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Chapter 1 

Introduction 

Replication is an important concept in the design of fault-tolerant distributed 

computing systems. When applied to object-oriented systems, replication can 

increase the availability as well as the performance of data objects. However, 

replication also introduces the problem of maintaining consistency between 0 b ject 

replicas. This problem is further compounded when object replicas can fail and 

recover. In this dissertation we presen t a recovery mechanism for res toring 0 b jec t 

replicas to consistent states after failures. 

1.1 Objects and Recovery 

In the last several years, object-oriented systems have become increasingly pop

ular [HMSC88,JLHB87,LCJS87). These systems provide their users with tools 

for building and maintaining abstract data objects. An object in such a system 

generally consists of an implementation body along with an interface. Only the 

interface is visible to a client of the object; implementation details such as data 

structures and internal procedures are hidden from the client inside the object 

body. Figure 1.1 depicts an object-oriented system containing two objects, a 

name manager and a resource allocation manager, and three clients. Clients 

begin by registering themselves with the name manager and then proceed to 

1 
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Figure 1.1: An object-oriented system 

allocate resources under that name using the resource allocation manager. 

Objects in a system do not necessarily exist independent of one another. The 

states of different objects may be related. In the above example, the state of 

the resource allocation manager is dependent on the state of the name manager: 

resources are only allocated to registered clients. When failures occur, however, 

consistency constraints between objects can be violated. If the name manager 

fails and subsequently recovers, losing some client registrations in the process, 

the system could reflect resources allocations to unregistered clients. 

It is the purpose of this dissertation to present an automatic mechanism for 

restoring consistent states to (replicated) objects after failures. The mechanism 

is based on logging the sequences of updates that occur to object replicas and 

then using those sequences to construct consistent states after failures. 
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1.2 Consistency 

The meaning of consistency in a system depends upon the application being im

plemented. Serializability is perhaps the most widely applied form of consistency 

[BG81,Grai8,U1l82j. Under serializability, operations on objects are grouped into 

transactions. Each transaction is executed as if it were an atomic unit. If a fail

ure occurs during a transaction, the result of the transaction is as if either all 

of the operations in the transaction occurred or none of the operations occurred. 

Further, concurrent transactions are executed as if they occurred in some serial 

order (in reality, the operations in different transactions might be interleaved). 

Serializability provides a strong consistency condition that is sufficient to 

guarantee correctness in large number of applications. However, for many ap

plications the cost of implementing serializability is prohibitive. In addition, 

serializability often provides a stronger consistency constraint than is required 

by the application. For these reasons, weaker forms of consistency that are less 

expensive to implement have been examined. 

In this dissertation we focus on a causal form of consistency based on Lam

port's "happens before" relation [Lam78]. Under causal consistency, operations on 

objects are partially ordered according to the virtual time at which they occurred 

[Jef85] or the potential flow of information between them [BJ87aj. Objects may 

then only be accessed in a manner consistent with this partial ordering. 

Compared with serializahility, causal consistency has the advantage that it is 

inexpensive to implement (causally consistent message ordering can be achieved 

using only a one-phase protocol [BJ87b,Sch88,PBS89j). Further, causal consis

tency has heen shown to be applicable to a large variety of applications, including 

mail handling systems [CP86), distributed simulation [J+87], and task decompo

sition [BJ87a]. 
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1.3 Objectives 

Recovery mechanisms have been proposed elsewhere for achieving causal consis

tency in a system [JZ88,SY85j. These mechanisms all require access to explicit 

information about the causal dependencies between requests. It is the goal of 

this work to show that consistency can be achieved without any such explicit in

formation. Instead, consistency is achieved using only information inferred from 

the normal behavior of the system. 

In addition, our mechanism implements a rollforward style of recovery. }'lany 

existing solutions use rollback as a synchronization technique. However, it is 

not always possible to rollback the state of a process or object. For example, the 

state of an airline reservation system reflects tickets sold to customers and money 

collected from those customers. If a failure occurs, rollback can be used to achieve 

consistency within the internal system state, but is likely to leave the state of the 

system inconsistent with the external world. In the airline reservation example. 

it would be difficult to rollback or undo ticket sales to actual customers. For 

this reason, our solution does not require a functioning object server to rollback 

its state in order to achieve consistency with a newly recovering server. This is 

accomplished at the cost of potentially blocking a server during its recovery. 

1.4 Outline 

We begin in chapter 2 by presenting our formal system model, including a de

scription of log-based recovery and its relationship to causal consistency. 

Chapter 3 then describes several consistency problems that can arise due to 

failures and outlines our basic recovery algorithms for solving these problems. 

In chapter 4 we present transformations for consistently adding and deleting 

entries from server logs. These transformations are used in chapter 5 to construct 

solutions for the recovery problems introduced in chapter 3. 
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\Vhen explicit dependency information is not available in a system, our re

covery algorithms can instead use dependency estimates in order to achieve con

sistency. These estimates must have the property that they never under-estimate 

the true set of dependencies. Chapter 6 presents several dependency estimates 

with this property. The estimates are divided into two classes: basic and com

pound. The compound estimates are more accurate than the basic estimates. but 

are also more expensive to compute. 

In chapter 7 we discuss several issues concerning the efficiency of the recovery 

algorithms. We begin by discussing a cyclic condition that can lead to block

ing during recovery. We show how this condition can be avoided by properly 

structuring a system. We then describe a special class of systems that can be 

efficiently recovered using the basic estimates, without the possibility of block

ing. We conclude the chapter by outlining the problems involved in implementing 

object checkpoints. 

Our basic recovery technique can be applied to forms of consistency other than 

causal consistency. In chapter 8 we describe how the recovery mechanism can be 

modified to provide an atomic form of consistency called grouping consistency. 

Chapter 9 concludes the dissertation by summarizing the results and dis

cussing several related areas for future research. 



Chapter 2 

Formal System Model 

In this chapter we present a partially replicated variant of the client-server model 

of computation [BJ87a,BN84,Coo85]. The model is designed to represent a highly 

asynchronous system and focuses on those aspects of the system that are relevant 

to the recovery of data after a failure. The model uses asynchronously generated 

logs to record changes to data and to recover the data after failures. In addi

tion, we describe notions of correctness and consistency based on causality (or 

which events precede others [Lam78J) and discuss their relationship to log-based 

recovery. 

2.1 Clients and Servers 

The active entities in a system are senJers and clients. Servers replicate and 

maintain data objects that are read and updated by the clients. \Ve let S£RV 

denote the set of servers in the system and let 0l3.:T S denote the set of data 

objects managed by the servers. Each object, A E OB.:TS, is replicated at some 

subset of the servers, Sf'RV A, which we refer to as the server set of the object 

(st"nv A ~ St"'RV). For convenience, we will denote the set of objects managed 

by a server, I, as 08.1S /. 

08.1S, - {A E 08.1S I f E S£'RV A } 

6 
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Figure 2.1: Overlap between object server sets 

Figure 2.1 illustrates the overlap between the server sets of different objects 

in an example system. Depicted are the server sets of four objects: A, B, C, and 

D. Note that the server set of object D is completely contained within the server 

set of object A. 

A client accesses (reads or updates) an object by broadcasting its request to 

all servers managing a replica of the object. Upon receiving a request, each server 

makes the appropriate update to its object replica. We assume that the state of 

a replica is completely determined by the sequence of updates received by the 

replica's server and that oth.er factors, such as the time of an update's receipt or 

the timing between updates', do not affect a replica's state. It is not necessary, 

however, that all servers receive requests in the same order. Concurrently issued 

requests can be received by different servers in different orders, provided that 

those orders lead to equivalent object states. This issue is discussed in further 

detail in section 2.2. 

As an example, consider a system service for managing lists. This serVlce 

might provide users with functions for creating new lists, adding and deleting 

entries from existing lists, and querying the contents of lists. One use for such 

a service would be to manage resource allocations to client processes. Clients 

would begin by submitting their names to a list of registered processes. Once 

registered, clients could allocate resources by making entries into a resource al-
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location list. Such a system is depicted in figures 2.2 and 2.3. In both figures. 

the list of registered process names is replicated at servers f and g, \v hile the 

list of allocated resources is replicated at servers 9 and h. Figure 2.2 depicts the 

concurrent submission of two client name registration messages (regl and reg2). 

Figure 2.3 depicts the concurrent submission of two resource allocation messages 

(alcl and alc2). Note that in both examples the concurrent submissions are 

received in different orders by the servers. 

It may seem unusual that a server may manage replicas of multiple objects. 

However, in object-oriented systems that replicate data, we believe that such 

overlap between the server sets of objects is common. The work in dissertation 

was motivated by the need to implement failure recovery in the ISIS system 

[BCJ+j. In the ISIS system, servers often implement general objects, such as list 

management in the previous example. These objects are then used by clients 

to implement more specific services, such as name management and resource 

allocation. Because of availability and performance considerations, not all of the 

general servers may manage each of the specific services. Further, the subset of 

servers that do manage a specific service may dynamically change as servers fail 

and recover, or as different availability and performance constraints are placed 

on the service. As a result, general object servers often manage multiple specific 

serVlces. 

2.2 Request Ordering and Causality 

Clients in a system interact with each other in many ways. Clients communicate 

directly by sending messages to one another, and indirectly through the objects 

managed by the servers. These interactions may lead to causal dependencies be

tween the object requests they invoke. For example, in the system of figure 2.3, 

two clients may agree to transfer an allocated resource between them. When this 

occurs, the allocation service is notified of the transfer through are-allocation 
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Request Structure: (R, -<'R.) 

R = {regl' reg2, aiel, al cd 

Figure 2.4: Resource allocation request structure 

request message sent by the clients. This re-allocation request is causally depen

dent on the original allocation request (as well as on the registration requests 

of the clients involved); no server should receive the transfer request until it has 

received the clients' registration messages and the resource's initial allocation 

message. 

We summarize the set of causal dependencies between the client requests 

10 a system by means of a request structure. A request structure is a logical 

entity designed to represent the behavior of clients as seen by an outside observer 

looking back on the system after its completion. As such, the request structure 

of a system is static. 

Definition 2.1 

A requ.est structure is a partially ordered set of requests (R, -<'R.)' 

Here, R is the set of all requests made by clients in the system and -<'R. relates all 

pairs of causally dependent requests. If two requests are related, x -<n y, then 

request y is causally dependent on request x. The relation -<n is equivalent to 

the "happens before" relation of Lamport [Lam78] and like the "happens before" 

relation -<n is transitive and acyclic. R may contain requests made on many 

different objects. For any request, x E R, we will sometimes use the notation x .. 4 

to indicate that request x was made on object A. A request structure representing 

the dependencies in the resource allocation system is shown in figure 2.4. 

Recall that servers process requests in the order in which they receive them. 
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\Ve assume that in order to construct correct replica states, servers must recei\'e 

(process) requests in causally consistent orders (i .e. in orders consistent with 

the application's request structure (R, -<'R))' If a server receives t..,,,"o related 

(ordered) requests, x -<'R, y, then it must receive request x before it receiyes 

request y. Unrelated requests may be received by a server in any order and 

different servers may even receive the same unrelated requests in different orders. 

We do not assume that servers are given any explicit information about the 

dependencies between the requests they receive. In particular, we do not assume 

that servers have any explicit knowledge of (R, -<'R)' It is the responsibility of 

the clients to ensure that all servers perceive causally consistent request order

ings. A variety of techniques exist for clients to order their requests [BJ87b. 

CM84,CA5D86,PB589j. We will not, however, make any assumption about the 

mechanism used. Clients may use any technique that guarantees correct request 

orderings. 

2.3 Failures and Recovery 

We assume fail-stop servers [5583]. When a server fails, it immediately ceases 

to receive and process client requests, and the other servers in the system are 

notified of its failure. In addition, the failed process also loses the contents of its 

volatile memory. We assume that other types of failures, such as send/receive 

omission failures [PT86] or Byzantine (malicious) failures [L5P82], do not occur. 

We also assume that network partitions [DGM585] never occur, so that non-failed 

servers can always communicate between themselves. 

In order to support recovery from failures, each server maintains a log of the 

object updates it performs. 

Definition 2.2 

A l£9. is a totally ordered set of requests (C, -c). 
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Here, C is the set of object update requests received by the server and ~ (. IS 

their order within the log. For the present, logs will be restricted to contain 

only requests; they will not contain checkpoints. In any real system checkpoints 

are necessary to limit the growth of logs. However, the presence of checkpoints 

complicates the problem of recovery and so their use will be postponed until 

chapter 7. 

Servers log requests in the order in which they receive them. Because servers 

receive requests in causally consistent orders, it follows that servers log requests 

in orders consistent with the application's request structure. 

Definition 2.3 

The log, (C /' - /), 0/ a server / '" consistent with a request structure, 

('R, ~1l), i/ 

1. V x.A E C, /: / E S £'R V A 

2. V x.AE C/: Vy.B E 'R : 

(y.B ~1l x.A A / E S£'RV B) => (y.B E c'f 1\ y.B - f x.A) 

In the treatment that follows, we assume that a request is logged by a server 

as soon as it is received and processed, and so the log of a server always re

flects the current states of the server's object replicas. For efficiency, a server 

could decouple its execution speed from that of its log by buffering requests in 

memory and periodically flushing the buffer to its log. A server's log would then 

reflect states that lag behind the actual states of its replicas. Managing a server's 

log asynchronously from its replicas does not affect the validity of our results. 

However, it would complicate the discussion. If it were really desired to imple

ment this restriction, a server could use a technique such as write-ahead logging 

[BHG87]. 

Servers in our model do not coordinate their logs with those of other servers. 
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"I~ ........ ~ .. reg2 

: reg} 

alc2 

..... ~ 

time t} time t2 

Figure 2.5: An execution of the resource allocation system 

Each server logs the requests it receives independent of the times when those 

requests are logged by other servers. As a result, the state of an object represented 

in one log may fall behind the state of that object represented in some other 

log. Further, because servers do not always receive requests in the same order. 

different servers may have logged different requests for the same object at any 

one time. 

Figure 2.5 illustrates one possible execution of the system of figures 2.2 

and 2.3. In the figure, horizontal lines represent client and server executions 

through time while diagonal arrows represent request message broadcasts. De

picted are the broadcasts of two name registration messages (reg} and reg2) and 

one resource allocation message (alc2). Note that server / fails at time t} before 

receiving and logging the second registration message, and that server 9 fails at 
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time t2 after receiving and logging all three broadcasts. The contents of each 

server's log are shown below that server's time line after each request receipt. 

Managing server logs asynchronously from one another reduces the system 

overhead by decoupling the execution speeds of different servers. Each server is 

free to process requests at a rate independent of the other servers. Cnfortunately. 

as we will see in the next chapter, the use of asynchronous logs leads to coordi

nation problems between servers after failures. These problems can be avoided 

by coordinating the logs of different servers (pessimistic logging techniques exist 

for doing this [JZ87,PP83j). However, this adds substantial overhead to the nor

mal operation of a system. We therefore choose to manage logs asynchronously, 

postponing the overhead of coordinating logs until the time of a server's fail

ure recovery. If failures are rare, this optimistic approach should lead to good 

performance of the system. 

Other optimistic logging techniques have been proposed for managing fail

ures in distributed systems [SY85,JZ88]. These techniques involve maintaining 

explicit information about the causal dependencies between updates. Managing 

such information can be difficult or impossible, though, when the set of clients 

is either unknown to the servers or large and dynamically changing. \Ve there

fore examine the problem of optimistic failure recovery in systems where explicit 

dependency information is not available. 

A server uses its log to recover from failures in the usual way. In order to 

restore the state of a failed object replica, a recovering server simply re-executes 

the sequence of updates logged for the object. Once the recovering server has 

restored its (volatile) replica of an object, that server begins receiving, processing, 

and logging new requests on the object. We refer to a server that is in the process 

of restoring its replica of an object as a recovering server of that object and we 

refer to a server that can process new requests on an object as an active server 

of the object. 
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Note that a recovering server does not have to re-execute the updates for an 

object in the order in which they were logged. Previously we stated that a server's 

ob ject replicas are correct if that server processes requests in causally consis ten t 

orders. Because of this, a recovering server can re-execute logged updates in any 

order consistent with the application's request structure, and still reconstruct 

valid object replicas. Of course, the order in which a server logs requests is 

always consistent with CR., ~1l), and so this order can be used to construct valid 

replica states. This is particularly useful when servers does not have access to 

any explicit dependency information, and so cannot determine other valid request 

orderings. 

We represent the state of an object reflected in a server's log by the set of 

updates it contains for that object. 

Definition 2.4 

The projection of a log, (c'I' - I)' onto an object, A E VB.] S, is 

2.4 System State and Consistency 

The state of a system can be summarized in terms of the contents of the servers 

logs and the status of each server (the log of an active server reflects the actual 

states of the server's replicas). 
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ACT SIName, = 0 R£CS/Name, = {f} :FAILS/Names = {g} 

ACT SIAllocations = {h} R£C S/Allocations = 0 :FAILS/Allocations = {g} 

reg2 

(CSI /' -SIJ): ~ (C S/9 ' -S/g): regl 

alc2 

Figure 2.6: A possible state of the resource allocation system 

Definition 2.5 

A state, 5, of the system is characterized by the following values: 

For each data object, A E OB.:!S: 

ACT S/A The set of active seMlers of object A. 

RECs/A The set of recovering seMlers of object A. 

:FAXCS / A The set of failed servers of object A. 

For each server, f E SERV: 

(C S/I ' -SII) The log of seMler f· 

For example, consider again the execution of figure 2.5. Suppose that server f 

begins to recover at time t2, when server 9 fails. In this case, figure 2.6 shows 

the state, 5, of the system immediately after time t2' 

When a server fails, it fails for all objects it manages. When the server later 

recovers, it begins recovering the states of all replicas it manages. 

(3 A E OBJS: f E :FAXCS/ A ) => 

(\I A E OB.:! S I: f E :FAXCs/A ) 
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\Ve denote the complete set of failed servers in state 5 as FAIls-

FAICs = U FAIC S/ A 
AEOBjS 

In this dissertation, we will be concerned with the problem of maintaining the 

overall consistency of a system's state (as well as the consistency of server logs) 

when servers fail and recover. There are two aspects to the issue of a system's 

overall consistency. First, there is the issue of consistency between the replicas of 

the same object. Second, there is the issue of consistency between the states of 

different objects. We briefly discuss each of these aspects in turn. A more formal 

treatment of these issues is reserved for chapter 3. 

