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ABSTRACT 

A numerical modeling is to examine the effects of coolant convective heat transfer 
coefficient and frictional heating on the local temperature characteristics of a ball 

L element in SSME HPOTP bearing. The present modeling uses a control-volume 
based, finite-difference method to solve the non-dimensionalized heat conduction 
equation in spherical coordinate system. The dimensionless temperature is found as a 
function of Biot number, heat flux ratio between the two race contacts, and location in 
the hall. The current results show that, for a given cooling capability, the ball 
temperature generally increases almost linearly with the heat input from the race- 
contacts. This increase is always very high at one of the two contacts. An increase in 
heat transfer coefficient generally reduces the ball temperature and alleviates the 
1emper;tture gradient, except for the regions very close to the race contacts. For a 10- 
fold increase of heat transfer coefficient, temperature decrease is 35% for the average 
over entire ball, and 10% at the inner-race contact. The corresponding change of 
temperature gradient displays opposing trends between the regions immediately 
adjacent to the contacts and the remaining portion of the ball. The average 
rernper'ilure gradient over the entire ball decreases about 50%. On the contrary, the 
tcrnperature gradient in the vicinity of both contacts increases approximately 70% to 
100%. A higher temperature gradient produces excessive thermal stress locally which 
rnrty be detrimental to the material integrity. This, however, is the only unfavorable 
I\sire for an increase of heat transfer coefficient. 



The first author (MKC) of this report is grateful to NASA-Marshall Space 
Flight Center and ASEE for the appointment of Summer Faculty Research Fellowship. .& 

In addition, he expresses special appreciation to Messrs. James L. Cannon and. 
George M. Young 111 for their collaboration in this project. 

Thanks to Ms. Joan G. Trolinger for her help in collecting references, Mr. Craig 
Gilden for his assistance in preparing presentation material and Mr. Loren A. Gross 
for his enthusiastic interest in this project. 

For Professor Gerald R. Karr and Dr. Frank Six, their excellent management of 
the entire program is highly appreciated. 



Figure 1. Heat Transfer Coefficient of Pool Boiling Oxygen - 
Figure 2. Rolling Ball Schematic 

Figure 3. Spherical Coordinate System 

Figure 4. Ball Temperature Distribution, Bi = 1, Q i  = 1.2 

Figure 5. Ball Temperature Distribution, Bi = 1, Qi, = 2.0 

Figure 6. Ball Temperature Dismbution, Bi = 1, Qi, = 7.5 

Figure 7. Ball Temperature Dismbution, Bi = 10, % = 1.2 

Figure 8. Ball Temperature Distribution, Bi = 10, & = 2.0 

Figure 9. Ball Temperature Dismbution, Bi = 10, Qi, = 7.5 

Figure 10. Effect of q,, on Ball Temperature Variation, Bi = 10, = 1.2 

Figure 1 1. Effect of q,, on Ball Temperature Variation, Bi = 1, Q, = 7.5 

Figure 12. Thermal Coupling of Bearing Elements 



NOMENCLATURE 

Subscript 

Biot number 
heat transfer coefficient 
thermal conductivity of bearing ball 
ratio of heat flux at inner-race contact to that at outer-race contact 
heat flux at outer-race contact 
heat flux 
dimensionless radial coordinate, see Equation (5) 
radial coordinate 
temperature 
temperature corresponding to dimensionless temperature equal to 0.05 
mean temperature averaged over entire ball 
temperature at ball center 
temperature of LOX bulk temperature, -240 F in present study 
temperature at inner-race contact 
temperature at out-race contact 
azimuthal angle in spherical coordinate system, see Figure 3 
yaw angle in spherical coordinate system, see Figure 3 
dimensionless temperature, see Equation (7) 

ir contact of inner race 
o sphere outer surface 
or contact outer race 
f coolant fluid 



The reliability and service life of the ball bearings in the High-Pressure 
Oxidizer Turbo Pump (HPOTP) has become one of the most, if not the most, critical 
issues concerning the safety and future development of the Space Shuttle Main Engine 
(SSME). These bearings are operated under severe loading conditions with very high 
rotational speeds. Liquid Oxygen (LOX), the primary fluid media in HPOTP, is 
directed to flow through the bearings to provide cooling and lubrication. LOX with its 
cryogenic feature is an effective coolant but has poor lubrication capability. The 
present data has indicated that the actual bearing life is about one order of magnitude 
lower than that as designed for seven and one-half hours. This service-life is directly 
limited by fatigue and wear on the bearing components. Bearing removed from the 
pump has often shown discoloration which is evidently caused by intense surface 
oxidation and over-heating. The excessive heating is largely frictional and implies the 
current level of cooling and lubrication is apparently insufficient. 

