

Log-Based Recovery in Asynchronous
Distributed Systems /f A',

Kenneth P. Kane
Ph.D Thesis

TR 89-1067
December 1989

"
~.) / """7".,

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

LOG-BASED RECOVERY IN ASYNCHRONOUS

DISTRIBUTED SYSTEl'vfS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Kenneth Paul Kane

January 1990

© Kenneth Paul Kane 1990

ALL RIGHTS RESERVED

Biographical Sketch

Kenneth Paul Kane was born on at

 Like all normal children, Ken always aspired to play

professional football, baseball, or tennis while growing up. However, Ken's two

left feet quickly got in the way of his athletic career. Ken therefore turned his

attention to academics. In September 1980, Ken enrolled at the C niversity of

Delaware, where in June 1984 he received his Bachelor of Science, Magna Cum

Laude, in Computer and Information Science. Because the thought of earning

an honest living didn't appeal to Ken, he decided to use his education to enter

graduate school. In August 1984, Ken enrolled at Cornell University to pursue

his Doctorate in Computer Science. Through careful nurt uring and a balanced

life, Ken has grown into the well-adjusted adult he is today.

ill

To my family.

iv

Acknowledgements

First and foremost I would like to thank my family for all of their love and

support, not only through the work on this dissertation, but throughout my life.

I couldn't have done it without you.

I would also like to thank all of my friends at Cornell for making my stay

there so pleasant. I would especially like to thank my officemates, Alex Aiken,

Charles Elkan, Hjalli Hafsteinsson, Bruce Hendrickson, Andy Meltzer, ~lichael

Schwartzbach, Kim Taylor, and Carolyn Turbyfill for always keeping me laughing.

even when you didn't intend it. And a special thanks to Brad Vander Zanden for

being such a good friend and for being the blackboard on which I derived many

of the ideas in this dissertation.

I wish to express my gratitude to Prakash Panangaden and J oe ~1itcheU for

serving on my committee, and especially to my advisor, Ken Birman, for all of

his guidance during my years at Cornell.

Finally, I wish to acknowledge the generous financial support of DARPA under

grant numbers N00140-87-C-8904 and NAG 2-593, and the Siemens Corporation,

which allowed me to pursue this work.

v

Table of Contents

1 Introduction
1.1 0 b jects and Recovery
1.2 Consistency
1.3 Objectives.
1.4 Outline ..

2 Formal System Model
2.1 Clients and Servers
2.2 Request Ordering and Causality
2.3 Failures and Recovery
2.4 System State and Consistency
2.5 Summary

3 Consistency Problems
3.1 Problem Examples

3.1.1 Consistency with Active Replicas.
3.1.2 Consistency' between Recovering Replicas
3.1.3 Consistency between Active Objects

3.2 Recovery Mechanism
3.2.1 JOIN Phase Outline
3.2.2 ACTIVATE Phase Outline

3.3 Recovery Examples.
3.4 Summary

4 Log Transformations
4.1 Log Addition
4.2 Log Deletion
4.3 Using Dependency Estimates

4.3.1 Log Addition
4.3.2 Log Deletion

4.4 Summary

V1

1
1
3

-*
-*

6
6
8

11
15
19

21
21
22
23
2j

2G
25
32
37
41

43
43
47
51
51
55
57

5 Recovery Solutions
5.1 JOIN Solution
5.2 ACTIVATE Solution
5.3 Using Explicit Dependency Information

5.3.1 JOIN Simplification
5.3.2 ACTIVATE Simplification

5.4 Summary

6 Estimating Dependencies
6.1 Potential Dependencies
6.2 Basic Estimates.

6.2.1 Request Ordering
6.2.2 Dependency Set

6.3 Compound Estimates ..
6.3.1 Dependency Set
6.3.2 Request Ordering
6.3.3 Safety....

6.4 U sing the Estimates
6.5 Summary . .

7 Efficiency Issues
7.1 Cycle Restriction
7.2 Backward Inclusion Systems
7.3 Checkpointing
7.4 Summary

8 Grouping Consistency
8.1 Grouping Consistency
8.2 Changes to Recovery Mechanism
8.3 Estimating Dependencies ..

8.3.1 Basic Estimates ...
8.3.2 Compound Estimates

8.4 Summary

9 Conclusions
9.1 Future Work

9.1.1 Implementation Considerations.
9.1.2 Other Consistency Forms
9.1.3 Optimal Estimates

Bibliography

vu

59
50
G:2
GG
67

60
ji)

iT
78
80
81
83
87
90
95
99

103
104

105
105
107
108
111

112
11:2
115
117
117
110
120

121
123
123
125
126

128

List of Tables

6.1 Directly Contradicted Request Orderings
6.2 Basic Estimated Dependents

vw

83
87

List of Figures

1.1 An object-oriented system 2

2.1 Overlap between object server sets. j

2.2 Concurrent submission of two name registration messages 9
2.3 Concurrent submission of two resource allocation messages 9
2.4 Resource allocation request structure 10
2.5 An execution of the resource allocation system. . 13
2.6 A possible state of the resource allocation system 16

3.1 Inconsistency with an active replica . . . 22
3.2 Inconsistency between recovering replicas 24
3.3 Recovery sequence of server f in state S 27

4.1 A recovery requiring addition to a log. -14
4.2 Log addition preserving consistency . . 45
4.3 A recovery requiring deletion from a log 48

4.4 Log deletion preserving consistency 49
4.5 Iterative addition of requests 53
4.6 Log addition using estimates 54
4.7 Iterative deletion of requests 56
4.8 Log deletion using estimates 56

5.1 Solution to the JOIN problem for server f in state 5 61
5.2 Solution to the ACTIVATE problem for object A in state 5 64

6.1 Three consistent potential dependency relations 80
6.2 An example of direct contradiction 83
6.3 A example of basic dependency set estimation 87
6.4 Non-optimal transitive closure 88
6.5 Sub-dividing an estimate along a chain 91

7.1 A hierarchical backward inclusion system 108
7.2 A non-hierarchical backward inclusion system 109

8.1 A grouping request structure. 113

IX

8.2 Log addition under grouping consistency
8.3 Log deletion under grouping consistency

9.1 Logs generating non-optimal estimates .

x

116
116

126

Chapter 1

Introduction

Replication is an important concept in the design of fault-tolerant distributed

computing systems. When applied to object-oriented systems, replication can

increase the availability as well as the performance of data objects. However,

replication also introduces the problem of maintaining consistency between 0 b ject

replicas. This problem is further compounded when object replicas can fail and

recover. In this dissertation we presen t a recovery mechanism for res toring 0 b jec t

replicas to consistent states after failures.

1.1 Objects and Recovery

In the last several years, object-oriented systems have become increasingly pop

ular [HMSC88,JLHB87,LCJS87). These systems provide their users with tools

for building and maintaining abstract data objects. An object in such a system

generally consists of an implementation body along with an interface. Only the

interface is visible to a client of the object; implementation details such as data

structures and internal procedures are hidden from the client inside the object

body. Figure 1.1 depicts an object-oriented system containing two objects, a

name manager and a resource allocation manager, and three clients. Clients

begin by registering themselves with the name manager and then proceed to

1

Names

Imple
mentation

Inter face

2

Resource
Allocation

Imple
mentation

Inter face

---4....--.-----.... -----.... ---4

Figure 1.1: An object-oriented system

allocate resources under that name using the resource allocation manager.

Objects in a system do not necessarily exist independent of one another. The

states of different objects may be related. In the above example, the state of

the resource allocation manager is dependent on the state of the name manager:

resources are only allocated to registered clients. When failures occur, however,

consistency constraints between objects can be violated. If the name manager

fails and subsequently recovers, losing some client registrations in the process,

the system could reflect resources allocations to unregistered clients.

It is the purpose of this dissertation to present an automatic mechanism for

restoring consistent states to (replicated) objects after failures. The mechanism

is based on logging the sequences of updates that occur to object replicas and

then using those sequences to construct consistent states after failures.

3

1.2 Consistency

The meaning of consistency in a system depends upon the application being im

plemented. Serializability is perhaps the most widely applied form of consistency

[BG81,Grai8,U1l82j. Under serializability, operations on objects are grouped into

transactions. Each transaction is executed as if it were an atomic unit. If a fail

ure occurs during a transaction, the result of the transaction is as if either all

of the operations in the transaction occurred or none of the operations occurred.

Further, concurrent transactions are executed as if they occurred in some serial

order (in reality, the operations in different transactions might be interleaved).

Serializability provides a strong consistency condition that is sufficient to

guarantee correctness in large number of applications. However, for many ap

plications the cost of implementing serializability is prohibitive. In addition,

serializability often provides a stronger consistency constraint than is required

by the application. For these reasons, weaker forms of consistency that are less

expensive to implement have been examined.

In this dissertation we focus on a causal form of consistency based on Lam

port's "happens before" relation [Lam78]. Under causal consistency, operations on

objects are partially ordered according to the virtual time at which they occurred

[Jef85] or the potential flow of information between them [BJ87aj. Objects may

then only be accessed in a manner consistent with this partial ordering.

Compared with serializahility, causal consistency has the advantage that it is

inexpensive to implement (causally consistent message ordering can be achieved

using only a one-phase protocol [BJ87b,Sch88,PBS89j). Further, causal consis

tency has heen shown to be applicable to a large variety of applications, including

mail handling systems [CP86), distributed simulation [J+87], and task decompo

sition [BJ87a].

4

1.3 Objectives

Recovery mechanisms have been proposed elsewhere for achieving causal consis

tency in a system [JZ88,SY85j. These mechanisms all require access to explicit

information about the causal dependencies between requests. It is the goal of

this work to show that consistency can be achieved without any such explicit in

formation. Instead, consistency is achieved using only information inferred from

the normal behavior of the system.

In addition, our mechanism implements a rollforward style of recovery. }'lany

existing solutions use rollback as a synchronization technique. However, it is

not always possible to rollback the state of a process or object. For example, the

state of an airline reservation system reflects tickets sold to customers and money

collected from those customers. If a failure occurs, rollback can be used to achieve

consistency within the internal system state, but is likely to leave the state of the

system inconsistent with the external world. In the airline reservation example.

it would be difficult to rollback or undo ticket sales to actual customers. For

this reason, our solution does not require a functioning object server to rollback

its state in order to achieve consistency with a newly recovering server. This is

accomplished at the cost of potentially blocking a server during its recovery.

1.4 Outline

We begin in chapter 2 by presenting our formal system model, including a de

scription of log-based recovery and its relationship to causal consistency.

Chapter 3 then describes several consistency problems that can arise due to

failures and outlines our basic recovery algorithms for solving these problems.

In chapter 4 we present transformations for consistently adding and deleting

entries from server logs. These transformations are used in chapter 5 to construct

solutions for the recovery problems introduced in chapter 3.

5

\Vhen explicit dependency information is not available in a system, our re

covery algorithms can instead use dependency estimates in order to achieve con

sistency. These estimates must have the property that they never under-estimate

the true set of dependencies. Chapter 6 presents several dependency estimates

with this property. The estimates are divided into two classes: basic and com

pound. The compound estimates are more accurate than the basic estimates. but

are also more expensive to compute.

In chapter 7 we discuss several issues concerning the efficiency of the recovery

algorithms. We begin by discussing a cyclic condition that can lead to block

ing during recovery. We show how this condition can be avoided by properly

structuring a system. We then describe a special class of systems that can be

efficiently recovered using the basic estimates, without the possibility of block

ing. We conclude the chapter by outlining the problems involved in implementing

object checkpoints.

Our basic recovery technique can be applied to forms of consistency other than

causal consistency. In chapter 8 we describe how the recovery mechanism can be

modified to provide an atomic form of consistency called grouping consistency.

Chapter 9 concludes the dissertation by summarizing the results and dis

cussing several related areas for future research.

Chapter 2

Formal System Model

In this chapter we present a partially replicated variant of the client-server model

of computation [BJ87a,BN84,Coo85]. The model is designed to represent a highly

asynchronous system and focuses on those aspects of the system that are relevant

to the recovery of data after a failure. The model uses asynchronously generated

logs to record changes to data and to recover the data after failures. In addi

tion, we describe notions of correctness and consistency based on causality (or

which events precede others [Lam78J) and discuss their relationship to log-based

recovery.

2.1 Clients and Servers

The active entities in a system are senJers and clients. Servers replicate and

maintain data objects that are read and updated by the clients. \Ve let S£RV

denote the set of servers in the system and let 0l3.:T S denote the set of data

objects managed by the servers. Each object, A E OB.:TS, is replicated at some

subset of the servers, Sf'RV A, which we refer to as the server set of the object

(st"nv A ~ St"'RV). For convenience, we will denote the set of objects managed

by a server, I, as 08.1S /.

08.1S, - {A E 08.1S I f E S£'RV A }

6

7

A B

• • (]
•

•
•

• •

Figure 2.1: Overlap between object server sets

Figure 2.1 illustrates the overlap between the server sets of different objects

in an example system. Depicted are the server sets of four objects: A, B, C, and

D. Note that the server set of object D is completely contained within the server

set of object A.

A client accesses (reads or updates) an object by broadcasting its request to

all servers managing a replica of the object. Upon receiving a request, each server

makes the appropriate update to its object replica. We assume that the state of

a replica is completely determined by the sequence of updates received by the

replica's server and that oth.er factors, such as the time of an update's receipt or

the timing between updates', do not affect a replica's state. It is not necessary,

however, that all servers receive requests in the same order. Concurrently issued

requests can be received by different servers in different orders, provided that

those orders lead to equivalent object states. This issue is discussed in further

detail in section 2.2.

As an example, consider a system service for managing lists. This serVlce

might provide users with functions for creating new lists, adding and deleting

entries from existing lists, and querying the contents of lists. One use for such

a service would be to manage resource allocations to client processes. Clients

would begin by submitting their names to a list of registered processes. Once

registered, clients could allocate resources by making entries into a resource al-

8

location list. Such a system is depicted in figures 2.2 and 2.3. In both figures.

the list of registered process names is replicated at servers f and g, \v hile the

list of allocated resources is replicated at servers 9 and h. Figure 2.2 depicts the

concurrent submission of two client name registration messages (regl and reg2).

Figure 2.3 depicts the concurrent submission of two resource allocation messages

(alcl and alc2). Note that in both examples the concurrent submissions are

received in different orders by the servers.

It may seem unusual that a server may manage replicas of multiple objects.

However, in object-oriented systems that replicate data, we believe that such

overlap between the server sets of objects is common. The work in dissertation

was motivated by the need to implement failure recovery in the ISIS system

[BCJ+j. In the ISIS system, servers often implement general objects, such as list

management in the previous example. These objects are then used by clients

to implement more specific services, such as name management and resource

allocation. Because of availability and performance considerations, not all of the

general servers may manage each of the specific services. Further, the subset of

servers that do manage a specific service may dynamically change as servers fail

and recover, or as different availability and performance constraints are placed

on the service. As a result, general object servers often manage multiple specific

serVlces.

2.2 Request Ordering and Causality

Clients in a system interact with each other in many ways. Clients communicate

directly by sending messages to one another, and indirectly through the objects

managed by the servers. These interactions may lead to causal dependencies be

tween the object requests they invoke. For example, in the system of figure 2.3,

two clients may agree to transfer an allocated resource between them. When this

occurs, the allocation service is notified of the transfer through are-allocation

9

Names Allocations

---------------~-------------

I
\

",," .-

,
......

...... -.... -

"~'I 0')
-- --

Figure 2.2: Concurrent submission of two name registration mes
sages

Names Allocations

--------------~~:------------~ (if\ - "~"~I "

...... ~

.. ,
)

Figure 2.3: Concurrent submission of two resource allocation mes
sages

10

Request Structure: (R, -<'R.)

R = {regl' reg2, aiel, al cd

Figure 2.4: Resource allocation request structure

request message sent by the clients. This re-allocation request is causally depen

dent on the original allocation request (as well as on the registration requests

of the clients involved); no server should receive the transfer request until it has

received the clients' registration messages and the resource's initial allocation

message.

We summarize the set of causal dependencies between the client requests

10 a system by means of a request structure. A request structure is a logical

entity designed to represent the behavior of clients as seen by an outside observer

looking back on the system after its completion. As such, the request structure

of a system is static.

Definition 2.1

A requ.est structure is a partially ordered set of requests (R, -<'R.)'

Here, R is the set of all requests made by clients in the system and -<'R. relates all

pairs of causally dependent requests. If two requests are related, x -<n y, then

request y is causally dependent on request x. The relation -<n is equivalent to

the "happens before" relation of Lamport [Lam78] and like the "happens before"

relation -<n is transitive and acyclic. R may contain requests made on many

different objects. For any request, x E R, we will sometimes use the notation x .. 4

to indicate that request x was made on object A. A request structure representing

the dependencies in the resource allocation system is shown in figure 2.4.

Recall that servers process requests in the order in which they receive them.

11

\Ve assume that in order to construct correct replica states, servers must recei\'e

(process) requests in causally consistent orders (i .e. in orders consistent with

the application's request structure (R, -<'R))' If a server receives t..,,,"o related

(ordered) requests, x -<'R, y, then it must receive request x before it receiyes

request y. Unrelated requests may be received by a server in any order and

different servers may even receive the same unrelated requests in different orders.

We do not assume that servers are given any explicit information about the

dependencies between the requests they receive. In particular, we do not assume

that servers have any explicit knowledge of (R, -<'R)' It is the responsibility of

the clients to ensure that all servers perceive causally consistent request order

ings. A variety of techniques exist for clients to order their requests [BJ87b.

CM84,CA5D86,PB589j. We will not, however, make any assumption about the

mechanism used. Clients may use any technique that guarantees correct request

orderings.

2.3 Failures and Recovery

We assume fail-stop servers [5583]. When a server fails, it immediately ceases

to receive and process client requests, and the other servers in the system are

notified of its failure. In addition, the failed process also loses the contents of its

volatile memory. We assume that other types of failures, such as send/receive

omission failures [PT86] or Byzantine (malicious) failures [L5P82], do not occur.

We also assume that network partitions [DGM585] never occur, so that non-failed

servers can always communicate between themselves.

In order to support recovery from failures, each server maintains a log of the

object updates it performs.

Definition 2.2

A l£9. is a totally ordered set of requests (C, -c).

12

Here, C is the set of object update requests received by the server and ~ (. IS

their order within the log. For the present, logs will be restricted to contain

only requests; they will not contain checkpoints. In any real system checkpoints

are necessary to limit the growth of logs. However, the presence of checkpoints

complicates the problem of recovery and so their use will be postponed until

chapter 7.

Servers log requests in the order in which they receive them. Because servers

receive requests in causally consistent orders, it follows that servers log requests

in orders consistent with the application's request structure.

Definition 2.3

The log, (C /' - /), 0/ a server / '" consistent with a request structure,

('R, ~1l), i/

1. V x.A E C, /: / E S £'R V A

2. V x.AE C/: Vy.B E 'R :

(y.B ~1l x.A A / E S£'RV B) => (y.B E c'f 1\ y.B - f x.A)

In the treatment that follows, we assume that a request is logged by a server

as soon as it is received and processed, and so the log of a server always re

flects the current states of the server's object replicas. For efficiency, a server

could decouple its execution speed from that of its log by buffering requests in

memory and periodically flushing the buffer to its log. A server's log would then

reflect states that lag behind the actual states of its replicas. Managing a server's

log asynchronously from its replicas does not affect the validity of our results.