All active servers of an object should maintain equivalent states for their ob

ject replicas, so that the servers behave consistently with respect to one another. 

Because servers execute asynchronously from one another, different servers may 

construct this state at different speeds and by processing requests in different 

orders. We assume that at the time a server recovers, all active servers of an 

object have constructed (and logged) equivalent object states. This state, which 

we refer to as the active state of the object, is the state the recovering server 

should restore to its replica .. 

Definition 2.6 

The active state of an object, A E OS:r S, in system state S is 

v f E ACTs/A 

Restricting active servers to equivalent object states (at the time of a server 

recovery) is reasonable. For example, in the ISIS system [BJ8ib] process failure 

and recovery events are totally ordered with respect to all other events (message 

broadcasts) in the system. Thus, when a server recovers from a failure, it can 

assume that all active servers of an object have received the same set of requests 

and thereby constructed the same object state. Note that the restriction on 
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identical states is only required to hold at the time of a server recovery. At all 

other times during the execution of the system, servers are free to maintain their 

object replicas asynchronously. 

The second aspect to the issue of a system's overall consistency is consistency 

between the states of different objects. The state of an object should never reflect 

a request (update) unless all of the requests on which it is causally dependent 

are also reflected in their object's active states. For example, a system running 

under the request structure of figure 2.4 should never be in a state that reflects the 

allocation (aiel) made by the first client without reflecting the client's registration 

(regI). 

A system state, 5, is said to be observably consistent with a request structure 

('R, -<x), if the above consistency constraints hold within the active portion of 

the system. That is, a state is consistent with a request structure if all active 

servers of an object have logged the same (valid) state for the object and the 

states of all different active objects are mutually consistent. These constraints 

are only required to hold within the active part of a system because this is the 

only portion of the system visible to clients. 

Definition 2.7 

A system state, 5, is obseMJably consistent with a request structure, 

(R, -<x), i/ 

1. V / E SE'R..V - :FAICs : (CsI1 ' -+s/l) is consistent with (R, -<n). 

f. V A E 083S: V /,g E ACT SIA: (CSI1 ' -+5/1) IA = (£5/9' -+S/g) IA 

9. V A,B E 083S (ACTsIA 1: 0 " ACT SIB 1: 0): 

V x.A E ASsIA: V y.B E 'R (y.B -<x x.A): y.B E ASs/B 

This dissertation presents a recovery mechanism for maintaining observable con

sistency in the presence of server failures and recoveries. 
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2.5 Summary 

This chapter presented a formal model of replicated data in an asynchronous 

distributed system. The model was designed to focus on those aspects of the 

system relevant to the recovery of data after a failure. 

A system consisted of a set of servers, S£RV, replicating a set of data objects. 

013.:1 S, along with a set of clients that accessed and updated those objects . .-\. 

basic assumption was that objects were partially replicated within larger groups 

of servers. This lead to arbitrary overlap between the sets of objects individual 

servers managed. A client in the system accessed an object by broadcasting a 

request message to all servers of the object. An underlying structure, (R, -<n), 

governed the correct orders in which servers could receive requests. Because this 

request structure was unknown to the servers, it was the responsibility of the 

clients to ensure the servers perceived correct message orderings. 

In order to support recovery from fail-stop failures, each server maintained a 

log, (C!, - f)' of the client requests it received. There was no synchronization 

between the logs of different servers. Each server logged requests as soon as they 

were received. It was noted that the order in which requests appear ,vithin logs 

is always consistent with the application's request structure. After a failure, a 

server reconstructed the states of its object replicas by replaying the requests in 

its log. 

Servers could recover differing replica states because logs were maintained 

asynchronously. A system was said to be observably consistent if three conditions 

held: 

1. The order of requests lD all servers' logs (i.e. the states of the servers' 

replicas) are consistent with the application's request structure. 

2. All active servers of an object have logged (constructed) the same state for 

the object. 
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3. The states of all active objects are mutually consistent (i.e. consistent with 

respect to the application's request structure. 

Developing a recovery mechanism for maintaining this consistency is the goal of 

this dissertation. 



Chapter 3 

Consistency Problems 

The use of asynchronous logs potentially allows servers to recover inconsistent 

states after failures. This chapter describes (in outline form) a recovery mech

anism for preventing such inconsistencies. The chapter begins by presenting 

several examples of how inconsistencies arise. The behavior of the recovery mech

anism is then formally described and several examples of its operation are given. 

This chapter presents only a formal outline of the recovery mechanism. The 

implementation of the mechanism is the subject of the remainder of this disser

tation. 

3.1 Problem Examples 

Two types of inconsistencies can develop in a system: those between the states 

of an object's different replicas and those between the states of different objects. 

\Ve present three examples of such inconsistencies. The first two illustrate incon

sistencies that can develop between an object's replicas. The last illustrates an 

inconsistency that can develop between the states of two objects. 

21 



I 

I Client 1 
I 
I 
I 
I 
I 
I 

:1 
1 
1 
1 
1 
Ig 

h 

Client 2 

time 0 

22 

....... ~ 

I 
·.~I 

"~: 
I 

time tl 

Figure 3.1: Inconsistency with an active replica 

3.1.1 Consistency with Active Replicas 

At the time a server recovers from a failure, its log reflects the states of its object 

replicas from the time of the failure. When the recovering server replays its log, 

it restores its replicas into these states. These states may, however, be out of 

date if other servers of the objects remained active, processing updates after the 

recovering server's failure. Such updates would be reflected in the replicas of the 

active servers, but not in the replicas of the recovering server. 

For example, consider the execution of the resource allocation system shown 

in figure 3.1. The execution depicts the transmission of two client registration 

messages (regl and reg2) and one resource allocation request (alc2). In the figure, 

server f receives both registration requests without failing. Server 9 fails at time 

tl after receiving requests reg2 and alc2, but before receiving request regl. And. 
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server h fails after receiving request alc2. Suppose that server 9 recovers after 

time t}. Server 9 will then recover its replica of object .. :--; ames·' into a state 

reflecting only the registration of client 2. It will not recover the registration of 

client 1 reflected in the object's active state (the state reflected in the replica of 

server f). The contents of both servers logs at the time of the recovery are shown 

below: 

Server f 
(active) 

Server 9 
( recovering) 

This type of inconsistency can be prevented by transferring the active states 

of objects to the failed server at the time of recovery. The recovering server \vould 

then alter its log to reflect these transferred states so that it restores them during 

log replay. This is the approach used by ISIS [BJ87aj and will be the approach 

used in our recovery mechanism. 

3.1.2 Consistency between Recovering Replicas 

A similar type of inconsistency can occur when several servers of an inactive ob

ject (an object for which all servers have failed) recover simultaneously. Because 

the servers maintain their logs asynchronously from one another, and because 

they probably failed at different times, each server's log probably reflects a dif

ferent state of the object. Each server is therefore likely to recover a state for its 

object replica that differs from (is inconsistent with) the states recovered by the 

other servers. 

For example, consider the execution of the resource allocation system shown 

in figure 3.2. This execution is similar to the previous one except that server 

f fails before receiving registration request reg2. Suppose that both servers f 

and 9 simultaneously recover at some point after time t2. The servers will then 

recover inconsistent states for their replicas of "Names". Server f will recover a 
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Figure 3.2: Inconsistency between recovering replicas 



25 

state reflecting only the registration of client 1 and server 9 will recO\·er a state 

reflecting only the registration of client 2. This situation is depicted below: 

Server f 
(recovering) 

Server 9 
(recovering) 

c;;] 
~ 

This inconsistency problem can be solved by having the recovering sen-ers 

choose a new state for the object and then alter their logs so that they all recover 

this state during log replay. Ideally, this state should be a recent one, reflecting 

as many of the client requests as possible. In synchronous systems, where the logs 

of servers are coordinated, the log of the last server to fail [Ske85] will contain 

the most recent state of the object. This state could then be used to recover 

the failed servers. When logs are not coordinated, however, any server may have 

logged the most recent state. Different servers may even have logged different 

sets of requests and so no server will have logged the most recent state. In this 

case, a recent state of the object can be formed by merging the logged requests 

of the recovering servers. Thi.s is the approach used by our recovery mechanism. 

3.1.3 Consistency between Active Objects 

The previous two examples illustrated consistency problems that develop between 

different replicas of a single object. Because dependencies can exist between 

requests on different objects, inconsistencies can also develop between the states 

of different objects. Let S denote a state of a system in which some failed server 

f is recovering its replica of an object, A, and in which some other object, B, is 

active. If the state of object A logged by server f is old, f may recover a state 

that does not reflect all of the updates on which the active state of B (AS 51 B) 

depends. Similarly, if the active state of B is old (i.e. it is the result of a previous 

failure recovery of its servers), it may be missing updates on which the state of 

A recovered by server f depends. 
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As an example, consider again the execution shown in figure 3.2. If servers f 

and h recover at some point after time tJ, thev will recover mutuallv inconsistent . . 
states. Server h will recover an allocation request (alc2) from a client \vhose 

registration (reg2) is not recovered by server f. That is, the servers will recover 

a state that reflects a client's allocation without reflecting the registration on 

which it depends. Shown below are the logs of the two servers at the time of the 

recovery: 

Server f 
(recovering) 

Server h 
( recovering) 

Inconsistencies between different objects are the most difficult ones to prevent 

in a system, and are the focus of the recovery mechanism. 

3.2 Recovery Mechanism 

In order to preserve consistency within a system, a recovering server must be 

careful about the states it restores to its object replicas. A recovering server must 

restore replicas of active objects using those objects' current states. A recovering 

server must also restore replicas of inactive objects to states consistent with the 

rest of the system (e.g. the state must agree with those of other recovering replicas 

of the object, and the state must be consistent with the states of other active 

objects in the system). 

Our recovery mechanism enforces these constraints in two phases. In the 

first phase, a failed server's replicas of active objects are restored to the objects' 

current states in the system. We refer to this as the server's JOIN phase. Once 

the server has completed its JOIN phase, its replicas of inactive objects are 

restored to states consistent with the state of the system. We refer to this as 

the server's ACTIVATE phase. Figure 3.3 illustrates the relationship of the bvo 

recovery phases. The behaviors of the two phases are formally outlined in the 

following sections. 
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JOIN Phase: (immediately upon recovery) 

1. for each A E OB.JS 1 (ACT SIA =I- 0) 

alter (£s/f' -'s/f) so that 

(£s/f,-'s/f) IA = ASS1A 

2. reconstruct replicas of active objects from (£SI/' -'S//) 

3. begin processing new requests on active objects 

ACTIVATE Phase: (upon completion of JOIN phase) 

4. while 3A E OB.JS / (ACT SIA = 0) 

wait for allg E n£csIA to complete their JOIN phases 

construct a new state, SA, for object A by merging the logs 

of all members of n£c SI A 

if SA is inconsistent with the state of any active object 

then abort activation of A until additional servers 

recover 

activate object A by: 

altering (£SII' -'S/f) so that 

(£sll' -S/I) IA = SA 

reconstruct replica of A from (c, SI I' -. SI /) 

begin processing new requests on A 

Figure 3.3: Recovery sequence of server f in state S 
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The recovery sequence of a server is divided into two phases for several rea

sons. The JOIN phase provides a server with information about the states of 

some of the active objects in the system. This information is used in the A C

TIVATE phase to ensure that only consistent states are recovered for inactive 

objects. A consistent state cannot always be recovered, however, for an inactive 

object; moreover, the ACTIVATE phase cannot always determine (based on the 

dependency information available to it) if the state it constructed for an object 

is consistent with the states of all active objects. When it cannot determine 

the consistency of a state, the ACTIVATE phase must temporarily abort the re

covery of an object until other servers recover, providing additional dependency 

information. The JOIN phase, on the other hand, never needs to abort and so it 

is separated from the ACTIVATE phase. 

3.2.1 JOIN Phase Outline 

When a server begins recovering from a failure, its status is upgraded from a 

failed server to a recovering server for each object it manages. The JOIN phase 

is responsible for bringing the state of a newly recovering server up to date 

with respect to the states of active objects in the system. The current states 

of active objects are transferred from the active servers to the recovering server 

and the recovering server's log is altered to reflect these current object states. 

The recovering server's replicas are then restored by replaying the appropriate 

portion of the log and the server begins processing new client requests on the 

objects. 

The changes that occur to the system state as a result of the JOIN phase 

are summarized in definition 3.1. Note that the only portion of the state that 

changes is the portion related to the recovering server (I). 
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Definition 3.1 

A state, T, solves the JOIN problem for server f E S£RV m state 5 under 

request structure (R, -< 1l) if T satisfies the following conditions: 

JCt. (CTlf , -Til) is consistent with (R, -<1l). 

JC2. The new log of seMler f reflects the current states of active objects. 

JC3. The only log that changes is that of server f. 

JC4. SeMler f changes from a recovering to an active server of the active 
objects. 

'V A E OS.] S (ACT SIA :/= 0) ; 

f E SERV A ==} 

(ACT TIA = ACT S/A U{f} 1\ R£CTIA = R£C S/A - {f}) 

f ft SE'RVA ==} 

(ACT T/A = ACT SIA 1\ 'RECT/ A = 'REC S/A) 

'V A E OB.]S (ACT S/A = 0) : 

(ACT TIA = ACT S/A 1\ 'RECTIA = 'RECsIA) 

JC5. The set of failed servers remains the same. 

'V A E OB.]S: FAIc'TIA = FAICslA 

In addition to meeting these conditions, the new log of server f should also 

be as complete as possible. The new log should retain as many of the old log's 

entries as possible. This allows the ACTIVATE phase to recover inactive objects 

into the most recent state possible. Although we will not formalize this condition. 
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we do wish to point it out as a goal. 

As shown in the following theorem, the JOIN phase preserves consistency 

within a system. 

Theorem 3.1 

If 5 is a state that is observably consistent with a request structure (R, -< R ), 

and ifT is a state that solves the JOIN problem for server f E S£RV in state 

5, then T is also observably consistent with (R, -<,,). 

Proof: In order to prove that T is observably consistent with (R, -<,,) we 

must show three things. First, we must show that all servers' logs are consistent 

with the request structure. From condition JCt of the JOIN phase definition 

we know that the log of server f (in state T) is consistent with CR, -<n). From 

condition J C3 we know that the logs of all other servers remain unchanged from 

state 5, in which they were all consistent with CR., -<,,) by premise. The logs of 

all servers in state T are therefore consistent with (n, -<,,). 

Next, we must show that all active servers of an object reflect the same state 

for the object. Let A E OB,JS be any active object (i.e. ACT T/A i= 0). \Ve 

assume that f is not actively servering object A in state 5 (i.e. f t/. ACT sl/d, 

otherwise it would not need to solve its JOIN problem. By premise, 5 is an 

observably consistent state and so all active servers of A in 5 have logged the 

same object state. 

Because f ~ .ACT 51 A, it follows from condition J C3 that the logs of all servers 

in ACT 51 A remain unchanged between states 5 and T. 

Combining these two equations we see that all active servers of A in state 5 have 
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still logged the same object state in state T. 

(3.1) 

:'-J'ow, there are two cases: either f is a (recovering) server of .4 or it is not. 

Suppose f is a server of A. From condition JC2 we know that 

(3.2 ) 

Combining equations 3.1 and 3.2 we get 

From condition JC4 we know that 

ACT T/A = ACT SIA U {f} 

Substituting this into equation 3.3 we get the desired result that all active servers 

of A in state T reflect the same state for the object. 

(3.4) 

Now suppose that f is not a server of object A. From condition JC4 we know 

that ACT TIA = ACT SjA' Substituting this into equation 3.1 we see again that 

all servers of A are consisten t. 

(3.5 ) 

The last thing we must show in order to prove the observable consistency 

of T is that the states of all active objects are mutually consistent. Because 5 

is an observably consistent state we know that all active objects are mutually 

consistent in state S. 

't/ A, B E 083S (ACT SIA # 0 A. ACT SIB -# 0) : (3.6 ) 

't/ x.A E ASs/A: V y.B E n (y.B -<'R x.A): y.B E ASS1B 
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From condition JC4 it follows that any object that is active in state 5 is also 

active in state T and that there are no new active objects in state T. 

V A E OB.:! S: ACT 5/ A#-0 ~ ACT T / A 1= 0 

Substituting this into equation 3.6 we see that all active objects in state T were 

mutually consistent in state S. 

V A,B E OB.:!S (ACTT/A #- 0 1\ ACTT/ B #- 0): (3. i) 

V x.A E ASS/A: V y.B E n (y.B -<~ x.A): y.B E ASS/ B 

From equations 3.4 and 3.5 we see that the states of all active objects remain 

unchanged between states S and T. 

V A E OB.:!S (ACT T/A #- 0): AST/A = ASS/A 

Substituting this into equation 3.7 we get the desired result. 

V A,B E OB.:!S (ACTT/A #0 1\ ACTT/ B #- 0): (3.8 ) 

V x.A E AST/A: V y.B E n (y.B -<~ x.A): y.B E AST/B 

That is, the states of all active objects are mutually consistent in state T. 0 

3.2.2 ACTIVATE Phase Outline 

The ACTIVATE phase is responsible for recovering a server's replicas of inactive 

objects. A server does not begin its ACTIVATE phase until it has completed its 

JOIN phase. Inactive objects are recovered one at a time and a server coordinates 

its recovery of an inactive object with those of the other recovering servers of the 

object (once they have completed their JOIN phases). In order to restore an 

inactive object, the recovering servers first agree on a new state for the object 

(one that is consistent with the states of all other active objects in the system) 

and then alter their logs to reflect this new state. The servers then restore their 
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replicas by replaying the appropriate portions of their logs and begin to receive 

and process new client requests on the object. 

The changes that occur to the system state as a result of the A.CTIVA.TE 

phase are shown in definition 3.2. Note that the only portion of the state that 

changes is the portion related to the recovering servers of the inactive object (.4.). 
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Definition 3.2 

A state, T, solves the ACTIVATE problem for object A. E 013:JS in state 5 

under request structure ('R, ":1l) ifT satisfies the following conditions: 

ACt. The new logs of the recovering servers, (CTI /' -TI f) V f E nEe SjA., 

are consistent with ('R, --< 1l ) . 

AC2. The recovering servers of A agree on the object's new state. 

AC3. The new state for object A is consistent with the states of all other 

active objects. 

