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ABSTRACT

This report covers research conducted during the three phases of the

subject contract: Phase 1 (1 Oct. 1984 - 30 June 1986), Phase 2 (1 July 1986

- 10 July 1987), and Phase 3 (11 July 1987 - 1 Sept. 1989). The research,

entitled "Application of Attachment Modes in the Control of Large Space

Structures," focussed on various ways to obtain reduced-order mathematical

models of structures for use in dynamic response analyses and in controller

design studies.

Attachment modes are deflection shapes of a structure subjected to spec-

ified unit load distributions. Attachment modes are frequently employed to

supplement free-interface normal modes to improve the modeling of compo-

nents (substructures) employed in component mode synthesis analyses. De-

flection shapes of structures subjected to generalized loads of some specified

distribution and of unit magnitude can also be considered to be attachment

modes. This report summarizes the following papers and reports which were

written under this contract:

• Craig, R. R. Jr., "A Review of Time-Domain and Frequency-Domain

Component Mode Synthesis Methods," Ref. [7].

• Craig, R. R. Jr., "A Review of Time-Domain and Frequency-Domain

Component Mode Synthesis Methods," Ref. [8].

• Craig, R. R. Jr. and Hale, A. L., "Block-Krylov Component Synthesis

Method for Structural Model Reduction," Ref. [14].
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• Craig, R. R. Jr. and Ni, Z., "Component Mode Synthesis for Model

Order Reduction of Non-classically-Damped Systems," Ref. [15].

• Craig, R. R. Jr., Su, T. J., and Ni, Z., "State Variable Models of

Structures Having Rigid-Body Modes," Ref. [16].

• Kim, H. M. and Craig, R. R. Jr., "System Identification for Large Space

Structures," Ref. [17].

• Kim, H. M. and Craig, R. R. Jr., "Structural Dynamics Analysis Using

an Uns?q-nmetric Block Lanczos Algorithm," Ref. [18].

• Kim, H. M. and Craig, R. R. Jr., "Computational Enhancement of an

Unsymmetric Block Lanczos Algorithm," Ref. [19].

• Turner, R. M. and Craig, R. R. Jr., "Use of Lanczos Vectors in Dynamic

Simulation," Ref. [22].

• Craig, R. R. Jr. and Turner, R. M., "Lanczos Models for Reduced-

Order Control of Flexible Structures," Ref. [23].

• Su, T. J. and Craig, R. R. Jr., "Application of Krylov Vectors and

Lanczos vectors to the Control of Flexible Structures," Ref. [24].

• Su, T. J. and Craig, R. R. Jr., "Model Reduction and Control of Flex-

ible Structures Using Krylov Vectors," Ref. [25].

• Su, T. J. and Craig, R. R. Jr., "Krylov Model Reduction Algorithm for

Undamped Structural Dynamics Systems," Ref. [26].
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1. INTRODUCTION

Attachment modes are deflection shapes of a structure subjected to spec-

ified unit load distributions[l]. Attachment modes were originally defined

by Bamford as "those modes which result from a concentrated load at a

point[2]." This type of attachment mode is frequently employed to supple-

ment free-interface normal modes to improve the free-interface modeling of

components (substructures) employed in component mode synthesis analy-

ses[i,3]. Deflection shapes of structures subjected to generalized loads of

some specified distribution and of unit magnitude can also be considered

to be attachment modes. Reference [4] provides an example of the case of

attachment modes defined for distributed loads applied to a structure.

Krylov vectors, and the closely-related Lanczos vectors, constitute a spe-

cial class of attachment modes. Wilson, et.al.,[5] explored the use of "Ritz

vectors" in analyzing the dynamic response of structures. Nour-Omid and

Clough[6] described the use of similarly-defined vectors, identifying them as

Lanczos vectors. These authors noted the superiority of Lanczos vectors over

the usual normal mode vectors as bases for mode superposition solutions of

dynamic response problems. The research described in this report was ini-

tiated to explore the application of Krylov/Lanczos vectors to the dynamic

response of structures and to the control of flexible structures.

This report summarizes various reports and technical papers and pre-

sentations which have resulted from the research on applications of various

forms of attachment modes. Research related to component mode synthesis



is describedin Section2, followedin Section3 by a discussionof applications

of Lanczos modes in dynamic response analysis and in system identification.

The application of Krylov vectors and Lanczos vectors to the control of flex-

ible structures is summarized in Sections 4 and 5. Section 6 summarizes a

substructure-based approach to control of flexible structures. Finally, some

concluding remarks and recommendations are noted in Section 7.
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2. SUBSTRUCTURE ANALYSIS METHODS

Since the late 1960's many papers have been published on the topic of

component mode synthesis (CMS), or substructure analysis of dynamic re-

sponse. Very few of these papers treat damped structures, and virtually none

treat structures acted upon by general non-conservative forces. In response

to an invitation to present an invited paper, and in preparation for extend-

ing component mode synthesis methods to structures with arbitrary linear

damping, the author compiled an extensive literature review and tutorial

article on methods of component mode synthesis[7,8].