Significant endeavor on improving bearing service life and reliability has been 
pursuej by NASA since early 1980's [I]. These include both testing and numerical 
modeling of the problem. At NASA Marshall Space Flight Center (MSFC), Bearing 
and Seal Material Tester (BSMT) was installed, with which near-engine, actual scale 
bearing testings can be performed. Data collected from BSMT provides basis for 
experimental investigation and modeling verification [2]. The modeling effort is 
primarily focused on the development of analytical tools for prediction of bearing 
behavior, in both nlechanical and thermal aspects. There are two different approaches 
in  present-day shuttle bearing modeling. One, using the SHABER'IWCINDA 
computer code, performs a lumped analysis with mechanical and thermal coupling [3]. 
The other employs computational fluid dynamics (CFD) which solves the transport 
equations numerically [4]. The CFD approach generally does not include mechanical 
modeling. Both approaches, to date, have shown success and continuing progress in 
certain areas; however, their potency to evolve as the ultimate design tool is still 
impervious. This is largely attributable to the lack of knowledge on coolant flow, 
bearing dynamics, ball-to-race interfacial friction and wear mechanism. 

Despite these efforts, uncertainty still remains concerning the primary cause or 
causes for the bearing deterioration. It has been generally recognized for several years 
that the problem to the damage is primarily thermal. Under this notion, an 
inlprovement of the convective cooling can at least partially alleviate the problem. 
Thermodynamically, cryogenics are operated near the critical state, and the peculiarly- 
behaving properties under this condition often result in a higher heat transfer 
coefficient than those of subcritical states. The heat transfer coefficient can increase to 
an even higher value as a supercritical state is reached. Hydrodynamically, the nature 
of bearing flow is very complex as the axial through flow interacts with the rotational 
motions of balls and inner-race. Moreover, the combination of intense frictional heating 
and inadequate cooling may cause LOX vaporized in the vicinity of the ball surface. 
This boiling phenomenon further complicates the flow pattern and heat transfer to a 
great extent. The essential aspects of momentum and energy transport in the HPOTP 
bearings thus involve cryogenic, forced convection boiling in a rotating environment. A 
review of the literature reveals that virtually no study of this nature has been 
explored. The only relevant study has been done by Cuan et al. [ S ]  who investigated 



the effects of pressure and subcooling on the average heat transfer from a sphere with 
and without spinning in a pool of liquid-nitrogen. However, their data are still 
considered inadequate for actual bearing application. 

-d 

Since the heat transfer information under the actual bearing environment is 
lacking, the pool boiling curve with a stationary sphere becomes the primary source of 
heat transfer data. Such a pool boiling curve for Oxygen is shown in Fig. 1. Note that 
the value of boiling heat transfer coefficient can differ by a factor of 10 or even 100 
depending on the stage of boiling. Although it is a fact recognized widely that the ball 
surface is under the film boiling regime with low values of heat transfer coefficient, 
literally the entire spectrum of boiling can occur in different time, locations and loadng 
conditions. Hence the choice of heat transfer coefficient of film boiling in a stationary 
pool as a valid representative for the bearing forced-flow is conservative and 
fundamentally incorrect. 

The variation of heat transfer coefficient affects the temperature distribution in 
a bearing ball, which, in turn, influences the thermo-mechanical and wear properties of 
the material. To evaluate the nature of thermal expansion, thermal stress, and 
subsurface crack, the temperature distribution must be known as a priori. Thus it is 
necessary to gain detailed response of ball temperature to a change in the external 
heat transfer coefficient. The present study is primarily directed to fill this need. It 
uses a numerical method for a parametric analysis which covers a wide range of 
different cases. This includes the effect of different heating levels occurred at the 
contacts between the ball and two races. 

Figure 2 shows the schematic sketch of a rolling ball and its adjacent races. 
Frictional heat is generated at the locations in contact with inner and outer races. For 
sinlplicity but without loss of generality, the ball is assumed rolling smoothly and with - 
a very high speed; thus the two heated spots can be considered to be two heated 
"strips." The original three-dimensional problem can thus be reduced to a two- 
dimensional. Also shown in Fig. 2 are the locations and sizes of contact area. 
Measure of a contact area is given by the angle of opening, and it is assumed 8 degree 
for the outer-race and 5 degree for the inner race. The choice of these sizes are based 
on the corresponding magnitudes used in a recent CFD modeling by Owens [4]. In 
addition, any influence due to the presence of cage is assumed to be negligible. The 
following discusses the numerical computation which gives the details of the present 
analysis. 

