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Introduction

Numerical methods for viscous transonic aerodynamics have made enormous
progress in recent years, but further improvement is still needed, especially with
regard to the accuracy of the prediction. This improvement will mainly result from
validation of codes based on data from appropriate transonic experiments, where
e.g. boundary conditions to be used in the calculation have to be measured and
where also shear stress data or velocity profiles are available. Because there are
not enough such experiments it is also necessary to compare numerical results
with data from experiments which don't meet the requirements of code validation.
Even in these cases a lot of useful information can be gained, not only for the
theoretician but &lso for the experimentalist.

In the following a comparison is presented between the computed results of the
flow about the CAST10 airfoil and the pressure distributions and force coefficents
from experiments in the adaptive TCT [1J.

Description of the Method

For the discretization of the complete Navier-Stokes equations a finite volume
Runge-Kutta time-stepping scheme based on a cell centered formulation is used
_2]. Since the fluxes across the cell faces are averaged from neighbouring cells
which is equivalent to central differencing artificial diffusion terms are needed.
These damping terms are the usual blend of second and fourth order, differences
except that a weighting function is employed. This weighting function restricts the
artificial diffusion in the viscous near-wall regions or In the wake, where the
unweighted formulation would otherwise result in a predominance of non-physical
diffusion.

The set of ordinary differential equations resulting from the finite volume discreti-
zation is integrated in time using a linearized four-stage Runge Kutta scheme.
Local time stepping is employed to accelerate the convergence to steady-state
solutions, and in order to save further computation time the artificial and physical
diffusion terms are updated only once per time step reducing the execution time
by more than 50 per cent.

To have a well-posed problem a set of appropriate boundary conditions is needed.
At the airfoil surface the no-slip and the adiabatic wall condition is used. The
pressure I,__derived from the assumption of zero pressure gradient normal to the
wall which Is Justified for the very small step sizes normal to the wall used In
Navier-Stokes calculations for turbulent flows. At the far field boundary we use
one-dimensional Rlemann invarlants normal to the boundary in order to obtain
boundary conditions.

Since the two-dimensional flow solver used here is derived from the three-dimen-

sional one described in _2_, it allows for a block-structured approach, i.e. the
computational domain can be divided in a number of subdomains called blocks.
The advantage of this approach Is that it is very flexible regarding the handling
of complex geometries (e.g. with multiply connected domains). The flexibility is
partly due to the segmentation of the block faces, which allows for the use of dif-
ferent types of boundary conditions and different neighbouring blocks at each
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block face.This featurewasused In the present calculations to model the finite
thickness of the CAST10 trailing edge by using a C-type mesh past the airfoil with

an extra grid in the gap behind the trailing edge. For more Information on the
block structure refer to E2J.

To simulate the turbulence the well-known algebraic model of Baldwin and Lomax

[3] is used.
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Typical grid In the vicinity of the airfoil

For the flow about the airfoil the mesh consists of 260x80 cells in chordwise and

wall-normal direction, respectively and the mesh extends about 10 root chords

away from the airfoil. There are 200 ceils on the wing surface and the first step size

normal to the wing surface is chosen such that it is equivalent to z+_2 in the first
cell of the wall, in order to resolve lhe laminar sublayer of the turbulent flow.

The C-type grid is generated algebraically using a code of Sobieczky [4] resulting

in a mesh wilh a gap of the lhickness of the trailing edge. This gap is closed by a

suitable Inlerpolatton which yields a smooth distribution of the slepsize in the
direction normal to the wake.

The block structure in the present calculations includes three blocks; the first and

second corresponding to the C-lype mesh in lhe vicinity of the airfoil and Io the

interpolated mesh in the gap, respectively. In these two blocks the complete

Navier-Stokes equations are solved, whereas only the Euler equations are solved

in the third block for the outer part of the C-mesh. The block boundary of the later
block is about 25 per cent of chord away from the airfoil and the wake, respec-

tively•

I i
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Details of the mesh near the leading and trailing edges

The figures show the strong clustering of the grid lines near the wall and give an
idea of the grid Jn the gap behind the trailing edge. In the present calculation the

mesh within the gap behind the trailing edge is fairly small, i.e. there are only ten
cells over the height of the trailing edge.

7 ii°ill
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Comparison of experimental and computed lift and drag

M = .73 Re = 10 million

The table shows a comparison of the lift and drag coefficients from experiments in

the TCT [1_ with free transition (the transition takes place somewhere near the

leading edge) and calculations where the transition point Is prescribed. The tran-

sition location is given as upper/lower chord position.

As can be seen from the table the upper surface location of transition (.07 to .2

chord) has almost no influence on the coefficients, but the lift increases when the

lransition Iocalion is shifted downstream on the lower surface ( to .15 and .2 chord).