However, it would complicate the discussion. If it were really desired to imple

ment this restriction, a server could use a technique such as write-ahead logging

[BHG87].

Servers in our model do not coordinate their logs with those of other servers.

I
I Client 1
I
I
I
I
I
I

:/
I
I
I
1
Ig
1
1
1
1

'h
1
1
1
1 , , ,
,Client2

time 0

13

"I~ ~ .. reg2

: reg}

alc2

..... ~

time t} time t2

Figure 2.5: An execution of the resource allocation system

Each server logs the requests it receives independent of the times when those

requests are logged by other servers. As a result, the state of an object represented

in one log may fall behind the state of that object represented in some other

log. Further, because servers do not always receive requests in the same order.

different servers may have logged different requests for the same object at any

one time.

Figure 2.5 illustrates one possible execution of the system of figures 2.2

and 2.3. In the figure, horizontal lines represent client and server executions

through time while diagonal arrows represent request message broadcasts. De

picted are the broadcasts of two name registration messages (reg} and reg2) and

one resource allocation message (alc2). Note that server / fails at time t} before

receiving and logging the second registration message, and that server 9 fails at

14

time t2 after receiving and logging all three broadcasts. The contents of each

server's log are shown below that server's time line after each request receipt.

Managing server logs asynchronously from one another reduces the system

overhead by decoupling the execution speeds of different servers. Each server is

free to process requests at a rate independent of the other servers. Cnfortunately.

as we will see in the next chapter, the use of asynchronous logs leads to coordi

nation problems between servers after failures. These problems can be avoided

by coordinating the logs of different servers (pessimistic logging techniques exist

for doing this [JZ87,PP83j). However, this adds substantial overhead to the nor

mal operation of a system. We therefore choose to manage logs asynchronously,

postponing the overhead of coordinating logs until the time of a server's fail

ure recovery. If failures are rare, this optimistic approach should lead to good

performance of the system.

Other optimistic logging techniques have been proposed for managing fail

ures in distributed systems [SY85,JZ88]. These techniques involve maintaining

explicit information about the causal dependencies between updates. Managing

such information can be difficult or impossible, though, when the set of clients

is either unknown to the servers or large and dynamically changing. \Ve there

fore examine the problem of optimistic failure recovery in systems where explicit

dependency information is not available.

A server uses its log to recover from failures in the usual way. In order to

restore the state of a failed object replica, a recovering server simply re-executes

the sequence of updates logged for the object. Once the recovering server has

restored its (volatile) replica of an object, that server begins receiving, processing,

and logging new requests on the object. We refer to a server that is in the process

of restoring its replica of an object as a recovering server of that object and we

refer to a server that can process new requests on an object as an active server

of the object.

15

Note that a recovering server does not have to re-execute the updates for an

object in the order in which they were logged. Previously we stated that a server's

ob ject replicas are correct if that server processes requests in causally consis ten t

orders. Because of this, a recovering server can re-execute logged updates in any

order consistent with the application's request structure, and still reconstruct

valid object replicas. Of course, the order in which a server logs requests is

always consistent with CR., ~1l), and so this order can be used to construct valid

replica states. This is particularly useful when servers does not have access to

any explicit dependency information, and so cannot determine other valid request

orderings.

We represent the state of an object reflected in a server's log by the set of

updates it contains for that object.

Definition 2.4

The projection of a log, (c'I' - I)' onto an object, A E VB.] S, is

2.4 System State and Consistency

The state of a system can be summarized in terms of the contents of the servers

logs and the status of each server (the log of an active server reflects the actual

states of the server's replicas).

16

ACT SIName, = 0 R£CS/Name, = {f} :FAILS/Names = {g}

ACT SIAllocations = {h} R£C S/Allocations = 0 :FAILS/Allocations = {g}

reg2

(CSI /' -SIJ): ~ (C S/9 ' -S/g): regl

alc2

Figure 2.6: A possible state of the resource allocation system

Definition 2.5

A state, 5, of the system is characterized by the following values:

For each data object, A E OB.:!S:

ACT S/A The set of active seMlers of object A.

RECs/A The set of recovering seMlers of object A.

:FAXCS / A The set of failed servers of object A.

For each server, f E SERV:

(C S/I ' -SII) The log of seMler f·

For example, consider again the execution of figure 2.5. Suppose that server f

begins to recover at time t2, when server 9 fails. In this case, figure 2.6 shows

the state, 5, of the system immediately after time t2'

When a server fails, it fails for all objects it manages. When the server later

recovers, it begins recovering the states of all replicas it manages.

(3 A E OBJS: f E :FAXCS/ A) =>

(\I A E OB.:! S I: f E :FAXCs/A)

17

\Ve denote the complete set of failed servers in state 5 as FAIls-

FAICs = U FAIC S/ A
AEOBjS

In this dissertation, we will be concerned with the problem of maintaining the

overall consistency of a system's state (as well as the consistency of server logs)

when servers fail and recover. There are two aspects to the issue of a system's

overall consistency. First, there is the issue of consistency between the replicas of

the same object. Second, there is the issue of consistency between the states of

different objects. We briefly discuss each of these aspects in turn. A more formal

treatment of these issues is reserved for chapter 3.

All active servers of an object should maintain equivalent states for their ob

ject replicas, so that the servers behave consistently with respect to one another.

Because servers execute asynchronously from one another, different servers may

construct this state at different speeds and by processing requests in different

orders. We assume that at the time a server recovers, all active servers of an

object have constructed (and logged) equivalent object states. This state, which

we refer to as the active state of the object, is the state the recovering server

should restore to its replica ..

Definition 2.6

The active state of an object, A E OS:r S, in system state S is

v f E ACTs/A

Restricting active servers to equivalent object states (at the time of a server

recovery) is reasonable. For example, in the ISIS system [BJ8ib] process failure

and recovery events are totally ordered with respect to all other events (message

broadcasts) in the system. Thus, when a server recovers from a failure, it can

assume that all active servers of an object have received the same set of requests

and thereby constructed the same object state. Note that the restriction on

18

identical states is only required to hold at the time of a server recovery. At all

other times during the execution of the system, servers are free to maintain their

object replicas asynchronously.

The second aspect to the issue of a system's overall consistency is consistency

between the states of different objects. The state of an object should never reflect

a request (update) unless all of the requests on which it is causally dependent

are also reflected in their object's active states. For example, a system running

under the request structure of figure 2.4 should never be in a state that reflects the

allocation (aiel) made by the first client without reflecting the client's registration

(regI).

A system state, 5, is said to be observably consistent with a request structure

('R, -<x), if the above consistency constraints hold within the active portion of

the system. That is, a state is consistent with a request structure if all active

servers of an object have logged the same (valid) state for the object and the

states of all different active objects are mutually consistent. These constraints

are only required to hold within the active part of a system because this is the

only portion of the system visible to clients.

Definition 2.7

A system state, 5, is obseMJably consistent with a request structure,

(R, -<x), i/

1. V / E SE'R..V - :FAICs : (CsI1 ' -+s/l) is consistent with (R, -<n).

f. V A E 083S: V /,g E ACT SIA: (CSI1 ' -+5/1) IA = (£5/9' -+S/g) IA

9. V A,B E 083S (ACTsIA 1: 0 " ACT SIB 1: 0):

V x.A E ASsIA: V y.B E 'R (y.B -<x x.A): y.B E ASs/B

This dissertation presents a recovery mechanism for maintaining observable con

sistency in the presence of server failures and recoveries.

19

2.5 Summary

This chapter presented a formal model of replicated data in an asynchronous

distributed system. The model was designed to focus on those aspects of the

system relevant to the recovery of data after a failure.

A system consisted of a set of servers, S£RV, replicating a set of data objects.

013.:1 S, along with a set of clients that accessed and updated those objects . .-\.

basic assumption was that objects were partially replicated within larger groups

of servers. This lead to arbitrary overlap between the sets of objects individual

servers managed. A client in the system accessed an object by broadcasting a

request message to all servers of the object. An underlying structure, (R, -<n),

governed the correct orders in which servers could receive requests. Because this

request structure was unknown to the servers, it was the responsibility of the

clients to ensure the servers perceived correct message orderings.

In order to support recovery from fail-stop failures, each server maintained a

log, (C!, - f)' of the client requests it received. There was no synchronization

between the logs of different servers. Each server logged requests as soon as they

were received. It was noted that the order in which requests appear ,vithin logs

is always consistent with the application's request structure. After a failure, a

server reconstructed the states of its object replicas by replaying the requests in

its log.

Servers could recover differing replica states because logs were maintained

asynchronously. A system was said to be observably consistent if three conditions

held:

1. The order of requests lD all servers' logs (i.e. the states of the servers'

replicas) are consistent with the application's request structure.

2. All active servers of an object have logged (constructed) the same state for

the object.

20

3. The states of all active objects are mutually consistent (i.e. consistent with

respect to the application's request structure.

Developing a recovery mechanism for maintaining this consistency is the goal of

this dissertation.

Chapter 3

Consistency Problems

The use of asynchronous logs potentially allows servers to recover inconsistent

states after failures. This chapter describes (in outline form) a recovery mech

anism for preventing such inconsistencies. The chapter begins by presenting

several examples of how inconsistencies arise. The behavior of the recovery mech

anism is then formally described and several examples of its operation are given.

This chapter presents only a formal outline of the recovery mechanism. The

implementation of the mechanism is the subject of the remainder of this disser

tation.

3.1 Problem Examples

Two types of inconsistencies can develop in a system: those between the states

of an object's different replicas and those between the states of different objects.

\Ve present three examples of such inconsistencies. The first two illustrate incon

sistencies that can develop between an object's replicas. The last illustrates an

inconsistency that can develop between the states of two objects.

21

I

I Client 1
I
I
I
I
I
I

:1
1
1
1
1
Ig

h

Client 2

time 0

22

....... ~

I
·.~I

"~:
I

time tl

Figure 3.1: Inconsistency with an active replica

3.1.1 Consistency with Active Replicas

At the time a server recovers from a failure, its log reflects the states of its object

replicas from the time of the failure. When the recovering server replays its log,

it restores its replicas into these states. These states may, however, be out of

date if other servers of the objects remained active, processing updates after the

recovering server's failure. Such updates would be reflected in the replicas of the

active servers, but not in the replicas of the recovering server.

For example, consider the execution of the resource allocation system shown

in figure 3.1. The execution depicts the transmission of two client registration

messages (regl and reg2) and one resource allocation request (alc2). In the figure,

server f receives both registration requests without failing. Server 9 fails at time

tl after receiving requests reg2 and alc2, but before receiving request regl. And.

23

server h fails after receiving request alc2. Suppose that server 9 recovers after

time t}. Server 9 will then recover its replica of object .. :--; ames·' into a state

reflecting only the registration of client 2. It will not recover the registration of

client 1 reflected in the object's active state (the state reflected in the replica of

server f). The contents of both servers logs at the time of the recovery are shown

below:

Server f
(active)

Server 9
(recovering)

This type of inconsistency can be prevented by transferring the active states

of objects to the failed server at the time of recovery. The recovering server \vould

then alter its log to reflect these transferred states so that it restores them during

log replay. This is the approach used by ISIS [BJ87aj and will be the approach

used in our recovery mechanism.

3.1.2 Consistency between Recovering Replicas

A similar type of inconsistency can occur when several servers of an inactive ob

ject (an object for which all servers have failed) recover simultaneously. Because

the servers maintain their logs asynchronously from one another, and because

they probably failed at different times, each server's log probably reflects a dif

ferent state of the object. Each server is therefore likely to recover a state for its

object replica that differs from (is inconsistent with) the states recovered by the

other servers.

For example, consider the execution of the resource allocation system shown

in figure 3.2. This execution is similar to the previous one except that server

f fails before receiving registration request reg2. Suppose that both servers f

and 9 simultaneously recover at some point after time t2. The servers will then

recover inconsistent states for their replicas of "Names". Server f will recover a

1 •
1 Ghent 1
1
1
1
1
1
1 :j
1
1
1
1
Ig
1
I , ,
'h ,
I , , ,
1
I .
, Glzent 2

time 0

24

........ ~

time tl

I
'. I

.. ~:
I

time t3

Figure 3.2: Inconsistency between recovering replicas

25

state reflecting only the registration of client 1 and server 9 will recO\·er a state

reflecting only the registration of client 2. This situation is depicted below:

Server f
(recovering)

Server 9
(recovering)

c;;]
~

This inconsistency problem can be solved by having the recovering sen-ers

choose a new state for the object and then alter their logs so that they all recover

this state during log replay. Ideally, this state should be a recent one, reflecting

as many of the client requests as possible. In synchronous systems, where the logs

of servers are coordinated, the log of the last server to fail [Ske85] will contain

the most recent state of the object. This state could then be used to recover

the failed servers. When logs are not coordinated, however, any server may have

logged the most recent state. Different servers may even have logged different

sets of requests and so no server will have logged the most recent state. In this

case, a recent state of the object can be formed by merging the logged requests

of the recovering servers. Thi.s is the approach used by our recovery mechanism.

3.1.3 Consistency between Active Objects

The previous two examples illustrated consistency problems that develop between

different replicas of a single object. Because dependencies can exist between

requests on different objects, inconsistencies can also develop between the states

of different objects. Let S denote a state of a system in which some failed server

f is recovering its replica of an object, A, and in which some other object, B, is

active. If the state of object A logged by server f is old, f may recover a state

that does not reflect all of the updates on which the active state of B (AS 51 B)

depends. Similarly, if the active state of B is old (i.e. it is the result of a previous

failure recovery of its servers), it may be missing updates on which the state of

A recovered by server f depends.

26

As an example, consider again the execution shown in figure 3.2. If servers f

and h recover at some point after time tJ, thev will recover mutuallv inconsistent . .
states. Server h will recover an allocation request (alc2) from a client \vhose

registration (reg2) is not recovered by server f. That is, the servers will recover

a state that reflects a client's allocation without reflecting the registration on

which it depends. Shown below are the logs of the two servers at the time of the

recovery:

Server f
(recovering)

Server h
(recovering)

Inconsistencies between different objects are the most difficult ones to prevent

in a system, and are the focus of the recovery mechanism.

3.2 Recovery Mechanism

In order to preserve consistency within a system, a recovering server must be

careful about the states it restores to its object replicas. A recovering server must

restore replicas of active objects using those objects' current states. A recovering

server must also restore replicas of inactive objects to states consistent with the

rest of the system (e.g. the state must agree with those of other recovering replicas

of the object, and the state must be consistent with the states of other active

objects in the system).

Our recovery mechanism enforces these constraints in two phases. In the

first phase, a failed server's replicas of active objects are restored to the objects'

current states in the system. We refer to this as the server's JOIN phase. Once

the server has completed its JOIN phase, its replicas of inactive objects are

restored to states consistent with the state of the system. We refer to this as

the server's ACTIVATE phase. Figure 3.3 illustrates the relationship of the bvo

recovery phases. The behaviors of the two phases are formally outlined in the

following sections.

27

JOIN Phase: (immediately upon recovery)

1. for each A E OB.JS 1 (ACT SIA =I- 0)

alter (£s/f' -'s/f) so that

(£s/f,-'s/f) IA = ASS1A

2. reconstruct replicas of active objects from (£SI/' -'S//)

3. begin processing new requests on active objects

ACTIVATE Phase: (upon completion of JOIN phase)

4. while 3A E OB.JS / (ACT SIA = 0)

wait for allg E n£csIA to complete their JOIN phases

construct a new state, SA, for object A by merging the logs

of all members of n£c SI A

if SA is inconsistent with the state of any active object

then abort activation of A until additional servers

recover

activate object A by:

altering (£SII' -'S/f) so that

(£sll' -S/I) IA = SA

reconstruct replica of A from (c, SI I' -. SI /)

begin processing new requests on A

Figure 3.3: Recovery sequence of server f in state S

28

The recovery sequence of a server is divided into two phases for several rea

sons. The JOIN phase provides a server with information about the states of

some of the active objects in the system. This information is used in the A C

TIVATE phase to ensure that only consistent states are recovered for inactive

objects. A consistent state cannot always be recovered, however, for an inactive

object; moreover, the ACTIVATE phase cannot always determine (based on the

dependency information available to it) if the state it constructed for an object

is consistent with the states of all active objects. When it cannot determine

the consistency of a state, the ACTIVATE phase must temporarily abort the re

covery of an object until other servers recover, providing additional dependency

information. The JOIN phase, on the other hand, never needs to abort and so it

is separated from the ACTIVATE phase.

3.2.1 JOIN Phase Outline

When a server begins recovering from a failure, its status is upgraded from a

failed server to a recovering server for each object it manages. The JOIN phase

is responsible for bringing the state of a newly recovering server up to date

with respect to the states of active objects in the system. The current states

of active objects are transferred from the active servers to the recovering server

and the recovering server's log is altered to reflect these current object states.

The recovering server's replicas are then restored by replaying the appropriate

portion of the log and the server begins processing new client requests on the

objects.

The changes that occur to the system state as a result of the JOIN phase

are summarized in definition 3.1. Note that the only portion of the state that

changes is the portion related to the recovering server (I).

29

Definition 3.1

A state, T, solves the JOIN problem for server f E S£RV m state 5 under

request structure (R, -< 1l) if T satisfies the following conditions:

JCt. (CTlf , -Til) is consistent with (R, -<1l).

JC2. The new log of seMler f reflects the current states of active objects.

JC3. The only log that changes is that of server f.

JC4. SeMler f changes from a recovering to an active server of the active
objects.

'V A E OS.] S (ACT SIA :/= 0) ;

f E SERV A ==}

(ACT TIA = ACT S/A U{f} 1\ R£CTIA = R£C S/A - {f})

f ft SE'RVA ==}

(ACT T/A = ACT SIA 1\ 'RECT/ A = 'REC S/A)

'V A E OB.]S (ACT S/A = 0) :

(ACT TIA = ACT S/A 1\ 'RECTIA = 'RECsIA)

JC5. The set of failed servers remains the same.

'V A E OB.]S: FAIc'TIA = FAICslA

In addition to meeting these conditions, the new log of server f should also

be as complete as possible. The new log should retain as many of the old log's

entries as possible. This allows the ACTIVATE phase to recover inactive objects

into the most recent state possible. Although we will not formalize this condition.

30

we do wish to point it out as a goal.

As shown in the following theorem, the JOIN phase preserves consistency

within a system.

Theorem 3.1

If 5 is a state that is observably consistent with a request structure (R, -< R),

and ifT is a state that solves the JOIN problem for server f E S£RV in state

5, then T is also observably consistent with (R, -<,,).

Proof: In order to prove that T is observably consistent with (R, -<,,) we

must show three things. First, we must show that all servers' logs are consistent

with the request structure. From condition JCt of the JOIN phase definition

we know that the log of server f (in state T) is consistent with CR, -<n). From

condition J C3 we know that the logs of all other servers remain unchanged from

state 5, in which they were all consistent with CR., -<,,) by premise. The logs of

all servers in state T are therefore consistent with (n, -<,,).

Next, we must show that all active servers of an object reflect the same state

for the object. Let A E OB,JS be any active object (i.e. ACT T/A i= 0). \Ve

assume that f is not actively servering object A in state 5 (i.e. f t/. ACT sl/d,

otherwise it would not need to solve its JOIN problem. By premise, 5 is an

observably consistent state and so all active servers of A in 5 have logged the

same object state.

Because f ~ .ACT 51 A, it follows from condition J C3 that the logs of all servers

in ACT 51 A remain unchanged between states 5 and T.