In the literature on component mode synthesis there are three basic ap-

proaches. One approach employs constraint modes and fixed-interface normal

modes, and is typified by the methods of Hurry[9] and of Craig and Bamp-

ton[10]. A second approach, which employs attachment modes and free-

interface normal modes, is represented by the methods of MacNeal[11] and

Rubin[12]. Finally, interface loading is employed by Benfield and Hruda[13].

Two studies related to substructure analysis using attachment modes are

described in this Section. Reference [14] describes substructure analysis us-

ing a fixed-interface block-Krylov subspace or a free-interface block-Krylov

subspace. References [15] and [16] discuss the extension of free-interface

component mode synthesis (e.g., Refs. [11], [12], and [3]) to structures hav-

ing general damping. Figure 1 shows a system composed of components,

or substructures, and indicates the loads used to identify interface and non-

interface coordinates.
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8. TYPICAL COMPONENT WITH REDUNDANT BOUNDARY

Figure 1: The component mode synthesis method distinguishes between

internal(i) and 12oundary(b) coordinates. Boundary coordinates are some-

t,i,lt,.s h_rt, ll_,r ,livi,h,,I Jut.(, rigid l>o,ly (,') and <2x('<'ss (c), or t',,(l_t,I;,t_t, ,_,,,l
dinates

A Kmjlov subspace of order j is a j-dimensional vector space spanned by

columns of the matrix

Qj = [¢, A¢, A2¢, ..., A(J-1)¢] (1)

where ¢ is any column vector and A is a square matrix. We have assumed

that ¢ is n-dimensional and A is n x n-dimensional. Depending on the choice

of ¢ and A, the basis vectors in Eq. (1) are either linearly dependent for some

j less than n or they span the entire n-dlmensional space when j = n. If

¢ is id'placed l)y a matrix wil, h i columns rather than a single cohtnm, 1,1t_.

subspace is called a bIock-Kmjlov subspace.

Reference [14] develops a fixed-interface version and a free-interface ver-

sion of component mode synthesis for undamped structures using Krylov

vectors rather than the usual normal modes. The equation of motion of a

component can be written in the following partitioned forms



I /2trnb_ rnbb _b + kbi kbb xb fb

mei rnee met 2e + kei kee ker Xe = fe (3)

rn_ m_e m_ 2_ k_i k_ k_r x_ f_

A constraint mode is defined as the static deflection of a structure when a

unit displacement is applied to one coordinate of a specified set of coordinates

while the remaining coordinates of that set are restrained and the remain-

ing degrees of freedom of the structure are force free. Thus, employing the

matrix partitioning of Eq. (2), the set of constraint modes _c relative to the

boundary coordinates, is defined by

That is, _c is given by

(.5)

In Reference [14] it is shown that a fixed-interface block-Krylov subspace for

a component may be defined by

__ [_o), _,), _?),..., _j-,)] (6)

where _!o) is given by Eq. (5) and where

0 =a: c

where Gc is defined by

[ k_lmii k.lrnib ]Go= 0 0

(7)

(8)



Then,

and, subsequently,

= Gct_c = [ k'_l(rnilt_ic + mib) ]0 (9)

L-1 ,T.(r-l) ]
I,I/_r) _ ICii miiWic r = 2, 3, ... (10)

0

A free-interface analog of Eq. (6) can also be defined. However, this

case is complicated by the fact that, when all of the component degrees of

freedom are free, the stiffness matrix k will be singular if the component is

free to undergo rigid-body motion. In such case, a pseudo-inverse of k is

required, and rigid-body modes must be included in the displacement of the

component. Using the partitions of Eq. (3), the N_ rigid-body modes can be

defined by

[oI (11)

where l is an r x r unit matrix, and a pseudo-inverse k -1 can be defined by

g, gi, 0 ]
k -_= g_i g_, 0 (12)

0 0 0

where

g_i g_, = k_i k_ (13)

An attachment mode is defined as the static deflection of a structure when

a unit force is applied at one coordinate of a specified set of coordinates, while

the remaining unconstrained coordinates are force free. When a structure has

rigid-body freedoms, the structure can be restrained at an r-set of coordinates



(Fig. 1), and a set of N_ attachment modes _ can be defined for unit forces

applied at the excess (redundant) coordinates by the equation

Let

(14)

where _, is given by Eq. (11) and ¢_ by Eq. (14).

that _b spans the same (N, + N_) subspace as that spanned by _c, and it is

shown that a fl'ee-interface block-Krylov subspace of order j may be defined

by

ixl/jb _ [lI_O) ii/_l)1i/_2),.. ., 1,i/_J-1)]

where _0)is given by Eq. (15) and where _')is given by

(15)

It is noted in Ref. [14]

(16)

t9_") = G: _b = G_ _'-') = k-Xrat)_'-') (17)

Reference [14] proves certain disturbability and observability properties

that the block-Krylov subspaces defined by Eqs. (6) and (16) possess. Numer-

ical examples are also provided comparing block-Krylov component synthe-

sis results with results obtained by the Hurty-Craig-Bampton fixed-interface

normal mode approach. The accuracy of the fixed-interface block-Krylov

method is shown via a numerical example to be comparable to that of fixed-

interface component mode synthesis. Since the computational expense of

block-Krylov method is less than that for component mode synthesis, the

block-Krylov method is preferable.