The calculation for 0c= 3.0 is slightly unsteady, i.e. the residuals stay on a certain

level in the separalion zone behind the shock.

For details see the following pages.

cx exp./cal, transition lift coeff, drag coeff.

1.0 exp. free .616 .010

cal. .07/.07 .677 .0152

cal. .10/. 10 .677 .0152

cal. ,15/.15 .685 .0149

cal. .07/.20 .695 .0150

cal. .20/.07 .677 .0150

cal. .10/.10 .637 ,0159

(modif.turb.)

.9 cal. .10/.10 .677 .0150

3.0 exp. free .895 .0450

cal. .10/.10 .82-.90 .033-.039
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Iso-Machcontoursfor M= .73 Re= I0 million • = 1.00

Calculation: transition at .101.10 chord

This figure shows contour lines of the Mach number in the vicinity of the airfoil

(4 = .05) with the supersonic regime set off in gray. Also shown are the block

boundaries of the computation. Since some isolines cross the boundary between

the viscous inner and the inviscid outer block without any disturbance it is obvi-

ous that the block concept has no influence on the solution quality.
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Cp-distrlbutionat M = .73 Re = 10 million 0_ = 1.00

1. Calculation: transition at .10/.10 (or .07/.07) chord

The symbols show the experimental data from TCT [1](point 203) and the solid line
shows the computational result. The horizontal line with the crosses at its ends

indicates the critical Cp value. Fixing the transition at 10 or 7 per cent chord in the

calculation gives the same pressure distribution.

The results compare quite well for the major part of the surface except near the

trailing edge, but there is a discrepancy in the shock location.of about 10 per cent
chord.

To see the influence of the chosen transition location on the results the following
variations are made.
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Cp-distribuUon M= .73 Re= 10 million • = 1.00

2. Calculation: transition at .071.20 chord

The pressure distribution shows almost no variation compared to previous calcu-
lation.

3. Calculation: transition at .20/.07 chord

The pressure at the beginning of the pressure plateau is now even closer to the

experimental one, but the shock has moved a little bit further downstream. The
solution behind the shock and at the lower surface are the same as before.
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Cp-distribulion M= .73 Re= 10 million • = 1.00

4, Calculation: transition at .I0/.10 chord and _ = .9

A decrease in the angle of attack results in less agreement regarding the plateau

pressure and the pressure at the lower surface. The shock has now moved

upstream, but by a far too small extent. To match the plateau pressure again a

higher Mach number would be necessary, but this further variation was nol tried.

t

.5 .6

X

7O



Cp-dislrlbutlon M: .73 Re= 10 million • : 1.00

5. Calculation: transition at .10/.10 chord and variation of turbulence model near

shocks

A modification in the Baldwin/Lomax turbulence model resulting in a local

increase of the eddy viscosity is made. The shock is moved upstream almost into

the right position but the plateau pressure and the pressure at the lower surface

show now larger discrepancies similar to the result with the smaller angle of

attack. It is obvious from the movement of the shock that there is a strong influence
of the modelling on the turbulent shock boundary layer interaction.
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Iso-Mach contours for M = .73 Re= 10 million • : 1.00

Calculation: transition at. 10/. 10 chord
Modified turbulence model

This figure shows the Mach number distribution with the modified turbulence
model. In comparison to the previous results one realizes the upstream movement
of the shock due to this modification. Away from the supersonic region the two
solutions look very similar as one could expect already from the pressure distrib-
utions.
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Cp-distributlon M = .73 Re= 10 million • = 3.00

Calculation: transition at .101.10 chord

For this higher angle of attack case ( point 207 of TCT data[l]) the calculation

indicates a slightly unsteady solution in the separated region on the upper surface

near the trailing edge. Again the results compare quite well for the major part of

the surface, but we find again the discrepancy in the shock location. In this case

with separated flow the aforementioned modification of the turbulence model

shows almost no influence on the solution, maybe because the modification is only

local at the shock and does not extend over the whole separated region.
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Iso-Mach contours for M = .73 Re= 10 million 0z = 3.00

Calculation: transition at. 10/. 10 chord

This figure shows the Mach number distribution for the higher angle of attack case,
where the shock has moved downstream. Due to lhe separation behind the shock
the boundary layer has thickened considerably as can be seen in comparison to
the Math number distribution for == 1.
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Comparison of experimental and computed lift and drag at M= .765

The table shows a comparison of the force coefficients from experiments with fixed
and free (for the higher Re numbers) transition to those from calculations where
the transition location is always at .07/.07. Results are presented for different
angles of attack and different Re numbers.

For more details regarding the calculated results see the following pages.

