" to a soft landing on Phobos. The velocity
changes, and fuel usages, for this hover maneuver are assumed to be
small relative to the transfer trajectory.

Should an abort occur before a commit to land, the trajectory
will be that of Figure J2. Table J3 presents the state values on this
trajectory. It is seen that the vehicle passes through the Phobos-
ITV orbit path and exceeds the radial distance by one kilometer. At
this point, a burn of 3.24 m/sec will place the vehicle and payload in
a slightly higher orbit, so it will move at a slower orbital rate. The
vehicle will then move toward the ITV where it may refuel for a new
landing attempt.

Table J4 gives the velocities for the return of the OMV to the
ITV as the time of flight is varied. Most trajectory total AV's are
less than 10 m/sec. TOF's greater than 90 minutes result in
trajectories which do rendezvous with the ITV; however, if the OMV
continues on its course it will not make it around Phobos. A
representative flight, with a TOF of 81.99 minutes, is shown in

Figure J3 with values given in Table J5. A contingency flight is
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shown in Figure J4, with values in Table J6. A burn at the point
where the z-velocity is zero will place the OMV in an orbit which is

lower than that of Phobos and allow the OMV to catch up to the
Phobos-ITV vicinity.

J3 Recommendations

The AV's from this study are needed for OMV sizing. It is
recommended that 10 m/sec should be used for each portion of the

ITV-Phobos and Phobos-ITV trajectories.
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Appendix K: Description of Descent Profile

The Mars atmospheric entry can be divided into three logical
segments. Separating the descent profile into segments allows for
easier analysis and for clearer presentation of results. The first
segment (de-orbit) goes from the parking orbit about Mars (LMO) to
the edge of Mars atmosphere. Reaching from the edge of Mars
atmosphere to a designated hover initiation altitude is the second
segment (descent). During the descent segment, drag devices such
as parachutes or rotofoils may be deployed to reduce the vehicle's
velocity. Propulsive deceleration would also occur during this
segment. Finally, the third segment (hover) covers the descent from
hover initiation altitude to touchdown on Mars' surface. During the
hover segment, the vehicle can travel to its final landing site and it
is in this segment of the descent profile where the vehicle gets

most of its crossrange distance.

During each of the three segments there are certain parameters

of interest which are discussed below.

De-orbit segment: Of special interest during this segment is the
AV required for de-orbit, and the velocity and flight path angle at
atmospheric entry. The AV requirement is necessary for vehicle
sizing, while entry velocity and flight path angle are inputs to the

next segment of the descent.
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Descent segment: During the descent segment, the first
parameters of interest are the velocity and flight path angle at
atmospheric entry as mentioned above. The aerodynamic qualities of
the vehicle such as coefficient of drag, lift to drag ratio, and vehicle
planform area (size) are also important. Related to the aerodynamic
factors is the flight path angle of the vehicle as a function of
altitude since the flight path angle will affect the drag and lift of
the vehicle. Additional parameters of interest are the altitudes for
deployment of any drag devices. The parameters mentioned above
determine the velocity of the vehicle at the designated altitude for
propulsive deceleration initiation. From this point, using the thrust
output and fuel mass flow rate of the vehicle's engines, the velocity
at the designated hover initiation point can be determined. Also, the
amount of propellant used for propulsive deceleration can be
determined; this is necessary for vehicle sizing. Two additional
parameters of interest are the maximum stagnation temperature and

maximum g-loading experienced by the vehicle during descent.

Hover segment: Of interest during the hover segment of the
descent profile are the hover initiation altitude, the vehicle's mass
at hover initiation, and the engine's thrust and fuel mass flow rate.
From these parameters, the propellant used during hover can be

determined.
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Appendix L: DODV TK! Solver Model

Purpose: This TK! Solver model will be used to determine the flight
path angle and velocity of landing vehicles at atmospheric entry as
well as the AV required to de-orbit. The first two parameters are
inputs to the Mars Descent program while the AV for de-orbit will
be used to size the de-orbit engines and propellant tanks.
Note on inputs and outputs: The variables in a TK! Solver mode!
can be defined as inputs or outputs depending on the objective of the
analysis. The variables shown below are the ones which the current
design team will use in their analysis. |
Inputs:

Orbital elements of parking orbit

Orbital elements of transfer orbit

True anomaly of vehicle at de-orbit burn point
Qutputs:

Flight path angle at atmospheric entry

Vehicle velocity at atmospheric entry

True anomaly of vehicle at atmospheric entry

AV for de-orbit burn
Source: "A Manned Mission to Mars: Preliminary Design Review 2"
Report written May 12, 1986 by Texas Space Services (TSS, a
student design team) for an undergraduate mission design course at
the University of Texas at Austin.
Modifications made: The model has been modified to incorporate

a circular parking orbit
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Theory: Standard orbital mechanics theory using the two-body and
impulsive burn assumptions is used, but a spherical, rotating Mars is
incorporated. A good reference is: Fundamentals of
Astrodynamics, by R. R. Bate, D. D. Mueller, J. E. White, Dover

Publications, Inc., New York, 1971.

Listing: See below.

Sample run: See below.
Verification: Verification of this program was necessary since it

was typed in to the TK! Solver program from the TSS report. This
program has been verified by running data obtained from the TSS
report as inputs and comparing the output obtained against the

output published in the TSS report.
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VARIABLE SHEET

St Input Name—— Output Unit Comment
42828 mu ka~3/s~2 Gravitational parameter of Mars
6720 a km Major axis of parking orbit
L « 42038469 Eccentricity of parking orbit
Ra 9545 km Apoapsis of parking orbit
3895 Rp km Periapsis of parking orbit
L 180 £ deg True anomaly of parking orbit
Vi 1.6126682 km/s Velocity before burn
r 9545 km Radius at burn
gammal S.091E-15 deg Initial flight path angle at burn
6500 at km Major axis of transfer orbit
39S Rpt km Periapsis of transfer orbit
Rat 4605 km Apoapsis of transfer orbit
et 4776922 Eccentricity of transfer orbit
ft 173.27854 deg True anomaly of transfer oarbit
vt 1.5443413 ka/s Velocity after burn
gammaT -6.072074 deg Flight path angle after burn
ftc 186.72146 deg Corrected true anomaly after burn
L DeltaV 180.5934S m/s Delta velocity of burn
L Dgamma -6.072074 deg Change in flight path angle at deorbit
3495 re km Radius at atmospheric entry
L Ve 4233.1113 m/s Atmospheric entry velocity
fe 24,287816 deg True anomaly at atmospheric entry
L gammaE 7.7944227 deg Flight path angle at entry
RULE SHEET
S Rule
3 r=agt (1 -e2)/ (1 +e 38 cos(f))
£ Vi = gqrt(mu & (2/r - 1/a))
2 tan(gammal) = @ 8 sin(f) /7 (1 + e % cos(f))
&t Rat = 2 ¢ at - Rpt
* et = (Rat - Rpt) 7/ (2 3 at)
T ro= at & (1 - @t™~2) / (1 + et 8 cos(ft))
3 Vt = ggrtimu & (2/r - 1/at))
2 tan(gammaT) = et % sin(ftc) / (1 + et $ cos(ftc))
2 ftc = 2 2 PI1() - f¢t
¥ DeltaV = sqrt(Vi~2 + V£~2 - 2 8 Vi & Vt 3 cos(gammaT - gammal))
T Ra=218%a-Rp
* @ = (Ra-Rp) /7 (2 1 a)
3 Ve = sqrt(mu & (2/re - t/at))
fre = at £ (1 - et™2) / (1 + et & cos(fe))
& Dgamma = gammaT - gammal i
¥ tan(gammaE) = et f sin(fe) / (1 + et £ cos(fe))
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Appendix M: Mars Descent FORTRAN Program

Purpose: The main purpose of this program is to determine the
propellant used to perform the atmospheric descent. This

information will be used to size the landing vehicles. The secondary
purpose of the program is to determine the maximum temperature
experienced by the vehicle during the descent. This information will
be used to design a thermal protection system for the landing
vehicles (e.g.; thermal shield). The program will also determine the
maximum g-loading experienced by the vehicle; this information will
influence the structural design of the vehicle.
Inputs:

Vehicle planform area (vehicle radius)

Initial vehicle mass

Vehicle coefficient of Iift

Vehicle lift to drag ratio

Vehicle velocity at atmospheric entry

Vehicle flight path angle at atmospheric entry

Altitude of propulsive deceleration initiation

Emissivity of vehicle heat shield

Fuel mass flow rate

Thrust of engine(s)

Interval for propagating eqUations of motion
Outputs:

 Ballistic drag coefficient

Time of descent
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Maximum g-loading encountered

Maximum stagnation temperature encountered

Crossrange distance

Downrange distance

Altitude when vehicle achieves zero velocity

Propellant used during propulsive descent
Sources:

1) Original source: "Mars Cargo Descent Vehicle Sizing
Analysis." Report written by Preston Carter for the Universities
Space Research Association at NASA Johnson Space Center, August
7, 1985.

2) Current source: "A Manned Mission to Mars: Preliminary Design
Review-2." Report written May 12, 1986 by Texas Space Services
(TSS, a student design team) for an undergraduate mission design
course at the University of Texas at Austin.

Modifications m

1) The program was modified to read a data file of Mars
atmospheric temperatures (see Appendix P) created by the current
design team. This was necessary since a listing of the original data
file was not provided with the program listing.

2) The program has been modified to create a data file for
plotting a profile of the descent trajectory. The data file is
formatted for use in the "PLOTTER" program on the CDC Dual Cybers
computer at the University of Texas at Austin.

3) The program will be modified to incorporate parachute

deployment during the descent trajectory. A previous design group
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wrote a subroutine to perform this function, and it will be added to
the current program.

4) Documentation is being added to the program. The original
program was not documented and most variables were not defined.
Theory: The program uses a Runge-Kutta integrator to propagate

the vehicle equations of motion through the descent trajectory.

Listing: See below

Sample run: See below ,
Verification: Verification of this program was necessary since it

was typed in to a FORTRAN file from the TSS report. This program
was verified by using data obtained from the TSS report as input and
comparing the output obtained against the output published in the
TSS report. The emissivity value that TSS used was not provided in
their report so a value of 0.8 was chosen. The output obtained from

this run was very close to the TSS output.
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PROGRAM MARSDES
(TTY,OUTPUT,DATA,TP,PLOT, TAPE3=OUTPUT,TAPES5=TTY,TAPE6=TTY,
!/ TAPE7=TP,TAPE9=DATA TAPE8=PLOT) :

THIS IS MAIN ROUTINE OF THE MARS DESCENT VEHICLE SIMULATION WRITTEN

BY PRESTON CARTER. MODIFICATIONS AND ADDITIONS TO THE SIMULATION

WERE WRITTEN BY KYLE FIELDS AND MICHAEL ERGER. THESE ADDITIONS AND
MODIFICATIONS INCLUDE THE PROPULSIVE DECELERATION PHASE, AEROHEATING
ROUTINE, AND G-LOADING INFORMATION. THE CALCULATION UNITS ARE METERS,
KILOGRAMS, AND SECONDS.

MODIFIED AND DOCUMENTED SPRING 1989 BY BRYAN POST. MODIFIED SUBROUTINE
TPDATA AND CHANGED PROGRAM TO RUN ON MICRO COMPUTER.

DEFINE VARIABLES

HEQUIL = PULLOUT ALTITUDE (M)

AMO = INITIAL VEHICLE MASS (KG)

RO = MARS MEAN RADIUS

RHOO = MARS DENSITY AT GROUND LEVEL
HMAX = MAX ALTITUDE

E = EMISSIVITY OF ABLATIVE HEAT SHIELD
BALLCL = BALLISTIC COEFFICIENT OF LIFT
BALLCD = BALLISTIC COEFFICIENT OF DRAG

X(1) = DOWNRANGE DISTANCE, X (M)

X(2) = CROSSRANGE DISTANCE, Y (M)

X(3) = DISTANCE FROM CENTER OF MARS TO VEHICLE (M)
X(4) = VELOCITY (M/S)

X(5) = FLIGHT PATH ANGLE

X(6) = AZIMUTH (RAD)

X(7) = MASS OF VEHICLE (KG)

THE ARRAY DX(7) CONTAINS THE CHANGE IN EACH OF THE ELEMENTS OF
THE X(7) ARRAY

COMMON/RO/RO
COMMON/RHOO/RHOO
COMMONHMAXHMAX
COMMON/E/E
COMMON/BALLCL/BALLCL
COMMON/BALLCD/BALLCD
COMMON/G/G
COMMON/AMO/AMO
COMMONMHEQUILHEQUIL
COMMON RB
COMMON/PROP/FFR,DM,PALT, THRUST
COMMON/TEMP/TEMP

NECESSARY CHANGE
COMMON/ROLL/ROLL
'DIMENSION X(7),DX(7)

DIMENSION TEMP(101)
REALLD
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WRITE HEADING STATEMENTS TO DATA FILE FOR PLOTTING PROFILE
OF DESCENT TRAJECTORY

OPEN(8,FILE='PLOT ,STATUS="NEW)
WRITE (8,") TITLE # DESCENT TRAJECTORY #

WRITE (8,) 'XLABEL # DOWNRANGE DISTANCE (KM) #
WRITE (8,") 'YLABEL # ALTITUDE (KM) #

WRITE (8,") 'LINE NOMARKERS'

READ DATA FILE TO CREATE ARRAY OF ATMOSPHERIC TEMPS
CALL TPDATA(TEMP)

WRITE(6,")'VERIFY TEMPS READ CORRECTLY"
WRITE(6,") TEMP @ GROUND LEVEL = ' TEMP(0)
WRITE(6,") TEMP @ 50 KM =", TEMP(50)
WRITE(6,") TEMP @ 100 KM = ', TEMP(100)

NECESSARY CHANGE

ROLL = 0.0
DX(4) = 0.0

GMAX = 0.0
TWMAX =0.0

G = MARS GRAVITATIONAL ACCELERATION (M/S)

G=3.730
RO = 3397500.0
RHOO = 1.56E-2

HMAX'S UNIT IS KILOMETERS INSTEAD OF METERS

HMAX = 100.0
DT =1.0

PRINT OPENING STATEMENTS

CALL HOLA
WRITE(6,")RADIUS OF VEHICLE (M)7
READ(5,')RB

WRITE(6,"YMASS OF VEHICLE (KG)?
READ(5,")AMO

WRITE(8,")'LIFT COEFFICIENT 7
READ(5,")CL

BALLCL = AMO/(CL*3.141592654"RB*RB)
WRITE (6,")LID?