Y B E OB:rS (ACT TIB =1= 0) : 

Y x.A E ASTIA : V y.B E 'R. (y.B ":1l x.A): y.B E ASTIB and 

V y.B E ASTIB: V x.A E 'R. (X.A -<1l y.B): x.A E ASTjA 

AC4. The new logs of the recovering servers preserve the states of any pre

viously active objects. 

V f E 'R.£C S1A : V B E OB:JS / (f E ACT SIB) : 

( CT / f' -+ T If) I B = ( C S If ' - S If) I B 

A:~5. The only logs affected are those of the recovering servers of A .. 

AC6. The recovering servers of A become active servers of the object. 

ACTTIA = 'R£C S/ A VB E OB:rS - {A}: ACTTIB = ACTslB 

1UCT1A = 0 Y B E OB:rS - {A}: 'R.£CT1B = n£cSIB 

ACT. The set of failed seruers remains the same. 

V A E 08:rS: FAIc'T/A = FAIc'S/A 

In addition to meeting these conditions, the recovering servers' new logs 
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should also be as complete as possible, reflecting as many of the previously 

logged requests as possible. In addition, the new state constructed for object 

.4. should be as up to date as possible. The state should reflect all of the logged. 

requests from the time of recovery that are consistent with the current system 

state. Again, however, we will not formalize these conditions. \Ve present them 

only as design goals. 

The following theorem shows that the ACTIVATE phase preserves consis

tency within a system. 

Theorem 3.2 

If S is a state that is obsenJably consistent with a request structure (R, -< n), 

and ifT is a state that solves the ACTIVATE problem for object .4. E 013.J 5 

in state S, then T is also obsenJably consistent with (n, -< R). 

Proof: A state is observably consistent with a request structure if it has 

three properties. First, the logs of all servers in the new state must be consistent 

with (n, -<1l). From condition ACI of the ACTIVATE phase definition we know 

that the logs of all recovering servers of object A, in state T, are consistent 

with (n, -<1l). From condition AC5 we know that the logs of all other servers 

remain unchanged from state S, in which they were consistent with (n, -<n) 

by premise. The logs of all servers in state T are therefore consistent with the 

request structure. 

Next, in order for a state to be observably consistent, all active servers of an 

object must reflect (have logged) the same object state. To see that this property 

holds in state T, first consider object A. From condition AC6 we know that the 

only active servers of object A in state T are the servers that were recovering in 

state S. 

ACT T/A = n.ecs/A 

From condition AC2 we know that these servers reflect the same object state for 
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A in state T. 

Now, consider any other active object B (ACT TIB :f:. 0) in state T. It follows 

from condition AC6 that the set of active servers of B remains unchanged between 

states S and T. 

V B E 08.1S - {A} (ACT TIB :f:. 0) : ACT SIB = ACT TIB (3.9) 

Because S was an observably consistent state, it follows that all of these servers 

reflected the same object state for B in state S. 

(3.10) 

From condition AC4 we know that the set of logged requests for object B does 

not change between states S and T at any of the active servers of B that are 

recovering servers of A. 

(3.11) 

From condition AC5 we know that the logs of the other active servers of B (those 

that are not recovering servers of A) do not change between states Sand T and 

so the set of . quests they've logged for B remains the same. 

(3.12) 

Combining equations 3.11 and 3.12 we see that all active servers of B have logged 

the same set of requests for B in both states S and T. 

(3.13) 

Substituting the result of equation 3.13 into equation 3.10 we see that all active 

servers of B reflect the same object state in state T. 
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The last property of observable consistency is that the states of all actiye 

objects are mutually consistent. To see that this property holds in the new state. 

T, consider first any two active objects, B,G E OB.7S - {A}, other than .-l. 

(ACT TIB =f:. 0 and ACT TIC =f:. 0). From equation 3.9 we know that the set of 

active servers of these objects does not change between states Sand T. 

ACTslB = ACTTIB ACT SIC = ACT TIC 

Because S was an observably consistent state, we also know that the active states 

of these objects were mutually consistent in state S. 

'V B, G E OB.7S - {A} (ACT TIB #- 0 1\ ACT TIC #- 0) : 
(3.14) 

'V y.B E ASSIB : 'V z.e E R (z.e -<1l y.B): z.e E ASSlc 

From equation 3.13 we know that the states of these active objects do not change 

between states S and T. 

'V B E OB.7S - {A} (ACTTIB =f:. 0): ASTIB = ASslB (3.15) 

They must therefore remain mutually consistent in state T. 

'V B,C E OB3S- {A} (ACTTIB =f:. 0 1\ ACTTlc =f:. 0): 

'V y.B E ASTIB : 'V z.e E R (z.e -<1l y.B): z.e E ASTIC 

It follows that any inconsistency between object states in T must involve object 

A. However, from condition AC3 we know that the active state of A is consistent 

with the active states of all other objects. The states of all active objects are 

therefore mutually consistent in state T. a 

3.3 Recovery Examples 

As an example of the recovery mechanism's behavior, consider again the execu

tion of the resource system shown in figure 3.2. Suppose that server f is the first 

server to recover after time t3. At the time server f recovers, the state of the 

system will be: 
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ACT S/Namel = 0 R£CS/Name, = {f} FAICS/Names = {g} 

ACT S/Allocation, = 0 REC S/Allocation, = 0 F AICS/Allocations = {g, h} 

Because no objects are active when f recovers, the JOIN phase of f will not 

take any actions. During its ACTIVATE phase, however, server f will recover 

its replica of object "Names". Because no objects are active, server f is free 

to recover any valid state of "Names" for its replica; it does not have to be 

concerned with ensuring consistency with the states of any other active objects. 

Server f therefore recovers its replica using the state reflected in its log (the state 

reflecting only the registration of client 1). The resulting state is shown below: 

ACT S/Namu = {f} 

ACT S/ Allocation. = 0 

RECS/Namu = 0 FAZc'S/Namel = {g} 

'RECS/Allocation. = 0 FAZc'S/AlIocation, = {g, h} 

Now, suppose that server h is the next server to recover. Again, no objects 

served by h are active at the time of the recovery and so the server's JOIN phase 

will not take any actions. Instead, server h's replica of "Allocations" is recovered 

during its ACTIVATE phase. Unlike the recovery of object "Names" by server 

j, however, server 9 is not free to recover any state for object "Allocations"; it 

must ensure that the state recovered is one that is consistent with the state of 

the now active object "Names". Server h must therefore delete request alc2 from 

its log because the registration of client 2 is not reflected in the active state of 

the system. The state of the system resulting from the recovery of h will then 

be: 
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ACT S/Name, = {f} R£CS/Names = 0 FAIc'S/Names = {g} 

ACT 5/ Allocation, = {h} R£C 5/ Allocations = 0 F AI C, 51 Allocations = {g} 

If server 9 then recovers last, both objects it servers will be active. The states 

of these objects are therefore transferred to 9 during its JOIN phase and placed 

in its log. No actions are taken during g's ACTIVATE phase. The final state of 

the system (after the recovery of all three servers) is shown below: 

ACT S/Name, = {f,g} R£CS/Name, = 0 FAILS/Names = 0 

ACTS/Allocation, = {g,h} RECs/Aliocation, = 0 FAILS/Allocations = 0 

As another example, suppose that server f recovers first as above, but that 

servers 9 and h then recover simultaneously. Again, the JOIN phase of h will not 

take any actions because the object served by h ("Allocations") is inactive at the 

time of the recovery. Because object "Names" is active, though, the JOIN phase 

of 9 will recover g's replica of that object. In order to restore the replica to the 

object's current active state, the JOIN phase of g adds request regl to g's log and 

deletes request reg,. Note, however, that in order to preserve consistency within 

the log of g, request alc2 must also be deleted because it depends on request reg2· 

The state of the system immediately after the JOIN phases of servers 9 and h 

will then be: 

ACT S/Namu = {f, g} REC S/Namu = 0 FAICS/Name, = 0 

ACT S/ Allocation, = 0 'REC S/ Allocation, = {g, h} FAIL S/ Allocation, = 0 
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After completing their JOIN phases, servers 9 and h begin their ACTIVATE 

phases. During their ACTIVATE phases, the servers recover their replicas of 

object "Allocations". The servers cooperate in deciding on a new state for the 

object. Because the only request on the object known to either server (alc2) is 

inconsistent with the active state of "Names", the servers will decide on a state 

that reflects no allocation of resources. The final system state is the same as that 

in the previous example. 

As a final example, suppose that server h is the first server to recover. No 

objects will be active at the time of the recovery, so no actions will be taken 

during the JOIN phase of h. During its ACTIVATE phase, though, server h 

will recover its replica of "Allocations" in the state reflected by its log (the state 

reflecting the allocation made to client 2). 

Suppose now that servers f and 9 simultaneously recover. The state of the 

system at the time of the servers recovery will then be: 

ACTS/Namu = 0 'R£CS/Na.mu = {f,g} :FAIeS/Na.me, = 0 

ACT S/Alloca.tioft. = {h} 'R£CS/AlIoCGtioft' = {g} :FAIeS/Aliocation, = 0 

During its JOIN phase, server 9 will recover its replica of "Allocations". Because 

its log already reflects the current state of that object, no alterations are made 

to the log. No a.ctions are taken during the JOIN phase of server f. 

When servers f and 9 enter their ACTIVATE phases, they recover their repli

cas of object "Names". The servers merge their logs to form a new state for the 

object that reflects both the registrations of client 1 and client 2. Server falters 
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its log to reflect this new state by adding in request reg2. Server g similarly alters 

its log by adding in request regI. The resulting system state is then: 

ACT S/Narne. = {f,g} R.£CS/Narne. = 0 F AICS/;\'amelf = 0 

ACT S/Allocatio, .. = {g, h} R.£CS/Allocationlf = 0 FAICS/Allocationlf = 0 

(C S/ f' - s/!): ~egl 
reg2 

(Cs/g' -s/g): reg} 

alc2 
reg2 

Note that request reg2 must be included in the new state of "Names" because 

the active state of "Allocations" depends on it. 

3.4 Summary 

In this chapter we examined the problem of how inconsistencies arise between the 

states of objects in a system. Inconsistencies can develop in two ways. First. in

consistencies develop between replicas of the same ob ject when recovering servers 

fail to restore the states of their replicas to those held by other servers in the 

system. Second, inconsistencies can occur between the states of different objects 

when recovering servers restore old and out of date object states. 

A recovery algorithm was outlined for preventing these inconsistencies when 

a server fails. The algorithm was divided into two phases based on the t\VO types 

inconsistencies that occur between objects and replicas. 

JOIN 
phase 

ACTIVATE 
phase 

Restore a server's replicas of active objects to the current 

active states of those objects. 

Restore a server's replicas of inactive objects to states that are 

consistent with the states of all active objects in the system. 

This phase had the additional property that all recovenng 
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servers of an inactive object agreed on the state restored for 

that object. 

The behaviors of the recovery phases were formally described and it was proved 

that these behaviors preserve consistency within a system. 

The chapter concluded with several examples of how the recovery mechanism 

restores consistent states to servers' object replicas. 



Chapter 4 

Log Transformations 

The main difficulty involved in implementing the recovery phases of the previous 

chapter is ensuring that the alterations that occur to servers' logs preserve the 

consistency of those logs. This chapter presents functions for adding and deleting 

requests from a server's log in a way that preserves the log's consistency. These 

functions (or transformations) will form the basis of our recovery algorithms. 

4.1 Log Addition 

In order to bring a recovering server's log into a state that is consistent with the 

rest of the system, it is sometimes necessary to add requests to the log. Such 

added requests are generally requests that the server missed receiving because 

of its failure. For example, consider the execution shown in figure 4.1. In this 

execution, servers f and 9 fail after receiving the registration of client 1 but 

before receiving the registration of client 2. Server h remains active throughout 

the execution and receives the allocation request (alc2) from client 2. This request 

is not received by server g, however, because 9 fails before its delivery. If server 

9 recovers at time t21 it will have to add this request to its log so that the log 

refiects the current state of 14 Allocations" (i.f. the state refiected in the log of 

server h). 
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Figure 4.1: A recovery requiring addition to a log 
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where 

C - C1 U Q U [U U D£P B(x.A) 
z .AeQ BeOB.J S! 

-c is any extension of -I consistent with -<R. 

Figure 4.2: Log addition preserving consistency 

The addition of requests to a server's log can cause the log to become incon

sistent, however. In the above example, the log of server 9 becomes inconsistent 

when request alc2 is added because the client registration on which alc2 depends 

(re92) is missing from the log. In order to preserve consistency wi thin a log, any 

dependents of an added request must also be added to the log (unless they are 

already present). 

Definition 4.1 

The set of object B dependents of requ.est x.A are 

V£'P B(x.A) = {y.B E 1(. I y.B -<1l x.A} 

Shown below is the complete sequence of changes required to consistently add 

request alc2 to the log of server 9: 

Figure 4.2 presents a function for adding a set of requests, Q C R, to the 
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log of a server, I E S£'R.V. As shown in the following theorem, this function 

preserves the consistency of the log. 

Theorem 4.1 

If (C I' - I) is a log for server I consistent with request structure (R, -< n), 

and ifQ C 'R. is a set of requests on objects served by I, then addQ(L f .-f ) 

is a180 consistent with ('R., ~1l). 

Proof: Let (C,-c) = addQ(CI'-/)' We first show that (C,-d only 

contains requests on objects served by f. By premise, (C,,-,) is consistent 

and so only contains requests on objects served by f. The only requests added 

to this log by the function are those in Q and its dependents. By premise, all 

of the requests in Q are on objects served by I. From the definition of the log 

addition function, the only dependent requests added to the log are those on 

objects served by f. All of the requests added to the log are therefore on objects 

served by f. 

We now show that, for any request in (C,-d, all of its dependents (on 

objects served by f) are also in (C, -c). Let x.A E C be any request in the new 

log. There are three cases: 

Case 1: x.A E C, 

By premise, (C,,-,) is consistent with (n.,~1l) and so all dependents of 

x.A (on objects served by f) are in C,. Because (C, -.c) is formed by adding 

requests to (C" -,), it follows that these dependents remain in (C, - d· 

Case 2: x.A E Q 

It follows immediately from the definition of the log addition function that 

all of the dependents of x.A (on objects served by f) are added to (C, -+ d· 

Case 3: x.A ~ C, A x.A ~ Q 
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Request x.A must have been added to (C, -.c) because it is a dependent of 

some request, y.B, in Q. 

x.A -<'R. y.B (4.1 ) 

Let z.e E R be any dependent of request x.A made on an object served by 

f(CEOSJS,). 

z.e -<'R. x.A ( 4.2) 

Because -<'R. is transitive, it follows from equations 4.1 and 4.2 that request 

y.B is also dependent on z.e. 

z.e -<'R. y.B 

From the definition of the log addition function it follows immediately then 

that request z.e is added to (.c, -c). 

The last thing we must show is that the order of requests in (.c, -.c) is con

sistent with -<'R.. However, this follows immediately from the definition of the log 

addition function. 0 

4.2 Log Deletion 

In addition to adding requests to its log, a recovering server may also need to 

delete requests from its log in order to bring it into consistency with the rest of 

the system. Such deleted requests are generally requests that were not recovered 

as part of their object's states by previously recovering servers of the objects. For 

example, consider the execution shown in figure 4.3. Suppose server f recovers 

first and restores its replica of "Names" from its log. The state of "Names" 

will then only reflect the registration of client 1 (regl)j it will not reflect the 

registration of client 2 (reg2). If server 9 recovers next, it will have to delete 

request reg2 from its log in order to bring it into consistency with f. 
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time tl time t2 

Figure 4.3: A recovery requiring deletion from a log 
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where 

c - {X.A E C, I x.A rt Q 1\ ,E y.B E Q: y.B -<n x.A } 

'</ x.A, y.B E C: (x. A -£ y.B) ¢:> (x.A - f y.B) 

Figure 4.4: Log deletion preserving consistency 

Like the addition of requests, the deletion of requests can cause a server's log 

to become inconsistent. In the previous example, the log of server 9 becomes 

inconsistent when request reg2 is deleted because the allocation that depends on 

it (a[c2) is still present in the log. In order to preserve consistency within a log, 

any requests that depend on a deleted request must also be removed from the 

log. Illustrated below is the complete sequence of changes required to remoYe 

request reg2 from the log of server g: 

Figure 4.4 presents a function for deleting a set of requests, Q, from the log 

of a server, f. As shown in the following theorem, this function preserves the 

consistency of the log. 

Theorem 4.2 

If (C /' - /) is a log for server f consistent with request structure (R, -<n), 

and if Q C C / is a subset of the requests in (C f' - f)' then deleteQ( C f' - f) 

is also consistent with (R., -<1l). 

Proof: 
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contains requests on objects served by f. From the definition of the log deletion 

function, the requests in (C,-c) are a subset of the requests in (C,,-,). By 

premise, (C" - ,) is consistent and so these requests must all be on objects served 

by f. 

We now show that, for any request 10 (C, -c), all of its dependents (on 

objects served by f) are also in (C,-c). The proof is by contradiction. Let x.A 

be any request in (C, -c). Suppose some dependent of x.A (made on an object 

served by f) is missing from (C, -c). Let y.B denote this dependent. 

y.B ~1l x.A (4.3 ) 

From above, we know that C ~ C, and so request x.A is in (C" - ,). Because 

(C,,-,) is consistent, it follows that request y.B is also in (C,,-,). Request 

y.B must therefore have been removed from the log by the log deletion function 

when forming (C, -.c). This could have happened for one of two reasons: either 

it was in Q or it was dependent on a request in Q. 

If request y.B were in Q, then request x.A would also have been removed 

from the log by the transformation because it depends on y. B (a request in Q), 

a contradiction. Request y.B must therefore have been removed from the log 

because it depends on some request, z.e, in Q. 

z.e --<1l y.B ( 4.4) 

Because ~'R is transitive, it follows from equations 4.3 and 4.4 that request x.A 

is also dependent on z.e. 

z.e ~1l x.A 

Request x.A should therefore have been removed from the log because it depends 

on a request in Q, another contradiction. The new log, (C, -c), must therefore 

contain y.B. 

The last thing we must show is that the order of requests in (.c, -c) is consis

tent with ('R., --<1l). From the definition of the log deletion function, the requests 
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in (.c, - c) are ordered the same way they were in (.c /' - /). Because (.c f' -.. f) 

is consistent with (R, ~R), it follows that this order is consistent with (R, -<R). 0 

4.3 Using Dependency Estimates 

The previous log transformations were both based on having explicit knowledge 

of the dependencies between requests. Such information is not available in all 

systems, however. When the exact set of clients is either unknown to the servers, 

or is large and dynamically changing, it can be difficult or impossible to maintain 

explicit dependency information. When this information is not available to the 

servers, the preceding transformations cannot be used. 