Experiment Calculation

lift / drag lift / drag

Re= 4 million

0 .378 / .012

.5

1. .57 / .020

Re = 10 million

.53 /.0169

.604 /.0216

.53-.65/.019-.028

0 .45 /.011 .53 /.0155

.5 .588/.015 .575 /.0185

1. .623 / .024 .58-.63 / .019-0.25

Re = 40 million

0 .538 / .012 .41-.43 / .010-.011
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Cp-distribution M= .765 Re= 4 million 0t = 0.00

Transition at .07/.07 chord (calculation) and .06/.06 chord (experiment)

For this higher Mach number case (point 39 of TCT data [1]) the numerical result

compares not so well with the experimental data, not even at the lower surface.

The computation exhibits a pressure plateau with an expansion peak in front of the

shock, whereas the experiment shows a double structure of.weaker shocks. The

calculated pressure distribution results in a higher lift (and drag) and..in a higher
trailing edge pressure.

According to previous experience the difference in the transition location between

calculation and experiment is estimated to have practically no influence.
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Cp-dlstributlon M= .765 Re: 10 million 0t = 0.00

Transition at .071.07 chord (calculation) and .061.06 chord (experiment)

Increasing the Reynolds number results in almost no change in the computed

pressure distribution. The experimental pressure (point 79 in TCT data [1]) is now
slightly higher on the lower surface and slightly lower on the upper surface thus

producing a higher lift due to the reduced decambering by the thinner boundary

layers, Now the pressure distributions compare better except for the region of the

shocks where we find again the double shock in the experimental data.

It is far from clear why the calculation at the lower Reynolds number doesn't show

the decambering effect found in the experiment.
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Cp-dlstribuUon M: .765 Re: 40 million _ : 0.00

Transition at .071.07 chord (calculation) and .061.06 chord (experiment)

A further increase in Reynolds number changes the situation in the experiment

(point 284), I.e. the double shocks merge and form a stronger single shock down-

stream. Again the pressure is increased at the lower and decreased at the upper

surface. Although the qualitative result of the computation compares now better to

the experimental pressure distribution, the quantitative result is mucll worse. This

is due to the poor resolution of Ihe very thin boundary layer. With a belier resol-

ution, however, the computed shock position is again found downstream of the

experimental one whereas the plateau pressure and the pressure at the lower
surface are recovered. As for the lower Mach number cases we assume that this

effect is at least partly due to the turbulent shock boundary layer interaction which
is not correctly modelled by the Baldwin-Lomax turbulence model.
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Cp-dlstribution M = .765 Re = 4 million _ = 1.00

Transition at .07/.07 chord (calculation) and .06/.06 chord (experiment)

For a higher angle of attack and the low Reynolds number (point 40 of TCT data

[1]) we find only a single shock in the experimental data and, as is seen in most

of the other cases, the numerical result compares quite well except at the shock.

But this depends on the picked iteration cycle where the results are plotted, as

will be discussed on the next page.
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Cp-distribution M = .765 Re = 10 million _z = 1.00

Transition at .071.07 chord (calculation) and .061.00 chord (experiment)

Increasing the Reynolds number again (point 339 of TCT data [I]) has little influ-

ence in the experimental data; only the shock is shifted downstream a little bit.

One would expect the same for the computed results keeping in mind the results

for zero incidence. But as is seen from the variation of lift and drag in the pre-

ceding table there is an unsteadiness in the numerical results at this angle of

attack, i.e. the solutions do not converge to a steady state. The result shown here

was obviously taken at a moment where the lift in the calculation was low, whereas

the result on the previous page corresponds to a siluation where the lift was high.

Since the numerical method uses local time stepping as an acceleration technique

the unsteadiness cannot be interpreted in a physically meaningful way, although
It Indicates that a time accurate calculation at this angle of attack would yield an

unsteady flow behavior, too.
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Concluding Remarks

Results of the simulation of the viscous flow past the CASTIO airfoil have been
shown for different flow conditions. Since the experiments provide only surface
pressures and force coefficents the comparison to the numerical results relies on
these.

Good agreement of the results is found for the lower Mach number cases except
for the shock posilion. As numerical experiments indicate, this seems to be due to
the turbulent shock boundary layer interaction which is not correctly modelled by
the algebraic turbulence model employed.

For the lower Mach number case the influence of the transition location has been
investigated, too. Changing the transition location at the lower surface has much
more influence on the pressure distribution than changing it on the upper side.

For the higher Mach number case the double shock structure found in the exper-
iment for the lower Reynolds numbers was not reproduced by the numerical sol-
utions. The reason for this is unknown though it may be due to the turbulence
modelling. For the higher Reynolds number a better resolution of the boundary
layer is needed in the computation in order to recover lhe experimental pressure
plateau; but then the shock position is still found downstream of the experimental
one.
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