READ (5,")LD

BALLCD = BALLCL*LD

WRITE (6,")INITIAL HEIGHT IS 100 KM'
WRITE(S,") '

H = 100000.0
X(3)=H+RO

WRITE (6,")INITIAL V (WSEC)?'

READ (5,*)X(4)

WRITE (6,")INITIAL FLIGHT PATH ANGLE (DEG)?'
READ (5,")ANGLE
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X(5) = 0.017453 * ANGLE
WRITE (6,*)PULLOUT ALTITIUDE (KM)?'

READ (5,")HEQUIL

HEQUIL = HEQUIL * 1000.0

WRITE(6,") EMMISIVITY OF ABLATIVE SURFACE 7
READ(5,")E

WRITE (6,")OUTPUT TAPE NUMBER?

WRITE(6,*)USE TAPE 6 FOR TTY OUTPUT

WRITE(6,")'USE TAPE 9 FOR OUTPUT DIRECTED TO FILE MARS.DAT'
WRITE(6,")OUTPUT TAPE NUMBER 7

READ (5,")IUNIT

*  PROPULSIVE INFORMATION

WRITE(S,*)INITIAL PROPULSIVE DECELERATION ALTITUDE (KM)?
READ(5,*)PALT
PALT = PALT*1000.0
IF(PALT .EQ. 0.0) GOTO 333
WRITE(6,") FUEL MASS FLOW RATE (KG/S)?
READ(5,")FFR
WRITE(6,*YENGINE THRUST (N) 7
READ(5,") THRUST
333 CONTINUE

DX(7)=0.0
X(1) =0.0
DX(4) = 0.0
X(2) =0.0
X(6) =0.0
X(7) = AMO

*  MAXTIME (S) FOR DESCENT
TMAX = 5000.0

* TERMINATION ALTITUDE FOR DESCENT
TERMH = 0.0

WRITE(6,*yUPPER TRAJECTORY OUTPUT INTERVAL (S) ?
READ(5,")NSTEPS

WRITE(6,*)'SIMULATION IN PROGRESS..."

TIME = 0.0

OPEN (9,FILE='MARS.DAT)

WRITE(IUNIT,") >>> MARS DESCENT SIMULATION <<<
WRITE(IUNIT,*)" *

WRITE(IUNIT ) DESCENT PROFILE'

WRITE(IUNIT,")" *

WRITE (IUNIT,")M/CL*S) (KG/M**2) = ' BALLCL
WRITE(IUNIT,*YINITIAL MASS (KG) = 'AMO

WRITE(IUNIT *yCOEFFICIENT OF LIFT =*,CL
WRITE(IUNIT,*)RADIUS OF VEHICLE (M) =",RB

WRITE (IUNIT,*YL/D ='LD

WRITE (IUNIT,*YEMMISIVITY OF ABLATIVE SURFACE ="E
WRITE (IUNIT,*YH (M) = H

WRITE (IUNIT ")V (WSEC) =", X(4)

WRITE (IUNIT,*)GAMA (DEG) =',ANGLE
WRITE(IUNIT,* ) THRUST (N) =, THRUST
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WRITE(IUNIT,YINITIAL PROP. DEC. ALT. (KM) =',PALT/1000.0
WRITE(IUNIT,*)FUEL FLOW RATE (KG/S) = ',FFR
WRITE(IUNIT,*)" *

CALL OUTPUT(TIME,X,DX,TW,IUNIT)

*

*  LOOP FOR DESCENT BEGINS
H = X(3)-RO
200 IF((TIME.LT.TMAX).AND.(H.GT.TERMH).AND.X(4).GT.0.0) THEN

*  SHORTEN PROPOGATION INCREMENT AT END OF TRAJECTORY

IF(X(3) - RO .LE. PALT + 7000.0)NSTEPS = 5

IF(X(3)-RO .LE. PALT + 2000.0)NSTEPS = 1

IF(X(3)-RO .LE. 100.0)NSTEPS = 1

IF(X(3)-RO .LE. 100.0)DT = .25

DO 300 I=1,NSTEPS
CALL RK(X,DX,DT,?)
TIME = TIME + DT

IF (DX(4) .LT. GMAX)GMAX = DX(4)

300 CONTINUE

CALL OUTPUT(TIME,X,DX, TW,IUNIT)

IFTW GT. TWMAX)TWMAX = TW
H=X(3)-RO

ELSE
GMAX = GMAX/9.81
WRITE(,")
WRITE(6,") TERMINATION TIME =", TIME
WRITE(6,") TERMINATION ALTITUDE ="' H
WRITE(6,*)MAXIMUM G-EARTH ACCELERATION = ' GMAX
WRITE(6,"yMAXIMUM STAGNATION TEMPERATURE (K) =" TWMAX
WRITE(6,"YMASS OF FUEL USED (KG) = ",AMO-X(7)

WRITE(6,")" *
IFJUNIT .EQ. 6) GOTO 444
WRITE(IUNIT,") *
WRITE(IUNIT,*)-~———FINAL AND MAXIMUM VALUES-——-—"

WRITE(IUNIT,") TERMINATION TIME =", TIME

WRITE(IUNIT,") TERMINATION ALTITUDE ="' H
WRITE(IUNIT,")MAXIMUM G-EARTH ACCELERATION =',GMAX
WRITE(IUNIT,*)MAXIMUM STAGNATION TEMP (K) = ' TWMAX

WRITE(IUNIT,*)'MASS OF FUEL USED (KG) = ', AMO-X(7)
WRITE(IUNIT,*)" *

-

*  CHANGE TO PRINT FINAL VALUES TO SCREEN

*

444  CALL OUTPUT(TIME,X,DX,TW,6)
GO TO999
ENDIF

GO TO 200

-

" LOOP FOR DESCENT ENDS

*

999 CONTINUE
STOP
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END
SUBROUTINE OUTPUT(TIME,X,DX,TW,IUNIT)

THIS IS AN OUTPUT ROUTINE FOR PRINTING AN EPHEMEROUS OF THE DESCENT

TRAJECTORY.

COMMON/RO/RO

COMMON/ROLL/ROLL
COMMON/PROP/FFR,DM,PALT, THRUST
COMMON/RHOO/RHOO

DIMENSION X(7),DX(7)

CONVERT FROM RADIANS TO DEGREES
RADDEG = 57.29578

THETA = ROLL*RADDEG
DRG = X(1)/1000.0

CRG = X(2)/1000.0

H = (X(3) -R0)/1000.0
V=X(4)

GFORCE = DX(4)/9.81
GAMA = X(5)*RADDEG
AZE =X(6)'RADDEG

THE AEROHEATING SUBROUTINE FRY IS CALLED FOR THE CURRENT
VALUE OF STAGNATION TEMPERATURE IN DEGREES K

RHOF = DENS(X(3))
IF(H .LE. 1.0 .OR. Y .LE. 1.0)RHOF = -9999.0
CALL FRY(X,RHOF,TW)
WRITE (IUNIT,")' *
WRITE (IUNIT,*) TIME (SEC) = . TIME,' ROLL (DEG) =", THETA
IF (DX(7) .NE. 0.0)THEN
WRITE(IUNIT,*yPROPULSION SYSTEMS ARE ON'
WRITE(IUNIT,*YMASS OF VEHICLE (KG) =" X(7)
ELSE
WRITE(IUNIT,"yPROPULSION SYSTEMS ARE OFF'
ENDIF
WRITE (IUNIT,*y’X DOWNRANGE (KM) =',DRG
WRITE (IUNIT,")Y CROSSRANGE (KM) =',CRG
WRITE (IUNIT,*yH ALTITUDE (KM) =", H
WRITE (IUNIT,*) V VELOCITY (M/SEC) = 'V
WRITE (IUNIT,*YGAMA FLT. PATH ANGLE (DEG) ='GAMA
WRITE (IUNIT,*YAZE (DEG) = " AZE
WRITE (IUNIT,*YACCELERATION (EARTH G) =", GFORCE
WRITE(IUNIT,"ySTAGNATION TEMP (K) = | TW

WRITE DATA TO PLOT FILE FOR PROFILE OF DESCENT TRAJECTORY
WRITE (8,") DRG,H

RETURN
END
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SUBROUTINE RK (X,DX,DT,N)

THIS IS A RUNGE-KUTTA 4TH ORDER INTEGRATOR. THIS ROUTINE EXPECTS THE

SUBROUTINE 'DERIV' TO BE SUPPLIED BY THE USER.

REAL X(7),U(7),F(7),D(7),DX(7)

CALL DERIV(X,D)
DO1I=1,N
D() = D()*DT
U(l = X(1) + 0.5°D(l)
CALL DERIV(U,F)
DO2I=1,N
F() = F()*DT
D(l) = D(l) + 2.0°F(l)
U(l) = X(1) + 0.5°F(l)
CALL DERIV(U,F)
DO3I=1N
F() = F()*DT
() = D(l) + 2.0°F(l)
U = X(1) + F()
CALL DERIV (U,F)
DO41=1,N
X() = X(I) + (D{l) + F(1)*DTY/6.0
DX(4) = D(4)

SUBROUTINE DERIV(X,DX)
THIS SUBROUTINE CONTAINS THE EQUATIONS OF MOTION.

COMMON/BALLCL/BALLCL
COMMON/BALLCD/BALLCD
COMMON/G/G

COMMON/RO/RO

COMMON/AMO/AMO
COMMON/PROP/FFR,DM,PALT, THRUST
COMMON/ROLL/ROLL

DIMENSION X(7),DX(7)

Q = (1/2)*DENSITY*(V**2)
PALT = INITIAL PROPULSIVE DECELERATION ALTITUDE (KM)

Q = 0.5*DENS(X(3))*X(4)**2
HDOT = X(4)*SIN(X(5))

DX(7) IS THE MASS FUEL FLOW RATE
X(7) IS THE MASS OF THE VEHICLE

THE FOLLOWING IF STATEMENT SAYS: IF CURRENT ALTITUDE IS LESS THEN
PALT, AND VELOCITY IS GREATER THAN 30 M/S, AND CURRENT ALTITUDE IS
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GREATER THAN 40 M, THEN.....

IF(X(3)-RO.LE.PALT.AND.X(4).GT.10.0.AND.X(3)-RO.GT.40.0) THEN
DX(7) =-FFR
PTHRUST = THRUST/X(7)
ELSE
DX(7) = 0.0
PTHRUST = 0.0
ENDIF

CALL CMROLL(X(7),X(3),X(4),X(6),HDOT,Q,ROLL)

DX(1) = X(4)*COS(X(6))*COS(X(5))

DX(2) = X(4)* SIN(X(6))*COS(X(5))

DX(3) = HDOT

DX(4) = -Q/(BALLCD*X(7)/AMO) + G*SIN(X(5)) - PTHRUST

DX(5) = Q/(BALLCL*X(7)/AMO)/X(4)* COS(ROLL)-G/X(4)*COS(X(5))
I +X(4)X(3)*COS(X(5))

DX(6) = Q/(BALLCL*X(7)/AMO)/X(4)/COS(X(5))*SIN(ROLL)

RETURN
END

FUNCTION DENS(R)

THIS SUBROUTINE CONTAINS AN ANALYTICAL MODEL OF THE MARTIAN
ATMOSPHERE. THIS MODEL WAS DEVELOPED AT JPL FROM A BEST FIT OF THE
VIKING | AND Il FLIGHT DATA.

COMMON/RHOO/RHOO
COMMONHMAX/HMAX
COMMON/RO/RO

H = (R - RO)/1000.0
IF (H.EQ.0.0) THEN
DENS = RHOO
ELSE IF ((H.GT.0.0).AND.(H.LE.50.0)) THEN
DENS = RHOO*EXP(~(-0.5314+0.1083*H+2.188/H))
ELSE IF ((H.GT.50.0).AND.(H.LE.HMAX)) THEN
DENS = RHOO*EXP(-(-2.881+0.1396°H+42.55/H))
ELSE IF (H.GT.HMAX) THEN
DENS = 0.0
ENDIF

RETURN
END

SUBROUTINE CMROLL(W,R,V,AZE HDOT,Q,ROLL)

THIS SUBROUTINE CONTROLS THE ROLL OF THE VEHICLE DURING
DESCENT. FOR THIS SIMULATION, THE VEHICLE'S LIFT IS MODULATED
BY THE VEHICLE'S BANK ANGLE. THIS SIMULATION HAS ASSUMED
CONSTANT L/D AND ANGLE OF ATTACK. THIS SUBROUTINE
IMPLEMENTS ALL OF DESCENT TRAJECTORY PROFILE REQUIREMENTS.
SPECIFICALLY, THIS ROUTINE CONTROLS THE VEHICLE'S RATE OF
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*  DESCENT AND FLIGHT AZIMUTH ACCORDING TO OUR SPECIFICATIONS.

*

COMMON/BALLCL/BALLCL
COMMON/G/G
COMMON/RO/RO
COMMONMEQUIL/HEQUIL
COMMON/AMO/AMO

Q=1/2* DENSITY * (V**2)

HEQUIL = PULLOUT ALTITUDE (M) - AT PULLOUT ALTITUDE, VEHICLE ROTATED
TO ACHIEVE LEVEL TRAJECTORY (EQUILIBRIUM GLIDE)

G = MARS GRAVITATIONAL ACCELERATION (M/S)

W = CURRENT MASS OF VEHICLE (KG)

AMO = INITIAL MASS OF VEHICLE (KG)

V = VELOCITY (M/S)

H = ALTITUDE ABOVE SURFACE

FIRST TIME THROUGH, ROLL = 0.0

* % % % % * ®» % % * » »

H=R-RO

»

*  ESTABLISH POS OR NEG SCALAR OF MAGNITUDE ONE
IF (ROLL.EQ.0.0) THEN

SGN=1.0
ELSE

SGN = ROLL/ABS(ROLL)
ENDIF

IF (Q.EQ.0.0) THEN
*  IF VELOCITY EQUAL ZERO, ROLL = 0.0

ROLL =0.0
ELSEIF ((H.LT.HEQUIL).AND.(HDOT.LT.0.0)) THEN

* IF BELOW PULLOUT ALTITUDE AND DESCENDING, ROLL = 0.0

ROLL =0.0
ELSEIF (H.GT.HEQUIL) THEN

* IF ABOVE PULLOUT ALTITUDE, ROLL = 90 DEG

ROLL = ACOS(0.0)
ELSE

* IF EQUAL TO OR BELOW PULLOUT ALTITUDE AND NOT DESCENDING

COSEQG = ABS(G*(BALLCL*W/AMO)/Q* (1.0 - V**2/(G*R)))
IF (COSEQG.GT.1.0) THEN
ROLL = ACOS(0.0)
ELSE
ROLL = ACOS(COSEQG)
ENDIF
ENDIF

»

IF AZE GT 30 DEG
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C
C
C

C

IF (AZE.GT.1.57079) THEN
ROLL = -1.0°ROLL*SGN
ENDIF

RETURN
END

SUBROUTINE FRY(X,RHOF,TW)

THIS IS THE AEROHEATING SUBROUTINE WHICH USES AN EQUATION FOR
CONVECTIVE HEATING TO CALCULATE THE STAGNATION TEMPERATURE.