Combining these two equations we see that all active servers of A in state 5 have

31

still logged the same object state in state T.

(3.1)

:'-J'ow, there are two cases: either f is a (recovering) server of .4 or it is not.

Suppose f is a server of A. From condition JC2 we know that

(3.2)

Combining equations 3.1 and 3.2 we get

From condition JC4 we know that

ACT T/A = ACT SIA U {f}

Substituting this into equation 3.3 we get the desired result that all active servers

of A in state T reflect the same state for the object.

(3.4)

Now suppose that f is not a server of object A. From condition JC4 we know

that ACT TIA = ACT SjA' Substituting this into equation 3.1 we see again that

all servers of A are consisten t.

(3.5)

The last thing we must show in order to prove the observable consistency

of T is that the states of all active objects are mutually consistent. Because 5

is an observably consistent state we know that all active objects are mutually

consistent in state S.

't/ A, B E 083S (ACT SIA # 0 A. ACT SIB -# 0) : (3.6)

't/ x.A E ASs/A: V y.B E n (y.B -<'R x.A): y.B E ASS1B

32

From condition JC4 it follows that any object that is active in state 5 is also

active in state T and that there are no new active objects in state T.

V A E OB.:! S: ACT 5/ A#-0 ~ ACT T / A 1= 0

Substituting this into equation 3.6 we see that all active objects in state T were

mutually consistent in state S.

V A,B E OB.:!S (ACTT/A #- 0 1\ ACTT/ B #- 0): (3. i)

V x.A E ASS/A: V y.B E n (y.B -<~ x.A): y.B E ASS/ B

From equations 3.4 and 3.5 we see that the states of all active objects remain

unchanged between states S and T.

V A E OB.:!S (ACT T/A #- 0): AST/A = ASS/A

Substituting this into equation 3.7 we get the desired result.

V A,B E OB.:!S (ACTT/A #0 1\ ACTT/ B #- 0): (3.8)

V x.A E AST/A: V y.B E n (y.B -<~ x.A): y.B E AST/B

That is, the states of all active objects are mutually consistent in state T. 0

3.2.2 ACTIVATE Phase Outline

The ACTIVATE phase is responsible for recovering a server's replicas of inactive

objects. A server does not begin its ACTIVATE phase until it has completed its

JOIN phase. Inactive objects are recovered one at a time and a server coordinates

its recovery of an inactive object with those of the other recovering servers of the

object (once they have completed their JOIN phases). In order to restore an

inactive object, the recovering servers first agree on a new state for the object

(one that is consistent with the states of all other active objects in the system)

and then alter their logs to reflect this new state. The servers then restore their

33

replicas by replaying the appropriate portions of their logs and begin to receive

and process new client requests on the object.

The changes that occur to the system state as a result of the A.CTIVA.TE

phase are shown in definition 3.2. Note that the only portion of the state that

changes is the portion related to the recovering servers of the inactive object (.4.).

34

Definition 3.2

A state, T, solves the ACTIVATE problem for object A. E 013:JS in state 5

under request structure ('R, ":1l) ifT satisfies the following conditions:

ACt. The new logs of the recovering servers, (CTI /' -TI f) V f E nEe SjA.,

are consistent with ('R, --< 1l) .

AC2. The recovering servers of A agree on the object's new state.

AC3. The new state for object A is consistent with the states of all other

active objects.

Y B E OB:rS (ACT TIB =1= 0) :

Y x.A E ASTIA : V y.B E 'R. (y.B ":1l x.A): y.B E ASTIB and

V y.B E ASTIB: V x.A E 'R. (X.A -<1l y.B): x.A E ASTjA

AC4. The new logs of the recovering servers preserve the states of any pre

viously active objects.

V f E 'R.£C S1A : V B E OB:JS / (f E ACT SIB) :

(CT / f' -+ T If) I B = (C S If ' - S If) I B

A:~5. The only logs affected are those of the recovering servers of A ..

AC6. The recovering servers of A become active servers of the object.

ACTTIA = 'R£C S/ A VB E OB:rS - {A}: ACTTIB = ACTslB

1UCT1A = 0 Y B E OB:rS - {A}: 'R.£CT1B = n£cSIB

ACT. The set of failed seruers remains the same.

V A E 08:rS: FAIc'T/A = FAIc'S/A

In addition to meeting these conditions, the recovering servers' new logs

35

should also be as complete as possible, reflecting as many of the previously

logged requests as possible. In addition, the new state constructed for object

.4. should be as up to date as possible. The state should reflect all of the logged.

requests from the time of recovery that are consistent with the current system

state. Again, however, we will not formalize these conditions. \Ve present them

only as design goals.

The following theorem shows that the ACTIVATE phase preserves consis

tency within a system.

Theorem 3.2

If S is a state that is obsenJably consistent with a request structure (R, -< n),

and ifT is a state that solves the ACTIVATE problem for object .4. E 013.J 5

in state S, then T is also obsenJably consistent with (n, -< R).

Proof: A state is observably consistent with a request structure if it has

three properties. First, the logs of all servers in the new state must be consistent

with (n, -<1l). From condition ACI of the ACTIVATE phase definition we know

that the logs of all recovering servers of object A, in state T, are consistent

with (n, -<1l). From condition AC5 we know that the logs of all other servers

remain unchanged from state S, in which they were consistent with (n, -<n)

by premise. The logs of all servers in state T are therefore consistent with the

request structure.

Next, in order for a state to be observably consistent, all active servers of an

object must reflect (have logged) the same object state. To see that this property

holds in state T, first consider object A. From condition AC6 we know that the

only active servers of object A in state T are the servers that were recovering in

state S.

ACT T/A = n.ecs/A

From condition AC2 we know that these servers reflect the same object state for

36

A in state T.

Now, consider any other active object B (ACT TIB :f:. 0) in state T. It follows

from condition AC6 that the set of active servers of B remains unchanged between

states S and T.

V B E 08.1S - {A} (ACT TIB :f:. 0) : ACT SIB = ACT TIB (3.9)

Because S was an observably consistent state, it follows that all of these servers

reflected the same object state for B in state S.

(3.10)

From condition AC4 we know that the set of logged requests for object B does

not change between states S and T at any of the active servers of B that are

recovering servers of A.

(3.11)

From condition AC5 we know that the logs of the other active servers of B (those

that are not recovering servers of A) do not change between states Sand T and

so the set of . quests they've logged for B remains the same.

(3.12)

Combining equations 3.11 and 3.12 we see that all active servers of B have logged

the same set of requests for B in both states S and T.

(3.13)

Substituting the result of equation 3.13 into equation 3.10 we see that all active

servers of B reflect the same object state in state T.

37

The last property of observable consistency is that the states of all actiye

objects are mutually consistent. To see that this property holds in the new state.

T, consider first any two active objects, B,G E OB.7S - {A}, other than .-l.

(ACT TIB =f:. 0 and ACT TIC =f:. 0). From equation 3.9 we know that the set of

active servers of these objects does not change between states Sand T.

ACTslB = ACTTIB ACT SIC = ACT TIC

Because S was an observably consistent state, we also know that the active states

of these objects were mutually consistent in state S.

'V B, G E OB.7S - {A} (ACT TIB #- 0 1\ ACT TIC #- 0) :
(3.14)

'V y.B E ASSIB : 'V z.e E R (z.e -<1l y.B): z.e E ASSlc

From equation 3.13 we know that the states of these active objects do not change

between states S and T.

'V B E OB.7S - {A} (ACTTIB =f:. 0): ASTIB = ASslB (3.15)

They must therefore remain mutually consistent in state T.

'V B,C E OB3S- {A} (ACTTIB =f:. 0 1\ ACTTlc =f:. 0):

'V y.B E ASTIB : 'V z.e E R (z.e -<1l y.B): z.e E ASTIC

It follows that any inconsistency between object states in T must involve object

A. However, from condition AC3 we know that the active state of A is consistent

with the active states of all other objects. The states of all active objects are

therefore mutually consistent in state T. a

3.3 Recovery Examples

As an example of the recovery mechanism's behavior, consider again the execu

tion of the resource system shown in figure 3.2. Suppose that server f is the first

server to recover after time t3. At the time server f recovers, the state of the

system will be:

38

ACT S/Namel = 0 R£CS/Name, = {f} FAICS/Names = {g}

ACT S/Allocation, = 0 REC S/Allocation, = 0 F AICS/Allocations = {g, h}

Because no objects are active when f recovers, the JOIN phase of f will not

take any actions. During its ACTIVATE phase, however, server f will recover

its replica of object "Names". Because no objects are active, server f is free

to recover any valid state of "Names" for its replica; it does not have to be

concerned with ensuring consistency with the states of any other active objects.

Server f therefore recovers its replica using the state reflected in its log (the state

reflecting only the registration of client 1). The resulting state is shown below:

ACT S/Namu = {f}

ACT S/ Allocation. = 0

RECS/Namu = 0 FAZc'S/Namel = {g}

'RECS/Allocation. = 0 FAZc'S/AlIocation, = {g, h}

Now, suppose that server h is the next server to recover. Again, no objects

served by h are active at the time of the recovery and so the server's JOIN phase

will not take any actions. Instead, server h's replica of "Allocations" is recovered

during its ACTIVATE phase. Unlike the recovery of object "Names" by server

j, however, server 9 is not free to recover any state for object "Allocations"; it

must ensure that the state recovered is one that is consistent with the state of

the now active object "Names". Server h must therefore delete request alc2 from

its log because the registration of client 2 is not reflected in the active state of

the system. The state of the system resulting from the recovery of h will then

be:

39

ACT S/Name, = {f} R£CS/Names = 0 FAIc'S/Names = {g}

ACT 5/ Allocation, = {h} R£C 5/ Allocations = 0 F AI C, 51 Allocations = {g}

If server 9 then recovers last, both objects it servers will be active. The states

of these objects are therefore transferred to 9 during its JOIN phase and placed

in its log. No actions are taken during g's ACTIVATE phase. The final state of

the system (after the recovery of all three servers) is shown below:

ACT S/Name, = {f,g} R£CS/Name, = 0 FAILS/Names = 0

ACTS/Allocation, = {g,h} RECs/Aliocation, = 0 FAILS/Allocations = 0

As another example, suppose that server f recovers first as above, but that

servers 9 and h then recover simultaneously. Again, the JOIN phase of h will not

take any actions because the object served by h ("Allocations") is inactive at the

time of the recovery. Because object "Names" is active, though, the JOIN phase

of 9 will recover g's replica of that object. In order to restore the replica to the

object's current active state, the JOIN phase of g adds request regl to g's log and

deletes request reg,. Note, however, that in order to preserve consistency within

the log of g, request alc2 must also be deleted because it depends on request reg2·

The state of the system immediately after the JOIN phases of servers 9 and h

will then be:

ACT S/Namu = {f, g} REC S/Namu = 0 FAICS/Name, = 0

ACT S/ Allocation, = 0 'REC S/ Allocation, = {g, h} FAIL S/ Allocation, = 0

40

After completing their JOIN phases, servers 9 and h begin their ACTIVATE

phases. During their ACTIVATE phases, the servers recover their replicas of

object "Allocations". The servers cooperate in deciding on a new state for the

object. Because the only request on the object known to either server (alc2) is

inconsistent with the active state of "Names", the servers will decide on a state

that reflects no allocation of resources. The final system state is the same as that

in the previous example.

As a final example, suppose that server h is the first server to recover. No

objects will be active at the time of the recovery, so no actions will be taken

during the JOIN phase of h. During its ACTIVATE phase, though, server h

will recover its replica of "Allocations" in the state reflected by its log (the state

reflecting the allocation made to client 2).

Suppose now that servers f and 9 simultaneously recover. The state of the

system at the time of the servers recovery will then be:

ACTS/Namu = 0 'R£CS/Na.mu = {f,g} :FAIeS/Na.me, = 0

ACT S/Alloca.tioft. = {h} 'R£CS/AlIoCGtioft' = {g} :FAIeS/Aliocation, = 0

During its JOIN phase, server 9 will recover its replica of "Allocations". Because

its log already reflects the current state of that object, no alterations are made

to the log. No a.ctions are taken during the JOIN phase of server f.

When servers f and 9 enter their ACTIVATE phases, they recover their repli

cas of object "Names". The servers merge their logs to form a new state for the

object that reflects both the registrations of client 1 and client 2. Server falters

\

41

its log to reflect this new state by adding in request reg2. Server g similarly alters

its log by adding in request regI. The resulting system state is then:

ACT S/Narne. = {f,g} R.£CS/Narne. = 0 F AICS/;\'amelf = 0

ACT S/Allocatio, .. = {g, h} R.£CS/Allocationlf = 0 FAICS/Allocationlf = 0

(C S/ f' - s/!): ~egl
reg2

(Cs/g' -s/g): reg}

alc2
reg2

Note that request reg2 must be included in the new state of "Names" because

the active state of "Allocations" depends on it.

3.4 Summary

In this chapter we examined the problem of how inconsistencies arise between the

states of objects in a system. Inconsistencies can develop in two ways. First. in

consistencies develop between replicas of the same ob ject when recovering servers

fail to restore the states of their replicas to those held by other servers in the

system. Second, inconsistencies can occur between the states of different objects

when recovering servers restore old and out of date object states.

A recovery algorithm was outlined for preventing these inconsistencies when

a server fails. The algorithm was divided into two phases based on the t\VO types

inconsistencies that occur between objects and replicas.

JOIN
phase

ACTIVATE
phase

Restore a server's replicas of active objects to the current

active states of those objects.

Restore a server's replicas of inactive objects to states that are

consistent with the states of all active objects in the system.

This phase had the additional property that all recovenng

42

servers of an inactive object agreed on the state restored for

that object.

The behaviors of the recovery phases were formally described and it was proved

that these behaviors preserve consistency within a system.

The chapter concluded with several examples of how the recovery mechanism

restores consistent states to servers' object replicas.

Chapter 4

Log Transformations

The main difficulty involved in implementing the recovery phases of the previous

chapter is ensuring that the alterations that occur to servers' logs preserve the

consistency of those logs. This chapter presents functions for adding and deleting

requests from a server's log in a way that preserves the log's consistency. These

functions (or transformations) will form the basis of our recovery algorithms.

4.1 Log Addition

In order to bring a recovering server's log into a state that is consistent with the

rest of the system, it is sometimes necessary to add requests to the log. Such

added requests are generally requests that the server missed receiving because

of its failure. For example, consider the execution shown in figure 4.1. In this

execution, servers f and 9 fail after receiving the registration of client 1 but

before receiving the registration of client 2. Server h remains active throughout

the execution and receives the allocation request (alc2) from client 2. This request

is not received by server g, however, because 9 fails before its delivery. If server

9 recovers at time t21 it will have to add this request to its log so that the log

refiects the current state of 14 Allocations" (i.f. the state refiected in the log of

server h).

43

,
, Client 1
, ,
I , , ,
:/
I , , ,
'g ,
I , ,
'h , , , , , ,
I
, Client 2

time 0

44

.... ~

..... ~

"'G§J

time tl

Figure 4.1: A recovery requiring addition to a log

45

where

C - C1 U Q U [U U D£P B(x.A)
z .AeQ BeOB.J S!

-c is any extension of -I consistent with -<R.

Figure 4.2: Log addition preserving consistency

The addition of requests to a server's log can cause the log to become incon

sistent, however. In the above example, the log of server 9 becomes inconsistent

when request alc2 is added because the client registration on which alc2 depends

(re92) is missing from the log. In order to preserve consistency wi thin a log, any

dependents of an added request must also be added to the log (unless they are

already present).

Definition 4.1

The set of object B dependents of requ.est x.A are

V£'P B(x.A) = {y.B E 1(. I y.B -<1l x.A}

Shown below is the complete sequence of changes required to consistently add

request alc2 to the log of server 9:

Figure 4.2 presents a function for adding a set of requests, Q C R, to the

46

log of a server, I E S£'R.V. As shown in the following theorem, this function

preserves the consistency of the log.

Theorem 4.1

If (C I' - I) is a log for server I consistent with request structure (R, -< n),

and ifQ C 'R. is a set of requests on objects served by I, then addQ(L f .-f)

is a180 consistent with ('R., ~1l).

Proof: Let (C,-c) = addQ(CI'-/)' We first show that (C,-d only

contains requests on objects served by f. By premise, (C,,-,) is consistent

and so only contains requests on objects served by f. The only requests added

to this log by the function are those in Q and its dependents. By premise, all

of the requests in Q are on objects served by I. From the definition of the log

addition function, the only dependent requests added to the log are those on

objects served by f. All of the requests added to the log are therefore on objects

served by f.

We now show that, for any request in (C,-d, all of its dependents (on

objects served by f) are also in (C, -c). Let x.A E C be any request in the new

log. There are three cases:

Case 1: x.A E C,

By premise, (C,,-,) is consistent with (n.,~1l) and so all dependents of

x.A (on objects served by f) are in C,. Because (C, -.c) is formed by adding

requests to (C" -,), it follows that these dependents remain in (C, - d·

Case 2: x.A E Q

It follows immediately from the definition of the log addition function that

all of the dependents of x.A (on objects served by f) are added to (C, -+ d·

Case 3: x.A ~ C, A x.A ~ Q

47

Request x.A must have been added to (C, -.c) because it is a dependent of

some request, y.B, in Q.

x.A -<'R. y.B (4.1)

Let z.e E R be any dependent of request x.A made on an object served by

f(CEOSJS,).

z.e -<'R. x.A (4.2)

Because -<'R. is transitive, it follows from equations 4.1 and 4.2 that request

y.B is also dependent on z.e.

z.e -<'R. y.B

From the definition of the log addition function it follows immediately then

that request z.e is added to (.c, -c).

The last thing we must show is that the order of requests in (.c, -.c) is con

sistent with -<'R.. However, this follows immediately from the definition of the log

addition function. 0

4.2 Log Deletion

In addition to adding requests to its log, a recovering server may also need to

delete requests from its log in order to bring it into consistency with the rest of

the system. Such deleted requests are generally requests that were not recovered

as part of their object's states by previously recovering servers of the objects. For

example, consider the execution shown in figure 4.3. Suppose server f recovers

first and restores its replica of "Names" from its log. The state of "Names"

will then only reflect the registration of client 1 (regl)j it will not reflect the

registration of client 2 (reg2). If server 9 recovers next, it will have to delete

request reg2 from its log in order to bring it into consistency with f.

1
1 Client 1
1
1
1
1
1
1

:/
1
1
1
1
19
1
1
1
1

'h
1
1
1
1
1
1
1
1 Client 2

time 0

48

time tl time t2

Figure 4.3: A recovery requiring deletion from a log

49

where

c - {X.A E C, I x.A rt Q 1\ ,E y.B E Q: y.B -<n x.A }

'</ x.A, y.B E C: (x. A -£ y.B) ¢:> (x.A - f y.B)

Figure 4.4: Log deletion preserving consistency

Like the addition of requests, the deletion of requests can cause a server's log

to become inconsistent. In the previous example, the log of server 9 becomes

inconsistent when request reg2 is deleted because the allocation that depends on

it (a[c2) is still present in the log. In order to preserve consistency within a log,

any requests that depend on a deleted request must also be removed from the

log. Illustrated below is the complete sequence of changes required to remoYe

request reg2 from the log of server g:

Figure 4.4 presents a function for deleting a set of requests, Q, from the log

of a server, f. As shown in the following theorem, this function preserves the

consistency of the log.