The heat transfer in a ball element is governed by the following equation in 
spherical coordinate system as shown in Fig. 3. 

V .(k VT) = 0 (1  

where k is the thermal conductivity of the ball and T = T(r, 8, @) represents the 
temperature field. In the present analysis, k is assumed constant and Eq. (1) becomes 
a 1,aplace equation; i.e., 



Furthermore, with the assumption of "ship heating" as mentioned earlier, the 
temperature dependency on $.can be eliminated. Thus T is a function of r and 8. 

The boundary conditions on the ball surface (r = r,) are specified as 

(i) At contacting area: 

where q I S  the frictional heat flux generated on the contact area. Note that the value of 
(1 is different between contact with the inner-race (qh) and that with the outer-race 
(qor). 

( i i )  A t  rion-contacting area: 

where h is the convective heat transfer coefficient and Tf is the bulk temperature of 
the coolant flow. 

To further extend the generality of the present analysis, the aforementioned 
governing equation and boundary conditions, eqs. (2) to (4), are transformed to their 
dimensionless counterparts. This is accomplished by introducing the following 
dimensionless variables; i.e., 

Qir = qirlqor, ( 6 )  

and 

where Bi is the Biot number representing the ratio of thermal resistance inside the 
sphere to that outside the sphere. The governing equation in dimensionless form is 

and the boundary condition becomes 

VO= 1 at outer-race contact 

= Qir at inner-race contact 



= - B i 8  at non-contacting area (1 0) 

Thus the solution 8, a dimensionless temperature, is a function of R, 8, Qi, and Bi. It 
represents a generalized solution for any variation of ball size, operating temperature, 
and heat transfer coefficient. The value of Qi, ranges from 1.2,2, to 7.5, and Bi varies 
between two cases, 1 and 10. These values are calculated based on the practical 
information and material properties of actual HPOTP bearings. 

Equations (9) and (10) are solved numerically using a control-volume based 
finite-difference method described in detail by Patankar [6].  Although the present 
study requires only two-dimensional and steady-state calculation, the computer 
program developed herein is capable of solving three-dimensional, transient heat 
conduction problems in generalized, body-fitted coordinate systems. Of particular 
feature in this computer code is the implementation of the so-called periodic boundary 
condition in the azimuthal, 8, direction. At the boundary, say 8 = 0 and 2x, the 
dependent variable, 8, and its associated quantities are not explicitly specified at 
these two grids, but they must be correspondingly equal, since the two grids are, in 
fact, the same point. In other words, for a given radial coordinate, all variables repeat 
themselves with a period of 2 ~ .  One effective solution strategy in dealing with 
problems with such a periodic nature is given by Patankar et al. [7], and it is adopted 
for the present computation. Here, the so-called Cyclic Tri-Diagonal Maa-ix Algorithm 
(CTDMA), facilitates a direct solution along the €)-coordinate. Correspondingly, in the 
radial direction where periodicity is non-existent, the non-cyclic version of such a 
direct solver, TDMA, is used. During a computation, the two direct solutions are 
swept across the entire domain in an alternate fashion using the so-called "line-by-line 
iteration." The iteration as well as the entire calculation procedure terminates at an 
attainment of a converged solution. 

All the computations are performed with a grid of 40 and 100 points in R and 8 
direction, respectively. The choice of this grid size which gives sufficiently accurate 
data and reasonable computing time is a result of an extensive grid-independence 
study. The grid is nonuniform and denser near the outer surface and contact regions 
where steeper gradients of dependent variables exist. The convergence criterion is 
that the percentage change of a variable at any grid should be within 0.1%. A typical 
run on a Micro VAX I1 computer takes approximately 500 iterative steps with a CPU 
time about 1 minute. Note that the present numerical scheme, particularly for 
computing time, may not be the most efficient for solving heat conduction or diffusion 
dominant problems. However, the framework of the present program is designed to be 
completely compatible with one of the most effective, pressure-based computational 
fluid dynamics (CFD) code. Future extension in simultaneous modeling the heat 
convection in coolant flow and heat conduction in solid ball - a conjugate problem - is 
possible . 