THE EQUATION (PG 6:33, EQ 6:11) IS FROM CORNING'S AEROSPACE VEHICLE
DESIGN. IT IS ASSUMED THAT RADIATIVE HEATING EFFECTS WILL BE NEGLIGIBLE
SINCE THE VEHICLE WILL BE FLYING MUCH SLOWER THAN 10,000 M/S.

COMMON RB
COMMON/RO/RO
COMMON/E/E
COMMON/RHOO/RHOO
COMMON/TEMP/TEMP

DIMENSION TEMP(101)
DIMENSION X(7)

SEVERAL CONVERSIONS ARE NECESSARY SINCE EQUATION USES THE
ARCHAIC SYSTEM OF UNITS.

IF(RHOF .EQ. -9999.0) THEN
TW=0.0
GOTO 555

ENDIF

RBF = RADIUS OF VEHICLE (FT)
E = EMISSIVITY OF ABLATIVE HEAT SHIELD

RBF = RB*3.2808

VC = 108315

SBK = .48E-12

ONE = 17600.0/SQRT(RBF)
TWO = SQRT(RHOF/RHOO)
THREE = (X(4)VC)**3.25

ONE * TWO * THREE = CONVECTIVE HEATING RATE
TW4 = ONE*TWO* THREE/(SBK*E)
TW4 = ABS(TW4)
TW = SORT(SQRT(TW4))
TW IS CONVERTED FROM RANKINE TO KELVIN

TW=TW/1.8

555 CONTINUE

-

DETERMINE ALTITUDE AS AN INTEGER (KM)
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c
c
C

IH = INT((X(3)-R0)/1000.0)
IF(IH LT. 1)IH=1

TT = TEMP OF ATMOSPHERE AT THE DETERMINED ALTITUDE (KELVIN)
TT = TEMP(IH)

TOTAL STAGNATION TEMP EQUAL SUM OF TEMP DUE TO HEATING AND
ATMOSPHERIC TEMP

TW=TW+TT
RETURN
END

SUBROUTINE HOLA

WRITE(6,")" *
WRH-E(G,.)’ [

WRITE(6")’ >>> MARS DESCENT SIMULATION <<<'

WRITE(S,")" *

WRITE(6,") THIS PROGRAM INCORPORATES AERODYNAMIC DRAG'
WRITE(6,")'FOR BRAKING IN THE UPPER ATMOSPHERE AND'
WRITE(6,*)PROPULSIVE DECELERATION FOR THE FINAL LANDING'
WRITE(6,") PHASE. IT IS SUGGESTED THAT THE PROPULSIVE'
WRITE(6,")PHASE OF THE PROGRAM BE TURNED OFF FOR'
WRITE(6,")'INITIAL ANALYSES TO OBTAIN AERODYNAMIC'
WRITE(6,'YENTRY DATA. THIS IS PERFORMED BY SETTING THE'
WRITE(8,")'INITIAL PROPULSIVE ALTITUDE EQUAL TO ZERO.'
WRITE(6,")NOTE THAT THE PROPULSION SYSTEM WILL'
WRITE(6,")AUTOMATICALLY SHUT OFF AT AN ALTITUDE OF
WRITE(6,*)'40 METERS AND A VELOCITY OF 30 METERS/SECOND."
WRITE(6,*)'ALSO NOTE THAT THE OUTPUT INTERVAL WILL'
WRITE(6,")BE RESET AS THE VEHICLE ENTERS THE PROPULSIVE'
WRITE(6,*)'PHASE OF THE DESCENT.

WRITE(6,") '

WRITE(S,") *

RETURN
END

SUBROUTINE TPDATA(TEMP)

>READS TEMPERATURE FROM GROUND LEVEL TO 100 KM INTO THE ARRAY TEMP
>EACH TEMP(l) CORRESPONDS TO ATMOSPHERIC TEMP AT A GIVEN ALTITUDE

ABOVE

C
o
C
Cc
C
C

SURFACE IN KM. [TEMP(0) = TEMP @ GROUND, TEMP(100) = TEMP @ 100 KM]

>THE DATA FILE CONTAINING THE TEMPS SHOULD BE TITLED TP.DAT AND SHOULD
BE IN THE CURRENT DIRECTORY WHEN RUNNING PROGRAM. EACH TEMP SHOULD
BE ON ITS OWN LINE.

>TEMPERATURE IS IN DEGREES K.

DIMENSION TEMP(101)
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OPEN(7,FILE = TP.DAT')

DO 69 1=0,100
READ(7,*) TEMP(l)
69 CONTINUE

RETURN
END
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>>> MARS DESCENT SIMULATION <<<
DESCENT PROFILE

M/(CL*S) (KG/M**2) = 392.9752
INITIAL MASS (KG) = 200000.0
COEFFICIENT OF LIFT = 0.5000000

RADIUS OF VEHICLE (M) = 18.00000

/D= 0.5000000

EMMISIVITY OF ABLATIVE SURFACE = 0.8000000
H(M)= 100000.0

V (M/SEC) = 3500.000

GAMA (DEG) = -0.5000000

THRUST (N) = 800000.0

INITIAL PROP. DEC. ALT. (KM) = 2.800000
FUEL FLOW RATE (KG/S) = 387.0000

TIME (SEC) = 0.0000000E+00 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 0.0000000E+00

Y CROSSRANGE (KM) = 0.0000000E+00

H ALTITUDE (KM) = 100.0000

V VELOCITY (M/SEC) = 3500.000

GAMA FLT. PATH ANGLE (DEG) = -0.4999316

AZE (DEG) = 0.0000000E+00

ACCELERATION (EARTH G) = 0.0000000E+00

STAGNATION TEMP (K) = 601.8546

TIME (SEC) = 50.00000 ROLL (DEG)=90.00000
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 174.9382

Y CROSSRANGE (KM) = 3.3079055E-03

H ALTITUDE (KM) = 98.18800

V VELOCITY (M/SEC) = 3497.792

GAMA FLT. PATH ANGLE (DEG) = -0.6872597

AZE (DEG) = 2.2592656E-03

ACCELERATION (EARTH G) = -2.5907286E-02
STAGNATION TEMP (K) = 616.0103

TIME (SEC) = 100.0000 ROLL (DEG)= 90.00000
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 349.7416

Y CROSSRANGE (KM) = 1.4536121E-02

H ALTITUDE (KM) = 95.80200

V VELOCITY (M/SEC) = 3494.881

GAMA FLT. PATH ANGLE (DEG) = -0.8771243

AZE (DEG) = 5.2628322E-03

ACCELERATION (EARTH G) = -3.3402905E-02
STAGNATION TEMP (K) = 635.2839 -
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TIME (SEC) = 150.0000 ROLL (DEG)= 90.00000
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 5243716

Y CROSSRANGE (KM) = 3.6715209E-02

H ALTITUDE (KM) = 92.83500

V VELOCITY (M/SEC) = 3491.187

GAMA FLT. PATH ANGLE (DEG) = -1.070368

AZE (DEG) = 9.5788063E-03

ACCELERATION (EARTH G) = -4.1945171E-02
STAGNATION TEMP (K) = 660.2806

TIME (SEC)= 200.0000 ROLL (DEG)= 90.00000
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 698.7833

Y CROSSRANGE (KM) = 7.5269416E-02

H ALTITUDE (KM) = 89.27725

V VELOCITY (W/SEC) = 3486.566

GAMA FLT. PATH ANGLE (DEG) = -1.267950

AZE (DEG) = 1.6286368E-02

ACCELERATION (EARTH G) = -5.2453484E-02
STAGNATION TEMP (K) = 691.8087

TIME (SEC) = 250.0000 ROLL (DEG)= 90.00000
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 872.9216

Y CROSSRANGE (KM) = 0.1403229

H ALTITUDE (KM) = 85.11600

V VELOCITY (M/SEC) = 3480.738

GAMA FLT. PATH ANGLE (DEG) = -1.471177

AZE (DEG) = 2.7567940E-02

ACCELERATION (EARTH G) = -6.6925675E-02

'STAGNATION TEMP (K) =  730.9097

TIME (SEC) = 300.0000 ROLL (DEG)= 90.00000
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 1046.712

Y CROSSRANGE (KM) = 0.2518087

H ALTITUDE (KM) = 80.33475

V VELOCITY (M/SEC) = 3473.115

GAMA FLT. PATH ANGLE (DEG) = -1.682054

AZE (DEG) = 4.8118457E-02

ACCELERATION (EARTH G) = -8.9969561E-02
STAGNATION TEMP (K) = 778.8838

TIME (SEC) = 350.0000 ROLL (DEG)= 90.00000
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 1220.031

Y CROSSRANGE (KM) = 0.4514129

H ALTITUDE (KM) = 74.91275

V VELOCITY (M/SEC) = 3462.376 ,
GAMA FLT. PATH ANGLE (DEG) = -1.904130

AZE (DEG) = 8.8682912E-02

ACCELERATION (EARTH G) = -0.1328440
STAGNATION TEMP (K) = 837.2604
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TIME (SEC) = 400.0000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 1392.653

Y CROSSRANGE (KM) = 0.8262587

H ALTITUDE (KM) = 68.82325

V VELOCITY (M/SEC) = 3445344

GAMA FLT. PATH ANGLE (DEG) = -2.123071

AZE (DEG) = 0.1539382

ACCELERATION (EARTH G) = -0.2239716

STAGNATION TEMP (K) = 908.5958

TIME (SEC) = 450.0000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 1564.111

Y CROSSRANGE (KM) = 1.286918

H ALTITUDE (KM) = 62.32200

V VELOCITY (M/SEC) = 3414.629

GAMA FLT. PATH ANGLE (DEG) = -2.200480

AZE (DEG) = 0.1539382

ACCELERATION (EARTH G) = -0.4235397

STAGNATION TEMP (K) = 990.8253

TIME (SEC) = 500.0000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 1733.387

Y CROSSRANGE (KM) = 1.741717

H ALTITUDE (KM) = 55.90625

V VELOCITY (M/SEC) = 3354.497

GAMA FLT. PATH ANGLE (DEG) = -2.097143

AZE (DEG) = 0.1539382

ACCELERATION (EARTH G) = -0.8365697

STAGNATION TEMP (K) = 1073.561

TIME (SEC) = 550.0000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 1898.452

Y CROSSRANGE (KM) = 2.185205

H ALTITUDE (KM) = 50.39375

V VELOCITY (M/SEC) = 3241.172

GAMA FLT. PATH ANGLE (DEG) = -1.659117

AZE (DEG) = 0.1539382

ACCELERATION (EARTH G) = -1.481478

STAGNATION TEMP (K) = 1132.896

TIME (SEC) = 600.0000 ROLL (DEG)= 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 2056.301

Y CROSSRANGE (KM) = 2.609302

H ALTITUDE (KM) = 46.85225

V VELOCITY (M/SEC) = 3066.996 ,

GAMA FLT. PATH ANGLE (DEG) = -0.8737836

AZE (DEG) = 0.1539382

ACCELERATION (EARTH G) = -1.959821

STAGNATION TEMP (K) = 1142.830
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TIME (SEC) = 650.0000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 2204.756

Y CROSSRANGE (KM) = 3.008162

H ALTITUDE (KM) = 45.59425

V VELOCITY (M/SEC) = 2871.847

GAMA FLT. PATH ANGLE (DEG) = -0.1352376

AZE (DEG) = 0.1539382

ACCELERATION (EARTH G) = -1.947137

STAGNATION TEMP (K) = 1108.416

TIME (SEC) = 700.0000 ROLL (DEG)= 14.90563
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 2343.767

Y CROSSRANGE (KM) = 4.022000

H ALTITUDE (KM) = 4555125

V VELOCITY (M/SEC) = 2692.589

GAMA FLT. PATH ANGLE (DEG) = 2.1998362E-04
AZE (DEG) = 0.8024611

ACCELERATION (EARTH G) = -1.715977
STAGNATION TEMP (K) = 1060.395

TIME (SEC) = 750.0000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 2474.336

Y CROSSRANGE (KM) = 5.966340

H ALTITUDE (KM) = 45.39675

V VELOCITY (W/SEC) = 2533.491

GAMA FLT. PATH ANGLE (DEG) = -0.1985256

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -1.550063

'STAGNATION TEMP (K) = 1018561

TIME (SEC) = 800.0000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 2597.240

Y CROSSRANGE (KM) = 7.805716

H ALTITUDE (KM) = 44.42075

V VELOCITY (M/SEC) = 2383.488

GAMA FLT. PATH ANGLE (DEG) = -0.7694979

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -1.540059

STAGNATION TEMP (K) = 988.6731

TIME (SEC) = 850.0000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 2712.478

Y CROSSRANGE (KM) = 9.530395

H ALTITUDE (KM) = 42.11150

V VELOCITY (M/SEC) = 2224.271 ,

GAMA FLT. PATH ANGLE (DEG) = -1.552287

AZE (DEG) = 0.8574303

ACCELERATION (EARTHG) = -1.738116

STAGNATION TEMP (K) = 969.9622
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TIME (SEC) = 900.0000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 2819.046

Y CROSSRANGE (KM) = 11.12530

H ALTITUDE (KM) = 38.49950

V VELOCITY (M/SEC) = 2034.570

GAMA FLT. PATH ANGLE (DEG) = -2.318061

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -2.152049

STAGNATION TEMP (K) = 955.4421

TIME (SEC) = 950.0000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 2914.944