This section examines how the log transformations can be modified to use 

estimates of the true dependencies. The key to the success of these new trans

formations will be the use of estimates that never under-estimate the true set 

of the dependencies in the system. We refer to estimate that have this property 

as sound estimates. By using sound estimates, the transformations will enforce 

some extraneous orderings because of the inaccuracy of the estimates, but they 

will also enforce all true dependencies. The actual estimates used in the new 

transformations are presented later in chapter 6. 

4.3.1 Log Addition 

Consider first the problem of adding a set of requests to a server's log. Let 

VcP B(x.A) denote any sound estimate of the set of object B dependents of 

request x.A. 

VcP B(x.A) ~ P£P B(X.A) (4.5 ) 

We would like to modify the log addition transformation, addQ(.c J' - J)' to 

use 15115 B(x.A) instead of the true dependency set PcP B(x.A). Unfortunately, as 

we show below, the estimate cannot be used directly in place of VEP B(x.A). The 
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reason for this is that the log addition transformation uses the transitive property 

of causal dependencies in order to preserve consistency within a server's log. 

z.e ~1l y.B 1\ y.B ~1l x.A =::::} z.e ~1l x.A 

The estimate does not have this transitive property. 

z.e E 15£15c (y.B) 1\ y.B E 15£15 B(x.A) ~ z.e E VEPc(X.A.) 

It may seem counter-intuitive that an estimate would not have the transitive 

property. However, in the estimates we describe later, an estimate mav be able 

to find evidence contradicting a dependency such as z.e - x.A without finding 

evidence to contradict either of the dependencies z.e - y.B or y.B - x.A. 

The estimate can then determine that it is not the case that both z.e - y.B 

and y.B - x.A hold. But, it cannot determine which one, if any, is the real 

dependency. 

To illustrate how this creates problems in the log addition transformation. 

consider the transformation addQ(.e " -,). Let x.A be any of the requests in 

Q added to (.e,,-,). In order to preserve consistency in the log, the addition 

transformation explicitly adds each dependent of x.A to the log. For each of these 

dependents, y.B, the addition transformation also automatically adds each of its 

dependents to the log because, by the transitivity of the request dependency 

relation, each of these dependents is also a dependent of x.A. Thus, for each 

request added to the log, all of its dependents are also assured of being added to 

the log. 

However, if an estimate is used, some dependents of added requests may be 

omitted from the log. If request y.B is added to the log because it is an estimated 

dependent of x.A (it might not be a real dependent), then the transformation 

should also add to the log all estimated dependents of y.B, in order to preserve 

the consistency of the log. From the definition of the transformation, though, 

only estimated dependents of x.A would be added to the log. It is possible that 
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1. R = 0 

2. .c(0) = .c, U Q 

3. NEW REQS(O) = .c(0) - .c f 

4. while NEWREQS(R) 1= 0 

4.1 R = R + 1 

4.2 .c(R) = .c(R-l) U 
[U U V£P B(x.A) 1 

BeOBjS, z.AeNEWREQS(R-l) 

4.3 NEW REQS(R) = .c(R) - .c(R-l) 

Figure 4.5: Iterative addition of requests 

some of the estimated dependents of y.B may not be estimated dependents of 

x.A. These extra estimated dependents would be omitted from the log, creating 

an inconsistency. 

In order to use the dependency set estimate, the log addition transformation. 

must add requests to a log iteratively. In each round of the iteration, the trans

formation adds to the log the estimated dependents of the requests added in the 

previous round. An algorithm for determining the complete set of requests in 

the transformed log using this addition scheme is shown in figure 4.5. In the 

algorithm, R is the round number, NEW REQS(R) is the set of new requests 

added to the log in round R, and .c(R) is the complete set of requests contained 

in the log after round R. 

The complete log addition transformation using this algorithm is presented 

in figure 4.6. As shown in the following theorem, this transformation preserves 

the consistency of a log. 
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where 

-c is any extension of -I consistent with 'f5£15 B(x.A). 

Figure 4.6: Log addition using estimates 

Theorem 4.3 

If (C / , -I) is a log for server f consistent with request structure (R, -<R), 

and if Q ~ 'R is a set of requests on objects served by f, then addQ( £ f' - f) 

is also consistent with ('R, -<1l). 

Proof: Let (C,-d = addq(C,,-,). We first show that (£,-d only 

contains requests on objects served by f. By premise, both (£ " -,) and Q only 

contain requests on objects served by f. It thus follows immediately that £(0) 

only contains requests on objects served by f. In each round of the addition 

iteration, only requests on objects served by f are added to the log. It therefore 

follows by induction that each C(R) only contains requests on objects served by 

f. 
We now show that, for any request in (C, -c), all of its dependents (on 

objects served by f) are also in (C, -c). Let x.A E £ be any request in the new 

log. There are two cases: 

Case I: x.A E c'1 

By premise, (C I' - I) is consistent with ('R, -<1l) and so all of the dependents 

of x.A (on objects served by f) are in C/. Because (C, -d is formed by 

adding requests to log (C /' - /), it follows that the dependents remain in 
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Case 2: x.A E .VEH-'REQS(R) (i.e. x.A was added in round R) 

From the definition of the iterative addition algorithm, all of the dependents 

of x.A (on objects served by f) are added to the log in round R + 1. 

The last thing we must show is that the order of requests in (.c. - d is con

sistent with -<'R.. By definition, -c. is consistent with DEP B(x.A). From prop

erty 4.5 of the estimate, it follows that if two requests, x.A, y.B E .c, are related 

(y.B -<'R. x.A) then y.B E 'T5£'f5 B(x.A) and so these requests are properly ordered 

in (C, -+c.). 0 

4.3.2 Log Deletion 

Consider now the problem of deleting a set of requests from a log. \Ve would like 

to modify the log deletion transformation to use an estimate of the relationship 

between requests. Let COJl(x.A -< y.B) denote any such sound estimate. 

V x.A,y.B En: CB:V'(x.A -< y.B) => x.A f.'R. y.B (4:.6) 

Note that CON(x.A -< y.B) estimates the predicate that two requests are unre

lated. 

As with the log addition transformation, this estimate cannot be used directly 

in the log deletion transformation. If it were, inconsistencies could occur in the 

transformed logs because the transformation may fail to remove all requests that 

depend on the deleted requests. In order to use the estimate, the log deletion 

transformation must iteratively delete requests from a log. An algorithm for 

doing this is shown in figure 4.7. In the algorithm R is the round number. 

DELET ED(R) is the set of requests deleted from the log in round R, and .c(R) 

is the set of requests contained in the log after round R. 
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1. R = 0 

2. C(O) = C! - Q 

3. DELET ED(O) = C! - C(O) 

4. while DELET ED(R) :/: 0 

4.1 R = R + 1 

4.2 C(R) = {y.B E C(R-l) I 
V x.A E DELETED(R-l) : CON(x.A -< y.B) } 

4.3 DELET ED(R) = C(R-l) - C(R) 

Figure 4.7: Iterative deletion of requests 

where 

R* = MIN{ R I d R) = C(R+l) } 

V x.A, y.B E c,: (x.A -c y.B) <* (x.A -I y.B) 

Figure 4.8: Log deletion using estimates 

The complete log deletion transformation using this algorithm is presented in 

figure 4.8. As shown in the following theorem, this transformation preserves the 

consistency of a log. 

Theorem 4.4 

If(C,,-,) is a log for server f consistent with request structure (R,-<n.), 

and if Q ~ {., is a subset of the requests in (C" -I)' then deleteQ('C I' - f) 

is also consistent with (R, -<1l). 
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Proof: Let (C,-+d = deleteQ(C,,-+,). We first show that (C.-d only 

contains requests on objects served by f. Because (C, - d is formed by deleting 

requests from (C /' -+ /), we know that C ~ C /. By premise, (C /, -+ f) is consistent 

and so all of these requests are on objects served by f. 
We now show that, for any request in (C,-d, all of its dependents (on 

objects served by f) are also in (C, -c). The proof is by contradiction. Let 

x.A E C be any request in the transformed log, and let y.B E R be any of its 

dependents (y.B -<1l x.A) on an object served by f (B E OBJ Sf). Suppose 

that y.B is not in (C,-c). Because C ~ C, we know that x.A E C/. Because 

(C,,-,) is consistent by premise, it follows that y.B E C/. Request y.B must 

therefore have been removed from the log in some round, R, of the iterative 

deletion algorithm. However, by definition of the algorithm, request x.A would 

then have been removed from the log in round R + 1 of the iteration because it 

depends on request y.B, contradicting the fact that x.A E C. The transformed 

log, (C, -c), must therefore contain y.B. 

The last thing we must show is that the order of requests in (C, - c.) is con

sistent with ('R., -<1l). However, by definition, the order of requests in (C. -c) is 

consistent with the order of requests in (C " - ,), which is by premise consisten t 

with ('R., -<1l). 0 

4.4 Summary 

This chapter presented several transformations for altering the log of a server 

while preserving its consistency. The chapter began by presenting transforma

tions for adding and deleting requests from a log. These transformations were 

based on having explicit knowledge of the dependencies between client requests. 

It was then shown how these transformations can be modified to use estimates 

of the request dependencies when exact information is not available. A key to 
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the correctness of these new transformations was the use of approximations that 

never under-estimated the true set of dependencies. By using sound estimates. 

the transformations were assured of enforcing all true dependencies, in addition 

to a few extraneous ones. 



Chapter 5 

Recovery Solutions 

In this chapter we present algorithms for solving the JOIN and ACTIVATE 

problems. These algorithms are based on the log transformations of chapter 4. 

We begin by assuming that explicit dependency information is not available in 

the system and so the only transformations available to the recovery algorithms 

are those based on dependency estimates. We then show how these recovery 

algorithms can be simplified when the transformations using explicit dependency 

information are available. 

5.1 JOIN Solution 

\Vhen a server first recovers from a failure it restores its replicas of active objects 

to those objects' current states. The server alters its log to reflect the current 

object states and then replays the log to restore its replicas. 

A recovering server's log may be out of date with respect to the current states 

of active objects in two ways. First, the log may not reflect all of the requests 

present in those objects' current states. Such requests are generally those that 

the server did not received while it was failed. We let MS 51! denote the set of 

requests on active objects missing from the log of a recovering server, I, in state 

59 
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s. 

MSSII = U [ASSIA - (CsI1 , -SII) IA 1 
{ AEOB.7S / I ACT S/A:Fi } 

Second, a recovering server's log may be out of date because it reflects requests on 

active objects that are not present in those objects' current states. Such requests 

are generally those that the active servers failed to recover after some previous 

failure event. We let JI'RsII denote the set of requests on active objects present 

in the log of server /, in state 5, that are not present in their objects' active 

states. 

In order to restore correct object replicas, a recovering server must remove the 

requests in JI'RSII from its log and add those in MS SI I' The complete algorithm 

for solving the JOIN problem for server / in state 5 is shown in figure 5.1. In 

the algorithm, T is the state constructed to solve the problem. 

Note that in step JSI the new log is tested to make sure that the addition and 

deletion of requests yielded the correct logged state. The reason for this is that 

the transformations may inadvertently attempt to add or delete a request from 

the active state logged for an object. Because dependency estimates are used, the 

log transformations may occasionally incorrectly believe that a dependency holds 

between two requests, one of which is in its object's active state and the other 

of which is not. When this happens, the transformations may incorrectly add 

or delete requests from the logged state of an active object in order to preserve 

the log's consistency. When this situation occurs, the recovery algorithm must 

abort and wait until better estimates of the dependencies can be formed. The 

technique of recovery logs [Gra78} (do not confuse this with the term "log" used 

in this dissertation) can be used to record and undo any changes to a server's log 

resulting from an aborted recovery attempt. 

The JOIN recovery algorithm is formally proved correct below: 
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JSI. (CT11'-+TII) = addMss/r(deleteN1ls/r(Cs/I,-+sll)) 

if 3 A E OB:fSI (ACTsIA:f:. 0) s.t. (CT11'-+TII) IA i= ASslA 

then abort 

JS3. ACT TIA = ACT S/A U if} 
'R.£CT1A = 'R.£CS1A - if} 

v 9 E S£'R.V - if} 

V A E OB:fS I (ACT SIA i= 0) 

ACT T/A = ACT SIA 

'R.£CTIA = 'R.EC S/ A 
V A E OS:fS (A ft OS:fSI V ACTs/A = 0) 

JS4. FAICT/ A = FAIC S/ A V A E OS:fS 

Figure 5.1: Solution to the JOIN problem for server f in state 5 
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Theorem 5.1 

If S is a state consistent with request structure (R, -<'R), and if f is a server 

recovering in state S J then state T as constructed above correctly solves th e 

JOIN problem for server f in state S under request structure (R, -< n). 

Proof: We must show that the five conditions (JCI-JC5) of the JOIN problem 

are satisfied by state T. 

The first condition, JCI (the consistency of (£T//' ~T//) with (R, -<n)), fol

lows immediately from the fact that (£s//'~s//) is consistent with (R, -<n) (by 

premise) and that both log transformations preserve consistency (theorems 4.3 

and 4.4). 

The second condition, JC2 (the consistency of (£T//' ~T/f) with the current 

states of active objects), follows immediately from the test in step J51 of the 

JOIN solution. 

Conditions JC3, JC4, and JC5 follow directly from steps J52, J53, and JS4 

of the JOIN solution, respectively. 0 

5.2 ACTIVATE Solution 

Once a server completes its JOIN phase, it begins recovering its replicas of in

active objects. All recovering servers of an inactive object participate in the 

object's recovery. The recovering servers start by merging their logs to form the 

most up-to-date state possible for the object. We let ISS/ A denote this ideal 

state for inactive object A in state S. 

ISS/A = U (£SI!'~S/f) IA 
Ie "R..tCs/A. 

The ideal state may be inconsistent with the states of some active objects in 

the system, however. There may be requests in the ideal state that have depen

dencies on requests that are not reflected in their objects' active states. These 
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inconsistent requests should be omitted from the new state of object .4. so that 

the overall state of the system remains consistent. \Ve let SA.F£S(x.A) denote 

the predicate that all of the dependents of request x.A, on objects that are active 

in state 5, are present in their objects' active states. 

SA.F£S(x.A) == 1\ D£PB(X.A) ~ ASSIB 
{ BeOBjS I ACTs/sf::i } 

Because we are assuming that explicit dependency information is not available 

in the system, the exact value of SAr£S(x.A) is not available to the recovery 

mechanism. Instead, we assume that the recovery mechanism has available to it 

an estimate, sAJ'£s(x.A), of the safety predicate. This estimate, like the other 

estimates, has the property that it is sound. 

SAJ'£S(x.A) => SAF£s(x.A) 

The state recovered by the servers of object A will then consist of the requests 

in the ideal state, IS SI A, that are estimated to be safe. We let JV S SI A denote 

this state. 

NSSIA = {x.A E ISSIA I sAJ'£S(X.A) } 

Each recovering server installs the new state for object A into its log the same 

way it installed the active states of objects during its JOIN phase. First, the 

server deletes from its log any request on object A that is not part of the new 

state. We let N'RslI(A) denote the set of requests removed from the log of server 

f E'R£C sIA · 

The server then adds to its log any request in the new state that is not already 

logged. We let MSsl/(A) denote the set of requests added to the log of server 

f E 'R£CSjA' 
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AS!. (CTI1 , -TI') - addMSs/r(A) (deleteN1ls/r(A) (CSI1 ' -SII)) 

if 3 f E'R£CsIA s.t. (CTI1 , -Til) IA 1= NSslA 

then abort 

if 3 f E 'RECsIA and 3 BE OB.:JS 1 (f E ACT SIB) 

s.t. (c'T/f' -TI') IB 1= (c'S/f' -SI') IB 
then abort 

if 3 B E OB.:JS (ACT SIB 1= 0) and 3 y.B E ASSIB 

s.t. !5£75A(y.B) ~ NSslA 

then abort 

'lifE R£C SjA 

V 9 E S£'RV - R£CSjA 

AS3. ACT TIA = 'R£CSIA 

'R£CTIA = 0 

ACT TIB = ACT SIB 

'RECTIB = 'RECsIB 
V B E OB.:JS - {A} 

V A E OB.:JS 

Figure 5.2: Solution to the ACTIVATE problem for object A in 
state S 
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The complete algorithm for solving the ACTIVATE problem for object .4. in state 

5 is shown in figure 5.2. Again, T is the state constructed to solve the problem. 

Note that the new logs of the recovering servers are tested in step ASl to make 

sure that the logged states of active objects are not corrupted. As with the JOI:\ 

algorithm, the use of dependency estimates can cause the log transformations to 

inadvertently add or delete requests from the logged state of an active object. 

When this occurs, the ACTIVATE algorithm must abort and wait until better 

dependency estimates can be formed before trying to ACTIVATE object .4.. 

The ACTIVATE algorithm is formally proved correct below: 

Theorem 5.2 

If S is a state consistent with request structure (R, -< 'R) I and if .4. E 0 l3.:J s 
is an inactive object in state S, then state T as constructed above correctly 

solves the ACTIVATE problem for object A in state 5 under request structure 

(R, -<'R)' 

Proof: We must show that the seven conditions (ACl.AC7) of the ACTIVATE 

problem are satisfied by state T. 

The first condition, ACI' (the consistency of the recovering servers' new logs 

with (R, -<'R», follows immediately from the fact that the logs were consistent 

with (R, -<'R) in state S (by premise) and that both log transformations preserve 

consistency (theorems 4.3 and 4.4). 

The property that all recovering servers of object A agree on the new state for 

A (condition AC2) follows directly from the first test in step ASl; if the algorithm 

does not abort, the logs of all recovering servers of A will reflect N S 51 A-

Condition AC3 asserts that the new state for A is consistent with the states 

of all other active objects in the system. We show that this condition holds in 

state T in two parts. First, we show that there are no requests in the new state 

of A that have dependencies on requests that are not part of their objects' active 
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states. 

Vx.A E AST/A: Vy.B E 'R (y.B ~'R x.A): ACTT/ B ::/= 0 ==> y.B E ASTIB 

This portion of the condition follows directly from the definition of safety and the 

fact that only safe requests are included in the new state of object A. Note that 

by definition of the ACTIVATE solution, the states of all active objects other 

than A do not change between states S and T. 