The block-Krylov substructure methodsdescribedabovepertain only to

undamped structures. A free-interfacecomponentmode synthesis method

for structures with generaldamping will be describedin the remaining part

of this section. This method, which employscomplex modes, is described

in Refs. [15,16]. An alternative method for treating structures with general

damping is discussedin Section3. The method in Section3doesnot require

complexmodes.

The equationof motion for atypical free-interfacecomponentof a damped

structure may bewritten

mY:+ ck + kx = f (18)

where m, c, and k are the (n x n) mass, damping, and stiffness matrices,

respectively. There is no assumption that the matrices in Eq. (18) are sym-

metric, although m and k will normally be symmetric. However, if the com-

ponent has rigid-body freedom, k will be singular.

Where necessary, Eq. (18) will be expanded into (i, b) partitions or

(i, e, r) partitions in accordance with the notation of Figure 1. In this

report it will be assumed that there are no external forces acting on the

structure, so the only forces exerted on a component act on the boundary,

and f has the form

0i

Equation (18) can be expanded to 2n-order state-space form as follows:

AX + BX = F (2O)



where

A=[Omm]c, O=[-mO , ,21 
A and B will be referred to as the state mass matrix and the state stiffness

matrix, respectively, and X will be called the state displacement vector.

Corresponding to Eq. (20), there is an adjoint differential equation

-- ATy -t- BTY = F* (22)

where the adjoint state displacement vector Y and adjoint state force vector

F* are given by

Let the complex spectrum matrix be denoted by A. (A will be diagonal,

with the 2n eigenvalues Ai on the principal diagonal. Exceptions in which the

eigensystem is defective and A has Jordan form include systems with rigid-

body modes. Such cases are discussed in Ref. [16].) Let the right complex

mode matrix, whose columns are the right eigenvectors, be denoted by q_,

and the left complex mode matrix, whose columns are the left eigenvectors,

be denoted by _. Then,
Bq_ = -A_A

• TB = -A_A (24)

The right complex mode matrix • and left complex mode matrix • may

be partitioned in the following manner:

(25)



where subscripts r and f denote the rigid-body mode partition and the flex-

ible complex modes partition, respectively. Then,

where

j..= _TA_., fi,:.:=ql_Ac_: (27)

If there are no repeated eigenvalues, fi,:: is a diagonal matrix. However, .A_

will not necessarily be diagonal. An equation for B similar to Eq. (26) gives

For damped systems, a right projection matrix P is defined such that if

a state displacement vector X is premultiplied by pT, the rigid-body modes

will be removed from the vector. It follows from this definition that

P_[¢.%] = [o%] (29)

In Ref. [15] it is shown that

pT = I -- '$.fi,2 OT A (30)

In a similar manner, a left projection matrix Q may be defined such that

Q_[_.%] = [o_:]

Then Q will be of the following form

Q = I- A(I).j_-I*_

(31)

(32)

I0



The projection matrices definedby Eqs. (30) and (32) can be employed

to define state inertia-relief attachment modes. To define the attachment

modes, first let Fb be the (2n x nb) matrix of the state forces with unit forces

applied at each boundary coordinate. That is

Oib

Obb

.,o

Oib

Ibb

0ie 0ir

Ore 0er

0r_ 0_,

o o, .,,

I_ 0_
Ore L,

(33)

Then, let _= be the matrix of static state displacement vectors of a component

loaded by QF= and supported on a user-defined r set of boundary freedoms

that provide restraint against rigid-body motion. Let a pseudoflexibility

matrix D be defined by

D

-m -1 : 0 0 0

............ , • •

0 : [ kii k_ ]-1 0

0 : [ kei kee J 0

0 : 0 0 0

(34)

where it is assumed that m is nonsingular. Then, }= is given by

_ = DQF_ (3.5)

To remove the rigid-body modes from _=, Eq. (35) may be premultiplied by

pT leading to the following definition of right state inertia-relief attachment

11



?7"lodes:

¢_ = pT DQF_ (36)

Reference [15] next defines right and left state residual inertia-relief at-

tachment modes, describes how to couple substructures in state variable

form, and provides an example to demonstrate the accuracy of this method

for treating systems with general damping.