Y CROSSRANGE (KM) = 12.56052

H ALTITUDE (KM) = 34.13525

V VELOCITY (WSEC) = 1797.109

GAMA FLT. PATH ANGLE (DEG) = -2.855952

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -2.674899

STAGNATION TEMP (K) = 927.6208

TIME (SEC) = 1000.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 2997.752

Y CROSSRANGE (KM) = 13.79983

H ALTITUDE (KM) = 29.76225

V VELOCITY (M/SEC) = 1514.467

GAMA FLT. PATH ANGLE (DEG) = -3.190088

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.025215

STAGNATION TEMP (K) = 874.9666

TIME (SEC) = 1050.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3065.858

Y CROSSRANGE (KM) = 14.81910

H ALTITUDE (KM) = 25.66925

V VELOCITY (M/SEC) = 1215.117

GAMA FLT. PATH ANGLE (DEG) = -3.826387

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.024169

STAGNATION TEMP (K) = 797.8786

TIME (SEC) = 1100.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3119.174

Y CROSSRANGE (KM) = 15.61703

H ALTITUDE (KM) = 21.42500

V VELOCITY (W/SEC) = 928.0188 ,

GAMA FLT. PATH ANGLE (DEG) = -5.632490

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -2.819056

STAGNATION TEMP (K) = 710.1951
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TIME (SEC) = 1150.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3158.529

Y CROSSRANGE (KM) = 16.20601

H ALTITUDE (KM) = 16.37550

V VELOCITY (M/SEC) = 663.5558

GAMA FLT. PATH ANGLE (DEG) = -9.721332

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -2.575090

STAGNATION TEMP (K) = 619.7341

TIME (SEC) = 1200.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3184.886

Y CROSSRANGE (KM) = 16.60049

H ALTITUDE (KM) = 10.20000

V VELOCITY (M/SEC) = 425.3934

GAMA FLT. PATH ANGLE (DEG) = -18.37585

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -2.269154

STAGNATION TEMP (K) = 523.8298

TIME (SEC) = 1250.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3199.272

Y CROSSRANGE (KM) = 16.81578

H ALTITUDE (KM) = 3.241000

V VELOCITY (M/SEC) = 224.3853

GAMA FLT. PATH ANGLE (DEG) = -38.09363

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -1.801588

"STAGNATION TEMP (K) = 410.2795

TIME (SEC) = 1251.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3199.447

Y CROSSRANGE (KM) = 16.81839

H ALTITUDE (KM) = 3.102750

V VELOCITY (WSEC) = 220.8779

GAMA FLT. PATH ANGLE (DEG) = -38.68984

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G = -1.788962

STAGNATION TEMP (K) = 407.4116

TIME (SEC) = 1252.000 ROLL (DEG)= 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3199.617

Y CROSSRANGE (KM) = 16.82094

H ALTITUDE (KM) = 2.964750

V VELOCITY (M/SEC) = 217.3958 ,

GAMA FLT. PATH ANGLE (DEG) = -39.29659

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -1.776069

STAGNATION TEMP (K) = 404.6983
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TIME (SEC) = 1253.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3199.783

Y CROSSRANGE (KM) = 16.82342

H ALTITUDE (KM) = 2.827250

V VELOCITY (M/SEC) = 213.9397

GAMA FLT. PATH ANGLE (DEG) = -39.91404

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -1.762880

STAGNATION TEMP (K) = 401.7347

TIME (SEC) = 1254.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 199677.5

X DOWNRANGE (KM) = 3199.945

Y CROSSRANGE (KM) = 16.82583

H ALTITUDE (KM) = 2.691000

V VELOCITY (M/SEC) = 207.1860

GAMA FLT. PATH ANGLE (DEG) = -40.54808
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.377459
STAGNATION TEMP (K) = 396.3417

TIME (SEC) = 1255.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 199290.5

X DOWNRANGE (KM) = 3200.098

Y CROSSRANGE (KM) = 16.82814

H ALTITUDE (KM) = 2557750

V VELOCITY (WSEC) = 199.8178

GAMA FLT. PATH ANGLE (DEG) = -41.21057
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.757976
STAGNATION TEMP (K) = 390.4316

TIME (SEC) = 1256.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 198903.5

X DOWNRANGE (KM) = 3200.245

Y CROSSRANGE (KM) = 16.83033

H ALTITUDE (KM) = 2.427750

V VELOCITY (M/SEC) = 192.4969

GAMA FLT. PATH ANGLE (DEG) = -41.90250
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.733562
STAGNATION TEMP (K) = 384.4771
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TIME (SEC) = 1257.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1985165

X DOWNRANGE (KM) = 3200.385

Y CROSSRANGE (KM) = 16.83243

H ALTITUDE (KM) = 2.300750

V VELOCITY (W/SEC) = 185.2186

GAMA FLT. PATH ANGLE (DEG) = -42.62490
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.711651
STAGNATION TEMP (K) = 378.4723

TIME (SEC) = 1258.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 198129.5

X DOWNRANGE (KM) = 3200.518

Y CROSSRANGE (KM) = 16.83441

H ALTITUDE (KM) = 2.177000

V VELOCITY (M/SEC) = 177.9776

GAMA FLT. PATH ANGLE (DEG) = -43.37884
AZE (DEG) = 0.8574303

ACCELERATION (EARTHG) = -3.692316
STAGNATION TEMP (K) = 372.4140

TIME (SEC) = 1259.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1977425

X DOWNRANGE (KM) = 3200.644

Y CROSSRANGE (KM) = 16.83630

H ALTITUDE (KM) = 2.056500

V VELOCITY (M/SEC) = 170.7688

"GAMA FLT. PATH ANGLE (DEG) = -44.16545
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.675702
STAGNATION TEMP (K) = 366.2976

TIME (SEC) = 1260.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 197355.5

X DOWNRANGE (KM) = 3200.762

Y CROSSRANGE (KM) = 16.83808

H ALTITUDE (KM) = 1.939250

V VELOCITY (M/SEC) = 163.5865

GAMA FLT. PATH ANGLE (DEG) = -44.98599
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.661853
STAGNATION TEMP (K) = 360.2181
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TIME (SEC) = 1261.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 196968.5

X DOWNRANGE (KM) = 3200.875

Y CROSSRANGE (KM) = 16.83976

H ALTITUDE (KM) = 1.825250

V VELOCITY (M/SEC) = 156.4251

GAMA FLT. PATH ANGLE (DEG) = -45.84177
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.650902
STAGNATION TEMP (K) = 353.9706

TIME (SEC) = 1262.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1965815

X DOWNRANGE (KM) = 3200.980

Y CROSSRANGE (KM) = 16.84134

H ALTITUDE (KM) = 1.714750

V VELOCITY (M/SEC) = 149.2789

GAMA FLT. PATH ANGLE (DEG) = -46.73426
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.642900
STAGNATION TEMP (K) = 347.6528

TIME (SEC) = 1263.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1961945

X DOWNRANGE (KM) = 3201.080

Y CROSSRANGE (KM) = 16.84282

H ALTITUDE (KM) = 1.607750

V VELOCITY (W/SEC) = 142.1418

GAMA FLT. PATH ANGLE (DEG) = -47.66507
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.637941
STAGNATION TEMP (K) = 341.2604

TIME (SEC) = 1264.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 195807.5

X DOWNRANGE (KM) = 3201.172

Y CROSSRANGE (KM) = 16.84421

H ALTITUDE (KM) = 1.504500

V VELOCITY (M/SEC) = 135.0077

GAMA FLT. PATH ANGLE (DEG) = -48.63600
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.636083
STAGNATION TEMP (K) = 334.7930
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TIME (SEC) = 1265.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 195420.5

X DOWNRANGE (KM) = 3201.258

Y CROSSRANGE (KM) = 16.84549

H ALTITUDE (KM) = 1.405000

V VELOCITY (WSEC) = 127.8704

GAMA FLT. PATH ANGLE (DEG) = -49.64908
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.637360
STAGNATION TEMP (K) = 328.2483

TIME (SEC) = 1266.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1950335

X DOWNRANGE (KM) = 3201.337

Y CROSSRANGE (KM) = 16.84669

H ALTITUDE (KM) = 1.309500

V VELOCITY (M/SEC) = 120.7239

GAMA FLT. PATH ANGLE (DEG) = -50.70667
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.641807
STAGNATION TEMP (K) = 321.6288

TIME (SEC) = 1267.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 194646.5

X DOWNRANGE (KM) = 3201.411

Y CROSSRANGE (KM) = 16.84778

H ALTITUDE (KM) = 1.218250

V VELOCITY (M/SEC) = 113.5618

‘GAMA FLT. PATH ANGLE (DEG) = -51.81149

AZE (DEG) = 0.8574303
ACCELERATION (EARTH G) = -3.649398
STAGNATION TEMP (K) = 314.9400

TIME (SEC) = 1268.000 ROLL (DEG)= 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 194259.5

X DOWNRANGE (KM) = 3201.478

Y CROSSRANGE (KM) = 16.84879

H ALTITUDE (KM) = 1.131250

V VELOCITY (M/SEC) = 106.3781

GAMA FLT. PATH ANGLE (DEG) = -52.96680
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.660098
STAGNATION TEMP (K) = 308.1862
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TIME (SEC) = 1269.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1938725

X DOWNRANGE (KM) = 3201.539

Y CROSSRANGE (KM) = 16.84970

H ALTITUDE (KM) = 1.048500

V VELOCITY (WSEC) = 99.16702

GAMA FLT. PATH ANGLE (DEG) = -54.17653
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.673796
STAGNATION TEMP (K) = 301.3739

TIME (SEC) = 1270.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1934855

X DOWNRANGE (KM) = 3201.594

Y CROSSRANGE (KM) = 16.85052

H ALTITUDE (KM) = 0.9705000

V VELOCITY (WSEC) = 91.92293

GAMA FLT. PATH ANGLE (DEG) = -55.44547
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.690337
STAGNATION TEMP (K) = 213.9000

TIME (SEC) = 1271.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 193098.5

X DOWNRANGE (KM) = 3201.643

Y CROSSRANGE (KM) = 16.85126

H ALTITUDE (KM) = 0.8972500

V VELOCITY (M/SEC) = 84.64061

GAMA FLT. PATH ANGLE (DEG) = -56.77961
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.709568
STAGNATION TEMP (K) = 213.9000

TIME (SEC) = 1272.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1927115

X DOWNRANGE (KM) = 3201.687

Y CROSSRANGE (KM) = 16.85191

H ALTITUDE (KM) = 0.8290000

V VELOCITY (M/SEC) = 77.31531

GAMA FLT. PATH ANGLE (DEG) = -58.18653
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.731250
STAGNATION TEMP (K) = 213.9000
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TIME (SEC) = 1273.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1923245

X DOWNRANGE (KM) = 3201.725

Y CROSSRANGE (KM) = 16.85248

H ALTITUDE (KM) = 0.7660000

V VELOCITY (W/SEC) = 69.94274

GAMA FLT. PATH ANGLE (DEG) = -59.67597
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.755144
STAGNATION TEMP (K) = 213.9000

TIME (SEC) = 1274.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 191937.5

X DOWNRANGE (KM) = 3201.757

Y CROSSRANGE (KM) = 16.85297

H ALTITUDE (KM) = 0.7085000

V VELOCITY (WSEC) = 6251918

GAMA FLT. PATH ANGLE (DEG) = -61.26079
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.780960
STAGNATION TEMP (K) = 213.9000

TIME (SEC) = 1275.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 191550.5

X DOWNRANGE (KM) = 3201.785

Y CROSSRANGE (KM) = 16.85338

H ALTITUDE (KM) = 0.6565000

V VELOCITY (M/SEC) = 55.04144

‘GAMA FLT. PATH ANGLE (DEG) = -62.95829
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.808433
STAGNATION TEMP (K) = 213.9000

TIME (SEC) = 1276.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1911635

X DOWNRANGE (KM) = 3201.807

Y CROSSRANGE (KM) = 16.85372

H ALTITUDE (KM) = 0.6105000

V VELOCITY (M/SEC) = 47.50683

GAMA FLT. PATH ANGLE (DEG) = -64.79256
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.837300
STAGNATION TEMP (K) = 213.9000
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TIME (SEC) = 1277.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 1907765

X DOWNRANGE (KM) = 3201.825

Y CROSSRANGE (KM) = 16.85399

H ALTITUDE (KM) = 0.5707500

V VELOCITY (M/SEC) = 39.91306

GAMA FLT. PATH ANGLE (DEG) = -66.79855
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.867347
STAGNATION TEMP (K) = 213.9000

TIME (SEC) = 1278.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 190389.5

X DOWNRANGE (KM) = 3201.839

Y CROSSRANGE (KM) = 16.85419

H ALTITUDE (KM) = 0.5372500

V VELOCITY (W/SEC) = 32.25818

GAMA FLT. PATH ANGLE (DEG) = -69.03004
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.898411
STAGNATION TEMP (K) =  213.9000

TIME (SEC) = 1279.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 190002.5

X DOWNRANGE (KM) = 3201.848

Y CROSSRANGE (KM) = 16.85434

H ALTITUDE (KM) = 0.5105000

V VELOCITY (M/SEC) = 24.54037

GAMA FLT. PATH ANGLE (DEG) = -71.57729
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.930399
STAGNATION TEMP (K) = 213.9000

TIME (SEC) = 1280.000 ROLL (DEG)= 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG)= 1896155

X DOWNRANGE (KM) = 3201.854

Y CROSSRANGE (KM) = 16.85443

H ALTITUDE (KM) = 0.4907500

V VELOCITY (M/SEC) = 16.75782

GAMA FLT. PATH ANGLE (DEG) = -74.61418
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.963319
STAGNATION TEMP (K) = 213.9000
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TIME (SEC) = 1281.000 ROLL (DEG) = 0.0000000E+00
PROPULSION SYSTEMS ARE ON

MASS OF VEHICLE (KG) = 189293.0

X DOWNRANGE (KM) = 3201.857

Y CROSSRANGE (KM) = 16.85447

H ALTITUDE (KM) = 0.4782500

V VELOCITY (M/SEC) = 9.613024

GAMA FLT. PATH ANGLE (DEG) = -78.57708
AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -3.997340
STAGNATION TEMP (K) = 213.9000

TIME (SEC) = 1282.000 ROLL (DEG)= 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3201.858

Y CROSSRANGE (KM) = 16.85449

H ALTITUDE (KM) = 0.4705000

V VELOCITY (W/SEC) = 5.932095

GAMA FLT. PATH ANGLE (DEG) = -82.97979

AZE (DEG) = 0.8574303

ACCELERATION (EARTH G) = -1.873953

STAGNATION TEMP (K) = 213.9000

TIME (SEC) = 1283.000 ROLL (DEG)= 0.0000000E+00
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3201.859

Y CROSSRANGE (KM) = 16.85450

H ALTITUDE (KM) = 0.4665000

V VELOCITY (M/SEC) = 2.216182

GAMA FLT. PATH ANGLE (DEG) = -87.38210

AZE (DEG) = 0.8574303

‘ACCELERATION (EABTH G) = -1.892900

STAGNATION TEMP (K) = 213.9000

TIME (SEC) = 1284.000 ROLL (DEG)= 90.00000
PROPULSION SYSTEMS ARE OFF

X DOWNRANGE (KM) = 3201.859

Y CROSSRANGE (KM) = 16.85450

H ALTITUDE (KM) = 0.4662500

V VELOCITY (M/SEC) = -1.512772

GAMA FLT. PATH ANGLE (DEG) = -91.84517

AZE (DEG) = 0.8575678

ACCELERATION (EARTH G) = -1.900684
STAGNATION TEMP (K) = 213.9000

— FINAL AND MAXIMUM VALUES--—--- -
TERMINATION TIME = 1284.000

TERMINATION ALTITUDE =  466.2500

MAXIMUM G-EARTH ACCELERATION = -3.997340
MAXIMUM STAGNATION TEMP (K) = 1142.830
MASS OF FUEL USED (KG) = 10707.00
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Appendix N: Landing Gear Stress FORTRAN Program

Purpose: This FORTRAN program was be used to determine the
stress experienced by the legs of the landing gear with a given

vehicle mass.