The second part of the proof of condition AC3 involves showing that all object 

A dependents, of requests reflected in the state of another active object, B, are 

present in the new state of A. 

Vy.B E AST/B (ACT T/B * 0): Vx.A E 'R (x.A ~'R y.B): x.A E ASTIA 

This part follows immediately from the third test in step ASl. 

Condition AC4 follows immediately from the second test in step AS! of the 

algorithm. Conditions AC5, AC6, and AC7 follow immediately from steps A52. 

AS3, and AS4 of the algorithm, respectively. 0 

5.3 Using Explicit Dependency Information 

The preceding recovery algorithms assume that explicit dependency information 

is not available in the system. Both algorithms use estimates of the dependencies 

between requests to ensure that a recovering server restores consistent states to 

its object replicas. However, the use of inaccurate estimates sometimes cause 

the log transformations used by the algorithms to corrupt the logged states of 

active objects. The algorithms must therefore test for this condition and abort 

if it occurs. 

In this section, we examine how the recovery algorithms are simplified when 

exact dependency information is available in the system. When such informa

tion is present, the algorithms can substitute the log transformations based on 
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estimates with those based on exact dependency values. These precise transfor

mations have the advantage that they do not corrupt the logged states of active 

objects. As a result, most of the tests in steps JSl and ASl of the recovery 

algorithms can be omitted. 

5.3.1 JOIN Simplification 

We begin by showing that the states of active objects logged 10 step JSl of 

the JOIN algorithm are never corrupted when the log transformations based on 

explicit dependency information are used. We do this in two lemmas. The first 

lemma shows that the deletion transformation never removes from the log any 

request in the active state of an object. The second lemma proves that the 

addition transformation never adds to the log a request on an active object that 

is not in that object's active state. It follows from these two lemmas that the 

test in step JS1 of the JOIN solution can be omitted when exact dependency 

information is available in the system. 

Lemma 5.1 

When explicit dependent information is available, the deletion transformation 

in step JS1 of the JOIN recovery algorithm never causes the algorithm to abort. 

Proof: We must show that the deletion transformation never removes from a 

server's log any request that is in the active state of an object. The proof is by 

contradiction. 

Let f E S£'RV be a server recovering in some observably consistent state, 

5, of the system. Suppose that during the JOIN phase of server f the deletion 

transformation, delete.N1ts11' removes from the log of server f some request, x.A, 

that is in the active state of object A. 

x.A E ASSIA 

By definition of .N'RS/I, we know that x.A ~ .N'RS/I because x.A is in the 
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active state of A. Request x.A must therefore have been removed from the log 

because it depends on some request, y.B, in N'R.s1f . 

y.B -<1l x.A 

However, in order for request y.B to be a member of N'R.s/f' it must be the case 

that object B is active in state 5 and that y.B is not in the active state of B. 

y.B (j. ASS/ B 

State 5 therefore reflects a request, x.A, in the active state of an object, A., 

without reflecting one its dependents, y.B, on another active object, B. 

ACTs/B ::/; 0 

y.B (j. ASs/B 

ACTs/A ::/;0 

x.A E ASS/A 

y.B -<1l x.A 

State 5 is therefore observably inconsistent, a contradiction. The deletion trans

formation must then have preserved the active states logged for active objects. 0 

Lemma 5.2 

When explicit dependent in/ormation is available, the addition transformation 

in step JS1 o/the JOIN recovery algorithm never cau.ses the algorithm to abort. 

Proof: We must show that the addition transformation never adds to a 

server's log any request that is not in the active state of an object. The proof is 

by contradiction. 

Let / E SE'R.V be a server recovering in some observably consistent state, 

5, of the system. Suppose that during the JOIN phase of server f the addition 

transformation, addMSs/r' adds to the log of server f some request, x.A E R, 

that is not in the active state of object A. 

x.A f/- ASS/A 
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By definition of MSSlf' we know that x.A rt MSs/f because x .. 4 is not in 

the active state of A. Request x.A must therefore have been added to the log 

because it is a dependent of some request, y.B, in MSslf' 

However, in order for request y.B to be a member of MSSlf , it must be the case 

that object B is active in state S and that y.B is in the active state of B. 

y.B E ASslB 

State S therefore reflects a request, y.B, in the active state of an object, B, 

without reflecting one its dependents, x.A, on another active object, A .. 

ACTsIA #0 

x.A fI. ASS/A 

ACTslB # 0 

y.B E ASslB 

x.A -<1l y.B 

State S is therefore observably inconsistent, a contradiction. The addition trans

formation must then have preserved the active states logged for active objects. 0 

5.3.2 ACTIVATE Simplification 

We now show that the log transformations in step ASI of the ACTIVATE algo

rithm do not COl'l'Upt the logged states of active objects when exact dependency 

information is available. Because exact dependency information is available, we 

assume that the new state, }/ S SI A, for the object being activated is constructed 

using the true definition of safety and not an estimate. 

Activated Object 

We begin by showing that the transformations always correctly install, at the 

recovering servers, the new state of the object begin activated. This is done 
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in two lemmas analogous to those in the preceding sub-section. It follows from 

these lemmas that the first test in step AS! of the ACTIVATE algorithm can be 

omitted when exact dependency information is available. 

Lemma 5.3 

When explicit dependency information is available, the deletion transformation 

in step ASl of the ACTIVATE recovery algorithm never corrupts the new state 

logged for the object being activated. 

Proof: We must show that the deletion transformation never removes from a 

recovering server's log any request that is in the new state for the object being 

activated. The proof is by contradiction. 

Let S be an observably consistent state in which some object, A E R, is 

being activated. Suppose that during the ACTIVATE phase at some server, f 

(/ E REe SIA), the deletion transformation deleteN1ls/r (A) removes from the log 

of server / some request, x.A, that is in the new state for object A .. 

x.A E NSSIA 

Because x.A is in NSsIA , it cannot be in NRsI!(A). Request x.A must 

therefore have been removed from the log because it depends on some request, 

y.A, in N'RsI!(A). 

Further, because request y.A is in N'RSI!(A), it cannot be in NSsik 

y.A rt NSSIA 

Now, request y.A must be in ISSIA because it is in (CSI!' -SI!) (the log of 

a recovering server of object A). To see that y.A is in (CSI!' -si/)' note that 

request x.A is in (£SI!' -51!) and so, by definition of consistency, the log must 

also contain all of the object A dependents of x.A, including y.A. 
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Because y.A is in ISSIA but not in NS SIA , it must be unsafe (by definition 

of .VSSIA )' Because y.A is a dependent of x.A, request x.A must also be unsafe. 

However, x.A is included in NS SIA, contradicting the fact that loiS SIA. contains 

only safe requests. 

The deletion transformation must therefore have preserved the new logged 

state for object A. 0 

Lemma 5.4 

When explicit dependency information is available, the addition transforma

tion in step ASl of the ACTIVATE recovery algorithm never corrupts the new 

state logged for the object being activated. 

Proof: We must show that the addition transformation never adds to a 

recovering server's log any request, on the object being activated, that is not in 

that object's new state. The proof is by contradiction. 

Let S be an observably consistent state in which some object, A. E R, is 

being activated. Suppose that during the ACTIVATE phase at some server, f 

(f E n£e SIA), the addition transformation addMss/r(A) adds to the log of server 

f some request, x.A, that is not in the new state (NSSIA ) for object A. 

x.A rt NSS/ A 

Because x.A is not in NSS/A , it cannot be in MSsl/(A). Request x.A must 

therefore have been added to the log because it is a dependent of some request, 

y.A, in MSs//(A). 

x.A -<x y.A 

Further, because request y.A is in MSs//(A), it must also be in NSslA-

y.A E NSS/ A 
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\Ve now show that request x.A is unsafe. To see this, first note that request 

x.A must be in the log of some recovering server of object A. This follows from 

the fact that y.A is in the log of some recovering server, 9 E REC s/A , of object 

A (because y.A is in NSS/A and therefore also in ISS/A, which is formed by 

merging the logs of the recovering object A servers) and from the fact that the 

log of server 9 is consistent, and so must contain all of the object A dependents 

of y.A, including x.A. 

Now, becam·· x.A is in (.cs/g' -Slg) (the log of a recovering server of A), it 

must be in ISs; However, x.A was omitted from NS SIA ' The only reason this 

could happen is because x.A is unsafe. 

Because request x.A is unsafe, and request y.A depends on x.A, request y.A 

must also be unsafe. However, y.A is included in NS SIA, contradicting the fact 

that N S SI A only contains safe requests. 

The addition transformation must therefore have preserved the new logged 

state for object A. 0 

Other Active Objects 

We now show that the logged states of other active objects at the recovering 

servers are not corrupted by the log transformations. Again, we do this in 

two lemmas. It follows from these lemmas that the second test in step AS! 

of the ACTIVATE algorithm is unnecessary when exact dependency information 

is available. 

Lemma :s.:s 
When explicit dependency information is available, the deletion transformation 

in step ASl of the ACTIVATE recovery algorithm never corrupts the logged 

state of any previously active object. 
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Proof: Let S be an observably consistent state in which some object, .4. E R. 

is being activated. And, let B denote any other active object in state S. We 

must show that for any recovering server, j, of object A, if f is an active server 

of B (j E R.£C S/ It n ACT S/ B) then the deletion transformation does not remove 

from 1's log any request on object B. 

The proof is by contradiction. Suppose that the deletion transformation 

deleteN1ls/1
(A) removes from the log of server j some request, y.B, on object 

B. We show that state S would then be observably inconsistent. 

Because S is observably consistent, all active servers of B is state S, including 

j, reflect the active state of B. Because y.B is reflected in the log of j, it follows 

that y.B is part of the active state of B. 

y.B E ASs/B 

In order for the deletion transformation to remove request y.B from the log of 

server j, y.B must be dependent on some object A request, x.A, that is removed 

from the log. 

x.A E NR.s/J(A) 

x.A ~1l y.B 
(5.1 ) 

Because x.A is in N'R.sl/(A), it cannot be part of the new state of object .4. 

x.A ¢ NSS/ A 

Because z.A is in the log of a recovering server of object A, but not included in 

the new state of that object, request x.A must be unsafe. That is, request x.A is 

dependent on some other request (for an active object), z.e, that is not part of 

that object's active state. 

z.e ~1l x.A 

z.e ¢ ASs/c 
( 5.2) 

By transitivity (from 5.1 and 5.2), request y.B is dependent on request z.e. 

The state of object B (an active object) therefore reflects a request, y.B, that 
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is dependent on a request, z.e, not reflected in the state of object C (another 

active object). 

Z.C ~x y.B 

z.c ft ASslC 

ACT SIC 1: 0 

y.B E ASSIB 

ACT SIB 1: 0 

This contradicts the original assumption that state S is observably consis

tent. The deletion transformation could not therefore have removed any object 

B request from the log of server f. 0 

Lemma 5.6 

When explicit dependency information is available, the addition transforma

tion in step AS1 of the ACTIVATE recovery algorithm never corrupts the 

logged state of any previously active object. 

Proof: Let S be an observably consistent state in which some object, A. E n, 
is being activated. And, let B denote any other active object in state S. We 

must show that for any recovering server, f, of object A, if f is an active server 

of B (f E R£CsIAnACTsIB) then the addition transformation does not add 

any object B request to the log of server f. 
The proof is by contradiction. Suppose that the addition transformation 

addMSS/f(A) adds to the log of server f some request, y.B, on object B. We 

show that the new state for object A contains an unsafe request. 

Because 5 is observably consistent, all active servers of B in state S, including 

f, reflect the active state of B. Because y. B is added to the log of f (and so was 

not originally present in the log), it follows that y.B is not part of the active state 

of B. 

y.B ft ASslB 
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Request y.B can only have been added to the log by the addition transforma

tion if y.B is a dependent of some object A request, x.A, that was also added to 

the log. 

x.A E MS s/I(.4) 

x.A ~1l y.B 

Because x.A is in MSs//(A), it is part of the new state of object .4. 

x.A E NSslA 

The new state for object A (NSsIA ) therefore refiects a request, x.A, that is 

dependent on an object B request, y.B, that is not refiected in the active state 

of B (an active object). 

y.B ~1l x.A 

y.B ~ ASSIB x.A E NSSIA 

ACT SIB =F 0 ACT SIA = 0 

That is, the new state for object A refiects an unsafe request, x.A, contradicting 

the fact that N S SIA only contains safe requests. The addition transformation 

could not therefore have added any object B request to the log of server f. 0 

5.4 Summary 

Based on the log transformations of chapter 4, we detailed algorithms for solving 

the JOIN and ACTIVATE recovery problems. We began by describing algo

rithms for solving the problems when exact dependency information is not avail

able. These algorithms used dependency estimates to derive consistent object 

and replica states when a server recovered from a failure. It was proved that 

these algorithms preserve observable consistency in a system. 

Because only estimates of the true request dependencies were used, these 

algorithms could inadvertently corrupt the logged states of objects. The algo

rithms therefore had to test for corrupted states and abort if such states occurred. 
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However, it was shown that when exact dependency information is available to 

the algorithms, no corruption of logged states occurs. Most of the tests in the 

recovery algorithms could then be omitted when such information is available. 



Chapter 6 

Estimating Dependencies 

When explicit dependency information is not available in a system, the recovery 

algorithms of chapter 5, as well as the log transformations on which they de

pend, can use estimates of the dependencies between requests. However, in order 

to guarantee that consistency is preserved in a system, the algorithms require 

that the estimates used are always sound. In this chapter we present several 

dependency estimates having this property. 

The estimates are divided into two classes: basic and compound. Basic esti

mates are simple estimates designed to approximate the set of direct dependencies 

between requests. 

Definition 6.1 

A dependency between two requests, x.A --<1l y.B, under a request structure 

(R., --<1l), is said to be ~ if there is no intervening request, z.e, through 

which x.A and y.B are related. Formally, 

~ z.e E R. (z.e # x.A 1\ z.e 1: y.B) : x.A --<1l z.e /\ z.e --<'R y.B 

The basic estimates are formed by examining individual logs for evidence of 

request orderings: Compound estimates are more complicated estimates designed 
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to approximate the set of transitive dependencies between requests. 

Definition 6.2 

A dependency between two requests, x.A -<1l y.B, under a request structure 

(R, -< 1l), is said to be transitive if it is not direct. 

The compound estimates are formed by combining the results of the basic esti

mates in order to derive indirect (transitive) dependencies between requests. 

6.1 Potential Dependencies 

Although we do not assume that the recovery mechanism is given any explicit 

information about the dependencies between requests, we do assume that it is 

given some general information about potential dependencies between objects. 

In particular, we assume that the recovery mechanism has access to a potential 

dependency relation. 

Definition 6.3 

A potential dependency relation, ...... 1V over request structure (R, -<'R.), is a 

binary relation on the objects in 0133 S with the property that it relates all 

pairs of objects between which direct dependencies hold. 

V x.A,y.B E "R.: direct x.A -<1l y.B ==> A ...... 1l B 

A potential dependency relation is only an approximation of the direct depen

dencies that may hold between the states of objects. A potential dependency 

relation may relate objects between which dependencies do not hold. 

A ...... x B 1==* 3 x.A, y.B E "R.: x.A -<x y.B 

The accuracy with which a potential dependency relation reflects the actual de

pendencies between objects is determined by the application's programmer, who 
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is responsible for providing the recovery mechanism with the potential depen

dency relation it uses. The programmer should provide the recovery mechanism 

with the best potential dependency relation that they can construct, based on 

their knowledge of the application's semantics. In the worst case, the program

mer will be unable to determine which objects will be related and so produces a 

potential dependency relation in which all objects are potentially related. \Ve will 

use the notation --1l to refer to the transitive closure of a potential dependency 

relation --'R' 

In order to help ensure that each direct dependency in an application is rep

resented in the order of requests within some log of the system, the server sets 

of potentially related objects are restricted so that they overlap. 

Overlap Restriction 

V A, BE OB.:TS: A --'R B => S£'RV A nSt"RV B # 0 

There is therefore a tradeoff between the accuracy of a potential dependency 

relation and the structural restrictions placed on the server sets: any extraneous 

dependency reflected in the potential dependency relation forces the server sets 

of the objects involved to unnecessarily overlap. In order to maximize the flexi

bility of the system structure, it is important that the application's programmer 

provides the most accurate potential dependency relation possible. 

As an example, consider a system containing three objects: A, B, and C. 

Suppose that an application runs under the following request structure: 

Request Structure: CR., ~'R) 

1<. = {x.A, y.B, z.e} 

x.A ~'R y.B 

Figure 6.1 depicts three potential dependency relations that are consistent with 

this request structure. Only potential dependency relation (c) accurately reflects 

the request structure of the application. 
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A~B~C 

(b) 

A~B 

C 

(c) 

Figure 6.1: Three consistent potential dependency relations 

6.2 Basic Estimates 

Because the orders of requests in servers' logs are consistent with the request 

structure of an application, these orders can provide information about the de

pendencies between requests. The basic dependency estimates are designed to 

search servers' logs for such information. We begin this section by detailing an 

estimate for determining when two requests are not dependent. This estimate is 

then used to construct another estimate for determining a request's set of causal 

dependents. 

We assume that when a server fails, all information located at that server be

comes inaccessible to the rest of the system. As a result, the recovery mechanism 

can only use information present in the logs of functioning servers (non-failed 

servers) when constructing dependency estimates. 

Definition 6.4 

The set of functioning servers of object A in state S are: 

RANCS1A = .ACT SIA U 1UCs1A 
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6.2.1 Request Ordering 

The causal consistency condition on logs guarantees that when a server logs 

some request, y.B, it has previously logged all requests (on objects with replicas 

managed by the server) on which y.B depends. It follows then that if a server logs 

request x.A after request y.B, then request y.B cannot be dependent on request 

x.A. Further, if a server of objects A and B logs y.B without logging x.A, then 

request y.B cannot be dependent on x.A. 

In addition, the observable consistency condition on states guarantees that if 

a request, y.B, is reflected in the active state of an object, B, then any request 

on which it is dependent, x.A, is reflected in the active state of its object, A 

(provided object A is active). It follows that if both objects A and B are active, 

and y.B is reflected in the active state of B but x.A is not reflected in the active 

state of A, then request y.B is not dependent on request x.A. 

Combining this intuition along with the dependency information provided by 

the potential dependency relation, we can estimate when two requests (x.A and 

y.B) are not related. We let con~(x.A -< y.B) denote this basic estimate. 