Theorem 4.2

If (C /' - /) is a log for server f consistent with request structure (R, -<n),

and if Q C C / is a subset of the requests in (C f' - f)' then deleteQ(C f' - f)

is also consistent with (R., -<1l).

Proof:

50

contains requests on objects served by f. From the definition of the log deletion

function, the requests in (C,-c) are a subset of the requests in (C,,-,). By

premise, (C" - ,) is consistent and so these requests must all be on objects served

by f.

We now show that, for any request 10 (C, -c), all of its dependents (on

objects served by f) are also in (C,-c). The proof is by contradiction. Let x.A

be any request in (C, -c). Suppose some dependent of x.A (made on an object

served by f) is missing from (C, -c). Let y.B denote this dependent.

y.B ~1l x.A (4.3)

From above, we know that C ~ C, and so request x.A is in (C" - ,). Because

(C,,-,) is consistent, it follows that request y.B is also in (C,,-,). Request

y.B must therefore have been removed from the log by the log deletion function

when forming (C, -.c). This could have happened for one of two reasons: either

it was in Q or it was dependent on a request in Q.

If request y.B were in Q, then request x.A would also have been removed

from the log by the transformation because it depends on y. B (a request in Q),

a contradiction. Request y.B must therefore have been removed from the log

because it depends on some request, z.e, in Q.

z.e --<1l y.B (4.4)

Because ~'R is transitive, it follows from equations 4.3 and 4.4 that request x.A

is also dependent on z.e.

z.e ~1l x.A

Request x.A should therefore have been removed from the log because it depends

on a request in Q, another contradiction. The new log, (C, -c), must therefore

contain y.B.

The last thing we must show is that the order of requests in (.c, -c) is consis

tent with ('R., --<1l). From the definition of the log deletion function, the requests

51

in (.c, - c) are ordered the same way they were in (.c /' - /). Because (.c f' -.. f)

is consistent with (R, ~R), it follows that this order is consistent with (R, -<R). 0

4.3 Using Dependency Estimates

The previous log transformations were both based on having explicit knowledge

of the dependencies between requests. Such information is not available in all

systems, however. When the exact set of clients is either unknown to the servers,

or is large and dynamically changing, it can be difficult or impossible to maintain

explicit dependency information. When this information is not available to the

servers, the preceding transformations cannot be used.

This section examines how the log transformations can be modified to use

estimates of the true dependencies. The key to the success of these new trans

formations will be the use of estimates that never under-estimate the true set

of the dependencies in the system. We refer to estimate that have this property

as sound estimates. By using sound estimates, the transformations will enforce

some extraneous orderings because of the inaccuracy of the estimates, but they

will also enforce all true dependencies. The actual estimates used in the new

transformations are presented later in chapter 6.

4.3.1 Log Addition

Consider first the problem of adding a set of requests to a server's log. Let

VcP B(x.A) denote any sound estimate of the set of object B dependents of

request x.A.

VcP B(x.A) ~ P£P B(X.A) (4.5)

We would like to modify the log addition transformation, addQ(.c J' - J)' to

use 15115 B(x.A) instead of the true dependency set PcP B(x.A). Unfortunately, as

we show below, the estimate cannot be used directly in place of VEP B(x.A). The

52

reason for this is that the log addition transformation uses the transitive property

of causal dependencies in order to preserve consistency within a server's log.

z.e ~1l y.B 1\ y.B ~1l x.A =::::} z.e ~1l x.A

The estimate does not have this transitive property.

z.e E 15£15c (y.B) 1\ y.B E 15£15 B(x.A) ~ z.e E VEPc(X.A.)

It may seem counter-intuitive that an estimate would not have the transitive

property. However, in the estimates we describe later, an estimate mav be able

to find evidence contradicting a dependency such as z.e - x.A without finding

evidence to contradict either of the dependencies z.e - y.B or y.B - x.A.

The estimate can then determine that it is not the case that both z.e - y.B

and y.B - x.A hold. But, it cannot determine which one, if any, is the real

dependency.

To illustrate how this creates problems in the log addition transformation.

consider the transformation addQ(.e " -,). Let x.A be any of the requests in

Q added to (.e,,-,). In order to preserve consistency in the log, the addition

transformation explicitly adds each dependent of x.A to the log. For each of these

dependents, y.B, the addition transformation also automatically adds each of its

dependents to the log because, by the transitivity of the request dependency

relation, each of these dependents is also a dependent of x.A. Thus, for each

request added to the log, all of its dependents are also assured of being added to

the log.

However, if an estimate is used, some dependents of added requests may be

omitted from the log. If request y.B is added to the log because it is an estimated

dependent of x.A (it might not be a real dependent), then the transformation

should also add to the log all estimated dependents of y.B, in order to preserve

the consistency of the log. From the definition of the transformation, though,

only estimated dependents of x.A would be added to the log. It is possible that

53

1. R = 0

2. .c(0) = .c, U Q

3. NEW REQS(O) = .c(0) - .c f

4. while NEWREQS(R) 1= 0

4.1 R = R + 1

4.2 .c(R) = .c(R-l) U
[U U V£P B(x.A) 1

BeOBjS, z.AeNEWREQS(R-l)

4.3 NEW REQS(R) = .c(R) - .c(R-l)

Figure 4.5: Iterative addition of requests

some of the estimated dependents of y.B may not be estimated dependents of

x.A. These extra estimated dependents would be omitted from the log, creating

an inconsistency.

In order to use the dependency set estimate, the log addition transformation.

must add requests to a log iteratively. In each round of the iteration, the trans

formation adds to the log the estimated dependents of the requests added in the

previous round. An algorithm for determining the complete set of requests in

the transformed log using this addition scheme is shown in figure 4.5. In the

algorithm, R is the round number, NEW REQS(R) is the set of new requests

added to the log in round R, and .c(R) is the complete set of requests contained

in the log after round R.

The complete log addition transformation using this algorithm is presented

in figure 4.6. As shown in the following theorem, this transformation preserves

the consistency of a log.

54

where

-c is any extension of -I consistent with 'f5£15 B(x.A).

Figure 4.6: Log addition using estimates

Theorem 4.3

If (C / , -I) is a log for server f consistent with request structure (R, -<R),

and if Q ~ 'R is a set of requests on objects served by f, then addQ(£ f' - f)

is also consistent with ('R, -<1l).

Proof: Let (C,-d = addq(C,,-,). We first show that (£,-d only

contains requests on objects served by f. By premise, both (£ " -,) and Q only

contain requests on objects served by f. It thus follows immediately that £(0)

only contains requests on objects served by f. In each round of the addition

iteration, only requests on objects served by f are added to the log. It therefore

follows by induction that each C(R) only contains requests on objects served by

f.
We now show that, for any request in (C, -c), all of its dependents (on

objects served by f) are also in (C, -c). Let x.A E £ be any request in the new

log. There are two cases:

Case I: x.A E c'1

By premise, (C I' - I) is consistent with ('R, -<1l) and so all of the dependents

of x.A (on objects served by f) are in C/. Because (C, -d is formed by

adding requests to log (C /' - /), it follows that the dependents remain in

55

Case 2: x.A E .VEH-'REQS(R) (i.e. x.A was added in round R)

From the definition of the iterative addition algorithm, all of the dependents

of x.A (on objects served by f) are added to the log in round R + 1.

The last thing we must show is that the order of requests in (.c. - d is con

sistent with -<'R.. By definition, -c. is consistent with DEP B(x.A). From prop

erty 4.5 of the estimate, it follows that if two requests, x.A, y.B E .c, are related

(y.B -<'R. x.A) then y.B E 'T5£'f5 B(x.A) and so these requests are properly ordered

in (C, -+c.). 0

4.3.2 Log Deletion

Consider now the problem of deleting a set of requests from a log. \Ve would like

to modify the log deletion transformation to use an estimate of the relationship

between requests. Let COJl(x.A -< y.B) denote any such sound estimate.

V x.A,y.B En: CB:V'(x.A -< y.B) => x.A f.'R. y.B (4:.6)

Note that CON(x.A -< y.B) estimates the predicate that two requests are unre

lated.

As with the log addition transformation, this estimate cannot be used directly

in the log deletion transformation. If it were, inconsistencies could occur in the

transformed logs because the transformation may fail to remove all requests that

depend on the deleted requests. In order to use the estimate, the log deletion

transformation must iteratively delete requests from a log. An algorithm for

doing this is shown in figure 4.7. In the algorithm R is the round number.

DELET ED(R) is the set of requests deleted from the log in round R, and .c(R)

is the set of requests contained in the log after round R.

56

1. R = 0

2. C(O) = C! - Q

3. DELET ED(O) = C! - C(O)

4. while DELET ED(R) :/: 0

4.1 R = R + 1

4.2 C(R) = {y.B E C(R-l) I
V x.A E DELETED(R-l) : CON(x.A -< y.B) }

4.3 DELET ED(R) = C(R-l) - C(R)

Figure 4.7: Iterative deletion of requests

where

R* = MIN{ R I d R) = C(R+l) }

V x.A, y.B E c,: (x.A -c y.B) <* (x.A -I y.B)

Figure 4.8: Log deletion using estimates

The complete log deletion transformation using this algorithm is presented in

figure 4.8. As shown in the following theorem, this transformation preserves the

consistency of a log.

Theorem 4.4

If(C,,-,) is a log for server f consistent with request structure (R,-<n.),

and if Q ~ {., is a subset of the requests in (C" -I)' then deleteQ('C I' - f)

is also consistent with (R, -<1l).

57

Proof: Let (C,-+d = deleteQ(C,,-+,). We first show that (C.-d only

contains requests on objects served by f. Because (C, - d is formed by deleting

requests from (C /' -+ /), we know that C ~ C /. By premise, (C /, -+ f) is consistent

and so all of these requests are on objects served by f.
We now show that, for any request in (C,-d, all of its dependents (on

objects served by f) are also in (C, -c). The proof is by contradiction. Let

x.A E C be any request in the transformed log, and let y.B E R be any of its

dependents (y.B -<1l x.A) on an object served by f (B E OBJ Sf). Suppose

that y.B is not in (C,-c). Because C ~ C, we know that x.A E C/. Because

(C,,-,) is consistent by premise, it follows that y.B E C/. Request y.B must

therefore have been removed from the log in some round, R, of the iterative

deletion algorithm. However, by definition of the algorithm, request x.A would

then have been removed from the log in round R + 1 of the iteration because it

depends on request y.B, contradicting the fact that x.A E C. The transformed

log, (C, -c), must therefore contain y.B.

The last thing we must show is that the order of requests in (C, - c.) is con

sistent with ('R., -<1l). However, by definition, the order of requests in (C. -c) is

consistent with the order of requests in (C " - ,), which is by premise consisten t

with ('R., -<1l). 0

4.4 Summary

This chapter presented several transformations for altering the log of a server

while preserving its consistency. The chapter began by presenting transforma

tions for adding and deleting requests from a log. These transformations were

based on having explicit knowledge of the dependencies between client requests.

It was then shown how these transformations can be modified to use estimates

of the request dependencies when exact information is not available. A key to

58

the correctness of these new transformations was the use of approximations that

never under-estimated the true set of dependencies. By using sound estimates.

the transformations were assured of enforcing all true dependencies, in addition

to a few extraneous ones.

Chapter 5

Recovery Solutions

In this chapter we present algorithms for solving the JOIN and ACTIVATE

problems. These algorithms are based on the log transformations of chapter 4.

We begin by assuming that explicit dependency information is not available in

the system and so the only transformations available to the recovery algorithms

are those based on dependency estimates. We then show how these recovery

algorithms can be simplified when the transformations using explicit dependency

information are available.

5.1 JOIN Solution

\Vhen a server first recovers from a failure it restores its replicas of active objects

to those objects' current states. The server alters its log to reflect the current

object states and then replays the log to restore its replicas.

A recovering server's log may be out of date with respect to the current states

of active objects in two ways. First, the log may not reflect all of the requests

present in those objects' current states. Such requests are generally those that

the server did not received while it was failed. We let MS 51! denote the set of

requests on active objects missing from the log of a recovering server, I, in state

59

60

s.

MSSII = U [ASSIA - (CsI1 , -SII) IA 1
{ AEOB.7S / I ACT S/A:Fi }

Second, a recovering server's log may be out of date because it reflects requests on

active objects that are not present in those objects' current states. Such requests

are generally those that the active servers failed to recover after some previous

failure event. We let JI'RsII denote the set of requests on active objects present

in the log of server /, in state 5, that are not present in their objects' active

states.

In order to restore correct object replicas, a recovering server must remove the

requests in JI'RSII from its log and add those in MS SI I' The complete algorithm

for solving the JOIN problem for server / in state 5 is shown in figure 5.1. In

the algorithm, T is the state constructed to solve the problem.

Note that in step JSI the new log is tested to make sure that the addition and

deletion of requests yielded the correct logged state. The reason for this is that

the transformations may inadvertently attempt to add or delete a request from

the active state logged for an object. Because dependency estimates are used, the

log transformations may occasionally incorrectly believe that a dependency holds

between two requests, one of which is in its object's active state and the other

of which is not. When this happens, the transformations may incorrectly add

or delete requests from the logged state of an active object in order to preserve

the log's consistency. When this situation occurs, the recovery algorithm must

abort and wait until better estimates of the dependencies can be formed. The

technique of recovery logs [Gra78} (do not confuse this with the term "log" used

in this dissertation) can be used to record and undo any changes to a server's log

resulting from an aborted recovery attempt.

The JOIN recovery algorithm is formally proved correct below:

61

JSI. (CT11'-+TII) = addMss/r(deleteN1ls/r(Cs/I,-+sll))

if 3 A E OB:fSI (ACTsIA:f:. 0) s.t. (CT11'-+TII) IA i= ASslA

then abort

JS3. ACT TIA = ACT S/A U if}
'R.£CT1A = 'R.£CS1A - if}

v 9 E S£'R.V - if}

V A E OB:fS I (ACT SIA i= 0)

ACT T/A = ACT SIA

'R.£CTIA = 'R.EC S/ A
V A E OS:fS (A ft OS:fSI V ACTs/A = 0)

JS4. FAICT/ A = FAIC S/ A V A E OS:fS

Figure 5.1: Solution to the JOIN problem for server f in state 5

62

Theorem 5.1

If S is a state consistent with request structure (R, -<'R), and if f is a server

recovering in state S J then state T as constructed above correctly solves th e

JOIN problem for server f in state S under request structure (R, -< n).

Proof: We must show that the five conditions (JCI-JC5) of the JOIN problem

are satisfied by state T.

The first condition, JCI (the consistency of (£T//' ~T//) with (R, -<n)), fol

lows immediately from the fact that (£s//'~s//) is consistent with (R, -<n) (by

premise) and that both log transformations preserve consistency (theorems 4.3

and 4.4).

The second condition, JC2 (the consistency of (£T//' ~T/f) with the current

states of active objects), follows immediately from the test in step J51 of the

JOIN solution.

Conditions JC3, JC4, and JC5 follow directly from steps J52, J53, and JS4

of the JOIN solution, respectively. 0

5.2 ACTIVATE Solution

Once a server completes its JOIN phase, it begins recovering its replicas of in

active objects. All recovering servers of an inactive object participate in the

object's recovery. The recovering servers start by merging their logs to form the

most up-to-date state possible for the object. We let ISS/ A denote this ideal

state for inactive object A in state S.

ISS/A = U (£SI!'~S/f) IA
Ie "R..tCs/A.

The ideal state may be inconsistent with the states of some active objects in

the system, however. There may be requests in the ideal state that have depen

dencies on requests that are not reflected in their objects' active states. These

63

inconsistent requests should be omitted from the new state of object .4. so that

the overall state of the system remains consistent. \Ve let SA.F£S(x.A) denote

the predicate that all of the dependents of request x.A, on objects that are active

in state 5, are present in their objects' active states.

SA.F£S(x.A) == 1\ D£PB(X.A) ~ ASSIB
{ BeOBjS I ACTs/sf::i }

Because we are assuming that explicit dependency information is not available

in the system, the exact value of SAr£S(x.A) is not available to the recovery

mechanism. Instead, we assume that the recovery mechanism has available to it

an estimate, sAJ'£s(x.A), of the safety predicate. This estimate, like the other

estimates, has the property that it is sound.

SAJ'£S(x.A) => SAF£s(x.A)

The state recovered by the servers of object A will then consist of the requests

in the ideal state, IS SI A, that are estimated to be safe. We let JV S SI A denote

this state.

NSSIA = {x.A E ISSIA I sAJ'£S(X.A) }

Each recovering server installs the new state for object A into its log the same

way it installed the active states of objects during its JOIN phase. First, the

server deletes from its log any request on object A that is not part of the new

state. We let N'RslI(A) denote the set of requests removed from the log of server

f E'R£C sIA ·

The server then adds to its log any request in the new state that is not already

logged. We let MSsl/(A) denote the set of requests added to the log of server

f E 'R£CSjA'

64

AS!. (CTI1 , -TI') - addMSs/r(A) (deleteN1ls/r(A) (CSI1 ' -SII))

if 3 f E'R£CsIA s.t. (CTI1 , -Til) IA 1= NSslA

then abort

if 3 f E 'RECsIA and 3 BE OB.:JS 1 (f E ACT SIB)

s.t. (c'T/f' -TI') IB 1= (c'S/f' -SI') IB
then abort

if 3 B E OB.:JS (ACT SIB 1= 0) and 3 y.B E ASSIB

s.t. !5£75A(y.B) ~ NSslA

then abort

'lifE R£C SjA

V 9 E S£'RV - R£CSjA

AS3. ACT TIA = 'R£CSIA

'R£CTIA = 0

ACT TIB = ACT SIB

'RECTIB = 'RECsIB
V B E OB.:JS - {A}

V A E OB.:JS

Figure 5.2: Solution to the ACTIVATE problem for object A in
state S

65

The complete algorithm for solving the ACTIVATE problem for object .4. in state

5 is shown in figure 5.2. Again, T is the state constructed to solve the problem.

Note that the new logs of the recovering servers are tested in step ASl to make

sure that the logged states of active objects are not corrupted. As with the JOI:\

algorithm, the use of dependency estimates can cause the log transformations to

inadvertently add or delete requests from the logged state of an active object.

When this occurs, the ACTIVATE algorithm must abort and wait until better

dependency estimates can be formed before trying to ACTIVATE object .4..

The ACTIVATE algorithm is formally proved correct below:

Theorem 5.2

If S is a state consistent with request structure (R, -< 'R) I and if .4. E 0 l3.:J s
is an inactive object in state S, then state T as constructed above correctly

solves the ACTIVATE problem for object A in state 5 under request structure

(R, -<'R)'

Proof: We must show that the seven conditions (ACl.AC7) of the ACTIVATE

problem are satisfied by state T.

The first condition, ACI' (the consistency of the recovering servers' new logs

with (R, -<'R», follows immediately from the fact that the logs were consistent

with (R, -<'R) in state S (by premise) and that both log transformations preserve

consistency (theorems 4.3 and 4.4).

The property that all recovering servers of object A agree on the new state for

A (condition AC2) follows directly from the first test in step ASl; if the algorithm

does not abort, the logs of all recovering servers of A will reflect N S 51 A-

Condition AC3 asserts that the new state for A is consistent with the states

of all other active objects in the system. We show that this condition holds in

state T in two parts. First, we show that there are no requests in the new state

of A that have dependencies on requests that are not part of their objects' active

66

states.