Note on inputs and outputs:
Inputs:

Number of legs in landing gear system

Gravitational acceleration

Total vehicle mass
Qutputs:

Stress experience by leg for a given range of theta
Source: Written by the Atmospheric Vehicle Team of the Star Truk
Company in Spring 1989.
Modifications made: N/A
Theory: Standard structural mechanics theory A good reference is:
Mechanics of Materials, by J. M Gere and S. P. Timoshenko,
Belmont, California; Brooks/Cole Publisher, 1984

Listing: See below
Sample run: See below
Verification: N/A
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PROGRAM STRESS
C RAARR AR R AR AR AR AR SRR A R AR AN R AR AR AR AR AR AR R AR AN AR AR AR Rd R’
C * wiritten by Michael J. Luneau
c* spring 89 ASE-274L
C* STAR TRUK Enterprises
C AR AR AR AR AR ER AR A AN AR AR AR AN RN R R R AR RN AR AR AN AR AR AN AR RN
C

REAL LENGTH,PI,LLOAD

c
OPEN (8,FILE='LEGS.DAT ,STATUS="NEW')
C

PRINT*, TYPE IN #OF LEGS'
READ(5,")NUMBER

C
WRITE(8,7)NUMBER

7 FORMAT(3X,I12,' LEGS',)

c
PI=ACOS(-1.)
LOAD=400000.0
GRAV=.389.81

c

C
DO 77 LENGTH=15,3.0,5

WRITE(8,3)LENGTH
3 FORMAT(3X,LEG LENGTH = ,F3.1,/)
c
DO 88 DEG=45,90,5
WRITE(8,4)DEG
4 FORMAT(3X, THETA = ',F3.0,DEGREES',)
c
THETA=PI"DEG/186.

¢}

WRITE(8,2)
2 FORMAT(5X,'DIAMETER'3X,'STRESS)

DO 99 D=.20,.60,.05
AXSTRESS=(LOAD*GRAV/NUMBER*SIN(THETA))/(P!*(D/2)**2)
BESTRESS=(LOAD*GRAV/NUMBER*COS(THETA)*LENGTH*D/2)/(PI*"D**4/64.)
TOSTRESS=AXSTRESS+BESTRESS

O O o O O

WRITE(8,1)D,TOSTRESS
1 FORMAT( 5X,F4.2,6X,E13.5)
99 CONTINUE
C
88 CONTINUE

C
77 CONTINUE
c
END
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5 LEGS

LEG LENGTH = 1.5

THETA = 45.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.40946E+09
0.21050E+09
0.12231E+09
0.77339E+08
0.52021E+08
0.36683E+08
0.26850E+08
0.20253E+08
0.15662E+08

THETA = 50.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.37338E+09
0.19210E+09
0.11171E409
0.70687E+08
0.47582E+08
0.33578E+08
0.24595E+08
0.18566E+08
0.14368E+08

THETA = 55.DEGREES
DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.5
0.60

0.33447E+09
0.17224E+09
0.10025E+09
0.63496E+08
0.42780E+08
0.30217E+08
0.22152E+08
0.16737E+08
0.12964E+08

THETA = 60.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

0.29300E+09
0.15107E+09
0.88034E+08
0.55822E+08
0.37653E+08
0.26625E+08
0.19541E4+08
0.14781E+08
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0.60

0.11461E+08

THETA = 65.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.24931E+09
0.12875E+09
0.75145E+08
0.47723E+08
0.32239E+08
0.22832E+08
0.16782E+08
0.12712E+08
0.98711E+07

THETA = 70.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.20372E+09
0.10545E+09
0.61684E+08
0.39261E+08
0.26580E+08
0.18864E+08
0.13895E+08
0.10546E+08
0.82061E+07

THETA = 75.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.15658E+09
0.81345E+08
0.47754E+08
0.30500E+08
0.20719E+08
0.14753E+08
0.10902E+08
0.83008E+07
0.64786E+07

THETA = 80.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
035
0.40
0.45
0.50
0.55
0.60

0.10825E+09

'0.56622E+08

0.33460E+08
0.21507E+08
0.14700E+08
0.10530E+08
0.78256E+07
0.59919E+07
0.47018E+07
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THETA = 85.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.59098E+08
0.31468E+08
0.18911E+08
0.12350E+08
0.85693E+07
0.62260E+07
0.46901E+07
0.36374E+07
0.28893E+07

THETA = 90.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.94927E+07
0.60754E+07
0.42190E+07
0.30997E407
0.23732E+07
0.18751E+07
0.15188E+07
0.12552E+07
0.10548E+07

LEG LENGTH = 2.0

THETA = 45.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.85
0.60

0.54370E4+.09
0.27924E+09
0.16209E+09
0.10239E+09
0.68802E+08
0.48469E+08
0.35441E+08
0.26708E+08
0.20634E+08

THETA = 50.DEGREES
DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.49542E+09
0.25459E+09
0.14787E+09
0.93457E+08
0.62836E4+08
0.44292E+08
0.32405E+08
0.24434E+08
0.18887E+08
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THETA = 55.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.44336E+09
0.22800E+09
0.13252E+09
0.83815E+08
0.56392E+08
0.39777E+08
0.29122E+08
0.21973E+08
0.16997E+08

THETA = 60.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.356
0.40
0.45
0.50
0.55
0.60

0.38793E+09
0.19967E+09
0.11616E+09
0.73534E+08
0.49519E+08
0.34959E+08
0.25617E+08
0.19345E+08
0.14977E+08

THETA = 65.DEGREES

DIAMETER STRESS

0.20

025

0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.32955E+09
0.16983E+09
0.98919E+08
0.62694E+08
0.42269E+08
0.29876E+08
0.21917E+08
0.16570E+08
0.12843E+08

THETA = 70.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.26866E+09
0.13869E+09
0.80924E+08
0.51377E+08
0.34697E+08
0.24565E+08
0.18050E+08
0.13669E+08
0.10611E+08
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THETA = 75.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.20572E+09
0.10650E+09
0.62313E+08
0.39669E+08
0.26861E+08
0.19067E+08
0.14046E+08
0.10664E+08
0.82985E+07

THETA = 80.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.14122E+09
0.73502E+08
0.43228E+08
0.27658E+08
0.18821E+08
0.13424E+08
0.99356E+07
0.75771E+07
0.59229E+07

THETA = 85.DEGREES
DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.75645E+08
0.39940E+08
0.23814E+08
0.15438E+08
0.10638E+08
0.76787E+07
0.57491E+07
0.44331E+07
0.35021E+07

THETA = 90.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.94927E+07
0.60754E+07
0.42130E+07
0.30997E+07
0.23732E+07
0.18751E+07
0.15188E+07
0.12552E+07
0.10548E+07
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LEG LENGTH = 2.5

THETA = 45.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.67795E+09
0.34797E+09
0.20187E+09
0.12744E+09
0.85583E+08
0.60255E+08
0.44033E+08
0.33164E+08
0.25607E+08

THETA = 50.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.61745E+09
0.31707E+09
0.18403E+09
0.11623E+09
0.78091E+08
0.55005E+08
0.40215E+08
0.30302E+08
0.23407E+08

THETA = 55.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.55226E+09
0.28375E+09
0.16478E+09
0.10413E+09
0.70004E+08
0.49337E+08
0.36091E+08
0.27209E+08
0.21030E+08

THETA = 60.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.48286E+09
0.24828E+09
0.14429E+09
0.91247E+08
0.61385E+08
0.43293E+08
0.31692E+08
0.23910E+08
0.18493E+08
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THETA = 65.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.40978E+09
0.21091E+09
0.12269E+09
0.77665E+08
0.52299E+08
0.36920E+08
0.27052E+08
0.20428E+08
0.15814E+08

THETA = 70.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.33359E+09
0.17194E+09
0.10016E+09
0.63493E+08
0.42814E+08
0.30265E+08
0.22206E+08
0.16791E+08
0.13016E+08

THETA = 75.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.5
0.60

0.25486E+09
0.13166E+09
0.76873E+08
0.48837E+08
0.33004E+08
0.23381E+08
0.17191E408
0.13026E+08
0.10118E+08

THETA = 80.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.17419E+09
0.90381E+08
0.52996E+08
0.33810E+08
0.22942E+08
0.16318E+08
0.12046E+08
0.91624E+07
0.71439E+07
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THETA = 85.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.92192E+08
0.48413E+08
0.28717E+08
0.18525E+08
0.12706E+08
0.91314E+07
0.68081E+07
0.52287E+07
0.41150E+07

THETA = 90.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.94927E+07
0.60753E+07
0.42190E+07
0.30997E+07
0.23732E+07
0.18751E+07
0.15188E+07
0.12552E+07
0.10547E+07

LEG LENGTH = 3.0

" THETA = 45.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.81220E+09
0.41671E+09
0.24165E+09
0.15249E+09
0.10236E+09
0.72041E+08
0.52625E+08
0.39619E+08
0.30579E+08

THETA = 50.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.73949E+09
0.37955E+09
0.22019E+09
0.13900E+09
0.93345E+08
0.65719E+08
0.48026E+08
0.36170E+08
0.27927E+08
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THETA = 55.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.66116E+09
0.33951E+03
0.19705E+09
0.12445E+09
0.83616E+08
0.58897E+08
0.43060E+08
0.32445E+08
0.25063E+08

THETA = 60.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.57779E+09
0.29688E+09
0.17241E+09
0.10896E+09
0.73251E+08
0.51627E+08
0.37768E+08
0.28474E+08
0.22008E+08

THETA = 65.DEGREES
DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.49002E+09
0.25199E+09
0.14647E+09
0.92636E+08
0.62328E+08
0.43964E+08
0.32187E+08
0.24286E+08
0.18786E+08

THETA = 70.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.39853E+09
0.20519E+09
0.11940E+09
0.75609E+08
0.50931E+08
0.35966E+08
0.26362E+08
0.19913E+08
0.15421E+08
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THETA = 75.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.30400E+09
0.15682E+09
0.91432E+08
0.58006E+08
0.39146E+08
0.27695E+08
0.20336E+08
0.15389E+08
0.11938E+08

THETA = 80.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.20716E+09
0.10726E+09
0.62765E+08
0.39961E+08
0.27063E+08
0.19212E+08
0.14155E+08
0.10748E+08
0.83649E+07

THETA = 85.DEGREES

DIAMETER STRESS

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.10874E+09
0.56885E+08
0.33620E+08
0.21613E+08
0.14774E+08
0.10584E+08
0.78671E+07
0.60244E+07
0.47278E+07

THETA = 90.DEGREES

DIAMETER STRESS

0.20
0.25

0.94927E+07
0.60753E+07
0.42190E+07
0.30997E+07
0.23732E+07
0.18751E+07
0.15188E+07
0.12552E+07
0.10547E+07
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Appendix O: CW Equation TK! Solver Model

Purpose: This TK! Solver model was used to determine the AV
required by the OMV to transfer a given payload between the ITV and
the Phobos surface.

Note on inputs and outputs: The variables in a TK! Solver model
can be defined as inputs or outputs depending on the objective of the
analysis. The variables shown below are the ones which the current
design team used in their analysis.

Inputs:

For both trajectory targeting and propagation:
gravitational acceleration (ge) -
planet radius (re)
orbit radius (rg)

For targeting:
initial and final positions (xo, zo, X and z respectively)
time of flight (t)

For orbit propagation:
an initial state (xo, zo, Vxo and vzo)
time of flight (t)

Qutputs:

AV's

propagation of state
Source: This model was created by the Orbital Vehicle Team of
Star Truk Company in April 1989.

Modifications made: N/A
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Theory: The CW Equations are a set of linearized equations of
motion for an orbiting vehicle referenced to a local-vertical local-
horizontal (LVLH) orbiting coordinate system. The x-axis is forward
(tangent to the orbit path), the positive z-axis is radially downward
while the y-axis completes the right-handed system.

The equations consist of an initial state vector, (position and
velocity), multiplied by a propagation matrix to arrive at a new
state. The components of the propagation matrix are functions of
time, planet surface acceleration and radius, and origin orbit radius.
The equations can be modified in two ways. One, given an initial
state and time, the position and velocity for a later time can be
determined. Two, assuming an initial and final position and a TOF,
the initial velocity required to complete the trajectory can be
determined. This is called targeting.

The accuracy of the CW equations is limited by the following

assumptions used to linearize the set:

1. The distance traveled, relative to the orbiting
reference origin, (i.e. ITV or Phobos), must be small-
-much less than the orbit radius of 9408 kilometers.

2. The transfer time of flight must be on the order of
one orbit revolution or less if possible.

3. The main engine thrust time must be short compared
to the transfer time.

Listing: See below

Sample run: See Appendix J
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Verification: Hand calculations were performed to verify the

program. A number of test points were calculated and substantiated

the results of the model.
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Appendix P: Mars Atmospheric Model

Purpose: The purpose of this program is to model the Martian
atmosphere from the surface to approximately 150 km.
Description: The atmospheric model is a FORTRAN subroutine. A
driver program is written to print the desired output parameters
calculated by the subroutine.
Inputs: Not applicable; however, the driver program must be
written to print desired outputs.
Qutputs:

1) Temperature, pressure, density, and viscosity in 1 km
increments

2) Data files for plotting temperature, pressure, density, and
coefficient of viscosity versus altitude

3) Speed of sound, gravitational acceleration, molecular
weight, molecular scale temperature, pressure scale height, density
scale height, refractive index, zenith angle from ground station,
columnar mass along the slant path, total path length, vertical
temperature gradient, and number density.
Source: David Pitts at Space & Life Sciences Division, NASA
Johnson Space Center
Modifications made: The driver program which was obtained with
the subroutine was modified to print the outputs desired by the
current design team.