Definition 6.5 

Let ('R, -<x) be a request structure, let -'x be a potential dependency relation 

consistent with CR., -<x), and let 5 be a system state consistent with (n, -<'R)' 

The request ordering, x.A -< y.B, is directly contradicted in state 5, denoted 

con~(x.A -< y.B), il any 01 the lollowing lour conditions holds: 

1. A~1t B 

R. 3 I E FUNCs/AnFUNCs/B : x.A,y.B E c.s/I 1\ y.B -si/ x.A 

9. 3 I E FUNCs/A n FUNCs/ B : y.B E C.S/I /\ x.A ~ C.S/ / 

,f. ACTs/A:/: 0 /\ ACT SIB :/: 0 /\ x.A ~ ASS/A /\ y.B E ASS/B 
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This estimate has the property that it is sound. When an ordering, x.A -< y.B, 

is found to be directly contradicted, it is guaranteed that y.B is not dependent 

on x.A. However, if the ordering is not found to be contradicted, the requests 

mayor may not be ordered. 

Theorem 6.1 

For any request structure (R, ~1l), potential dependency relation ~'R. con

sistent with (R, ~1l), system state S consistent with (R, ~'R.)J and pair of 

requests x.A, y.B E'R.: 

con~(x.A ~ y.B) ~ x.A -I.'R. y.B 

Proof: The proof is by contradiction. Suppose that requests x.A and y.B 

are related (x.A ~1l y.B), but that the order is found to be directly contradicted 

(con~(x.A ~ y.B». 

Because the order is directly contradicted, at least one of the four conditions 

in the estimate definition must hold. If the first condition holds (A +R B), 

then the potential dependency relation is inconsistent with (R, ~1l). If either 

the second or third condition holds, then the log of server f is inconsistent with 

(R, ~1l). Finally, if the fourth condition holds, then the system state is observably 

inconsistent with ('R., -<1l). 

In either cue, an inconsistency would exist in the system (contradicting the 

assumption that the system is consistent) and so the theorem assertion must 

hold. (J 

As an example, consider the system shown in figure 6.2. Depicted are the logs 

of two servers, f and g, along with a potential dependency relation. Server f 
manages replicas of objects A and B, while server 9 manages replicas of objects 
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x.A 

y.B 

~ A"'-'+'R,B 

w.A x.A C"'-'+'R,A 

Server f Server 9 
A"'-'+'R,C 

(A,B) (A,C) 

Figure 6.2: An example of direct contradiction 

Table 6.1: Directly Contradicted Request Orderings 

" Condition 1 Condition 2 I Condition 3 " 

y.B --< w.A w.A --< x.A z.e --< w.A 

y.B --< x.A y.B --< x.A z.e --< x.A 

y.B --< z.e w.A --< y.B 

x.A --< w.A 

A and C. Suppose that in addition to those requests present in the logs, the 

system also contains a fourth request, z.e, on object C. Table 6.1 summarizes 

the request orderings that are directly contradicted by this system, if all objects 

are inactive. The orderings are broken down according to the conditions of the 

estimate definition that caused them to be contradicted. Note that the following 

orderings are not directly contradicted anywhere in the system: 

w ...... --< z.e x ...... --< 1/.B x ...... --< z.e z.e --< y.B 

6.2.2 Dependency Set 

Using the preceding estimate, we can now construct an estimate of VEP B(x.A), 

the object B dependents of request x.A. Again, this estimate is based on the 
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consistency restrictions placed on logs and system states. 

From the causal consistency condition on logs, we know that if a server of 

objects A and B logs request x.A, then it previously has logged all of the object 

B dependents of x.A. The set of object B requests preceding x.A in a log can 

therefore be used as an estimate of the true set of dependents. From the ob

servable consistency condition on system states, we know that if both objects .4-

and B are active, and the active state of A reflects request x.A, then the active 

state of B must reflect all of the object B dependents of x.A. In this case, the 

set of requests in the active state of B can also be used as an estimate of the 

dependency set. 

Of course, not all of the object B requests in these estimates may be de

pendents of x.A. There may be information in the system that contradicts the 

ordering between x.A and some of the object B requests. This information can 

be used to further refine the estimates. 

Definition 6.6 

Let ('R, -<'R.) be a request structure, let "-+'R. be a potential dependency rela

tion consistent with ('R, -<'R.), and let S be a system state obseMJably consis

tent with ('R, -<'R.). For any object B E 08.7 S and request x.A E R, the 

basic estimated dependents of X.A are: 

.1. if ...,3/ E FUNCs/AnFUNCs/B: x.A E LS// 

dep~/B(x.A) = " 

and 

ACT S/A = 0 V ACT SIB = 0 V x.A f/. ASS/A 

if Bj+x A 

{y.B I ""con~(y.B -< x.A) " o.w. 

[ 3/ E FUNCs/AnFUNCs/B : x.A,y.B E lSI! 

V y.B E .ASS/ B ]} 

f\ 
I 

I . 
'-. 
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Like the first basic estimate, the dependency set estimate has the property 

that it is sound. 

Theorem 6.2 

Let (R, -<1l) be any request structure, --1l be any potential dependency relation 

consistent with (R., -<1l), and S be any system state observably consistent with 

(R, -<1l). For any request x.A E R. and object B E OB:JS, ifdep~/B(x.A) is 

defined then: 

Proof: The proof is by contradiction. Suppose that dep~/B(x.A) is defined, 

hut that there exists some dependent, y.B, of request x.A that is not included in 

dep~/B(x.A). 

y.B E V£P B(x.A) 

There are three conditions under which dep~/B(x.A) is defined: 

Casel: BP~A 

In this case, the potential dependency relation does not reflect the real de

pendency between x.A a.nd y.B, and so is inconsistent with the request struc

ture of the application. This contradicts the assumption that the potential 

dependency relation is consistent. 

Because the log of server f contains request x.A, and because the state of the 

system is causally consistent, the log of server f must also contain request 

y.B. 

y.B E '51! 
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From the definition of the dependency set estimate, the only reason y. B 

could then be omitted from the estimate is because the ordering between it 

and request x.A is directly contradicted somewhere in the system. 

con~(y.B ~ x.A) = true 

However, from theorem 6.1, this implies that the two requests are unrelated. 

y.B ft.1l. x.A 

This contradicts the assumption that y.B is a real dependent of x.A. 

Case 3: B -it A " ACT SIA :/: 0 " ACT SIB :/: 0 " x.A E ASSIA 

Because both objects A and B are active, and the active state of A reflects 

x.A, and because the system state is observably consistent, the active state 

of B must reflect all of the object B dependents of request x.A, including 

y.B. 

y.B E ASslB 

From the definition of :he dependency set estimate, the only reason y.B 

could then be omitted from the estimate is because the ordering between it 

and request x.A i. directly contradicted somewhere in the system. 

con~(y.B ~ x.A) = true 

However, from theorem 6.1, this implies that the two requests are unrelated. 

y.B ~1l. x.A 

This contradicts the assumption that y.B is a real dependent of x.A. 

In either case, a contradiction occurs and so the original assumption must be 

incorrect. The estimate must therefore always include all true dependents when 



x.A 

y.B 

w.A 

Server f 
(A,B) 
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w.A 

Z.C 

x.A 

Server 9 

(A,C) 

Figure 6.3: A example of basic dependency set estimation 

Table 6.2: Basic Estimated Dependents 

II II w.A I x.A I y.B I z.c II 
A 0 0 x.A w.A 

B 0 0 " 0 

C " z.c .L 0 

defined. 0 

As an example, consider the system shown in figure 6.3. This system is 

identical to the system shown in figure 6.2, except that server 9 has logged request 

z.C between request. w.A and x.A. For each request in the system, table 6.2 shows 

the basic estimated dependents on objects A, B, and C. 

6.3 Compound Estimates 

Requests are not always directly related. Two requests, X1.Al and xn.A", can be 

related through a sequence of dependencies on other requests in the system. 
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~ y.B ~ z.e ~ z.e ~ x.A A""-+n. B 

Server h Server 12 Server fa Server !4 
B ""-+n. G 

(A,B) (B,G) (A,C) (A,G) 

Figure 6.4: Non-optimal transitive closure 

The information necessary to detect these transitive dependencies may be em

bedded across multiple logs in the system. For example, the above transitive 

dependency might embed itself across n - 1 logs. 

The compound estimates combine the results of the basic estimates in order 

to detect such transitive dependencies. By combining the results of the basic 

estimates, the compound estimates are able to approximate the sequences out of 

wLi ~h the transitive dependencies are built. 

An obvious method for estimating transitive dependencies is to simply take 

the transitive closure of the basic estimates. This method is not entirely accurate, 

however. For example, consider the system shown in figure 6.4. This figure 

depicts a system with four servers (h, 12, fa, and 14), three objects (A, B, and 

C), and three requests (x.A, y.B, and z.e). Applying the basic estimates, we 

determine that two orderings are possible: 

x.A -<~ y.B y.B -<~ z.e 

By taking the transitive closure, we would also estimate that request z.e is depen

dent on request x.A, even though the logs of servers fa and 14 directly contradict 
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any ordering between the two requests. The compound estimates presented in 

this section detect contradictions, such as the one between requests z.A and x.A. 

and use them to form more accurate approximations when combining the basic 

estimates. 

We refer to the sequence of objects over which a transitive dependency may 

be embedded as a chain. 

Definition 6.7 

A chain, H, is a sequence of potentially dependent objects. 

Definition 6.8 

A su.b-chain of a chain, H, 

is any su.bsequence of its objects 

where 1 ~ ml < m2 < ... < m, ~ n. 

Definition 6.9 

The AiAj sub-chain of a chain, H, is the sub-chain of objects from Ai to Ai: 
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Definition 6.10 

The length of a chain or sub-chain, H, denoted IIH\I, is the number of objects 

in the sequence. 

6.3.1 Dependency Set 

In this subsection we present our compound estimate of 1)£P B(x.A), the object 

B dependents of request x.A, which we denote as depS/B(x.A). This estimate 

is constructed by estimating the object B dependents of x.A that occur along 

each chain from object B to object A, and then combining the results from the 

different chains. 

We begin by describing our estimate of the dependents that occur along a 

particular chain, H 

For any request, x,..A", we let depS/H(X,..A,,) denote our estimate in state S of 

the object Al dependents of x,..A" that occur along chain H. This estimate can 

be formed in many ways, depending up which servers are functioning in state 

S. First, if there is a functioning server of objects Al and A,. that has logged 

request x,..A" , the basic estimate can be applied to determine the dependency 

set. In general, however, the server sets of objects Al and An will not overlap, 

unless the objects are directly related. 

Alternately, an estimate can be formed by sub-dividing the problem as shown 

in figure 6.5. First, an object in the chain, Ai (1 < i < n), is selected. Next, the 

object Ai dependents of x,..A" are estimated. Finally, the object Al dependents 

of the object Ai dependents are estimated to produce the desired dependency 

set. Again, if the server sets of objects Al and Ai overlap, and if the server sets 

of objects Ai and A,. overlap, the basic estimates can he applied to solve each 
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------------------~~~ . 

Object Al Object Ai Object An 

Figure 6.5: Sub-dividing an estimate along a chain 

of the sub-problems. The result is a dependency set estimate obtained along the 

sub-chain: 

If the server sets do not overlap, each of the sub-problems must be further sub

divided until the basic estimates can be applied. In general, the problem is 

sub-divided until a sub-chain of H is found 

1 < m 1 < m2 < ... < mp < n 

in which each pair of adjacent objects have overlapping server sets. 

This procedure is summarized in the following recursive estimate definition. 

Note that the estimate has been extended to operate on sets of requests. In par

ticular, if Q is a set of object An requests, then depSIH(Q) denotes the estimated 

set of object Al dependents of the requests in Q. 
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if defined 

o.w. 

where 1 < i < n is chosen so that the estimates 

are defined. 

Note also that the definitions of union and intersection (intersection is used later 

in this section) must be altered to take into account the possibility of undefined 

sets. 

{ J. if 3i : Sj =.1 
USj -
I USj o.w. 

I 

{ 
J. if Vi : Sj =.1 

nSj - Sj I n o.w. 
{j I S,#.L} 

The choice of object, Aj, at which to sub-divide a problem can affect the final 

estimate. Different object choices can yield slightly different approximations. 

When an estimate is defined, though, it is guaranteed to be sound. It follows 

that an accurate approximation of the dependency set (one with few extraneous 

requests) can be formed by intersecting the estimates from each of the different 

sub-division choices. The complete dependency set estimate along chain H is 

given below. 
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Definition 6.11 

Let (R, ~1l) be a request structure, let """"1l be a potential dependency relatwi 

consistent with ('R., ~1l), and let S be a system state consistent wdh (R. -<, R.). 

For any chain, 

and set of object An requests, Q, the estimated dependents of Q along cham 

Hare: 

IIHII = 2 

U [dep~/Al(xn.An) n [IHII > 2 
zn.AnEQ 

[n dePS/Hl.JdepS/Hi"n(xn,A.n)) 11 
l<i<n 

Theorem 6.3 

When it is defined, dePS/H(Q) does not under-estimate the true set of depen

dencies along chain H. 

Proof: Let Xn.An denote any request in Q. Suppose that deps/ H( Q) is defined 

and that the system contains a transitive dependency along chain H. 

We show by induction on the length of the chain that deps/ H( Q) contains XI·A. I . 

Base Case: IIHII = 2 

The dependency set estimate is the union of basic estimates. 

U dep~/Al(X2.A'l) 
z,.A,EQ 

By assumption this union is defined, and so each of the component basic 

estimates must also be defined, including dep~/Al (X2.A2). From theorem 6.2. 
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dep~/Al (X2. A l) contains all object Al dependents of request X2 .. 42, including 

XI.A i . It follows then that request Xl.AI is included in the union. 

Induction Step: IIHII = n > 2 

Suppose that the theorem holds for all chains with length less than n. 

For a chain of length n, the dependency set estimate is the union of compo

nents, each of which in turn is an intersection of estimates. \Ve show that 

one of these components, specifically the one shown below, contains request 

XI.A I . It then follows that the overall union contains xI.AI' 

dep~/Al(Xn.An) n [n dePS/Hl..i(depS/Hi..n(xn.A n )) 1 
l<i<n 

In order to show that this component contains the desired request, we shmv 

that each element in the intersection (when defined) contains the request. 

First, consider the estimate dep~/AI (xn.An ). From theorem 6.2, this esti

mate (when defined) contains all of the object Al dependents of request 

xn.An, including XI.At. 

Now, consider any of the remaining elements, deps/ HI) dePSI Hi..n (xn.A n )). 

that is defined. By the induction hypothesis, deps/ Hi .. n (Xn.An) contains all 

of the object Ai dependents of request Xn .An that occur along chain Hi .. n. 

including request Xi.Ai. Applying the induction hypothesis again, we see 

that dePS/H1./depS/Hi...(Xn.An » contains all of the object .41 dependents 

of Xi.Ai that occur along chain Hl..i, including XI.At. 

o 

The general estimate of the object B dependents of a request, x.A, is formed 

by unioning the estimated dependents along all chains from B to A. We denote 

the set of all chains from object B to object A as BA.C11,AINS. 
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Definition 6.12 

Let (R. -<R) be a request structure, let --....oR be a potential dependency relatwn 

consistent with CR., -<R), and let S be a system state consistent with (R. -< R ), 

For any object, B, and request, x .A, the estimated object B dependents of 

request x.A are: 

deps/s(x.A) - U dePS/H(x,A) 
HESA-C71.AINs 

Theorem 6.4 

When it is defined, deps/S(x.A) does not under-estimate the true set of de

pendents. 

D£'P s(x.A) C deps/ s(x.A) 

Proof: By definition, any object B dependent, y.8, of request x.A is de-

pendent along some chain, H, from B to A. From theorem 6.3, the estimated 

dependents along chain H include y.B. It follows that any object B dependent 

of x.A is included in the union. 0 

6.3.2 Request Ordering 

Now consider the problem of estimating when two requests, x.A and y.B, are 

unrelated. We let CODS(X.A -< y.B} denote our compound estimate of the pred

icate that request y.B is not causally dependent on request x.A. This estimate 

is constructed in a manner similar to the preceding compound estimate. First. 

the relationship of the two requests is estimated along each chain from ob ject .4. 

to object B. The results of the estimates are then combined to form an overall 

estimate of whether the two requests are related. 
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\Ve let CODS/H(XI.AI -< Xn.An ) denote our estimate of the predicate that 

request Xn.An is not causally dependent on request xI.A I along chain H. 

The idea behind the construction of this estimate is to search the chain for an 

object, Ai, such that none of the object Ai dependents of Xn.An are dependent 

on xI.A 1 • The existence of such an object implies that request Xn.An is not 

transitively dependent on request xI.AI through a sequence of requests on objects 

that include Ai. Because H contains Ai, this in turn implies that the requests 

are not related along chain H. 

The estimate is formed by examining each object, Ai, in the chain. For each 

such object, the dependents of request Xn.An are estimated. Each of these de

pendents is then recursively tested to determine if they are dependent on request 

XI.A1• The complete estimate definition is given below. Note that the definition 

is extended to operate on sets of requests. In particular, if Q is a set of object 

An requests, then CODS/H(Xl.A1 -< Q) denotes our estimate of the predicate that 

none of the requests in Q are dependent on XI.A 1 along chain H. 
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Definition 6.13 

Let CR., -<Jl) be a request structure, let "-+Jl be a potential dependency relatwl! 

coruistent with ('R., -<Jl), and let 5 be a system state consistent with (R. -<1(). 

For any chain, 

request xI.A I, and set of object An requests Q, the dependency ofQ on request 

xI.A I along chain H is contradicted in state 5, denoted conS/H(xl.A 1 -< Q). 

if the following condition holds. 

A con~(xl.AI -< X2. A2) 
z2· A2EQ 

if IIHII = 2 

A [ con~(xl.Al -< xn.An) 
Zn.AnEQ 

v o.w. 

Theorem 6.5 

If conS/H(xl.Al -< Q) holds, then there does not exist any request in Q that 

is dependent on x I.A 1 along chain H. 

Proof: The proof is by contradiction. Suppose that conS/H(xl.A I -< Q) holds, 

but that there exists a request, xn.An, in Q that is dependent on XI.A l through 

a sequence of dependencies along chain H. 

\Ve show by induction on the length of chain H that an inconsistency exists. 