Vx.A E AST/A: Vy.B E 'R (y.B ~'R x.A): ACTT/ B ::/= 0 ==> y.B E ASTIB

This portion of the condition follows directly from the definition of safety and the

fact that only safe requests are included in the new state of object A. Note that

by definition of the ACTIVATE solution, the states of all active objects other

than A do not change between states S and T.

The second part of the proof of condition AC3 involves showing that all object

A dependents, of requests reflected in the state of another active object, B, are

present in the new state of A.

Vy.B E AST/B (ACT T/B * 0): Vx.A E 'R (x.A ~'R y.B): x.A E ASTIA

This part follows immediately from the third test in step ASl.

Condition AC4 follows immediately from the second test in step AS! of the

algorithm. Conditions AC5, AC6, and AC7 follow immediately from steps A52.

AS3, and AS4 of the algorithm, respectively. 0

5.3 Using Explicit Dependency Information

The preceding recovery algorithms assume that explicit dependency information

is not available in the system. Both algorithms use estimates of the dependencies

between requests to ensure that a recovering server restores consistent states to

its object replicas. However, the use of inaccurate estimates sometimes cause

the log transformations used by the algorithms to corrupt the logged states of

active objects. The algorithms must therefore test for this condition and abort

if it occurs.

In this section, we examine how the recovery algorithms are simplified when

exact dependency information is available in the system. When such informa

tion is present, the algorithms can substitute the log transformations based on

67

estimates with those based on exact dependency values. These precise transfor

mations have the advantage that they do not corrupt the logged states of active

objects. As a result, most of the tests in steps JSl and ASl of the recovery

algorithms can be omitted.

5.3.1 JOIN Simplification

We begin by showing that the states of active objects logged 10 step JSl of

the JOIN algorithm are never corrupted when the log transformations based on

explicit dependency information are used. We do this in two lemmas. The first

lemma shows that the deletion transformation never removes from the log any

request in the active state of an object. The second lemma proves that the

addition transformation never adds to the log a request on an active object that

is not in that object's active state. It follows from these two lemmas that the

test in step JS1 of the JOIN solution can be omitted when exact dependency

information is available in the system.

Lemma 5.1

When explicit dependent information is available, the deletion transformation

in step JS1 of the JOIN recovery algorithm never causes the algorithm to abort.

Proof: We must show that the deletion transformation never removes from a

server's log any request that is in the active state of an object. The proof is by

contradiction.

Let f E S£'RV be a server recovering in some observably consistent state,

5, of the system. Suppose that during the JOIN phase of server f the deletion

transformation, delete.N1ts11' removes from the log of server f some request, x.A,

that is in the active state of object A.

x.A E ASSIA

By definition of .N'RS/I, we know that x.A ~ .N'RS/I because x.A is in the

68

active state of A. Request x.A must therefore have been removed from the log

because it depends on some request, y.B, in N'R.s1f .

y.B -<1l x.A

However, in order for request y.B to be a member of N'R.s/f' it must be the case

that object B is active in state 5 and that y.B is not in the active state of B.

y.B (j. ASS/ B

State 5 therefore reflects a request, x.A, in the active state of an object, A.,

without reflecting one its dependents, y.B, on another active object, B.

ACTs/B ::/; 0

y.B (j. ASs/B

ACTs/A ::/;0

x.A E ASS/A

y.B -<1l x.A

State 5 is therefore observably inconsistent, a contradiction. The deletion trans

formation must then have preserved the active states logged for active objects. 0

Lemma 5.2

When explicit dependent in/ormation is available, the addition transformation

in step JS1 o/the JOIN recovery algorithm never cau.ses the algorithm to abort.

Proof: We must show that the addition transformation never adds to a

server's log any request that is not in the active state of an object. The proof is

by contradiction.

Let / E SE'R.V be a server recovering in some observably consistent state,

5, of the system. Suppose that during the JOIN phase of server f the addition

transformation, addMSs/r' adds to the log of server f some request, x.A E R,

that is not in the active state of object A.

x.A f/- ASS/A

69

By definition of MSSlf' we know that x.A rt MSs/f because x .. 4 is not in

the active state of A. Request x.A must therefore have been added to the log

because it is a dependent of some request, y.B, in MSslf'

However, in order for request y.B to be a member of MSSlf , it must be the case

that object B is active in state S and that y.B is in the active state of B.

y.B E ASslB

State S therefore reflects a request, y.B, in the active state of an object, B,

without reflecting one its dependents, x.A, on another active object, A ..

ACTsIA #0

x.A fI. ASS/A

ACTslB # 0

y.B E ASslB

x.A -<1l y.B

State S is therefore observably inconsistent, a contradiction. The addition trans

formation must then have preserved the active states logged for active objects. 0

5.3.2 ACTIVATE Simplification

We now show that the log transformations in step ASI of the ACTIVATE algo

rithm do not COl'l'Upt the logged states of active objects when exact dependency

information is available. Because exact dependency information is available, we

assume that the new state, }/ S SI A, for the object being activated is constructed

using the true definition of safety and not an estimate.

Activated Object

We begin by showing that the transformations always correctly install, at the

recovering servers, the new state of the object begin activated. This is done

70

in two lemmas analogous to those in the preceding sub-section. It follows from

these lemmas that the first test in step AS! of the ACTIVATE algorithm can be

omitted when exact dependency information is available.

Lemma 5.3

When explicit dependency information is available, the deletion transformation

in step ASl of the ACTIVATE recovery algorithm never corrupts the new state

logged for the object being activated.

Proof: We must show that the deletion transformation never removes from a

recovering server's log any request that is in the new state for the object being

activated. The proof is by contradiction.

Let S be an observably consistent state in which some object, A E R, is

being activated. Suppose that during the ACTIVATE phase at some server, f

(/ E REe SIA), the deletion transformation deleteN1ls/r (A) removes from the log

of server / some request, x.A, that is in the new state for object A ..

x.A E NSSIA

Because x.A is in NSsIA , it cannot be in NRsI!(A). Request x.A must

therefore have been removed from the log because it depends on some request,

y.A, in N'RsI!(A).

Further, because request y.A is in N'RSI!(A), it cannot be in NSsik

y.A rt NSSIA

Now, request y.A must be in ISSIA because it is in (CSI!' -SI!) (the log of

a recovering server of object A). To see that y.A is in (CSI!' -si/)' note that

request x.A is in (£SI!' -51!) and so, by definition of consistency, the log must

also contain all of the object A dependents of x.A, including y.A.

71

Because y.A is in ISSIA but not in NS SIA , it must be unsafe (by definition

of .VSSIA)' Because y.A is a dependent of x.A, request x.A must also be unsafe.

However, x.A is included in NS SIA, contradicting the fact that loiS SIA. contains

only safe requests.

The deletion transformation must therefore have preserved the new logged

state for object A. 0

Lemma 5.4

When explicit dependency information is available, the addition transforma

tion in step ASl of the ACTIVATE recovery algorithm never corrupts the new

state logged for the object being activated.

Proof: We must show that the addition transformation never adds to a

recovering server's log any request, on the object being activated, that is not in

that object's new state. The proof is by contradiction.

Let S be an observably consistent state in which some object, A. E R, is

being activated. Suppose that during the ACTIVATE phase at some server, f

(f E n£e SIA), the addition transformation addMss/r(A) adds to the log of server

f some request, x.A, that is not in the new state (NSSIA) for object A.

x.A rt NSS/ A

Because x.A is not in NSS/A , it cannot be in MSsl/(A). Request x.A must

therefore have been added to the log because it is a dependent of some request,

y.A, in MSs//(A).

x.A -<x y.A

Further, because request y.A is in MSs//(A), it must also be in NSslA-

y.A E NSS/ A

72

\Ve now show that request x.A is unsafe. To see this, first note that request

x.A must be in the log of some recovering server of object A. This follows from

the fact that y.A is in the log of some recovering server, 9 E REC s/A , of object

A (because y.A is in NSS/A and therefore also in ISS/A, which is formed by

merging the logs of the recovering object A servers) and from the fact that the

log of server 9 is consistent, and so must contain all of the object A dependents

of y.A, including x.A.

Now, becam·· x.A is in (.cs/g' -Slg) (the log of a recovering server of A), it

must be in ISs; However, x.A was omitted from NS SIA ' The only reason this

could happen is because x.A is unsafe.

Because request x.A is unsafe, and request y.A depends on x.A, request y.A

must also be unsafe. However, y.A is included in NS SIA, contradicting the fact

that N S SI A only contains safe requests.

The addition transformation must therefore have preserved the new logged

state for object A. 0

Other Active Objects

We now show that the logged states of other active objects at the recovering

servers are not corrupted by the log transformations. Again, we do this in

two lemmas. It follows from these lemmas that the second test in step AS!

of the ACTIVATE algorithm is unnecessary when exact dependency information

is available.

Lemma :s.:s
When explicit dependency information is available, the deletion transformation

in step ASl of the ACTIVATE recovery algorithm never corrupts the logged

state of any previously active object.

73

Proof: Let S be an observably consistent state in which some object, .4. E R.

is being activated. And, let B denote any other active object in state S. We

must show that for any recovering server, j, of object A, if f is an active server

of B (j E R.£C S/ It n ACT S/ B) then the deletion transformation does not remove

from 1's log any request on object B.

The proof is by contradiction. Suppose that the deletion transformation

deleteN1ls/1
(A) removes from the log of server j some request, y.B, on object

B. We show that state S would then be observably inconsistent.

Because S is observably consistent, all active servers of B is state S, including

j, reflect the active state of B. Because y.B is reflected in the log of j, it follows

that y.B is part of the active state of B.

y.B E ASs/B

In order for the deletion transformation to remove request y.B from the log of

server j, y.B must be dependent on some object A request, x.A, that is removed

from the log.

x.A E NR.s/J(A)

x.A ~1l y.B
(5.1)

Because x.A is in N'R.sl/(A), it cannot be part of the new state of object .4.

x.A ¢ NSS/ A

Because z.A is in the log of a recovering server of object A, but not included in

the new state of that object, request x.A must be unsafe. That is, request x.A is

dependent on some other request (for an active object), z.e, that is not part of

that object's active state.

z.e ~1l x.A

z.e ¢ ASs/c
(5.2)

By transitivity (from 5.1 and 5.2), request y.B is dependent on request z.e.

The state of object B (an active object) therefore reflects a request, y.B, that

74

is dependent on a request, z.e, not reflected in the state of object C (another

active object).

Z.C ~x y.B

z.c ft ASslC

ACT SIC 1: 0

y.B E ASSIB

ACT SIB 1: 0

This contradicts the original assumption that state S is observably consis

tent. The deletion transformation could not therefore have removed any object

B request from the log of server f. 0

Lemma 5.6

When explicit dependency information is available, the addition transforma

tion in step AS1 of the ACTIVATE recovery algorithm never corrupts the

logged state of any previously active object.

Proof: Let S be an observably consistent state in which some object, A. E n,
is being activated. And, let B denote any other active object in state S. We

must show that for any recovering server, f, of object A, if f is an active server

of B (f E R£CsIAnACTsIB) then the addition transformation does not add

any object B request to the log of server f.
The proof is by contradiction. Suppose that the addition transformation

addMSS/f(A) adds to the log of server f some request, y.B, on object B. We

show that the new state for object A contains an unsafe request.

Because 5 is observably consistent, all active servers of B in state S, including

f, reflect the active state of B. Because y. B is added to the log of f (and so was

not originally present in the log), it follows that y.B is not part of the active state

of B.

y.B ft ASslB

75

Request y.B can only have been added to the log by the addition transforma

tion if y.B is a dependent of some object A request, x.A, that was also added to

the log.

x.A E MS s/I(.4)

x.A ~1l y.B

Because x.A is in MSs//(A), it is part of the new state of object .4.

x.A E NSslA

The new state for object A (NSsIA) therefore refiects a request, x.A, that is

dependent on an object B request, y.B, that is not refiected in the active state

of B (an active object).

y.B ~1l x.A

y.B ~ ASSIB x.A E NSSIA

ACT SIB =F 0 ACT SIA = 0

That is, the new state for object A refiects an unsafe request, x.A, contradicting

the fact that N S SIA only contains safe requests. The addition transformation

could not therefore have added any object B request to the log of server f. 0

5.4 Summary

Based on the log transformations of chapter 4, we detailed algorithms for solving

the JOIN and ACTIVATE recovery problems. We began by describing algo

rithms for solving the problems when exact dependency information is not avail

able. These algorithms used dependency estimates to derive consistent object

and replica states when a server recovered from a failure. It was proved that

these algorithms preserve observable consistency in a system.

Because only estimates of the true request dependencies were used, these

algorithms could inadvertently corrupt the logged states of objects. The algo

rithms therefore had to test for corrupted states and abort if such states occurred.

----~---

76

However, it was shown that when exact dependency information is available to

the algorithms, no corruption of logged states occurs. Most of the tests in the

recovery algorithms could then be omitted when such information is available.

Chapter 6

Estimating Dependencies

When explicit dependency information is not available in a system, the recovery

algorithms of chapter 5, as well as the log transformations on which they de

pend, can use estimates of the dependencies between requests. However, in order

to guarantee that consistency is preserved in a system, the algorithms require

that the estimates used are always sound. In this chapter we present several

dependency estimates having this property.

The estimates are divided into two classes: basic and compound. Basic esti

mates are simple estimates designed to approximate the set of direct dependencies

between requests.

Definition 6.1

A dependency between two requests, x.A --<1l y.B, under a request structure

(R., --<1l), is said to be ~ if there is no intervening request, z.e, through

which x.A and y.B are related. Formally,

~ z.e E R. (z.e # x.A 1\ z.e 1: y.B) : x.A --<1l z.e /\ z.e --<'R y.B

The basic estimates are formed by examining individual logs for evidence of

request orderings: Compound estimates are more complicated estimates designed

77

78

to approximate the set of transitive dependencies between requests.

Definition 6.2

A dependency between two requests, x.A -<1l y.B, under a request structure

(R, -< 1l), is said to be transitive if it is not direct.

The compound estimates are formed by combining the results of the basic esti

mates in order to derive indirect (transitive) dependencies between requests.

6.1 Potential Dependencies

Although we do not assume that the recovery mechanism is given any explicit

information about the dependencies between requests, we do assume that it is

given some general information about potential dependencies between objects.

In particular, we assume that the recovery mechanism has access to a potential

dependency relation.

Definition 6.3

A potential dependency relation, 1V over request structure (R, -<'R.), is a

binary relation on the objects in 0133 S with the property that it relates all

pairs of objects between which direct dependencies hold.

V x.A,y.B E "R.: direct x.A -<1l y.B ==> A 1l B

A potential dependency relation is only an approximation of the direct depen

dencies that may hold between the states of objects. A potential dependency

relation may relate objects between which dependencies do not hold.

A x B 1==* 3 x.A, y.B E "R.: x.A -<x y.B

The accuracy with which a potential dependency relation reflects the actual de

pendencies between objects is determined by the application's programmer, who

79

is responsible for providing the recovery mechanism with the potential depen

dency relation it uses. The programmer should provide the recovery mechanism

with the best potential dependency relation that they can construct, based on

their knowledge of the application's semantics. In the worst case, the program

mer will be unable to determine which objects will be related and so produces a

potential dependency relation in which all objects are potentially related. \Ve will

use the notation --1l to refer to the transitive closure of a potential dependency

relation --'R'

In order to help ensure that each direct dependency in an application is rep

resented in the order of requests within some log of the system, the server sets

of potentially related objects are restricted so that they overlap.

Overlap Restriction

V A, BE OB.:TS: A --'R B => S£'RV A nSt"RV B # 0

There is therefore a tradeoff between the accuracy of a potential dependency

relation and the structural restrictions placed on the server sets: any extraneous

dependency reflected in the potential dependency relation forces the server sets

of the objects involved to unnecessarily overlap. In order to maximize the flexi

bility of the system structure, it is important that the application's programmer

provides the most accurate potential dependency relation possible.

As an example, consider a system containing three objects: A, B, and C.

Suppose that an application runs under the following request structure:

Request Structure: CR., ~'R)

1<. = {x.A, y.B, z.e}

x.A ~'R y.B

Figure 6.1 depicts three potential dependency relations that are consistent with

this request structure. Only potential dependency relation (c) accurately reflects

the request structure of the application.

c~
B

A r--"
(a)

80

A~B~C

(b)

A~B

C

(c)

Figure 6.1: Three consistent potential dependency relations

6.2 Basic Estimates

Because the orders of requests in servers' logs are consistent with the request

structure of an application, these orders can provide information about the de

pendencies between requests. The basic dependency estimates are designed to

search servers' logs for such information. We begin this section by detailing an

estimate for determining when two requests are not dependent. This estimate is

then used to construct another estimate for determining a request's set of causal

dependents.

We assume that when a server fails, all information located at that server be

comes inaccessible to the rest of the system. As a result, the recovery mechanism

can only use information present in the logs of functioning servers (non-failed

servers) when constructing dependency estimates.

Definition 6.4

The set of functioning servers of object A in state S are:

RANCS1A = .ACT SIA U 1UCs1A

81

6.2.1 Request Ordering

The causal consistency condition on logs guarantees that when a server logs

some request, y.B, it has previously logged all requests (on objects with replicas

managed by the server) on which y.B depends. It follows then that if a server logs

request x.A after request y.B, then request y.B cannot be dependent on request

x.A. Further, if a server of objects A and B logs y.B without logging x.A, then

request y.B cannot be dependent on x.A.

In addition, the observable consistency condition on states guarantees that if

a request, y.B, is reflected in the active state of an object, B, then any request

on which it is dependent, x.A, is reflected in the active state of its object, A

(provided object A is active). It follows that if both objects A and B are active,

and y.B is reflected in the active state of B but x.A is not reflected in the active

state of A, then request y.B is not dependent on request x.A.

Combining this intuition along with the dependency information provided by

the potential dependency relation, we can estimate when two requests (x.A and

y.B) are not related. We let con~(x.A -< y.B) denote this basic estimate.

Definition 6.5

Let ('R, -<x) be a request structure, let -'x be a potential dependency relation

consistent with CR., -<x), and let 5 be a system state consistent with (n, -<'R)'

The request ordering, x.A -< y.B, is directly contradicted in state 5, denoted

con~(x.A -< y.B), il any 01 the lollowing lour conditions holds:

1. A~1t B

R. 3 I E FUNCs/AnFUNCs/B : x.A,y.B E c.s/I 1\ y.B -si/ x.A

9. 3 I E FUNCs/A n FUNCs/ B : y.B E C.S/I /\ x.A ~ C.S/ /

,f. ACTs/A:/: 0 /\ ACT SIB :/: 0 /\ x.A ~ ASS/A /\ y.B E ASS/B

82

This estimate has the property that it is sound. When an ordering, x.A -< y.B,

is found to be directly contradicted, it is guaranteed that y.B is not dependent

on x.A. However, if the ordering is not found to be contradicted, the requests

mayor may not be ordered.

Theorem 6.1

For any request structure (R, ~1l), potential dependency relation ~'R. con

sistent with (R, ~1l), system state S consistent with (R, ~'R.)J and pair of

requests x.A, y.B E'R.:

con~(x.A ~ y.B) ~ x.A -I.'R. y.B

Proof: The proof is by contradiction. Suppose that requests x.A and y.B

are related (x.A ~1l y.B), but that the order is found to be directly contradicted

(con~(x.A ~ y.B».