When the equations of motion of a structure are cast in first-order, state-

variable form, as is necessary for the case of general damping such as is

treated in Ref. [15], the resulting state equations may be defective. It is

shown in Ref. [16] that when the equations of motion of a structure having

rigid-body freedom are cast in state-variable form, generalized state rigid-

body modes may be required. Reference [16] gives the equations governing

these generalized eigenvectors and provides examples for both undamped and

damped structures.

12



3. USE OF LANCZOS VECTORS IN RESPONSE

ANALYSIS AND SYSTEM IDENTIFICATION

In Reference [17] an unsymmetric block Lanczos algorithm for structures

with general linear damping and with closely-spaced modes is developed. It is

also shown that it is possible to identify a Lanczos model from experimental

data. Two journal articles based on this work have been written [18,19],

and another is in preparation. This Section summarizes this research on

unsymmetric block Lanczos methods.

References [17] and [18] show how the equations of m6tion of a system

with arbitrary damping and/or repeated eigenvalues can be solved using an

unsymmetric block-Lanczos algorithm. The second-order equation of motion

of an n-DOF system

rn2(t) + c_(t) + kx(t) = f(t) (37)

is converted to the 2n-DOF first-order form

AX(t) + X(t) = F(t) (38)

where X is a state variable having the form

X(t) = x(t) (39)

and A is a 2n × 2n real, non-symmetric matrix.

The dynamic response, X(t), may be approximated by a model order-

reduction procedure based on Lanczos vectors as follows. Let a subspace of

13



right Lanczos vectors be given by

_?>=[_>7), _>i_),..., <I>?)] (40)

and a corresponding subspace of left Lanczos vectors be given by

_iP)= [_i x), _i 2), ..., tIsl') ] (41)

where _(_) and _') are computed by using the following algorithm.

Assume _#(L°) = q(L°) = 0 and select 2n × r blocks of

starting vectors _(L1) and qt(_ ), where"

<I>U,I,7)=s,_

For j = 1, ..., (p- 1), compute

ff/(J)r A_(J)
Mj = "L <'_L (42)

R_ a¢?) _)Mj - ,(_-')a__" -- L j-1

PJ = '4Tq(_ )- ¢(J)MT--Lj @_-I)BY-,

Ljb_ = Pf R_ (L-U decomposition)

B s-U._, G s--L_

¢_+')= Rju;', ,_+')= 5L; _

The 2n-order model of Eq. (19) may be reduced to (p x r)-order (< 2n)

through a Ritz-type procedure by letting

X(t) = 4_?)_(t) (43)

14



and forming the reduced-orderequation of motion

ApO(l ) + _?(t) = Fp(l) (4,1)

where

Ap _(_)rAqS(P) qS(LP)r= L L, _= V(t) (_15)

Reference [17] shows that Ap can be constructed directly from the Mj, B j,

and Gj matrices computed with Eq. (23).

In Reference [17], reduced-order eigensolution and dynamic response ex-

amples based on the above unsymmetric block-Lanczos model order-reduction

are given. Figure 2 shows the structure used for the example solutions in Ref.

[17]. Due to the lack of space, only selected step response results presented in

TYT
z

Figure 2: Beam with rotating masses

Ref. [17] will be cited here. The beam in Fig. 2 has eight physical degrees-of-

freedom; sixteen state variables. Figures 3a and 3b show the reduced-order

response at DOF 5 for unit step inputs at DOFs 5 & 6. Two options for

15
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generating the starting vectors for _) in Eq. (23) were compared: arbitrary

starting vectors, and special starting vectors related to the static displace-

ments. While the special starting vectors led to accurate calculations for a

model of order four (Fig. 3b), the arbitrary starting vectors failed to produce

accurate results for models of order less than eight.
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In the block Lanczosalgorithm presentedabovethe right and left Lanczos

vectorsare all theoretically biorthogonal to eachother. However,thesevec-

tors may losethe biorthogonality due to cancellationand roundoff errors. In

a Lanczos-basedeigensolverthis hasbeenfound to result in ghost or spurious

eigenvalues. This problem may be prevented by suitable reorthogonalization

and normalization. A strategy for incorporating reorthogonalization and nor-

malization steps in the unsymmetric block Lanczos algorithm is developed

in Ref. [i7] and is described in Ref. [19].

Mode-superposition based on normal modes is the most commonly used

&

procedure for computing the response of structures to transient type excita-

tion [1]. In many instances it is required that the modal model be validated

through experimental modal analysis. The link between analytical model-

ing based on normal modes and experimental modal analysis has even given

rise to the annual International Modal Analysis Conferences (e.g., Ref. [20])

and a companion journal (e.g., Ref. [21]). However, the viewpoint expressed

in Refs. [5] ,[6], [14], and [17] is that mode-superposition based on Krylov

vectors (modes) and Lanczos vectors (modes) is an attractive alternative to

mode superposition based on normal modes. Hence, Ref. [17] explores the

possibility of identifying Lanczos models from experimental data.