Base Case: /I HI! = 2 

Because request Xn.An is dependent on request XI.A I (XI.AI -<n. In.A,,), we 

know from theorem 6.1 that con~(xl.Al -< xn.An} is false. Because this is 
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one of the conjuncts in the definition of conS/H(xl.A 1 -< Q). it follows that 

the compound estimate is false, contradicting the assumption that it's true, 

Induction Step: IIHII = n > 2 

Suppose that the theorem holds for all chains with length less than n. \\"e 

show that the conjunct, corresponding to request xn.An , in the definition 

of conS/H(xl.Al -< Q) is false. It the:l follows that the overall compound 

estimate is false, contradicting the the a,'.lmption that the estimate is true. 

'We show that the conjunct is false by showing that each of its disjuncts is 

false. First, from theorem 6.1 we know that 

Now, consider any of the disjuncts conS/H1..i(xl.A 1 -< dePS/Hi.,n(xn.A n )) 

From theorem 6.3, we know that when it is defined depS/Hi"n(Xn.A n ) con

tains all of the object Ai dependents of xn.An , including Xi.Ai. Because l'i ,At 

is dependent on Xl.A t (Xl.A t -<1l Xi.Ad, we now by the induction hypothesis 

that 

I t therefore follows that 

o 

The general compound estimate of the relationship between two requests, x.A 

and y.B, is formed by combining the estimates of the requests' relationship along 

individual chains. 
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Definition 6.14 

Let (R, ~~) be any request structure, let --""''R be a potential dependency re

lation consistent with (R, ~~), and let S be a system state consistent with 

(R, ~~). For any pair o/requests, x.A and y.B, the dependency ofy.B on I.A 

is contradicted in state S if con'S{x.A ~ y.B) holds. 

cons(x.A ~ y.B} = 1\ conS/H(x.A ~ y.B) 
HEAB~'H.AINS 

Theorem 6.6 

cons(x.A ~ y.B} does not under-estimate the true set of related requests. 

cons(x.A ~ y.B} ==> x.A -I<'R y.B 

Proof: We show the contrapositive. Suppose that request y.B is causally 

dependent on request x.A (x.A ~~ y.B). By definition, the two requests are 

related along some chain, H, from object A to object B. From theorem 6.5, we 

know that 

conS/H(x.A ~ y.B) = false 

Because this is one of the conjuncts in the definition of con'S(x.A ~ y.B), it 

follows that 

cons(x.A ~ y.B) _ false 

o 

6.3.3 Safety 

Our last compound estimate approximates the safety predicate SAF£s(x.A). 

Recall that, when true, the safety predicate indicates that the dependents (on 
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active objects) of request x.A are refiectea 1.1 their objects' current states. Like the 

other compound estimates, the safety estimate is formed by combining estimates 

of safety along individual chains that lead to object A. 

For any request xn.An, active object Al (ACT SIAl f::. 0), and chain H from 

object Al to object An, 

we let safeS/H(Xn.An) denote our estimate of the predicate that all object A1 

dependents of request xn.An (along chain H) are reflected in the active state 

of AI. One method for constructing this estimate is to approximate the object 

A.l dependents of request xn.An (using one of the preceding estimates) and then 

check to see if all of those estimated dependents are reflected in the state of 

AI. However, this method will only work when the dependency set estimate is 

defined. 

Another method for constructing the estimate is to examine each active object 

Ai (ACT S/Aj =I: 0) in the chain, estimate the object Ai dependents of request 

xn.An , and then check to see if all of these dependents are reflected in the active 

state of object Ai. The intuition behind this method is that if xn.An is safe along 

chain H then all of its object Ai dependents are also safe along chain Hl..i. If one 

of these object Ai dependents were unsafe, then it would not be reflected in the 

active state of Ai, because the state of Ai would be inconsistent with the state 

of AI. 
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Definition 6.15 

Let (R, -<~) be a request structure, let ~~ be a potential dependency relatIOn 

consi3tent with CR., -< ~), and let S be a system state consistent with (R. -< R. ) . 

For any request xra.An, active object Al (ACT SIAl =1= 0), and cham H from 

Al to A ra , 

request xra.An is estimated to be safe along chain H in state 5 if the predicate 

safeS/H(xra.An) holds. 

Theorem 6.7 

IfsafeS/H(Xra.An) is true, then all object Al dependents of request xn.A" along 

chain H are reflected in the active state of object AI. 

Proof: The proof is by contradiction. Suppose that safeS/H(xn.An) is true, 

but that there is an object At request, Xt.Al, that is dependent on request Xn .. 4. ... 

along chain H 

but is not reflected in the active state of object At. 

Xt·Al fI. AS SIAl 

Because SafeS/H(Xra.An) is true, we know from its definition that there exists 

some active object, Ai, in the chain such that 

From theorem 6.3, we know that dePS/Hiooll(Xra.An) contains all of the object 

Ai dependents of xra.An that occur along chain H, including Xi.Ai. It therefore 
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follows that request Xi .A, is reflected in the active state of ob ject Ai. 

However, request Xi.Ai is also dependent on request XI.Al. The state of object 

Ai (an active object) therefore reflects a request (Xi.Ai) that is dependent on 

an object Al request (XI.A l ) that is not reflected in that object's active state. 

The state of the system is therefore observably inconsistent, contradicting the 

assumption that it is observably consistent. 0 

The general estimate of the safety of a request, x .A, is constructed by com

bining the estimates of the request's safety along all chains to A. from active 

objects. 

Definition 6.16 

Let.(n, ~'R) be a request structure, let --'R be a potential dependency relation 

consistent with (n, ~'R), and let S be a system state consistent with (R. -<R)· 

A request, x .A, is estimated to be safe in state S if the predicate safes( x .. 4) 

holds. 

safes(x.A) - 1\ 1\ safeS/H(x,..t) 
{ BeOB.1S I ACTs/s ,,' } H e BA~'H.AINS 

Theorem 6.8 

If safes ( x.A) holds, then request x. A is safe in state S. 

safes(x.A) => SAr£s(x.A) 

Proof: We show the contrapositive. Suppose that request x.A is unsafe in 

state S. Then request x.A is dependent on some other request, y.B, on an active 
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object (ACT SIB 1= 0) that is not reflected in the object's active state. 

y.B rt ASSIB 

By definition, this dependency must occur along some chain, H, from object B to 

object A. From theorem 6.7, the predicate safeSIH(x.A) must be false. Because 

this is one of the conjuncts in the definition of safe'S(x.A), the compound safety 

estimate must also be false. 0 

6.4 Using the Estimates 

Both the basic and compound estimates can be substituted directly into the 

recovery mechanism as shown below. Because the estimates all have the property 

that they are sound, they can be used in place of the values of CO}/(X.A -< y.B). 

15£15 B(x.A), and SAJ't'S(X.A) without modification of the algorithms. 

II II C?5N(x.A -< y.B) 15""PP B(x.A) SAF£s(x.A) II 
Basic COD~(x.A -< y.B) dep~/B(x.A) 

Compound cOD'S(x.A -< y.B) depSIB(x.A) safes(x.A) 

The compound estimates have the advantage that they are more often defined 

than the basic estimates. However, the basic estimates are less expensive to 

compute. 

If there is insufficient information in the system to form an estimate required 

by the recovery mechanism (i.e. the estimate is undefined), the mechanism must 

block and wait for additional servers to recover and provide enough information 

to construct the estimate. If the undefined estimate occurs in the JOI~ phase 

of recovery, the entire recovery sequence must block. If the undefined estimate 

occurs in the ACTIVATE phase, then only the activation of the object that 
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required the estimate must block; the recovery mechanism can proceed with the 

activation of other objects. 

6.5 Summary 

In this chapter we presented several methods for estimating the dependencies 

between requests when explicit dependency information is not available in the 

system. The estimates were divided into two classes: basic estimates and com

pound estimates. The basic estimates were simple estimates designed to search 

the orders of requests in servers' logs for evidence of request dependencies. The 

compound estimates were more complex estimates designed to combine the re

sults of the basic estimates in order to detect transitive dependencies embedded 

across multiple servers' logs. 

Both the basic and compound estimates had the property that they were 

sound. Because of this, the estimates could be used directly by the log trans

formations and recovery algorithms. By using sound estimates, the recovery 

mechanism was guaranteed to ensure all true dependencies between requests. 

plus possibly a few extraneous orderings. However, because the estimates were 

sometimes undefined, the recovery mechanism might occasionally need to block 

and wait until sufficient ordering information is available in the logs of functioning 

servers to construct the needed estimates. 

In order to construct the estimates, we assumed that we were given an ap

proximation of the dependencies between objects, A ........ 'R,. B, called a potential 

dependency relation. This relation had the property that it related all objects 

that had dependent requests. The relation was not required to be precise, how

ever. It could relate objects between which no dependencies existed. However, 

inaccuracies in a potential dependency relation caused unnecessary restrictions to 

be placed on the structure of the system. They also caused undefined estimates 

to occur more often. 



Chapter 7 

Efficiency Issues 

In this chapter we examine several issues regarding the efficiency of the recovery 

mechanism. We begin by describing a cyclic condition that can arise in the 

dependency estimates and cause the recovery mechanism to block. By restricting 

the structure of a system, we show how this cyclic condition can be avoided. 'Ye 

then describe a special class of systems that can be recovered efficiently without 

blocking using only the basic estimates. Finally, we examine the problem of using 

checkpoints (of object states) in the recovery mechanism in order to bound the 

size of logs. 

7.1 Cycle Restriction 

Even though the dependencies between requests form a partial order, the esti

mates sometimes generate cyclic orderings. Consider the three logs and potential 

dependency relation shown below. 

~ 
~ 
~ 
~ 
~ 
~ 
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From this information, the dependency estimates would generate a cyclic ordering 

for the three requests. 

x.A ~ y.B ~ z.e ~ x.A 

At least one of the estimated request dependencies must be spurious. Ho\vever. 

based on the information available to the estimates, there is no way of determining 

which ordering it is. 

If a server of objects A, B, and C recovers and attempts to add the three 

requests to its logs, a problem occurs. Without knowing which request ordering 

is spurious, any ordering of the three requests within the recovering server's log 

potentially violates a true dependency. When this situation arises, the recovering 

server must block and wait until another (failed server's) log becomes available 

and is able to contradict one of the cyclic orderings. 

The problem of estimated cyclic dependencies can be avoided by requiring 

that any server of an object involved in a potential cycle must also serve all other 

objects in that cycle. Such a restriction can be easily implemented in a system, 

such as ISIS [BCJ+], that provides flexibility about which objects a given server 

manages. 

Cycle Restriction 

If a cycle exists in the potential dependency relation 

then any server that manages one object in the cycle manages all objects in 

the cycle. 

S£'RV Al = S£'RV Al = .. , = S£'RV An 

A request, such as x.A above, cannot then be involved in an estimated depen

dency cycle because any server that logged x.A would also have logged all of 
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its dependents along the cycle (y.B and z.A) in some total order within its log. 

contradicting at least one of the cyclic orderings. 

7.2 Backward Inclusion Systems 

In general, the compound estimates of chapter 6 are fairly expensive to com

pute. In order to form a dependency estimate along a particular chain. H. the 

compound estimates combine approximations constructed along all sub-chains 

(sub-divisions) of H. Because the number of sub-chains of a chain grows expo

nentially with the length of the chain, this method can be prohibitively expensive 

for even modestly sized chains. This cost can be reduced by employing dynamic 

programming techniques [Den82]. However, for long chains, dynamic program

ming solutions can also be expensive 

Another method for reducing the cost of constructing an estimate is to limit 

the lengths of the sub-chains considered by the estimation method to a fixed 

maximum length. This has the effect of reducing the number of sub-chains along 

which estimates are computed to be polynomial in the length of the chain. Of 

course, limiting the number of sub-chains considered by the estimation method 

increases the likelihood that an estimate will be undefined. 

In the extreme, we can limit the estimation method to consider only sub

chains of length two; that is, we can limit the recovery mechanism to using uIlly 

the basic estimates. The basic estimates have the advantage that they are the 

least expensive estimates to compute, but the disadvantage that they are the most 

likely estimates to be undefined. However, there is a special class of systems in 

which the basic estimates are always defined. 

Definition 7.1 

A system is a backward incltLSion system if it sati3fies the following condition: 
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Figure 1.1: A hierarchical backward inclusion system 

Intuitively, a system is a backward inclusion system if any server that manages 

a replica of an object, A, also manages replicas of all objects on which A. is 

potentially dependent. It follows then that if a server logs some request, x.A. 

then it also logs every dependent of x.A. Because a request never occurs in a 

log without all of its dependents, the basic estimates are always defined and the 

recovery mechanism never aborts. Note that backward inclusion systems satisfy 

the cycle restriction and so never abort due to cyclic dependency conditions. 

The class of backward inclusion systems consists essentially of hierarchically 

organized systems such as the one depicted in figure 7.1. Figure 7.1(a) shows 

the potential dependency relation between the six objects in the system and 

figure 7.1(b) shows the overlap between the server sets of the six objects. The set 

of backward inclusion systems also includes some non-hierarchical systems such 

as the one depicted in figure 7.2. 

7.3 Chec! )inting 

As we have preseL l them, logs grow without bound. In any implementation of 

the recovery mechanism, the growth of logs must be limited through the use of 
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Figure 7.2: A non-hierarchical backward inclusion system 

checkpoints. A checkpoint can be logically modeled as a set of requests. 

Definition 7.2 

The checkpoint of object A in state S at seroer f, denoted CKPTilf' is a set 

of cav.sally consistent requests on object A. 

V x'.A,x.A E 'R (x'.A -<x x.A): x.A E CK.PT~/I ==> x'.A E CK.PTi1f 

In reality, the checkpoint stored by a server is not a set of requests, but a 

compact representation of the object state corresponding to that set of updates. 

However, for the purposes of discussion, we choose to model a checkpoint as a 

set of requests. 

A recovering server restores its replica of an object, A, from its log by first 

restoring the replica to the checkpointed state and then replaying the logged 

requests on object A. In order to ensure that only consistent states are restored 

to replicas, the causality condition on logs is extended to include checkpoints. 

First, the checkpoints and log of a server are restricted to contain only requests 

on objects managed by the server. Second, if a server logs or checkpoints some 

request, x.A, then it must previously have logged or checkpointed all dependents 
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of x.A (on objects managed by the server). Because checkpoints precede all other 

entries in a log, this implies that a server that has checkpointed x.A has also 

checkpointed the dependents of x.A. Lastly, the checkpoints and log of a server 

are restricted from containing any duplicate requests. 

Definition 7.3 

The log, (C.sll'-sll)' of a server f in state S is consistent with a request 

structu.re, ('R, -<1l), if 

1. V x.A E C.S/I: A E OB.7S 1 

V A E 08.7 S ,: C K:PT ~I 1 contains only object A requests 

2. V x.A E c.s/I: V y.B E 'R (y.B -<1l x.A) : 

BE 08.7S, => 

[ y.B E CK,PT~/I V (y.B E C.sll 1\ y.B -SII x.A) 1 

9. V A,B E 08.7S/: 

V x.A E CK,PT~/I : 

V y.B E 'R (y.B -<1l x.A): y.B E CK,PT~/I 

4· V A E 08.7S ,: CK,PT~/I n C.sll = 0 

The projection operator is also extended to account for checkpoints in the fol

lowing way: 

Definition 7.4 

The projection of a log, (CSI1 ' -S/I)' onto an object, A E 08.7S, is 

(C SI1 ' -S/I) IA = { x.A I x.A E CS/I V x.A E CK,PT~/I } 

The main difficulty involved in implementing checkpoints is ensuring that the 

causal consistency restrictions are not violated. For example, the log addition 
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transformation must be careful not to add to a server's log any request that is 

already present in that server's checkpoints. Similarly, a checkpoint should ne\"el' 

be installed at a server if that checkpoint reflects a request already present in 

the server's log (this can be a problem when a new checkpoint is transferred to 

a recovering server during the server's JOIN phase). 

These problems can be solved by storing, with each checkpoint, explicit 1Il

formation about the requests it reflects. Duplicates can then be detected and 

removed from the affected log. Due to the large number of requests that may be 

reflected in a checkpoint, however, it will generally be impractical to maintain 

such explicit information. 

Another method for avoiding duplicates is to use implicit information con

tained in other servers' logs. For example, if a server, I, known to be consistent, 

has logged some request, x.A, then the checkpoint of object A at server I cannot 

reflect x.A. It therefore follows that request x.A can be added to the log of any 

server, with the same object A checkpoint as I, without introducing a dupli

cate into its log. By adapting a checkpointing algorithm such as [KT8i]' we can 

increase the likelihood that servers will have identical checkpoints. 

7.4 Summary 

In this chapter we examined several issues concerning the efficiency of the recov

ery mechanism. We began by describing a circularity condition that can arise 

in the estimates and cause the recovery mechanism to abort. We showed how 

this problem could be avoided by restricting the structure of the system. vVe 

then outlined a special class of systems, called backward inclusion systems, that 

were efficiently solvable without blocking using the basic estimates. Finally, we 

outlined some of the problems involved in adding object checkpoints to server 

logs. 



Chapter 8 

Grouping Consistency 

This dissertation has presented a recovery mechanism for preserving causal con

sistency in a distributed system. The basic principles of estimating dependencies 

between requests and using those estimates to preserve consistency can also be 

applied to other forms of consistency. In this chapter we outline changes in the 

recovery mechanism for supporting an atomic form of consistency called grouping 

consistency. 

8.1 Grouping Consistency 

Under grouping consistency, requests may be collected into sets (called groups) 

with the property that no request in a group is reflected in the system unless all of 

the requests in the group are also reflected. The requests in a group do not have 

any ordering properties between them, only the all-or-none property. Grouping 

consistency differs from serializability in that there are no ordering properties 

between the requests in different groups; they may be received and processed by 

servers in any order. 

As an example of grouping consistency, consider an airline reservation system. 

Suppose that a passenger wishes to make a reservation on a pair of connecting 

flights. This operation can be implemented as two separate requests. First, a seat 
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Request Structure: (R, ='R.) 

R = {reSl.A, res2.B, res3.A, reS4.B} 

Figure 8.1: A grouping request structure 

is reserved for the passenger on the first flight, A. Second, a seat is reserved for 

the passenger on the connecting flight, B. In order to be consistent, the system 

should never reflect one seat reservation without reflecting the other. The two 

reservations would therefore be collected into a group and submitted as a unit. 

We can modify the definition of a request structure to reflect groupings of 

requests in the following way. 

Definition 8.1 

A request structure, (R, ='R.), is a set of requests along with an equivalence 

relation on that set. 