Because the order is directly contradicted, at least one of the four conditions

in the estimate definition must hold. If the first condition holds (A +R B),

then the potential dependency relation is inconsistent with (R, ~1l). If either

the second or third condition holds, then the log of server f is inconsistent with

(R, ~1l). Finally, if the fourth condition holds, then the system state is observably

inconsistent with ('R., -<1l).

In either cue, an inconsistency would exist in the system (contradicting the

assumption that the system is consistent) and so the theorem assertion must

hold. (J

As an example, consider the system shown in figure 6.2. Depicted are the logs

of two servers, f and g, along with a potential dependency relation. Server f
manages replicas of objects A and B, while server 9 manages replicas of objects

83

x.A

y.B

~ A"'-'+'R,B

w.A x.A C"'-'+'R,A

Server f Server 9
A"'-'+'R,C

(A,B) (A,C)

Figure 6.2: An example of direct contradiction

Table 6.1: Directly Contradicted Request Orderings

" Condition 1 Condition 2 I Condition 3 "

y.B --< w.A w.A --< x.A z.e --< w.A

y.B --< x.A y.B --< x.A z.e --< x.A

y.B --< z.e w.A --< y.B

x.A --< w.A

A and C. Suppose that in addition to those requests present in the logs, the

system also contains a fourth request, z.e, on object C. Table 6.1 summarizes

the request orderings that are directly contradicted by this system, if all objects

are inactive. The orderings are broken down according to the conditions of the

estimate definition that caused them to be contradicted. Note that the following

orderings are not directly contradicted anywhere in the system:

w --< z.e x --< 1/.B x --< z.e z.e --< y.B

6.2.2 Dependency Set

Using the preceding estimate, we can now construct an estimate of VEP B(x.A),

the object B dependents of request x.A. Again, this estimate is based on the

84

consistency restrictions placed on logs and system states.

From the causal consistency condition on logs, we know that if a server of

objects A and B logs request x.A, then it previously has logged all of the object

B dependents of x.A. The set of object B requests preceding x.A in a log can

therefore be used as an estimate of the true set of dependents. From the ob

servable consistency condition on system states, we know that if both objects .4-

and B are active, and the active state of A reflects request x.A, then the active

state of B must reflect all of the object B dependents of x.A. In this case, the

set of requests in the active state of B can also be used as an estimate of the

dependency set.

Of course, not all of the object B requests in these estimates may be de

pendents of x.A. There may be information in the system that contradicts the

ordering between x.A and some of the object B requests. This information can

be used to further refine the estimates.

Definition 6.6

Let ('R, -<'R.) be a request structure, let "-+'R. be a potential dependency rela

tion consistent with ('R, -<'R.), and let S be a system state obseMJably consis

tent with ('R, -<'R.). For any object B E 08.7 S and request x.A E R, the

basic estimated dependents of X.A are:

.1. if ...,3/ E FUNCs/AnFUNCs/B: x.A E LS//

dep~/B(x.A) = "

and

ACT S/A = 0 V ACT SIB = 0 V x.A f/. ASS/A

if Bj+x A

{y.B I ""con~(y.B -< x.A) " o.w.

[3/ E FUNCs/AnFUNCs/B : x.A,y.B E lSI!

V y.B E .ASS/ B]}

f\
I

I .
'-.

85

Like the first basic estimate, the dependency set estimate has the property

that it is sound.

Theorem 6.2

Let (R, -<1l) be any request structure, --1l be any potential dependency relation

consistent with (R., -<1l), and S be any system state observably consistent with

(R, -<1l). For any request x.A E R. and object B E OB:JS, ifdep~/B(x.A) is

defined then:

Proof: The proof is by contradiction. Suppose that dep~/B(x.A) is defined,

hut that there exists some dependent, y.B, of request x.A that is not included in

dep~/B(x.A).

y.B E V£P B(x.A)

There are three conditions under which dep~/B(x.A) is defined:

Casel: BP~A

In this case, the potential dependency relation does not reflect the real de

pendency between x.A a.nd y.B, and so is inconsistent with the request struc

ture of the application. This contradicts the assumption that the potential

dependency relation is consistent.

Because the log of server f contains request x.A, and because the state of the

system is causally consistent, the log of server f must also contain request

y.B.

y.B E '51!

86

From the definition of the dependency set estimate, the only reason y. B

could then be omitted from the estimate is because the ordering between it

and request x.A is directly contradicted somewhere in the system.

con~(y.B ~ x.A) = true

However, from theorem 6.1, this implies that the two requests are unrelated.

y.B ft.1l. x.A

This contradicts the assumption that y.B is a real dependent of x.A.

Case 3: B -it A " ACT SIA :/: 0 " ACT SIB :/: 0 " x.A E ASSIA

Because both objects A and B are active, and the active state of A reflects

x.A, and because the system state is observably consistent, the active state

of B must reflect all of the object B dependents of request x.A, including

y.B.

y.B E ASslB

From the definition of :he dependency set estimate, the only reason y.B

could then be omitted from the estimate is because the ordering between it

and request x.A i. directly contradicted somewhere in the system.

con~(y.B ~ x.A) = true

However, from theorem 6.1, this implies that the two requests are unrelated.

y.B ~1l. x.A

This contradicts the assumption that y.B is a real dependent of x.A.

In either case, a contradiction occurs and so the original assumption must be

incorrect. The estimate must therefore always include all true dependents when

x.A

y.B

w.A

Server f
(A,B)

87

w.A

Z.C

x.A

Server 9

(A,C)

Figure 6.3: A example of basic dependency set estimation

Table 6.2: Basic Estimated Dependents

II II w.A I x.A I y.B I z.c II
A 0 0 x.A w.A

B 0 0 " 0

C " z.c .L 0

defined. 0

As an example, consider the system shown in figure 6.3. This system is

identical to the system shown in figure 6.2, except that server 9 has logged request

z.C between request. w.A and x.A. For each request in the system, table 6.2 shows

the basic estimated dependents on objects A, B, and C.

6.3 Compound Estimates

Requests are not always directly related. Two requests, X1.Al and xn.A", can be

related through a sequence of dependencies on other requests in the system.

88

~ y.B ~ z.e ~ z.e ~ x.A A""-+n. B

Server h Server 12 Server fa Server !4
B ""-+n. G

(A,B) (B,G) (A,C) (A,G)

Figure 6.4: Non-optimal transitive closure

The information necessary to detect these transitive dependencies may be em

bedded across multiple logs in the system. For example, the above transitive

dependency might embed itself across n - 1 logs.

The compound estimates combine the results of the basic estimates in order

to detect such transitive dependencies. By combining the results of the basic

estimates, the compound estimates are able to approximate the sequences out of

wLi ~h the transitive dependencies are built.

An obvious method for estimating transitive dependencies is to simply take

the transitive closure of the basic estimates. This method is not entirely accurate,

however. For example, consider the system shown in figure 6.4. This figure

depicts a system with four servers (h, 12, fa, and 14), three objects (A, B, and

C), and three requests (x.A, y.B, and z.e). Applying the basic estimates, we

determine that two orderings are possible:

x.A -<~ y.B y.B -<~ z.e

By taking the transitive closure, we would also estimate that request z.e is depen

dent on request x.A, even though the logs of servers fa and 14 directly contradict

89

any ordering between the two requests. The compound estimates presented in

this section detect contradictions, such as the one between requests z.A and x.A.

and use them to form more accurate approximations when combining the basic

estimates.

We refer to the sequence of objects over which a transitive dependency may

be embedded as a chain.

Definition 6.7

A chain, H, is a sequence of potentially dependent objects.

Definition 6.8

A su.b-chain of a chain, H,

is any su.bsequence of its objects

where 1 ~ ml < m2 < ... < m, ~ n.

Definition 6.9

The AiAj sub-chain of a chain, H, is the sub-chain of objects from Ai to Ai:

90

Definition 6.10

The length of a chain or sub-chain, H, denoted IIH\I, is the number of objects

in the sequence.

6.3.1 Dependency Set

In this subsection we present our compound estimate of 1)£P B(x.A), the object

B dependents of request x.A, which we denote as depS/B(x.A). This estimate

is constructed by estimating the object B dependents of x.A that occur along

each chain from object B to object A, and then combining the results from the

different chains.

We begin by describing our estimate of the dependents that occur along a

particular chain, H

For any request, x,..A", we let depS/H(X,..A,,) denote our estimate in state S of

the object Al dependents of x,..A" that occur along chain H. This estimate can

be formed in many ways, depending up which servers are functioning in state

S. First, if there is a functioning server of objects Al and A,. that has logged

request x,..A" , the basic estimate can be applied to determine the dependency

set. In general, however, the server sets of objects Al and An will not overlap,

unless the objects are directly related.

Alternately, an estimate can be formed by sub-dividing the problem as shown

in figure 6.5. First, an object in the chain, Ai (1 < i < n), is selected. Next, the

object Ai dependents of x,..A" are estimated. Finally, the object Al dependents

of the object Ai dependents are estimated to produce the desired dependency

set. Again, if the server sets of objects Al and Ai overlap, and if the server sets

of objects Ai and A,. overlap, the basic estimates can he applied to solve each

•
•
•
•
•
•
•

91

------------------~~~ .

Object Al Object Ai Object An

Figure 6.5: Sub-dividing an estimate along a chain

of the sub-problems. The result is a dependency set estimate obtained along the

sub-chain:

If the server sets do not overlap, each of the sub-problems must be further sub

divided until the basic estimates can be applied. In general, the problem is

sub-divided until a sub-chain of H is found

1 < m 1 < m2 < ... < mp < n

in which each pair of adjacent objects have overlapping server sets.

This procedure is summarized in the following recursive estimate definition.

Note that the estimate has been extended to operate on sets of requests. In par

ticular, if Q is a set of object An requests, then depSIH(Q) denotes the estimated

set of object Al dependents of the requests in Q.

92

if defined

o.w.

where 1 < i < n is chosen so that the estimates

are defined.

Note also that the definitions of union and intersection (intersection is used later

in this section) must be altered to take into account the possibility of undefined

sets.

{ J. if 3i : Sj =.1
USj -
I USj o.w.

I

{
J. if Vi : Sj =.1

nSj - Sj I n o.w.
{j I S,#.L}

The choice of object, Aj, at which to sub-divide a problem can affect the final

estimate. Different object choices can yield slightly different approximations.

When an estimate is defined, though, it is guaranteed to be sound. It follows

that an accurate approximation of the dependency set (one with few extraneous

requests) can be formed by intersecting the estimates from each of the different

sub-division choices. The complete dependency set estimate along chain H is

given below.

93

Definition 6.11

Let (R, ~1l) be a request structure, let """"1l be a potential dependency relatwi

consistent with ('R., ~1l), and let S be a system state consistent wdh (R. -<, R.).

For any chain,

and set of object An requests, Q, the estimated dependents of Q along cham

Hare:

IIHII = 2

U [dep~/Al(xn.An) n [IHII > 2
zn.AnEQ

[n dePS/Hl.JdepS/Hi"n(xn,A.n)) 11
l<i<n

Theorem 6.3

When it is defined, dePS/H(Q) does not under-estimate the true set of depen

dencies along chain H.

Proof: Let Xn.An denote any request in Q. Suppose that deps/ H(Q) is defined

and that the system contains a transitive dependency along chain H.

We show by induction on the length of the chain that deps/ H(Q) contains XI·A. I .

Base Case: IIHII = 2

The dependency set estimate is the union of basic estimates.

U dep~/Al(X2.A'l)
z,.A,EQ

By assumption this union is defined, and so each of the component basic

estimates must also be defined, including dep~/Al (X2.A2). From theorem 6.2.

94

dep~/Al (X2. A l) contains all object Al dependents of request X2 .. 42, including

XI.A i . It follows then that request Xl.AI is included in the union.

Induction Step: IIHII = n > 2

Suppose that the theorem holds for all chains with length less than n.

For a chain of length n, the dependency set estimate is the union of compo

nents, each of which in turn is an intersection of estimates. \Ve show that

one of these components, specifically the one shown below, contains request

XI.A I . It then follows that the overall union contains xI.AI'

dep~/Al(Xn.An) n [n dePS/Hl..i(depS/Hi..n(xn.A n)) 1
l<i<n

In order to show that this component contains the desired request, we shmv

that each element in the intersection (when defined) contains the request.

First, consider the estimate dep~/AI (xn.An). From theorem 6.2, this esti

mate (when defined) contains all of the object Al dependents of request

xn.An, including XI.At.

Now, consider any of the remaining elements, deps/ HI) dePSI Hi..n (xn.A n)).

that is defined. By the induction hypothesis, deps/ Hi .. n (Xn.An) contains all

of the object Ai dependents of request Xn .An that occur along chain Hi .. n.

including request Xi.Ai. Applying the induction hypothesis again, we see

that dePS/H1./depS/Hi...(Xn.An » contains all of the object .41 dependents

of Xi.Ai that occur along chain Hl..i, including XI.At.

o

The general estimate of the object B dependents of a request, x.A, is formed

by unioning the estimated dependents along all chains from B to A. We denote

the set of all chains from object B to object A as BA.C11,AINS.

95

Definition 6.12

Let (R. -<R) be a request structure, let --....oR be a potential dependency relatwn

consistent with CR., -<R), and let S be a system state consistent with (R. -< R),

For any object, B, and request, x .A, the estimated object B dependents of

request x.A are:

deps/s(x.A) - U dePS/H(x,A)
HESA-C71.AINs

Theorem 6.4

When it is defined, deps/S(x.A) does not under-estimate the true set of de

pendents.

D£'P s(x.A) C deps/ s(x.A)

Proof: By definition, any object B dependent, y.8, of request x.A is de-

pendent along some chain, H, from B to A. From theorem 6.3, the estimated

dependents along chain H include y.B. It follows that any object B dependent

of x.A is included in the union. 0

6.3.2 Request Ordering

Now consider the problem of estimating when two requests, x.A and y.B, are

unrelated. We let CODS(X.A -< y.B} denote our compound estimate of the pred

icate that request y.B is not causally dependent on request x.A. This estimate

is constructed in a manner similar to the preceding compound estimate. First.

the relationship of the two requests is estimated along each chain from ob ject .4.

to object B. The results of the estimates are then combined to form an overall

estimate of whether the two requests are related.

96

\Ve let CODS/H(XI.AI -< Xn.An) denote our estimate of the predicate that

request Xn.An is not causally dependent on request xI.A I along chain H.

The idea behind the construction of this estimate is to search the chain for an

object, Ai, such that none of the object Ai dependents of Xn.An are dependent

on xI.A 1 • The existence of such an object implies that request Xn.An is not

transitively dependent on request xI.AI through a sequence of requests on objects

that include Ai. Because H contains Ai, this in turn implies that the requests

are not related along chain H.

The estimate is formed by examining each object, Ai, in the chain. For each

such object, the dependents of request Xn.An are estimated. Each of these de

pendents is then recursively tested to determine if they are dependent on request

XI.A1• The complete estimate definition is given below. Note that the definition

is extended to operate on sets of requests. In particular, if Q is a set of object

An requests, then CODS/H(Xl.A1 -< Q) denotes our estimate of the predicate that

none of the requests in Q are dependent on XI.A 1 along chain H.

97

Definition 6.13

Let CR., -<Jl) be a request structure, let "-+Jl be a potential dependency relatwl!

coruistent with ('R., -<Jl), and let 5 be a system state consistent with (R. -<1().

For any chain,

request xI.A I, and set of object An requests Q, the dependency ofQ on request

xI.A I along chain H is contradicted in state 5, denoted conS/H(xl.A 1 -< Q).

if the following condition holds.

A con~(xl.AI -< X2. A2)
z2· A2EQ

if IIHII = 2

A [con~(xl.Al -< xn.An)
Zn.AnEQ

v o.w.

Theorem 6.5

If conS/H(xl.Al -< Q) holds, then there does not exist any request in Q that

is dependent on x I.A 1 along chain H.

Proof: The proof is by contradiction. Suppose that conS/H(xl.A I -< Q) holds,

but that there exists a request, xn.An, in Q that is dependent on XI.A l through

a sequence of dependencies along chain H.

\Ve show by induction on the length of chain H that an inconsistency exists.

Base Case: /I HI! = 2

Because request Xn.An is dependent on request XI.A I (XI.AI -<n. In.A,,), we

know from theorem 6.1 that con~(xl.Al -< xn.An} is false. Because this is

98

one of the conjuncts in the definition of conS/H(xl.A 1 -< Q). it follows that

the compound estimate is false, contradicting the assumption that it's true,

Induction Step: IIHII = n > 2

Suppose that the theorem holds for all chains with length less than n. \\"e

show that the conjunct, corresponding to request xn.An , in the definition

of conS/H(xl.Al -< Q) is false. It the:l follows that the overall compound

estimate is false, contradicting the the a,'.lmption that the estimate is true.

'We show that the conjunct is false by showing that each of its disjuncts is

false. First, from theorem 6.1 we know that

Now, consider any of the disjuncts conS/H1..i(xl.A 1 -< dePS/Hi.,n(xn.A n))

From theorem 6.3, we know that when it is defined depS/Hi"n(Xn.A n) con

tains all of the object Ai dependents of xn.An , including Xi.Ai. Because l'i ,At

is dependent on Xl.A t (Xl.A t -<1l Xi.Ad, we now by the induction hypothesis

that

I t therefore follows that

o

The general compound estimate of the relationship between two requests, x.A

and y.B, is formed by combining the estimates of the requests' relationship along

individual chains.

99

Definition 6.14

Let (R, ~~) be any request structure, let --""''R be a potential dependency re

lation consistent with (R, ~~), and let S be a system state consistent with

(R, ~~). For any pair o/requests, x.A and y.B, the dependency ofy.B on I.A

is contradicted in state S if con'S{x.A ~ y.B) holds.

cons(x.A ~ y.B} = 1\ conS/H(x.A ~ y.B)
HEAB~'H.AINS

Theorem 6.6

cons(x.A ~ y.B} does not under-estimate the true set of related requests.

cons(x.A ~ y.B} ==> x.A -I<'R y.B

Proof: We show the contrapositive. Suppose that request y.B is causally

dependent on request x.A (x.A ~~ y.B). By definition, the two requests are

related along some chain, H, from object A to object B. From theorem 6.5, we

know that

conS/H(x.A ~ y.B) = false

Because this is one of the conjuncts in the definition of con'S(x.A ~ y.B), it

follows that

cons(x.A ~ y.B) _ false

o

6.3.3 Safety

Our last compound estimate approximates the safety predicate SAF£s(x.A).

Recall that, when true, the safety predicate indicates that the dependents (on

100

active objects) of request x.A are refiectea 1.1 their objects' current states. Like the

other compound estimates, the safety estimate is formed by combining estimates

of safety along individual chains that lead to object A.

For any request xn.An, active object Al (ACT SIAl f::. 0), and chain H from

object Al to object An,

we let safeS/H(Xn.An) denote our estimate of the predicate that all object A1

dependents of request xn.An (along chain H) are reflected in the active state

of AI. One method for constructing this estimate is to approximate the object

A.l dependents of request xn.An (using one of the preceding estimates) and then

check to see if all of those estimated dependents are reflected in the state of

AI. However, this method will only work when the dependency set estimate is

defined.

Another method for constructing the estimate is to examine each active object

Ai (ACT S/Aj =I: 0) in the chain, estimate the object Ai dependents of request

xn.An , and then check to see if all of these dependents are reflected in the active

state of object Ai. The intuition behind this method is that if xn.An is safe along

chain H then all of its object Ai dependents are also safe along chain Hl..i. If one

of these object Ai dependents were unsafe, then it would not be reflected in the

active state of Ai, because the state of Ai would be inconsistent with the state

of AI.