'The computed results are shown in figures 4 to 9, each of which includes a 
contour plot of the dimensionless temperature, 8, and a table listing values of actual 
temperature and heat f lux at locations of interest. The temperature and heat flux 



shown in the table use the units of degree F and BTU per square foot per second, 
respectively. The actual temperature at any location, according to Eq. (7), can be 
inferred from the calculated 8 with given q,, and Tf. The value of Tf (denoted as 
T.INLET in tables) is taken at -240 degree F for all cases, which is the critical 
temperature of Oxygen. To facilitate the sample calculation, it uses five levels of q,, 
ranging from 100 to 1500 BTU/ft* sec as listed in the first column. The nomenclature 
stated in second row of the table, T.OR, T.IR, T.AVG and T.CENTER represent the 
temperature at outer-race contact, at inner-race contact, average over entire ball and 
at center, respectively. Note that T.05 stands for the actual temperature for 8 = 0.05, 
and its values tabulated in the last column are correspondingly equal for all figures. 
This is rather obvious, since the relation between 8 and T is governed by Eq. (7) 
alone and independent of Bi and Qk, the primary variables between any two figures. 
The third row in these tables displays the numerical data of 8 for the corresponding 
tmperature indicated in the second row. 

For given values of Bi and Qir temperature in a sphere increases nearly 
linearly with the amount of frictional heating at the outer-race contact, q,,. This is 
clear;) chown in the listed temperature of Figs. 4 to 9. Moreover, Figs. 10 and 11 
:espectively exhibit additional graphic view of this effect for the case Bi = 10, = 1.2 
and Bi = 1, Q, = 7.5. The overall thermal scale for the former is the lowest (coolest) 
and the highest (hottest) for the latter. An examination of these two figures reveals 
that the rate of ternperature increase vs. q,varies with differences in location, 
external cooling (Bi), and level of frictional heating (Qk ). It is clear that the 
temperature at one of the race-contact areas has the highest rate of increase, and 
temperature averaged over the entire volume or at the center has the lowest 
increasing rate. For Qir = 1.2, representing an almost equivalent heat generation 
between the two race-contacts, the highest temperature as well as the increasing rate 
exists at the outer-race contact. However, for Qi, = 7.5, such an extreme instead 
occurs at the inner-race contact. The value of Qi, greater than unity implies that the 
heat flux at the inner-race contact is higher than that at the outer-race contact. 
Accordingly, the total heat generated and local temperature near the inner-race contact 
should be higher provided that both contact areas are of the same size. This is not the 
case for Q;, = 1.2, because the area of outer-race contact is about 1.6 times higher than 
the inner-race contact. Thus the inner-race contact has a smaller amount of total heat 
generation and lower local temperature than its outer-race counterpart. For & = 2.0 
or 7.5, the effect of area differential becomes secondary as the highly elevated heat 
flux dominates the local heating at the inner-race contact. As a result, the local 
'emperature at the inner-race contact is higher than that of the outer race. For intense 
frictional heating, say q,, 2 500 BTU/ftZ sec, the temperature difference between the 
two contacts is nearly an order of magnitude for Bi = 1, & = 7.5, as Fig. 6 shows. 

Of particular interest is to investigate the effects of external heat transfer 
coefficient on the ball temperature distribution. In the present dimensionless approach, 
this can be done by examining the variation of O as a function of Bi for a given Qi,. 
According to the O definition (Eq. 7), such an effect is independent of the actual values 
of q,,, and coolant temperature. Comparing the data shown in the third row of each 
table, as Bi increases from 1 to 10, the resulting decrease is approximately 35%, 8% 
and  10% for the temperature of average, outer-race contact and inner-race contact, 
respectively. To be noted is that these values are virtually independent of the relative 



amount of heat generation between the two race-contacts (i.e., Qi, ), less than 1% 
within the present studying range. Apparently the temperatures at or near the contact 
areas is quite insensitive to the change of heat transfer coefficient. The rest of sphere 
reacts effectively and accordingly to the increase of heat transfer coefficient. Note that 
the temperature at the center core (fifth column in tables) is very close to the average 
temperature over the entire ball. This implies there are regions, mainly near the 
surface but away from the two contacts, the temperature reduction is more than 35%. 

One general concern in cooling enhancement is the excessive temperature 
gradient accompanying with an overall temperature temperment. This is undesirable 
as additional thermal stress could result. An effective cooling scheme is capable of 
removing heat from the system by reducing its temperature uniformly throughout the 
entire domain. As observed in the contour plots for all cases, temperature gradients 
near a race contact is much greater than that of the remaining region, by nearly an 
order of magnitude. As expected, the lowest gradient typically occurs near the central 
portion of the sphere. The influence of Bi on the temperature gradient varies strongly 
with difference in location and level of contact heating. 