Theory: Mathematical modelling based on results obtained from

data collected..
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Listing: See below

Sample run: See below

Verification: The subroutine was obtained from NASA in magnetic
format and the only modifications made were to the driver program;

therefore, verification is not required.
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PROGRAM MARS1

C EXAMPLE MAIN PROGRAM CALLING MODATM WHICH IS SET UP FOR MARS ATM

C WRITTEN BY DAVID E. PITTS, NASA JSC, HOUSTON TX 1/25/88
C WITH MOLECULAR WEIGHT VARIABILITY AND NEGATIVE ALTITUDE ADDED
c

DIMENSION ANS(35)

CHARACTER*4 TEST

OPEN (6,FILE="ATMOUT.DAT',STATUS="NEW')

OPEN (11,FILE=TEMP.DAT,STATUS="NEW

OPEN (12,FILE="PRES.DAT,STATUS="NEW')

OPEN (13,FILE='DENS.DAT,STATUS=NEW)

OPEN (14,FILE="VISC.DAT,STATUS="NEW")

OPEN (5,FILE='ATMMOD.DAT',STATUS="0LD")

XLAMDA=5

TEST="ALTI

ANS(1)=-1.0

P=1.0

CALL MODATM(1.0,P, TEST,XLAMDA,ANS,RE,CONN)

C BERA AR RN RACARER AR AR AR AR AR A SR AN AR AR ARRAN RN E RN AN RS R RN AR N AN RSN D

C THE ABOVE STATEMENTS ARE USED FOR INTIALIZATION OF THE ROUTINES
C AR R R RN R R RN R AR AN AN R AR AR AR AR AR R RN R SRR R AARO AN AN RSN AR AR SRR N
DO 11=1,160
Z=l-2
CALL MODATM(Z,P,TEST,XLAMDA,ANS,RE,CONN)
Cc
WRITE (6,20) Z,ANS(2),ANS(1),ANS(3),
1ANS(8)
WRITE (11,79)ANS(2),Z
WRITE(12,79) ANS(1),Z
WRITE(13,79) ANS(3),Z
. WRITE(14,79) ANS(8),Z
1 CONTINUE -
79 FORMAT(2X,E10.3,5X,F6.1)
20 FORMAT (15X,F6.1,5X,F7.2,5X,E10.3,5X,E10.3,5X,0P9F8.3)
¢ The following is an example of how to use subroutine path
¢ to find the refraction by the atmosphere and the zenith angle
¢ from the surface to a satellite in orbit about the planet
25=1000.0
PHIS=0.0
THETAS=4.9
Z1=0.0
PHIL=0.0
THETAL=0.0
CALL PATH (XLAMDA,ZS,PHIS, THETAS,ZL ,PHIL, THETAL,ANS,RE,CONN,
1SUM,SUM1,SUM3,SUM4)
CLOSE(5)
CLOSE(6)
STOP
END

OOO0OOOOOO0

C

Ciﬁ."*'t.it.ﬁ.iﬁ*'t' BRRRERNRRARSRRRA AR AN R E RN R AR A RN AN RN SRR

SUBROUTINE MODATM (Z,PP,TEST XLAMDA,ANS,RE,CONN)

O 000

DIMENSION H(100),P(100), T(100),ANS(35), TM(100)

186



1,VOLPER(15),AM(10),RAT(10),VIS(10)
REAL MM(100)
CHARACTER*4 TEST
DATA RO/8.31432E+07/
VI(T1,ILIQF)=26.693*VIS(Il)* SQRT(T1/RAT(!I)/(OMEG(T1,Il,IQF)
1)
c

c
Ctti..'..ti‘ﬁi.".i.tﬁi‘Q.t‘i..".t...’..'i."ﬁ'i.ﬁ".Qti."itt...
c
CZISINKM, PPIS IN MB
C ANS( ) ARE OUTPUT VARIABLES
C XLAMDA IS THE WAVELENGTH IN MICRONS FOR WHICH YOU ARE CALCULATING
C ATMOSPHERIC REFRACTION
C IF TEST .EQ.’ PRES' THEN PRESSURE IS USED AS HEIGHT INDICATOR
C IF TESTNE. 'PRES' THEN GEOMETRIC ALTITUDE (KM) IS HEIGHT INDICATOR
C YOUMUST SET ANS(1)=-1.0 BEFORE ENTERING THE SUBROUTINE THE FIRST TIME
C SO THAT THE INPUT DATA WILL BE READ IN.
C RO IS THE UNIVERSAL GAS CONSTANT BASED ON THE CARBON 12 ATOMIC WEIGHT
C SCALE IN ERGS/(DEG KELVIN-GM-MOLE)
C XMO IS MOLECULAR WEIGHT OF ATMOSPHERE
C RE = THE MEAN RADIUS OF THE PLANET IN KM
C G IS ACCELERATION OF GRAVITY AT 0 EQUIPOTENTIAL SURFACE LEVEL GIVEN IN
C CM/SEC*2
C CONN IS A CONSTANT GIVEN AS -M*G*100.0/RO WHERE M IS MOLECULAR WEIGHT
C AND G AND R ARE DESCRIBED ABOVE, CONN = DEG K/m.
C VOLPER(l) IS THE VOLUME PERCENTAGE OF GAS /100.0 FOR GAS |
C AM(1) IS THE MOLECULAR WEIGHT OF GAS |
C H(1) IS GEOPOTENTIAL ALTITUDE IN KM ABOVE THE MEAN EQUIPOTENTIAL SURFAGCE
C P(l) IS SIGNIFICANT LEVELS OF PRESSURE IN MB
C T(l) IS KINETIC TEMPERATURE SIGNIFICANT LEVELS IN DEG K
C TM(l) IS MOLECULAR SCALE TEMPERATURE SIGNIFICANT LEVELS IN DEG K
C MM(l) IS MOLECULAR WEIGHT SIGNIFICANT LEVELS IN GM/(GM-MOLE)
C"....".."'ﬁ'.i.Q.'..Q‘i‘.'..'.M..‘t*"’ﬁ.....".'.'ﬁ"Q..".‘.."
CT=288.15/273.16+1.0
IF(ANS(1).GE.0.0) GO TO 15
ANS(1)=0.0
CALL INPUT (P,T,H,TM,M,XMO,ANS,RE,CONN,G,VOLPER,AM,RAT,VIS)
15 IF (TEST.EQ.'PRES) GO TO 7
HA= RE*Z/(RE+2)
C HA IS GEOPOTENTIAL ALTITUDE IN KM
23 DO 11 I=1,M
I
IF(H(1)-HA) 11,12,13
11 CONTINUE
DO 4511 lll=1,16
4511 ANS(I1)=0.0
ANS(17)=1.0
ANS(18)=1.0
RETURN
C ABOVE SETS ALL ATMOSPHERIC PARAMETERS=0 IF ALTITUDE > H(M)
9 lI=M
13 I=l-1
DH=H(1+1)-H())
D=(TM(1+1)-TM(1))/DH
DTDZ=D*DH/(RE*H(l+1)/(RE-H(1+1))-(RE*H(/(RE-H(1))))
W=(T(1+1)-T()/DH
DH=H(l)-HA
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C

C
C."..QQQQ""..QQ.."i'...ﬁ.*.t'ﬁﬁﬁ".."QQ..Q'Q‘Q'..'."".'.."
C

C HEIGHT 'H'IS IN km

C HEIGHT 'Z' IS IN km

c

C ANS( 1) IS PRESSURE
C PRESSURE IS IN MB

C ANS( 2) IS TEMPERATURE

C TEMPERATURE IS IN DEG KELVIN

c

C ANS( 3) IS DENSITY

C DENSITY IS IN GM/CC

c

C ANS( 4) IS SPEED OF SOUND

C SPEED OF SOUND IS IN M/S

c

C ANS( 5) IS ACCELERATION OF GRAVITY

C ACCELERATION OF GRAVITY IS IN CM/SEC**2
c

C ANS(6) IS MOLECULAR SCALE TEMPERATURE (DEG K)
c

C ANS( 7) IS MOLECULAR WEIGHT
C

C ANS( 8) IS COEFFICIENT OF VISCOSITY
C VISCOSITY IS IN KG /(M SEC)

C

C ANS(15) IS PRESSURE SCALE HEIGHT
C PRESSURE SCALE HEIGHT IS IN KM

C

C ANS(16) IS DENSITY SCALE HEIGHT

C

C DENSITY SCALE HEIGHT IS IN KM

8 ANS(17) IS REFRACTIVE INDEX DEVELOPED BY EDLEN IN TERMS OF WAVELENGTH
é'hlr\?ggx IS FOR AIR AT 288 DEG KELVIN AND 760MM HG

8 ANS(18) IS REFRACTIVE INDEX DEVELOPED BY PENNDORF IN TERMS OF

C WAVELENGTH, TEMPERATURE, AND PRESSURE

g ANS(21) IS THE ZENITH ANGLE FROM GROUNDSTATION IN RADIANS

C ANS(22) = THE TOTAL GM/CM**2 OR COLUMNAR MASS ALONG THE SLANT PATH.
g ANS(24) = TOTAL PATH LENGTH IN CM

g ANS(25) IS VERTICAL TEMPERATURE GRADIENT , DEG KELVIN/(M)

8 ANS(21) THRU ANS(24) ARE CALCULATED IN SUBROUTINE PATH.

8 ANS(26) IS MOLECULAR WEIGHT

§ANS(27) IS NUMBER DENSITY IN PARTICLES/CM**3

CQ.QQ!Q'.i’.'t.'.'.'..tﬁ...ﬁ.ﬁ.i."t't.ﬁ.Q..t.'.'t.'.t‘iiﬁ‘.ﬂ.i.'ﬁ

C
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ANS(2)=T(l)-W*DH
ANS(6)=TM(!)-D*DH
ANS(1)=PRES(P(1),D,TM(1),ANS(6),DH,ANS,RE,CONN)
GOTO14

12 1=l
ANS(1)=P(l)

ANS(2)=T(l)
ANS(6)=TM(l)

14 ANS(5)=G*(RE/(RE+2))**2
ANS(3)=ANS(1)*XMO/(RO*ANS(6))*1000.0
ANS(7)=XMO*ANS(2)/ANS(6)

C Ea 12231
TX=ANS(2)

CCPP=0.0

CCW=0.0

DO 2100 IQV=1,10
CCPP=CCPP+CPS(TX,IQV,1)*VOLPER(IQV)

2100 CCVV=CCVV+(CPS(TX,IQV,1)-1.9862)*VOLPER(IQV)
GAMMA=CCPP/CCVV
ANS(4)=0.01*SQRT(GAMMA*RO*TX/ANS(7))

XMU=0.0
DO 1001 11i=1,10
IF (VOLPER(IIl)) 1005,1001,1005

1005 SUMB1=0.0
DO 1002 JJJ=1,10
IF (VOLPER(JJJ)) 1191,1002,1191

1191 IF (IlI-JJJ) 1003,1002,1003

1003 PHIl=(1.0+SQRT(VI(TX,lIL, 1)/VI(TX,JJJ, 1)) (AM(JJJ)/ AM(IIT))*
1°(1.0/4.0))**2/(2.82842712* SQRT(1.0+AM(III/AM(JJJ)))
SUMB1=SUMB1+PHIIJ*VOLPER(JJJ)/VOLPER(lII)

1002 CONTINUE
XMU=XMU+VI(TX, 11, 1)/(1.0+SUMB1)

1001 CONTINUE
XMU=XMU* .1
ANS(8)=XMU

C ABOVE EQUATION GIVES VISCOSITY KM/(M SEC)*E+05 FOR GAS MIXTURE

C ARG AR ARG A AR A AR R AR S E AR R R AN RN R AR AN A I AN ANR AR N RN AR AR AR R AR AN SRS

ANS(25)=W

ANS(15)=RO*ANS(6)/(XMO*ANS(5))*1.0E-05
ANS(16)=ANS(15)/(1.0+ANS(15)* DTDZ/ANS(6))
ANS(26)=XMO* ANS(2)/ANS(6)
ANS(27)=6.02257E+23*ANS(1)*1000.0/(8.31432E+07*ANS(2))
C LA 2222212 a il Rl I Y2 T e Y Y T 2232322223121 212: %3
ANS(19)=VOLPER(8)*ANS(1)
C ANS(19)= THE WATER VAPOR PRESSURE IN MB, USED IN REFRACTIVE INDEX