Figure 4 shows the proposed system identification procedure which em-

ploys a least squares parameter estimation step followed by a Lanezos mod-

eling step. The details of the system identification procedure are contained

in Ref. [17], and a journal article on this topic is in preparation. Lanczos

system identification was applied to simulated "experimental" data, i.e., time

- 17
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histories, for an 8DOF cantilever beam. The system identification procedure,

up through and including the parameter estimation and eigenvalue problem

steps, was applied to a 60 DOF model of the space station.

Figure 5 shows the 60 DOF finite element model of the equivalent Space

Station which was developed in order to apply the proposed system identi-

fication procedure to a large space structure (corresponding to the boxes of

- _, h, _, and l"in Figure 4). Although this model is smaller than the cur-

rently proposed Space Station model, it has the same characteristics. This

model has modal damping for each mode as well as the rotor mechanism

which results in an unsymmetric damping matrix. This model is of order

120 due to the state-vector formulation. The Cray X-MP/24 supercomputer

was used for this example.

This structure has an interesting characteristic which can make the model

order reduction difficult. Since this model has a very flexible substructure

(nodes 6-7-4-9 in Figure 5), which is attached to the main structure (nodes

1-2-3-4-5), the reduced-order model may lose major characteristics of the

structure if an order-reduction technique is not applied carefully.

First, an analytical model was generated based on the finite element mod-

eling procedure. Response (acceleration) data were produced by numerical

simulation; random input was applied at node number 4 (all six DOFs), the

sampling rate was 10Hz, the cut-off frequency was 3.906Hz, the frequency

resolution was 0.0195Hz, and the number of samples was 512. The 256-point

spectra were produced by the fast Fourier transform, but only 200-point

spectra were saved for the next procedure.

19



By the parameterestimation procedure,nineteenfrequenciesand damp-

ing factors lower than the cut-off frequencywere identified in the presence

of closely-spacedmodes(seeTable 1). It wasfound to be necessaryto usea

pre-filter, that is an anti-aliasing filter, beforethe Fourier transform. Three

least-squaresalgorithms wereevaluated.The QR decompositionmethod and

the singular value decompositionmethod gavethe samegood results, while

the normal equation method failed in somecases.

With random noise, which was added to the force and responsetime

histories, the parameterestimation method workedwell up to 15%rms (root-

mean-square)noise-to-signalratio.

This exampleshowsthat the proposedsystemidentification method (see

Figure 4) canbeappliedto largespacestructures, although further researchis

requiredon the applicationof Lanczos order-reduction for large size problems.

In summary, a Lanczos algorithm has been developed for systems with

arbitrary linear damping and applied both to reduced-order modeling for

dynamic response analysis and to experimental system identification.

20
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No.

1

2

3

4

5

6

7

8

g

10

11

12

Exact

Frequency

0.I05543

Damping

0.02000

Identified

Frequency Damping

0.019970.105588

0.109439 0.02000 0.109360 0.01982

0.110349 0.02000 0.110421 0.02011

0.126782 0.02000 0.126585 0.02003

0.138438

0.186127

0.681877

0.02000 0.138640 0.02017

0.02000 0.186528 0.01956

0.02000 0.683791 0.0204g

0.684928 0.02000 0.686575 0.02055

0.841581 0.844624 0.020340.02000

0.845398 0.02038

1.01416 0.02013

1.25047 0.02106

:

0.846896 0.02000

1.01619 0.02000

1.24198 0.02000

:

Table 1: Exact and identified eigenvalues
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o APPLICATION OF KRYLOV VECTORS AND

LANCZOS VECTORS TO THE CONTROL OF

FLEXIBLE STRUCTURES - PART I

Several studies have been conducted to determine possible application

of Krylov vectors and Lanczos vectors to the control of flexible structures.

These include Refs. [22] and [23] which develop Lanczos modes for continuous

systems (i.e., partial differential equation models of structures) and explore

frequency response solutions and transient response solutions based on Lane-

zos vectors. References [24] through [26] develop Krylov model-reduction

methods for undamped and damped structures, describe several interesting

feature of Krylov reduced-order models, and develop LQ (Linear Quadratic)

controller design methods based on Krylov models. This Section summaries

the material covered in Refs. [22] and [23], while Section 5 summaries the

work presented in Refs. [24] through [26].

Previous work on Krylov vectors and Lanczos vectors (e.g., Ref. [6]) has

treated only finite degree of freedom systems, generally finite element models

of structures. In Ref. [22] Lanczos modes based on continuous models of

structures are defined. Lanczos modes (functions) are developed for the

cantilever rod shown in Figure 6.