An increase in a, raises both temperature and temperature gradient in the 
vicinity of the inner-race contact. For a given Bi, the same effect, in fact, occurs in the 
remaining portion of the sphere, but to a much less extent. A comparison between 
Figs. 5 and 6 shows that, for Bi = 1 and increasing from 2 to 7.5, the temperature 
gradient increases approximately 9 and 2.5 times at the inner-race contact and near 
the core region, respectively. This is understood as a stronger temperature gradient is 
established to facilitate the greater heat transfer for the case with a higher magnitude 
of Qir. Due to the absence of convective cooling at contacts, frictional heat in the 
present modeling must be transferred by conduction inside the ball first and then 
rejected from the surface by convection. However, the heat path is considered to be far d 
more complex in actual bearing conditions. Heat transfer takes place in various mode 
among all the bearing constituents. Figure 12 displays a thermal coupling diagram to 
illustrate this phenomenon. In reality, the heat generation at a contact must be 
transferred with partitions among the ball, the race and the lubrication (coolant) film 
immediately adjacent to the contact. The last represents the only convection related 
effect and is little understood currently. The other two partitions are predominant by 
conduction, but the details of heat sharing can not be determined without considering 
the overall heat balance in the bearing system, as shown in Fig. 12. 

For a given heating level at race contacts, one may expect that an increase in 
Bi or heat transfer coefficient will result in  decreases of both temperature and 
tenlperature gradient. The former is true as discussed earlier; but the latter is not 
always the case. The fact is that, as Bi increases from 1 to 10, the temperature 
gradient decreases about 50% away from the contact zones, and, on the contrary, 
increases 70 to 100% in the close vicinity of both contacts. This is mainly caused by a 
muct~ less temperature reduction at the contacts than in the remaining portion of the 
sphere, as the external cooling effectiveness increases. Such an elevation of 
temperature gradient near contact may be detrimental to the material integrity as the 
local thermal stress is expected to rise. However, this is the only unfavorable result 
due to the increase of heat transfer coefficient. 



The effects of contact heating and heat transfer coefficient on the temperature 
in a HPOTP bearing ball is studied numerically. The present analysis solves the non- 
dimensionalized equation for heat conduction in a spherical domain. The boundary 
condition is comprised of two heated stripes, each representing the frictional heat 
generation at contact with one of the two races, and boiling convection of LOX on the 
remaining surface. For a given value of heat transfer coefficient, the ball temperature, 
in general, increases linearly with the heat input from the race-contacts. However, the 
actual trend of increase varies with location. The greatest increase occurs at one of the 
two contacts, the one that has the higher total heat generation. 

An increase of heat transfer coefficient significantly decreases the ball 
temperature and alters its distribution. The present computation shows that, the 
average ball temperature decreases about 35% (with coolant bulk temperature as 
datum) for a 10-fold increment of the heat transfer coefficient. At the contacts, 
temperat Jre decrease is much less, in the order of 1096, due mainly to the intense local 
heating. The corresponding change of temperature gradient is strongly dependent on 
the location, and opposite effects exist. For the major portion of the ball and away from 
the contact zones, the temperature gradient decreases about 50%. On the contrary, it 
increases 70 to 100% in the vicinity of both contacts. This increase of temperature 
gradient may cause the subsurface material become vulnerable and susceptible to 
wear. However, this is the only adverse effect induced by an increase in the heat 
transfer coefficient. 
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Figure 1 .  Heat Transfer Coefficient of Pool Boiling Oxygen 



Figure 2. Rolling Ball Schematic 

Figure 3. Spherical Coordinate System 
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Figure 4. Ball Temperature Dismbution, Bi = 1, Qk = 1.2 
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Figure 5. Ball Temperature Distribution, Bi = 1, Qr = 2.0 
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Figure 6. Ball Temperature Dismbution, Bi = 1, Qi, = 7.5 
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Figure 7. Ball Temperature Distribution, Bi = 10, = 1.2 
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Figure 8.  Ball Temperature Distribution, Bi = 10, &= 2.0 
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Figure 9. Ball Temperature Distribution, Bi = 10, & = 7.5 
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Figure 10 Effect of q,, on Ball Temperature Variation, Bi = 10, Qi, = 1.2 



Figure 1 1  Effect of q,, on Ball Temperature Variation, Bi = 1 ,  = 7.5 
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Figure 12. Thermal Coupling of Bearing Elements 
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