C ARERAERARAN RN AR RN R AARRARR A AR R R AR R AR AR RARANRAN R AN AN AR AR AR AR kAR &

IF (XLAMDA.GE.12500.00) GO TO 30
C THIS MEANS IF XLAMDA IS .GE. 1.25 CM USE MICROWAVE REFRACTIVITY
ANS(17)=1.0+1.0E-08" (6432.8+2949810./(146.-1./(XLAMDA**2))+25540./
1(41.-1/(XLAMDA**2)))
ANS(18)=1.0+(ANS(17)-1.0)*(CT/(1.0+ANS(2)/273.16))* ANS(1)/1013.25
GOTO31
30 ANS(18) =1.0+1.0E-06°(77.6"ANS(1)/(ANS(2))+373000.0"ANS(19)/(ANS(2
1)*2))
ANS(17)=ANS(18)
31 RETURN
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7D0 16 1=1M
C THE FOLLOWING SECTION USES PRESSURE AS INDEPENDENT VARIABLE
C AND RETURNS ALTITUDE Z
=
IF (PP.GT.P(1)) GO TO 16
IF(PP-P(I)) 16,41,17
16 CONTINUE
HA=H()
42 DO 10 1=2,35
IF (LEQ.21.0R.|.EQ.22.0R...EQ.23.0R.I.EQ.24) GO TO 10
ANS(1)=0.0
10 CONTINUE
ANS(17)=1.0
ANS(18)=1.0
Z=HA
RETURN
41 Z=H(Il*RE/((RE-H(II)))
GOTO 12
17 I=I1
D=TM(1+1)-TM(l)
IF(D) 20,21,20
20 D=CONN*1000.0/ALOG(P(1+1)/P(1))* ALOG(TM(1+1)/TM(1))
ANS(8)=TM(l)* (PP/P(1))**(D/(CONN*1000.0))
HA=H(1)+(ANS(6)- TM(1))/D
GOTO22
21 HA=H(1)+TM(1)* ALOG(PP/P(1))/(CONN*1000.0)
22 HA=HA
Z=HA*RE/((RE-HA))
GOTO23
END
c
CQ..G...‘..'..'Qi.i'i".'.ﬁ."".ﬁﬁ...t.i......‘.Q'ﬁ..‘.'.‘.'..'..
C _
SUBROUTINE INPUT (P,T,H,TM,MQ,XMO,ANS,RE,CONN,G0,VOLPER,AM
1,RAT.VIS) '
DIMENSION P(100),T(100),H(100), TM(100), ANS(35),AM(15)
1,RAT(10),VIS(10), VOLPER(15),Z(100)
REAL MM(100)
CHARACTER'5 ID(8)
DATA RO/8.31432E+07/
c
CQ'l“'....'.‘...f"'.Q.Q.."i'.'"Q'Q.Q....Qii.ii.ﬁ'.'.ii‘.'.'..ﬁ
c
c
TX=200.0
J=1
1=0
X=CPS(TX,J})
X=OMEG(TX,J.J)
C ABOVE INITIALIZES ARRAYS IN FUNCTIONS CPS AND OMEG
AM(1)=28.016
AM(2)=44.011
AM(3)=32.0
AM(4)=39.944
AM(5)=20.183
AM(6)=2.016
AM(7)=4.003
AM(8)=18.016
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AM(9)=28.011
AM(10)=64.066
RAT(1)=91.5
RAT(2)=200.0
RAT(3)=100.0
RAT(4)=119.5
RAT(5)=27.5
RAT(6)=38.0
RAT(7)=10.22
RAT(8)=498.2
RAT(9)=94.5
RAT(10)=252.0
VIS(1)=3.737
VIS(2)=6.01
VIS(3)=4.620
VIS(4)=5.90
VIS(5)=2.884
VIS(6)=1.030
VIS(7)=0.964
VIS(8)=10.597
VIS(9)=3.803
VIS(10)=6.91
H(1)=0.0
READ (5,9,END=6177) P(1),T(1),GO,RE
9 FORMAT (6X,E11.5,F5.1,F6.1,F6.0)
TM(1)=T(1)
READ (5,3,END=6177) (VOLPER(l),I=1,10)
3 FORMAT (12X,10F5.2)
MM(1)=0.0
DO 2924 I=1,10
MM(1)=MM(1)+AM(I)* VOLPER(l)
2924 CONTINUE
CQQI.."'.'...'....'Q..’Q...'.QQ'.'"..'.‘t‘.i.'..‘Qﬁ‘..‘.’.ﬁ.ﬁ"f
c
C INPUT DATA DEFINING THE ATMOSPHERIC STRUCTURE
c
11 MQ=0
DO 12 1=1,100
C THIS IS THE FORMAT FOR READING SIGNIFICANT LEVELS IN NON-CODED FORM
C WHERE H(l) = METERS, P(l) = MB, T(l) = DEG K, MM()=MOLECULAR WTG
READ (5,976,END=2) IPO,RGM,Z(1),MM(1),T()
976 FORMAT (11,A1,7X,3(F10.2,10X))
IF (1 .EQ. 1) CONN=-MM(1)*G0*100.0/RO
IF (I EQ. 1) XMO=MM(1)
IF (1 .GT. 1) GO TO 3826
C.t."."'...Q'...'..‘Q...Q.Q.Q'*Q..Q't...'.Ql’.’.‘.*’..Qﬁ.'.’."..
c
c
WRITE (6.,5)
5 FORMAT (2X,23HCONSTRUCTION PARAMETERS 27X, 16HSCIENTIFIC UNITS, 35X,
1)
WRITE (6,22) P(1),T(1),MM(1),GO
22 FORMAT (2X,19HSURFACE PRESSURE = ,F9.2,3H MB,10X,22HSURFACE TEMPER
1ATURE = F7.2,2H K, 10X,19HMOLECULAR WEIGHT =
3,5X,0PF6.3,/,2X,18HSURFACE GRAVITY = ,0PF8.3,11H CM/SEC/SEC)
WRITE (6,556) RE,(VOLPER(K),K=1,10)
556 FORMAT (2X,9HRADIUS OF ' MARS = ',F8.2,4H(KM),12X,18HPERCENT NITR
10GEN = ,5X,2PF7.3,11X,16HPERCENT CO2 = ,2PF7.3/,2X,22HPERCENT O
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2XYGEN = ,2PF7.3,12X,23HPERCENT ARGON = ,2PF7.3,11X,
316HPERCENT NEON = 2PF7.3,/,2X,22HPERCENT HYDROGEN = ,2PF7.3,
412X,23HPERCENT HELIUM = |2PF7.3,11X,16HPERCENT WATER =,

52PF7.3/,2X,22HPERCENTCO = ,2PF7.3,12X,
623HPERCENT SO2 =
72PF7.3,//1,10X,46HTEMPERATURE AND MOLECULAR WEIGHT DISTRIBUTION /
8)
c
WRITE(8,25)
25 FORMAT (44X’MODEL ATMOSPHEREY/
1,42X,//,29X,

2THE SIGNIFICANT LEVELS FOR THE MODEL ATMOSPHERE ARE-'
3//,27X,'ALT,10X,'PRES', 10X, TEMP",9X,'TM", 11X

4, MOL WTG'/,27X.'(M)',10X,(MB)',10X,'(K)’

510X,'(K),10X," ')

Ct'.‘.i.i'.it.t"‘.i.QQ‘-"..Qil"t.QtQ.....'QQ....'.Q.'.Q..'Q#".Q

C
C
3826 IF (IPO) 630,631,630
C CONVERT Z(l) FROM GEOM TO GEOPOTENTIAL ALTITUDE
631 H(I)=Z(I) REARE+Z(l))
GOTO
630 H(I)-Z(l)
C CONVERT H(l) FROM GEOP TO GEOMETRIC ALTITUDE
Z()=RE*Z(I//(RE-Z(I))
782 TM(I)=T(l)* XMO/MM(1)
IF (1.GT. 1) P(l)=PRES(P(I-1),(TM(l)-TM{I-1)){H(1)-H(I-1)),
1TM(I-1), TM(1),H(I-1)-H(1), ANS, RE,CONN)
MQ-=!

12 CONTINUE
C
C.ﬁ..."tt.QQ'.QQ...Q.Q.O.'..i"'..Q....Q'..Q..Q.".Q.....Q...Qt.'
c
2 DO 26 I=MQ,100
H()=HMQ)
26 P(!)=P(MQ)
DO 6 I=1,MQ
c
WRITE (6,32) H{l)*RE/ARE-H(1)).P(),T(l),
1TM(1), MM(1)
32 FORMAT (20X,1P2E13.3,0P3F13.3)
c

35 CONTINUE
6 CONTINUE
6177 WRITE (6,86)
86 FORMAT (/)
WRITE(6,9901)
9901 FORMAT( 3X,'ALT,7X, TEMP',7X,PRESSURE',7X,' DENSITY',7X,
+COEFFV')
RETURN
END
C

CQQQQQ'ttt'i"Q.‘.'t.t..Q.Q.'QQ"Q.QQ.Q.QQ...Q"t.t'...'.""ﬂ'ii.

C

SUBROUTINE REFRAC (Z1,Z2,XLAMDA,PH!,PHIPR,PSI,SLANT,ANS,RE,CONN)
DIMENSION ANS(35)
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C

C..‘t‘..'."Q'Q..i'...ittQ..Qﬁt.ﬁ'it.tﬁ.".".....'.'it.itt....."i

Cc
C IN ORDER TO CALCULATE A CONTINUOUS PATH YOU MUST EXTERNALLY SET
PHI=PHIPR

C Z1, Z2, PHI, AND XLAMDA ARE INPUT VARIABLES

C Z1 AND Z2 ARE IN KM AND XLAMDA IS IN MICRONS

C PHIPR, PSI, AND SLANT ARE OUTPUT VARIABLES

C PHI, PHIPR, AND PSI ARE IN RADIANS AND SLANT IS IN CM

C IF YOU WANT AMOUNT OF GM/CM**2 (COLUMNAR MASS) OF ATMOSPHERE FROM Z1 TO
z2

C USE ANS(3)*SLANT.

CQ'.Q.Q'...Q.'..i.‘.t."i'..'i.i.Q’Q'Q.....Qﬁ‘."'i.ﬁﬁ“‘...""tﬁ

C
S1=RE+2Z1
S2=RE+22
DELT=(Z2-21)/2.0
CALL MODATM(Z2+DELT,PP,'ALTI' XLAM DA,ANS,RE,CONN)
D2=ANS(3) B
XN2=ANS(18)
CALL MODATM (Z1+DELT,PP,'ALTI', XLAM DA,ANS,RE,CONN)
D1=ANS(3)
XN1=ANS(18) -
PSI=SININV(S1*SIN(PHI)/S2)
PHIPR=SININV(S1*SIN(PHI)*XN1/(S2*XN2))
SLANT=S1"SIN(PHI-PSI)/SIN(PSI)*1.0E+05
RETURN
END
C
C....Q..'i.ﬁ.'i...tﬁ...t.'.t."Q'i"Q.QQ.t..'ﬁ‘t..ii.tﬁ....tt“ﬁ..
C
SUBROUTINE PATH (XLAM DA,ZS,PHIS, THETAS,ZL,PHIL, THETAL, ANS
1,RE,CONN,SUM,SUM1 SUM3,SUM4)
DIMENSION ANS(35),A(3,3),B(3),C(3),PATHM(30),ZZZ(31)
C
C...'.t...it'.'.{’..t.ﬁ.".t'.ﬁtﬁ'.‘t"i.."..QQ‘Q.Q*."QQ'QQ."
C

C QUANTITIES ENDING IN S ARE FOR THE SATELLE

C QUANTITIES ENDING IN L ARE FOR THE GROUND LOCAL

C -Q1- AND -Q2- ARE DUMMY VARIABLES

C -XS, YS, AND HS- ARE THE RECTANGULAR COORDINATES OF THE SPACECRAFT .
C -XL, YL, ANTHE RECTANGULAR COORDINATES OF THE GROUND LOCAL

C THE ANGLE ABD IS THE ANGLE BETWEEN THE SUBSATELLITE POINT AND TARGET.
C ANGLE ABD IS FOUND BY USING THE DOT PRODUCT AND TAKING THE INVERSE COS
C .0092833 RADIANS IS THE TOTAL REFRACTION ON A PASS THRU U.S. STANDARD

C 'SUM' IS THE TOTAL ANGLE CHANGE DURING REFRACTION

C'SUM1' IS THE SUM OF ALL DELTA XI CALCULATED BY LAW OF SINES

C 'SUM3' IS THE TOTAL COLUMNAR MASS IN THE SLANT PATH

C 'SUM4’ IS THE TOTAL SLANT PATH IN CM

C PHI IS IN RADIANS

]

C ANS(21) IS THE ZENITH ANGLE FROM GROUNDSTATION IN RADIANS

C

C ANS(22) = THE TOTAL GM/CM**2 OR COLUMNAR MASS ALONG THE SLANT PATH.
Cc

C ANS(24) = TOTAL PATH LENGTH IN CM -
Cc
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CQ'Q‘.ﬁ"’ﬁ.'..Q...Q.'Q.QQ'.QQQQ.Q...*.Q‘..'QQ..0*'.'.'.'..'."...

C
K1=30
Pl= 3.14159265
CON=.0174532925
PHIS=PHIS*CON
THETAS=THETAS*(-CON)
PHIL=PHIL*CON
THETAL=THETAL*(-CON)
CALL MODATM(ZS,PBAR,'ALTI' XLAMDA ANS,RE,CONN)
DELP=ANS(1)
PSAT=ANS(1)
TSAT=ANS(2)
CALL MODATM (ZL,PBAR,'ALTI, XLAMDA ANS,RE,CONN)
DELP=ABS(ANS(1)-DELP)/FLOAT(K1)
PSURF=ANS(1)
TSURF=ANS(2)

Q2=COS(PHIS)
XS=Q1*COS(THETAS)*Q2
YS=Q1*SIN(THETAS)*Q2
HS=Q1*SIN(PHIS)
Q2=COS(PHIL)
Q1=RE+ZL
XL=Q1*COS(THETAL)*Q2
YL=Q1 *SIN(THETAL)*Q2
HL=Q1*SIN(PHIL)
ABD=COSINV(( (XS’XL)+(YS'YL)+(HS'HL))/(SQRT(XS"Z-#—YS"Z-{-HS"Z)
1 'SQRT(XL“2+YL"2+HL"2)))
DO31=13
© 3C(h=0.0 -
C FROM HERE TO STATEMENT 4 FINDS THE VECTOR (C) FROM THE TARGET TO THE
C SATELLITE
A(1,1)=SIN(PHIL)*COS(THETAL)
A(2,1)=-SIN(THETAL)
A(3,1)=COS(PHIL)'COS(THETAL)
A(1,2)=SIN(PHIL)*SIN(THETAL)
A(2,2)=COS(THETAL)
A(3,2)=COS(PHIL)*SIN(THETAL)
A(1,3)=-COS(PHIL)
A(2,3)=0.0
A(3,3)=SIN(PHIL)
B(1 )=XS-XL
B(2 )=YS-YL
B(3 )=HS-HL
DO41=13
DO4M=13
4 C(h=A(,M)*B(M)+C(l)
PHIL=PHIL/CON
THETAL=THETAL/(-CON)
PHIS=PHIS/CON
THETAS=THETAS/(-CON)
PHI=ATAN2(SQRT(C(1 )**2+4C(2)**2),C(3))
IF (PHI.GT..017)PHI=PHI-.0092833
IF (PHI/CON.GT.90.0)WRITE (6,88) PHI/CON
88 FORMAT (///,1X,WARNING,ZENITH ANGLE OF UNREFRACTED PATH EXCEEDS
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190.0 DEG'/,1X,IT IS HIGHLY PROBABLE THAT THE AIRCRAFT OR SPACE
2CRAFT CANNOT SEE THE TARGET, ZENITH ANGLE(DEG)=", F10.5,/)
WRITE (6,105)

105 FORMAT (//,1X," FOR SLANT PATH CALCULATION THE LEVELS ARE CHOSEN
1AS FOLLOWS'////,16X,'ALTITUDE PRESSURE  TEMPERATURE,