The equation of motion and boundary conditions of the rod in Figure 6

can be written in the following nondimensional form:

02u O_u
Oz-----7 + p(x,t) = Ot-----_ (46)
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F(:)

_I--_-u(_)
,-I

"-_/_ p(I/
,_-)

Figure 6: Continuous model of a uniform rod

Kl,t) =o (4va)

The algorithm presented by Nour-Omid and Clough [6] for finite element

models suggests a similar derivation for continuous systems. The algorithm

to compute the continuous Lanczos mode qj+l(x) may be expressed by the

following sequence of equations:

" _;(-r-j =qj, fj(1)= 0)=0 (4s)

where

rj = 6 - o_qJ- ZJqJ-_ (49)

_0 Iaj = qffj dx (50a)

/o/3j= ( ,.__2dx),/_ (501,)
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and

let

qj+l = rj (51)

--Jo' _ dx)'12#j+, = ( _j (52)

To start the computation of Lanczos modes, q0 and ql are required. First,

qo(._,)= o (_._)

As noted by Nour-Omid and Clough, the Lanczos algorithm is particularly

advantageous when the force distribution is constant and only the amplitude

varies. Here, it is assumed that the force (e.g., control force) is applied only at

the tip of the bar, i.e., at x = 0. Thus, ql(x) may be determined by applying

a unit (nondimensiona]ized) force at the free end as shown in Figure 7.

ro(x), ql(x) X

_f

Figure 7: Loading of nondimensionalized rod for Lanczos mode 1

Then, based on Eqs. (46) and (47a)

It

-_o(X) = 0
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ro(1) = 0

/o(O) = -i

q,(x) = (ll/31)ro(x)

where

#_ = _-o_ d_

As shown in Ref. [20], this leads to the following normalized Lanczos modes:

ql(x) = ,/5(1- x)

q2(x) = 6.61438x 3 - 19.84313x 2 + 15.874,51x - 2.64.575

q3(x) = -26.11842x 5 + 130.5921x 4 - 232.16374x z (54)
+174.1228x 2 - 49.74937x + 3.31662

q4(x) = 103.84437x 7- 726.91056x s +2012.9831x S

-2795.80986x 4 + 2033.31626x z - 731.99386x 2

+108.44353x - 3.87298

These continuous Lanczos modes are plotted in Figures Sa through Sd.

References [22] and [23] discuss some of the typical measures of effective-

ness of a dynamic model - frequency response, response to impulse excitation,

and response to step excitation. Figures 9a and 9b illustrate typical results

of the comparison of responses of reduced-order systems based on normal

modes with responses based on Lanczos modes. From responses like those

illustrated in Figure 9 it was concluded that Lanczos models provide accurate

modeling of low-order system poles and that the system zeros of a Lanczos

model are more accurate than the system zeros based on a normal mode

model.
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Figure 8a: First continuous Lanczos mode

o

_'lo' ___ ,.0._:_-?.,,

/
_-:J/

Figure 8b: Second continuous Lanczos mode
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Figure 8d: Fourth continuous Lanczos mode
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o APPLICATION OF KRYLOV VECTORS AND

LANCZOS VECTORS TO THE CONTROL OF

FLEXIBLE STRUCTURES -PART 2

This Section summarizes the work presented in Refs. [24] through [26],

in which Krylov vectors and the concept of parameter-matching are com-

bined together to develop Krylov model reduction algorithms for structural

dynamics systems. Parameter-matching is a class of well known model re-

duction methods for general linear time-invariant systems described either

by transfer functions or by the first-order state-space form. Krylov model

reduction extends the parameter-matching idea to a structural dynamics sys-

tem described by a second-order matrix differential equation together with

an output measurement equation. The reduced-order model obtained by the

Krylov model reduction algorithm matches a certain number of system pa-

rameters called low-frequency moments. For a general linear time-invariant

system described by
= Az + Bu

y = cz (55)

the low-frequency moments are defined by CA-iB, i = 1, 2, ..., which are

the coefficient matrices in the Taylor series expansion of the system trans-

fer function. By matching the low-frequency moments, the Krytov reduced

model approximates the lower natural frequency range of the full-order struc-

ture. For control applications, it is shown that the Krylov formulation can

eliminate the control and observation spillovers, but dynamic spillover needs

to be considered.
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A Krylov model reduction algorithm for undamped structural dynamics

systemsis developedin Refs.[25] and [26]. An undampedstructural dynam-

ics systemis describedby the input-output form

M2 + Kx = Pu
(56)

y = Vx + I,Vk

Applying the Fourier transform to Eq. (56) and assuming that the system

has no rigid-body motion, the system output frequency response function

can be expanded around w = 0 into a Taylor series expansion

OO

Y(w) = __,[V([(-'M)'I(-1F + jwW(K-IM)_I(-1P]w:_U(w) (57)
i=0

In the above expressions, V(K-1M)_K-1P and W(K-1M)_K-'P play roles

similar to that of the low-frequency moments in the first-order state-space

formulation. Therefore, the low-frequency moments of an undamped struc-

tural dynamics system described by Eq. (56) are defined by V(K-'M)iK-1P

and W(K-1M)iK-1P, for i = 0, 1, 2, ....