Here, R is the set of client requests and ='R. relates all grouped requests. If two 

requests are related, x.A ='R. y.B, then the system must reflect both requests or 

neither request. Note that a request may belong to multiple groups. If request 

x.A is grouped with request y.B (x.A ='R. y.B), and request y.B is separately 

grouped with request z.c (y.B =1l z.c), then by the transitivity of the grouping 

relation request x.A cannot be reflected in the system unless request =.C is also 

reflected. 

Figure 8.1 shows a request structure for the airline reservation system de

scribed above. The system consists of four seat reservations (resl.A, res2·B. 

res3.A, and res4.B) on two separate flights (A and B). In the example, res2.B is 

a connecting reservation from resl.A and res4.B is a connecting reservation from 

reS3·A. 
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We assume servers receive, process, and log grouped requests as a unit. As a 

result, server logs are consistent with the group structure on requests. That is. 

if the log of a server reflects some request, x.A, then it also reflects all requests 

related to x.A (on objects managed by the server). 

Definition 8.2 

The log, (Cs/I'-S/I)' of server f in state 5 is con.sistent with a request 

structure, ('R., ='R), if 

1. V x.A E Cs11 : f E St"'R.V A 

2. V x.A E CSI1 : 

V y.B E 'R. (x.A =1l y.B): f E St"'R.V B => y.B E CSI! 

As before, we assume that servers recover in observably consistent states. 

That is, at the time of a server recovery, the logs of all functioning servers are 

consistent with the application's request structure and all active servers of an 

object reflect the same object state. Further, the states of different active objects 

are mutually consistent: if a request is reflected in the active state of one ob ject, 

then all of its dependents (on active objects) are reflected in their object's active 

states. 

Definition 8.3 

A sy8tem state, 5, i.! observably comi.!tent with a request structure, (R, =n.), 

if 

1. V f E st"'R.V - F.AICs : (C sI1 ' -S/I) is consi.!tent with (R, =R)' 

2. V A E 08.7S: V f,g E ACT SIA: (C SI1 ' -S/I) IA = (C sI9 ' -s/g) IA 

9. V A, B E 08.7S (ACT SIA 1: 0 " ACT SIB 1: 0) : 

V x.A E ASSIA : V y.B E 'R. (x.A ='R Y.B): y.B E ASSIB 
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8.2 Changes to Recovery Mechanism 

Recovery under grouping consistency is handled in the same manner as it 'vas 

under causal consistency. The recovery sequence of a server is divided into two 

phases. During the JOIN phase, a recovering server receives and installs the 

current states of active objects. During the ACTIVATE phase, a recovering 

server constructs and installs new (consistent) states for inactive objects. 

The algorithms implementing the JOIN and ACTIVATE phases are nearly 

identical to those of chapter 5. However, the log transformations on which they 

are built must be modified to account for the new consistency definition. Consider 

the log addition transformation. When a request is added to a server's log, the 

transformation must be certain that all requests (directly or transi ti vely) grouped 

with it are also present in the log. If they are not, then the transformation must 

add them. 

Definition 8.4 

The set of object B dependents of request x.A under grouping consistency are 

D£P B(x.A) = {y.B E 'R I y.B ='R. x.A} 

Figure 8.2 shows the complete log addition transformation under grouping consis

tency. Note that the transformation places no particular ordering on the requests 

in the log because requests are not ordered under grouping consistency. 

The deletion transformation is modified in a similar manner. When a request 

is deleted from a log, all requests grouped with it are also deleted. The complete 

log deletion transformation is shown in figure 8.3. Note that although the trans

formation preserves the order of requests that remain in the log, this restriction 

IS unnecessary. 
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where 

c - c, U Q U [U U V£'PB(x.A) 
z.AeQ BeOB:J S! 

-c is any ordering of the requests. 

Figure 8.2: Log addition under grouping consistency 

where 

c - {x.A E " I x.A ~ Q 1\ ~ y.B E Q: y.B =1t x.A } 

'V x.A,y.B E ,: (x.A -c y.B) <* (x.A -/ y.B) 

Figure 8.3: Log deletion under grouping consistency 
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When explicit dependency information is not available to the transformations. 

dependency estimates can be used to preserve consistency. The changes necessary 

to use estimates in the log transformations are left to the reader. 

8.3 Estimating Dependencies 

Our estimates of request groupings are divided into two classes: basic and com

pound. As before, the compound estimates are more accurate and more often 

defined than the basic estimates, but are also more expensive to compute. How

ever, all estimates have the property that they do not under-estimate the true 

set of grouped requests. That is, all of the estimates are sound. 

We assume that the estimates have access to a potential dependency relation 

that relates pairs of potentially dependent objects. Like the potential dependency 

relation under causal consistency, this relation should not under-estimate the true 

set of related objects. 

Definition 8.5 

A potential dependency relation, :::::::1l, over request structure (R, =1(.)' is a bI

nary relation on the objects in OB.J S with the property that it relates all pairs 

of objects between which dependencies hold. 

'V x.A, y.B E 'R.: x.A =1l y.B ==> A:::::::1l B 

8.3.1 Basic Estimates 

The basic estimates are designed to search individual server logs for evidence of 

request groupings. We begin by presenting an estimate of when two requests are 

not grouped. This estimate is then used to construct an estimate of the complete 

set of (grouped) dependents of a request. 



118 

Consider the problem of estimating when two requests, x.A and y.B. are not 

grouped. Because server logs are consistent with the request structure of an 

application, we know that the requests are not grouped if a server of objects .-l. 

and B has logged one request, but not the other. Because the states of active 

objects are consistent with the application's request structure, we also know that 

x.A and y.B are not grouped if both objects are active, but only one of the 

requests is reflected in its object's active state. Combining these observations 

with the knowledge provided by the potential dependency relation we derive the 

following estimate. 

Definition 8.6 

Let ('R., =1l) be a request structure, let ~1l be a potential dependency relation 

consistent with ('R., =1l), and let 5 be a system state consistent with (n. =n). 

The request grouping, x.A = y.B, is directly contradicted in state 5, denoted 

con~(x.A = y.B), if any of the following three conditions holds: 

1. A *'1l B 

2. 3 f E FUNCs/AnFUNCs/B: 

[(x.A E C.SII !\ y.B f/. c.s//) V (y.B E c.s// 1\ x.A rt. C. S//)] 

9. ACTs/A # 0 1\ ACTs/B # 0 1\ 

[(x.A E ASs/A 1\ y.B f/. ASS/B) V (y.B E ASS/ B 1\ x.A f/. ASS/A)] 

Now consider the problem of estimating the complete set of object B requests 

grouped with request x.A. If a server of objects A and B has logged request 

x.A, then its log must also contains all of the object B dependents of x.A. The 

set of object B requests in its log can therefore be used as an estimate of the 

dependency set. Additionally, if objects A and B are both active, and the state 

of A reflects request x.A, then the state of B must reflect all of the dependents. 

The set of requests reflected in the state of B can therefore also be used as an 
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estimate of the dependency set. Combining these approximations along with 

the information in the preceding estimate, we derive the following estimate of 

D£PB(X.A). 

Definition 8.7 

Let (R, =R) be a request structure, let ~R be a potential dependency rela

tion consistent with ('R., =R), and let S be a system state observably conS2S

tent with ('R., =R). For any object B E 013,J S and request x.A E 'R, the 

basic estimated dependents of x.A are: 

1.. if ....,3f E mN'CS/AnmN'CS/B: x.A E CSlf 

dep~/B(x.A) = 0 

and 

ACT S/A = 0 V ACT SIB = 0 V x.A rf. AS SIA 

if B:f:,R A 

{y.B I ....,con~(y.B = X.A) A. o. w. 

( 3f E mN'CS/Anm}/CS/B : x.A,y.B E CSIf 

V y.B E ASS/ B J} 

8.3.2 Compound Estimates 

The information necessary to detect a request grouping may be distributed across 

multiple logs. For example, suppose that there is a grouping between n different 

requests. 

This grouping may embed itself across n - 1 logs in the following way. 

Xn-l·An-l 

Xn.An 
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Using the basic estimates, we would detect each of the individual grouping pairs: 

In order to detect the overall grouping between the n requests, the results of 

the basic estimates must be combined. This can be done using the compound 

estimates of chapter 6. By substituting the preceding basic estimates for those of 

chapter 6, the compound estimates will approximate request groupings instead 

of causal dependencies. No other modifications are required to the compound 

estimates. 

8.4 Summary 

This chapter outlined modifications to the recovery mechanism for supporting a 

new form of consistency called grouping consistency. Under grouping consistency. 

requests were collected into sets with the property that no request in a set was 

reflected in the system unless all requests in the set were reflected. 

The recovery sequence of a server remained the same as it was under causal 

consistency. During the JOIN phase, a recovering server restored its replicas of 

active objects to those objects' current states. During the ACTIVATE phase. 

a recovering server restored its replicas of inactive objects to states consistent 

with the rest of the system. However, the log transformations out of which 

the recovery algorithms are built had to be modified to account for the new 

consistency definition. 

When explicit information about the groupings of requests was unavailable. 

the log transformations could use estimates of the groupings in order to preserve 

consistency in the system. These estimates were divided into two classes: basic 

and compound. The compound estimates remained the same as they were in 

chapter 6. However, the basic estimates out of which they are built were redefined 

to approximate grouping dependencies instead of causal dependencies. 



Chapter 9 

Conclusions 

This dissertation has presented a recovery mechanism for restoring casually con

sistent states to replicated data objects. The mechanism was based on maintain

ing logs of the updates that occur to objects, and using those logs to reconstruct 

object states after failures. Unlike existing techniques, our method does not re

quire any explicit information about the dependencies between updates. Instead. 

any necessary information about the ordering between requests is inferred from 

their orderings within logs .. 

Without a recovery mechanism, two types of inconsistencies develop in a 

system. First, inconsistencies develop between the different replicas of an object. 

When a server of a replica recovers from a failure, its log reflects the state of 

the object from the time of the failure. If the state of the object has changed 

since the failure, the server will restore an outdated state to its replica. Second. 

inconsistencies develop between the states of different objects. When all servers of 

an object fail, some updates on the object may be lost. The state later recovered 

by the servers may then be missing some requests on which other active objects 

depend. 

Based on these two types of inconsistencies, the recovery sequence of a server 

is divided into two phases. During the JOIN phase, a recovering server restores 
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its replicas of active objects. The current states of these objects are transferred 

to the server and written to its log. During the ACTIVATE phase, a server 

restores its replicas of inactive objects. All recovering servers of an inactiw 

object cooperate in choosing a new state for the object that is consistent \vith 

the states of the other objects in the system. Once chosen, the servers modify 

their logs to reflect this new state. 

The algorithms implementing the JOIN and ACTIVATE phases are relatively 

straight forward. The only difficulty involves preserving the consistency of a 

server's log when modifications are made to it. The log addition transformation 

ensures that no request is added to a server's log without all of its dependents. 

The log deletion transformation ensures that no request is deleted from a log 

without also removing all requests that depend on it. 

When explicit information about request dependencies is not available, the re

covery algorithms (as well as the log transformations out of which they are built) 

can use estimates of the dependencies. In order to preserve consistency in the 

system, these estimates must have the property that they do not under-estimate 

the orderings between requests. We presented several dependency estimates with 

this property. The basic estimates are simple approximations based on search

ing server logs for evidence of request orderings. The compound estimates are 

more complicated approximations formed by combining the results of the basic 

estimates. Although the compound estimates are more accurate and more of

ten defined than the basic estimates, they are also more expensive to compute. 

We showed that in a special class of systems (the backward inclusions systems) 

the inexpensive basic estimates can always be used without the possibility of 

blocking. 

Our basic recovery approach can also be applied to forms of consistency other 

than casual consistency. We showed that with little modification, our recovery 

technique could be applied to an atomic form of consistency called grouping 
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consistency. Particularly interesting was the fact that the compound estimates 

remained unchanged between causal and grouping consistency. Only the basic 

estimates needed to be changed to allow for the new consistency definition. 

9.1 Future Work 

We conclude this dissertation by discussing several related areas for fu t ure re

search. 

9.1.1 Implementation Considerations 

A recovery mechanism based on the ideas in this dissertation was implemented 

in the ISIS system [BCJ+j. In ISIS, the server set of an object is implemented as 

a process group. Each process in a group is equivalent to one server and manages 

one replica of the object. Process groups in ISIS are given unique names. Updates 

on an object can be broadcast to the group using only the group name. 'When 

such a broadcast occurs, ISIS automatically resolves the name of the group into 

its current set of member processes and delivers a copy of the update broadcast 

to each member. 

Unfortunately, the exact recovery mechanism described in this dissertation 

could not be implemented in ISIS because of the way in which ISIS handles 

process groups. When a process (server) recovers in ISIS, it is required to re-join 

the process groups (object server sets) that it previously belonged to in a fixed 

order that is set at the time the application is written. However, the recover 

sequence presented in chapter 3 requires a recovering server to join object groups 

in flexible orders. When a server recovers, it must first JOIN the server sets of 

all objects that are currently active (whatever they are) and then ACTIVATE 

its replicas of objects that are inactive. We believe that ISIS could be made 

to support processes joining process groups in flexible orders. However, the 

modifications would require substantial revision of the code, and our current 
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applications ,~ t require such support. 

Like the re,~,) ,'ery mechanism described in this dissertation, the recovery mech

anism in ISIS automatically ensures consistency between the replicas of an ob ject, 

However, the ISIS recovery mechanism does not provide automatic consistency 

between the states of different object. Instead, it ensures that the state of an 

inactive object is always recovered using the log of the last server of the object 

to fail [Ske85]. By allowing clients to force certain updates to be logged by all 

functioning servers of an object, clients can control which updates may be lost 

from the system, and therefore control consistency in the system. 

Beyond the ability to join process groups in flexible orders, ISIS should pro

vide a good platform on which to build the recovery mechanism described in 

this dissertation. ISIS currently supports a state transfer mechanism whereby a 

server (process) joining or re-joining an active object server set (process group) 

is automatically transferred the current state of the object (process group), This 

state transfer appears atomic from the point of view of a client, so each update 

broadcast to the object (process group) is processed by all of its members in the 

same state of the object (process group). This state transfer mechanism is used 

by the current ISIS recovery mechanism to initialize replicas of active objects at 

recovenng servers. 

The ISIS broadcast mechanism also provides a facility for automatically col

lecting replies to message broadcasts, including the handling of failures during the 

broadcast-reply sequence. This facility should prove invaluable in the dissemina

tion and collection of basic dependency information. For example, a recovering 

process requiring dependency information about certain updates could broadcast 

a request to the servers of the objects involved. Upon receiving the request, the 

servers could reply with the current states of the objects and ordering informa

tion from their logs. Using simple un·os and intersections, the recovering process 

could then combine this information) form the necessary estimates. This type 
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of mechanism would be sufficient for building backward inclusion systems, where 

only basic dependency information is required. 

Tills technique could also be used to compute the compound estimates. How

ever, doing so would be costly, not only in terms of time, but also in terms of 

space and message traffic. In order to form the compound estimates needed for 

recovery, a server must collect basic estimates from the logs of many differen t 

servers. Tills collection process can potentially create a large load of message 

traffic at the recovering server. Further, once the basic estimates are collected, 

the server must combine them to form the compound estimates. If the potential 

dependency relation contains long chains, this could require significant time and 

space. 

In order to reduce the time, space, and message load at a recovering server, the 

task of computing estimates could be distributed across the functioning servers 

in the system. Each functioning server could locally compute the basic estimates 

related to the objects it manages. This would introduce only a limited amount of 

message traffic at each server. Once the basic estimates are computed, the func

tioning servers could exchange their results and combine them in a hierarchical 

fashion in order to form the overall compound estimates. 

9.1.2 Other Consistency Forms 

We have described variants of our recovery mechanism for implementing both 

causal consistency and grouping consistency. An interesting problem is whether 

these variants can be combined to implement serializable consistency. Grouping 

consistency provides the all-or-none property required by serializability. Causal 

consistency might then be added to implement some type of ordering between 

the requests in different groups. 

A related problem concerns the types of consistency that can be enforced us

ing our basic mechanism. We would like to characterize the forms of consistency 
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b-z.B 

h: bl.B 

a.A 

d3. D 

12: ~ /4: ~ 
/6: C3· G 

bl·B ~.B a.A 

~ ~ fa: /5: 
Cl·G d2.D 

Figure 9.1: Logs generating non-optimal estimates 

implement able using dependency estimates. The compound estimates of chap

ter 6 apply equally well to both causal and grouping consistency. The question 

then naturally arises as to whether these estimates apply to more general forms 

or classes of consistency. 

9.1.3 Optimal Estimates 

The compound estimates of chapter 6 are not optimal in the sense that they may 

occasionally yield an ordering between two requests, even when there is evidence 

available in the system to contradict the ordering. For example, consider the set 

of logs shown in figure 9.1. This figure depicts the logs of six servers (h, 12, /3, 

/4, Is, and 16), each server managing only those objects for which requests are 

shown in its log. Suppose that the potential dependency relation in this system 

forms one long chain. 
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Applying the compound estimates to these logs, the estimates would yield an 

ordering between requests a.A and e.E. 

e.A -< a.A 

However, from the logs we can determine that this ordering is not possible. Any 

dependency of request a.A on request e.E must occur along the chain of objects 

depicted above (in the potential dependency relation). From the log of server h. 

we know that any such dependency would include either request bl.B or b2.B. If 

the dependency included request bl. B, then from the log of server h we know 

that it must also include request Cl.G. This implies that a.A is dependent on 

Cl.G. But, this ordering is contradicted by the log of server i6' Similarly, if the 

dependency chain includes request b-z.B, then from the log of server i4 we know 

that is also includes d2.D. This implies that request a.A is dependent on request 

d2.D. But, this ordering is also contradicted by the log of server i6. 
An interesting problem would be to determine an optimal set of dependency 

estimates that yield an efficient implementation. As we pointed out earlier, the 

compound estimates apply equally well to both causal and grouping consistency. 

We would like to find an optimal set of estimates that also have this property, 

preferably extending to other consistency forms as well. Because it has not been 

the goal of this dissertation to pursue complexity issues, we will not make any 

general speculations about the difficulty of computing an optimal set of estimates. 

We would like to point out, however, that the problem of determining an optimal 

set of estimates is reminiscent of other optimality results in the literature that 

have been shown to be NP-complete [Pap79]. 
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