101

Definition 6.15

Let (R, -<~) be a request structure, let ~~ be a potential dependency relatIOn

consi3tent with CR., -< ~), and let S be a system state consistent with (R. -< R.) .

For any request xra.An, active object Al (ACT SIAl =1= 0), and cham H from

Al to A ra ,

request xra.An is estimated to be safe along chain H in state 5 if the predicate

safeS/H(xra.An) holds.

Theorem 6.7

IfsafeS/H(Xra.An) is true, then all object Al dependents of request xn.A" along

chain H are reflected in the active state of object AI.

Proof: The proof is by contradiction. Suppose that safeS/H(xn.An) is true,

but that there is an object At request, Xt.Al, that is dependent on request Xn .. 4. ...

along chain H

but is not reflected in the active state of object At.

Xt·Al fI. AS SIAl

Because SafeS/H(Xra.An) is true, we know from its definition that there exists

some active object, Ai, in the chain such that

From theorem 6.3, we know that dePS/Hiooll(Xra.An) contains all of the object

Ai dependents of xra.An that occur along chain H, including Xi.Ai. It therefore

102

follows that request Xi .A, is reflected in the active state of ob ject Ai.

However, request Xi.Ai is also dependent on request XI.Al. The state of object

Ai (an active object) therefore reflects a request (Xi.Ai) that is dependent on

an object Al request (XI.A l) that is not reflected in that object's active state.

The state of the system is therefore observably inconsistent, contradicting the

assumption that it is observably consistent. 0

The general estimate of the safety of a request, x .A, is constructed by com

bining the estimates of the request's safety along all chains to A. from active

objects.

Definition 6.16

Let.(n, ~'R) be a request structure, let --'R be a potential dependency relation

consistent with (n, ~'R), and let S be a system state consistent with (R. -<R)·

A request, x .A, is estimated to be safe in state S if the predicate safes(x .. 4)

holds.

safes(x.A) - 1\ 1\ safeS/H(x,..t)
{ BeOB.1S I ACTs/s ,,' } H e BA~'H.AINS

Theorem 6.8

If safes (x.A) holds, then request x. A is safe in state S.

safes(x.A) => SAr£s(x.A)

Proof: We show the contrapositive. Suppose that request x.A is unsafe in

state S. Then request x.A is dependent on some other request, y.B, on an active

103

object (ACT SIB 1= 0) that is not reflected in the object's active state.

y.B rt ASSIB

By definition, this dependency must occur along some chain, H, from object B to

object A. From theorem 6.7, the predicate safeSIH(x.A) must be false. Because

this is one of the conjuncts in the definition of safe'S(x.A), the compound safety

estimate must also be false. 0

6.4 Using the Estimates

Both the basic and compound estimates can be substituted directly into the

recovery mechanism as shown below. Because the estimates all have the property

that they are sound, they can be used in place of the values of CO}/(X.A -< y.B).

15£15 B(x.A), and SAJ't'S(X.A) without modification of the algorithms.

II II C?5N(x.A -< y.B) 15""PP B(x.A) SAF£s(x.A) II
Basic COD~(x.A -< y.B) dep~/B(x.A)

Compound cOD'S(x.A -< y.B) depSIB(x.A) safes(x.A)

The compound estimates have the advantage that they are more often defined

than the basic estimates. However, the basic estimates are less expensive to

compute.

If there is insufficient information in the system to form an estimate required

by the recovery mechanism (i.e. the estimate is undefined), the mechanism must

block and wait for additional servers to recover and provide enough information

to construct the estimate. If the undefined estimate occurs in the JOI~ phase

of recovery, the entire recovery sequence must block. If the undefined estimate

occurs in the ACTIVATE phase, then only the activation of the object that

104

required the estimate must block; the recovery mechanism can proceed with the

activation of other objects.

6.5 Summary

In this chapter we presented several methods for estimating the dependencies

between requests when explicit dependency information is not available in the

system. The estimates were divided into two classes: basic estimates and com

pound estimates. The basic estimates were simple estimates designed to search

the orders of requests in servers' logs for evidence of request dependencies. The

compound estimates were more complex estimates designed to combine the re

sults of the basic estimates in order to detect transitive dependencies embedded

across multiple servers' logs.

Both the basic and compound estimates had the property that they were

sound. Because of this, the estimates could be used directly by the log trans

formations and recovery algorithms. By using sound estimates, the recovery

mechanism was guaranteed to ensure all true dependencies between requests.

plus possibly a few extraneous orderings. However, because the estimates were

sometimes undefined, the recovery mechanism might occasionally need to block

and wait until sufficient ordering information is available in the logs of functioning

servers to construct the needed estimates.

In order to construct the estimates, we assumed that we were given an ap

proximation of the dependencies between objects, A 'R,. B, called a potential

dependency relation. This relation had the property that it related all objects

that had dependent requests. The relation was not required to be precise, how

ever. It could relate objects between which no dependencies existed. However,

inaccuracies in a potential dependency relation caused unnecessary restrictions to

be placed on the structure of the system. They also caused undefined estimates

to occur more often.

Chapter 7

Efficiency Issues

In this chapter we examine several issues regarding the efficiency of the recovery

mechanism. We begin by describing a cyclic condition that can arise in the

dependency estimates and cause the recovery mechanism to block. By restricting

the structure of a system, we show how this cyclic condition can be avoided. 'Ye

then describe a special class of systems that can be recovered efficiently without

blocking using only the basic estimates. Finally, we examine the problem of using

checkpoints (of object states) in the recovery mechanism in order to bound the

size of logs.

7.1 Cycle Restriction

Even though the dependencies between requests form a partial order, the esti

mates sometimes generate cyclic orderings. Consider the three logs and potential

dependency relation shown below.

~
~
~
~
~
~

105

106

From this information, the dependency estimates would generate a cyclic ordering

for the three requests.

x.A ~ y.B ~ z.e ~ x.A

At least one of the estimated request dependencies must be spurious. Ho\vever.

based on the information available to the estimates, there is no way of determining

which ordering it is.

If a server of objects A, B, and C recovers and attempts to add the three

requests to its logs, a problem occurs. Without knowing which request ordering

is spurious, any ordering of the three requests within the recovering server's log

potentially violates a true dependency. When this situation arises, the recovering

server must block and wait until another (failed server's) log becomes available

and is able to contradict one of the cyclic orderings.

The problem of estimated cyclic dependencies can be avoided by requiring

that any server of an object involved in a potential cycle must also serve all other

objects in that cycle. Such a restriction can be easily implemented in a system,

such as ISIS [BCJ+], that provides flexibility about which objects a given server

manages.

Cycle Restriction

If a cycle exists in the potential dependency relation

then any server that manages one object in the cycle manages all objects in

the cycle.

S£'RV Al = S£'RV Al = .. , = S£'RV An

A request, such as x.A above, cannot then be involved in an estimated depen

dency cycle because any server that logged x.A would also have logged all of

107

its dependents along the cycle (y.B and z.A) in some total order within its log.

contradicting at least one of the cyclic orderings.

7.2 Backward Inclusion Systems

In general, the compound estimates of chapter 6 are fairly expensive to com

pute. In order to form a dependency estimate along a particular chain. H. the

compound estimates combine approximations constructed along all sub-chains

(sub-divisions) of H. Because the number of sub-chains of a chain grows expo

nentially with the length of the chain, this method can be prohibitively expensive

for even modestly sized chains. This cost can be reduced by employing dynamic

programming techniques [Den82]. However, for long chains, dynamic program

ming solutions can also be expensive

Another method for reducing the cost of constructing an estimate is to limit

the lengths of the sub-chains considered by the estimation method to a fixed

maximum length. This has the effect of reducing the number of sub-chains along

which estimates are computed to be polynomial in the length of the chain. Of

course, limiting the number of sub-chains considered by the estimation method

increases the likelihood that an estimate will be undefined.

In the extreme, we can limit the estimation method to consider only sub

chains of length two; that is, we can limit the recovery mechanism to using uIlly

the basic estimates. The basic estimates have the advantage that they are the

least expensive estimates to compute, but the disadvantage that they are the most

likely estimates to be undefined. However, there is a special class of systems in

which the basic estimates are always defined.

Definition 7.1

A system is a backward incltLSion system if it sati3fies the following condition:

108

B C

r\)
D E F

(a) (b)

Figure 1.1: A hierarchical backward inclusion system

Intuitively, a system is a backward inclusion system if any server that manages

a replica of an object, A, also manages replicas of all objects on which A. is

potentially dependent. It follows then that if a server logs some request, x.A.

then it also logs every dependent of x.A. Because a request never occurs in a

log without all of its dependents, the basic estimates are always defined and the

recovery mechanism never aborts. Note that backward inclusion systems satisfy

the cycle restriction and so never abort due to cyclic dependency conditions.

The class of backward inclusion systems consists essentially of hierarchically

organized systems such as the one depicted in figure 7.1. Figure 7.1(a) shows

the potential dependency relation between the six objects in the system and

figure 7.1(b) shows the overlap between the server sets of the six objects. The set

of backward inclusion systems also includes some non-hierarchical systems such

as the one depicted in figure 7.2.

7.3 Chec!)inting

As we have preseL l them, logs grow without bound. In any implementation of

the recovery mechanism, the growth of logs must be limited through the use of

109

A
A

B C

(a) (b)

Figure 7.2: A non-hierarchical backward inclusion system

checkpoints. A checkpoint can be logically modeled as a set of requests.

Definition 7.2

The checkpoint of object A in state S at seroer f, denoted CKPTilf' is a set

of cav.sally consistent requests on object A.

V x'.A,x.A E 'R (x'.A -<x x.A): x.A E CK.PT~/I ==> x'.A E CK.PTi1f

In reality, the checkpoint stored by a server is not a set of requests, but a

compact representation of the object state corresponding to that set of updates.

However, for the purposes of discussion, we choose to model a checkpoint as a

set of requests.

A recovering server restores its replica of an object, A, from its log by first

restoring the replica to the checkpointed state and then replaying the logged

requests on object A. In order to ensure that only consistent states are restored

to replicas, the causality condition on logs is extended to include checkpoints.

First, the checkpoints and log of a server are restricted to contain only requests

on objects managed by the server. Second, if a server logs or checkpoints some

request, x.A, then it must previously have logged or checkpointed all dependents

110

of x.A (on objects managed by the server). Because checkpoints precede all other

entries in a log, this implies that a server that has checkpointed x.A has also

checkpointed the dependents of x.A. Lastly, the checkpoints and log of a server

are restricted from containing any duplicate requests.

Definition 7.3

The log, (C.sll'-sll)' of a server f in state S is consistent with a request

structu.re, ('R, -<1l), if

1. V x.A E C.S/I: A E OB.7S 1

V A E 08.7 S ,: C K:PT ~I 1 contains only object A requests

2. V x.A E c.s/I: V y.B E 'R (y.B -<1l x.A) :

BE 08.7S, =>

[y.B E CK,PT~/I V (y.B E C.sll 1\ y.B -SII x.A) 1

9. V A,B E 08.7S/:

V x.A E CK,PT~/I :

V y.B E 'R (y.B -<1l x.A): y.B E CK,PT~/I

4· V A E 08.7S ,: CK,PT~/I n C.sll = 0

The projection operator is also extended to account for checkpoints in the fol

lowing way:

Definition 7.4

The projection of a log, (CSI1 ' -S/I)' onto an object, A E 08.7S, is

(C SI1 ' -S/I) IA = { x.A I x.A E CS/I V x.A E CK,PT~/I }

The main difficulty involved in implementing checkpoints is ensuring that the

causal consistency restrictions are not violated. For example, the log addition

111

transformation must be careful not to add to a server's log any request that is

already present in that server's checkpoints. Similarly, a checkpoint should ne\"el'

be installed at a server if that checkpoint reflects a request already present in

the server's log (this can be a problem when a new checkpoint is transferred to

a recovering server during the server's JOIN phase).

These problems can be solved by storing, with each checkpoint, explicit 1Il

formation about the requests it reflects. Duplicates can then be detected and

removed from the affected log. Due to the large number of requests that may be

reflected in a checkpoint, however, it will generally be impractical to maintain

such explicit information.

Another method for avoiding duplicates is to use implicit information con

tained in other servers' logs. For example, if a server, I, known to be consistent,

has logged some request, x.A, then the checkpoint of object A at server I cannot

reflect x.A. It therefore follows that request x.A can be added to the log of any

server, with the same object A checkpoint as I, without introducing a dupli

cate into its log. By adapting a checkpointing algorithm such as [KT8i]' we can

increase the likelihood that servers will have identical checkpoints.

7.4 Summary

In this chapter we examined several issues concerning the efficiency of the recov

ery mechanism. We began by describing a circularity condition that can arise

in the estimates and cause the recovery mechanism to abort. We showed how

this problem could be avoided by restricting the structure of the system. vVe

then outlined a special class of systems, called backward inclusion systems, that

were efficiently solvable without blocking using the basic estimates. Finally, we

outlined some of the problems involved in adding object checkpoints to server

logs.

Chapter 8

Grouping Consistency

This dissertation has presented a recovery mechanism for preserving causal con

sistency in a distributed system. The basic principles of estimating dependencies

between requests and using those estimates to preserve consistency can also be

applied to other forms of consistency. In this chapter we outline changes in the

recovery mechanism for supporting an atomic form of consistency called grouping

consistency.

8.1 Grouping Consistency

Under grouping consistency, requests may be collected into sets (called groups)

with the property that no request in a group is reflected in the system unless all of

the requests in the group are also reflected. The requests in a group do not have

any ordering properties between them, only the all-or-none property. Grouping

consistency differs from serializability in that there are no ordering properties

between the requests in different groups; they may be received and processed by

servers in any order.

As an example of grouping consistency, consider an airline reservation system.

Suppose that a passenger wishes to make a reservation on a pair of connecting

flights. This operation can be implemented as two separate requests. First, a seat

112

113

Request Structure: (R, ='R.)

R = {reSl.A, res2.B, res3.A, reS4.B}

Figure 8.1: A grouping request structure

is reserved for the passenger on the first flight, A. Second, a seat is reserved for

the passenger on the connecting flight, B. In order to be consistent, the system

should never reflect one seat reservation without reflecting the other. The two

reservations would therefore be collected into a group and submitted as a unit.

We can modify the definition of a request structure to reflect groupings of

requests in the following way.

Definition 8.1

A request structure, (R, ='R.), is a set of requests along with an equivalence

relation on that set.

Here, R is the set of client requests and ='R. relates all grouped requests. If two

requests are related, x.A ='R. y.B, then the system must reflect both requests or

neither request. Note that a request may belong to multiple groups. If request

x.A is grouped with request y.B (x.A ='R. y.B), and request y.B is separately

grouped with request z.c (y.B =1l z.c), then by the transitivity of the grouping

relation request x.A cannot be reflected in the system unless request =.C is also

reflected.

Figure 8.1 shows a request structure for the airline reservation system de

scribed above. The system consists of four seat reservations (resl.A, res2·B.

res3.A, and res4.B) on two separate flights (A and B). In the example, res2.B is

a connecting reservation from resl.A and res4.B is a connecting reservation from

reS3·A.

114

We assume servers receive, process, and log grouped requests as a unit. As a

result, server logs are consistent with the group structure on requests. That is.

if the log of a server reflects some request, x.A, then it also reflects all requests

related to x.A (on objects managed by the server).

Definition 8.2

The log, (Cs/I'-S/I)' of server f in state 5 is con.sistent with a request

structure, ('R., ='R), if

1. V x.A E Cs11 : f E St"'R.V A

2. V x.A E CSI1 :

V y.B E 'R. (x.A =1l y.B): f E St"'R.V B => y.B E CSI!

As before, we assume that servers recover in observably consistent states.

That is, at the time of a server recovery, the logs of all functioning servers are

consistent with the application's request structure and all active servers of an

object reflect the same object state. Further, the states of different active objects

are mutually consistent: if a request is reflected in the active state of one ob ject,

then all of its dependents (on active objects) are reflected in their object's active

states.

Definition 8.3

A sy8tem state, 5, i.! observably comi.!tent with a request structure, (R, =n.),

if

1. V f E st"'R.V - F.AICs : (C sI1 ' -S/I) is consi.!tent with (R, =R)'

2. V A E 08.7S: V f,g E ACT SIA: (C SI1 ' -S/I) IA = (C sI9 ' -s/g) IA

9. V A, B E 08.7S (ACT SIA 1: 0 " ACT SIB 1: 0) :

V x.A E ASSIA : V y.B E 'R. (x.A ='R Y.B): y.B E ASSIB

115

8.2 Changes to Recovery Mechanism

Recovery under grouping consistency is handled in the same manner as it 'vas

under causal consistency. The recovery sequence of a server is divided into two

phases. During the JOIN phase, a recovering server receives and installs the

current states of active objects. During the ACTIVATE phase, a recovering

server constructs and installs new (consistent) states for inactive objects.

The algorithms implementing the JOIN and ACTIVATE phases are nearly

identical to those of chapter 5. However, the log transformations on which they

are built must be modified to account for the new consistency definition. Consider

the log addition transformation. When a request is added to a server's log, the

transformation must be certain that all requests (directly or transi ti vely) grouped

with it are also present in the log. If they are not, then the transformation must

add them.

Definition 8.4

The set of object B dependents of request x.A under grouping consistency are

D£P B(x.A) = {y.B E 'R I y.B ='R. x.A}

Figure 8.2 shows the complete log addition transformation under grouping consis

tency. Note that the transformation places no particular ordering on the requests

in the log because requests are not ordered under grouping consistency.

The deletion transformation is modified in a similar manner. When a request

is deleted from a log, all requests grouped with it are also deleted. The complete

log deletion transformation is shown in figure 8.3. Note that although the trans

formation preserves the order of requests that remain in the log, this restriction

IS unnecessary.

116

where

c - c, U Q U [U U V£'PB(x.A)
z.AeQ BeOB:J S!

-c is any ordering of the requests.

Figure 8.2: Log addition under grouping consistency

where

c - {x.A E " I x.A ~ Q 1\ ~ y.B E Q: y.B =1t x.A }

'V x.A,y.B E ,: (x.A -c y.B) <* (x.A -/ y.B)

Figure 8.3: Log deletion under grouping consistency

117

When explicit dependency information is not available to the transformations.

dependency estimates can be used to preserve consistency. The changes necessary

to use estimates in the log transformations are left to the reader.

8.3 Estimating Dependencies

Our estimates of request groupings are divided into two classes: basic and com

pound. As before, the compound estimates are more accurate and more often

defined than the basic estimates, but are also more expensive to compute. How

ever, all estimates have the property that they do not under-estimate the true

set of grouped requests. That is, all of the estimates are sound.

We assume that the estimates have access to a potential dependency relation

that relates pairs of potentially dependent objects. Like the potential dependency

relation under causal consistency, this relation should not under-estimate the true

set of related objects.

Definition 8.5

A potential dependency relation, :::::::1l, over request structure (R, =1(.)' is a bI

nary relation on the objects in OB.J S with the property that it relates all pairs

of objects between which dependencies hold.

'V x.A, y.B E 'R.: x.A =1l y.B ==> A:::::::1l B

8.3.1 Basic Estimates

The basic estimates are designed to search individual server logs for evidence of

request groupings. We begin by presenting an estimate of when two requests are

not grouped. This estimate is then used to construct an estimate of the complete

set of (grouped) dependents of a request.