In Refs. [24] and [26] there is a theorem which states that if a projection

matrix L is chosen such that span{L} = span{Lp Lv Lw} with

Lp = [K-_P, (K-'M)I(-IP, ..., (I(-_M)'[C-_P]

Lv=[K-'V T, (I(-_M)IC-IV T, ..., ([(-'M)qK-'V T]

Lw = [K-IW T, (I(-tM)K-'W T, "'"

for p, q, s >__O, then the reduced-order model

Mx + f(_ = Pu _ _ R _

y = 9_ + VVx

, (K-'M)SK-_W r]

(r < n)
(58)
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with x = L_" and 37I = LTML, -fi( = LTKL, P = LTp, P" = VL, and

I?V = WL, matches the low frequency moments V(K-1M)iK-1P for i =

0, 1, ..., p + q + 1 and W(K-1M)iK-1P, for i = 0, 1, 2,..., p + s + 1.

Based on that theorem, the following algorithm is developed to generate

a Krylov basis which can produce a reduced-order model with the stated

parameter-matching property.

Krylov/Lanczos Algorithm

(1)

(2)

Starting vector:

(a) Qo= 0

(b) Ro= K-1p,

(c) PSKRo = Uor.oU[

(d) Q, = _Uor.;_

For j = 1, 2, ..., k - 1, repeat:

(e) kj = I_-IMQj

(f) R, = kj - #_A_- #j_IBj
1

A_= Q_(kj, Bj = Uj_,__j-1

(g) S_KR, = uj_ju?
1

(h) Qj+I- RjB[ T = RiUjE7 _

end

[_ = linearly-independent portion of [P V T W T]

(singular-value decomposition)

(normalization)

( orthogonalization)

(singular-value decomposition)

(normalization)

(3) Form the k-block projection matrix L = [Qa Q2 ... Qk].

The above algorithm is a Krylov algorithm because the L matrix is gen-

erated by a Krylov recurrence formula (Step (e)). It is a Lanczos algorithm
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becausethe orthogonalization schemeis a 3-term recursion scheme (Step

(f)). One interesting feature of the transformed system equation in Krylov

coordinates is that it has a special form:

× X

X × X

X X

y=[×00

X

X X

•..

X

0

0

_+:_ = , .

0

oo ...

u

(59)

where x denotes the location of nonzero elements• This special form reflects

the structure of a tandem system (Figure 10), in which only subsystem $1

is directly controlled and measured while the remaining subsystems, Si, i =

2, 3, ..., are excited through chained dynamic coupling•

u _[ St ] _ y

I
Figure 10: Structure of a tandem system

For damped structural dynamics systems, a Krylov model reduction method

with moment-matching property is developed in Ref. [24] and [26]. The

damped structural dynamics system considered is described by

M_ + Dic + Kz = Pu
(60)

y = Vx + Wk
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The formulation starts out with an equivalent first-order form of the above

equation

D M 0 x_ 0]{ _ 0}
(61)

y = Iv w]

Then, the low-frequency moments for the above system are found to be

= w,[-,,- _z,.,,],l{/,. }00
This suggests the following recurrence formula

{ Q_+I}=Q,+, [-K-'DI -K-'M]{o Q_'Qd} (62)

for generating, a Krylov subspace for model reduction. Based on the above re-

currence procedure, a Krylov model reduction algorithm for damped systems

is established.

A plane truss structure with 48 degrees-of-freedom (see Figure 11) was

used to illustrate the efficacy of the proposed methods. The structure has a

force actuator at f and a displacement sensor at d. The structure geometry

is designed to provide closely-spaced eigenvalues. The damping matrix is a

generalized proportional damping matrix such that modes 1 to 5 have a 3%

damping ratio, modes 6 to 10 have a 5% damping ratio, and the remaining

higher modes have successively higher damping. Three reduced-order mod-

els are compared: a reduced-order model obtained by using eight damped

Krylov Vectors, a reduced-order model obtained by using eight undamped

34



Krylov vectors, and a reduced-ordermodelobtained by retaining eight nor-

mal modes. Figures 12 to 14 comparethe accuracyof the impulse response

of the three reduced-ordermodels. It is seenthat for this examplethe normal

mode reducedmodeland the dampedKrylov reducedmodelhave about the

sameaccuracy,while the undampedKrylov reducedmodel is poor. There-

fore, for dampedsystems,damping effectsmust be taken into consideration

in generatinga Krylov reducedmodel.
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Figure 11: Details of plane truss structure for model reduction example
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Figure 12: Impulse response; eight normal modes and exact solution
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Figure 13: Impulse response; eight damped Krylov modes and exact solution
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Figure 14: Impulse response; eight undamped Krylov modes and exact solu-
tion
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In the control of flexible structures, it is shownthat there generally exist

three typesof control energyspillover: control spilIover, observation spillover,

and dynamic spilIover. Figure i5 illustrates the characteristics of spillover.