2/16X! KM MB DEG K)
WRITE (6,104) ZZZ(1),PSURF, TSURF
K111=K1-1

DO 1410 J=1,K111
CALL MODATM(ZZZ(J+1),PSURF-DELP*FLOAT(J), PRES', XLAMDA,
1ANS,RE,CONN)
WRITE (6,104) ZZZ(J+1),ANS(1),ANS(2) ;
104 FORMAT (1X, 9X,1P3E14.4)
1410 CONTINUE
WRITE (6,104) ZZZ(K1+1),PSAT, TSAT
IF (PHVCON .LT. 1.0) GO TO 2223 -
C IF THE UNREFRACTED ZENITH ANGLE IS LESS THAN 1 DEG THEN EXIT
89 DELT=(ZZZ(2)-2ZZ(1))/10.0
CALL MODATM (ZL+DELT* 5,PP,'ALTI' XLAMDA,ANS, RE,CONN)
PHIINT=PHI
21=2L
D1=ANS(3)
XN1=ANS(18)
SUM=0.0
SUM1=0.0
SUM3=0.0
SUM4<0.0 -
SUM4P=0.
DO 2 J=1,K1
JT=((10*(J-1))+1)
JTP=10")

DELT=(ZZ2(J+1)-ZZZ(J))/10.0
DO 1 1=JTJTP
Z2=Z1+DELT
S1=RE+Z1
S2-RE+Z2
HAFDEL=DELT" 5
IF(.LEQ.(K1*10)) HAFDEL=0. -
CALL MODATM (Z2+HAFDEL,PP,'ALTI', XLAMDA,ANS,RE,CONN)
D2=ANS(3)
XN2=ANS(18)
PSI=SININV(S1*SIN(PHI)/S2)
PHIPR=SININV(S1*SIN(PHI)*XN1/(S2*XN2))
DUM=D1*S1*SIN(PHI-PSI)/SIN(PSI)*1.0E+05
SUM1=SUM1+PHI-PS!
SUM3=SUM3+DUM
IF (D1 .GT. 1.0E-10) SUM4=SUM4+DUM/D1
SUM=SUM+ABS({PHIPR-PSI)
PHI=PHIPR
21=22 -
D1=D2

1 XN1=XN2
PATHM(J)=SUM4-SUM4P

2 SUM4P=SUM4

82 CONTINUE
Q=SUM1-ABD
PHI=PHIINT-Q/2.0
IF (ABS(Q).GE..0001) GO TO 89
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ANS(21)=PHI
ANS(22)=SUM3
ANS(24)=SUM4
IF (PHI/CON.LE.90.0) GO TO 83
WRITE (6,87)
87 FORMAT (1X,///,1X,' THE ANGLE FROM ZENITH IS GREATER THAN 90.0')
ANS(22)=0.0
ANS(24)=0.0
GOTO83
2223 DO 2224 1=1,K1
2224 PATHM(I)=(ZZZ(1+1)-ZZZ(1))*100000.0
ANS(21)=0.0
83 WRITE (6,2114) SUM/CON
2114 FORMAT (1X,///,1X, * TOTAL REFRACTED ANGLE THRU ATMOSPHERE =',1PE15.4
1, DEGREES))
WRITE (6,21) ANS(21)/.0174532925
21 FORMAT (1X,//,1X,' ZENITH ANGLE (DEGREES) = ',1PE15.5,///)
RETURN
END
c

CQQQ..‘.'.QQQ'.‘Q'...i.'..""t.t'i.i.itQ.tiit’*'..'.i.t.'..i.t."

Cc

FUNCTION COSINV(A)
C THIS FUNCTION CALCULATES THE INVERSE COSINE OF 'A'.
COSINV=ATAN2(SQRT(1.0-A**2),A)
RETURN
END
C

CQQ..'t.ﬁ‘.'ﬁ...‘.Qﬁ.i'.i..t'..ﬁ.ﬁ'ﬁ"t..i't".i..'.lQ*'QQ'.Q"Q..

Cc

* FUNCTION SININV(A)
C THIS FUNCTION CALCULATES THE INVERSE SINE OF ‘A
IFALT.1)GOTO 1
101 FORMAT (' ERROR IN SININV - A='F12.9)
A=1.
1 SININV=ATAN2(A,(SQRT(1.0-A"*2)))
RETURN
END
c
C.Qﬁ"..i...Q.'Q.Q'.Q‘.‘.".l..t..it....Q'...Qt.'........t...t"..
c
FUNCTION ALTITU (TMHIGH, TMLOW,PHIGH,PLOW,HLOW,ANS,RE,CONN)
DIMENSION ANS(35)
c
C'....'Q..i'..ﬁ"’.i't"'i".'.......Q'Q'.Q'Q'QQQ.'QQ.Q"'QQ."'.Q
c
C GIVEN THE TEMPERATURE AND PRESSURE AT EACH OF 2 POINTS AND THE ALTITUDE
OF
C THE LOWER POINT, THIS FUNCTION CALCULATES THE ALTITUDE OF THE HIGHER
POINT
CALTITUIS IN KM. CONN IS A CONSTANT = -M‘G/R
C .
CQ'Q"‘Q".'Q".'..'QQ"i.ﬁ..QQi..’..".'0'.'."""“.*..ﬁ...t‘."
c
D=TMHIGH-TMLOW
IF(D) 23,2
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2 D=CONN"1.0E+03/(ALOG(PHIGH/PLOW))* ALOG(TMHIGH/TMLOW)
ALTITU =HLOW+(TMHIGH-TMLOW)/D
GOTO6
3 ALTITU =HLOW+TMLOW*ALOG(PHIGH/PLOW)/(CONN*1000.0)
6 RETURN
END
c

CQ..ﬁ.i‘....'.‘Qi.i‘.'Q.Q*.Q.'.ﬁ.tQ"i".ﬁ"ﬁi..Q‘tti.‘..*'t.t'....

Cc

FUNCTION PRES(PLOW,D, TMLOW, TMHIGH,DH,ANS, RE,CONN)
DIMENSION ANS(35)
c
CQ'..'Q‘....Q.".Qi.*Qi'i'.ﬁ.t‘t..iﬁ.'.’i".tili.‘..l’.‘.*.i.t'.'.'.
c
C THIS PROGRAM CALCULATES PRESSURE -PRES- AT SOME POINT -DH- ABOVE A
C  POINT IN THE ATMOSPHERE HAVING PRESSURE -PLOW- WHERE -D- IS THE
C TEMPERATURE GRADIENT AND -TMHIGH- AND -TMLOW- ARE CORRESPONDING
C TEMPERATURES. -CONN- IS CONSTANT = -M*G/R
c
C...QQ".'Q.."'Q...Q".‘..QQ."'..'.QQ.Q’*'.ﬁ'..'ﬁ".'....‘.‘.
IF(D) 23,2
2 PRES=PLOW*(TMHIGH/TMLOW)**(CONN*1.0E+03/D)
GOTO4
3 PRES=PLOW*EXP(-CONN*DH*1.0E+03/TMLOW)
4 RETURN
END
c
Ci"...Q'.'.....'.QQQQ'.t.'.‘.QQ.t.i..'Q..Q"."Q‘.it*.i....ﬁ..ttﬁ
c
FUNCTION OMEG (T,J,IQF)
C REDUCED COLLISIONAL INTEGRAL FOR JTH CONSTITUENT AS F(TEMP)
C T=TEMP INDEGK
C SET IQF = 0 FIRST TIME TO SET UP ARRAYS
DIMENSION QT(8),0M(8,10)
IF (1QF) 9,8.9
8 CONTINUE
QT(1)=100.0
QT(2)=200.0
QT(3)=300.0
QT(4)=400.0
QT(5)=500.0
QT(6)=600.0
QT(7)=700.0
QT(8)=800.0
C OM(,1) IS NITROGEN (MOLECULAR LE. N2)
OM(1,1)=13.36
OM(2.1)=11.47
OM(3,1)=9.60
OM(4,1)=0.43
OM(5,1)=9.137
OM(6,1)=8.68
OM(7,1)=8.509
OM(8,1)=8.23
C OM( ,2) IS CARBON DIOXIDE
OM(1,2)=23.604
OM(2,2)=15.708
OM(3,2)=13.26
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OM(4,2)=11.62
OM(5,2)=10.73
OM(6,2)=10.28
OM(7,2)=9.83
OM(8,2)=9.59

OM(1,3)=16.12
OM(2,3)=11.7
OM(3,3)=10.22
OM(4,3)=9.45
OM(5,3)=9.10
OM(6,3)=8.81
OM(7,3)=8.59
OM(8,3)=8.40

C OM( ,4) IS ARGON

OM(1,4)=17.15
OM(2,4)=12.58
OM(3,4)=10.75
OM(4,4)=10.00
OM(5,4)=9.65
OM(6,4)=9.49
OM(7,4)=8.86
OM(8,4)=8.75

C OM( ,5) IS NEON

OM(1,5)=9.72
OM(2,5)=8.65
OM(3,5)=8.239
OM(4,5)=7.903
OM(5,5)=7.470
OM(6,5)=7.422
OM(7.5)=7.203
OM(8,5)=6.93

OM(1,6)=11.04
OM(2,6)=9.28
OM(3,6)=8.53
OM(4,6)=8.18
OM(5,6)=8.11
OM(6,6)=7.80
OM(7,6)=7.52
OM(8,6)=7.37

C OM(,7) IS HELIUM

OM(1,7)=8.13
OM(2,7)=7.2

OM(3,7)=6.97
OM(4,7)=6.62
OM(5,7)=6.43
OM(6,7)=6.28
OM(7,7)=6.05
OM(8,7)=5.99

C OM( ,8) IS WATER (H20)

OM(1,8)=37.27
OM(2,8)=23.89
OM(3,8)=20.14
OM(4,8)=17.48
OM(5.8)=15.92
OM(6,8)=14.57
OM(7,8)=13.52

C OM( ,3) IS OXYGEN (MOLECULAR LE. 02)

C OM(,6) IS HYDROGEN (MOLECULAR L.E. H2)
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OM(8,8)=12.80
C OM( ,9)=CARBON MONOXIDE
OM(1,9)=15.58
OM(2,9)=11.27
OM(3,9)=10.28
OM(4,9)=9.49
OM(5,9)=9.05
OM(6,9)=8.76
OM(7,9)=8.50
OM(8,9)=8.25
C OM(,10) IS SULFUR DIOXIDE
OM(1,10)=24.21
OM(2,10)=17.96
OM(3,10)=14.69
OM(4,10)=12.91
OM(5,10)=11.92
OM(6,10)=11.03
OM(7,10)=10.60
OM(8,10)=10.33
9D011=1,8
IF (QT()-T) 1,23
1 CONTINUE
GOTO2
3IF (-1) 62,6
6 I=l-1
OMEG=(OM(1+1,J)-OM(LJ)}(QT(1+1)-QT(1))*(T-QT(1))+OM(1.J)
GOTO4
2 OMEG=OM(1,J)
4 RETURN
END
c

Ci*.t"..ﬁ..'it."i.i.i**ﬁ'f.if."ifiiﬁ*.i.tﬁ*i.i*Q"ﬁtit‘.‘.tﬂ"i

C

FUNCTION CPS (T J,IQF)
C SPECIFIC HEAT AT CONSTANT PRESSURE, CAL/(MOLE DEG K)
C T=TEMP IN DEG K
C SET IQF = 0 FIRST TIME TO SET UP ARRAYS
C J = CONSTITUENT

DIMENSION QT(7),CP(7,10)

IF (IQF) 9,8,9

8 CONTINUE

QT(1)=100.0

QT(2)=200.0

QT(3)=300.0

QT(4)=400.0

QT(5)=500.0

QT(6)=600.0

QT(7)=700.0
C CP(,1) =NITROGEN

CP(1,1) =6.9562

CP(2,1) =6.9571

CP(3,1) =6.9613

CP(4,1) =6.9910

CP(5,1) =7.0703

CP(6,1) =7.1968

CP(7,1) =7.3509
C CP(,2) = CARBON DIOXIDE

199



- CP(1,2) =6.9806
CP(2,2) =7.7331
CP(3,2) =8.8942
CP(4,2) =9.8762
- CP(5,2) =10.6646
CP(6,2)=11.3098
CP(7.2) =11.8456
C CP( ,3) = MOLECULAR OXYGEN
CP(1,3) =6.9567
CP(2,3) =6.9615
CP(3,3) =7.0237
— CP(4,3) =7.1961
CP(5,3) =7.4315
CP(6,3) =7.6704
CP(7,3) =7.8837
- C CP( ,4) = ARGON
CP(1,4) =4.9681
CP(2,4) =4.9681
CP(3,4) =4.9681
- CP(4,4) =4.9681
. CP(5,4) =4.9681
CP(6,4) =4.9681
CP(7.4) =4.9681
C CP( ,5) = NEON
CP(1,5) = 4.9681
CP(2,5) = 4.9681
- CP(3,5) = 4.9681
CP(4,5) = 4.9681
CP(5,5) = 4.9681
CP(6,5) = 4.9681
- CP(7.,5) = 4.9681
C CP( 6) = HYDROGEN
© CP(1,6)=5.3934 _
CP(2,6)=6.5182
CP(3,6)=6.8938
CP(4,6)=6.9753
CP(5,6)=6.9932
- CP(6,6)=7.0091
CP(7,6)=7.0369
C CP(,7) = HELIUM
CP(1,7) =4.9681
- CP(2,7) =4.9681
CP(3.7) =4.9681
CP(4,7) =4.9681
CP(5,7) =4.9681
- CP(6,7) =4.9681
CP(7,7) =4.9681
C CP( ,8) = WATER
CP(1,8)=7.9606
CP(2,8)=7.9694
CP(3.8)=8.0276
CP(4,8)=8.1864
- CP(5,8)=8.4161
CP(6,8)=8.6779
CP(7,8)=8.9571
C CP( ,9) = CARBON MONOXIDE
— CP(1,9)=6.9564
CP(2,9)=6.9574
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CP(3,9)=6.9656
CP(4,9)=7.0129
CP(5,9)=7.1211
CP(6,9)=7.2760
CP(7,9)=7.4507
C CP(,10) = SULFUR DIOXIDE

CP(1,10)=8.0134
CP(2,10)=8.6948
CP(3,10)=9.5451
CP(4,10)=10.3919
CP(5,10)=11.1292
CP(6,10)=11.7189
CP(7,10)=12.1755

9D011=1,7
IF (QT()-T) 1,23

1 CONTINUE
GOTO2

3 1=l-1
CPS =(CP(I+1,J)-CP(LJ))(QT(1+1)-QT()*(T-QT(1))+CP(lJ)
GOTO4

2 CPS=CP(l,J)

4 RETURN
END

201