118

Consider the problem of estimating when two requests, x.A and y.B. are not

grouped. Because server logs are consistent with the request structure of an

application, we know that the requests are not grouped if a server of objects .-l.

and B has logged one request, but not the other. Because the states of active

objects are consistent with the application's request structure, we also know that

x.A and y.B are not grouped if both objects are active, but only one of the

requests is reflected in its object's active state. Combining these observations

with the knowledge provided by the potential dependency relation we derive the

following estimate.

Definition 8.6

Let ('R., =1l) be a request structure, let ~1l be a potential dependency relation

consistent with ('R., =1l), and let 5 be a system state consistent with (n. =n).

The request grouping, x.A = y.B, is directly contradicted in state 5, denoted

con~(x.A = y.B), if any of the following three conditions holds:

1. A *'1l B

2. 3 f E FUNCs/AnFUNCs/B:

[(x.A E C.SII !\ y.B f/. c.s//) V (y.B E c.s// 1\ x.A rt. C. S//)]

9. ACTs/A # 0 1\ ACTs/B # 0 1\

[(x.A E ASs/A 1\ y.B f/. ASS/B) V (y.B E ASS/ B 1\ x.A f/. ASS/A)]

Now consider the problem of estimating the complete set of object B requests

grouped with request x.A. If a server of objects A and B has logged request

x.A, then its log must also contains all of the object B dependents of x.A. The

set of object B requests in its log can therefore be used as an estimate of the

dependency set. Additionally, if objects A and B are both active, and the state

of A reflects request x.A, then the state of B must reflect all of the dependents.

The set of requests reflected in the state of B can therefore also be used as an

119

estimate of the dependency set. Combining these approximations along with

the information in the preceding estimate, we derive the following estimate of

D£PB(X.A).

Definition 8.7

Let (R, =R) be a request structure, let ~R be a potential dependency rela

tion consistent with ('R., =R), and let S be a system state observably conS2S

tent with ('R., =R). For any object B E 013,J S and request x.A E 'R, the

basic estimated dependents of x.A are:

1.. if,3f E mN'CS/AnmN'CS/B: x.A E CSlf

dep~/B(x.A) = 0

and

ACT S/A = 0 V ACT SIB = 0 V x.A rf. AS SIA

if B:f:,R A

{y.B I,con~(y.B = X.A) A. o. w.

(3f E mN'CS/Anm}/CS/B : x.A,y.B E CSIf

V y.B E ASS/ B J}

8.3.2 Compound Estimates

The information necessary to detect a request grouping may be distributed across

multiple logs. For example, suppose that there is a grouping between n different

requests.

This grouping may embed itself across n - 1 logs in the following way.

Xn-l·An-l

Xn.An

120

Using the basic estimates, we would detect each of the individual grouping pairs:

In order to detect the overall grouping between the n requests, the results of

the basic estimates must be combined. This can be done using the compound

estimates of chapter 6. By substituting the preceding basic estimates for those of

chapter 6, the compound estimates will approximate request groupings instead

of causal dependencies. No other modifications are required to the compound

estimates.

8.4 Summary

This chapter outlined modifications to the recovery mechanism for supporting a

new form of consistency called grouping consistency. Under grouping consistency.

requests were collected into sets with the property that no request in a set was

reflected in the system unless all requests in the set were reflected.

The recovery sequence of a server remained the same as it was under causal

consistency. During the JOIN phase, a recovering server restored its replicas of

active objects to those objects' current states. During the ACTIVATE phase.

a recovering server restored its replicas of inactive objects to states consistent

with the rest of the system. However, the log transformations out of which

the recovery algorithms are built had to be modified to account for the new

consistency definition.

When explicit information about the groupings of requests was unavailable.

the log transformations could use estimates of the groupings in order to preserve

consistency in the system. These estimates were divided into two classes: basic

and compound. The compound estimates remained the same as they were in

chapter 6. However, the basic estimates out of which they are built were redefined

to approximate grouping dependencies instead of causal dependencies.

Chapter 9

Conclusions

This dissertation has presented a recovery mechanism for restoring casually con

sistent states to replicated data objects. The mechanism was based on maintain

ing logs of the updates that occur to objects, and using those logs to reconstruct

object states after failures. Unlike existing techniques, our method does not re

quire any explicit information about the dependencies between updates. Instead.

any necessary information about the ordering between requests is inferred from

their orderings within logs ..

Without a recovery mechanism, two types of inconsistencies develop in a

system. First, inconsistencies develop between the different replicas of an object.

When a server of a replica recovers from a failure, its log reflects the state of

the object from the time of the failure. If the state of the object has changed

since the failure, the server will restore an outdated state to its replica. Second.

inconsistencies develop between the states of different objects. When all servers of

an object fail, some updates on the object may be lost. The state later recovered

by the servers may then be missing some requests on which other active objects

depend.

Based on these two types of inconsistencies, the recovery sequence of a server

is divided into two phases. During the JOIN phase, a recovering server restores

121

122

its replicas of active objects. The current states of these objects are transferred

to the server and written to its log. During the ACTIVATE phase, a server

restores its replicas of inactive objects. All recovering servers of an inactiw

object cooperate in choosing a new state for the object that is consistent \vith

the states of the other objects in the system. Once chosen, the servers modify

their logs to reflect this new state.

The algorithms implementing the JOIN and ACTIVATE phases are relatively

straight forward. The only difficulty involves preserving the consistency of a

server's log when modifications are made to it. The log addition transformation

ensures that no request is added to a server's log without all of its dependents.

The log deletion transformation ensures that no request is deleted from a log

without also removing all requests that depend on it.

When explicit information about request dependencies is not available, the re

covery algorithms (as well as the log transformations out of which they are built)

can use estimates of the dependencies. In order to preserve consistency in the

system, these estimates must have the property that they do not under-estimate

the orderings between requests. We presented several dependency estimates with

this property. The basic estimates are simple approximations based on search

ing server logs for evidence of request orderings. The compound estimates are

more complicated approximations formed by combining the results of the basic

estimates. Although the compound estimates are more accurate and more of

ten defined than the basic estimates, they are also more expensive to compute.

We showed that in a special class of systems (the backward inclusions systems)

the inexpensive basic estimates can always be used without the possibility of

blocking.

Our basic recovery approach can also be applied to forms of consistency other

than casual consistency. We showed that with little modification, our recovery

technique could be applied to an atomic form of consistency called grouping

123

consistency. Particularly interesting was the fact that the compound estimates

remained unchanged between causal and grouping consistency. Only the basic

estimates needed to be changed to allow for the new consistency definition.

9.1 Future Work

We conclude this dissertation by discussing several related areas for fu t ure re

search.

9.1.1 Implementation Considerations

A recovery mechanism based on the ideas in this dissertation was implemented

in the ISIS system [BCJ+j. In ISIS, the server set of an object is implemented as

a process group. Each process in a group is equivalent to one server and manages

one replica of the object. Process groups in ISIS are given unique names. Updates

on an object can be broadcast to the group using only the group name. 'When

such a broadcast occurs, ISIS automatically resolves the name of the group into

its current set of member processes and delivers a copy of the update broadcast

to each member.

Unfortunately, the exact recovery mechanism described in this dissertation

could not be implemented in ISIS because of the way in which ISIS handles

process groups. When a process (server) recovers in ISIS, it is required to re-join

the process groups (object server sets) that it previously belonged to in a fixed

order that is set at the time the application is written. However, the recover

sequence presented in chapter 3 requires a recovering server to join object groups

in flexible orders. When a server recovers, it must first JOIN the server sets of

all objects that are currently active (whatever they are) and then ACTIVATE

its replicas of objects that are inactive. We believe that ISIS could be made

to support processes joining process groups in flexible orders. However, the

modifications would require substantial revision of the code, and our current

"--"~----

124

applications ,~ t require such support.

Like the re,~,) ,'ery mechanism described in this dissertation, the recovery mech

anism in ISIS automatically ensures consistency between the replicas of an ob ject,

However, the ISIS recovery mechanism does not provide automatic consistency

between the states of different object. Instead, it ensures that the state of an

inactive object is always recovered using the log of the last server of the object

to fail [Ske85]. By allowing clients to force certain updates to be logged by all

functioning servers of an object, clients can control which updates may be lost

from the system, and therefore control consistency in the system.

Beyond the ability to join process groups in flexible orders, ISIS should pro

vide a good platform on which to build the recovery mechanism described in

this dissertation. ISIS currently supports a state transfer mechanism whereby a

server (process) joining or re-joining an active object server set (process group)

is automatically transferred the current state of the object (process group), This

state transfer appears atomic from the point of view of a client, so each update

broadcast to the object (process group) is processed by all of its members in the

same state of the object (process group). This state transfer mechanism is used

by the current ISIS recovery mechanism to initialize replicas of active objects at

recovenng servers.

The ISIS broadcast mechanism also provides a facility for automatically col

lecting replies to message broadcasts, including the handling of failures during the

broadcast-reply sequence. This facility should prove invaluable in the dissemina

tion and collection of basic dependency information. For example, a recovering

process requiring dependency information about certain updates could broadcast

a request to the servers of the objects involved. Upon receiving the request, the

servers could reply with the current states of the objects and ordering informa

tion from their logs. Using simple un·os and intersections, the recovering process

could then combine this information) form the necessary estimates. This type

125

of mechanism would be sufficient for building backward inclusion systems, where

only basic dependency information is required.

Tills technique could also be used to compute the compound estimates. How

ever, doing so would be costly, not only in terms of time, but also in terms of

space and message traffic. In order to form the compound estimates needed for

recovery, a server must collect basic estimates from the logs of many differen t

servers. Tills collection process can potentially create a large load of message

traffic at the recovering server. Further, once the basic estimates are collected,

the server must combine them to form the compound estimates. If the potential

dependency relation contains long chains, this could require significant time and

space.

In order to reduce the time, space, and message load at a recovering server, the

task of computing estimates could be distributed across the functioning servers

in the system. Each functioning server could locally compute the basic estimates

related to the objects it manages. This would introduce only a limited amount of

message traffic at each server. Once the basic estimates are computed, the func

tioning servers could exchange their results and combine them in a hierarchical

fashion in order to form the overall compound estimates.

9.1.2 Other Consistency Forms

We have described variants of our recovery mechanism for implementing both

causal consistency and grouping consistency. An interesting problem is whether

these variants can be combined to implement serializable consistency. Grouping

consistency provides the all-or-none property required by serializability. Causal

consistency might then be added to implement some type of ordering between

the requests in different groups.

A related problem concerns the types of consistency that can be enforced us

ing our basic mechanism. We would like to characterize the forms of consistency

126

b-z.B

h: bl.B

a.A

d3. D

12: ~ /4: ~
/6: C3· G

bl·B ~.B a.A

~ ~ fa: /5:
Cl·G d2.D

Figure 9.1: Logs generating non-optimal estimates

implement able using dependency estimates. The compound estimates of chap

ter 6 apply equally well to both causal and grouping consistency. The question

then naturally arises as to whether these estimates apply to more general forms

or classes of consistency.

9.1.3 Optimal Estimates

The compound estimates of chapter 6 are not optimal in the sense that they may

occasionally yield an ordering between two requests, even when there is evidence

available in the system to contradict the ordering. For example, consider the set

of logs shown in figure 9.1. This figure depicts the logs of six servers (h, 12, /3,

/4, Is, and 16), each server managing only those objects for which requests are

shown in its log. Suppose that the potential dependency relation in this system

forms one long chain.

127

Applying the compound estimates to these logs, the estimates would yield an

ordering between requests a.A and e.E.

e.A -< a.A

However, from the logs we can determine that this ordering is not possible. Any

dependency of request a.A on request e.E must occur along the chain of objects

depicted above (in the potential dependency relation). From the log of server h.

we know that any such dependency would include either request bl.B or b2.B. If

the dependency included request bl. B, then from the log of server h we know

that it must also include request Cl.G. This implies that a.A is dependent on

Cl.G. But, this ordering is contradicted by the log of server i6' Similarly, if the

dependency chain includes request b-z.B, then from the log of server i4 we know

that is also includes d2.D. This implies that request a.A is dependent on request

d2.D. But, this ordering is also contradicted by the log of server i6.
An interesting problem would be to determine an optimal set of dependency

estimates that yield an efficient implementation. As we pointed out earlier, the

compound estimates apply equally well to both causal and grouping consistency.

We would like to find an optimal set of estimates that also have this property,

preferably extending to other consistency forms as well. Because it has not been

the goal of this dissertation to pursue complexity issues, we will not make any

general speculations about the difficulty of computing an optimal set of estimates.

We would like to point out, however, that the problem of determining an optimal

set of estimates is reminiscent of other optimality results in the literature that

have been shown to be NP-complete [Pap79].

Bibliography

[AM83] J. E. Allchin and M. S. McKendry. Synchronization and recovery
of actions. In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, pages 31-44. ACM, August 1983.

[BCJ+] Kenneth P. Birman, Robert Cooper, Thomas A. Joseph, Kenneth P.
Kane, and Frank Schmuck. ISIS - A Distributed Programming En
vironment: User's Guide and Reference Manual. The ISIS Project,
Department of Computer Science, Cornell University, Ithaca, New
York 14853.

[BG811 Philip A. Bernstein and Nathan Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys, 12(2):185-
221, June 1981.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con
currency Control and Recovery in Database Systems. Addison-Wesley
Publishing Company, first edition, 1987.

[BJ87a1 Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual syn
chrony in distributed systems. In Proceedings of the Eleventh ACM
Symposium on Operating System Principles, pages 123-138. ACM,
November 1987.

[BJ87b] Kenneth P. Birman and Thomas A. Joseph. Reliable communication
in the presence of failures. ACM Transactions on Computer Systems,
5(1):47-76, February 1987.

[BN841 Andrew D. Birrell and Bruce Jay Nelson. Implementing remote pro
cedure calls. ACM Transactions on Computer Systems, 2(1):39-59,
February 1984.

(CASD86] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev.
Atomic broadcast: From simple message diffusion to byzantine agree
ment. Research Report RJ 5244 (54244), IBM, July 1986.

128

[CM84]

[Coo85]

[CP86]

[Den82]

129

J. M. Chang and N. F. Maxemchuk. Reliable broadcast protocols,
ACM Transactions on Computer Systems, 2(3):251-273. August 198-1,

Eric Cooper. Replicated distributed programs. In Proceedings of the
Tenth ACM Symposium on Operating System Principles, pages 63-78,
ACM, December 1985.

Douglas E. Comer and Larry L. Peterson. Conversation-based maiL
ACM Transactions on Computer Systems, 4(4):299-319, r\ovember
1986.

Eric V. Denardo. Dynamic Programming: Models and Applications,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, first edition,
1982.

[DGMS85] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consis
tency in partitioned networks. ACM Computing Surveys, 1 i(3):341-
370, September 1985.

[FC87] Ross S. Finlayson and David R. Cheriton. Log files: An extended file
service exploiting write-once storage. In Proceedings of the Eleventh
ACM Symposium on Operating System Principles, pages 139-148.
ACM, November 1987.

[Gra78] J. Gray. Notes on database operating systems. In Lecture Notes in
Computer Science 60. Springer-Verlag, Berlin, 1978.

[HMSC88] Roger Haskin, Yoni Malachi, Wayne Sawdon, and Gregory Chan. Re
covery management in quicksilver. ACM Transactions on Computer
Syste'ITU, 6(1):82-108, February 1988.

[J+S7] David R. Jefferson et al. Distributed simulation and the time warp
operating system. In Proceedings of the Eleventh A CM Symposium on
Operating System Principles, pages 77-93. ACM, November 1987.

[Jef85] David R. Jefferson. Virtual time. ACM Transactions on Programming
Languages and Systems, 7(3):404-425, July 1985.

[JLHB87] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine
grained mobility in the emerald system. In Proceedings of the Eleventh
ACM Symposium on Operating System Principles, pages 105-106.
ACM, November 1987.

[JZ87] David B. Johnson and Willy Zwaenepoel. Sender-based message log
ging. In The Seventeenth International Symposium on Fault- Tolerant
Computing, pages 14-19. IEEE, July 1987.

130

(JZ88] David B. Johnson and Willy Zwa.enepoel. Recovery in distributed
systems using optimistic message logging and checkpointing. In Pro
ceedings of the Seventh Annual ACM Symposium on Principles of Dis
tributed Computing, pages 171-181. ACM, August 1988.

[KT87] Richard Koo and Sam Toueg. Checkpointing and rollback recovery
for distributed systems. IEEE Transactions on Software Engineering.
13(1}:23-31, January 1987.

[Lam78J Leslie Lamport. Time, clocks, and the ordering of events in a dis
tributed system. Communications of the ACM, 21(7):558-565, July
1978.

[LCJS87] Barbara Liskov, Dorothy Curtis, Paul Johnson, and Robert Scheifler.
Implementation of argus. In Proceedings of the Eleventh A CM Sympo
sium on Operating System Principles, pages 111-122. ACM, November
1987.

[LL861 Barbara Liskov and Rivka Ladin. Highly-available distributed ser
vices and fault-tolerant distributed garbage collection. In Proceed
ings of the Fifth Annual ACM Symposium on Principles of Distributed
Computing, pages 29-39. ACM, August 1986.

[LSP82J L. Lamport, R. Shostak, and M. Pease. The byzantine generals prob
lem. A CM Transactions on Programming Languages and Systems,
4(3):382-401, July 1982.

[OLS85] Brian M. Old, Barbara H. Liskov, and Robert W. Scheifler. Reli
able object storage to support atomic actions. In Proceedings of the
Tenth A CM Symposium on Operating System Principles, pages 147-
159. ACM, December 1985.

[Pap79] ChristOi H. Papadimitriou. The serializability of concurrent database
updates. Joumo.l of the ACM, 26(4}:631-653, October 1979.

[PBS89] La.rry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting.
Preserving and using context information in interprocess communica
tion. ACM Transactions on Computer Systems, 7(3):217-246, August
1989.

[PP83) Michael L. Powell and David L. Presotto. Publishing: a reliable
broadcast communication mechanism. In Proceedings of the Nineth
ACM Symposium on Operating System Principles, pages 100-109.
ACM, October 1983.

---'~--

[PT86J

[Sch88]

[Ske85]

. [SS83]

[SY85]

[U1182]

131

Kenneth J. Perry and Sam Toueg. Distributed agreement in the
presence of processor and communication faults. IEEE Transactions
on Software Engineering, SE-12(3):477-482, March 1986.

Frank Bernhard Schmuck. The Use of Efficient Broadcast Protocols m
Asynchronous Distributed Systems. Ph.D. dissertation, Cornell Cni
versity, August 1988.

Dale Skeen. Determining the last process to fail. A CM Transactions
on Computer Systems, 3(1):15-30, February 1985 .

R. Schlichting and F. Schneider. Fail-stop processors: An approach to
designing fault-tolerant distributed computing systems. A CM Trans
actions on Computer Systems, 1(3):222-238, August 1983.

Robert E. Strom and Shaula Yemini. Optimistic recovery in dis
tributed systems. ACM Transactions on Computer Systems, 3(3):204-
226, August 1985.

Jeffrey D. Ullman. Principles of Database Systems, chapter 11. Com
puter Science Press, 11 Taft Court, Rockville, Maryland 20850, sec
ond edition, 1982.