The spillover of control energy is a direct result of model reduction. The com-

I Controller I_

_t tua,orI _spi,,ov.r[ s.°_r?-
I __R._du.,Sob_s_mlf

ObservationControl
Spillover Spillover

Figure 15: Characteristics of spillover

bined effect of the three types of spillover usually degrades the performance

of the controller and sometimes can destabilize the closed-loop system. The

conventional normal mode formulation for the control of flexible structures

can eliminate dynamic coupling, but it produces both control and observa-

tion spillover. If model reduction and control design are based on the system

equation described in Krylov coordinates, then the control and observation

spillover terms can be eliminated while leaving only the dynamic spillover to

be considered. This is the major difference between the Krylov formulation

for structural control design and the commonly used normal mode approach.
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Severalstructural control examplesare provided in Refs. [24]and [26] to

show the superiority of the Krylov method over the normal mode method.

Oneof the examplesis a 20degree-of-freedomlightly-damped truss structure

as shownin Figure 16. The structure is reduced to lower-order modelsby

using either Krylov modesor normal modes. Basedon eachreduced-order

model, an LQG control design is carried out to obtain a reduced-order con-

troller. Closed-loop stability of different controllers is compared in Table 2,

in which K2 stands for the controller designed based on the 2nd-order Krylov

reduced model, N2 stands for the controller designed based on the 2nd-order

normal mode reduced model, and so on. It is seen that controllers designed

using normal mode reduced models are more likely to cause closed-loop in-

stability than controllers designed using Krylov reduced models. Figure 17

shows that the Krylov-based controllers have better performance than the

controllers based on normal mode reduced models.

In summary, Krylov vectors and the concept of parameter-matching are

combined together to develop model reduction algorithms for structural dy-

namics systems. The Krylov formulation for control of flexible structures

permits elimination of control and observation spillovers while leaving only

dynamic coupling.
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Table 2: Stability of the controllers

Controller
K2
K4
K6
K8
K10
N2
N4
N6
N8
N10

p-.05 0.1 0.5 1.0 5.0 10.0 501'0 100.0 500.0
U U U U S S S S S

U S S S S S S S S

S S S S S S S S S
U S S S S S S S S

S S S S S S S S S

U U U U U U S S S

U U U U U U S S S

U U U U S S S S S
S S S S S S S S S

S S S S S S S S S

S: the closed-loop system is stable. U: unstable
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6. A BILEVEL ARCHITECTURE FOR THE

CONTROL OF FLEXIBLE STRUCTURES

Although attachment modes are not employed directly in Ref. [27], the

study was conducted to provide background on the topic of control structure

interaction and to explore the possibility of developing a substructure-based

control system architecture.

In the design of a control system architecture for control of a flexible

structure, there are several characteristics that are desirable. The architec-

ture should be physically motivated, meaning that it should be particularly

suited to the nature of the structure. The algorithms utilized must not in-

volve all excessive amount of on-line computation as this introduces time

delay and promotes the increase of round-off error, both of which may lead

to unsatisfactory performance and control instability. The control scheme

should be easy to implement in that the amount of hardware required and

complexity of the implementation techniques should be minimized. Finally,

the scheme should be cost effective, as energy and fuel are not necessarily in

abundant supply.

9"Two levels of control are chosen in the architecture proposed in Ref. [-i],

such that the upper or global level is a centralized controller whose purpose

is to maintain overall structure attitude and shape, and the lower or residual

level is a decentralized control whose function is to provide damping aug-

mentation. The global control is based on a reduced structure model which

is only large enough to include critical, low-frequency motion associated with
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rigid body modes and a few flexible modes. The residual control is necessary

to suppress vibration in higher modes which need not be modeled or con-

trolled explicitly. Another reason for the residual control is related to control

spillover from the global control which may destabilize the unmodeled vibra-

tional modes. The principal causes for the spillover are modal truncation

and inaccurate representation of the actual motion. Thus, since the residual

control itself must be extremely stable and robust, direct velocity feedback

is employed in the residual control law.

Two examples are presented in Ref. [27] to show that the proposed bilevel

control architecture is successful in controlling low-order structures. For these

two examples there was little loss in performance and only a slight increase

in control cost as compared to full state and full measured-state feedback

approaches. The proposed bilevel control architecture appears to be a viable

alternative for control of flexible structures.
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7. SUMMARY AND RECOMMENDATIONS

This report summarizes extensive research on the application of attach-

ment modes in dynamic response analysis and in control-structure interaction

analysis for flexible structures. In particular, methods based on Krylov vec:

tors and Lanczos vectors have been developed and have been shown to be

superior to normal mode methods in many cases. Included are block-Krylov

methods for substructure analysis, block-Lanczos methods for structures with

general damping, and model order-reduction and controller design methods

based on Krylov and Lanczos vectors.

Future research should address control theoretic aspects of controller de-

sign based on Krylov/Lanczos modes, and substructure-based controller de-

sign procedures should be developed.
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